Loading...
HomeMy WebLinkAboutNC0038377_Appx C - Site Assessment Data_201711012017 Comprehensive Site Assessment Update October 2017  Mayo Steam Electric Plant SynTerra    APPENDIX C SITE ASSESSMENT DATA CSA Data Reports (Physical) UNCC Soil Sorption Report UNCC Soil Sorption Report Addendum Slug Test Results   2017 Comprehensive Site Assessment Update October 2017  Mayo Steam Electric Plant SynTerra    CSA Data Reports (Physical)   SP0111198AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Multi Element Package Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: info@aallabs.comCOPIES TO : Samantha Wilkinson CLIENT REFERENCE No: MW-12 BR 50-51.5 through MW-07 BR 22-24 RECEIVED ::No. SAMPLES : 3 REPORTED ::MAIN SAMPLE TYPE : CORE:COMPANY DISCLAIMER :-When small samples are submitted, AAL may process the sample at smaller then specified weights to retain some pulp for quality control reassay.When Values exceed upper limits, AAL will run an Over Range analysis, to establish an accurate value. Additional cost will apply.Due to USDA Soil Quarantine programs - all foreign and some domestic soil material must be decontaminated by drying @ 125c for 48 hours,which will result in loss of Mercury (Hg).NEVADA LEGISLATIVE DISCLAIMER :-The results of this assay were based solely upon the content of the sample submitted. Any decision toinvest should be made only after the potential investment value of the claim or deposit has been determinedbased on the results of assays of multiple samples of geological materials collected by the prospectiveinvestor or by a qualified person selected by him and based on an evaluation of all engineering datawhich is available concerning any proposed project. Nevada State Law NRS 519.130.ANALYSISAl2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co Cu Ga La Mo Ni Pb Sb SeMETHODXRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WRUNITpct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmLOWER LIMIT0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.21112111211ANALYSISSn W Zn Zr LOI H2O- C S >63 um -63 umay <2um Quartzeldspar IlliteoliniteZeoliteMETHODD4A-WR D4A-WR D4A-WR D4A-WR LOI H2O-ELTRA-CELTRA-Clay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDUNITppm ppm ppm ppm pct pct pct pct pct pct pct pct pct pct pct pctLOWER LIMIT11110.01 0.01 0.005 0.005 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 SIGNATORY ANALYSIS____________________________________________________________ Cover PageAAL-006________________________________________________________________________________________________________________________7-Jul-201514-May-2015SynTerra SP0111198AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: AALLABS@NVBELL.NETAbbreviationDefinitionPreparation DIPSample Destroyed in PreparationDISSample Destroyed in ShipmentISSInsufficient Sample SubmittedSDISample Diesel ImpregnatedSHISample Hydraulic ImpregnatedSNRSample Not ReceivedAnalysisSTD - ??International Reference Material StandardSTD - AAL##AAL generated standard material BLANKAAL Laboratory Silica BlankDTFData to FollowDLDetection Limit of Method< or -Less Than Lower Detection Limit of Method>Greater than Upper Limit of MethodN/ANot AnalyzedNRNot Reported(R) columnLaboratory repeat weigh, digestion, analysis from original pulp or reject respliD or -D after Sample IDClient submitted duplicate rig split sample-R after Sample IDRepeat analysis from original pulp reweigh, digestion and analysi-X after Sample IDRepeat analysis from reject resplit, preparation, weigh, digestion and analysippbParts per Billion 0.001 ppm = 1 ppbppmParts per Million 1 ppm = 1 mg/KgOPTTroy Ounces per Short Ton(2,000 lbs)(1 ppm= 0.02917 OPTOzTroy Ounce = 31.103 grams%Percent 1%=10,000 ppmgGrams 1g=0.001 kilogrammgMilligrams 1mg=0.001gramsKgKilograms 1Kg=1000gramslbsPounds 1lb=0.454kilogramMethodFA-PB##Fire Assay Lead Collection - ## sample weight in gramGRAVGravimetric (Weighed) finishSFScreen Fire Assay reporting a plus, 2 minus fractions and a head Cal+ ###Plus Fraction (Retained on top of Mesh) ###Screen Siz- ###Minus Fraction (Passed through Mesh) ###Screen SizCNCyanide ExtractionORE GRADE2g sample made to 1000ml volumetric for results > upper limit of methoOx-H2SO4 or -HClDilute acid leach for oxide fraction in copper or molybdenum analysiQLADilute 10%H2SO4/0.5%Fe2(SO4)3 30C leach for acid soluble copperQLTDilute 15%H2SO4 30C leach for acid soluble copperSAPDilute 5%H2SO4/0.5%Fe2(SO4)3 85C leach for acid soluble & chalcocite copperD#ADigestion #=2,3 or 4 Acids2A=HCl/HNO3 3A=HCl/HNO3/HClO4 4A=HCl/HNO3/HF/HClOHClHydrochloric Acid(37%w/v) Boiling Point 109HFHydrofluoric Acid(48%w/v) Boiling Point 108C Extreme Health HazarHClO4Perchloric Acid(69%w/v) Boiling Point 203C Extreme Fire/Explosion HazarHNO3Nitric Acid(69%w/v) Boiling Point 121CH2SO4Sulfuric Acid(98% w/v) Boiling Point 338CICP-xB or -xZICP-AES and/or ICP-MS analysis using x=2, 3 or 4 acid digestionLiBO2-CLithium Metaborate fusion in Carbon cruciblNa2O2-CSodium Peroxide fusion in Carbon crucibleNa2O2-ZrSodium Peroxide fusion in Zirconium cruciblTechniqueAASAtomic Absorption SpectroscopyICP-AESInductively Coupled Plasma Atomic Emission SpectroscopICP-MSInductively Coupled Plasma Mass SpectroscopRGResearch Grade (Low detection limit ICP-AESUTUltra Trace (ICP-AES+ICP-MS analyses)XRF-ED or -WDX-Ray Flourescence (-ED = Energy Dispersive) (-WD = Wavelength DispersiveXRDX-Ray DiffractionELTRA-ICarbon & Sulfur infrared detection analyzer inductive heatinELTRA-RCarbon, Hydrogen & Sulfur infrared detection analyzer resistance furnacLECO-INitrogen & Oxygen infra red detection analyzer inductive heatinMWMicrowave Digestion ( -PT is at 1500psig and 300CSG-WD or -HPSpecific Gravity-WD=Water Displacement -HP=Helium Pycnometer 1g/cm3=62.4lbs/ftDefinitions PageAAL-007 SP0111198FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-12 BR 50-51.5 through MW-07 BR 22-24REPORTED : 7-Jul-2015Al2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co Cu Ga LaXRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.211121SAMPLES pct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppm ppm ppmMW-12 BR 50-51.5 16.31 0.13 0.29 <0.01 3.53 1.69 1.02 0.06 0.44 0.12 71.35 0.02 0.54 <0.01 95 <0.2 79 6 64 15 50MW-12 BR 88.5-90 12.74 0.10 0.79 0.06 9.54 2.58 4.89 0.27 0.57 0.08 63.23 0.02 0.63 0.04 96 0.4 56 34 22 13 15MW-07 BR 22-24 15.92 0.10 1.92 <0.01 2.45 2.27 0.57 0.10 2.19 0.13 75.28 0.05 0.42 <0.01 101 <0.2 113 5 9 15 41AAL-008Page 3 of 5 SP0111198FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-12 BR 50-51.5 tREPORTED : 7-Jul-2015SAMPLESMW-12 BR 50-51.5MW-12 BR 88.5-90MW-07 BR 22-24Mo Ni Pb Sb Se Sn W Zn Zr LOI H2O- C S Sand >63 um Silt 2-63 um Clay <2um Quartz Feldspar IlliteD4A-WRD4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR LOI H2O- ELTRA-C ELTRA-C Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD1121111110.01 0.01 0.005 0.005 0.01 0.01 0.01 0.1 0.1 0.1ppm ppm ppm ppm ppm ppm ppm ppm ppm pct pct pct pct pctpct pct pct pct pct6 18 13 1 <1 4 <1 79 159 4.49 0.010 0.029 54.64 39.24 6.12 22.6 10.0 52.56 153 11 <1 <1 1 <1 328 54 3.88 0.016 <0.005 70.86 21.08 8.06 21.9 11.5 65.94 14 7 <1 1 1 <1 48 33 0.95 0.021 <0.005 91.52 5.42 3.06 20.7 51.6 27.6AAL-008Page 4 of 5 SP0111198FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-12 BR 50-51.5 tREPORTED : 7-Jul-2015SAMPLESMW-12 BR 50-51.5MW-12 BR 88.5-90MW-07 BR 22-24Kaolinite ZeoliteClay XRDClay XRD0.1 0.1pct pct14.60.7AAL-008Page 5 of 5 SP0110867AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Multi Element Package Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: info@aallabs.comCOPIES TO : Samantha Wilkinson CLIENT REFERENCE No: MW-09 BR 44-46 thru MW-13 BR 52-54 RECEIVED ::No. SAMPLES : 5 REPORTED ::MAIN SAMPLE TYPE : CORE:COMPANY DISCLAIMER :-When small samples are submitted, AAL may process the sample at smaller then specified weights to retain some pulp for quality control reassay.When Values exceed upper limits, AAL will run an Over Range analysis, to establish an accurate value. Additional cost will apply.Due to USDA Soil Quarantine programs - all foreign and some domestic soil material must be decontaminated by drying @ 125c for 48 hours,which will result in loss of Mercury (Hg).NEVADA LEGISLATIVE DISCLAIMER :-The results of this assay were based solely upon the content of the sample submitted. Any decision toinvest should be made only after the potential investment value of the claim or deposit has been determinedbased on the results of assays of multiple samples of geological materials collected by the prospectiveinvestor or by a qualified person selected by him and based on an evaluation of all engineering datawhich is available concerning any proposed project. Nevada State Law NRS 519.130.ANALYSISAl2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co Cu Ga La Mo Ni Pb Sb SeMETHODXRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WRUNITpct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmLOWER LIMIT0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.21112111211ANALYSISSn W Zn Zr LOI H2O- C S >63 um -63 umay <2um Quartzeldsparphiboleolomiteibbsiteolinitehlorite Illite .7)/ SMETHODD4A-WR D4A-WR D4A-WR D4A-WR LOI H2O-ELTRA-CELTRA-Clay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDUNITppm ppm ppm ppm pct pct pct pct pct pct pct pct pct pct pct pct pct pct pct pctLOWER LIMIT11110.01 0.01 0.005 0.005 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 SIGNATORY ANALYSIS____________________________________________________________ Cover PageAAL-006________________________________________________________________________________________________________________________2-Jul-201527-Apr-2015SynTerra SP0110867AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: AALLABS@NVBELL.NETAbbreviationDefinitionPreparation DIPSample Destroyed in PreparationDISSample Destroyed in ShipmentISSInsufficient Sample SubmittedSDISample Diesel ImpregnatedSHISample Hydraulic ImpregnatedSNRSample Not ReceivedAnalysisSTD - ??International Reference Material StandardSTD - AAL##AAL generated standard material BLANKAAL Laboratory Silica BlankDTFData to FollowDLDetection Limit of Method< or -Less Than Lower Detection Limit of Method>Greater than Upper Limit of MethodN/ANot AnalyzedNRNot Reported(R) columnLaboratory repeat weigh, digestion, analysis from original pulp or reject respliD or -D after Sample IDClient submitted duplicate rig split sample-R after Sample IDRepeat analysis from original pulp reweigh, digestion and analysi-X after Sample IDRepeat analysis from reject resplit, preparation, weigh, digestion and analysippbParts per Billion 0.001 ppm = 1 ppbppmParts per Million 1 ppm = 1 mg/KgOPTTroy Ounces per Short Ton(2,000 lbs)(1 ppm= 0.02917 OPTOzTroy Ounce = 31.103 grams%Percent 1%=10,000 ppmgGrams 1g=0.001 kilogrammgMilligrams 1mg=0.001gramsKgKilograms 1Kg=1000gramslbsPounds 1lb=0.454kilogramMethodFA-PB##Fire Assay Lead Collection - ## sample weight in gramGRAVGravimetric (Weighed) finishSFScreen Fire Assay reporting a plus, 2 minus fractions and a head Cal+ ###Plus Fraction (Retained on top of Mesh) ###Screen Siz- ###Minus Fraction (Passed through Mesh) ###Screen SizCNCyanide ExtractionORE GRADE2g sample made to 1000ml volumetric for results > upper limit of methoOx-H2SO4 or -HClDilute acid leach for oxide fraction in copper or molybdenum analysiQLADilute 10%H2SO4/0.5%Fe2(SO4)3 30C leach for acid soluble copperQLTDilute 15%H2SO4 30C leach for acid soluble copperSAPDilute 5%H2SO4/0.5%Fe2(SO4)3 85C leach for acid soluble & chalcocite copperD#ADigestion #=2,3 or 4 Acids2A=HCl/HNO3 3A=HCl/HNO3/HClO4 4A=HCl/HNO3/HF/HClOHClHydrochloric Acid(37%w/v) Boiling Point 109HFHydrofluoric Acid(48%w/v) Boiling Point 108C Extreme Health HazarHClO4Perchloric Acid(69%w/v) Boiling Point 203C Extreme Fire/Explosion HazarHNO3Nitric Acid(69%w/v) Boiling Point 121CH2SO4Sulfuric Acid(98% w/v) Boiling Point 338CICP-xB or -xZICP-AES and/or ICP-MS analysis using x=2, 3 or 4 acid digestionLiBO2-CLithium Metaborate fusion in Carbon cruciblNa2O2-CSodium Peroxide fusion in Carbon crucibleNa2O2-ZrSodium Peroxide fusion in Zirconium cruciblTechniqueAASAtomic Absorption SpectroscopyICP-AESInductively Coupled Plasma Atomic Emission SpectroscopICP-MSInductively Coupled Plasma Mass SpectroscopRGResearch Grade (Low detection limit ICP-AESUTUltra Trace (ICP-AES+ICP-MS analyses)XRF-ED or -WDX-Ray Flourescence (-ED = Energy Dispersive) (-WD = Wavelength DispersiveXRDX-Ray DiffractionELTRA-ICarbon & Sulfur infrared detection analyzer inductive heatinELTRA-RCarbon, Hydrogen & Sulfur infrared detection analyzer resistance furnacLECO-INitrogen & Oxygen infra red detection analyzer inductive heatinMWMicrowave Digestion ( -PT is at 1500psig and 300CSG-WD or -HPSpecific Gravity-WD=Water Displacement -HP=Helium Pycnometer 1g/cm3=62.4lbs/ftDefinitions PageAAL-007 SP0110867FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-09 BR 44-46 thru MW-13 BR 52-54REPORTED : 2-Jul-2015Al2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co Cu Ga LaXRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.211121SAMPLES pct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppm ppm ppmMW-09 BR 44-46 15.33 0.05 2.31 0.05 12.40 1.62 8.39 0.23 1.09 0.18 52.28 0.02 0.75 0.04 2 0.5 28 69 48 14 12MW-13 BR 17-27 13.48 0.04 9.74 <0.01 15.01 1.19 5.23 0.14 0.95 0.22 51.02 0.08 1.14 0.11 4 0.3 42 64 477 13 12MW-11 BR 43-44 13.98 0.04 11.43 <0.01 15.24 0.82 6.79 0.15 1.06 0.24 47.26 0.08 1.05 0.10 3 0.2 45 52 366 11 13MW-11 BR 30-32 12.82 0.07 1.73 <0.01 3.22 1.36 0.72 0.04 1.55 0.13 70.89 0.03 0.34 <0.01 <1 <0.2 38 7 18 12 18MW-13 BR 52-54 13.37 0.14 1.44 <0.01 5.34 1.44 1.13 0.11 1.50 0.21 67.54 0.03 1.10 0.01 2 <0.2 53 12 50 13 25NOTE: I (.7)/S represents an approximation of an Interstratified Illite (70%) - Smectite ClayAAL-008Page 3 of 5 SP0110867FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-09 BR 44-46 thrREPORTED : 2-Jul-2015SAMPLESMW-09 BR 44-46MW-13 BR 17-27MW-11 BR 43-44MW-11 BR 30-32MW-13 BR 52-54NOTE: I (.7)/S represenMo Ni Pb Sb Se Sn W Zn Zr LOI H2O- C S Sand >63 um Silt 2-63 um Clay <2um Quartz FeldsparD4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR LOI H2O- ELTRA-C ELTRA-C Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD1121111110.01 0.01 0.005 0.005 0.01 0.01 0.01 0.1 0.1ppm ppm ppm ppm ppm ppm ppm ppm ppm pct pct pct pct pct pct pct pct pct3 597 10 2 <1 <1 <1 369 17 4.95 0.086 <0.005 60.78 29.50 9.72 10.5 30.73 39 7 2 <1 <1 <1 125 11 2.67 0.044 <0.005 74.42 20.36 5.22 8.7 26.16696511<1120151.68 0.035 0.063 64.20 30.44 5.36 7.5 39.41673<1<1<139121.24 0.026 <0.005 92.34 5.14 2.52 19.2 24.82 20 8 <1 2 1 <1 52 16 1.87 0.039 <0.005 83.54 10.98 5.48 15.6 23.6AAL-008Page 4 of 5 SP0110867FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-09 BR 44-46 thrREPORTED : 2-Jul-2015SAMPLESMW-09 BR 44-46MW-13 BR 17-27MW-11 BR 43-44MW-11 BR 30-32MW-13 BR 52-54NOTE: I (.7)/S represenAmphibole Dolomite Gibbsite Kaolinite Chlorite Illite I (.7)/ SClay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD0.1 0.1 0.1 0.1 0.1 0.1 0.1pct pct pct pct pct pct pct14.6 44.224.5 8.5 6.0 25.6 0.524.4 5.1 1.3 5.2 16.80.1 56.80.5 60.5AAL-008Page 5 of 5 SP0111737AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Multi Element Package Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: info@aallabs.comCOPIES TO : Samantha Wilkinson CLIENT REFERENCE No: ABMW-4 17-19 through ABMW-02BR 97-100 RECEIVED ::No. SAMPLES : 6 REPORTED ::MAIN SAMPLE TYPE : CORE:COMPANY DISCLAIMER :-When small samples are submitted, AAL may process the sample at smaller then specified weights to retain some pulp for quality control reassay.When Values exceed upper limits, AAL will run an Over Range analysis, to establish an accurate value. Additional cost will apply.Due to USDA Soil Quarantine programs - all foreign and some domestic soil material must be decontaminated by drying @ 125c for 48 hours,which will result in loss of Mercury (Hg).NEVADA LEGISLATIVE DISCLAIMER :-The results of this assay were based solely upon the content of the sample submitted. Any decision toinvest should be made only after the potential investment value of the claim or deposit has been determinedbased on the results of assays of multiple samples of geological materials collected by the prospectiveinvestor or by a qualified person selected by him and based on an evaluation of all engineering datawhich is available concerning any proposed project. Nevada State Law NRS 519.130.ANALYSISAl2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co Cu Ga La Mo Ni Pb Sb SeMETHODXRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WRUNITpct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmLOWER LIMIT0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.21112111211ANALYSISSn W Zn Zr LOI H2O- C S >63 um -63 umay <2um QuartzeldsparMullitescoviteBiotite IllitephibolehloriteCalciteiderite (.7)/SMETHODD4A-WR D4A-WR D4A-WR D4A-WR LOI H2O-ELTRA-CELTRA-Clay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDUNITppm ppm ppm ppm pct pct pct pct pct pct pct pct pct pct pct pct pct pct pct pct pct pctLOWER LIMIT11110.01 0.01 0.005 0.005 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 SIGNATORY ANALYSIS____________________________________________________________________________________________________________________________________________________________________________________30-Jul-201512-Jun-2015SynTerra SP0111737AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: AALLABS@NVBELL.NETAbbreviationDefinitionPreparation DIPSample Destroyed in PreparationDISSample Destroyed in ShipmentISSInsufficient Sample SubmittedSDISample Diesel ImpregnatedSHISample Hydraulic ImpregnatedSNRSample Not ReceivedAnalysisSTD - ??International Reference Material StandardSTD - AAL##AAL generated standard material BLANKAAL Laboratory Silica BlankDTFData to FollowDLDetection Limit of Method< or -Less Than Lower Detection Limit of Method>Greater than Upper Limit of MethodN/ANot AnalyzedNRNot Reported(R) columnLaboratory repeat weigh, digestion, analysis from original pulp or reject respliD or -D after Sample IDClient submitted duplicate rig split sample-R after Sample IDRepeat analysis from original pulp reweigh, digestion and analysi-X after Sample IDRepeat analysis from reject resplit, preparation, weigh, digestion and analysippbParts per Billion 0.001 ppm = 1 ppbppmParts per Million 1 ppm = 1 mg/KgOPTTroy Ounces per Short Ton(2,000 lbs)(1 ppm= 0.02917 OPTOzTroy Ounce = 31.103 grams%Percent 1%=10,000 ppmgGrams 1g=0.001 kilogrammgMilligrams 1mg=0.001gramsKgKilograms 1Kg=1000gramslbsPounds 1lb=0.454kilogramMethodFA-PB##Fire Assay Lead Collection - ## sample weight in gramGRAVGravimetric (Weighed) finishSFScreen Fire Assay reporting a plus, 2 minus fractions and a head Cal+ ###Plus Fraction (Retained on top of Mesh) ###Screen Siz- ###Minus Fraction (Passed through Mesh) ###Screen SizCNCyanide ExtractionORE GRADE2g sample made to 1000ml volumetric for results > upper limit of methoOx-H2SO4 or -HClDilute acid leach for oxide fraction in copper or molybdenum analysiQLADilute 10%H2SO4/0.5%Fe2(SO4)3 30C leach for acid soluble copperQLTDilute 15%H2SO4 30C leach for acid soluble copperSAPDilute 5%H2SO4/0.5%Fe2(SO4)3 85C leach for acid soluble & chalcocite copperD#ADigestion #=2,3 or 4 Acids2A=HCl/HNO3 3A=HCl/HNO3/HClO4 4A=HCl/HNO3/HF/HClOHClHydrochloric Acid(37%w/v) Boiling Point 109HFHydrofluoric Acid(48%w/v) Boiling Point 108C Extreme Health HazarHClO4Perchloric Acid(69%w/v) Boiling Point 203C Extreme Fire/Explosion HazarHNO3Nitric Acid(69%w/v) Boiling Point 121CH2SO4Sulfuric Acid(98% w/v) Boiling Point 338CICP-xB or -xZICP-AES and/or ICP-MS analysis using x=2, 3 or 4 acid digestionLiBO2-CLithium Metaborate fusion in Carbon cruciblNa2O2-CSodium Peroxide fusion in Carbon crucibleNa2O2-ZrSodium Peroxide fusion in Zirconium cruciblTechniqueAASAtomic Absorption SpectroscopyICP-AESInductively Coupled Plasma Atomic Emission SpectroscopICP-MSInductively Coupled Plasma Mass SpectroscopRGResearch Grade (Low detection limit ICP-AESUTUltra Trace (ICP-AES+ICP-MS analyses)XRF-ED or -WDX-Ray Flourescence (-ED = Energy Dispersive) (-WD = Wavelength DispersiveXRDX-Ray DiffractionELTRA-ICarbon & Sulfur infrared detection analyzer inductive heatinELTRA-RCarbon, Hydrogen & Sulfur infrared detection analyzer resistance furnacLECO-INitrogen & Oxygen infra red detection analyzer inductive heatinMWMicrowave Digestion ( -PT is at 1500psig and 300CSG-WD or -HPSpecific Gravity-WD=Water Displacement -HP=Helium Pycnometer 1g/cm3=62.4lbs/ftDefinitions PageAAL-007 SP0111737FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : ABMW-4 17-19 through ABMW-02BR 97-100REPORTED : 30-Jul-2015Al2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co CuXRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.2 1 1 1SAMPLES pct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppmABMW-4 17-19 33.68 0.06 0.78 0.03 4.00 0.82 0.93 0.02 0.17 0.07 58.06 0.06 1.11 0.05 10 <0.2 156 64 107ABMW-2BR 57-59 16.52 0.01 8.18 0.02 13.42 0.71 5.15 0.16 0.73 0.17 49.70 0.06 1.11 0.05 2 0.3 23 40 86ABMW-2 28-30 36.94 0.06 1.05 0.04 3.75 0.65 0.95 0.01 0.17 0.03 59.04 0.06 1.14 0.07 12 0.2 171 79 118ABMW-4BR 105-107 17.12 0.07 2.77 0.03 4.24 1.87 0.98 0.13 1.64 0.08 68.39 0.07 0.34 <0.01 2 0.5 58 6 4ABMW-1 3.5-5 29.77 0.09 2.72 0.03 5.49 0.77 1.12 0.02 0.30 0.18 57.73 0.14 1.15 0.05 43 0.5 166 74 162ABMW-02BR 97-100 17.75 0.07 2.81 0.05 4.64 1.72 1.31 0.06 1.67 0.10 70.82 0.07 0.40 <0.01 2 <0.2 66 12 67AAL-008Page 3 of 5 SP0111737FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE :ABMW-4 17-19 throuREPORTED : 30-Jul-2015SAMPLESABMW-4 17-19ABMW-2BR 57-59ABMW-2 28-30ABMW-4BR 105-107ABMW-1 3.5-5ABMW-02BR 97-100Ga La Mo Ni Pb Sb Se Sn W Zn Zr LOI H2O- C S Sand >63 um Silt 2-63 um Clay <2umD4A-WRD4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR LOI H2O- ELTRA-C ELTRA-C Clay XRD Clay XRD Clay XRD211121111110.01 0.01 0.005 0.005 0.01 0.01 0.01ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm pct pct pct pct pctpct pct39 69 2 95 45 5 <1 45 2 71 95 2.71 2.219 0.027 25.52 67.95 6.5313 5 <1 44 13 3 <1 32 <1 101 5 4.04 0.014 <0.005 24.82 52.57 22.6257 75 3 118 53 6 <1 36 3 113 68 2.60 2.282 0.015 15.40 79.09 5.5115 26 1 4 14 2 2 35 <1 201 18 1.71 0.269 0.009 85.52 11.42 3.0662 74 4 107 66 7 1 46 3 141 88 3.86 3.014 0.045 3.25 88.78 7.9617 30 2 5 11 2 1 42 1 42 15 1.51 0.201 0.190 89.35 7.14 3.51AAL-008Page 4 of 5 SP0111737FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE :ABMW-4 17-19 throuREPORTED : 30-Jul-2015SAMPLESABMW-4 17-19ABMW-2BR 57-59ABMW-2 28-30ABMW-4BR 105-107ABMW-1 3.5-5ABMW-02BR 97-100Quartz Feldspar Mullite Muscovite Biotite Illite Amphibole Chlorite Calcite SideriteI(.7)/SClay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1pct pct pct pct pct pct pct pct pct pct pct25.5 74.533.5 15.8 6.3 32.8 11.520.9 79.122.0 28.0 41.6 8.3 0.1 0.136.5 62.9 0.514.6 21.1 33.3 26.8 5.0AAL-008Page 5 of 5 SP0110295AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Multi Element Package Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: info@aallabs.comCOPIES TO : Samantha Wilkinson CLIENT REFERENCE No: MW-05 BR 61-63 - MW-10 BR 51.5-53.5 RECEIVED ::No. SAMPLES : 3 REPORTED ::MAIN SAMPLE TYPE : CORE:COMPANY DISCLAIMER :-When small samples are submitted, AAL may process the sample at smaller then specified weights to retain some pulp for quality control reassay.When Values exceed upper limits, AAL will run an Over Range analysis, to establish an accurate value. Additional cost will apply.Due to USDA Soil Quarantine programs - all foreign and some domestic soil material must be decontaminated by drying @ 125c for 48 hours,which will result in loss of Mercury (Hg).NEVADA LEGISLATIVE DISCLAIMER :-The results of this assay were based solely upon the content of the sample submitted. Any decision toinvest should be made only after the potential investment value of the claim or deposit has been determinedbased on the results of assays of multiple samples of geological materials collected by the prospectiveinvestor or by a qualified person selected by him and based on an evaluation of all engineering datawhich is available concerning any proposed project. Nevada State Law NRS 519.130.ANALYSISWt Al2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co Cu Ga La Mo Ni Pb SbMETHODBRPP2KG XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WRUNITkg pct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppmLOWER LIMIT0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.2111211121ANALYSISSe Sn W Zn Zr LOI H2O- C S >63 um -63 umay <2um Quartzeldspar IlliteCalcitehloritecrociteolomiteMETHODD4A-WR D4A-WR D4A-WR D4A-WR D4A-WR LOI H2O-ELTRA-CELTRA-Cractionractionractionlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDlay XRDUNITppm ppm ppm ppm ppm ppm pct pct pct pct pct pct pct pct pct pct pct pct pctLOWER LIMIT111110.01 0.01 0.005 0.005 0.001 0.001 0.001 0.1 0.1 0.1 0.1 0.1 0.1 0.1 SIGNATORY ANALYSIS____________________________________________________________ Cover PageAAL-006________________________________________________________________________________________________________________________21-Apr-20155-Apr-2015SynTerra SP0110295AMERICAN ASSAY LABORATORIESFINAL REPORT1500 GLENDALE AVE.SPARKS, NV USA 89431-5902Ph.