Loading...
HomeMy WebLinkAbout20081287 Ver 1_Restoration Plan_200809030100 - 141A1 Wilderness Creek Falls Stream Restoration Plan Cherokee County, North Carolina August 27, 2008 Prepared by: 0 7u" I 11:?' wt*j;t St I x.008 PO Box 882 yp AP!DSTIpRNt4TEFti?RAN?i? Canton, NC 28716 N1ET1A Project Description The project site, known as Wilderness Creek Falls is located off Highway 64 West just before the NC/TN border in Cherokee County, NC. Latitude and longitude for the site are 35.0190663 N and 84.3121501 W. respectively. The site is ' located within the Isabella USGS Topo Quad. To access the site from Asheville, take I-40 west 16.5 miles. Merge onto US-74 West toward Murphy. Go -105 miles to just before the NC/TN state line. The project site is a few miles before the state line on the right. ' Wilderness Creek Falls is proposing to restore 851 linear feet of an unnamed tributary to Wolf Creek in response to a Notice of Violation issued by the Swannanoa office of the North Carolina Division of Water Quality. Wilderness Creek Falls was directed to restore a previously diverted channel back to the bottom of the valley to mitigate for the violation. This unnamed tributary to Wolf Creek had been diverted up slope by the original owner of the mine in order to ' operate in the area without flowing water influencing the work. The diverted channel was 956 linear feet in length. The proposed restoration length can be assumed to be the approximate length of stream that existed prior to the original mine construction. The restoration work has not been included as an impact in the application since Mr. Glen Frank was not the original operator of the mine. Wilderness Creek Falls will also restore a pond on the northern side of the property that was not permitted. This will reduce impacts by 408 feet. An offline pond will be created in its place. The following is a detailed restoration plan that addresses the mine area as well as the pond relocation. Mine Area (to address Wilderness Creek Falls is proposing to restore 851 linear feet of an unnamed tributary to Wolf Creek (see Attachment Plans for location). This stream was dammed and diverted to the side of the valley wall during the 1960's in order to facilitate the original mining operation (see photo below). The stream diversion was necessary back in the 1960's in order to have a dry working environment. In the fall of 2006 the diverted stream was dug out to maintain flows around the mine area. There were areas along the diversion where leaf packs and limbs had blocked some of the flow. These blockages were causing some, not all, of the flow to escape down the valley wall which flowed into the open channel that exists at the eastern toe of the mined valley. A Notice of Violation was issued through the Division of Water Quality in 2007. The agencies had requested that the stream channel be relocated back to the bottom of the valley where it originally flowed. Currently the stream is bedded in channel at the bottom of the valley. ' Wilderness Creek Falls is requesting the approval of this restoration plan to stabilize the existing channel through natural channel design administering the proper dimension, pattern, and profile. The restoration would be treated ' separately and would be self mitigating. The proposed natural channel design is based on reference reach conditions for three separate reaches. Previously established channels will be used where applicable to take advantage of the ' stable profile and existing buffer. Pond Relocation Wilderness Creek Falls will also restore 408' of stream that is currently flooded and piped (see photo below). Mr. Frank is agreeing to re-construct this pond off-line in order to provide additional avoidance and minimization of impacts. ' This pond has a 2.23 acre surface area. The pond will be designed off-line and the proper dimension, pattern, and profile will be administered to the stream ' using natural channel design. A 30 foot riparian buffer will be planted on both sides of the stream. 2 UT1 Existing Site Conditions ' UT1 is a first order tributary to Wolf Creek and drains a 0.2 square mile watershed. Wolf Creek flows into the Toccoa River in GA becoming the Ocoee in TN and later emptying into the Hiwassee River Basin. UT1's current location is at the bottom of the mined valley. It now flows over 4 distinct drops of 15' or more before reconnecting to the original channel at the eastern toe of the valley. UT1 flows through three distinct channel types with varying degrees of slope. Morphological parameters for the three reaches are summarized in the UT1 Relocation Summary in Attachment A. Three reference reaches were used as templates to represent the proper dimension, pattern, and profile of each reach. Pond Relocation The unnamed tributary to the pond is a first order tributary to North Potato Creek draining a 0.13 square mile watershed. The lower 500' of the tributary lacks a riparian buffer (see photo), but remains in a stable channel. The slope is 6% with little sinuosity (1.1). The entrenchment ratio is 2.7. This channel fits a Rosgen B4a channel and consists of mainly course gravel and cobble (See Attachment B). ?x 414 1- 7-- rj r IK'ra.=' s• . #? }F WWI" d ' [ e ? ??` ? r ? C#ta 1'ir?? 4 4? d ?y }r f d? . +6: ? t 13'. 'Al Precipitation According to the PRISM maps (see Attachment C) maintained by the Natural Resources Conservation Service, this area of Cherokee County receives approximately 54-66 inches of rain annually. Excess water that falls as ' precipitation must leave the site as ground water flow, runoff, channelized surface flow, or deep water seepage. Soils The project site is located within the mountain physiographic region of North Carolina. Soils series present on site include Evard-Hayesville complex. Evard and Hayesville series soils are present on steep well drained hillslopes having a slope of 15 to 30 percent. Parent material is loamy residuum weathered from metamorphic rock. Also present is the Tate Loam complex consisting of very deep, well drained soils formed in colluvium and typical of coves of the Blue ' Ridge. Slopes usually range from 2 to 8 percent. Tate loam is present on the Northern side of the property where the current pond is located. Reference Reach Three reference reaches were used to mimic stable dimension, pattern, and profile. The two reference reaches surveyed on site were used to emulate the steeper reaches of the proposed channel. The A4a+ reference reach, located on the North side of the property, is an unknown tributary to North Potato Creek (See Restoration Plan Overview). The photo above is the A4a+ reference reach. The B4/1a reference reach is located upstream of the proposed channel. The third reference reach is a B3/1c stream known as Cathey's Creek in Transylvania County. All data can be found in Attachments D. E, and F. 4 Restoration Plan ' Wilderness Creek Falls plans to return the previously diverted channel from the valley wall to the bottom of the valley using natural channel design. The old established stream bed will be utilized at the bottom of the mine. In addition, ' Mr. Frank will restore a flooded channel on the north side of the property. The goals of the project are: 1. Restore natural dimension, pattern, and profile. 2. Stabilize banks and reduce erosion. 3. Create and preserve a riparian buffer with permanent native vegetation. 4. Create aquatic habitat and complexity. 5. Stabilize existing diversion ditch. 6. Construct off-line pond and restore previously impounded stream. Construction Plan and Specifications Mine Area Construction activities will include working` with the existing w , bedded channel adding . the proper dimension, g }°; pattern, and profile{ based on reference "reach data. Due to the steep grade, a pool drop sequence will need to be implemented in order ,r< to satisfy existing slopes especially in the two steeper reaches: Al ( See Detailed Plans). } Existing topography surveys show three major drops of about 30 feet each (see photo above). These bedrock drops will be left alone providing a stable geomorphological feature. Grade control structures will be used to hold grade, redirect current, create habitat complexity, and stabilize the banks. Pool and riffle habitat was designed based on reference reach criteria. Solid rock exists within 1 foot of the existing mine floor elevation; therefore, the proposed channel can be bedded on rock. Due to the high frequency of bedrock, modifications will need to be made in the field to emulate the proper dimension of the channel. 5 ' The proposed channel will consist of three reaches. Reach 1 is the steeper of the three and will require grade control structures to maintain stability. ' Structures will be placed at stations 0+34, 0+50, and 0+66. Plunge pools will be used to dissipate energy. Reach 2 has less gradient than reach 1 and has an already established channel against the valley wall. A plunge pool will be added ' at the bottom of the drop and grading of the left bank will take place in order to emulate proper dimension and remove loose rock and gravel. After leaving the ' third drop and entering Reach 3 the channel moves across a flat bench before dropping into the old channel at the eastern toe of the valley. The channel currently sits on bedrock before quickly dropping over the last drop. The current ' dimension and profile are unstable and will need to be adjusted to emulate reference reach conditions. The current pattern of the channel will not be altered due to the irregular arrangement of bedrock on the bench. Using the ' existing bedrock will help stabilize the channel. The profile will need to be altered to accommodate the steep grade at the end of the reach. Grade control structures will be installed at stations 5+27, 5+52, 5+67, 5+85, and 6+01. After t the last structure the channel enters a previously established streambed (station 6+00 to 8+51) and continues downstream. This channel is against the toe of the valley and has an already established riparian buffer on the left. Light ' grading of the right stream bank will be performed to remove loose rock and gravel. Existing check dams will be removed. ' To mimic the correct valley form, soil may need to be imported. This will allow for proper drainage and provide a planting medium for the 30 foot riparian ' buffer. In addition, matting will be used on the banks to prevent bank erosion. Pond Relocation ' In order to reduce downstream erosion, a Faircloth Skimmer will be used to drain the 2.23 acre pond. Several small skimmers will be used to draw surface water from the pond, slowly lowering the water elevation. A row of silt fences will be ' placed perpendicular to the flow of water at the pipe outlet to ensure that sediment is not carried and deposited downstream. A stream diversion will be created to allow the new channel to be constructed in the dry. The new channel ' will be created based on reference reach data and natural channel design. Grade control structures will be utilized to accommodate the steep slope. Banks ' will be properly sloped to match valley conditions and will be matted and seeded before release of water. At this point, on site materials will be harvested to be used in the restoration process. Materials such as topsoil, vegetation, and rock ' will be harvested on site during other construction activities from areas of similar slope and aspect. It is also anticipated that the surrounding vegetation will provide an excellent seed source. 1 6 Grade Control Structures will be used to reduce shear stress on stream banks and to act as grade control for the streambed in reaches 1, 2, and 3. A boulder step consisting of 1-2 header boulders, 2 buttress boulders, and at least 2 footer boulders will be used as grade control (See attached plans for typical). Sizing of rock structures was determined using shear stress calculations provided in the design summary (See attached plans). Maximum shear stress in the steeper reach was 3.63lbs./sq.ft. Referencing Shield's data and Rosgen's data, the largest size particle entrained would be between 1 and 3 feet at bankfull. Minimum rock size should be no smaller than 3 feet. Footer and step boulder rocks will be placed below the invert of the proposed channel and should be in a tight sequence with no gaps between adjoining rocks. Footer rocks will act as a sill and be keyed into the bankfull elevation to prevent lateral scour at bankfull flows. Any voids or cracks greater than 4 inches will be filled with small boulders or rock fragments. Footer rock excavation should be performed in the dry. A pump system shall be used to dewater any excessive ground water. Planting Plan and Specifications F A 30 foot protective buffer on both sides of the proposed channel will be included to enhance the project. Vegetation is a key component to the restoration project. The slopes will be planted with appropriate riparian species from an approved list to recreate the natural buffers that occur on site. Trees will be planted at 8 X 8 foot spacing. Plant survival and growth of at least 320 stems/acre through year 3 and 260 stems/acre through year 5 will be considered successful. Due to mine site conditions, soil will need to be brought in and mixed with existing spoil to create a planting base. Bank stabilization will be achieved with a matting wrapped soil lift application with brush layering (See Typical), seeding, live staking, onsite transplants, plugs, bare root, and containerized plants. The objective will be to mimic most of the natural buffer that is on site, which is mainly composed of shrubs and trees (See Recommended Plant List). However, only NATIVE warm season grasses and bunchgrass (NO Turf-Forming Fescues) will be used in accordance with the "'Warm Season Grass Establishment and Management in North Carolina and Virginia" provided by the US Fish and Wildlife Service as a temporary planting to aid with soil stabilization. 