(775) 356-0606Fax.(775) 356-1413EMAIL: AALLABS@NVBELL.NETAbbreviationDefinitionPreparation DIPSample Destroyed in PreparationDISSample Destroyed in ShipmentISSInsufficient Sample SubmittedSDISample Diesel ImpregnatedSHISample Hydraulic ImpregnatedSNRSample Not ReceivedAnalysisSTD - ??International Reference Material StandardSTD - AAL##AAL generated standard material BLANKAAL Laboratory Silica BlankDTFData to FollowDLDetection Limit of Method< or -Less Than Lower Detection Limit of Method>Greater than Upper Limit of MethodN/ANot AnalyzedNRNot Reported(R) columnLaboratory repeat weigh, digestion, analysis from original pulp or reject respliD or -D after Sample IDClient submitted duplicate rig split sample-R after Sample IDRepeat analysis from original pulp reweigh, digestion and analysi-X after Sample IDRepeat analysis from reject resplit, preparation, weigh, digestion and analysippbParts per Billion 0.001 ppm = 1 ppbppmParts per Million 1 ppm = 1 mg/KgOPTTroy Ounces per Short Ton(2,000 lbs)(1 ppm= 0.02917 OPTOzTroy Ounce = 31.103 grams%Percent 1%=10,000 ppmgGrams 1g=0.001 kilogrammgMilligrams 1mg=0.001gramsKgKilograms 1Kg=1000gramslbsPounds 1lb=0.454kilogramMethodFA-PB##Fire Assay Lead Collection - ## sample weight in gramGRAVGravimetric (Weighed) finishSFScreen Fire Assay reporting a plus, 2 minus fractions and a head Cal+ ###Plus Fraction (Retained on top of Mesh) ###Screen Siz- ###Minus Fraction (Passed through Mesh) ###Screen SizCNCyanide ExtractionORE GRADE2g sample made to 1000ml volumetric for results > upper limit of methoOx-H2SO4 or -HClDilute acid leach for oxide fraction in copper or molybdenum analysiQLADilute 10%H2SO4/0.5%Fe2(SO4)3 30C leach for acid soluble copperQLTDilute 15%H2SO4 30C leach for acid soluble copperSAPDilute 5%H2SO4/0.5%Fe2(SO4)3 85C leach for acid soluble & chalcocite copperD#ADigestion #=2,3 or 4 Acids2A=HCl/HNO3 3A=HCl/HNO3/HClO4 4A=HCl/HNO3/HF/HClOHClHydrochloric Acid(37%w/v) Boiling Point 109HFHydrofluoric Acid(48%w/v) Boiling Point 108C Extreme Health HazarHClO4Perchloric Acid(69%w/v) Boiling Point 203C Extreme Fire/Explosion HazarHNO3Nitric Acid(69%w/v) Boiling Point 121CH2SO4Sulfuric Acid(98% w/v) Boiling Point 338CICP-xB or -xZICP-AES and/or ICP-MS analysis using x=2, 3 or 4 acid digestionLiBO2-CLithium Metaborate fusion in Carbon cruciblNa2O2-CSodium Peroxide fusion in Carbon crucibleNa2O2-ZrSodium Peroxide fusion in Zirconium cruciblTechniqueAASAtomic Absorption SpectroscopyICP-AESInductively Coupled Plasma Atomic Emission SpectroscopICP-MSInductively Coupled Plasma Mass SpectroscopRGResearch Grade (Low detection limit ICP-AESUTUltra Trace (ICP-AES+ICP-MS analyses)XRF-ED or -WDX-Ray Flourescence (-ED = Energy Dispersive) (-WD = Wavelength DispersiveXRDX-Ray DiffractionELTRA-ICarbon & Sulfur infrared detection analyzer inductive heatinELTRA-RCarbon, Hydrogen & Sulfur infrared detection analyzer resistance furnacLECO-INitrogen & Oxygen infra red detection analyzer inductive heatinMWMicrowave Digestion ( -PT is at 1500psig and 300CSG-WD or -HPSpecific Gravity-WD=Water Displacement -HP=Helium Pycnometer 1g/cm3=62.4lbs/ftDefinitions PageAAL-007 SP0110295FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-05 BR 61-63 - MW-10 BR 51.5-53.5REPORTED : 21-Apr-2015Wt Al2O3 BaO CaO Cr2O3 Fe2O3 K2O MgO MnO Na2O P2O5 SiO2 SrO TiO2 V2O5 As Cd Ce Co Cu GaBRPP2KG XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR XRF-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.21112SAMPLES kg pct pct pct pct pct pct pct pct pct pct pct pct pct pct ppm ppm ppm ppm ppm ppmMW-05 BR 61-63 14.34 0.09 3.04 0.02 3.32 1.52 0.68 0.09 1.41 0.14 39.12 0.04 0.31 <0.01 <1 <0.2 14 10 102 14MW-14 BR 40-41.5 13.91 0.08 3.18 0.03 3.19 1.52 0.70 0.05 1.46 0.14 37.39 0.04 0.33 <0.01 <1 <0.2 14 8 75 12MW-10 BR 51.5-53.5 13.30 0.08 1.07 0.02 2.81 1.52 0.18 0.06 1.53 0.09 37.39 0.01 0.27 <0.01 <1 <0.264312AAL-008Page 3 of 5 SP0110295FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-05 BR 61-63 - MREPORTED : 21-Apr-2015SAMPLESMW-05 BR 61-63MW-14 BR 40-41.5MW-10 BR 51.5-53.5La Mo Ni Pb Sb Se Sn W Zn Zr LOI H2O- C S Sand >63 um Silt 2-63 um Clay <2umD4A-WRD4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR D4A-WR LOI H2O- ELTRA-C ELTRA-C Size Extraction Size Extraction Size Extraction11121111110.01 0.01 0.005 0.005 0.0010.0010.001ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm pct pct pctpctpctpct714811<1152172.21 7.66 0.402 0.02283.70311.1785.1197367<1<1<1<117201.52 1.24 0.243 0.00984.44312.0783.4793 <1 2 9 <1 <1 9 <1 34 23 0.99 0.45 0.016 <0.00578.73717.3463.917AAL-008Page 4 of 5 SP0110295FINAL REPORTCLIENT : SynTerraPROJECT : Mayo PlantREFERENCE : MW-05 BR 61-63 - MREPORTED : 21-Apr-2015SAMPLESMW-05 BR 61-63MW-14 BR 40-41.5MW-10 BR 51.5-53.5Quartz Feldspar Illite Calcite Chlorite Lepidocrocite DolomiteClay XRDClay XRD Clay XRD Clay XRD Clay XRD Clay XRD Clay XRD0.1 0.1 0.1 0.1 0.1 0.1 0.1pct pct pct pct pct pct pct17.7 22.7 54.3 1.1 3.10.2 0.822.1 29.6 45.1 1.0 2.00.119.1 34.8 45.90.2AAL-008Page 5 of 5 Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE -mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 0.0 0.0 0.0 0.5 2.3 90.7 6.5 0.0 0.0 1.0 2.1 10.7 18.8 52.4 15.0 0.0 0.0 0.0 0.0 17.0 24.0 38.0 21.06 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring ABMW-01 3.5-5.0 Grey CLAY (SG = 2.295) Boring ABMW-02 56.0-57.0 Grey fi.-med. sandy CLAY (SG = 2.704) Boring ABMW-04 39.0-41.5 Grey & brown fi.-med. sandy CLAY (SG = 2.624) Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE -mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 0.0 9.6 16.2 32.7 27.8 13.3 0.4 0.0 0.0 0.0 0.0 2.4 14.8 33.1 49.7 0.0 0.0 0.0 0.0 0.2 10.4 44.8 44.6 0.0 0.0 0.0 0.0 1.0 20.4 77.2 1.4 0.0 0.0 0.0 0.0 9.2 22.6 45.9 22.36 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring ABMW-3 3.0-4.9 Grey silty fi.-co. SAND (SG = 2.674) Boring ABMW-3 40.0-42.0 Brown & grey fi. sandy CLAY (SG = 2.654) Boring MW-12 5.0-6.2 Reddish brown fi. sandy SILT (SG = 2.714) Boring MW-12 50.0-52.35 Light grey fi. sandy SILT (SG = 2.684) Boring MW-13 2.5-4.75 Grey & brown fi. sandy SILT (SG = 2.654) Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE -mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 0.0 17.3 7.5 21.4 21.5 21.6 10.7 0.0 0.0 0.0 0.0 8.2 12.6 30.3 48.9 0.0 0.0 2.6 6.1 23.9 29.6 27.3 10.5 0.0 11.3 18.8 12.1 22.8 19.5 8.8 6.76 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring MW-16 5.0-6.75 Grey silty fi.-co. SAND (SG = 2.664) Boring SB-1 4.0-5.5 Light brown fi. sandy CLAY (SG = 2.634) Boring SB-7 0.3-2.8 Brown silty fi.-med. SAND (SG = 2.674) Boring SB-7 4.5-7.5 Brown silty fi.-co. SAND w/grvl. (SG = 2.695) Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE -mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 0.0 1.6 7.5 18.3 33.7 35.3 3.6 0.0 0.0 0.5 7.2 19.0 34.2 37.3 1.8 0.0 0.0 7.1 8.3 14.2 27.3 33.2 9.9 0.0 0.0 0.2 2.6 10.7 34.0 50.3 2.2 0.0 0.0 0.0 1.0 3.9 13.6 72.8 8.76 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring AB-01 39.0-40.0 Grey silty fi.-med. SAND (SG = 2.234) Boring AB-02 24.0-25.0 Grey silty fi.-med. SAND (SG = 2.154) Boring AB-02 BR 14.0-15.0 Greyish brown silty fi.-co. SAND (SG = 2.785) Boring AB-03 35.0-36.0 Grey fi.-med. sandy SILT (SG = 2.204) Boring AB-04 23.5-25.0 Grey fi. sandy SILT (SG = 2.204) Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE -mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 27.8 17.2 6.7 6.9 8.7 22.8 9.9 0.0 0.0 3.0 6.5 17.1 34.3 33.8 5.3 0.0 14.8 13.4 7.6 14.3 14.3 29.8 5.8 0.0 0.0 2.1 21.3 26.4 19.5 24.9 5.8 0.0 0.0 20.9 21.0 17.0 13.0 17.9 10.26 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring MW-03 BR 22.0-25.0 Light brown silty fi.-co. SAND w/grvl (SG = 2.755) Boring MW-08 BR 19.0-22.0 Light brown silty fi.-med. SAND (SG = 2.735) Boring MW-09BR 44.0-46.0 Dark Grey silty fi.-co. SAND w/grvl (SG = 2.765) Boring MW-13BR 17.0-27.0 Light brown silty fi.-co. SAND (SG = 2.722) Boring MW-13BR 52.0-54.0 Brown silty fi.-co. SAND w/grvl (SG = 2.692) Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE -mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 0.0 21.6 19.0 16.7 14.0 21.1 7.66 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring MW-16BR 34.0-35.0 Dark brown silty fi.-co. SAND (SG = 2.724) Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 0.0 0.0 0.0 15.2 20.5 43.9 20.4 0.0 0.0 0.3 4.1 19.4 30.2 29.5 16.5 0.0 0.0 1.8 1.8 5.4 18.1 32.9 40.0 0.0 0.0 2.1 6.5 19.5 33.2 29.1 9.6 0.0 0.0 1.7 11.7 31.7 31.4 20.3 3.26 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring SB-1 7.0-8.0 Light brown fi.-med. sandy SILT (SG = 2.675) Boring SB-1 17.5-18.5 Light brown clayey fi.-med. SAND (SG = 2.645) Boring SB-3 18.5-19.5 Brownish grey fi. sandy CLAY (SG = 2.625) Boring SB-4 4.0-5.0 Dk. brown & lt. grey silty fi.-med. SAND (SG = 2.675) Boring SB-5 6.5-7.5 Light brown silty fi.-co. SAND (SG = 2.675) Bunnell Lammons Engineering, Inc. Greenville, SC Client: Project: Project No.:Figure Synterra Duke - Mayo J15-5612-03 SYMBOL SOURCE SAMPLE DEPTH Material Description USCSNO.(ft.) SOIL DATAPERCENT FINER0 10 20 30 40 50 60 70 80 90 100 GRAIN SIZE mm 0.0010.010.1110100 % +3"Coarse % Gravel Fine Coarse Medium % Sand Fine Silt % Fines Clay 0.0 0.0 1.5 12.8 28.4 29.6 24.5 3.26 in.3 in.2 in.1½ in.1 in.¾ in.½ in.3/8 in.#4#10#20#30#40#60#100#140#200Particle Size Distribution Report Boring SB-5 12.4-13.4 Lt. brown & grey silty fi.-co. SAND (SG = 2.685) SITE SAMPLE ID DEPTH (FT)POROSITY (%) Asheville MW-09 19.0-20.5 28 Mayo ABMW-3 3.0-4.9 54.5 Mayo ABMW-3 40.0-42.0 28.4 Mayo MW-12 5.0-6.2 28 Mayo MW-12 50.0-52.35 35.4 Mayo MW-13 2.5-4.75 25.7 Mayo MW-16 5.0-6.75 22.7 Mayo SB-1 4.0-5.5 29.9 Mayo SB-7 0.3-2.8 21.0 Mayo ABMW-04 39.0-41.5 26.4 REVIEWED BY:PAUL YARBER III DATE:8/7/2015 BLEINC. POROSITY VALUES SYNTERRA DUKE PROJECTS SAMPLE ID.DEPTH (Ft)WET WEIGHT DRY WEIGHT MOISTURE CONTENT % SB-1 7.0 8.0 306.8 262.9 16.7 SB-1 17.5 18.5 283.6 247.4 14.6 SB-3 18.5 19.5 302.1 240.7 25.5 SB-4 4.0 5.0 341.3 302.4 12.9 SB-5 6.5 7.5 281.9 259.9 8.5 SB-5 12.4 13.4 277.3 255.1 8.7 JOB NAME:Synterra - Duke Mayo CHECKED BY:PAUL YARBER JOB NO.:J15-5612-03 DATE:4/1/2015 BLEINC. LABORATORY MOISTURE CONTENT DETERMINATION (ASTM D2216) SAMPLE ID.DEPTH (Ft)WET WEIGHT DRY WEIGHT MOISTURE CONTENT % ABMW-01 3.5 5.0 214.9 212.0 1.4 ABMW-02 56.0 57.0 261.7 239.9 9.1 SB-7 4.5 7.5 660.3 591.4 11.7 JOB NAME:Synterra - Duke Mayo CHECKED BY:PAUL YARBER JOB NO.:J15-5612-03 DATE:8/7/2015 BLEINC. LABORATORY MOISTURE CONTENT DETERMINATION (ASTM D2216) SAMPLE ID.DEPTH (Ft)WET WEIGHT DRY WEIGHT MOISTURE CONTENT % AB-01 39.0 40.0 310.8 226.3 37.3 AB-02 24.0 25.0 253.9 179.3 41.6 AB-02 BR 14.0 15.0 687.7 643.8 6.8 AB-03 35.0 36.0 329.2 235.1 40.0 AB-04 23.5 25.0 334.3 262.3 27.4 MW-03 BR 22.0 25.0 193.7 191.5 1.1 MW-08 BR 19.0 22.0 177.9 160.8 10.6 MW-09BR 44.0 46.0 837.5 761.8 9.9 MW-13BR 52.0 54.0 418.8 392.1 6.8 MW-13BR 17.0 27.0 315.1 298.0 5.7 MW-16BR 34.0 35.0 820.9 761.2 7.8 JOB NAME:Synterra - Duke Mayo CHECKED BY:PAUL YARBER JOB NO.:J15-5612-03 DATE:6/16/2015 BLEINC. LABORATORY MOISTURE CONTENT DETERMINATION (ASTM D2216) SAMPLE NO.DEPTH (Ft)DRY WEIGHT (g)MOISTURE CONTENT (%) ABMW-3 3.0 4.9 109.5 16.3 ABMW-3 40.0 42.0 121.5 35.2 MW-12 5.0 6.2 107.5 26.2 MW-12 50.0 52.4 138.2 31.8 MW-13 2.5 4.75 115.9 28.0 MW-16 5.0 6.75 170.7 14.2 SB-1 4.0 5.5 122.2 25.7 SB-7 0.3 2.8 113.9 16.5 ABMW-4 39.0 41.5 135.6 28.2 SAMPLE NO.DEPTH (Ft)WET DENSITY (PCF)DRY DENSITY (PCF) LENGTH (IN)5.100 DIA. (IN)2.868 WT. (LB)1.46 LENGTH (IN)5.043 DIA. (IN)2.865 WT. (LB)2.22 LENGTH (IN)5.007 DIA. (IN)2.866 WT. (LB)2.15 LENGTH (IN)5.083 DIA. (IN)2.866 WT. (LB)2.15 LENGTH (IN)5.015 DIA. (IN)2.868 WT. (LB)2.28 LENGTH (IN)5.030 DIA. (IN)2.866 WT. (LB)2.52 LENGTH (IN)4.978 DIA. (IN)2.867 WT. (LB)2.11 LENGTH (IN)5.028 DIA. (IN)2.867 WT. (LB)2.36 LENGTH (IN)5.019 DIA. (IN)2.867 WT. (LB)2.29 LENGTH (IN) DIA. (IN) WT. (LB) LENGTH (IN) DIA. (IN) WT. (LB) LENGTH (IN) DIA. (IN) WT. (LB) CHECKED BY:PAUL YARBER DATE:8/7/2015 SYNTERRA, DUKE - MAYO BLEINC. 65.8 LABORATORY MOISTURE CONTENT DETERMINATION (ASTM D2216) ABMW-3 3.0 4.9 76.4 SAMPLE PROPERTIES 132.7 87.3 MW-12 5.0 6.2 115.0 91.1 ABMW-3 40.0 42.0 118.1 85.9MW-12 50.0 52.4 113.2 173.8 LABORATORY UNIT WEIGHT DETERMINATION J15-5612-03 148.3 194.9 153.6 182.1 WET WEIGHT (g) 127.3 164.3 135.7 95.3 MW-16 5.0 6.75 134.0 117.4 MW-13 2.5 4.75 121.9 90.3 SB-7 0.3 2.8 125.5 107.7 SB-1 4.0 5.5 113.4 95.0ABMW-4 39.0 41.5 121.8 BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:39.0-41.5' TYPE SAMPLE DESCRIPTION:GREY & BROWN FI.-MED. SANDY CLAY SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.490 7.457 Sample Diameter 7.269 7.267 Length/Diameter Ratio 1.03 Moisture Content (%)WW=173.8 DW=135.6 28.2 WW=188.8 DW=144.2 30.9 Sample Wet Weight (grams) Wet Density (pcf)120.2 120.8 Dry Density (pcf)93.8 92.3 Saturation (%)TESTED SG=2.624 99 100 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT (PERMOMETER) Chamber Pressure (psi)81 Influent Pressure (psi)60 Effluent Pressure (psi)60 B-Value 0.96 Reset Date Clock Time Elapsed Time HAOUT HAIN Temp Gradient K Temp K20°C (Y/N)(cm)(cm)ºC (cm/sec)Correction (cm/sec) Y 7.2 1.47 21.0 10 0:14:16 6.5 1.50 21.0 9 6.9E-08 0.976 6.7E-08 0:16:34 6.4 1.51 21.0 9 6.8E-08 0.976 6.7E-08 0:18:56 6.3 1.51 21.0 8 6.8E-08 0.976 6.6E-08 0:21:19 6.2 1.52 21.0 8 6.8E-08 0.976 6.6E-08 HYDRAULIC CONDUCTIVITY (K20°C)6.6E-08 cm/sec 8-4-15 2:29:11 8-4-15 2:31:34 8-4-15 2:10:15 8-4-15 2:24:31 8-4-15 2:26:49 2.949 2.936 2.862 2.861 598.8 598.7 SYNTERRA DUKE - MAYO J15-5612-03 6-22-15 ABMW-04 UNDISTURBED BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:40.0-42.0' TYPE SAMPLE DESCRIPTION:BROWN & GREY FI. SANDY CLAY SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.450 7.424 Sample Diameter 7.257 7.219 Length/Diameter Ratio 1.03 Moisture Content (%)WW=164.3 DW=121.5 35.2 WW=203.6 DW=156.0 30.5 Sample Wet Weight (grams) Wet Density (pcf)118.4 118.7 Dry Density (pcf)87.6 91.0 Saturation (%)TESTED SG=2.654 100 99 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT (PERMOMETER) Chamber Pressure (psi)82.8 Influent Pressure (psi)60 Effluent Pressure (psi)60 B-Value 0.96 Reset Date Clock Time Elapsed Time HAOUT HAIN Temp Gradient K Temp K20°C (Y/N)(cm)(cm)ºC (cm/sec)Correction (cm/sec) Y 12.9 1.24 21.0 20 0:12:32 12.4 1.26 21.0 19 2.6E-08 0.976 2.6E-08 0:15:24 12.3 1.27 21.0 19 2.6E-08 0.976 2.5E-08 0:18:44 12.2 1.27 21.0 19 2.5E-08 0.976 2.4E-08 0:21:48 12.1 1.27 21.0 19 2.5E-08 0.976 2.4E-08 HYDRAULIC CONDUCTIVITY (K20°C)2.5E-08 cm/sec 8-4-15 2:00:18 8-4-15 2:03:22 8-4-15 1:41:34 8-4-15 1:54:06 8-4-15 1:56:58 2.933 2.923 2.857 2.842 584.6 578.0 SYNTERRA DUKE - MAYO J15-5612-03 5-21-15 ABMW-3 UNDISTURBED BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:3.0-4.9' TYPE SAMPLE DESCRIPTION:GREY SILTY FI.-CO. SAND SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.620 7.442 Sample Diameter 7.239 7.277 Length/Diameter Ratio 1.05 Moisture Content (%)WW=127.3 DW=109.5 16.3 WW=481.0 DW=333.7 44.1 Sample Wet Weight (grams) Wet Density (pcf)76.8 97.0 Dry Density (pcf)66.1 67.3 Saturation (%)TESTED SG=2.674 28 80 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT FALLING HEAD TEST Confining Pressure (psi)72.8 Influent Pressure (psi)70.2 Effluent Pressure (psi)70.0 B-Value 0.95 Date Clock Time Elapsed Pipet Readings Head Temp Gradient K Temp K20°C Time Initial Final Initial Final Start End seconds in out in out cm cm ºC (cm/sec)Correction (cm/sec) 3:02:00 3:02:12 12 1.0 23.0 3.0 21.0 40.092 35.361 21.0 5 7.9E-04 0.976 7.7E-04 3:02:12 3:02:25 13 3.0 21.0 5.0 19.0 35.361 30.629 21.0 5 8.4E-04 0.976 8.2E-04 3:02:25 3:02:41 16 5.0 19.0 7.0 17.0 30.629 25.897 21.0 5 7.9E-04 0.976 7.7E-04 3:02:41 3:03:00 19 7.0 17.0 9.0 15.0 25.897 21.166 21.0 5 8.0E-04 0.976 7.8E-04 Pipet Length, cm 28.390 28.390 Pipet Volume, cc 24 24 Cross-sectional Area of Pipet, cm2 0.8454 0.8454 HYDRAULIC CONDUCTIVITY (K20°C)7.9E-04 cm/sec 8-4-45 8-4-45 8-4-45 8-4-45 DUKE - MAYO J15-5612-03 5-21-15 3.000 2.930 2.850 2.865 385.8 481.0 ABMW-3 REMOLDED SYNTERRA BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:5.0-6.2' TYPE SAMPLE DESCRIPTION:REDDISH BROWN FI. SANDY SILT SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.432 7.376 Sample Diameter 7.219 7.216 Length/Diameter Ratio 1.03 Moisture Content (%)WW=135.7 DW=107.5 26.2 WW=176.0 DW=136.9 28.6 Sample Wet Weight (grams) Wet Density (pcf)121.6 125.0 Dry Density (pcf)96.3 97.3 Saturation (%)TESTED SG=2.714 94 100 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT (PERMOMETER) Chamber Pressure (psi)65.2 Influent Pressure (psi)60 Effluent Pressure (psi)60 B-Value 0.96 Reset Date Clock Time Elapsed Time HAOUT HAIN Temp Gradient K Temp K20°C (Y/N)(cm)(cm)ºC (cm/sec)Correction (cm/sec) Y 7.2 1.47 20.5 10 0:03:36 6.5 1.50 20.5 9 2.7E-07 0.988 2.7E-07 0:04:11 6.4 1.51 20.5 9 2.7E-07 0.988 2.7E-07 0:04:50 6.3 1.51 20.5 9 2.7E-07 0.988 2.6E-07 0:05:29 6.2 1.52 20.5 8 2.6E-07 0.988 2.6E-07 HYDRAULIC CONDUCTIVITY (K20°C)2.7E-07 cm/sec 8-4-15 8:02:29 8-4-15 8:03:08 8-4-15 7:57:39 8-4-15 8:01:15 8-4-15 8:01:50 2.926 2.904 2.842 2.841 592.4 604.2 SYNTERRA DUKE - MAYO J15-5612-03 5-21-15 MW-12 UNDISTURBED BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:50.0-52.35' TYPE SAMPLE DESCRIPTION:LIGHT GREY FI. SANDY SILT SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.539 7.427 Sample Diameter 7.315 7.277 Length/Diameter Ratio 1.03 Moisture Content (%)WW=182.1 DW=138.2 31.8 WW=136.5 DW=101.5 34.5 Sample Wet Weight (grams) Wet Density (pcf)110.1 116.0 Dry Density (pcf)83.5 86.2 Saturation (%)TESTED SG=2.684 85 98 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT FALLING HEAD TEST Confining Pressure (psi)91.2 Influent Pressure (psi)60.2 Effluent Pressure (psi)60.0 B-Value 0.95 Date Clock Time Elapsed Pipet Readings Head Temp Gradient K Temp K20°C Time Initial Final Initial Final Start End seconds in out in out cm cm ºC (cm/sec)Correction (cm/sec) 2:30:00 2:31:48 108 1.0 23.0 2.0 22.0 40.092 37.726 21.0 5 4.3E-05 0.976 4.1E-05 2:31:48 2:33:42 114 2.0 22.0 3.0 21.0 37.726 35.361 21.0 5 4.3E-05 0.976 4.2E-05 2:33:42 2:35:45 123 3.0 21.0 4.0 20.0 35.361 32.995 21.0 5 4.2E-05 0.976 4.1E-05 2:35:45 2:37:56 131 4.0 20.0 5.0 19.0 32.995 30.629 21.0 5 4.3E-05 0.976 4.2E-05 Pipet Length, cm 28.390 28.390 Pipet Volume, cc 24 24 Cross-sectional Area of Pipet, cm2 0.8454 0.8454 HYDRAULIC CONDUCTIVITY (K20°C)4.2E-05 cm/sec 8-4-45 8-4-45 8-4-45 8-4-45 2.968 2.924 2.880 2.865 558.6 573.9 SYNTERRA DUKE - MAYO J15-5612-03 5-21-15 MW-12 UNDISTURBED BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:2.5-4.75' TYPE SAMPLE DESCRIPTION:GREY & BROWN FI. SANDY SILT SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.450 7.450 Sample Diameter 7.267 7.267 Length/Diameter Ratio 1.03 Moisture Content (%)WW=148.3 DW=115.9 28.0 WW=223.7 DW=174.0 28.6 Sample Wet Weight (grams) Wet Density (pcf)122.5 123.4 Dry Density (pcf)95.7 96.0 Saturation (%)TESTED SG=2.654 100 100 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT (PERMOMETER) Chamber Pressure (psi)64 Influent Pressure (psi)60 Effluent Pressure (psi)60 B-Value 0.96 Reset Date Clock Time Elapsed Time HAOUT HAIN Temp Gradient K Temp K20°C (Y/N)(cm)(cm)ºC (cm/sec)Correction (cm/sec) Y 7.2 1.47 20.5 10 0:02:21 5.5 1.54 20.5 7 1.1E-06 0.988 1.1E-06 0:02:32 5.4 1.55 20.5 7 1.1E-06 0.988 1.1E-06 0:02:44 5.3 1.55 20.5 7 1.1E-06 0.988 1.1E-06 0:02:56 5.2 1.56 20.5 6 1.1E-06 0.988 1.1E-06 HYDRAULIC CONDUCTIVITY (K20°C)1.1E-06 cm/sec 8-4-15 11:19:00 8-4-15 11:19:12 8-4-15 11:16:16 8-4-15 11:18:37 8-4-15 11:18:48 2.933 2.933 2.861 2.861 606.4 610.7 SYNTERRA DUKE - MAYO J15-5612-03 5-21-15 MW-13 UNDISTURBED BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:5.0-6.75' TYPE SAMPLE DESCRIPTION:GREY SILTY FI.-CO. SAND SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.506 7.396 Sample Diameter 7.269 7.264 Length/Diameter Ratio 1.03 Moisture Content (%)WW=194.9 DW=170.7 14.2 WW=220.6 DW=192.3 14.7 Sample Wet Weight (grams) Wet Density (pcf)129.5 134.1 Dry Density (pcf)113.4 116.9 Saturation (%)TESTED SG=2.664 81 93 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT (PERMOMETER) Chamber Pressure (psi)63.4 Influent Pressure (psi)60 Effluent Pressure (psi)60 B-Value 0.96 Reset Date Clock Time Elapsed Time HAOUT HAIN Temp Gradient K Temp K20°C (Y/N)(cm)(cm)ºC (cm/sec)Correction (cm/sec) Y 4.4 1.59 21.0 5 0:00:20 3.5 1.63 21.0 4 8.7E-06 0.976 8.5E-06 0:00:36 3.0 1.65 21.0 3 8.7E-06 0.976 8.5E-06 0:01:00 2.5 1.67 21.0 2 8.7E-06 0.976 8.5E-06 0:01:15 2.3 1.68 21.0 1 8.6E-06 0.976 8.4E-06 HYDRAULIC CONDUCTIVITY (K20°C)8.5E-06 cm/sec 8-4-15 11:40:48 8-4-15 11:41:03 8-4-15 11:39:48 8-4-15 11:40:08 8-4-15 11:40:24 2.955 2.912 2.862 2.860 646.3 658.6 SYNTERRA DUKE - MAYO J15-5612-03 5-21-15 MW-16 UNDISTURBED BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:4.0-5.5' TYPE SAMPLE DESCRIPTION:LIGHT BROWN FI. SANDY CLAY SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.422 7.488 Sample Diameter 7.211 7.239 Length/Diameter Ratio 1.03 Moisture Content (%)WW=153.6 DW=122.2 25.7 WW=149.1 DW=113.4 31.5 Sample Wet Weight (grams) Wet Density (pcf)114.7 117.8 Dry Density (pcf)91.2 89.6 Saturation (%)TESTED SG=2.634 84 99 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT (PERMOMETER) Chamber Pressure (psi)64.4 Influent Pressure (psi)60 Effluent Pressure (psi)60 B-Value 0.96 Reset Date Clock Time Elapsed Time HAOUT HAIN Temp Gradient K Temp K20°C (Y/N)(cm)(cm)ºC (cm/sec)Correction (cm/sec) Y 4.3 1.59 21.0 5 0:02:28 3.5 1.63 21.0 3 1.1E-06 0.976 1.1E-06 0:02:49 3.4 1.63 21.0 3 1.1E-06 0.976 1.1E-06 0:03:13 3.3 1.63 21.0 3 1.1E-06 0.976 1.1E-06 0:03:41 3.2 1.64 21.0 3 1.1E-06 0.976 1.1E-06 HYDRAULIC CONDUCTIVITY (K20°C)1.1E-06 cm/sec 8-4-15 7:33:39 8-4-15 7:34:07 8-4-15 7:30:26 8-4-15 7:32:54 8-4-15 7:33:15 2.922 2.948 2.839 2.850 556.7 581.5 SYNTERRA DUKE - MAYO J15-5612-03 5-21-15 SB-1 UNDISTURBED BLEINC. HYDRAULIC CONDUCTIVITY TEST REPORT CONSTANT VOLUME APPARATUS (ASTM D 5084) PROJECT:TESTED BY:JOHN MATHEW PROJECT NO.:CHECKED BY:PAUL YARBER DATE RECEIVED: SAMPLE NO.SAMPLE LOCATION:0.3-2.8' TYPE SAMPLE DESCRIPTION:BROWN SILTY FI.-MED. SAND SAMPLE DIMENSIONS AND PROPERTIES ITEM INITIAL FINAL inches centimeters inches centimeters Sample Length 7.442 7.407 Sample Diameter 7.135 7.142 Length/Diameter Ratio 1.04 Moisture Content (%)WW=132.7 DW=113.9 16.5 WW=158.9 DW=134.4 18.2 Sample Wet Weight (grams) Wet Density (pcf)131.2 133.2 Dry Density (pcf)112.6 112.6 Saturation (%)TESTED SG=2.674 92 100 HYDRAULIC CONDUCTIVITY TESTING MEASUREMENT (PERMOMETER) Chamber Pressure (psi)62.6 Influent Pressure (psi)60 Effluent Pressure (psi)60 B-Value 0.96 Reset Date Clock Time Elapsed Time HAOUT HAIN Temp Gradient K Temp K20°C (Y/N)(cm)(cm)ºC (cm/sec)Correction (cm/sec) Y 4.3 1.59 21.0 5 0:00:15 3.5 1.63 21.0 4 1.1E-05 0.976 1.1E-05 0:00:29 3.0 1.65 21.0 3 1.1E-05 0.976 1.0E-05 0:00:47 2.5 1.67 21.0 2 1.1E-05 0.976 1.1E-05 0:01:03 2.3 1.68 21.0 1 1.0E-05 0.976 1.0E-05 HYDRAULIC CONDUCTIVITY (K20°C)1.0E-05 cm/sec 8-4-15 1:15:03 8-4-15 1:15:19 8-4-15 1:14:16 8-4-15 1:14:31 8-4-15 1:14:45 2.930 2.916 2.809 2.812 625.5 633.0 SYNTERRA DUKE - MAYO J15-5612-03 5-21-15 SB-7 UNDISTURBED 0.20.40.60.80.100. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-01 SLUG-OUT TEST 2 Data Set: S:\...\ABMW-01_SlugOut_II.aqt Date: 08/15/15 Time: 06:38:29 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 8.99 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-01) Initial Displacement: 2.243 ft Static Water Column Height: 9.29 ft Total Well Penetration Depth: 11.99 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 4.122 ft/day y0 = 2.219 ft 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-02 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-02_SlugOut_I.aqt Date: 08/15/15 Time: 06:37:20 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 26.58 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-02) Initial Displacement: 2.415 ft Static Water Column Height: 31.28 ft Total Well Penetration Depth: 34.49 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.04792 ft/day y0 = 2.228 ft 0.180.360.540.720.900. 0.001 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-02BR, PACKER TEST, SLUG-IN Data Set: S:\...\ABMW-02BR_PK_SlugIn.aqt Date: 08/14/15 Time: 19:24:39 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 06/02/15 AQUIFER DATA Saturated Thickness: 24. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-02BR) Initial Displacement: 0.891 ft Static Water Column Height: 97.74 ft Total Well Penetration Depth: 110.9 ft Screen Length: 20. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.409 ft/day y0 = 0.4456 ft 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-02BR, PACKER TEST, SLUG-OUT Data Set: S:\...