7 Plant Material Specifications Live Stakes (Woody Material): The plant material will either be collected onsite or obtained locally and consist mainly of silky dogwood, elderberry and willow species. The plants will be collected while dormant and planted immediately. If plants cannot be planted immediately, plants will be stored in shade and kept moist and cool in peat moss, mulch, or plunged into a container of water. Bare Root or Container (Woody and Herbaceous Material): The plants will either be ordered as bare root or in 1-quart containers. Upon delivery, the specimens shall appear healthy with no leaf spots, leaf damage, leaf discoloration, chlorosis, leaf wilting or curling, or evidence of insects on leaves or stems. Plants will be planted immediately. If plants cannot be planted immediately, plants will be stored in shade and kept moist in peat moss, mulch, or other suitable material. Container (Woody Material): The soil within the root ball shall be field capacity (1/3 atmosphere) or wetter upon delivery to the job site. Any wilted, dry and/or lightweight plants shall be rejected. Plants shall be planted immediately upon delivery. If not, then they must be stored in shade and root balls kept moist through periodic watering until time of planting. If growing, plants shall appear healthy with no leaf spots, leaf damage, leaf discoloration, chlorosis, leaf wilting or curling, or evidence of insects on leaves. For trees, where spiraling woody roots exist on the outside of the soil/root mass upon the removal of plants from the containers, the landscape contractor shall separate (cutting where necessary) and spread them out prior to planting. Soil Amendments: Soil amendments are required around tree plantings. The amendments used should be leaf or pine bark compost at rates of one part compost to one part soil (from planting hole). A slow release fertilizer or "super phosphate" type fertilizer should be mixed in with soil amendment mix. No surface mulch is required where plants are planted at or near original grade, unless tree shelters are used to promote growth and survival percentage. A 6-inch soil berm will be constructed 12 inches from the outer edge of the root ball to hold water. Monitoring Plan Within 90 days of construction completion, WNR staff will provide the resource agencies with photos of each site and a baseline monitoring report to prove 8 success. A monitoring report with photos will be submitted annually for 5 years. WNR will conduct monitoring and Hard Rock Mine, Inc. or Wilderness Creek Falls ' will provide the financial assurance that will ensure this project is complete and successful. ' An as-built report will be included with the first annual monitoring report. At least two bankfull events in separate years will be documented within 5 years. Otherwise, stream monitoring will continue until two bankfull events have ' occurred in two separate years. Success will be measured in terms of plant survivability and channel stability. ' Channel Stability Channel stability will be measured through cross-sections, longitudinal profiles, ' and pebble counts; and then compared to previous measurements. A minimum of four permanent cross-sections will be taken per 1,000 linear feet of stream representing 50% pools and 50% riffles. Pebble counts will be performed at ' each cross section. A longitudinal profile will be conducted to monitor any changes in profile. If the reach is less than 3,000 linear feet, then all 3,000 feet will be surveyed. If the reach is greater than 3,000 linear feet, then the profile ' will include 30% of the restored stream or 3,000 linear feet (whichever is greater). If there is substantial evidence of instability, such as down-cutting or ' erosion, remedial actions will be planned, approved, and implemented. Plant Survival ' Vegetative success will be measured in terms of plant survival. Plant survival will be measured with stem counts in designated vegetative monitoring plots. Stem counts of at least 320 stems/acre in year 3 and 260 stems/acre in year 5 will be considered successful. Vegetative monitoring plots, 1/10 acre in size, will be set up adjacent to each cross section. Plant survivability will be assessed using these vegetative monitoring plots. If there is substantial plant mortality that ' leads to lowered stem counts, remedial actions will be taken. Areas with less than 75% vegetation coverage will be re-seeded and/or fertilized; ' and live stakes and bare rooted trees will be planted to achieve the desired densities. Exotic, invasive, and invader species will be removed so that they will ' not exceed 20% of the vegetative composition. Photographic Reference Sites ' Photos will be taken at each cross section as well as monumented reference sites throughout the restoration reach. These photos will indicate aggradation, degradation, and/or bank erosion. If none exists, no remedial action will be ' required. If aggradation, degradation, and/or bank erosion occurs, the problem will be accessed and remedial actions will be planned, approved, and implemented. ' 9 11 n 0 Recommended Native Species for Stream Restoration Trees Yellow Buckeye Aescu/us octandra Sweet Birch Oetula lenta River Birch Oetula nigra Bitternut Hickory Carya cordiformis Shagbark Hickory Carya ovata Persimmon Diospyros virginiana Green Ash Fraxinus pennsylvanica Carolina Silverbell Halesia caroliniana Blackgum Nyssa sylvatica Sycamore Platanus occidentalis Black Cherry Prunus serotina Black Willow Salixnigra White Basswood Tilia heterphylla Small Trees and Shrubs Tag Alder Anus serrulata Serviceberry Amelanchier arbrea Red Chokeberry Aronia arbutifolia Common Pawpaw Asimina triboba Sweet-shrub Calycanthus floridus Ironwood Carpinus caroliniana Alternate Leaf Dogwood Cornus alternifolia Silky Dogwood Cornus amomum Hazel-nut Corylus Americana Witch Hazel Hamamelis virginiana Winter Berry Ilex verticillata Doghobble Leucothoe axillaries Spicebush Lindera benzoin Male-berry Lyonia ligustrina Umbrella Tree Magnolia tripetala Ninebark Physocarpus opulifolius Wild Azalea Rhododendron periclymenoides Swamp Azalea Rhododendron viscosum Swamp Rose Rosa palustris Silky Willow Salix sericea Meadowsweet Spirea latifolia Sweet Leaf Symplocos tinctoria Withe-rod Viburnum cassinoides Yellow-root Aanthorhiza simplicissima 10 Herbaceous ' Jack-in-the-Pulpit Ansaema triPhYllum ' Swamp Milkweed Fringed Sedge Asclepias incarnate Carex crinata Bladder Sedge Carex intumescens Hop Sedge Carex lupulina ' Lurid Sedge Carex lurida Broom Sedge Carex scoparia ' Tussock Sedge Carex stricta Fox Sedge Carex vulpinoides Turtlehead Chelone glabra ' Umbrella Sedge Cyperus strigosus Bottlebrush Grass Elymus hystrix Joe-Pye Weed Eupatorium fistulosum ' Boneset Eupatorium perfoliatum Jewelweed Impatiens capensis Soft Rush Juncos effuses ' Rice Cutgrass Leersia orywides Cardinal Flower Lobelia cardinalis Great Blue Lobelia Lobelia siphilitica ' Seedbox Ludwigia alternifolia Switchgrass Panicum virgatum Tea rth u m b Polygonum sagittatum ' Green Bulrush Scirpus atrovirens Woolgrass Scirpus cyperinus ' Soft Stem Bulrush Scirpus validus Bur-reed Sparganium americanum March Fern Theypteris palustris ' River Oats Uniola latifolia Ironweed Vernonia noveboracensis II 1 1 Attachment A UT 1 to Wolf Creek Existing Conditions 12 w. T U N O N N U 0 N O 00 C0 00 O 0 O O N O O N N N d N 0N O O N N (11) UOIIPAG13 0 O O LO CD V O co :5 O N O O O co O d' C) O O O O N I" N O O O N N N Y C _O C (^z Y O m a c O U O O O O O U (n number of particles 1 N O CO N C\j LO 0 0 Y ZO O U 00 O a I ? m 0 a 0 .ro OO a) CO O ^ TO M ? o E T U >' -0 a) N `y 1 0 N 0 3 i O U 1 L N O O E E O N ' O r r N o oi ? CO o U ? N f0 a N_ Ctl O W 1 N E 8 3 Cn CL Y T N U 0 H C O CO O W CO N 0 N M V V (D E E Q) (D LO O LO V LC) D U) LO (D 00 CF) C) 000 it o C (z 0 \01 \o 0 \0° 0 0 0 0 \0o \ \0 0 ° O O O O O O O O O O O O ? O m 00 ? O LC) ? M N r C/) T m ueyj aaulf fuawed m 0o U M r N N N N l() r N r 000 T O 0 E -° CO N N LC) 'IT 00 (D c 7 c m a) O) O O N LC) O O O r N r (D N N LCl d' -It (D CA r r N M Lt o O CO a0 0 LO Ol r r N C\j (ND N 0 0 0 CO L0 r N V OU 15 OU C N (o ? C) N L() LO (1') r (D N N N O 00 r (D N N LO V O COO (D N N st 00 Y 0 r L N L N O O r O r N CJ (D M N O r M w N N CO Ln O O n (n O O r N i T Ca -0 -6 'O -0 -0 C C C C C > > > > > > > > al Q) a) _N > L 1] 0 O O a) a) N o Y C '6 - 0 .l Q YO U N °?nmm?» mca?smmmmrora Q i - .0 -0 -0 -0 0 0 0 0 0 0 0 a Z) :3 Z3 =3 :3 0 0 .. a _ LL Q) .Fn a) O E O m ? ` C C O) 7 O7O0) T iTO 0 0 0 0 0 Q 4 L 0 0 m m N 0 7n L ` m C C C E E a) fit N N - E 0 N 2) EF - - E m _ 0 L 0 T . CO n a E U 0 T N 0 0 0 0 (TS (d o cm N N ' 0 0 Y ) N >? E E > f - 0 N [ Q) U ? n > > T T E a) T E 0 ? m > > > > Z ? ) 1 I ) i I I I ? ! I I I i I I i I I I I I I I I I ! i VT ? I a a 0 o o 0 a O U a a m N I a I I N L U N N Y N O U O 0 H Z) U co 0 D_ m 0 J X O .O7 C s O O d N U O d O O U O N X 4 Y C cd I??I TI 't O N co 3 T i D m m f O W O O O O N O O O U C _y N C C (li L 000 U O CD O v O N O CD U') 'IT co C\j COD LO LO LO LO In LO LO LO O O O O O O O O O N N N N N N N N N (4) UOIIEn213 a? N t 0 tQ Y U 0 0 q- H D 0 0 o cz 0 3 0 o co c cU O O LO CD -9-7 -?c co o Q co c 0 o N U O O O O U O T O m 00 C0- C0- LO LO O O O O N N N N O N (D LO d cr) N LO LO LO LO LO LO CD C) (D C) 0 C) N N N N N N (11) uOIjPAGj? number of particles U ro a LO CO CD CO N N LO O O O O ? I O 0 O o o CD O Q) r O 0) CO 0 O O E T U > C O O O N O _O ? 1 O UO U 9 O O E E C N L N a) N Q * O N U U rr a TO ? ro o U) O N C N E CU Q Y O O H C O :3 0 CD M CC) 'IT N CO r N N CO V? O _ v 0 LO 0 LO 't LO CD _ D U ) I I ? ? ? ? ? ? U) ? o U (? o 0 0 0 00 00 00 00 0 0 0 0 0 0 0 o O j O O O O O O O O O O O (P 00 ? CO ? V M N O CO T CD ueyj caul} juaoaad m O U r r ? r CC) r n N r N) r N O O o O N E () O O N M r N U') CO O CD N N N dcc) (0 ' (M O O p O) O O O O N r Cp N N 4 V V (D a0 r r N M V CO O N 00 Cn O r r N CD O O O CO In r N V U U E C N O c4 ? O N LO t!') . r CO N N N V CO OO r CD N N Cn r N CO V V 0 00 0 CO a) N 00 CD N N 7 00 Cn CD N R '+J N C N 0 O r 7 C; r N CO L(? O N CA O O T Q _ L >+ M -O -O -O -O -O C C C C C > > > > > > > > > a) a) a) a) 0 - 0 0 0 6 6 6 6 - ? Y C 'O O U C6 O U O - W 0 O O CO m n n c? N c? N c? c0 N cu cts C>) O) C>) o) O) o) O) ? 1 - - - - .O .O 1T 1] 0 0 0 0 a a :g O Z3 D? O O O O O O n O a 0 3 y '? 0 0 O O U U U U 0 0 0 = = a) CO c c E2 T„ -p O Cu a) a) a) E E a) a) a) a) _ o 0) M j 0) U _ - - M Cz E O -0 T V OU 0 > E _0 _0 a) v v v E .- (z Cz O y m O N CO U >. a) ? O n > w a) > E o Z m ) 1 I I I ? I ! i ! I I , I I I ? I I ; 6 U ! a a O o 0 9 _O O U N ? c ( Cv) U') CO CC) M a c a 0 0 N CJ L U co a) Y N U 0 0 H C C C 7 O O O_ N O U N `t C O U N U X Q C Y C L i U N m i a N O "2 m U C R1 _N 0 O ? O C r ? C15 L U O LO O M M N N O O O O O O O O O N N N N N N N (11) U01lena13 L M J Q? L C'i U M r O N ? L U 0 0 M C Q C O U O N N O L U O 0 'T ^ LO V/ TO V^/ LO W 0 00 LO r- 0 P- LC) (0 O CO LO LO O L Lr) LO 0 LO M O Ce) LO N O N LO T O T LO O 00 Cfl LO It M N N N N N N N N O O O O O O O N N N N N N N (11) uOiJLRnal:? number of particles U m Q O N O In O LO O O Q O I O T \0 0 N 5 \° a o o 0 0 (d O a) r p^ N O ? O E T ? U >' -O N O C > a N _0 O) U O U) O O - --- - - - - - - - - E E CO C) N -N r- 00 U (n N 0 C) T O (z U CO CL ,C ? (C O N a) 'y U N E N 3 U r C/) a o _ Y ? N O > O ? o CO T M W M - U N CO CO It W CZ E E L ) N (D LO OLO ?LO N M LO (D M M O N U CO \° 0 \00 \00 0\° \0 0 0 \° \ 0 0 0 0 \0 0 O O O O O O O O O O O O ? O M W t\ CO U) -I- M N r C/) CD CO ueyl aaui} lueoaad C OO U r r (O U) N N r (O (D r O O E E N Ln c c `-' Q) 0) (O O O N N U') O O O N r (D N N M V (.O 00 r r N M? CD O N 00 C) CD 00 LO O r r N d' M (D (ND N O O O M Ln r N V O O 7 O 7 N Imo. N O NLO LO Lnr (D N N Nor (D Mr ONNU) r N M ? ? O wO (O M N w (O N N't CO Ln to N V O - _ O p r N CO LO O O a O O r N >. <o -0-0 c c c c c o 0) W Q) a) 0) 0 Q) W > N O N N - - a) m a) i Y C 'O - ro L) CO 0 75 roCZ mCZ (a (n m m (n 'n > > > > > > > (om(a(nro(am(a(o o) m 6,6 ???_0 0 0 0 °? oao :3 ZO M :3 Z3 o ? 0- 0-2 -6 3 .N m o E m m c c a) o m v v U U o 0 0 0 0 a n a o m ) N i am(u N N a) o S>>e n n - ro:3 o)a) E a) m n t T` a`) (D0L) E oooo ?E,a mca E E ? `m 0) a, L`a CZ a) U > > E E U U>> E - (n u) CD U) > > > z o m > > N O _N .fl O i I I O i I ? I I ? I I I I I I I I I I I I I (0 I i ? I I i I I I N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Wilderness Creek Falls. UT1 to Wolf Creek Relocation Summary VARIABLES Steam Name Unit UT to Wolf Creek UT to Wolf Creek UT to Wolf Creek Count Cherokee Cherokee Cherokee Notes: Reacht Reach2 Reach3 Responsible Crew Crew Crew Crew Stream Type Drainage Area sq. mile 0.2 0.2 0.2 Bankfull Width (Wbkf) ft 29.10 6.90 5.40 min/max 6.90 Bankfull Mean Depth (Dbkf) ft 0.20 0.80 0.54 min/max 0.80 Width/De th Ratio (Wbkf/Dbkf) 145.50 8.63 10.00 min/max 8.63 Bankfull Cross-Sectional Area (Abkf) s q. ft 5.82 5.52 2.92 min/max 5.52 Wetted Perimeter (wet Perim) ft 29.50 8.50 6.48 est 2'Dbkf + Wbkf 29.50 8.50 6.46 Width Floodprone Area(Wfpa) ft 36.00 66.00 98.40 min/max Entrenchment Ratio 1.24 9.57 17.85 min/max Sinuosi (K) 1.00 1.38. 