\ABMW-02BR_PK_SlugOut.aqt Date: 08/14/15 Time: 19:24:25 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 06/02/2015 AQUIFER DATA Saturated Thickness: 24. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-02BR) Initial Displacement: 0.58 ft Static Water Column Height: 97.74 ft Total Well Penetration Depth: 110.9 ft Screen Length: 20. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.5431 ft/day y0 = 0.4934 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-03_SlugOut_I.aqt Date: 08/15/15 Time: 06:35:50 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 25.53 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03) Initial Displacement: 2.148 ft Static Water Column Height: 26.03 ft Total Well Penetration Depth: 28.86 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.118 ft/day y0 = 1.985 ft 0.80.160.240.320.400. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-03S_SlugOut_I.aqt Date: 08/15/15 Time: 06:30:14 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 53.55 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03S) Initial Displacement: 2.425 ft Static Water Column Height: 45.55 ft Total Well Penetration Depth: 48.53 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.454 ft/day y0 = 2.1 ft 0.60.120.180.240.300. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03S SLUG-OUT TEST 2 Data Set: S:\...\ABMW-03S_SlugOut_II.aqt Date: 08/15/15 Time: 06:28:22 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 53.55 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03S) Initial Displacement: 2.534 ft Static Water Column Height: 45.55 ft Total Well Penetration Depth: 48.53 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.4551 ft/day y0 = 2.234 ft 0.140.280.420.560.700. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03S SLUG-OUT TEST 3 Data Set: S:\...\ABMW-03S_SlugOut_III.aqt Date: 08/15/15 Time: 06:26:02 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 53.55 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03S) Initial Displacement: 2.417 ft Static Water Column Height: 45.55 ft Total Well Penetration Depth: 48.53 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.4559 ft/day y0 = 2.115 ft 0.80.160.240.320.400. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-04_SlugOut_I.aqt Date: 08/15/15 Time: 06:24:03 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 50.86 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04) Initial Displacement: 2.431 ft Static Water Column Height: 49.06 ft Total Well Penetration Depth: 51.75 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.4914 ft/day y0 = 2.332 ft 0.60.120.180.240.300. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04 SLUG-OUT TEST 2 Data Set: S:\...\ABMW-04_SlugOut_II.aqt Date: 08/15/15 Time: 06:25:02 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 50.86 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04) Initial Displacement: 2.448 ft Static Water Column Height: 49.06 ft Total Well Penetration Depth: 51.75 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.5795 ft/day y0 = 2.189 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04BR SLUG-OUT TEST 1 Data Set: S:\...\ABMW-04BR_SlugOut_I.aqt Date: 08/15/15 Time: 06:21:52 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 104.3 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04BR) Initial Displacement: 2.424 ft Static Water Column Height: 104.3 ft Total Well Penetration Depth: 107.2 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.009463 ft/day y0 = 2.262 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04D SLUG-OUT TEST 1 Data Set: S:\...\ABMW-04D_SlugOut_I.aqt Date: 08/15/15 Time: 06:20:31 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 58.38 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04D) Initial Displacement: 2.134 ft Static Water Column Height: 56.88 ft Total Well Penetration Depth: 59.7 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.05878 ft/day y0 = 1.929 ft 0.160.320.480.640.800. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-03BR SLUG-IN TEST 1 Data Set: S:\...\MW-03BR_SlugIn_I.aqt Date: 08/15/15 Time: 06:19:47 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 61.61 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-03BR) Initial Displacement: 2.275 ft Static Water Column Height: 60.51 ft Total Well Penetration Depth: 63.22 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.09071 ft/day y0 = 1.653 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-03BR SLUG-IN TEST 2 Data Set: S:\...\MW-03BR_SlugIn_II.aqt Date: 08/15/15 Time: 06:18:30 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 61.61 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-03BR) Initial Displacement: 2.175 ft Static Water Column Height: 60.51 ft Total Well Penetration Depth: 63.22 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.08581 ft/day y0 = 1.733 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-03BR SLUG-OUT TEST 1 Data Set: S:\...\MW-03BR_SlugOut_I.aqt Date: 08/15/15 Time: 06:16:44 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 61.61 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-03BR) Initial Displacement: 1.954 ft Static Water Column Height: 60.51 ft Total Well Penetration Depth: 63.22 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.03293 ft/day y0 = 1.683 ft 0.120.240.360.480.600. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-IN TEST 1 Data Set: S:\...\MW-05BR_SlugIn_I.aqt Date: 08/14/15 Time: 22:28:40 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 2.1 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1671 ft/day y0 = 1.739 ft 0.120.240.360.480.600. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-IN TEST 2 Data Set: S:\...\MW-05BR_SlugIn_II.aqt Date: 08/14/15 Time: 22:25:39 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 2.39 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1387 ft/day y0 = 1.64 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-OUT TEST 1 Data Set: S:\...\MW-05BR_SlugOut_I_bad.aqt Date: 08/14/15 Time: 22:24:43 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 1.929 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.09975 ft/day y0 = 1.722 ft 0.180.360.540.720.900. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-OUT TEST 2 Data Set: S:\...\MW-05BR_SlugOut_II.aqt Date: 08/14/15 Time: 22:22:42 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 2.496 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1084 ft/day y0 = 1.782 ft 0.180.360.540.720.900. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-07BR, PACKER TEST, SLUG-IN, TEST 1 Data Set: S:\...\MW-07BR_PK_SlugIn1.aqt Date: 08/14/15 Time: 19:45:47 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/24/15 AQUIFER DATA Saturated Thickness: 50.5 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-07BR) Initial Displacement: 0.5254 ft Static Water Column Height: 77.93 ft Total Well Penetration Depth: 83.93 ft Screen Length: 10. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.728 ft/day y0 = 0.5421 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-07D SLUG-OUT TEST 1 Data Set: S:\...\MW-07D_SlugOut_I.aqt Date: 08/14/15 Time: 20:51:58 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 29.5 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-07D) Initial Displacement: 2.072 ft Static Water Column Height: 23.1 ft Total Well Penetration Depth: 25.87 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.01923 ft/day y0 = 1.778 ft 0.100.200.300.400.500. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-IN TEST 1 Data Set: S:\...\MW-08BR_SlugIn_I.aqt Date: 08/14/15 Time: 20:50:18 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 1.865 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1192 ft/day y0 = 1.467 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-IN TEST 2 Data Set: S:\...\MW-08BR_SlugIn_II.aqt Date: 08/14/15 Time: 20:46:14 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 1.946 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.05823 ft/day y0 = 1.491 ft 0.40.80.120.160.200. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-OUT TEST 1 Data Set: S:\...\MW-08BR_SlugOut_I.aqt Date: 08/14/15 Time: 20:47:57 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 3.23 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.07953 ft/day y0 = 1.576 ft 0.100.200.300.400.500. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-OUT TEST 2 Data Set: S:\...\MW-08BR_SlugOut_II.aqt Date: 08/14/15 Time: 20:49:21 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 2.934 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.09435 ft/day y0 = 1.483 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-09BR SLUG-OUT TEST 1 Data Set: S:\...\MW-09BR_SlugOut_I.aqt Date: 08/15/15 Time: 07:59:32 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 42.03 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-09BR) Initial Displacement: 2.281 ft Static Water Column Height: 34.03 ft Total Well Penetration Depth: 36.57 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.02241 ft/day y0 = 1.919 ft 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-10BR SLUG-OUT TEST 1 Data Set: S:\...\MW-10BR_SlugOut_I.aqt Date: 08/15/15 Time: 08:00:19 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 51.92 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-10BR) Initial Displacement: 2.416 ft Static Water Column Height: 44.44 ft Total Well Penetration Depth: 44.44 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.008841 ft/day y0 = 1.502 ft 0.120.240.360.480.600. 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-IN, TEST 1 Data Set: S:\...\MW-11BR_PK_SlugIn1.aqt Date: 08/14/15 Time: 19:54:27 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.4493 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 5.624 ft/day y0 = 0.2942 ft 0.160.320.480.640.800. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-IN, TEST 2 Data Set: S:\...\MW-11BR_PK_SlugIn2.aqt Date: 08/14/15 Time: 19:54:58 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.5321 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 3.459 ft/day y0 = 0.2915 ft 0.160.320.480.640.800. 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-OUT, TEST 1 Data Set: S:\...\MW-11BR_PK_SlugOut1.aqt Date: 08/14/15 Time: 19:53:26 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.5561 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 5.372 ft/day y0 = 0.2915 ft 0.140.280.420.560.700. 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-OUT, TEST 2 Data Set: S:\...\MW-11BR_PK_SlugOut2.aqt Date: 08/14/15 Time: 19:57:32 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.4235 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 5.655 ft/day y0 = 0.2838 ft 0.18.36.54.72.90. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-12D SLUG-OUT TEST 1 Data Set: S:\...\MW-12D_SlugOut_I.aqt Date: 08/14/15 Time: 20:43:09 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 64.89 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-12D) Initial Displacement: 2.284 ft Static Water Column Height: 64.74 ft Total Well Penetration Depth: 65.74 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 3.015 ft/day y0 = 2.177 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-12S SLUG-OUT TEST 1 Data Set: S:\...\MW-12S_SlugOut_I.aqt Date: 08/14/15 Time: 20:42:18 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 35.22 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-12S) Initial Displacement: 2.275 ft Static Water Column Height: 18.62 ft Total Well Penetration Depth: 18.62 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.02211 ft/day y0 = 2.096 ft 0.180.360.540.720.900. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-13BR, PACKER TEST, SLUG-IN Data Set: S:\...\MW-13BR_PK_SlugIn.aqt Date: 08/14/15 Time: 20:14:07 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/14/15 AQUIFER DATA Saturated Thickness: 32. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-13BR) Initial Displacement: 0.788 ft Static Water Column Height: 71.35 ft Total Well Penetration Depth: 73.52 ft Screen Length: 10. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.618 ft/day y0 = 0.7788 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-14BR SLUG-IN TEST 1 Data Set: S:\...\MW-14BR_SlugIn_I.aqt Date: 08/14/15 Time: 20:40:49 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 22.56 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-14BR) Initial Displacement: 2.351 ft Static Water Column Height: 21.06 ft Total Well Penetration Depth: 24.05 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.04388 ft/day y0 = 1.358 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-14BR SLUG-IN TEST 2 Data Set: S:\...\MW-14BR_SlugIn_II.aqt Date: 08/14/15 Time: 20:39:16 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 22.56 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-14BR) Initial Displacement: 2.309 ft Static Water Column Height: 21.06 ft Total Well Penetration Depth: 24.06 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.02943 ft/day y0 = 1.399 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-15BR, PACKER TEST, SLUG-IN Data Set: S:\...\MW-15BR_PK_SlugIn.aqt Date: 08/14/15 Time: 20:19:57 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 05/11/15 AQUIFER DATA Saturated Thickness: 29. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-15BR) Initial Displacement: 0.8631 ft Static Water Column Height: 43.65 ft Total Well Penetration Depth: 42.65 ft Screen Length: 9. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.4589 ft/day y0 = 0.9524 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-15BR, PACKER TEST, SLUG-OUT Data Set: S:\...\MW-15BR_PK_SlugOut.aqt Date: 08/14/15 Time: 20:27:39 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 05/11/15 AQUIFER DATA Saturated Thickness: 29. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-15BR) Initial Displacement: 0.8726 ft Static Water Column Height: 43.65 ft Total Well Penetration Depth: 42.65 ft Screen Length: 9. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.5764 ft/day y0 = 0.6672 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16BR SLUG-OUT TEST 1 Data Set: S:\...\MW-16BR_SlugOut_I.aqt Date: 08/14/15 Time: 20:37:46 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 58.91 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16BR) Initial Displacement: 2.405 ft Static Water Column Height: 58.37 ft Total Well Penetration Depth: 61.84 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.003166 ft/day y0 = 2.319 ft 0.8.16.24.32.40. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16D SLUG-OUT TEST 1 Data Set: S:\...\MW-16D_SlugOut_I.aqt Date: 08/14/15 Time: 20:36:28 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 44.67 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16D) Initial Displacement: 1.946 ft Static Water Column Height: 38.6 ft Total Well Penetration Depth: 42.07 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.57 ft/day y0 = 0.7561 ft 0.8.16.24.32.40. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16D SLUG-OUT TEST 2 Data Set: S:\...\MW-16D_SlugOut_II.aqt Date: 08/14/15 Time: 20:35:15 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 44.67 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16D) Initial Displacement: 1.861 ft Static Water Column Height: 38.6 ft Total Well Penetration Depth: 42.07 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.944 ft/day y0 = 0.8156 ft 0.8.16.24.32.40. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16D SLUG-OUT TEST 3 Data Set: S:\...\MW-16D_SlugOut_III.aqt Date: 08/14/15 Time: 20:34:18 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 44.67 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16D) Initial Displacement: 2.143 ft Static Water Column Height: 38.6 ft Total Well Penetration Depth: 42.07 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.7628 ft/day y0 = 0.8774 ft 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16S SLUG-OUT TEST 1 Data Set: S:\...\MW-16S_SlugOut_I.aqt Date: 08/14/15 Time: 20:32:38 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 8.5 ft Anisotropy Ratio (Kz/Kr): 0.5 WELL DATA (MW-16S) Initial Displacement: 2.246 ft Static Water Column Height: 6.84 ft Total Well Penetration Depth: 10.01 ft Screen Length: 2.5 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.01726 ft/day y0 = 2.159 ft Well ID Water Elevation (MSL)Monitoring Event: MW-12S 556.60 ABMW-03S 483.04 MSL - Feet Above Mean Sea Level Depth measurements in feet MW-12S to ABMW-03S DISTANCE GRADIENT 4,388 0.01676 HORIZONTAL GRADIENT (i):0.0168 Average Groundwater Velocity (V)* Phase I *Based on the Darcy Equation where velocity equals (K x i) / n Hydraulic Conductivity values (units of ft/day) from Table 6-9 Measured Geomeric Mean MW-12S Slug Out Test 1 2.21E-02 2.21E-02 Slug Out Test 1 4.54E-01 Slug Out Test 2 4.55E-01 Slug Out Test 3 4.56E-01 Hydraulic Conductivity (K)0.1003 foot/day (Geometric Mean of K for MW-12S and ABMW-03S) Average Horizontal Gradient (i)0.0168 foot/foot Porosity (n)35.4 percent Velocity =0.00475 foot/day 1.73 foot/year ASSUMPTIONS: 1. K of 0.1003 ft/day based on in-situ slug tests 2. Porosity is based on average value of saprolitic soils as determined by BLE (Appendix F). Prepared by:RAG Date: Checked:EMB Date: Duke Energy Progress, LLC - Mayo Steam Electric Plant 8/16/2015 June 2015 CHANGE IN LEVEL 73.56 8/15/2015 Well ID Slug Test Slug Test Number Hydraulic Conductivity ft/day) ABMW-03S 4.55E-01 P:\Duke Energy Progress.1026\105. Mayo Ash Basin GW Assessment Plan\1.11 CSA Reporting\FINAL\APPENDICES\Appendix G\Mayo_Hydraulic_Velocities Well ID Water Elevation (MSL)Monitoring Event: ABMW-03S 483.04 MW-16S 366.92 MSL - Feet Above Mean Sea Level Depth measurements in feet ABMW-03S to MW-16S DISTANCE GRADIENT 3,450 0.03366 HORIZONTAL GRADIENT (i):0.0337 Average Groundwater Velocity (V)* Phase I *Based on the Darcy Equation where velocity equals (K x i) / n Hydraulic Conductivity values (units of ft/day) from Table 6-9 Measured Geomeric Mean Slug Out Test 1 4.54E-01 Slug Out Test 2 4.55E-01 Slug Out Test 3 4.56E-01 MW-16S Slug-Out Test 1 1.73E-02 1.73E-02 Hydraulic Conductivity (K)0.0886 foot/day (Geometric Mean of K for ABMW-03S and MW-16S) Average Horizontal Gradient (i)0.0337 foot/foot Porosity (n)22.7 percent Velocity =0.01314 foot/day 4.80 foot/year to Porosity (n)28.4 percent Velocity =0.01050 foot/day 3.83 foot/year ASSUMPTIONS: 1. K of 0.0886 ft/day based on in-situ slug tests 2. Porosity is based on average value of alluvium and saprolite soils as determined by BLE (Appendix F). Prepared by:RAG Date: Checked:EMB Date: Duke Energy Progress, LLC - Mayo Steam Electric Plant June 2015 CHANGE IN LEVEL 116.12 8/16/2015 ABMW-03S 4.55E-01 Well ID Slug Test Slug Test Number Hydraulic Conductivity ft/day) 8/15/2015 P:\Duke Energy Progress.1026\105. Mayo Ash Basin GW Assessment Plan\1.11 CSA Reporting\FINAL\APPENDICES\Appendix G\Mayo_Hydraulic_Velocities Well ID Water Elevation (MSL)Monitoring Event: MW-12D 556.90 ABMW-04D 485.06 MSL - Feet Above Mean Sea Level Depth measurements in feet MW-12D to ABMW-04D DISTANCE GRADIENT 3,910 0.01837 HORIZONTAL GRADIENT (i):0.0184 Average Groundwater Velocity (V)* Phase I *Based on the Darcy Equation where velocity equals (K x i) / n Hydraulic Conductivity values (units of ft/day) from Table 6-9 Measured Geomeric Mean MW-12D Slug Out Test 1 3.02E+00 3.02E+00 ABMW-04D Slug Out Test 1 5.88E-02 5.88E-02 Hydraulic Conductivity (K)0.4210 foot/day (Geometric Mean of K for MW-12D and ABMW-04D) Average Horizontal Gradient (i)0.0184 foot/foot Porosity (n)34.3 percent Velocity =0.02255 foot/day 8.23 foot/year to Porosity (n)56.6 percent Velocity =0.01367 foot/day 4.99 foot/year ASSUMPTIONS: 1. K of 0.421 ft/day based on in-situ slug tests 2. Porosity based on values from Morris and Johnson (1967), Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the US Geological Survey, 1948-1960 (No. 1839-D). 3. Porosity values of 34.3 to 56.6 were based on site geologic conditions. Prepared by:RAG Date: Checked:EMB Date: Duke Energy Progress, LLC - Mayo Steam Electric Plant June 2015 CHANGE IN LEVEL 71.84 8/16/2015 Well ID Slug Test Slug Test Number Hydraulic Conductivity ft/day) 8/15/2015 P:\Duke Energy Progress.1026\105. Mayo Ash Basin GW Assessment Plan\1.11 CSA Reporting\FINAL\APPENDICES\Appendix G\Mayo_Hydraulic_Velocities Well ID Water Elevation (MSL)Monitoring Event: ABMW-04D 485.06 MW-16D 365.52 MSL - Feet Above Mean Sea Level Depth measurements in feet ABMW-04D to MW-16D DISTANCE GRADIENT 3,965 0.03015 HORIZONTAL GRADIENT (i):0.0301 Average Groundwater Velocity (V)* Phase I *Based on the Darcy Equation where velocity equals (K x i) / n Hydraulic Conductivity values (units of ft/day) from Table 6-9 Measured Geomeric Mean ABMW-04D Slug Out Test 1 5.88E-02 5.88E-02 Test 1 1.57E+00 Test 2 1.94E+00 Test 3 7.63E-01 Hydraulic Conductivity (K)0.2791 foot/day (Geometric Mean of K for ABMW-04D and MW-16D) Average Horizontal Gradient (i)0.0301 foot/foot Porosity (n)34.3 percent Velocity =0.02453 foot/day 8.95 foot/year to Porosity (n)56.6 percent Velocity =0.01487 foot/day 5.43 foot/year ASSUMPTIONS: 1. K of 0.2791 ft/day based on in-situ slug tests 2. Porosity based on values from Morris and Johnson (1967), Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the US Geological Survey, 1948-1960 (No. 1839-D). 3. Porosity values of 34.3 to 56.6 were based on site geologic conditions. Prepared by:RAG Date: Checked:EMB Date: Hydraulic Conductivity ft/day) 8/16/2015 MW-16D Slug Out 1.33E+00 Duke Energy Progress, LLC - Mayo Steam Electric Plant June 2015 CHANGE IN LEVEL 119.54 8/15/2015 Well ID Slug Test Slug Test Number P:\Duke Energy Progress.1026\105. Mayo Ash Basin GW Assessment Plan\1.11 CSA Reporting\FINAL\APPENDICES\Appendix G\Mayo_Hydraulic_Velocities Well ID Water Elevation (MSL)Monitoring Event: ABMW-04BR 483.42 MW-16BR 365.41 MSL - Feet Above Mean Sea Level Depth measurements in feet ABMW-04BR to MW-16BR DISTANCE GRADIENT 3,965 0.02976 HORIZONTAL GRADIENT (i):0.0298 Average Groundwater Velocity (V)* Phase I *Based on the Darcy Equation where velocity equals (K x i) / n Hydraulic Conductivity values (units of ft/day) from Table 6-9 Measured Geomeric Mean ABMW-04BR Slug-Out Test 1 9.46E-03 9.46E-03 MW-16BR Slug-Out Test 1 3.17E-03 3.17E-03 Hydraulic Conductivity (K)0.0055 foot/day (Geometric Mean of K for ABMW-04BR and MW-16BR) Average Horizontal Gradient (i)0.0298 foot/foot Porosity (n)4.4 percent Velocity =0.00370 foot/day 1.35 foot/year to Porosity (n)56.6 percent Velocity =0.00029 foot/day 0.11 foot/year ASSUMPTIONS: 1. K of 0.0055 ft/day based on in-situ slug and packer tests 2. Porosity based on values from Morris and Johnson (1967), Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the US Geological Survey, 1948-1960 (No. 1839-D). 3. Porosity values of 4.4 to 56.6 were based on site geologic conditions. Prepared by:RAG Date: Checked:EMB Date: Duke Energy Progress, LLC - Mayo Steam Electric Plant June 2015 CHANGE IN LEVEL 118.01 8/15/2015 8/16/2015 Well ID Slug Test Slug Test Number Hydraulic Conductivity ft/day) P:\Duke Energy Progress.1026\105. Mayo Ash Basin GW Assessment Plan\1.11 CSA Reporting\FINAL\APPENDICES\Appendix G\Mayo_Hydraulic_Velocities 2017 Comprehensive Site Assessment Update October 2017  Mayo Steam Electric Plant SynTerra    UNCC Soil Sorption Report   Soil Sorption Evaluation Mayo Steam Electric Plant Prepared for SynTerra 148 River Street # 220, Greenville, SC 29601 Investigators William G. Langley, Ph.D., P.E. Shubhashini Oza, Ph.D. UNC Charlotte Civil and Environmental Engineering EPIC Building, 3252, 9201 University City Blvd, Charlotte, NC 28223 October, 31 2015 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte ii | P a g e Table of Contents List of Tables ------------------------------------------------------------------------------------------------ iii List of Figures ----------------------------------------------------------------------------------------------- iv 1. Introduction --------------------------------------------------------------------------------------------- 1 2. Background ---------------------------------------------------------------------------------------------- 1 3. Experiment: Kd Determination ----------------------------------------------------------------------- 2 3.1 Sample Storage and Preparation ---------------------------------------------------------------- 2 3.2 Metal Oxy-hydroxide Phases -------------------------------------------------------------------- 3 3.3 Test Solution --------------------------------------------------------------------------------------- 3 3.4 Equipment Setup ---------------------------------------------------------------------------------- 3 4. Model Equations for Kd Determination -------------------------------------------------------------- 4 5. Leaching for Ash Samples ---------------------------------------------------------------------------- 5 6. Results --------------------------------------------------------------------------------------------------- 5 7. References ----------------------------------------------------------------------------------------------- 8 Appendix – A ------------------------------------------------------------------------------------------------- 9 Appendix – B ------------------------------------------------------------------------------------------------ 19 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte iii | P a g e List of Tables Table 1: Site specific soil samples analyzed for Kd ........................................................................ 