0.98 Bankfull Mean Velocity(Ubkf) ft/sec 2.67 2.70 4.80 Bankfull Discharge (Qbkf) cis 15.54 14.90 14.00 Hydraulic Radius (Abkf / wet perim) 0.20 0.65 0.45 Sheer Stress (62.4' Hd' Slope) ibs/sq.ft. 1.096 0.353 2.696 Sheer Velocity (32.2' R " S )1/2 ft/sec 0.752 0.427 1.179 Unit Power(lbs/ft/sec) (62.4 "Q"S/Wbkf) 2.966 1.173 15.527 Friction factor (U/U') 3.55 6.33 4.07 D50 mm 40.00 28.00 38 D84 mm 63.00 42.00 83 Bankfull Maximum Depth (dmbkf) ft 0.30 1.70 1.20 riffle min/max Maximum Riffle Depth/Mean Riffle Depth 1.50 2.13 2.22 Low Bank height ft 0.20 2.00 1.00 Low Bank Height/Max Riffle Depth 0.67 1.18 0.83 Meander Length (Lm) 121.00 84.00 min/max Meander Length Ratio 17.54 15.56 Radius of Curvature (Rc) 47.00 Rc / Bankfull Width 6.81 Belt Width (Wblt) 58.00 12.00 Meander Width Ratio 8.41 2.22 Valley Slope (VS) 0.09 0.01 0.09 Channel Slope (S) 0.09 0.01 0.10 Pool Slope (Sp) 0.00 0.00 0.00 min/max 0/0 010 0/0 Pool Slope / S 0.00 0.00 0.00 Riffle Slope (Srfl) 0.09 0.01 0.08 min/max Srfl / S 1.01 1.01 0.79 Run Slope (Srun) 0.09 0.01 0.14 min/max Srun / S 1.01 1.61 1.46 Glide Slope (S Id) min/max Sgld / S 0.00 0.00 0.00 Max Pool Depth (Dmpd) ft 1.40 Dm pd / Dbkf ratio 0.00 0.00 2.59 Max Run Depth (Dmrun) ft 1.70 1.20 Dmrun / Dbkf 0.00 0.25 0.22 Max Glide Depth (Dm Id) ft Dmgld / Dbkf Pool Width (Wbkfp) ft 6.30 Wbkfp / Wbkf 0.00 0.00 1.17 Pool - Pool spacing ft 37.20 61.30 min/max Pool - Pool / Wbkf 0.00 5.39 11.35 Pool Length 12.80 Pool Length Ratio 0.00 0.00 2.37 Riffle Length 22.00 16.80 Riffle Length Ratio 0.00 3.19 3.11 Glide Length Glide Length Ratio Run Length 21.00 25.00 Run Length Ratio 0.00 3.04 4.63 Channel Materials D 16 mm 25.00 16.00 23 D 35 mm 33.00 23.00 31 D 50 mm 40.00 28.00 38 D 84 mm 63.00 42.00 83 D 95 mm 120.00 58.00 140 8/27/2008 Mean Referen( values Reference Reach Reach Cherokee Cheroke Reference 1 Reference WNR WNR A4a+ B4/1a 0.33 0.06 29.10 9.60 8.2/11 0.20 0.72 .6/.8 145.50 13.33 9.8/17.1 5.82 6.912 6.9/6.£ 11.04 11.04 36.00 11.9 9.8/14.1 1.24 1.24 1/1.5 1.00 1.10 2.67 10.8 15.54 74.649 0.63 7.228 1.931 89.76E 5.59 0.30 0.90 .8/1 1.50 1.25 1.90 0.67 2.11 55.80 48.6/63 0.09 0.22 0.09 0.19 0.00 0.00 0.09 0.10 Tat. 1.01 0.52 0.09 0.89 .27/3.. 1.01 4.81 #DIV/0! 0.00 0/0 0.00 0.00 #DIV/0! 2.80 0.00 3.89 0.39 #DIV/0! 14.10 2.E25. 0.00 1.47 9.09 92/9.1 1.58 58/1. 1.19 2.799 1.202 8.733 2.45 41.10 145.4`< 0.61 0.61 1.39 0_64 1.05 113.5( 0.62 19.19.-77 0.11 .02/.16 0.01 0.76 1.73 NA NA 5.16 0.90 1 1.80 1 NA I 1 5.40 1 41.1 I Wilderness Creek Falls. UT1 to Wolf Creek Relocation Summary 1 1 VARIABLES Steam Name Unit Reference Reach NEW CHANNEL NEW CHANNEL NEW CHANNEL Count Transylvania Cherokee Cherokee Cherokee Notes: Reference 3 Reach 1 Reach 2 Reach 3 Responsible Crew WNR WNR WNR WNR Stream Type B3/1c 64/1a 113411c 84/1a Drainage Area sq. mile 11.70 0.20 0.20 0.20 Bankfull Width (Wbkf) ft 49.18 8.30 8.30 8.30 min/max Bankfull Mean Depth (Dbkf) ft 1.88 0.64 0.64 0.64 min/max Width/Depth Ratio (Wbkf/Dbkf) 26.16 13.00. 13.00 13.00 min/max Bankfull Cross-Sectional Area (Abkf) sq. ft 92.4584 5.27 5.27 5.27 min/max 5.30 5.30 5.30 Wetted Perimeter (wet erim) ft 49.33 9.58 9.58 9.58 est 2'Dbkf + Wbkf 9.58 9.58 9.58 Width Floodprone Area (Wfpa) ft 88.01 13.00 13.00 13.00 min/max Entrenchment Ratio 1.79 1.57 1.57 1.57 min/max Sinuosi (K) 1.08 1.00 1.38 1.00 Bankfull Mean Velocity (Ubkf) ft/sec 3.99 3.98 1.73 4.30 Bankfull Discharge (Qbkf) cfs 368.909016 21.09 9.17 22.79 Hydraulic Radius (Abkf / wet perim) 1.87 0.55 0.55 0.55 Sheer Stress (62.4' Hd' Slope) Ibs/sq.ft. 1.287 3.24 0.30 3.63 Sheer Velocity (32.2' R' S )1/2 ft /sec 0.815 1.29 0.39 1.37 Unit Power(lbs/ft/sec) (62.4 •Q•S/Wbkf) 5.149 14.97 0.60 18.11 Friction factor (U/U') 4.90 3.08 4.41 3.14 D50 mm 242.00 41.10 41.10 41.10 D84 mm 394.00 145.42 145.42 145.42 Bankfull Maximum Depth (dmbkf) ft 2.67 0.89 0.89 0.89 riffle min/max Maximum Riffle Depth/Mean Riffle Depth 1.42 1.39 1.39 1.39 Low Bank height ft 2.32 0.93 0.93 Low Bank Height/Max: Riffle Depth 0.87 1.05 1.05 Meander Length (Lm) 164.12 164.12 164.12 min/max Meander Length Ratio 0.00 19.77 19.77 19.77 Radius of Curvature (Rc) 131.59 131.59 131.59 Rc / Bankfull Width 0.000 15.85 15.85 15.85 Belt Width (Wbit) 4181 43.81 43.81 Meander Width Ratio 0.00 5.28 5.28 5.28 Valle Slope (VS) 0.01 0.09 0.01 0.11 Channel Slope (S) 0.01 0.09 0.01 0.11 Pool Slope (Sp) 0.01 0.01 0.01 0.01 min/max Pool Slope / S 0.64 0.09 0.64 0.09 Riffle Slope (Srfl) 0.01 0.07 0.01 0.08 min/max Srfl / S 0.91 0.74 0.91 0.74 Run Slope (Srun) 0.02 0.80 0.02 0.89 min/max Srun / S 1.82 8.43 1.82 8.43 Glide Slope (Sgld) 0.00 0.01 0.00 0.01 min/max Sgld / S 0.09 0.09 0.09 0.09 Max Pool Depth (Dmpd) ft 3.10 2.19 1.05 2.19 Dm pd / Dbkf ratio 1.65 3.43 1.65 3.43 Max Run Depth (Dmrun) ft 2.81 1.10 0.95 1.10 Dmrun / Dbkf 1.49 1.73 1.49 1.73 Max Glide Depth (Dmgld) ft 2.54 0.51 Dm Id / Dbkf 0.80 0.80 Pool Width (Wbkfp) ft 47.89 7.46 8.08 7.46 Wbk / Wbkf 0.97 0.90 0.97 0.90 Pool- Poolspacing ft 215.00 13.56 36.29 13.56 min/max Pool - Pool / Wbkf 4.37 1.63 4.37 1.63 Pool Length 39.70 4.37 6.70 4.37 Pool Length Ratio 0.81 0.53 0.81 0.53 Riffle Length 110.00 8.60 18.56 8.60 Riffle Length Ratio 2.24 1.04 2.24 1.04 Glide Length NA NA NA NA Glide Length Ratio NA 0.19 NA NA Run Length 3.11 0.00 NA Run Length Ratio 0.38 NA Channel Materials D 16 mm 32.37 1.32 1.32 1.32 D 35 mm 54.72 21.95 21.95 21.85 D 50 mm 76.13 41.10 41.10 41.10 D 84 mm 163.72 145.42 145.42 145.42 D 95 mm 244.03 224.82 224.82 224.82 8/27/2008 Attachment B Pond Relocation Existing Conditions 13 C O CL O I- C 7 O O O_ N N U N C O U N N X Q O c m a`> ro m 0 LO N O O N O LO 0 0 0 0 N O CO m 'IT N O O m O O O O O O O O m m N N N N N N N N r r (4) UOIJUA91:1 a) U C co _N O C C c0 U 0 c C) cz Cfl 3 0 L 0 0 o_ /T^ V/ X C ^0 I - 0 0 L c co 3 0 O V `H 70 m ^c^z O N 0 U U U U) W 0 L U O T O Y/ It T T O O O N N N C] Ch N T O Cn co T O O N N N N N N (14) UOIIUA813 N N Cn X c 0 0 H i I 1 I i i r r , I i i I i t I Iq O O N O LO O r O N O O N N (11) u011PnaI] O ,It L() M O M LO N O L N } L Y v-- LO T C O U N N U O O U O I T LO O LO CO LO O O I? O N O N N O M O r- rr M U) X C= 0 n 0 L Y O +- CO ` L O a In O Q- C) M 0 m Ln Ln 0 O U N O T 1 f 1 ' I 1 0 CD LO LO Ln It LAO M Lf) N LO T O O M O O O Ln N T NO O N O N O NO O N O N O O O O O N N N N N (11) uoil-en813 number of particles CL oO to ct N O O r ,- r r CO (D V N 0 0 0 ? I 0 O T 0 N o 0 0 0 0 O 0 N r O O M O 0 E r U -O 75 N N L) cz _0 N 3 ± 0 N iT U - - - - - - - - - - - - - - O O E E W N cc O C t N 0 3 ! I (n N o ? i .? ? M t7 _U 1] cd ro Q ? C C N ? cz O () _ N ? C O N E a U) o a T -o n 0 H c 0 0 O O cD c O c co m (D T ? E N ? E O O LO O LO 't (O O ? 0 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0 0 O o O 0 r- M O O 0 M ( 0 LO 't M N N m uey} aaulf fuaoaad C O O U r N r r N W LO LO n M c0 ~ n cp C1 E E N LO C C ?