9  Table 2: Synthetic ground water constituents and trace metals concentrations .............................. 9  Table 3: Redox values for the samples (ASTM G200 - 09) ......................................................... 10  Table 4: Summary of batch and column Kd for MW – 3BR (22 – 25 ft.) .................................... 10  Table 5: Summary of batch and column Kd for MW – 5BR (61 – 63 ft.) .................................... 11  Table 6: Summary of batch and column Kd for MW – 8BR (19 – 22 ft.) .................................... 11  Table 7: Summary of batch and column Kd for MW – 12 BR (50 – 51.5) ................................... 11  Table 8: Summary of batch and column Kd for MW – 12 BR (88 – 90) ...................................... 11  Table 9: Summary of batch and column Kd for MW – 13 BR ..................................................... 12  Table 10: Summary of batch and column Kd for MW – 16 BR (36.5 – 38) ................................. 12  Table 11: Summary of batch and column Kd for MW – 16 BR (54 – 55) .................................... 12  Table 12: Summary of batch and column Kd for ABMW – 2 ...................................................... 12  Table 13: Summary of batch and column Kd for ABMW – 2 BR ................................................ 13  Table 14: Summary of batch and column Kd for SB – 7 .............................................................. 13  Table 15: Kd Qualifiers for batch and column plots ..................................................................... 14  Table 16: Ogata-Banks parameters used in developing column Kd ............................................. 15  Table 17: HFO, HMO and HAO ................................................................................................... 17  Table 18: Method 1313 leaching - pH, ORP and conductivity (at natural pH) ............................ 17  Table 19: Method 1313 leaching (at natural pH) data for ash samples collected at the site ........ 18  Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte iv | P a g e List of Figures Figure 1: Tumbler for 1313, 1316 and batch Kd ........................................................................... 19 Figure 2: Batch filtration set-up .................................................................................................... 19 Figure 3: Column set-up ............................................................................................................... 20 Figure 4: Syringe filtration for extraction of HFO/HMO/HAO ................................................... 21 Figure 5: Arsenic batch Kd - MW - 3BR (22 – 25 ft.) .................................................................. 22 Figure 6: Arsenic column Kd - MW - 3BR (22 – 25 ft.) ............................................................... 22 Figure 7: Boron column Kd - MW – 3BR (22 – 25 ft.) ................................................................. 23 Figure 8: Cobalt column Kd - MW -3BR (22 – 25 ft.) .................................................................. 24 Figure 9: Iron batch Kd - MW -3BR (22 – 25 ft.) ......................................................................... 25 Figure 10: Manganese batch Kd - MW -3BR (22 – 25 ft.) ........................................................... 26 Figure 11: Thallium batch Kd - MW -3BR (22 – 25 ft.) ............................................................... 27 Figure 12: Thallium column Kd - MW -3BR (22 – 25 ft.) ............................................................ 27 Figure 13: Vanadium batch Kd - MW -3BR (22 – 25 ft.) ............................................................. 28 Figure 14: Arsenic batch Kd - MW -5BR (61 – 63 ft.) ................................................................. 29 Figure 15: Arsenic column Kd - MW -5BR (61 – 63 ft.) .............................................................. 29 Figure 16: Boron column Kd - MW -5BR (61 – 63 ft.) ................................................................ 30 Figure 17: Cobalt column Kd - MW -5BR (61 – 63 ft.) ................................................................ 31 Figure 18: Thallium batch Kd - MW -5BR (61 – 63 ft.) ............................................................... 32 Figure 19: Thallium column Kd - MW -5BR (61 – 63 ft.) ............................................................ 32 Figure 20: Vanadium column Kd - MW -5BR (61 – 63 ft.) .......................................................... 33 Figure 21: Arsenic batch Kd - MW -8BR (19 – 22 ft.) ................................................................. 34 Figure 22: Arsenic column Kd - MW -8BR (19 – 22 ft.) ............................................................. 34 Figure 23: Boron column Kd - MW -8BR (19 – 22 ft.) ................................................................ 35 Figure 24: Cobalt batch Kd - MW -8BR (19 – 22 ft.) ................................................................... 36 Figure 25: Cobalt column Kd - MW -8BR (19 – 22 ft.) ................................................................ 36 Figure 26: Thallium batch Kd - MW -8BR (19 – 22 ft.) ............................................................... 37 Figure 27: Thallium column Kd - MW -8BR (19 – 22 ft.) ........................................................... 37 Figure 28: Vanadium batch Kd - MW -8BR (19 – 22 ft.) ............................................................. 38 Figure 29: Vanadium column Kd - MW -8BR (19 – 22 ft.) .......................................................... 38 Figure 30: Arsenic batch Kd - MW -16BR (36.5 – 38 ft.) ............................................................ 39 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte v | P a g e Figure 31: Arsenic column Kd - MW -16BR (36.5 – 38 ft.) ......................................................... 39 Figure 32: Boron column Kd - MW -16BR (36.5 – 38 ft.) ........................................................... 40 Figure 33: Cobalt column Kd - MW -16BR (36.5 – 38 ft.) ........................................................... 41 Figure 34: Thallium batch Kd - MW -16BR (36.5 – 38 ft.) .......................................................... 42 Figure 35: Thallium column Kd - MW -16BR (36.5 – 38 ft.) ....................................................... 42 Figure 36: Vanadium column Kd - MW -16BR (36.5 – 38 ft.) ..................................................... 43 Figure 37: Arsenic column Kd - MW -16BR (54 – 55 ft.) ............................................................ 44 Figure 38: Boron column Kd - MW -16BR (54 – 55 ft.) .............................................................. 45 Figure 39: Cobalt column Kd - MW -16BR (54 – 55 ft.) .............................................................. 46 Figure 40: Thallium column Kd - MW -16BR (54 – 55 ft.) .......................................................... 47 Figure 41: Vanadium column Kd - MW -16BR (54 – 55 ft.) ........................................................ 48 Figure 42: Arsenic batch Kd - MW -12BR (50 - 51.5 ft.) ............................................................. 49 Figure 43: Arsenic column Kd - MW -12BR (50 - 51.5 ft.) .......................................................... 49 Figure 44: Boron column Kd - MW -12BR (50 – 51.5 ft.) ........................................................... 50 Figure 45: Cobalt batch Kd - MW -12BR (50 – 51.5 ft.) .............................................................. 51 Figure 46: Cobalt batch Kd - MW -12BR (50 – 51.5 ft.) .............................................................. 51 Figure 47: Thallium batch Kd - MW -12BR (50 – 51.5 ft.) .......................................................... 52 Figure 48: Thallium column Kd - MW -12BR (50 – 51.5 ft.) ....................................................... 52 Figure 49: Vanadium batch Kd - MW -12BR (50 – 51.5 ft.) ........................................................ 53 Figure 50: Vanadium column Kd - MW -12BR (50 – 51.5 ft.) ..................................................... 53 Figure 51: Arsenic column Kd - MW -12BR (88 – 90 ft.) ............................................................ 54 Figure 52: Boron column Kd - MW -12BR (88 – 90 ft.) .............................................................. 55 Figure 53: Cobalt column Kd - MW -12BR (88 – 90 ft.) .............................................................. 56 Figure 54: Thallium column Kd - MW -12BR (88 – 90 ft.) .......................................................... 57 Figure 55: Vanadium column Kd - MW -12BR (88 – 90 ft.) ........................................................ 58 Figure 56: Arsenic batch Kd - MW -13BR (52 – 54 ft.) ............................................................... 59 Figure 57: Arsenic column Kd - MW -13BR (52 – 54 ft.) ............................................................ 59 Figure 58: Boron column Kd - MW -13BR (52 – 54 ft.) .............................................................. 60 Figure 59: Cobalt batch Kd - MW -13BR (52 – 54 ft.) ................................................................. 61 Figure 60: Cobalt column Kd - MW -13BR (52 – 54 ft.) .............................................................. 61 Figure 61: Thallium batch Kd - MW -13BR (52 – 54 ft.) ............................................................. 62 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte vi | P a g e Figure 62: Thallium column Kd - MW -13BR (52 – 54 ft.) .......................................................... 62 Figure 63: Vanadium batch Kd - MW -13BR (52 – 54 ft.) ........................................................... 63 Figure 64: Vanadium column Kd - MW -13BR (52 – 54 ft.) ........................................................ 63 Figure 65: Arsenic batch Kd - ABMW -2 (57 – 59 ft.) ................................................................. 64 Figure 66: Arsenic column Kd - ABMW -2 (57 – 59 ft.) .............................................................. 64 Figure 67: Boron column Kd ABMW -2 (57 – 59 ft.) .................................................................. 65 Figure 68: Cobalt batch Kd - ABMW -2 (57 – 59 ft.) ................................................................... 66 Figure 69: Cobalt column Kd - ABMW -2 (57 – 59 ft.) ............................................................... 66 Figure 70: Thallium batch Kd - ABMW -2 (57 – 59 ft.) ............................................................... 67 Figure 71: Thallium column Kd - ABMW -2 (57 – 59 ft.) ........................................................... 67 Figure 72: Vanadium batch Kd - ABMW -2 (57 – 59 ft.) ............................................................. 68 Figure 73: Vanadium column Kd - ABMW -2 (57 – 59 ft.) ......................................................... 68 Figure 74: Arsenic batch Kd - ABMW -2BR (97 – 100 ft.) Figure 75: Arsenic column Kd - ABMW -2BR (97 – 100 ft.)Trial A 69 Figure 76: Arsenic column Kd - ABMW -2BR (97 – 100 ft.)Trial B Figure 77: Arsenic column Kd - ABMW -2BR (97 – 100 ft.)Trial C 69 Figure 78: Boron column Kd - ABMW -2BR (97 – 100 ft.) Trial A Figure 79: Boron column Kd - ABMW -2BR (97 – 100 ft.) Trial B 70 Figure 80: Boron column Kd - ABMW -2BR (97 – 100 ft.) Trial C ............................................ 70 Figure 81: Cobalt batch Kd - ABMW -2BR (97 – 100 ft.) Trial A Figure 82: Cobalt column Kd - ABMW -2BR (97 – 100 ft.) Trial A 71 Figure 83: Cobalt column Kd - ABMW -2BR (97 – 100 ft.) Trial B Figure 84: Cobalt column Kd - ABMW -2BR (97 – 100 ft.) Trial C 71 Figure 85: Thallium batch Kd - ABMW -2BR (97 – 100 ft.) Figure 86: Thallium column Kd - ABMW -2BR (97 – 100 ft.)Trial A 72 Figure 87: Thallium column Kd - ABMW -2BR (97 – 100 ft.)Trial B Figure 88: Thallium column Kd - ABMW -2BR (97 – 100 ft.)Trial C 72 Figure 89: Vanadium batch Kd -ABMW -2BR (97 – 100 ft.) Figure 90: Vanadium column Kd - ABMW -2BR (97 – 100 ft.) Trial A 73 Figure 91: Vanadium column Kd -ABMW -2BR (97 – 100 ft.) Trial B Figure 92: Vanadium column Kd -ABMW -2BR (97 – 100 ft.) Trial C 73 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte vii | P a g e Figure 93: Arsenic batch Kd – SB -7 ............................................................................................ 74 Figure 94: Arsenic column Kd – SB -7 ......................................................................................... 74 Figure 95: Boron column Kd - SB -7 ............................................................................................ 75 Figure 96: Cobalt batch Kd - SB -7 ............................................................................................... 76 Figure 97: Cobalt column Kd - SB -7............................................................................................ 76 Figure 98: Thallium batch Kd - SB -7 ........................................................................................... 77 Figure 99: Thallium column Kd - SB -7........................................................................................ 77 Figure 100: Vanadium batch Kd - SB -7 ....................................................................................... 78 Figure 101: Vanadium column Kd - SB -7.................................................................................... 78 Figure 102: pH vs L/S for ABMW – 2 BR (57-58 ft.) ................................................................. 79 Figure 103: ORP vs L/S for ABMW – 2 BR (57-58 ft.) .............................................................. 79 Figure 104: Conductivity vs L/S for ABMW – 2 BR (57-58 ft.) ................................................. 80 Figure 105: pH vs L/S for ABMW – 2 BR (97-100) ft. ............................................................... 80 Figure 106: ORP vs L/S for ABMW – 2 BR (97-100 ft.) ............................................................ 81 Figure 107: Conductivity vs L/S for ABMW – 2 BR (97-100 ft.) ............................................... 81 Figure 108: pH vs L/S for MW – 3 BR ........................................................................................ 82 Figure 109: ORP vs L/S for MW – 3 BR ..................................................................................... 82 Figure 110: Conductivity vs L/S for MW – 3 BR ........................................................................ 83 Figure 111: pH vs L/S for MW – 5 BR ........................................................................................ 83 Figure 112: ORP vs L/S for MW – 5 BR ..................................................................................... 84 Figure 113: Conductivity vs L/S for MW – 5 BR ........................................................................ 84 Figure 114: pH vs L/S for MW – 8 BR ........................................................................................ 85 Figure 115: ORP vs L/S for MW – 8 BR ..................................................................................... 85 Figure 116: Conductivity vs L/S for MW – 8 BR ........................................................................ 86 Figure 117: pH vs L/S for MW – 12 BR ...................................................................................... 86 Figure 118: ORP vs L/S for MW – 12 BR ................................................................................... 87 Figure 119: Conductivity vs L/S for MW – 12 BR ...................................................................... 87 Figure 120: pH vs L/S for MW – 13 BR ...................................................................................... 88 Figure 121: ORP vs L/S for MW – 13 BR ................................................................................... 88 Figure 122: Conductivity vs L/S for MW – 13 BR ...................................................................... 89 Figure 123: pH vs L/S for MW – 16 BR (36.5-38 ft.) .................................................................. 89 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte viii | P a g e Figure 124: ORP vs L/S for MW – 16 BR (36.5-38 ft.) ............................................................... 90 Figure 125: Conductivity vs L/S for MW – 16 BR (36.5-38 ft.) .................................................. 90 Figure 126: pH vs L/S for MW – 16 BR (54-55 ft.) ..................................................................... 91 Figure 127: ORP vs L/S for MW – 16 BR (54-55 ft.) .................................................................. 91 Figure 128: Conductivity vs L/S for MW – 16 BR (54-55 ft.) ..................................................... 92 Figure 129: pH vs L/S for SB – 7 (4.5-7.5 ft.) .............................................................................. 92 Figure 130: ORP vs L/S for SB – 7 (4.5-7.5 ft.) ........................................................................... 93 Figure 131: Conductivity vs L/S for SB – 7 (4.5-7.5 ft.) .............................................................. 93 Figure 132: Boron 1316 ABMW – 1 (3.5 – 5.0FT) ...................................................................... 94 Figure 133: Chromium 1316 ABMW – 1 (3.5 – 5.0FT) .............................................................. 94 Figure 134: Boron 1316 ABMW – 1 (3.5 – 5.0FT) ...................................................................... 95 Figure 135: Chromium 1316 ABMW – 1 (3.5 – 5.0FT) .............................................................. 95 Figure 136: Manganese 1316 ABMW – 1 (3.5 – 5.0FT).............................................................. 96 Figure 137: Manganese 1316 ABMW – 1 (3.5 – 5.0FT).............................................................. 96 Figure 138: Molybdenum 1316 ABMW – 1 (3.5 – 5.0FT) .......................................................... 97 Figure 139: Vanadium 1316 ABMW – 1 (3.5 – 5.0FT) ............................................................... 97 Figure 140: Boron 1316 ABMW – 2 (28 – 30FT) ........................................................................ 98 Figure 141: Chromium 1316 ABMW – 2 (28 – 30FT) ................................................................ 98 Figure 142: Iron 1316 ABMW – 2 (28 – 30FT) ........................................................................... 99 Figure 143: Manganese 1316 ABMW – 2 (28 – 30FT)................................................................ 99 Figure 144: Molybdenum 1316 ABMW – 2 (28 – 30FT) .......................................................... 100 Figure 145: Selenium 1316 ABMW – 2 (28 – 30FT) ................................................................. 100 Figure 146: Arsenic 1316 ABMW – 4 (17 – 19FT) ................................................................... 101 Figure 147: Boron 1316 ABMW – 4 (17 – 19FT) ...................................................................... 101 Figure 148: Manganese 1316 ABMW – 4 (17 – 19FT).............................................................. 102 Figure 149: Molybdenum 1316 ABMW – 4 (17 – 19FT) .......................................................... 102 Figure 150: Selenium 1316 ABMW – 4 (17 – 19FT) ................................................................. 103 Figure 151: pH at varying L/S ratio for 1316 testing of ABMW – 1 (3.5 – 5.0FT) ................... 103 Figure 152: ORP at varying L/S ratio for 1316 testing of ABMW – 1 (3.5 – 5.0FT) ................ 104 Figure 153: Conductivity at varying L/S ratio for 1316 testing of ABMW – 1 (3.5 – 5.0FT) ... 104 Figure 154: pH at varying L/S ratio for 1316 testing of ABMW – 2 (28 – 30FT) ..................... 105 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte ix | P a g e Figure 155: ORP at varying L/S ratio for 1316 testing of ABMW – 2 (28 – 30FT) .................. 105 Figure 156: Conductivity at varying L/S ratio for 1316 testing of ABMW – 2 (28 – 30FT) ..... 106 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 1 | P a g e 1. Introduction Duke Energy Progress, LLC. (Duke Energy) owns and operates the Mayo Steam Electric Plant located in Roxboro, North Carolina. The coal ash residue from the coal combustion process for power generation was placed in the plant’s ash basin, which is permitted by the North Carolina Department of Environmental Quality (NCDEQ) Division of Water Resources (DWR) under the National Pollution Discharge Elimination System. In a Notice of Regulatory Requirements (NORR) letter dated August 13, 2014, the Division of Water Resources (DWR) requested that Duke Energy prepare a Groundwater Assessment Plan to identify the source and cause of possible contamination, any potential hazards to public health and safety and actions taken to mitigate them, and all receptors and complete exposure pathways. In addition, the plan should determine the horizontal and vertical extent of possible soil and groundwater contamination and all significant factors affecting contaminant transport and the geological and hydrogeological features influencing the movement, chemical, and physical character of the contaminants. The work plan was also prepared to fulfill the requirements stipulated in Coal Ash Management Act 2014 – North Carolina Senate Bill 729: The Groundwater Assessment Plan includes the collection of groundwater and surface water information to prepare a Comprehensive Site Assessment Report and support the development of a groundwater computer model to evaluate the long term fate and transport of constituents of concern (COCs) in groundwater associated with the ash basin. Critical input parameters for the model are site specific sorption coefficients Kd for each COC. This report presents the results of soil sorption testing on selected soils from the Mayo Plant to quantify the Kd terms. Testing was performed at the Civil and Environmental Engineering laboratories in the EPIC building at UNC Charlotte. Soil samples were collected during the geotechnical and environmental exploration program at the Mayo Plant between March and June 2015, twenty eight of which were delivered to UNC-Charlotte between March 4th and June 4th of 2015. 2. Background In groundwater, sorption is quantified by the equilibrium relationship between chemicals in the dissolved and adsorbed phases. Experiments to quantify sorption can be conducted using batch or column procedures. A batch sorption procedure consists of combining soil samples and solutions across a range of soil-to-solution ratios, followed by shaking until chemical equilibrium is achieved. Initial and final concentrations of chemicals in the solution determine the adsorbed amount of chemical, and provide data for developing plots of adsorbed versus dissolved chemical. If the plot, or isotherm, is linear, the single-valued coefficient Kd, with units of volume per unit mass, represents the slope of the isotherm. Depending on the chemical, its dissolved phase concentration, and the soil characteristics, nonlinear isotherms, characterized by two or more coefficients, may result. The column sorption procedure consists of passing a solution of known chemical concentration through a cylindrical column packed with the soil sample. A plot of the chemical constituent Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 2 | P a g e measured in the column effluent is plotted versus time or its equivalent, pore volumes passed. This so-called breakthrough curve is plotted together with the analytical solution of the advection-dispersion-adsorption equation from which the linear sorption coefficient Kd is estimated by visual curve fitting [1]. When comparing the merits of the two procedures for quantifying sorption, the batch procedure provides a more effective contact between the solution and soil, while the column procedure is more representative of in-situ groundwater flow conditions where solution soil contact may non-uniform and less than fully effective. Both batch and column procedures were employed for the sorption experiments on soils. Depending on practical considerations, the batch procedure may be designed to capture a wide range of Kd values. Metal oxy-hydroxide phases of iron, manganese, and aluminum in soils are considered to be the most important surface reactive phases for cationic and anionic constituents in many subsurface environments [2]. Quantities of these phases in a given soil can thus be considered as a proxy for COC sorption capacity for a given soil. In this study, oxy-hydroxide phases of iron, manganese, and aluminum (hereafter referred to as HFO, HMO, and HAO) were measured concurrently with sorption coefficients for selected COCs and soil samples. 3. Experiment: Kd Determination 3.1 Sample Storage and Preparation Eleven soil samples were selected for determination of sorption coefficients (Table 1). The basis for selection was to provide adequate coverage of the saturated zone beneath and down gradient of the ash basin. Preserved soils arrived at the EPIC lab in air-tight plastic bags on ice in coolers. Samples were stored in their original containers in a cold room at less than 4° C until tested. For batch and column procedures, soil samples were disaggregated, homogenized, and air-dried at room temperature in aluminum pans (21” x 13” x 4”), for a minimum of 72 hours, with turning every 12 hours. The dry samples were then sieved to a particle diameter of less than 2 mm (#10 U.S. Standard mesh). Sample splits for column testing were sieved a second time to remove particles less than 0.30 mm (#50 U.S. Standard mesh) in order to have sufficient permeability of the sample such that water passed through the column without operational problem such as leaking and reduced flow. Bedrock samples were fragmented using a Sotec Systems Universal Testing Machine (UTM). Fragmentation was continued until the approximate grain size was 2.0 to 0.30 mm by visual inspection. Like the soil samples, bedrock samples intended for column testing were sieved a second time to remove particles less than 0.30 mm diameter (#50 U.S. Standard mesh) to minimize operational problems associated with the small particle size. Soil samples for batch sorption testing were weighed and placed in 250 mL wide-mouth HDPE bottles with polypropylene screw tops (in accordance with U.S. Environmental Protection Agency (EPA) Technical Resource Document EPA/530/SW-87/006-F). For each test on a single sample, soil masses of 10, 25, 50, 75, and 100 grams were placed in separate bottles. The columns were 8 inch long (20.3cm) polyethylene tubes with dimensions 0.675 in. (16 mm) I.D. by 0.75 in. (19 mm) O.D. Each column setup included two polypropylene end caps with barbed Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 3 | P a g e fittings which accept 0.25 to 0.375 in. (6.4 to 9.5 mm) I.D. tubing. Two discs of porous polyethylene and polymer mesh screen were placed between the end cap and tube to retain the soil in the column. A modified slurry packing method was used [3] to provide homogenous sample packing without preferential flow in the columns. With one end cap in place acid-washed Ottawa sand was added through the open end to a depth of about 2 cm to ensure the effective dispersal of flow across the column cross section. With the lower end cap and sand in place, 3 mL of 18 MΩ water (high purity de-ionized water) was added to the column. Then sample material was added in 5 cm lifts. The column assembly was weighed after each addition of water and soil. In order to eliminate trapped air, the column was placed on a vibrating table for 15 seconds. This process also ensured proper compaction while promoting a uniform density throughout the column. The sequence of adding water and sample material followed by vibrating was continued until roughly 2 cm of column head space remained. A 2 cm thick sand layer was added at the top of the compacted sample and the upper end cap was attached. The length of material in the column was measured in order to estimate the dry bulk density and porosity of the packed sample. Experimental set-up is presented in Figure 4. 3.2 Metal Oxy-hydroxide Phases The analytical method for determining hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) was adapted from Chou and Zhou [4] and that for hydrous manganese oxide (HMO) from T.T.Chao [5]. The HFO and HAO method calls for extracting the soil sample using a 0.25M NH2OH·HCl-0.25M HCl combined solution as the extractant at 50° C for 30 minutes (soil/liquid = 0.1 g/25 mL). The HMO methods calls for extracting the soil samples using a 0.1 M NH2OH·HCl-0.25M HCl combined solution as the extractant at 25° C for 2 hours (soil/liquid = 0.025 g/50 mL) (Figure 4). 3.3 Test Solution A synthetic groundwater with chemical composition provided shown in Table 2 was prepared using reagent grade solid chemicals and 18 MΩ water. Target COC concentrations were attained by diluting concentrated reference standards to the synthetic groundwater solution. After adding the reference standards, the COC-amended feed solution was back-titrated as needed to an approximate pH range of 6.5 to 7.5 using 0.1 N sodium hydroxide solution. Iron and manganese were omitted from the list of target COCs given that they were considered likely to leach when exposed to the synthetic groundwater. 3.4 Equipment Setup The COC-amended solutions were prepared in 10 liter and 20 liter LDPE carboys for the batch and column experiments, respectively. For each batch experiment, 200 mL of solution was added to each 250 mL bottle to obtain soil mass to solution ratios of 50, 125, 250, 375, and 500 mg/L. The soil-solution mixtures were equilibrated in a rotary mixer operating at 60 rpm for 24 hours. The experimental set-up and filtration details are presented in Figure 1 and 2. Following equilibration, water samples were drawn, filtered, and preserved for analysis. The samples were Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 4 | P a g e analyzed for eight COCs (arsenic, boron, chromium, cobalt, iron, manganese, thallium, and vanadium). Sample blanks were included in selected experiments to confirm stability of the solution. For the column experiments, Masterflex peristaltic pump drives with 12-channel, 8-roller cartridge pump heads and cartridges were connected between the carboys and the columns using Tygon tubing, valves, and fittings. The columns were operated in the up-flow mode. The flow rate was set to pass approximately twelve pore volumes, or approximately 200 mL, per day through each column. Before pumping began with the COC-amended solutions, the columns were fully saturated by slowly pumping reagent water in the up-flow mode. The COC-amended solutions were stirred continuously using magnetic stirrers. The arrangement of the carboys, pump, and columns is shown in Figure 4. Real-time, grab sample volumes of approximately 50 mL were drawn for each sampling event. The sample time and total volume pumped since the previous sampling event were recorded for calculating flow rates and pore volume passed. Concurrent samples of the feed solutions were also taken for each sampling event. Each sample was proportioned, filtered, and preserved for analyses. 4. Model Equations for Kd Determination After equilibration of a batch soil-solution mixture, the COC concentration in solution will be reduced due to sorption. This may be expressed as ݔ ݉ ൌ ሾሺܥ݋ െ ܥ ሻ/݉ሿ ∗ܸ where, x/m is the soil concentration (μg/g), Co is the initial solution concentration (μg/L), C is the final solution concentration, m is the soil sample mass, and V is the volume of solution. For sorption characterized by a linear isotherm, a plot of measured solution concentration versus calculated soil concentration for each soil sample (five data points: one for each soil to solution ratio) will yield the linear Kd term as the slope of x/m versus C. For the steady-state flow regime considered in the column tests, van Genuchten and Alves [6] presented the following form of the Ogata-Banks (O-B)[1] equation for one-dimensional, advection-dispersion equation with sorption as a close approximation to that for a finite length, lab-scale column: ܥ ሺݔ,ݐሻ ൌ ܥ଴ 2 ൤݁ݎ݂ܿ ൬ܴݔ െ ݒݐ 2√ܦܴݐ ൰ ൅݁ݔ݌ሺݒݔ/ܦሻ݁ݎ݂ܿ ൬ܴݔ ൅ ݒݐ 2√ܦܴݐ ൰൨ where, C(x,t) is the solute concentration (M/L3), x is the column length (L), t is the elapsed time (T), C0 is the feed concentration (M/L3), R is the dimensionless retardation coefficient, v is the seepage velocity (L/T), and D is the soil dispersion coefficient (L2/T). For sorption characterized by a linear isotherm, the Kd term (L3/M) is incorporated in R: ܴൌ1൅ߩ௕ ܭௗ ݊ Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 5 | P a g e where, ρb is the dry bulk density of the soil (M/L3) and n is the porosity. For the given test conditions where dispersion was dominant over diffusion, the soil dispersion coefficient D is equal to the product of the longitudinal dispersivity, L, and the seepage velocity. Supporting data used to estimate Kd based on O-B equation are provided in Table 16. For plotting the analytical results together with the O-B equation, cumulative pore volumes corresponding to the elapsed time of each sampling event were calculated using measured water volumes pumped and the column pore volume. For each COC and soil column, Kd was estimated by fitting the plotted O-B equation to the measured solution concentrations. 5. Leaching for Ash Samples The site specific ash samples were subjected to two leaching protocols, Method 1313 and Method 1316. Method 1313: Liquid-Solid Partitioning as a Function of Extract pH using a Parallel Batch Extraction Procedure [7]. The procedure calls for reaching nine specific pH targets after mixing. If the natural pH of the material, without acid or based addition, is not one of the target pH positions, the natural pH is a tenth position in the procedure. For the purpose of this study, the test was conducted at the natural pH of the material only. The ash samples were extracted for 24 hours with 18 MΩ water. The leachate from the extraction step was filtered using 0.45µ filter paper and analyzed for pH, ORP, conductivity, and concentration of anions and cations. Method 1316: Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio using a Parallel Batch Extraction Procedure [8]. This method consists of five parallel extractions over a range of L/S values from 0.5 to 10 mL eluent/g dry material. In addition to the five test extractions, a method blank without solid sample was carried out to verify that analyte interferences are not introduced as a consequence of reagent impurities or equipment contamination. The 250 mL test bottles were equilibrated for 24 hours with 18 MΩ water (and as per method specification). At the end of the contact interval, the leachate from the extraction step was filtered (0.45µ filter paper) and analyzed for pH, ORP, conductivity, and concentration of anions and cations 6. Results The oxidation and reduction potential (ORP) values of soil samples measured as per ASTM G 200 – 09 are listed in Table 3[8]. The sorption test results are grouped by soil sample and test method. Batch and column results are tabulated in Tables 4 to 14. The Kd result for COCs are assigned qualifiers as presented in Table 15. The parameters used in Ogata-Banks equation for developing the Kd column plots are presented in Table 16. Batch and column test results for the COCs are shown in Figure 5 through 101 for each soil sample. General comments for Kd experiments: The sorption coefficients extracted from the experimental results in this study may be affected to some unknown extent by factors related to the experimental design. They include the following: Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 6 | P a g e  The goal of the batch and column sorption studies is to expose each soil sample to COCs in the aqueous phase and allow COC adsorption to occur until equilibrium is achieved. A solution intended to represent a generic groundwater is used as the background solution to which COCs were added. This solution differs from the actual solution in groundwater from which the soil sample was samples. As a result, the soil sample is exposed to a geochemical environment in which a number of chemical reactions may take place in addition to sorption.  The number of COCs for which sorption estimates are required for each sample necessitates combining a number of COCs in a single solution for simultaneous measurement. These COCs may interact chemically, thus altering their respective sorption characteristics for individual soil samples.  Sorption characteristics for selected COCs are sensitive to redox conditions to certain extent. Experiments in the lab were conducted in atmospheric conditions unless otherwise noted. The resulting sorption coefficients may not be representative of other redox settings.  Sample splits for column testing were sieved to remove particle sizes less than 0.30 mm in order to have sufficient permeability of the sample to pass water through the column without operational problems such as leaking and reduced flow. This could also affect the observed Kd value. Specific comments for Kd experiments The results for batch and column experiments are summarized as follows:  Batch Kd for arsenic ranged from 3 to 3,349 mL/g and column Kd ranged from 12 to 400 mL/g.  Batch Kd for boron indicated very low sorption and the concentration measured was very close to the feed, making it non-linear. Column Kd value varied from 5 to 15 mL/g suggesting that the boron sorption is very low in Mayo site soil samples.  Kd for chromium determined both in batch or column studies indicated a non-linear sorption isotherm. This parameter COC was individually tested (synthetic ground water prepared with only chromium metal spiked for only batch studies) and only non-linear isotherm was observed for all soil samples.  Batch Kd for cobalt in ranged from 66 to 1,948 mL/g and column Kd ranged from 135 to 425 mL/g.  Fe and Mn were not included in the test solution, so its occurrence in the batch test solution is indicative of leaching. HFO and HMO values were used as the initial concentration to predict the Kd values for Fe and Mn, respectively. If the concentration of Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 7 | P a g e Fe and Mn increased with mass of soil per unit volume of test solution during batch experiments, it is an indication of a linear leaching model, as opposed to a linear sorption model.  Batch Kd for thallium ranged from 347 to 2,561 mL/g and column Kd ranged from 135 to 450 mL/g  Batch Kd for vanadium ranged from 38 to 1,485 mL/g and column Kd ranged from 15 to 340 mL/g pH, ORP and conductivity at different liquid to solid ratios (L/S) for batch experiments is depicted in Figure 102 through 131. HFO, HMO, and HAO results are presented in Table 17. The results obtained are similar to that found in literature. The leaching test for 1313 are tabulated in Table 18 and 19. From Table 19 it can be observed that leaching was negligible (close to minimum detection limit of 1 ppb) for beryllium, cadmium, cobalt, nickel, lead and thallium. Arsenic, boron, chromium, copper, iron, manganese, molybdenum, nickel, selenium, vanadium and zinc indicated leaching. The leaching trend in 1316 is depicted through Figures 132 to 156. Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 8 | P a g e 7. References 1. Akio Ogata, R.B.B., A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media. Geological Survey Professional Paper 411 - A, 1961: p. 1-13. 2. Robert G. Ford, R.T.W., Robert W. Puls, Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. 2007, National Risk Management Research Laboratory, U.S. EPA: Cincinnati, Ohio. 3. Oliviera, I.B., A.H. Demond, and A. Salehzadeh, Packing of Sands for the Production of Homogeneous Porous Media. Soil Science Society of America Journal, 1996. 60(1): p. 49-53. 4. Chao, T.T. and L. Zhou, Extraction Techniques for Selective Dissolution of Amorphous Iron Oxides from Soils and Sediments. Soil Sci. Soc. Am. J., 1983. 47(2): p. 225-232. 5. Chao, T.T., Selective Dissolution of Manganese Oxides from Soils and Sediments with Acidified Hydroxylamine Hydrochloride. Soil Science Society of America Journal, 1972. 36(5): p. 764-768. 6. W.J.Alves, M.T.v.G.a., Analytical Solutions of the One-Dimensional Convetive- Dispersive Solute Transport Equation. 1982. 7. USEPA, Method 1313: Liquid-Solid Partitioning as a Function of pH for Constituents in Solid Materials Using a Parallel Batch Extraction Procedure. 2012, USEPA: Alexandria, VA. 8. ASTM, ASTM G 200 - 09 "Standard Test Method for Measurement of Oxidation- Reduction Potential (ORP of Soil)". 2014, ASTM International: West Conshohocken, PA. Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 9 | P a g e Appendix – A Table 1: Site specific soil samples analyzed for Kd Sample Name Depth (ft.) MW – 3 BR 22 - 25 MW – 5 BR 61 - 63 MW – 8 BR 19 - 22 MW – 12 BR 50 – 51.5 MW – 12 BR 88.5 - 90 MW – 13 BR 52 - 54 MW – 16 BR 36.5 - 38 MW – 16 BR 54 - 55 ABMW – 2 57 – 59 ABMW – 2BR 97 – 100 SB – 7 4.5 – 7.5 Table 2: Synthetic ground water constituents and trace metals concentrations Chemical Concentration Units CaSO4. 2H2O 20.0 ppm MgSO4 5.0 ppm Na(HCO3) 10.0 ppm Arsenic 500 ppb Boron 500 ppb Chromium 500 ppb Cobalt 500 ppb Thallium 500 ppb Vanadium 500 ppb Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 10 | P a g e Table 3: Redox values for the samples (ASTM G200 - 09) No. Sample Name Depth ORP (mv) (ft.) 1st 2nd 3rd Average 1 MW-16BR 36.5-38 275.6 266.4 262.0 268.0 2 MW-16BR 54-55 BEDROCK 3 MW-8BR 19-22 437.7 454.4 432.6 441.5 4 MW-3BR 22-25 374.5 348.4 332.0 351.6 5 MW-12BR 50-51.5 425.9 438.3 445.1 436.4 6 MW-5BR 61-63 BEDROCK 7 ABMW-2BR 57-58 BEDROCK 8 ABMW-2BR 97-100 BEDROCK 9 SB-7 4.5-7.5 372.8 380.2 386.9 379.9 10 MW - 13BR 17-27 340.2 330 343.4 337.0 11 MW - 11BR 43-44 322.1 315.7 288.9 308.9 12 MW - 12BR 96-97.5 293.8 290.7 324.6 303.03 13 SB 41 489.7 504.4 511.5 501.9 14 SB - 5 9.8-11 396.3 370.9 358.5 375.2 15 SB - 1 15-17 460.9 465.5 481.7 469.4 16 MW - 11BR 30-32 355.2 354.4 348.1 352.6 17 MW - 9BR 44-46 329.1 345.1 328.2 334.1 18 MW - 12BR 88.5-90 351.8 348.2 341.5 347.2 19 ABMW-1 3.5-5 23.3 33.3 17.8 24.8 20 MW - 14 BR 40 - 41.5 BEDROCK 21 MW - 10BR 51.5-53.5 BEDROCK 22 MW - 7BR 22-24 BEDROCK 23 MW - 15 58-63 BEDROCK Table 4: Summary of batch and column Kd for MW – 3BR (22 – 25 ft.) Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 11.2 0.44 -- -- 125.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt Non-linear isotherm 250.0 Iron 0.02 0.79 -- -- NA Manganese 0.01 0.61 -- -- NA Thallium 768.3 0.60 855.7 0.43 315.0 Vanadium Non-linear isotherm 85.0 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 11 | P a g e Table 5: Summary of batch and column Kd for MW – 5BR (61 – 63 ft.) Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 3.8 0.43 3.3 0.68 12.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt Non-linear isotherm 320.0 Thallium 900.6 0.53 1441.9 0.86 140.0 Vanadium Non-linear isotherm 15.0 Table 6: Summary of batch and column Kd for MW – 8BR (19 – 22 ft.) Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 516.9 0.90 532.5 0.85 250.0 Boron Non-linear isotherm 5.0 Chromium Non-linear isotherm NA Cobalt 763.7 0.49 -- -- 240..0 Thallium 2242.0 0.69 2207.8 0.90 250.0 Vanadium 1288.0 0.99 -- -- 240.0 Table 7: Summary of batch and column Kd for MW – 12 BR (50 – 51.5) Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 606.5 0.94 576.0 0.93 160.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt 65.8 0.99 69.1 0.99 135.0 Thallium 2560.7 0.86 815.1 0.78 135.0 Vanadium 611.9 0.93 555.1 0.89 130.0 Table 8: Summary of batch and column Kd for MW – 12 BR (88 – 90) Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 1761.5 0.98 1617.1 0.98 400.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt 1934.7 0.75 1947.7 0.70 425.0 Thallium 1703.7 0.98 1767.0 0.98 450.0 Vanadium 600.4 0.87 516.8 0.77 340.0 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 12 | P a g e Table 9: Summary of batch and column Kd for MW – 13 BR Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 92.0 0.86 34.0 0.89 190.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt 1403.0 0.93 -- -- 370.0 Thallium 3225.3 0.49 126.8 0.76 380.0 Vanadium 52.0 0.97 57.2 0.99 150.0 Table 10: Summary of batch and column Kd for MW – 16 BR (36.5 – 38) Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 69.7 0.78 91.9 0.95 210.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt Non-linear isotherm 370.0 Thallium 455.4 0.89 698.2 0.87 400.0 Vanadium Non-linear isotherm 180.0 Table 11: Summary of batch and column Kd for MW – 16 BR (54 – 55) Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 7.6 0.90 8.8 0.73 35.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt Non-linear isotherm 310.0 Thallium 329.6 0.97 346.5 0.98 320.0 Vanadium Non-linear isotherm 25.0 Table 12: Summary of batch and column Kd for ABMW – 2 Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 165.6 0.96 171.8 0.99 120.0 Boron Non-linear isotherm 15.0 Chromium Non-linear isotherm NA Cobalt 739.1 0.66 1105.6 0.31 370.0 Thallium 1633.9 0.99 1668.2 0.98 360.0 Vanadium 50.5 0.72 57.7 0.77 110.0 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 13 | P a g e Table 13: Summary of batch and column Kd for ABMW – 2 BR Batch Column Metals Trial – 1 R2 Trial - 2 R2 Trial A Trial B Trial C Arsenic 6.2 0.91 7.4 0.94 30.0 12.0 15.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt 1560.5 0.86 -- -- 290.0 290.0 260.0 Thallium 509.3 0.97 569.9 0.96 175.0 170.0 155.0 Vanadium 38.4 0.95 -- -- 25.0 15.0 15.0 Table 14: Summary of batch and column Kd for SB – 7 Batch Column Metals Trial – 1 R2 Trial - 2 R2 Arsenic 3348.9 0.69 -- -- 260.0 Boron Non-linear isotherm NA Chromium Non-linear isotherm NA Cobalt 901.7 0.77 1235.7 0.97 250.0 Thallium 1209.5 0.97 1418.7 0.96 240.0 Vanadium 1485.4 0.47 -- -- 240.0 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 14 | P a g e Table 15: Kd Qualifiers for batch and column plots Batch Kd Qualifiers Sl. No. Description Qualifier Identification Number 1 The concentration distribution is sufficient for the selected L/S ratio and given COC under consideration. Q – B – 1 2 The range of final COC concentration is narrow, such that normal variation due to the analytical method resulted in a non-linear isotherm. Q – B – 2 3 The range of final COC concentration is narrow and low, such that normal variation due to the analytical method resulted in a non-linear isotherm. Q – B – 3 4 Leachable COC is present in the soil sample prior to testing. This resulted in higher concentration of COC in the final COC concentration at the end of batch experiment. The mass balance approach for estimating sorption can only be done if leachable COC is known. Q – B – 4 5 Anomalous variability in the experimental results resulted in a non-linear isotherm. Q – B – 5 6 Initial COC concentration in the synthetic ground water is not sufficient to produce a well-defined linear isotherm. Q – B – 6 Column Kd Qualifiers Sl. No. Description Qualifier Identification Number 1 The breakthrough curve is sufficient for applying the Ogata- Banks model equation. Q – C – 1 2 The COC reached breakthrough although the concentration was less than the feedstock. Other chemical interactions between soil and synthetic ground water occurring after the initial breakthrough caused a transient decrease in effluent concentration with increased pore volumes (very commonly observed with arsenic in most soil samples from various sites). Q – C – 2 3 Effluent and influent concentrations are essentially the same over the period of data collection, indicating minimal COC sorption onto the soil (observed frequently with boron and molybdenum). Q – C – 3 4 Breakthrough was not observed. A conservation estimate of sorption was made by assuming breakthrough occurred at the end of the data collection period. Q – C – 4 5 The model equation is fit to the initial segment of the breakthrough curve to yield a conservative estimate of sorption. Q – C – 5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 15 | P a g e Table 16: Ogata-Banks parameters used in developing column Kd Parameter Units MW 3 BR 5 BR 8 BR 12 BR 13 BR 22 – 25 61 – 63 19 – 22 50 – 51.5 88.5 – 90 52 – 54 Effective porosity (n) 0.24 0.33 0.41 0.37 0.36 0.22 Bulk density (ρb) g/cm3 2.02 1.77 1.58 1.69 1.69 2.08 Column diameter cm 1.50 Column area cm2 1.77 Column length cm 18.1 Diffusivity (Do) cm2/s 9.00E-06 b 0.05 a 0.66 w = a*(n – b) 0.12 Effective molecular diffusion coefficient (D*) cm2/s 1.10E-06 1.66E-06 2.11E-06 1.87E-06 1.86E-06 9.92E-07 Dispersivity factor 0.02 – 0.20 Dispersivity cm 0.36 – 3.62 Average flow rate (Q) cm3/day 113.60 91.97 86.60 98.53 113.30 89.30 Bulk volume cm3 31.98 Pore volume cm3 7.55 10.56 12.97 11.69 11.60 6.94 Hydraulic detention Day 0.28 0.35 0.37 0.33 0.28 0.36 Linear velocity cm/day 272.46 157.63 120.89 152.58 176.74 232.92 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 16 | P a g e Ogata-Banks parameters continued... Parameter Units MW ABMW SB 16 BR 2 2 BR 7 36.5 – 38.0 54 – 55 57 – 59 97 – 100 4.5 – 7.5 Trial A Trial B Trial C Effective porosity (n) 0.27 0.35 0.32 0.34 0.38 0.34 0.35 Bulk density (ρb) g/cm3 1.94 1.73 1.81 1.75 1.64 1.74 1.73 Column diameter cm 1.50 Column area cm2 1.77 Column length cm 18.1 Diffusivity (Do) cm2/s 9.00E-06 b 0.05 a 0.66 w = a*(n – b) 0.15 0.20 0.177 0.19 0.22 0.19 0.20 Effective molecular diffusion coefficient (D*) cm2/s 1.31E-06 1.77E-03 1.59E-09 1.73E-06 1.97E-06 1.74E-06 1.77E-06 Dispersivity factor 0.02 – 0.20 Dispersivity cm 0.36 – 3.62 Average flow rate (Q) cm3/day 86.30 92.40 101.83 91.90 94.03 86.07 86.17 Bulk volume cm3 31.98 Pore volume cm3 8.63 11.15 10.17 10.91 12.20 10.99 11.11 Hydraulic detention Day 0.37 0.35 0.31 0.35 0.34 0.37 0.37 Linear velocity cm/day 181.07 149.94 181.24 152.47 139.47 141.71 140.42 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 17 | P a g e Table 17: HFO, HMO and HAO Sample Name Depth HFO HMO HAO ft. mg/Kg mg/Kg mg/Kg MW – 9 BR 44 - 46 432.7 403.8 625.1 MW – 13 BR 17 - 27 452.8 < 10 225.4 SB - 5 9.8 - 11 478.2 199.5 427.45 MW – 11 BR 30 - 32 861.5 < 10 776.6 MW – 12 BR 88.5 - 90 894.7 6584.1 744.6 MW – 10 BR 51.5 – 53.5 1006.9 < 10 481.0 MW - 15 58 - 63 2283.6 < 10 535.2 MW – 11 BR 43 - 44 1109.8 < 10 582.9 MW – 14 BR 40 – 41.5 1375.3 < 10 637.9 SB - 1 15 – 17.5 87.9 < 10 144.5 MW – 7 BR 22 - 24 1471.4 470.2 380.5 ABMW - 3 15 - 18 174.8 < 10 715.4 ABMW – 1 3.5 - 5 741.1 < 10 1594.2 MW – 12 BR 96 – 97.5 717.9 < 10 1317.1 Table 18: Method 1313 leaching - pH, ORP and conductivity (at natural pH) Sample Name Depth Collected Trial ORP Conductivity pH ft. mv µS/cm ABMW - 3 15 - 18 A 371.20 134.20 6.04 B 364.00 122.00 6.72 ABMW - 4 17 - 19 A 233.30 31.30 9.07 B 239.90 31.80 9.07 ABMW - 4 16 - 17 A 234.50 40.60 9.18 B 26.20 41.60 9.18 ABMW - 1 3.5 - 5.0 A 175.00 176.70 10.36 B 164.80 180.30 10.42 ABMW - 2 28 - 30 A 260.40 24.80 8.43 B 261.50 25.30 8.43 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 18 | P a g e Table 19: Method 1313 leaching (at natural pH) data for ash samples collected at the site Sample Name Depth Collected Trial As B Be Cd Cr Co Cu Fe Mn Mo Ni Pb Se Tl V Zn ft. ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ABMW - 3 15 - 18 A < 1 118.6 < 1 < 1 < 1 < 1 2.6 19.4 49.6 3.4 1.8 < 1 1.6 < 1 2.2 2.3 B 1.2 121.8 < 1 < 1 1.1 < 1 1.3 42.1 51.0 1.7 1.9 < 1 1.6 < 1 2.5 1.4 ABMW - 4 17 - 19 A 41.6 164.3 < 1 < 1 6.5 < 1 3.6 54.0 7.9 9.2 < 1 < 1 3.0 < 1 323.9 1.2 B 43.7 175.8 < 1 < 1 8.1 < 1 4.1 88.7 8.8 9.4 1.3 < 1 3.5 < 1 344.1 4.1 ABMW - 4 16 - 17 A 39.1 139.9 < 1 < 1 18.8 2.3 14.9 333.4 14.7 6.8 4.1 3.7 6.9 < 1 163.7 8.9 B 38.8 133.5 < 1 < 1 13.4 1.7 10.5 234.4 11.4 7.1 3.0 2.6 6.6 < 1 160.2 5.6 ABMW - 1 3.5 - 5.0 A 112.2 2896.9 < 1 < 1 41.2 < 1 2.6 9.7 < 1 24.8 < 1 < 1 4.7 < 1 283.3 < 1 B 112.4 2995.6 < 1 < 1 40.9 < 1 2.8 32.1 < 1 25.2 < 1 < 1 4.5 < 1 292.1 2.2 ABMW - 2 28 - 30 A 37.4 260.2 < 1 < 1 3.9 < 1 3.8 29.7 14.5 88.6 < 1 < 1 3.6 < 1 302.2 < 1 B 39.0 265.2 < 1 < 1 5.5 < 1 4.4 57.8 15.1 88.5 1.2 < 1 4.0 < 1 315.3 1.3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 19 | P a g e Appendix – B Figure 1: Tumbler for 1313, 1316 and batch Kd Figure 2: Batch filtration set-up Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 20 | P a g e Figure 3: Column set-up Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 21 | P a g e Figure 4: Syringe filtration for extraction of HFO/HMO/HAO Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 22 | P a g e Kd plots Figure 5: Arsenic batch Kd - MW - 3BR (22 – 25 ft.) Figure 6: Arsenic column Kd - MW - 3BR (22 – 25 ft.) Q-B-5 Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 23 | P a g e Figure 7: Boron column Kd - MW – 3BR (22 – 25 ft.) Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 24 | P a g e Figure 8: Cobalt column Kd - MW -3BR (22 – 25 ft.) Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 25 | P a g e Figure 9: Iron batch Kd - MW -3BR (22 – 25 ft.) Q-B-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 26 | P a g e Figure 10: Manganese batch Kd - MW -3BR (22 – 25 ft.) Q-B-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 27 | P a g e Figure 11: Thallium batch Kd - MW -3BR (22 – 25 ft.) Figure 12: Thallium column Kd - MW -3BR (22 – 25 ft.) Q-B-3 Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 28 | P a g e Figure 13: Vanadium batch Kd - MW -3BR (22 – 25 ft.) Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 29 | P a g e Figure 14: Arsenic batch Kd - MW -5BR (61 – 63 ft.) Figure 15: Arsenic column Kd - MW -5BR (61 – 63 ft.) Q-B-5 Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 30 | P a g e Figure 16: Boron column Kd - MW -5BR (61 – 63 ft.) Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 31 | P a g e Figure 17: Cobalt column Kd - MW -5BR (61 – 63 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 32 | P a g e Figure 18: Thallium batch Kd - MW -5BR (61 – 63 ft.) Figure 19: Thallium column Kd - MW -5BR (61 – 63 ft.) Q-B-3 Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 33 | P a g e Figure 20: Vanadium column Kd - MW -5BR (61 – 63 ft.) Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 34 | P a g e Figure 21: Arsenic batch Kd - MW -8BR (19 – 22 ft.) Figure 22: Arsenic column Kd - MW -8BR (19 – 22 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 35 | P a g e Figure 23: Boron column Kd - MW -8BR (19 – 22 ft.) Q-B-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 36 | P a g e Figure 24: Cobalt batch Kd - MW -8BR (19 – 22 ft.) Figure 25: Cobalt column Kd - MW -8BR (19 – 22 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 37 | P a g e Figure 26: Thallium batch Kd - MW -8BR (19 – 22 ft.) Figure 27: Thallium column Kd - MW -8BR (19 – 22 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 38 | P a g e Figure 28: Vanadium batch Kd - MW -8BR (19 – 22 ft.) Figure 29: Vanadium column Kd - MW -8BR (19 – 22 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 39 | P a g e Figure 30: Arsenic batch Kd - MW -16BR (36.5 – 38 ft.) Figure 31: Arsenic column Kd - MW -16BR (36.5 – 38 ft.) Q-B-2 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 40 | P a g e Figure 32: Boron column Kd - MW -16BR (36.5 – 38 ft.) Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 41 | P a g e Figure 33: Cobalt column Kd - MW -16BR (36.5 – 38 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 42 | P a g e Figure 34: Thallium batch Kd - MW -16BR (36.5 – 38 ft.) Figure 35: Thallium column Kd - MW -16BR (36.5 – 38 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 43 | P a g e Figure 36: Vanadium column Kd - MW -16BR (36.5 – 38 ft.) Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 44 | P a g e Figure 37: Arsenic column Kd - MW -16BR (54 – 55 ft.) Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 45 | P a g e Figure 38: Boron column Kd - MW -16BR (54 – 55 ft.) Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 46 | P a g e Figure 39: Cobalt column Kd - MW -16BR (54 – 55 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 47 | P a g e Figure 40: Thallium column Kd - MW -16BR (54 – 55 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 48 | P a g e Figure 41: Vanadium column Kd - MW -16BR (54 – 55 ft.) Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 49 | P a g e Figure 42: Arsenic batch Kd - MW -12BR (50 - 51.5 ft.) Figure 43: Arsenic column Kd - MW -12BR (50 - 51.5 ft.) Q-B-3 Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 50 | P a g e Figure 44: Boron column Kd - MW -12BR (50 – 51.5 ft.) Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 51 | P a g e Figure 45: Cobalt batch Kd - MW -12BR (50 – 51.5 ft.) Figure 46: Cobalt batch Kd - MW -12BR (50 – 51.5 ft.) Q-B-2 Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 52 | P a g e Figure 47: Thallium batch Kd - MW -12BR (50 – 51.5 ft.) Figure 48: Thallium column Kd - MW -12BR (50 – 51.5 ft.) Q-B-3 Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 53 | P a g e Figure 49: Vanadium batch Kd - MW -12BR (50 – 51.5 ft.) Figure 50: Vanadium column Kd - MW -12BR (50 – 51.5 ft.) Q-B-3 Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 54 | P a g e Figure 51: Arsenic column Kd - MW -12BR (88 – 90 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 55 | P a g e Figure 52: Boron column Kd - MW -12BR (88 – 90 ft.) Q-B-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 56 | P a g e Figure 53: Cobalt column Kd - MW -12BR (88 – 90 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 57 | P a g e Figure 54: Thallium column Kd - MW -12BR (88 – 90 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 58 | P a g e Figure 55: Vanadium column Kd - MW -12BR (88 – 90 ft.) Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 59 | P a g e Figure 56: Arsenic batch Kd - MW -13BR (52 – 54 ft.) Figure 57: Arsenic column Kd - MW -13BR (52 – 54 ft.) Q-B-2 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 60 | P a g e Figure 58: Boron column Kd - MW -13BR (52 – 54 ft.) Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 61 | P a g e Figure 59: Cobalt batch Kd - MW -13BR (52 – 54 ft.) Figure 60: Cobalt column Kd - MW -13BR (52 – 54 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 62 | P a g e Figure 61: Thallium batch Kd - MW -13BR (52 – 54 ft.) Figure 62: Thallium column Kd - MW -13BR (52 – 54 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 63 | P a g e Figure 63: Vanadium batch Kd - MW -13BR (52 – 54 ft.) Figure 64: Vanadium column Kd - MW -13BR (52 – 54 ft.) Q-B-2 Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 64 | P a g e Figure 65: Arsenic batch Kd - ABMW -2 (57 – 59 ft.) Figure 66: Arsenic column Kd - ABMW -2 (57 – 59 ft.) Q-B-3 Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 65 | P a g e Figure 67: Boron column Kd ABMW -2 (57 – 59 ft.) Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 66 | P a g e Figure 68: Cobalt batch Kd - ABMW -2 (57 – 59 ft.) Figure 69: Cobalt column Kd - ABMW -2 (57 – 59 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 67 | P a g e Figure 70: Thallium batch Kd - ABMW -2 (57 – 59 ft.) Figure 71: Thallium column Kd - ABMW -2 (57 – 59 ft.) Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 68 | P a g e Figure 72: Vanadium batch Kd - ABMW -2 (57 – 59 ft.) Figure 73: Vanadium column Kd - ABMW -2 (57 – 59 ft.) Q-B-3 Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 69 | P a g e Figure 74: Arsenic batch Kd - ABMW -2BR (97 – 100 ft.) Figure 75: Arsenic column Kd - ABMW -2BR (97 – 100 ft.)Trial A Figure 76: Arsenic column Kd - ABMW -2BR (97 – 100 ft.)Trial B Figure 77: Arsenic column Kd - ABMW -2BR (97 – 100 ft.)Trial C Q-B-1 Trial A Q-C-2 Trial B Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 70 | P a g e Figure 78: Boron column Kd - ABMW -2BR (97 – 100 ft.) Trial A Figure 79: Boron column Kd - ABMW -2BR (97 – 100 ft.) Trial B Figure 80: Boron column Kd - ABMW -2BR (97 – 100 ft.) Trial C Trial A Q-C-3 Trial B Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 71 | P a g e Figure 81: Cobalt batch Kd - ABMW -2BR (97 – 100 ft.) Trial A Figure 82: Cobalt column Kd - ABMW -2BR (97 – 100 ft.) Trial A Figure 83: Cobalt column Kd - ABMW -2BR (97 – 100 ft.) Trial B Figure 84: Cobalt column Kd - ABMW -2BR (97 – 100 ft.) Trial CQ-B-3 Trial A Q-C-5 Trial B Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 72 | P a g e Figure 85: Thallium batch Kd - ABMW -2BR (97 – 100 ft.) Figure 86: Thallium column Kd - ABMW -2BR (97 – 100 ft.)Trial A Figure 87: Thallium column Kd - ABMW -2BR (97 – 100 ft.)Trial B Figure 88: Thallium column Kd - ABMW -2BR (97 – 100 ft.)Trial CQ-B-3 Trial A Q-C-4 Trial B Q-C-4 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 73 | P a g e Figure 89: Vanadium batch Kd -ABMW -2BR (97 – 100 ft.) Figure 90: Vanadium column Kd -ABMW -2BR (97 – 100 ft.) Trial A Figure 91: Vanadium column Kd -ABMW -2BR (97 – 100 ft.) Trial B Figure 92: Vanadium column Kd -ABMW -2BR (97 – 100 ft.) Trial CQ-B-2 Trial A Q-C-1 Trial B Q-C-1 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 74 | P a g e Figure 93: Arsenic batch Kd – SB -7 Figure 94: Arsenic column Kd – SB -7 Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 75 | P a g e Figure 95: Boron column Kd - SB -7 Q-C-3 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 76 | P a g e Figure 96: Cobalt batch Kd - SB -7 Figure 97: Cobalt column Kd - SB -7 Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 77 | P a g e Figure 98: Thallium batch Kd - SB -7 Figure 99: Thallium column Kd - SB -7 Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 78 | P a g e Figure 100: Vanadium batch Kd - SB -7 Figure 101: Vanadium column Kd - SB -7 Q-B-3 Q-C-5 Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 79 | P a g e Figure 102: pH vs L/S for ABMW – 2 BR (57-58 ft.) Figure 103: ORP vs L/S for ABMW – 2 BR (57-58 ft.) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 80 | P a g e Figure 104: Conductivity vs L/S for ABMW – 2 BR (57-58 ft.) Figure 105: pH vs L/S for ABMW – 2 BR (97-100) ft. Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 81 | P a g e Figure 106: ORP vs L/S for ABMW – 2 BR (97-100 ft.) Figure 107: Conductivity vs L/S for ABMW – 2 BR (97-100 ft.) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 82 | P a g e Figure 108: pH vs L/S for MW – 3 BR Figure 109: ORP vs L/S for MW – 3 BR Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 83 | P a g e Figure 110: Conductivity vs L/S for MW – 3 BR Figure 111: pH vs L/S for MW – 5 BR Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 84 | P a g e Figure 112: ORP vs L/S for MW – 5 BR Figure 113: Conductivity vs L/S for MW – 5 BR Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 85 | P a g e Figure 114: pH vs L/S for MW – 8 BR Figure 115: ORP vs L/S for MW – 8 BR Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 86 | P a g e Figure 116: Conductivity vs L/S for MW – 8 BR Figure 117: pH vs L/S for MW – 12 BR Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 87 | P a g e Figure 118: ORP vs L/S for MW – 12 BR Figure 119: Conductivity vs L/S for MW – 12 BR Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 88 | P a g e Figure 120: pH vs L/S for MW – 13 BR Figure 121: ORP vs L/S for MW – 13 BR Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 89 | P a g e Figure 122: Conductivity vs L/S for MW – 13 BR Figure 123: pH vs L/S for MW – 16 BR (36.5-38 ft.) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 90 | P a g e Figure 124: ORP vs L/S for MW – 16 BR (36.5-38 ft.) Figure 125: Conductivity vs L/S for MW – 16 BR (36.5-38 ft.) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 91 | P a g e Figure 126: pH vs L/S for MW – 16 BR (54-55 ft.) Figure 127: ORP vs L/S for MW – 16 BR (54-55 ft.) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 92 | P a g e Figure 128: Conductivity vs L/S for MW – 16 BR (54-55 ft.) Figure 129: pH vs L/S for SB – 7 (4.5-7.5 ft.) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 93 | P a g e Figure 130: ORP vs L/S for SB – 7 (4.5-7.5 ft.) Figure 131: Conductivity vs L/S for SB – 7 (4.5-7.5 ft.) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 94 | P a g e 1316 plots Figure 132: Boron 1316 ABMW – 1 (3.5 – 5.0FT) Figure 133: Chromium 1316 ABMW – 1 (3.5 – 5.0FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 95 | P a g e Figure 134: Boron 1316 ABMW – 1 (3.5 – 5.0FT) Figure 135: Chromium 1316 ABMW – 1 (3.5 – 5.0FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 96 | P a g e Figure 136: Manganese 1316 ABMW – 1 (3.5 – 5.0FT) Figure 137: Manganese 1316 ABMW – 1 (3.5 – 5.0FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 97 | P a g e Figure 138: Molybdenum 1316 ABMW – 1 (3.5 – 5.0FT) Figure 139: Vanadium 1316 ABMW – 1 (3.5 – 5.0FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 98 | P a g e Figure 140: Boron 1316 ABMW – 2 (28 – 30FT) Figure 141: Chromium 1316 ABMW – 2 (28 – 30FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 99 | P a g e Figure 142: Iron 1316 ABMW – 2 (28 – 30FT) Figure 143: Manganese 1316 ABMW – 2 (28 – 30FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 100 | P a g e Figure 144: Molybdenum 1316 ABMW – 2 (28 – 30FT) Figure 145: Selenium 1316 ABMW – 2 (28 – 30FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 101 | P a g e Figure 146: Arsenic 1316 ABMW – 4 (17 – 19FT) Figure 147: Boron 1316 ABMW – 4 (17 – 19FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 102 | P a g e Figure 148: Manganese 1316 ABMW – 4 (17 – 19FT) Figure 149: Molybdenum 1316 ABMW – 4 (17 – 19FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 103 | P a g e Figure 150: Selenium 1316 ABMW – 4 (17 – 19FT) Figure 151: pH at varying L/S ratio for 1316 testing of ABMW – 1 (3.5 – 5.0FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 104 | P a g e Figure 152: ORP at varying L/S ratio for 1316 testing of ABMW – 1 (3.5 – 5.0FT) Figure 153: Conductivity at varying L/S ratio for 1316 testing of ABMW – 1 (3.5 – 5.0FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 105 | P a g e Figure 154: pH at varying L/S ratio for 1316 testing of ABMW – 2 (28 – 30FT) Figure 155: ORP at varying L/S ratio for 1316 testing of ABMW – 2 (28 – 30FT) Soil Sorption Evaluation Mayo Steam Electric Plant Charlotte 106 | P a g e Figure 156: Conductivity at varying L/S ratio for 1316 testing of ABMW – 2 (28 – 30FT) 2017 Comprehensive Site Assessment Update October 2017  Mayo Steam Electric Plant SynTerra    UNCC Soil Sorption Report Addendum   Addendum to Soil Sorption Evaluation Mayo Steam Electric Plant Person County, NC Prepared for: Synterra 148 River Road Suite 220 Greenville SC 29601 Investigators: William G. Langley, Ph.D., P.E. Dongwook Kim, Ph.D. UNC Charlotte / Lee College of Engineering Department of Civil and Environmental Engineering EPIC Building 3252 9201 University City Blvd. Charlotte, NC 28223 February 2, 2016 TABLE OF CONTENTS 1 Background ......................................................................................................................... 1 2 Results ................................................................................................................................ 1 3 Comments and Recommendations ..................................................................................... 1 4 References ......................................................................................................................... 3 TABLES Table 1. Arsenic Table 2. Boron Table 3. Chromium Table 4. Cobalt Table 5. Thallium Table 6. Vanadium FIGURES (See Tables 1-6 for figure numbers) 1 1 Background This addendum provides three sorption isotherm equations for batch data analyzed and initially reported in the Soil Sorption Evaluation for Mayo Steam Electric Plant (Langley and Oza 2015). The isotherm model equations are: Linear: S = KdC Linear with S0 > 0: S = KdC + S0 Freundlich: S = KfC1/n where S is the constituent concentration on soil (ug/g), Kd is the linear sorption coefficient (ml/g), C is the constituent concentration in water (ug/l), S0 is the soil concentration at C = 0, n is the unitless Freundlich exponent, and Kf is the Freundlich constant (l1/nug(1-1/n)/g). The parameters Kd, S0, Kf, and n are estimated using linear regressions on the sorption data. The parameter S0 represents that portion of constituent concentration on the soil that is sorbed irreversibly. 2 Results Results are provided in Tables 1 through 6 by constituent and sample. The results include parameter estimates and indicators of the goodness-of-fit of the resulting model equations to the sorption data. 3 Comments and Recommendations In addition to the general comments and qualifiers offered in the original report, the following comments and recommendations are provided. For the fate and transport model, the range of sorption estimates (maximum and minimum) should be used as the upper and lower limits for selecting a calibrated value that is consistent with measured constituents. For a specific constituent and sample, the isotherm model with the minimum chi-square value best represents the lab data in its arithmetic form. Linear isotherms with S0 < 0 are considered not applicable because they imply negative soil concentrations (S) as constituent concentration (C) approaches zero. For linear isotherms with S0 > 0, the y-intercept S0 is assumed to represent irreversible sorption as opposed to previous exposure to the constituent in the field which is manifested as a negative-sloping or irregular isotherm as would have been noted in the original report. 2 Freundlich isotherms with n < 1 are considered not applicable because they are not concave downward (Freundlich 1924). For constituents not considered for Mayo, sorption values may be transferable from other sites with similar geochemical settings, or may be estimated using site-specific data from the Comprehensive Site Assessment in a geochemical model. 3 4 References Freundlich H. 1924. The Elements of Colloidal Chemistry, translated by George Barger. Dutton and Company Publishers: New York, NY, pp. 58-61. Langley, W.G. and Oz, Shubhashini. Soil Sorption Evaluation for Mayo Steam Electric Plant, UNC-Charlotte, October 2015. Ho, Yuh-Shan, Wen-Ta Chiu, and Chung-Chi Wang. "Regression analysis for the sorption isotherms of basic dyes on sugarcane dust." Bioresource technology 96.11 (2005): 1285-1291. Matott, L. Shawn, IsoFit Documentation and User’s Guide Version 1.2, State University of New York at Buffalo Department of Civil, Structural and Environmental Engineering Version 1.2, updated 01/18/07. Table 1 Arsenic Kd R2 χ2 Kd R2 χ2 Kd So R2 χ2 Kd So R2 χ2 Kf 1/n R2 χ2 Kf 1/n R2 χ2 l/g -µg/g l/g -µg/g l/g µg/g -µg/g l/g µg/g -µg/g (c) - -µg/g (c) - -µg/g ABMW – 2 5 5 0.166 0.984 0.527 0.172 0.998 0.142 0.200 0.944 0.966 0.180 1,2 ABMW – 2 BR 5 5 0.006 0.985 0.095 0.007 0.987 0.101 0.006 0.992 0.944 0.098 3,4 MW – 3 BR 5 5 0.010 0.740 3.348 0.009 0.723 3.534 5,6 MW – 5 BR 5 5 0.004 0.865 0.788 0.003 0.955 0.234 0.004 0.973 0.620 0.254 7,8 MW – 8 BR 5 5 0.517 0.954 1.126 0.533 0.933 1.918 9,10 MW – 12 BR (50) 5 5 0.607 0.974 1.723 0.576 0.970 2.267 0.535 0.857 0.983 0.357 0.503 0.937 0.982 0.370 1.072 0.804 0.991 0.128 1.110 0.778 0.990 0.115 11,12 MW – 12 BR (88.5) 3 3 1.795 0.998 0.068 1.638 0.994 0.232 1.693 0.429 0.999 0.017 1.483 0.730 0.996 0.045 2.028 0.927 0.999 0.008 2.056 0.871 0.996 0.019 13,14 MW – 13 BR 5 5 0.092 0.911 1.997 0.034 0.963 0.676 0.028 0.333 0.979 0.062 0.117 0.703 0.996 0.011 15,16 MW – 16 BR (36.5) 5 5 0.070 0.909 1.703 0.092 0.981 0.736 17,18 MW – 16 BR (54) 5 5 0.008 0.978 0.222 0.009 0.922 0.761 19,20 SB – 7 2 2 4.269 0.999 0.022 5.681 0.964 0.652 21,22 Linear S0=0 Kd Kd So Kf 1/n Maximum 5.681 1.693 0.937 2.056 0.992 Minimum 0.003 0.028 0.333 0.004 0.703 Median 0.092 0.535 0.730 0.636 0.899 Notes a.Coefficient of determination (R2) indicates goodness of fit of individual isotherm to its linear regression (Ho et al. 2005). b.Minimum chi-square (χ2) indicates best fit of three isotherms in arithmetic form (Ho et al. 2005, Ng et al. 2002). c.units: l(1/n)µg(1-1/n)/g d.Not applicable for S0<0 or Kd<0 from linear regression. e. Not applicable for (1/n)>1 or Kf<0 from Freundlich regression (Matott 2007). f.For all C<MDL (method detection limit), estimate a minimum Kd using C = MDL at lowest soil-to-solution ratio. g. Isotherm data not available. Fig. Nos.Trial A Trial B Linear isotherm, So > 0 Trial A Freundlich isotherm Trial BWell ID Linear Isotherm, So = 0 Trial A Trial B No. data points Trial A Trial B FreundlichLinear S0>0 (d) (d) (d) (d) (d) (d) (e) (d) (d) (d) (d) (d) (d) (e) (e) (d) (d)(e) (e) (e) (e) (e) (e)(e) (e) (e) (d) (d) (d) (e) (e) Table 2 Boron Kd R2 χ2 Kd R2 χ2 Kd So R2 χ2 Kd So R2 χ2 Kf 1/n R2 χ2 Kf 1/n R2 χ2 l/g -µg/g l/g -µg/g l/g µg/g -µg/g l/g µg/g -µg/g (c) - -µg/g (c) - -µg/g ABMW – 2 4 4 0.001 0.990 0.015 0.001 0.933 0.121 23,24 ABMW – 2 BR 3 2 0.000 0.528 0.152 0.001 0.835 0.105 25,26 MW – 3 BR 4 4 0.001 0.785 0.293 0.001 0.941 0.068 0.031 0.336 0.001 0.354 27,28 MW – 5 BR 2 2 0.001 0.789 0.138 0.000 0.914 0.031 29,30 MW – 8 BR 5 5 0.002 0.785 0.949 0.002 0.910 0.300 31,32 MW – 12 BR (50) 5 4 0.001 0.942 0.108 0.001 0.789 0.366 33,34 MW – 12 BR (88.5) 5 5 0.001 0.902 0.261 0.002 0.648 1.667 35,36 MW – 13 BR 3 5 0.000 0.974 0.012 0.001 0.818 0.326 0.002 0.675 0.013 0.012 37,38 MW – 16 BR (36.5) 3 4 0.001 0.974 0.029 0.000 0.825 0.121 39,40 MW – 16 BR (54) 2 0 0.000 0.907 0.012 41,- SB – 7 0 0 -,- Linear S0=0 Kd Kd So Kf 1/n Maximum 0.002 - - 0.031 0.675 Minimum 0.000 - - 0.002 0.336 Median 0.001 - - 0.017 0.506 Notes a.Coefficient of determination (R2) indicates goodness of fit of individual isotherm to its linear regression (Ho et al. 2005). b.Minimum chi-square (χ2) indicates best fit of three isotherms in arithmetic form (Ho et al. 2005). c.units: l(1/n)µg(1-1/n)/g d.Not applicable for S0<0 or Kd<0 from linear regression. e. Not applicable for (1/n)>1 or Kf<0 from Freundlich regression (Matott 2007). f.For all C<MDL (method detection limit), estimate a minimum Kd using C = MDL at lowest soil-to-solution ratio. g. Isotherm data not available. Fig. Nos.Trial B Linear S0>0 Freundlich Well ID