-' O to O T LO N LO CO O 't 00 (O N N O O C 7 O O O O O O N r (D N N LO V CO cO r r N M (O O OD L O m r r N ( O O CO lO r N U U N O _ LO CC U7 O NLO LO Lnr (O T N NT (OW ONNM r- N M It tCD 000 O M N M (0 N N'It CO M CO N V 'Y O 111 N O 0 r N CO LO O O a (n O O + N 75 a a C '0-0C O M > > > > > > > > » ? Z ? N N ? N N -O a a a -O ° ca o o C 2 ro N ( W n N LO M LO N LO LO Ld N Ln ` -0 -0 .Q -0 - o U •? m o E o 0 0? o? o? m a o? m a? o 0 0 0 0 0 0 0 0 ° 3 c8 c c 7? e c E E C) C) Q) C a) m E a n 9 r t m O ) 10 U O E U U ?' cl 0 0 0 0 0 U U U U 0 '6 (0 LV o E E fU tti n w- U N - Q) o E E > > E E O Ln N CO > > > > z N O N I I I I I I I I I I I I I I i I I i I I I I ! I I I I 9 U _ O m ? w T (6 U N I Wilderness Creek Falls. Pond Relocation Summary VARIABLES Steam Name Unit UT to Pond Mean values a erence Reads a erence Reach NEW CHANNEL County Cherokee Cherokee Transylvania Cherokee Notes: Reference 2 Reference 3 Responsible Crew Crew WNR WNR WNR Stream Type 113411a B3/11c 83a Drainage Area sq. mile 0.13 0.06 11.70 0.13 Bankfull Width (Wbkf) ft 9.60 9.60 5.74 49.18 7.30 min/max 4.319.6 4.9/5.74 Bankfull Mean Depth (Dbkf) It 0.20 0.20 0.44 1.88 0.52 min/max .2/4 .44/.48 Width/Depth Ratio (Wbkf/Dbkf) 48.00 48.00 13.05 26.16 14.00 min/max 20.2148 10.2113.05 Bankfull Cross-Sectional Area (Abkf) s q. ft 2.30 2.30 2.5256 92.4584 3.77 min/max 2.3/2.4 2.35/2.53 3.81 Wetted Perimeter (wet perim) ft 10.00 6.08 49.33 8.34 est 2'Dbkf + Wbkf 10.00 5.49/6.08 8.34 Width Floodprone Area (Wfpa) It 25.70 25.70 9.09 88.01 13.00 min/max 7.9219.09 Entrenchment Ratio 2.68 2.68 1.58 1.79 1.78 min/max 1.58/1.62 Sinuosity (K) 1.07 1.07 1.19 1.08 1.1 Bankfull Mean Velocity (Ubkf) ft/sec 2.12 2.12 2.95 3.99 3.02 Bankfull Discharge (Dbkf) cfs 4.07 4.07 7.437892 368.909016 11.50 Hydraulic Radius (Abkf / wet perim) 0.23 0.42 1.87 0.45 Sheer Stress (62.4' Hd' Slope) Ibs/sq.ft. 0.875 2.799 1.287 1.66 Sheer Velocity (32.2' R' S)1/2 ft/sec 0.672 1.202 0.815 0.93 Unit Power(lbs/f /sec) (62.4'tYS/Wbkf) 1.614 8.733 5.149 5.80 Friction factor (U/U') 3.15 2.45 4.90 3.26 D50 mm 76.00 41.10 242.00 76.00 D84 mm 160.00 145.42 394.00 160.00 Bankfull Maximum Depth (dmbkf) ft 0.80 0.80 0.61 2.67 0.72 riffle min/max 0.80 0.61 Maximum Riffle Depth/Mean Riffle Depth 4.00 4.00 1.39 1.42 1.39 Low Bank height It 0.70 0.64 2.32 0.76 Low Bank Height/Max Riffle Depth 0.88 0.88 1.05 0.87 1.05 Meander Length (Lm) 61.00 113.50 144.35 min/max 56/66 0.62 Meander Length Ratio 6.35 19.77 0.00 19.77 Radius of Curvature (Rc) 20.00 91.00 15.21 Rc / Bankfull Width 2.08 15.854 0.000 2.08 Belt Width (Wblt) 30.00 30.30 38.53 Meander Width Ratio 3.13 5.28 0.00 3.13 Valle Slope (VS) 0.07 0.07 0.13 0.01 0.06 Channel Slope (S) 0.06 0.06 0.11 0.01 0.06 Pool Slope (Sp) 0.00 0.01 0.01 0.01 min/max 010 01.03 Pool Slope / S 0.00 0.09 0.64 0.09 Riffle Slope (Srfl) 0.05 0.05 0.08 0.01 0.05 min/max 0.0081/.11 .02/.16 Srfl / S 0.87 0.87 0.74 0.91 0.87 Run Slope (Srun) 0.19 0.19 0.91 0.02 0.16 min/max .0581.39 .22/4.54 Srun / S 3.11 3.11 8.43 1.82 3.11 Glide Slope (Sgld) #DIV/0! 0.01 0.00 0.00 min/max .0101 Sgld / S 0.00 0.00 0.09 0.09 0.00 Max Pool Depth (Dmpd) ft 1.30 1.30 1.51 3.10 1.79 Dm pd / Dbkf ratio 6.50 6.50 3.43 1.65 3.43 Max Run Depth (Dmrun) ft 0.80 0.76 2.81 0.90 Dmrun / Dbkf 0.08 1.73 1.49 1.73 Max Glide Depth (Dmgld) ft NA 2.54 Dm Id / Dbkf NA 0.80 Pool Width (Wbkfp) ft 3.90 5.16 47.89 6.56 Wbkfp / Wbkf 0.41 0.90 0.97 0.90 Pool- Pool spacing It 22.00 22.00 9.38 215.00 16.73 min/max 4.7/41 3.39/32.11 Pool -Pool /Wbkf a;j 2.29 1.63 4.37 2.29 Pool Length 6.30 3.02 39.70 4.79 Pool Length Ratio 0.66 0.53 0.81 0.66 Riffle Length 14.20 5.95 110.00 10.80 Riffle Length Ratio 1.48 1.04 224 1.48 Glide Length 1.60 NA NA 1.22 Glide Length Ratio 0.17 NA NA 0.17 Run Length 8.20 6.24 Run Length Ratio 0.85 0.85 Channel Materials D 16 mm 18.00 1.32 32.37 18.00 D 35 mm 49.00 21.95 54.72 49.00 D 50 mm 76.00 41.1 76.13 76.00 D84 mm 160.00 145.42 163.72 160.00 D95 mm 230.00 224.82 244.03 230.00 8/26/2008 L Attachment C NC Prism Maps 14 W Z O 1 U H ¢ 2 w ' z 0 U W U O W O F ' Z 1 I 1 ?I 1 ?I i w fr J U ir O LL 0 H W ' Z H ¢ CL 0 Zo J p O? ? a Qw V a =a HM z Qa Z 4?¢¢ ?7 I l e d 9 m u H rl u 0 ro v LO M 0 0 O T N C O qt 00 N CD O O T T p ' M 00 C? O O +-a _ - O ` L T ^ , ^ Q T U C N It Co 00 O "t 0o N Cfl (z It It O lqt N It Wt It (D LO 00 LO O LO It (D 00 (D N v It It It It It LO LO LO (0 a Attachment D Reference Reach 1 A4a+ 15 0) R LL Y d d U W N m c d a t V m d d v C d i _d d H I O O r X N O) C 7 O O d Z5 O U N c 0 U m X Q Y C cd 1T?i 1 'C O N N N 0 0 Cl) O N O O N 0 U O ro o U) T a? c c0 O L U O O O In O O N O O O O) (13) uOIJUA01=1 O O O O O n O 0 M LO N t Y d N H L V tC d d V C d Yw?, MMW li R LL MW W L U N w? W C AL W a T o rn 0 o rn T T co r- rn m UOIIBA013 O N L LO 0 T O T LO CD C0 LO I?t rn rn rn L L Y ^(0 CL O U N U cn U 0 C) LO Ln It N N M t V m d Ir a) V C d L (D N LL Y W N L U Ul N C L 0 ICT Ln CY) O C'7 Y L N CCS Q O N C O, U O T O? U T L J OD I- CD LO m N T O C? CA 07 CA CA C7? CA CA [? Uoi1Pna13 0 0 CL N F- D t V R N 4) U C d d 4) N t0 LL Y 4) d U N N N d 1 EI ? I 1 { , j j I 0 ,It LO CY) O M LO N L O p N T O T LO 0 O O 00 r- CD LO It co N O co 00 00 00 OD 00 00 00 c n? 0 i Y c Q O CIO CL c U m U) U) U) Q U m number of particles Q 07 00 r- CO LP) CO N r 0 0 O O O I O 0 a) O 0 0 0 0 O C 4) CO It CV O ? r E U > -0 0) C N } O I CD O 0 - ? N1.7 O U r c[9 O U E C E N i - ? N N O N O C CO r r N Ch N O N U ? u_ Y i i o as O U '? N E U T U) _ Y N -0 N U) C O ? 0 O O M ? LO N C:) ,- CO U C:, ,- LO a) E L) O CO LO O LO ;J- LO CD o U ? o 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 O 0) 000 N COO LO "t CO 0011 O O C/) T m ueut aaulf }uawad i O 7 O 0) O ? i I i 3 j I _ I Q) ? I O I I I I i I I I I ? r C (? I I U I I I I I I ? I ! I I ? I I Attachment E t Reference Reach 2 B4/ la 16 Worksheet 5-3. Field form for Level II stream classification (Rosgen, 1996; Rosgen and Silvey, 2005). 1 1 1 1 1 Stream: Wilderness Creek, Reach - B4/1a Reference Reach Basin: Hiwassee Drainage Area: 38.4 acres 0.06 mil Location: NC/TN Border North of Quarry and above and Twp.&Rge: ; Sec.&Qtr.: ; Cross-Section Monuments (Lat./Long.): 0 Lat / 0 Lon Date: 03/19/08 Observers: WNR Valley Type: I I Bankfull WIDTH (Wbkf) WIDTH of the stream channel at bankfull stage elevation, in a riffle section. 5.74 Bankfull DEPTH (dbkf) Mean DEPTH of the stream channel cross-section, at bankfull stage elevation, in a riffle section (dbkf = A / Wbkf). 0.44 ft Bankfull X-Section AREA (Abkf) AREA of the stream channel cross-section, at bankfull stage elevation, in a riffle section. 2.53 ft/ft Width/Depth Ratio (Wbkf / dbkf) Bankfull WIDTH divided by bankfull mean DEPTH, in a riffle section. 13.05 ft Maximum DEPTH (dmbkf) Maximum depth of the bankfull channel cross-section, or distance between the bankfull stage and Thalweg elevations, in a riffle section. 0.63 ft WIDTH of Flood-Prone Area (Wfpa) Twice maximum DEPTH, or (2 x dmbkf) = the stage/elevation at which flood-prone area WIDTH is determined in a riffle section. 9.09 ft/ft Entrenchment Ratio (ER) The ratio of flood-prone area WIDTH divided by bankfull channel WIDTH (Wfpa/ Wbkf) (riffle section). 1.58 Channel Materials (Particle Size Index ) D50 The D50 particle size index represents the mean diameter of channel materials, as sampled from the channel surface, between the bankfull stage and Thalweg elevations. 20.41 mm Water Surface SLOPE (S) Channel slope = "rise over run" for a reach approximately 20-30 bankfull channel widths in length, with the "riffle-to-riffle" water surface slope representing the gradient at bankfull stage. 0.108 ft/ft Channel SINUOSITY (k) Sinuosity is an index of channel pattern, determined from a ratio of stream length divided by valley length (SL / VL); or estimated from a ratio of valley slope divided by channel slope (VS / S). 1.2 Stream g 4/1 a (See Figure 2-14) Type _> < Copyright © 2006 Wildland Hydrology WARSSS page 5-29 LL C\l 0- U m d a Cl) a) 0 cz CY) 0 J U cz `W U (D i a) U cr Cz T ? W 0 LO N co N O N O O CO N N N O L!7 ?? C cz Un (D N L T VJ 0) c _0 O CZ O co N T I C cz rn 0 Sri (O N co O O (11) UOIIEAal=l 1 1 110 v' Q II ' a 4-I N ,x (Z N ? O Cl) II o 4-I ' 0 U A n ? Q C ' cri co II 4-4 U CA •O ? C O 1 1 1 (11) UOIJUA81E] O ,It O co O N cz cz 4-+ 0 i 0 -17 O T O O O O O T T r T 1 1 1 1 1 1 1 1 1 1 1 1 Lr) (N 0 II CL 4-4 N x U CZ Q i U) C15 No. 00 II O 4-1 7 Q N X cz m u 4-1 x c? c? 0 0- 70 c 0 C? (11) uOiI'ena13 n T 1T ^ Y J M ?F- 0 cz O N O 2 T C) T 1 c n N C 1 L II 4-4 N x FC? N ?r C II 044 ' •? U A rr I L ?l ? .. ' co U ' X 0 I I 4-4 CDx .a CL 70 0 V (11) UOIJUA@13 of N 00 N T cz cz O 0 1 1 1 1 1 1 1 N C LL C N U N n Reach Classification 134/1 a Reference Reach 1 0 1 0.01 I 10000 0.1 1 10 100 1000 Particle Size (mm) 1 Attachment F Reference Reach 3 B3/ic 17 1 U T M m U cz (1) rr N U N U L U U) cz U 0 0 0 0 C7 0 0 N 0 0 T 0 LL Cl) m a CL C\j a CL U 0 0 LO O T U N y--, rn O II CL N 4-1 U -S4 (d i U) N (z OC) OC) O ? Q /1 Y O X cz m N Ol I I fn 4-I C O? C 70 C O O O T 4-0 4- nom/ W U (z O O LO I- 0 O (11) UOIJUA813 r O O m r T r 1 1 1 1 ' M U co O C ?- II N 4- U x (d ? 1 ? N N O U N 0 1? II U _ W CL C Cl) m x rn N I 4- C:_ 4-4 I..L N O 0 (11) UOIJUA913 O co O m O lql- .-\ 4--i O V co cz cn O Cz N a--j 0 0 O T O O T Reach Classification N C LL N U N D_ 1 0.01 0.1 1 10 100 1000 10000 Particle Size (mm) S11` =1 N33?0 SS3N?13011M:i.03rO?Ij r?c??i oil, -00 z Q O s? dc ? ,, ?• f'!? , ?I?m ? •?"? 9M j? i?°T7?j1 a" iyt? O I. ??_=-e",y ? ? yM ? y; ? 'k,.y?? 1 ??pp,. ? ,• ,V`}?1 ? ,y,.;;w??,,f ??t? ?? ? i??t, h i rr1, j . ? `, r ?'j ?." i .• a ?` . ? • s b•' Lij f ?a } °tt 3, 4' k. '?1? +1? pq?+y l qyi 4 `' 1, W Z fka e LJL ,,1, rr? s'. J,+, ?Q V 1? { Ib ?t ,al•, j,;! ! ,{,;?I r c f v/ L' y f ,,fin ?. u1 O co 7- 0 4' O O Li N (6 • ,5'' w LL o N O U 00 1 4 l a w `i: 1 C A? k 1h x N V ^' ?a t 9E' a p 00 O1 tsi ar y> 4t aN r riti t lip nL nv ' y aA ,.a4 ??. i f > t 1 O 00 00 ,Nr ?? Iy. :1 / r???.•I?/y .. rh?`'..,.A . •? ? ax i?, Tye ilia <.. [ _ •, ?, .. ,,+'` '4 ° y:''V',.w.'a `r 'f ;,. Ll,r? v' '?. y V 1 U U ? j 1 ??t•T?? ??j? ? } . jl? +1's?Tt A_ ,u t at a ? `? co 00 0N0 era ta.. aF' Yi ,_ TJ ?AS_'dl:i1?' "!y' As, JE` tt!« .? ,??df u; J ; ?,. ' ; [ 'd O LLJ \/,? I, ? ai tr,.,µK ; ! air •-0t, 7 , ?? •r {?#` ? ? Tqv -A/ rA j? t ? t'?? ?• t 46 •'+`, ?- + TI?y, f ?j l 1 ?' ? 1? NMI. Q (1. ? i ? "• 4 ;, ri t?? ?? ; ,? :i . ? : 1'_9f{??? .????•.•Li • r ?4 iS??? • '? "- l• b yp.. Ins 00 - rj 8 r ?? {+ 1 ,? ,, `S c CL 0 ^ r4 e? a ??1'?'? ryl, ,'? , 1?? ,1 ` ? ? Y' :y1? ? C (mod CQ N N Q c C. O ? U c C U ? -- -- - - N -0 Y co m N 3 co a U) U 7 C m 0 N Q M =3 N (0 O N ^ C N N U 0 J J $ r - '? m N G z° N N N O w U O C N O O - O •d Z cu _ . to O N fl- to '- © ® N Ca C O MO O c co m O _ co U O m C U •- n. -v od O to (/) N N C N U -li U_ _ Im 0) a) aw) :3 Co o ?s d to Iwe? 43toN ? O ; N Q N N 2 co L) U) N N ?- c ao 0 aassauua N t O > X X O N X Oi O Z u cYi x Q 0U)0?W13- WUCL WWUU W C7 X0000 (D 0 _°' 3 C V ? Q. w NOIJ>f1111SN073M NO! 3SO lON 00 SN?dld kl]VNIW11321d =NOISIA3b 31V0 lo88-8v9-8z8 91L8Z 'O"N aal?O Z88 xoH'O'd ,?, SlasllmoJ =nOS2g PAN PUV PUUIPAA T ?NM ?I ,IAN SDION pup slogwAS u01jeaolsa?:1 weeils sIleJ 199JO ssauaOpI!M ? O E Un Q. I? a-J C w E u s w E 4J w U- W M 0 m w w U) 0 D O ?- a? of z Q a? co V w Q w z z J (? C? Z Y z X w i i ..-I U) 0 z Q J w O 0 z z w J Q w w w z ? J U U) U) ? D Q ? Q Q 0 0 0 p z z z O >- O >- 0 >- m m F- m F- P V V U w W w w 0 F- U) Q T Q (T Q > W U w U ? 0 -j ? O ? O ? O D J '7 J -? J U w z 2 U U_ J Q z C? O D Q w Z Z) Z Q U) (If U U O w 8 U) _Z J O J a- O VJ U) O w O 0 cr- O 2 cr- Q w LL W V Z U) X w O Z ? v/ LL W IZ) ^^ O a- Z 00 O z z N O z f? D D m w W Z O w w w H U) z U) X w O Q O >- w ww (n 2 O O = O i I 7 1 w z O D O O U) c? a? a? V 2,878' OF BUFFER ENHANCEMENT LEVEL II. 30' BUFFERS WILL BE PLANTED ON BOTH SIDES OF THE BANK. AREAS WHERE THE BUFFER IS LACKING ON ONLY ONE SIDE WILL BE GIVEN A 60' BUFFER. INVASIVE SPECIES WILL BE REMOVED RESTORED POND CHANNEL Boa lill!(I f flilJllAl, ,V PROPOSED CHANNEL 851 LINEAR FEET WILL TIE IN WITH ORIGINAL- CHANNEL CURRENT LOCATION OF CHANNEL REFERENCE REACH A4a+ NORTH ; , - !39 -28? r 61 CHANNEL ENDS HERE REFERENCE REACH B4/1a NV ? t 4,819' OF STREAM WILL BE PRESERVED BY EITHER A CONSERVATION EASEMENT OR COVENANT RESTRICTIONS. DIVERTED CHANNEL BEGINS HERE o 956 LINEAR FEET RESTORATION SITE UT1 TO WOLF CREEK 1,^ A P l 3 Impact Number Lot Lines - Jurisdictional Stream(s) Jurisdictional Wetland(s) - ---- --- -- Jurisdictional Linear Wetland(s) Culvert / Road Crossing Unimproved Roads Pond Property Line L-_ Wilderness Creek Falls F1 Restoration Overview Overview / ? ' Scale: 1" = 600' NORTH a NOLL HISNO3311 NOA 3Sn ION OO SNVld AdVNIW113'dd :NOISIA3'd 31VO 1088-8179-8Z8 p , 91 L8Z 'O'N ` 3M-3 Z88 -9 'O'd Y . slunlnsoo0 o=osod iBjwN Pur pu"ot A Main ul?ld IaUUP4D 6ullsix3 eaid auiW slIeJ ?GGJO ssauaaPHAA Noll-3nalsN0:)3a MOJ 3Sn ION 0° Ma AJ anp u o 1 jeJ ojsa?j SNVId AdVNIW11321d toes a rszs 9IL8Z 'ownm Oti'O'd NaaJo IoM of in s7ueltnsaoo aamosag l 1wmvx 1e11 Puv PuePaAA MaiAJano eGJV auiw ?os„?? :31da uoijejolsa?j silej Naaio ssaujappm oe: L :aieos 00, 03/?OW32i 38 IIIM SV4V(1)I03HO JNIISIX3--\ 'NOISN3W10 TISVIS 31VOI-W321 Ol ONIG"O (133N I11M NNV8 IHOIU *NNV81J31 NO b3J3n8 03HS118`d1S3 '13NNVHO IVNIJIUO 03HSIIBVIS3 JO IUVIS- 30N3n03S 100d d31S e Wt,8 £ HOd3b- ?I 13NNVHO ONIISIX3 00+t, t/1S OI InO 1NlOd ONING Ol bnOINOO QNV 3dO1S-321 SH3(11n08 /M 3dOIS JO 301210W2id 3ON3n03S 1004 d31S 8L/V8 L HO`d32I H-L2AON bOOIJ 3NIW >10021 GIIOS '(1321 SIHl Ol NOIIVA) (130038 01(133N 'Wn103W JI (133N IIIM IIOS JO dOl 3Hl ,,NOIIVA313 3H1 JO 100J NIH11M SI Ol (133N 111M NOIIVA313 )J3213H1 NOMI'?