Linear Isotherm, So = 0 Linear isotherm, So > 0 Freundlich isotherm Trial A Trial B Trial A Trial B Trial A (d) (e) (e) No. data points Trial A Trial B (e) (e)(d) (d)(d)(e) (e) (e)(d)(d) (g) (d) (d) (g)(g) (d) (g)(g)(g) (e)(e) (g)(g) (e)(e) (e) (e) (d) (d)(e) (d) (d) (d) (e)(d) (e)(d) (g) (d) (d)(e) (d) Table 3 Chromium Kd R2 χ2 Kd R2 χ2 Kd So R2 χ2 Kd So R2 χ2 Kf 1/n R2 χ2 Kf 1/n R2 χ2 l/g -µg/g l/g -µg/g l/g µg/g -µg/g l/g µg/g -µg/g (c) - -µg/g (c) - -µg/g ABMW – 2 4 4 0.032 0.833 0.102 0.047 0.822 0.178 0.048 0.785 0.176 0.257 42,43 ABMW – 2 BR 0 0 -,- MW – 3 BR 0 0 -,- MW – 5 BR 0 0 -,- MW – 8 BR 0 0 -,- MW – 12 BR (50) 1 1 0.003 0.003 (f)44,45 MW – 12 BR (88.5) 0 0 -,- MW – 13 BR 4 4 0.011 0.811 0.059 0.013 0.916 0.023 0.011 0.013 0.550 0.020 0.021 0.725 0.616 0.022 46,47 MW – 16 BR (36.5) 0 0 -,- MW – 16 BR (54) 1 0 0.418 48,- SB – 7 3 3 0.006 0.927 0.020 0.006 0.812 0.059 49,50 Linear S0=0 Kd Kd So Kf 1/n Maximum 0.418 0.011 0.013 0.048 0.785 Minimum 0.0027 0.011 0.013 0.021 0.725 Median 0.011 0.011 0.013 0.034 0.755 Notes a.Coefficient of determination (R2) indicates goodness of fit of individual isotherm to its linear regression (Ho et al. 2005). b.Minimum chi-square (χ2) indicates best fit of three isotherms in arithmetic form (Ho et al. 2005). c.units: l(1/n)µg(1-1/n)/g d.Not applicable for S0<0 or Kd<0 from linear regression. e. Not applicable for (1/n)>1 or Kf<0 from Freundlich regression (Matott 2007). f.For all C<MDL (method detection limit), estimate a minimum Kd using C = MDL at lowest soil-to-solution ratio. g. Isotherm data not available. Linear S0>0 Freundlich (d)(d)(e)(e) (d)(e) (g) (f)(g) (g)(g) (f)(f)(f)(f) (g) (g)(g)(g)(g) (g)(g)(g)(g) (g) (g)(g)(g)(g) (d)(d)(e) (g)(g)(g) Well ID No. data points Linear Isotherm, So = 0 Linear isotherm, So > 0 Freundlich isotherm Trial A Trial B Trial A Trial B Fig. Nos.Trial A Trial B Trial A Trial B (g) (g) (g) (g) (g) (g) (g) (f) (g) (g) (f)(g) (g) (g)(g) (g) (f) (g) (g) (g) (g) Table 4 Cobalt Kd R2 χ2 Kd R2 χ2 Kd So R2 χ2 Kd So R2 χ2 Kf 1/n R2 χ2 Kf 1/n R2 χ2 l/g -µg/g l/g -µg/g l/g µg/g -µg/g l/g µg/g -µg/g (c) - -µg/g (c) - -µg/g ABMW – 2 3 3 0.770 0.868 1.753 1.691 0.980 0.605 0.685 0.478 0.549 1.425 1.552 0.408 0.940 0.445 1.289 0.648 0.703 1.710 1.848 0.918 0.809 0.487 51,52 ABMW – 2 BR 2 0 1.732 0.990 0.201 1.420 0.896 1.000 0.000 2.315 0.740 1.000 0.000 53,- MW – 3 BR 0 0 -,- MW – 5 BR 1 0 6.552 54,- MW – 8 BR 4 0 0.909 0.884 1.731 55,- MW – 12 BR (50) 5 5 0.066 0.999 0.020 0.069 0.996 0.054 56,57 MW – 12 BR (88.5) 3 3 2.226 0.972 0.497 2.256 0.953 0.716 58,59 MW – 13 BR 4 4 0.839 0.877 1.114 1.528 0.700 7.245 1.481 0.154 0.218 7.269 1.352 0.940 0.439 9.470 60,61 MW – 16 BR (36.5) 0 0 -,- MW – 16 BR (54) 1 0 6.552 62,- SB – 7 4 3 0.908 0.897 1.828 1.277 0.999 0.021 1.256 0.072 0.997 0.023 0.955 0.838 0.551 2.281 63,64 Linear S0=0 Kd Kd So Kf 1/n Maximum 6.552 1.552 0.896 2.315 0.940 Minimum 0.0658 0.6853 0.072 0.955 0.648 Median 1.402 1.420 0.408 1.352 0.838 Notes a.Coefficient of determination (R2) indicates goodness of fit of individual isotherm to its linear regression (Ho et al. 2005). b.Minimum chi-square (χ2) indicates best fit of three isotherms in arithmetic form (Ho et al. 2005). c.units: l(1/n)µg(1-1/n)/g d.Not applicable for S0<0 or Kd<0 from linear regression. e. Not applicable for (1/n)>1 or Kf<0 from Freundlich regression (Matott 2007). f.For all C<MDL (method detection limit), estimate a minimum Kd using C = MDL at lowest soil-to-solution ratio. g. Isotherm data not available. Fig. Nos.Well ID Linear Isotherm, So = 0 Linear isotherm, So > 0 Freundlich isotherm Trial A Trial B Trial A Trial B Trial A Trial B Linear S0>0 Freundlich (f) (g) (g) (g)(f) (e) (g) (e) (g) (g) (d) (f) (d) (d) (d) (g) (d) (g) (d) (d) (g) (g) (g) (g) (e) (g) (g) (e) (f) (e) (e) (f) (e) (e) (g) (g) No. data points Trial A Trial B (g) (f) (g) (g) (g) (g)(g) (d) Table 5 Thallium Kd R2 χ2 Kd R2 χ2 Kd So R2 χ2 Kd So R2 χ2 Kf 1/n R2 χ2 Kf 1/n R2 χ2 l/g -µg/g l/g -µg/g l/g µg/g -µg/g l/g µg/g -µg/g (c) - -µg/g (c) - -µg/g ABMW – 2 5 3 1.634 0.999 0.107 1.673 0.990 0.674 1.615 0.335 0.968 0.423 2.397 0.763 0.940 0.549 65,66 ABMW – 2 BR 5 5 0.509 0.987 0.897 0.570 0.982 1.155 67,68 MW – 3 BR 4 4 0.884 0.912 3.141 1.073 0.891 2.231 0.750 0.973 0.430 4.215 1.164 0.829 0.626 3.251 69,70 MW – 5 BR 5 5 0.901 0.786 5.680 1.442 0.936 2.811 71,72 MW – 8 BR 5 4 2.242 0.860 3.674 2.272 0.972 0.996 73,74 MW – 12 BR (50) 2 2 2.860 0.992 0.274 0.803 0.911 10.698 2.374 1.360 1.000 0.000 0.505 3.229 1.000 0.000 3.734 0.756 1.000 0.000 3.734 0.364 1.000 0.000 75,76 MW – 12 BR (88.5) 4 4 1.726 0.997 0.151 1.793 0.997 0.191 77,78 MW – 13 BR 2 3 4.656 0.858 4.651 0.145 0.974 0.029 79,80 MW – 16 BR (36.5) 5 5 0.455 0.952 1.351 0.698 0.943 1.699 0.791 0.833 0.784 2.577 81,82 MW – 16 BR (54) 5 5 0.330 0.986 2.043 0.347 0.989 2.127 0.310 0.501 0.975 0.660 0.325 0.522 0.983 0.425 0.780 0.700 0.907 1.230 0.852 0.690 0.948 0.940 83,84 SB – 7 5 5 1.210 0.988 0.433 1.419 0.982 0.704 85,86 Linear S0=0 Kd Kd So Kf 1/n Maximum 4.656 2.374 3.229 3.734 0.973 Minimum 0.145 0.310 0.335 0.750 0.364 Median 1.141 0.505 0.522 1.008 0.759 Notes a.Coefficient of determination (R2) indicates goodness of fit of individual isotherm to its linear regression (Ho et al. 2005). b.Minimum chi-square (χ2) indicates best fit of three isotherms in arithmetic form (Ho et al. 2005). c.units: l(1/n)µg(1-1/n)/g d.Not applicable for S0<0 or Kd<0 from linear regression. e. Not applicable for (1/n)>1 or Kf<0 from Freundlich regression (Matott 2007). f.For all C<MDL (method detection limit), estimate a minimum Kd using C = MDL at lowest soil-to-solution ratio. g. Isotherm data not available. Well ID Linear Isotherm, So = 0 Linear isotherm, So > 0 Freundlich isotherm Trial A Trial B Trial A Trial B Trial A No. data points Trial A Trial B (e) (d) (d)(d) (d) Linear S0>0 Freundlich (d) (d) (e) (e) (e) (e) Fig. Nos.Trial B (e) (e)(e) (e)(e) (d) (d) (d) (d)(e) (d)(e) (e) (d) (d) (e) (d) (d) (d) (d) Table 6 Vanadium Kd R2 χ2 Kd R2 χ2 Kd So R2 χ2 Kd So R2 χ2 Kf 1/n R2 χ2 Kf 1/n R2 χ2 l/g -µg/g l/g -µg/g l/g µg/g -µg/g l/g µg/g -µg/g (c) - -µg/g (c) - -µg/g ABMW – 2 5 5 0.051 0.885 1.035 0.057 0.905 0.963 87,88 ABMW – 2 BR 5 0 0.038 0.984 0.115 0.038 0.004 0.954 0.116 89,- MW – 3 BR 5 5 0.004 0.591 1.741 0.005 0.685 1.223 90,91 MW – 5 BR 0 0 -,- MW – 8 BR 4 0 0.388 0.983 0.195 92,- MW – 12 BR (50) 3 3 0.618 0.971 0.588 0.558 0.952 1.205 0.509 0.565 0.971 0.129 0.440 0.699 0.957 0.188 0.959 0.768 0.939 0.105 0.811 0.821 0.827 0.381 93,94 MW – 12 BR (88.5) 5 5 0.600 0.942 0.744 0.517 0.899 1.133 95,96 MW – 13 BR 5 5 0.052 0.990 0.116 0.057 0.995 0.076 97,98 MW – 16 BR (36.5) 0 4 0.040 0.925 0.500 0.042 0.944 0.695 0.644 -,99 MW – 16 BR (54) 5 5 0.002 0.864 0.186 0.002 0.776 0.377 100,101 SB – 7 2 1 2.179 0.978 0.172 4.050 102,103 Linear S0=0 Kd Kd So Kf 1/n Maximum 4.050 0.509 0.699 0.959 0.944 Minimum 0.002 0.038 0.004 0.042 0.768 Median 0.057 0.440 0.565 0.811 0.821 Notes a.Coefficient of determination (R2) indicates goodness of fit of individual isotherm to its linear regression (Ho et al. 2005). b.Minimum chi-square (χ2) indicates best fit of three isotherms in arithmetic form (Ho et al. 2005). c.units: l(1/n)µg(1-1/n)/g d.Not applicable for S0<0 or Kd<0 from linear regression. e. Not applicable for (1/n)>1 or Kf<0 from Freundlich regression (Matott 2007). f.For all C<MDL (method detection limit), estimate a minimum Kd using C = MDL at lowest soil-to-solution ratio. g. Isotherm data not available. (e)(e)(d)(d) (g) Fig. Nos.Trial B Linear isotherm, So > 0 Freundlich isotherm Trial A Trial B Trial AWell ID Linear Isotherm, So = 0 Trial A Trial B No. data points Trial A Trial B Linear S0>0 Freundlich (d) (g) (d) (d) (d) (g) (g) (g) (f) (d)(f) (d) (d) (d) (d) (d) (f) (e) (e) (g) (e) (e) (e) (e) (g) (e) (g) (e) (e) (g) (e) (g) (g) (e) (d) (g) (g) (g) (g) 0 2 4 6 8 10 12 0 10 20 30 40 50 60S (ug/g)C (ug/l) Figure 1. Arsenic Isotherms for ABMW –2 Trial - A linear So=0 0 2 4 6 8 10 12 0 10 20 30 40 50 60S (ug/g)C (ug/l) Figure 2. Arsenic Isotherms for ABMW –2 Trial - B linear So=0 Freundlich 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 50 100 150 200 250 300 350 400S (ug/g)C (ug/l) Figure 3. Arsenic Isotherms for ABMW –2 BR Trial - A linear So=0 Freundlich 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 50 100 150 200 250 300 350 400S (ug/g)C (ug/l) Figure 4. Arsenic Isotherms for ABMW –2 BR Trial - B linear So=0 0 1 2 3 4 5 6 0 40 80 120 160 200 240 280S (ug/g)C (ug/l) Figure 5. Arsenic Isotherms for MW –3 BR Trial - A linear So=0 0 1 2 3 4 5 6 0 40 80 120 160 200 240 280S (ug/g)C (ug/l) Figure 6. Arsenic Isotherms for MW –3 BR Trial - B linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 50 100 150 200 250 300 350 400 450S (ug/g)C (ug/l) Figure 7. Arsenic Isotherms for MW –5 BR Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 50 100 150 200 250 300 350 400 450S (ug/g)C (ug/l) Figure 8. Arsenic Isotherms for MW –5 BR Trial - B linear So=0 Freundlich 0 2 4 6 8 10 12 0 3 6 9 12 15 18S (ug/g)C (ug/l) Figure 9. Arsenic Isotherms for MW –8 BR Trial - A linear So=0 0 2 4 6 8 10 12 0 3 6 9 12 15 18S (ug/g)C (ug/l) Figure 10. Arsenic Isotherms for MW –8 BR Trial - B linear So=0 0 2 4 6 8 10 12 0 3 6 9 12 15 18S (ug/g)C (ug/l) Figure 11. Arsenic Isotherms for MW –12 BR (50) Trial - A linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 0 3 6 9 12 15 18S (ug/g)C (ug/l) Figure 12. Arsenic Isotherms for MW –12 BR (50) Trial - B linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 14 16 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 13. Arsenic Isotherms for MW –12 BR (88.5) Trial - A linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 14 16 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 14. Arsenic Isotherms for MW –12 BR (88.5) Trial - B linear So=0 linear So>0 Freundlich 0 1 2 3 4 5 6 7 8 9 0 10 20 30 40 50 60 70 80S (ug/g)C (ug/l) Figure 15. Arsenic Isotherms for MW –13 BR Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 10 20 30 40 50 60 70 80S (ug/g)C (ug/l) Figure 16. Arsenic Isotherms for MW –13 BR Trial - B linear So=0 linear So>0 Freundlich 0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100S (ug/g)C (ug/l) Figure 17. Arsenic Isotherms for MW –16 BR (36.5) Trial - A linear So=0 0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100S (ug/g)C (ug/l) Figure 18. Arsenic Isotherms for MW –16 BR (36.5) Trial - B linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 60 120 180 240 300 360S (ug/g)C (ug/l) Figure 19. Arsenic Isotherms for MW –16 BR (54) Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 60 120 180 240 300 360S (ug/g)C (ug/l) Figure 20. Arsenic Isotherms for MW –16 BR (54) Trial - B linear So=0 0 2 4 6 8 10 12 14 16 18 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 21. Arsenic Isotherms for SB –7 Trial - A linear So=0 0 2 4 6 8 10 12 14 16 18 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 22. Arsenic Isotherms for SB –7 Trial - B linear So=0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 90 180 270 360 450 540S (ug/g)C (ug/l) Figure 23. Boron Isotherms for ABMW –2 Trial - A linear S0=0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 90 180 270 360 450 540S (ug/g)C (ug/l) Figure 24. Boron Isotherms for ABMW –2 Trial - B linear S0=0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 50 100 150 200 250 300 350 400 450 500 550S (ug/g)C (ug/l) Figure 25. Boron Isotherms for ABMW –2 BR Trial - A linear S0=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 50 100 150 200 250 300 350 400 450 500 550S (ug/g)C (ug/l) Figure 26. Boron Isotherms for ABMW –2 BR Trial - B linear S0=0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 60 120 180 240 300 360 420 480S (ug/g)C (ug/l) Figure 27. Boron Isotherms for MW –3 BR Trial - A linear S0=0 Freundlich 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 60 120 180 240 300 360 420 480S (ug/g)C (ug/l) Figure 28. Boron Isotherms for MW –3 BR Trial - B linear S0=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 29. Boron Isotherms for MW –5 BR Trial - A linear S0=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 30. Boron Isotherms for MW –5 BR Trial - B linear S0=0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 31. Boron Isotherms for MW –8 BR Trial - A linear S0=0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 32. Boron Isotherms for MW –8 BR Trial - B linear S0=0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 33. Boron Isotherms for MW –12 BR (50) Trial - A linear S0=0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 34. Boron Isotherms for MW –12 BR (50) Trial - B linear S0=0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 35. Boron Isotherms for MW –12 BR (88.5) Trial - A linear S0=0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 36. Boron Isotherms for MW –12 BR (88.5) Trial - B linear S0=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 37. Boron Isotherms for MW –13 BR Trial - A linear S0=0 Freundlich 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 38. Boron Isotherms for MW –13 BR Trial - B linear S0=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 39. Boron Isotherms for MW –16 BR (36.5) Trial - A linear S0=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 40. Boron Isotherms for MW –16 BR (36.5) Trial - B linear S0=0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0 100 200 300 400 500S (ug/g)C (ug/l) Figure 41. Boron Isotherms for MW –16 BR (54) Trial - A linear S0=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 42. Chromium Isotherms for ABMW –2 Trial - A linear So=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 43. Chromium Isotherms for ABMW –2 Trial - B linear So=0 0.000 0.002 0.004 0.006 0.008 0.010 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 44. Chromium Isotherms for MW –12 BR (50) Trial - A linear So=0 0.000 0.002 0.004 0.006 0.008 0.010 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 45. Chromium Isotherms for MW –12 BR (50) Trial - B linear So=0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 2 4 6 8 10S (ug/g)C (ug/l) Figure 46. Chromium Isotherms for MW –13 BR Trial - A linear So=0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 2 4 6 8 10S (ug/g)C (ug/l) Figure 47. Chromium Isotherms for MW –13 BR Trial - B linear So=0 linear So>0 Freundlich 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.2 0.4 0.6 0.8 1.0 1.2S (ug/g)C (ug/l) Figure 48. Chromium Isotherms for MW –16 BR (54) Trial - A linear So=0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 5 10 15 20S (ug/g)C (ug/l) Figure 49. Chromium Isotherms for SB –7 Trial - A linear So=0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0 5 10 15 20S (ug/g)C (ug/l) Figure 50. Chromium Isotherms for SB –7 Trial - B linear So=0 0 1 2 3 4 5 6 7 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0S (ug/g)C (ug/l) Figure 51. Cobalt Isotherms for ABMW –2 Trial - A linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 14 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0S (ug/g)C (ug/l) Figure 52. Cobalt Isotherms for ABMW –2 Trial - B linear So=0 linear So>0 Freundlich 0 1 2 3 4 5 6 7 8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0S (ug/g)C (ug/l) Figure 53. Cobalt Isotherms for ABMW –2 BR Trial - A linear So=0 linear So>0 Freundlich 0 1 2 3 4 5 6 7 0.0 0.2 0.4 0.6 0.8 1.0S (ug/g)C (ug/l) Figure 54. Cobalt Isotherms for MW –5 BR Trial - A linear So=0 0 1 2 3 4 5 6 0 1 2 3 4 5 6S (ug/g)C (ug/l) Figure 55. Cobalt Isotherms for MW –8 BR Trial - A linear So=0 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70S (ug/g)C (ug/l) Figure 56. Cobalt Isotherms for MW –12 BR (50) Trial - A linear So=0 0 1 2 3 4 5 6 0 10 20 30 40 50 60 70S (ug/g)C (ug/l) Figure 57. Cobalt Isotherms for MW –12 BR (50) Trial - B linear So=0 0 1 2 3 4 5 6 7 8 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 58. Cobalt Isotherms for MW –12 BR (88.5) Trial - A linear So=0 0 1 2 3 4 5 6 7 8 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 59. Cobalt Isotherms for MW –12 BR (88.5) Trial - B linear So=0 0 1 2 3 4 5 6 7 8 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0S (ug/g)C (ug/l) Figure 60. Cobalt Isotherms for MW –13 BR Trial - A linear So=0 0 2 4 6 8 10 12 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0S (ug/g)C (ug/l) Figure 61. Cobalt Isotherms for MW –13 BR Trial - B linear So=0 linear So>0 Freundlich 0 1 2 3 4 5 6 7 0.0 0.2 0.4 0.6 0.8 1.0S (ug/g)C (ug/l) Figure 62. Cobalt Isotherms for MW –16 BR (54) Trial - A linear So=0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6S (ug/g)C (ug/l) Figure 63. Cobalt Isotherms for SB –7 Trial - A linear So=0 Freundlich 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6S (ug/g)C (ug/l) Figure 64. Cobalt Isotherms for SB –7 Trial - B linear So=0 linear So>0 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 65. Thallium Isotherms for ABMW –2 Trial - A linear So=0 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 66. Thallium Isotherms for ABMW –2 Trial - B linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25 30S (ug/g)C (ug/l) Figure 67. Thallium Isotherms for ABMW –2 BR Trial - A linear So=0 0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25 30S (ug/g)C (ug/l) Figure 68. Thallium Isotherms for ABMW –2 BR Trial - B linear So=0 0 2 4 6 8 10 12 0 2 4 6 8 10S (ug/g)C (ug/l) Figure 69. Thallium Isotherms for MW –3 BR Trial - A linear So=0 Freundlich 0 2 4 6 8 10 12 0 2 4 6 8 10S (ug/g)C (ug/l) Figure 70. Thallium Isotherms for MW –3 BR Trial - B linear So=0 Freundlich 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12S (ug/g)C (ug/l) Figure 71. Thallium Isotherms for MW –5 BR Trial - A linear So=0 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12S (ug/g)C (ug/l) Figure 72. Thallium Isotherms for MW –5 BR Trial - B linear So=0 0 2 4 6 8 10 12 0 1 2 3 4 5S (ug/g)C (ug/l) Figure 73. Thallium Isotherms for MW –8 BR Trial - A linear So=0 0 2 4 6 8 10 12 0 1 2 3 4 5S (ug/g)C (ug/l) Figure 74. Thallium Isotherms for MW –8 BR Trial - B linear So=0 0 2 4 6 8 10 12 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0S (ug/g)C (ug/l) Figure 75. Thallium Isotherms for MW –12 BR (50) Trial - A linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 0 2 4 6 8 10 12S (ug/g)C (ug/l) Figure 76. Thallium Isotherms for MW –12 BR (50) Trial - B linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6S (ug/g)C (ug/l) Figure 77. Thallium Isotherms for MW –12 BR (88.5) Trial - A linear So=0 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6S (ug/g)C (ug/l) Figure 78. Thallium Isotherms for MW –12 BR (88.5) Trial - B linear So=0 0 2 4 6 8 10 12 14 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 79. Thallium Isotherms for MW –13 BR Trial - A linear So=0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.0 0.5 1.0 1.5 2.0 2.5 3.0S (ug/g)C (ug/l) Figure 80. Thallium Isotherms for MW –13 BR Trial - B linear So=0 0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20S (ug/g)C (ug/l) Figure 81. Thallium Isotherms for MW –16 BR (36.5) Trial - A linear So=0 0 1 2 3 4 5 6 7 8 9 10 0 5 10 15 20S (ug/g)C (ug/l) Figure 82. Thallium Isotherms for MW –16 BR (36.5) Trial - B linear So=0 Freundlich 0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35 40S (ug/g)C (ug/l) Figure 83. Thallium Isotherms for MW –16 BR (54) Trial - A linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 14 16 0 5 10 15 20 25 30 35 40S (ug/g)C (ug/l) Figure 84. Thallium Isotherms for MW –16 BR (54) Trial - B linear So=0 linear So>0 Freundlich 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 85. Thallium Isotherms for SB –7 Trial - A linear So=0 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 86. Thallium Isotherms for SB –7 Trial - B linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 10 20 30 40 50S (ug/g)C (ug/l) Figure 87. Vanadium Isotherms for ABMW –2 Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 10 20 30 40 50S (ug/g)C (ug/l) Figure 88. Vanadium Isotherms for ABMW –2 Trial - B linear So=0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 10 20 30 40 50S (ug/g)C (ug/l) Figure 89. Vanadium Isotherms for ABMW –2 BR Trial - A linear So=0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 30 60 90 120 150S (ug/g)C (ug/l) Figure 90. Vanadium Isotherms for MW –3 BR Trial - A linear So=0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 30 60 90 120 150S (ug/g)C (ug/l) Figure 91. Vanadium Isotherms for MW –3 BR Trial - B linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 92. Vanadium Isotherms for MW –8 BR Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 93. Vanadium Isotherms for MW –12 BR (50) Trial - A linear So=0 linear So>0 Freundlich 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 6 7 8S (ug/g)C (ug/l) Figure 94. Vanadium Isotherms for MW –12 BR (50) Trial - B linear So=0 linear So>0 Freundlich 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 6 7S (ug/g)C (ug/l) Figure 95. Vanadium Isotherms for MW –12 BR (88.5) Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 1 2 3 4 5 6 7S (ug/g)C (ug/l) Figure 96. Vanadium Isotherms for MW –12 BR (88.5) Trial - B linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 10 20 30 40 50 60S (ug/g)C (ug/l) Figure 97. Vanadium Isotherms for MW –13 BR Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 10 20 30 40 50 60S (ug/g)C (ug/l) Figure 98. Vanadium Isotherms for MW –13 BR Trial - B linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 10 20 30 40 50 60 70S (ug/g)C (ug/l) Figure 99. Vanadium Isotherms for MW –16 BR (36.5) Trial - B linear So=0 Freundlich 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200S (ug/g)C (ug/l) Figure 100. Vanadium Isotherms for MW –16 BR (54) Trial - A linear So=0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200S (ug/g)C (ug/l) Figure 101. Vanadium Isotherms for MW –16 BR (54) Trial - B linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0S (ug/g)C (ug/l) Figure 102. Vanadium Isotherms for SB –7 Trial - A linear So=0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.2 0.4 0.6 0.8 1.0S (ug/g)C (ug/l) Figure 103. Vanadium Isotherms for SB –7 Trial - B linear So=0 2017 Comprehensive Site Assessment Update October 2017  Mayo Steam Electric Plant SynTerra    Slug Test Results   0.20.40.60.80.100. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-01 SLUG-OUT TEST 2 Data Set: S:\...\ABMW-01_SlugOut_II.aqt Date: 08/15/15 Time: 06:38:29 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 8.99 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-01) Initial Displacement: 2.243 ft Static Water Column Height: 9.29 ft Total Well Penetration Depth: 11.99 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 4.122 ft/day y0 = 2.219 ft 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-02 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-02_SlugOut_I.aqt Date: 08/15/15 Time: 06:37:20 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 26.58 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-02) Initial Displacement: 2.415 ft Static Water Column Height: 31.28 ft Total Well Penetration Depth: 34.49 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.04792 ft/day y0 = 2.228 ft 0.180.360.540.720.900. 0.001 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-02BR, PACKER TEST, SLUG-IN Data Set: S:\...\ABMW-02BR_PK_SlugIn.aqt Date: 08/14/15 Time: 19:24:39 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 06/02/15 AQUIFER DATA Saturated Thickness: 24. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-02BR) Initial Displacement: 0.891 ft Static Water Column Height: 97.74 ft Total Well Penetration Depth: 110.9 ft Screen Length: 20. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.409 ft/day y0 = 0.4456 ft 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-02BR, PACKER TEST, SLUG-OUT Data Set: S:\...\ABMW-02BR_PK_SlugOut.aqt Date: 08/14/15 Time: 19:24:25 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 06/02/2015 AQUIFER DATA Saturated Thickness: 24. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-02BR) Initial Displacement: 0.58 ft Static Water Column Height: 97.74 ft Total Well Penetration Depth: 110.9 ft Screen Length: 20. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.5431 ft/day y0 = 0.4934 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-2BRL SLUG OUT TEST 1 Data Set: P:\...\ABMW-2BRL_Slugout_1.aqt Date: 08/03/17 Time: 11:27:40 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.105 Location: Roxboro, NC Test Date: July 13, 2017 AQUIFER DATA Saturated Thickness: 10. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-2BRL) Initial Displacement: 2.064 ft Static Water Column Height: 156.2 ft Total Well Penetration Depth: 159.1 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.167 ft Gravel Pack Porosity: 0.33 SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 4.183E-6 cm/sec y0 = 1.915 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-03_SlugOut_I.aqt Date: 08/15/15 Time: 06:35:50 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 25.53 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03) Initial Displacement: 2.148 ft Static Water Column Height: 26.03 ft Total Well Penetration Depth: 28.86 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.118 ft/day y0 = 1.985 ft 0.80.160.240.320.400. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-03S_SlugOut_I.aqt Date: 08/15/15 Time: 06:30:14 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 53.55 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03S) Initial Displacement: 2.425 ft Static Water Column Height: 45.55 ft Total Well Penetration Depth: 48.53 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.454 ft/day y0 = 2.1 ft 0.60.120.180.240.300. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03S SLUG-OUT TEST 2 Data Set: S:\...\ABMW-03S_SlugOut_II.aqt Date: 08/15/15 Time: 06:28:22 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 53.55 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03S) Initial Displacement: 2.534 ft Static Water Column Height: 45.55 ft Total Well Penetration Depth: 48.53 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.4551 ft/day y0 = 2.234 ft 0.140.280.420.560.700. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-03S SLUG-OUT TEST 3 Data Set: S:\...\ABMW-03S_SlugOut_III.aqt Date: 08/15/15 Time: 06:26:02 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 53.55 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-03S) Initial Displacement: 2.417 ft Static Water Column Height: 45.55 ft Total Well Penetration Depth: 48.53 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.4559 ft/day y0 = 2.115 ft 0.80.160.240.320.400. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04 SLUG-OUT TEST 1 Data Set: S:\...\ABMW-04_SlugOut_I.aqt Date: 08/15/15 Time: 06:24:03 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 50.86 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04) Initial Displacement: 2.431 ft Static Water Column Height: 49.06 ft Total Well Penetration Depth: 51.75 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.4914 ft/day y0 = 2.332 ft 0.60.120.180.240.300. 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04 SLUG-OUT TEST 2 Data Set: S:\...\ABMW-04_SlugOut_II.aqt Date: 08/15/15 Time: 06:25:02 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 50.86 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04) Initial Displacement: 2.448 ft Static Water Column Height: 49.06 ft Total Well Penetration Depth: 51.75 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.5795 ft/day y0 = 2.189 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04BR SLUG-OUT TEST 1 Data Set: S:\...\ABMW-04BR_SlugOut_I.aqt Date: 08/15/15 Time: 06:21:52 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 104.3 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04BR) Initial Displacement: 2.424 ft Static Water Column Height: 104.3 ft Total Well Penetration Depth: 107.2 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.009463 ft/day y0 = 2.262 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)ABMW-04D SLUG-OUT TEST 1 Data Set: S:\...\ABMW-04D_SlugOut_I.aqt Date: 08/15/15 Time: 06:20:31 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 58.38 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (ABMW-04D) Initial Displacement: 2.134 ft Static Water Column Height: 56.88 ft Total Well Penetration Depth: 59.7 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.05878 ft/day y0 = 1.929 ft 0. 40. 80. 120. 160. 200. 10-1 100 Time (sec)Normalized Head (ft/ft)MW-2 SLUG OUT TEST 1 Data Set: P:\...\MW-2_slugout_1.aqt Date: 10/26/17 Time: 11:08:46 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Location: Roxboro, NC Test Date: May 2016 AQUIFER DATA Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-2) Initial Displacement: 1.895 ft Static Water Column Height: 24.53 ft Total Well Penetration Depth: 26.58 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.0002295 cm/sec y0 = 1.627 ft 0. 40. 80. 120. 160. 200. 10-1 100 Time (sec)Normalized Head (ft/ft)MW-2 SLUG OUT TEST 2 Data Set: P:\...\MW-2_slugout_2.aqt Date: 10/26/17 Time: 11:09:37 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Location: Roxboro, NC Test Date: May 2016 AQUIFER DATA Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-2) Initial Displacement: 2.182 ft Static Water Column Height: 24.53 ft Total Well Penetration Depth: 26.58 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.0002083 cm/sec y0 = 1.708 ft 0. 40. 80. 120. 160. 200. 10-1 100 Time (sec)Normalized Head (ft/ft)MW-2 SLUG OUT TEST 3 Data Set: P:\...\MW-2_slugout_3.aqt Date: 10/26/17 Time: 11:10:05 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Location: Roxboro, NC Test Date: May 2016 AQUIFER DATA Saturated Thickness: 12. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-2) Initial Displacement: 2.197 ft Static Water Column Height: 24.53 ft Total Well Penetration Depth: 26.58 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.0002451 cm/sec y0 = 1.785 ft 0. 120. 240. 360. 480. 600. 10-1 100 101 Time (sec)Displacement (ft)MW-3 SLUG-OUT TEST 1 Data Set: P:\...\MW-3_slugout_1_F.aqt Date: 10/26/17 Time: 11:15:33 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Location: Roxboro, NC Test Well: MW-3 Test Date: May 2016 AQUIFER DATA Saturated Thickness: 16. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-3) Initial Displacement: 2.029 ft Static Water Column Height: 11.58 ft Total Well Penetration Depth: 13.88 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft SOLUTION Aquifer Model: Confined Solution Method: Bouwer-Rice K = 2.814E-5 cm/sec y0 = 1.336 ft 0. 100. 200. 300. 400. 500. 10-1 100 101 Time (sec)Displacement (ft)MW-3 SLUG-OUT TEST 2 Data Set: P:\...\MW-3_slugout_2_F.aqt Date: 10/26/17 Time: 11:16:33 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Test Well: MW-3 Test Date: May 2016 AQUIFER DATA Saturated Thickness: 16. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-3) Initial Displacement: 2.298 ft Static Water Column Height: 11.58 ft Total Well Penetration Depth: 13.88 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft SOLUTION Aquifer Model: Confined Solution Method: Bouwer-Rice K = 4.864E-5 cm/sec y0 = 1.108 ft 0. 60. 120. 180. 240. 300. 10-1 100 101 Time (sec)Displacement (ft)MW-3 SLUG-OUT TEST 3 Data Set: P:\...\MW-3_slugout_3_F.aqt Date: 10/26/17 Time: 11:16:57 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Test Well: MW-3 Test Date: May 2016 AQUIFER DATA Saturated Thickness: 16. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-3) Initial Displacement: 1.816 ft Static Water Column Height: 11.58 ft Total Well Penetration Depth: 13.88 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft SOLUTION Aquifer Model: Confined Solution Method: Bouwer-Rice K = 4.289E-5 cm/sec y0 = 0.9732 ft 0.160.320.480.640.800. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-03BR SLUG-IN TEST 1 Data Set: S:\...\MW-03BR_SlugIn_I.aqt Date: 08/15/15 Time: 06:19:47 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 61.61 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-03BR) Initial Displacement: 2.275 ft Static Water Column Height: 60.51 ft Total Well Penetration Depth: 63.22 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.09071 ft/day y0 = 1.653 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-03BR SLUG-IN TEST 2 Data Set: S:\...\MW-03BR_SlugIn_II.aqt Date: 08/15/15 Time: 06:18:30 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 61.61 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-03BR) Initial Displacement: 2.175 ft Static Water Column Height: 60.51 ft Total Well Penetration Depth: 63.22 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.08581 ft/day y0 = 1.733 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-03BR SLUG-OUT TEST 1 Data Set: S:\...\MW-03BR_SlugOut_I.aqt Date: 08/15/15 Time: 06:16:44 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 61.61 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-03BR) Initial Displacement: 1.954 ft Static Water Column Height: 60.51 ft Total Well Penetration Depth: 63.22 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.03293 ft/day y0 = 1.683 ft 0. 8. 16. 24. 32. 40. 10-1 100 101 Time (sec)Displacement (ft)MW-4 SLUG-OUT TEST 1 Data Set: P:\...\MW-4_slugout_1_F.aqt Date: 10/26/17 Time: 11:24:31 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Test Well: MW-4 Test Date: May 2016 AQUIFER DATA Saturated Thickness: 36. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-4) Initial Displacement: 2.186 ft Static Water Column Height: 5.22 ft Total Well Penetration Depth: 10. ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft SOLUTION Aquifer Model: Unconfined Solution Method: Bouwer-Rice K = 0.0006985 cm/sec y0 = 1.855 ft 0. 60. 120. 180. 240. 300. 10-1 100 101 Time (sec)Displacement (ft)MW-4 SLUG-OUT TEST 2 Data Set: P:\...\MW-4_slugout_2_F.aqt Date: 10/26/17 Time: 11:32:02 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Test Well: MW-4 Test Date: May 2016 AQUIFER DATA Saturated Thickness: 36. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-4) Initial Displacement: 2.169 ft Static Water Column Height: 5.22 ft Total Well Penetration Depth: 10. ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft SOLUTION Aquifer Model: Unconfined Solution Method: Bouwer-Rice K = 4.212E-5 cm/sec y0 = 1.091 ft 0. 40. 80. 120. 160. 200. 10-1 100 101 Time (sec)Displacement (ft)MW-4 SLUG-OUT TEST 3 Data Set: P:\...\MW-4_slugout_3_F.aqt Date: 10/26/17 Time: 11:31:26 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.205 Test Well: MW-4 Test Date: May 2016 AQUIFER DATA Saturated Thickness: 36. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-4) Initial Displacement: 2. ft Static Water Column Height: 5.22 ft Total Well Penetration Depth: 10. ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.083 ft SOLUTION Aquifer Model: Unconfined Solution Method: Bouwer-Rice K = 1.975E-5 cm/sec y0 = 0.7046 ft 0.120.240.360.480.600. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-IN TEST 1 Data Set: S:\...\MW-05BR_SlugIn_I.aqt Date: 08/14/15 Time: 22:28:40 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 2.1 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1671 ft/day y0 = 1.739 ft 0.120.240.360.480.600. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-IN TEST 2 Data Set: S:\...\MW-05BR_SlugIn_II.aqt Date: 08/14/15 Time: 22:25:39 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 2.39 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1387 ft/day y0 = 1.64 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-OUT TEST 1 Data Set: S:\...\MW-05BR_SlugOut_I_bad.aqt Date: 08/14/15 Time: 22:24:43 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 1.929 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.09975 ft/day y0 = 1.722 ft 0.180.360.540.720.900. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-05BR SLUG-OUT TEST 2 Data Set: S:\...\MW-05BR_SlugOut_II.aqt Date: 08/14/15 Time: 22:22:42 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 63.54 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-05BR) Initial Displacement: 2.496 ft Static Water Column Height: 59.54 ft Total Well Penetration Depth: 62.21 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1084 ft/day y0 = 1.782 ft 0.180.360.540.720.900. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-07BR, PACKER TEST, SLUG-IN, TEST 1 Data Set: S:\...\MW-07BR_PK_SlugIn1.aqt Date: 08/14/15 Time: 19:45:47 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/24/15 AQUIFER DATA Saturated Thickness: 50.5 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-07BR) Initial Displacement: 0.5254 ft Static Water Column Height: 77.93 ft Total Well Penetration Depth: 83.93 ft Screen Length: 10. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.728 ft/day y0 = 0.5421 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-07D SLUG-OUT TEST 1 Data Set: S:\...\MW-07D_SlugOut_I.aqt Date: 08/14/15 Time: 20:51:58 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 29.5 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-07D) Initial Displacement: 2.072 ft Static Water Column Height: 23.1 ft Total Well Penetration Depth: 25.87 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.01923 ft/day y0 = 1.778 ft 0.100.200.300.400.500. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-IN TEST 1 Data Set: S:\...\MW-08BR_SlugIn_I.aqt Date: 08/14/15 Time: 20:50:18 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 1.865 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.1192 ft/day y0 = 1.467 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-IN TEST 2 Data Set: S:\...\MW-08BR_SlugIn_II.aqt Date: 08/14/15 Time: 20:46:14 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 1.946 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.05823 ft/day y0 = 1.491 ft 0.40.80.120.160.200. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-OUT TEST 1 Data Set: S:\...\MW-08BR_SlugOut_I.aqt Date: 08/14/15 Time: 20:47:57 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 3.23 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.07953 ft/day y0 = 1.576 ft 0.100.200.300.400.500. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-08BR SLUG-OUT TEST 2 Data Set: S:\...\MW-08BR_SlugOut_II.aqt Date: 08/14/15 Time: 20:49:21 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 33.49 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-08BR) Initial Displacement: 2.934 ft Static Water Column Height: 32.54 ft Total Well Penetration Depth: 32.54 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.09435 ft/day y0 = 1.483 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-09BR SLUG-OUT TEST 1 Data Set: S:\...\MW-09BR_SlugOut_I.aqt Date: 08/15/15 Time: 07:59:32 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 42.03 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-09BR) Initial Displacement: 2.281 ft Static Water Column Height: 34.03 ft Total Well Penetration Depth: 36.57 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.02241 ft/day y0 = 1.919 ft 1.10.100.1000.1.0E+4 0. 0.2 0.4 0.6 0.8 1. Time (sec)Normalized Head (ft/ft)MW-9BRL SLUG OUT TEST 1 Data Set: P:\...\MW-9BRL_Slugout_1.aqt Date: 08/03/17 Time: 11:21:59 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.105 Location: Roxboro, NC Test Date: July 13, 2017 AQUIFER DATA Saturated Thickness: 10. ft WELL DATA (MW-9BRL) Initial Displacement: 2.205 ft Static Water Column Height: 39.8 ft Total Well Penetration Depth: 42.51 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft Gravel Pack Porosity: 0.33 SOLUTION Aquifer Model: Confined Solution Method: KGS Model Kr = 1.316E-5 cm/sec Ss = 3.712E-5 ft-1 Kz/Kr = 1. 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-10BR SLUG-OUT TEST 1 Data Set: S:\...\MW-10BR_SlugOut_I.aqt Date: 08/15/15 Time: 08:00:19 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/12/2015 AQUIFER DATA Saturated Thickness: 51.92 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-10BR) Initial Displacement: 2.416 ft Static Water Column Height: 44.44 ft Total Well Penetration Depth: 44.44 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.008841 ft/day y0 = 1.502 ft 0.120.240.360.480.600. 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-IN, TEST 1 Data Set: S:\...\MW-11BR_PK_SlugIn1.aqt Date: 08/14/15 Time: 19:54:27 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.4493 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 5.624 ft/day y0 = 0.2942 ft 0.160.320.480.640.800. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-IN, TEST 2 Data Set: S:\...\MW-11BR_PK_SlugIn2.aqt Date: 08/14/15 Time: 19:54:58 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.5321 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 3.459 ft/day y0 = 0.2915 ft 0.160.320.480.640.800. 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-OUT, TEST 1 Data Set: S:\...\MW-11BR_PK_SlugOut1.aqt Date: 08/14/15 Time: 19:53:26 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.5561 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 5.372 ft/day y0 = 0.2915 ft 0.140.280.420.560.700. 0.01 0.1 1. Time (sec)Normalized Head (ft/ft)MW-11BR, PACKER TEST, SLUG-OUT, TEST 2 Data Set: S:\...\MW-11BR_PK_SlugOut2.aqt Date: 08/14/15 Time: 19:57:32 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/23/15 AQUIFER DATA Saturated Thickness: 54.4 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-11BR) Initial Displacement: 0.4235 ft Static Water Column Height: 62.95 ft Total Well Penetration Depth: 66.97 ft Screen Length: 11. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 5.655 ft/day y0 = 0.2838 ft 0.18.36.54.72.90. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-12D SLUG-OUT TEST 1 Data Set: S:\...\MW-12D_SlugOut_I.aqt Date: 08/14/15 Time: 20:43:09 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 64.89 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-12D) Initial Displacement: 2.284 ft Static Water Column Height: 64.74 ft Total Well Penetration Depth: 65.74 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 3.015 ft/day y0 = 2.177 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-12S SLUG-OUT TEST 1 Data Set: S:\...\MW-12S_SlugOut_I.aqt Date: 08/14/15 Time: 20:42:18 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 35.22 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-12S) Initial Displacement: 2.275 ft Static Water Column Height: 18.62 ft Total Well Penetration Depth: 18.62 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.02211 ft/day y0 = 2.096 ft 0.180.360.540.720.900. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-13BR, PACKER TEST, SLUG-IN Data Set: S:\...\MW-13BR_PK_SlugIn.aqt Date: 08/14/15 Time: 20:14:07 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 04/14/15 AQUIFER DATA Saturated Thickness: 32. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-13BR) Initial Displacement: 0.788 ft Static Water Column Height: 71.35 ft Total Well Penetration Depth: 73.52 ft Screen Length: 10. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.618 ft/day y0 = 0.7788 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-14BR SLUG-IN TEST 1 Data Set: S:\...\MW-14BR_SlugIn_I.aqt Date: 08/14/15 Time: 20:40:49 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 22.56 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-14BR) Initial Displacement: 2.351 ft Static Water Column Height: 21.06 ft Total Well Penetration Depth: 24.05 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.04388 ft/day y0 = 1.358 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-14BR SLUG-IN TEST 2 Data Set: S:\...\MW-14BR_SlugIn_II.aqt Date: 08/14/15 Time: 20:39:16 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 03/16/2015 AQUIFER DATA Saturated Thickness: 22.56 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-14BR) Initial Displacement: 2.309 ft Static Water Column Height: 21.06 ft Total Well Penetration Depth: 24.06 ft Screen Length: 5. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.02943 ft/day y0 = 1.399 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-15BR, PACKER TEST, SLUG-IN Data Set: S:\...\MW-15BR_PK_SlugIn.aqt Date: 08/14/15 Time: 20:19:57 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 05/11/15 AQUIFER DATA Saturated Thickness: 29. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-15BR) Initial Displacement: 0.8631 ft Static Water Column Height: 43.65 ft Total Well Penetration Depth: 42.65 ft Screen Length: 9. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.4589 ft/day y0 = 0.9524 ft 0.400.800.1.2E+3 1.6E+3 2.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-15BR, PACKER TEST, SLUG-OUT Data Set: S:\...\MW-15BR_PK_SlugOut.aqt Date: 08/14/15 Time: 20:27:39 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 05/11/15 AQUIFER DATA Saturated Thickness: 29. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-15BR) Initial Displacement: 0.8726 ft Static Water Column Height: 43.65 ft Total Well Penetration Depth: 42.65 ft Screen Length: 9. ft Casing Radius: 0.25 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.5764 ft/day y0 = 0.6672 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16BR SLUG-OUT TEST 1 Data Set: S:\...\MW-16BR_SlugOut_I.aqt Date: 08/14/15 Time: 20:37:46 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 58.91 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16BR) Initial Displacement: 2.405 ft Static Water Column Height: 58.37 ft Total Well Penetration Depth: 61.84 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.003166 ft/day y0 = 2.319 ft 0.8.16.24.32.40. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16D SLUG-OUT TEST 1 Data Set: S:\...\MW-16D_SlugOut_I.aqt Date: 08/14/15 Time: 20:36:28 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 44.67 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16D) Initial Displacement: 1.946 ft Static Water Column Height: 38.6 ft Total Well Penetration Depth: 42.07 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.57 ft/day y0 = 0.7561 ft 0.8.16.24.32.40. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16D SLUG-OUT TEST 2 Data Set: S:\...\MW-16D_SlugOut_II.aqt Date: 08/14/15 Time: 20:35:15 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 44.67 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16D) Initial Displacement: 1.861 ft Static Water Column Height: 38.6 ft Total Well Penetration Depth: 42.07 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 1.944 ft/day y0 = 0.8156 ft 0.8.16.24.32.40. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16D SLUG-OUT TEST 3 Data Set: S:\...\MW-16D_SlugOut_III.aqt Date: 08/14/15 Time: 20:34:18 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 44.67 ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-16D) Initial Displacement: 2.143 ft Static Water Column Height: 38.6 ft Total Well Penetration Depth: 42.07 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 0.7628 ft/day y0 = 0.8774 ft 0.600.1.2E+3 1.8E+3 2.4E+3 3.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-16S SLUG-OUT TEST 1 Data Set: S:\...\MW-16S_SlugOut_I.aqt Date: 08/14/15 Time: 20:32:38 PROJECT INFORMATION Company: Synterra Client: DEP Project: 1026.105.1.4 Location: Mayo Plant Test Date: 07/28/2015 AQUIFER DATA Saturated Thickness: 8.5 ft Anisotropy Ratio (Kz/Kr): 0.5 WELL DATA (MW-16S) Initial Displacement: 2.246 ft Static Water Column Height: 6.84 ft Total Well Penetration Depth: 10.01 ft Screen Length: 2.5 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: Hvorslev K = 0.01726 ft/day y0 = 2.159 ft 0.800.1.6E+3 2.4E+3 3.2E+3 4.0E+3 0.1 1. Time (sec)Normalized Head (ft/ft)MW-18BR SLUG OUT TEST 1 Data Set: P:\...\MW-18BR_Slugout_1.aqt Date: 08/03/17 Time: 11:49:30 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.105 Location: Roxboro, NC Test Date: July 13, 2017 AQUIFER DATA Saturated Thickness: 16. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA (MW-18BR) Initial Displacement: 2.438 ft Static Water Column Height: 92.88 ft Total Well Penetration Depth: 95.2 ft Screen Length: 16. ft Casing Radius: 0.083 ft Well Radius: 0.245 ft Gravel Pack Porosity: 0.33 SOLUTION Aquifer Model: Confined Solution Method: Hvorslev K = 5.083E-6 cm/sec y0 = 2.165 ft 0.60.120.180.240.300. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-18D SLUG OUT TEST 1 Data Set: P:\...\MW-18D_Slugout_1.aqt Date: 08/03/17 Time: 11:57:50 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.105 Location: Roxboro, NC Test Date: July 13, 2017 AQUIFER DATA Saturated Thickness: 21.27 ft WELL DATA (MW-18D) Initial Displacement: 1.791 ft Static Water Column Height: 21.27 ft Total Well Penetration Depth: 23.51 ft Screen Length: 10.28 ft Casing Radius: 0.083 ft Well Radius: 0.245 ft SOLUTION Aquifer Model: Unconfined Solution Method: KGS Model Kr = 5.616E-5 cm/sec Ss = 0.002667 ft-1 Kz/Kr = 1. 100 101 102 1030. 0.2 0.4 0.6 0.8 1. Time (sec)Normalized Head (ft/ft)MW-19BR SLUG OUT TEST 1 Data Set: P:\...\MW-19BR_Slugout_1.aqt Date: 10/26/17 Time: 12:32:18 AQUIFER DATA Saturated Thickness: 10. ft WELL DATA (MW-19BR) Initial Displacement: 2.429 ft Static Water Column Height: 39.8 ft Total Well Penetration Depth: 42.51 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft Gravel Pack Porosity: 0.33 SOLUTION Aquifer Model: Confined Solution Method: KGS Model Kr = 0.0004144 cm/sec Ss = 3.712E-5 ft-1 Kz/Kr = 1. 0.80.160.240.320.400. 0.1 1. Time (sec)Normalized Head (ft/ft)MW-19D SLUG OUT TEST 1 Data Set: P:\...\MW-19D_Slugout_1.aqt Date: 08/03/17 Time: 11:51:15 PROJECT INFORMATION Company: SynTerra Corp Client: DEP Mayo Project: 1026.105 Location: Roxboro, NC Test Date: July 13, 2017 AQUIFER DATA Saturated Thickness: 48.43 ft WELL DATA (MW-19D) Initial Displacement: 2.427 ft Static Water Column Height: 32.53 ft Total Well Penetration Depth: 35.17 ft Screen Length: 11.04 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft SOLUTION Aquifer Model: Unconfined Solution Method: KGS Model Kr = 4.495E-5 cm/sec Ss = 0.0003747 ft-1 Kz/Kr = 1.