(1IIOS NO ? -IO 031On2Il?NOO 3Hl • 80 01(13ZI11 n38 01 Sd32IV NI 'N b8 3Hl 3HI JO MIS H V3 NO S3103dS 3AIIV14 H11M (d121 .0£ IN3NMU d V XO02 O 3 QNV IVW3iVY4 (138 ONIISIX3 3Sn Ol 03NOIS30 N21311dd 2 33-An8 NVIHVdIH.0£ L IMOO SI NOIIOnUiSNOO 13NNVHO M3N 21313b - (13AOW32138 IIIM M38 NOISN31N1(1 b3d021d 3/VJ 01 XNt/81331 3H1 NO - (13033N 38 IIIM ONI(MIJ '(138 (13HSII9H1S3 NI NIdW3H OI -13NNVHO 3 018 Z HO`d3H NV-ld AlI A21s aoidNI35nW13321loN00 i6uof pasodoad SNVId a !JOAd Ipuipnl, d loss-gt?rszs 9IL8Z 'J'M `umuJ Z88 xOff'O'd 51ui31lmoJ 4I fmmN PUP P°x2AA ?yak lkff&Ak u01jeaols9?1 weags NOISU1311 31Va slleA NaaJO ssauJapliM 0 M N I ? a u 6 O a C 3 G1 W 4- 0 L t/1 I0 C. 0 L CL O r + M V / O O + O Q NOUVA313 O O M O co N 0 to N g N O N N O O N O O O m w U Q o ? a 0 i i O N O O O 00 i O t0 O N 0 O M _N ([f U v u 0 0 C 7 d' i N s? n: W 4- 0 L ILA 0 a 0 L Cl- O N + Cfl V O + M Q U) i O N tp O O (O O LO N 1 1 1 1 1 , 0 c O O PJWO aim, O N O O o w U Z Q H cn o m a 0 0 N d O O Y O co M 0 cO M O fn M O N M OD rl (0 kl) W) C14 OD 0 0) NOUVA313 NOILlf,k'd 35nlONOD a road 11Mipnl!b. pasodoad SN`dIdld dNIW11321d loss sty szs 91L8Z '3'1VUMU83Z88 Xofi'O'd siuminsaoo oammd fummm Pas PumBaM uoijeaolsaz:1 weeils :3- slleJ ?GGJO ssauaapl!M? :NOISIA321 I Lvcl? ju 0 0 a c 7 f a w W y? 0 L- 0 Q 0 O I + V! I? O Q I, l? ^ vJ O O Q) O co 0 co co 0 It tb O N co O O CD O Ona W U Z F¢- 0 co n 0 a n 0 N n O O n O 00 to O t0 (0 0O 0 0 N p O rn O OD r, to ) m OH) rn 0)) ° W OD 0 NOI-LVA313 w:)n usNoJ3s ao3 3sn ION 00 SNtld IbVNIWll32d -NOISIA38 -alva I088'814-8Z8 ,? ;,, 91L8Z 'J'IQ `1?Z88 YbH'O'd la. a %URt+MOO x I&MPHI Pug PURPM a.., SX Iauu'e4' 6uPSiX3 eaay auiw silej Naaio ssauaapl!m O C) N N (a U m U U) U) O O rn ?, c rn m c o p - a m o m o O OD O OD o -41 O a) a) LL O cD LL o (D •a) a) U U ? LO U) E RS O N N • •L M 0 M O r -C U ° cu co N M O N o N O O 4-0 U U a) N () to ° ° co co O 0 U U a? ° O ° o ?•?/ I.L cD t 00 N O OD 00 O N ao ^O 1 1 N N N N CR Q N N N N N _ Q? .. . 0000 N N N N o Z cn 'n p 0 C6 t IaaJ l aaiIJan o C c X :3 =3 Q O - Y c c m m o co CD co ? in - mLL NOu-)nv15N0}3b 803 341 lON OO SNdld AbVNIW11321d =NOISIA3b Alva I088-8V9-8Z8 , 9IL8Z '?"H `?l?J Z88 xog "O'd r `. s??l J oamosaW lempM Ptm pmptA +t ,, r?rk SX IauuP4D 6ui1SiX3 egad auiw sale j ?aajo ssauiapl!m O CD 7 N ? U U c c 2 O Y Y a m 00 0 (0 O m O CO LL O cD O O i o LO ° ? N LL - o C _ C: U (6 -6-a Cl) 0 f. O r p ) 0 O co ?0 cu O N O CV •L O r- O N N .L o _ U U t6 ( ('Q 0 LO 111111 0 O O U U ° W N0M(D tN000LO V, O U) o°0O???oOopOo O N 0000 N 00 O 00 O 0 N CO LO LO 0 to (/) cn N N C14 N N N N O 00000 N N N N N Q U U IaaJ IMIJOA a, IaaJ IMIJOA a, 00 N O O CD w c6 Q"O V / N ai L N ^ ? a }0 N }? m N N ` ` :3 :3 W 0 C C O W -IC 4_0 (0 (0 0 m m LL Mm m 0 W M LL F---?=d,kllVNlWll3Sd SNOJ3N SOA 3Sn ION 00 1088-av9az8 SX Iood pup aljj!-d paso OJd 91L8Z '?"H??Z88xog'O'd r, si l ?? m-a P AN Pue PmItaM N a aJ' PoM 01 L 1 n aaJd au!w ? , FrN NO?S,?a 31da slla_? ?aaJo ssauJapl!M co Y ? m t O \ - > r-L -? o? p o ' 0 m +-+ cn :r=+ U Cl) U) U) U) O 0 L o w W C13 -he x " ca a) cc L ? 2 IZ L?2 -C Lc m v o0 o v \V 0 U Q m M a) U Q U CL 2 c) Cl) 'CL •CL Y Y C /1 fh C a) ! ca cc F- O m F- O o °° a) V o // `O V o O cn! o / N U) U) U) U) cn cn O O U U ^, N Lo VJ Cp N (V 0 (U 'EL /'O .- LL CYCh EY 00 r 0 ? CL -0 0 (D O O C- O O 40 M 4.. O O O Q v o? i 6 Imo. a a a O v??°-o O Nom= L C6aa U) L U) EY U) -he O ^ X O C C 0 N a- `O C m m t0 .a V c cc m m t? m m m (n N011'N12LLSN033N M03 3N1 ION OO SNbrld ?121VNIWll321d 108881798ZS MGIAJaAO UOIjeJOISO 9i L8Z 'D'H `u(n-3 Z88 -9 'O'd 1 i i ! . siaginmoo anmosag T m eN Pup PuvAatA WMA MGIAJGAO UOIJeOOJa?j :NOIsI,3' :31da puOd SlleJ ?GGJO Ss9uJ9Pl!M 08'. 6 :aleos .Z=ItJM31Nl 2inOiNOO .1?Z0Z=NOlldn313 -1-Ina A1?/11J4JJ1\J nc+ rrr-,- 13NNVHO H _l _'?:1 O N VI\VV VI\11V1/??.! ')fNb8 3H1 JO d01 3H1 W02]J W` MUS 3H1 JO 301S HOV3 NO a3HSll8diS3 38 -1l1M S3103dS 3AIiVN HIM b3jjf18 Ndlbddlb .0£ 1N3NVM13d V • VW3?11SNM0a 1N3n3W Ol GNOd ONIISIX3 3H1 NIVWI Ol 03sn 38 IIIM 213WW NS H10lOUIVJ d r = r = = = = = r = = = = = r No DnHISNOJ3N NOJ 3Sh ION Oa SNVld XdVNIV41118d Cosa-sti9 aza nnainaanO U01jeJ0jSa?j 9IL8Z 'D'H `uolv¢J Z88 -El'O'd Flor,. SJUIITMoD =nosaZI lUM1gi1 PUU PUUPaAA ti.,.. - SLEA M91AJOA0 UOijOOOIGH NOIsIA311 31ea puOd Sile-A ?aaJO SsauJapIiM 05: L :aIeoS S3Hnionuis IOWM31S HAM 13NNVHO a3SWO2ld NouDnHISNOMV aoj 3sn loN ou SNVId AIJVNIIN1131 d :NOISIA31? :3TV 1088-8WIN ` 91L9Z ':)'N QO a Z88 YOU s1uml-o'J 1-mm p- PUBMdA DI!JOJd luuipnl!6uol pasodoad UO!IeOOIOH puod slle-? Naaio sseuiapl!m N Ar _W ``U^^ V/ a 2 U O O CL C O J .O w A 1 O CL O L O M + N Q i( n V O O O V 0 M N O N N O N O O N O O O 00 O O tp O 0 r 0 w N U Q O Q O O 0 rn 0 OD O r- 0 t0 O N O d O M O N O O 0 0 0 0 M 00 000 W n r 0 N N N N 6? O) W O m m 01 NOIIVA313 O N (D N 'U^ VJ o? v u O O d O O I a w N 4- ^^0 W O ^ O L O Iii J cfi `Q U) O M N `Q 1r n V O O M O N d O 0 O O 0) M O OD M O r 0 c0 pr) O N pr) O It fl) O n pr) O N M 0 M O O 0 O N O 00 N O n N O N O to N O N 0 N M O 0 ^ CD O 00 00 n M W 00 O O O O 001 Of Off O1 0) Of OD Of N N N N NOUVA313 W Z I"' NOIl7f11LL5 Ali NOi 35f1 ION OO SX auu P 4? 6 ui SNtlld A21tlNIWIl3?ld io88-8v9-8za •lsi x3 9IL8Z "3'H `u01-3Z88 xag'O'd siaa3lTsuo'J amnosag ImmBHI Puu Pue17aM ?skrA A u01180019?:l puOd N01SWIld :31t/4 sllaj Naaio ssauJappm o I o I (D U U O U) U) _I I O II Ln C O O - c O m LL O L Co I O I I I i I I ? I O ? W ? I U w ?I I p i O i O I co r O I ? ? I i 4-4 U O U `N^ N O VJ I ch O 00 Q Z O a°'t C) co -a cri v 00000 C/) U) 000000 C? N O 00 Tl- T- O -- ° O O O O N - ° •)( NNNNN -5 75 a X N N N N O o-5a N Y? w YY° W NOUVA313 co co NOUVA313 m'0 m r = r = = = = = = r = = = = = = r NOLL7hN15NOJ311 NO I Nl13 l3 0021d SNb'ld Jl21bNIW S X 100d PUP a IJJ ! J p a s o d oa d toss-sro9-szs ,?? ,, 9IL8Z '?'H amp Z88 xoH'O'd ' siuilinsaoD aamosag Iem18AI PUB PSI AA U O II» J O I a d p U O d IP4M NOISIA3b :31do slleJ ?OGJO SSGUJOpl!M ?I N Y m 3 o _ a? ? J U) O U N C!) C/) \ O \ U c 1 a) o o? ` w > ? Q o ? LL N U ?r_ 00 co Imo. W U ? o U) Cl) c II, I` m Q O U . 0/ L9 U VJ Ci) O (D O U !U W N U? ?? 7 O C) l LL O ? M L.L. E c x a. 0 N O O 2cLrm O Q. 0 O Y N 4)? O °o O NlYY O p c c co O M n ai ?-mmm Ummm(!A ?I Y m U) 3 0 a? (D J a. _O M' `, c 0 pc w Y x iz .zo E ? o Q U 1 Y C m m l1') 0 O U N C/) rA O U c U a) CL L? f MI W U .Q r ? a Cu o E a C E ac 0 ? r o? O 0 d a E a N =; = DER O c U ? m NOU-In LLSNOMH 1101 3Sn ION OO l e:)I d/ j_ 6 u i r " SNVId AWNlW 1321d to88 av?raz8 ,_.__? 9IL9Z 'JTd `uaiuJ Z88 Y0H'O'd ` InswJ oamsod Iem1eN Pup PuePaAA Ili ?11 1?11 Ito -NOISV13a :31VQ ueld uOlleJOIsa?J slIeJ NGGJO ssauaapi!M u01.13as ssoaD 2131N30 .£ NO 93Idd1S uZl H1W13unO3S b NOUVON3WWOOMI S83Nniov=mNVW Ol ONIll`dW 30V-1d £ SAWS 033S Z SNNV9 3dOIS I :NOIlVIIVlSNI WIA u-eld *A: U U0 _ MOIJ I3NNVHO (H31VM83(]Nn) 3dOIS 30 301 IONIl1dW 30 3043 b31VM 30 3003 1S 1 I-11JNO` B QNV S3IdV-LS H11M H3N3H-L d330 HONI 9 V NI 0M]OHONV ONIl1HW NOU-)nSISNO73U II03 M ION 00 L' d ?l 6 u i u d SNVId AWNIW1132fd 1088-849-828 91L8Z 'J'N `uc4ueJ Z88 xo8 'O'd sluminsuoJ anu mld IemMN Pul PumIPtA ?e veld UOIIWOIsa?J :NOISIA311 31V0 slieJ NGGJO ssaUJapi!M 31V0S Ol ION ONIIVIN SONI1NVld 2GNro1N00 ILOOM 3MV9 " S3NVIS 3M 38f10300Md ONIHVIS 3AIl 30 M31A N01103S-SSOMO 3dOIS 40 301 Ol SON31X3 ONLLIVW f 121VdV ,E-2 S3NV1S 3AIl 33VdS - 8313WVIQ NI .2-2/1 QNV 9N?l ,E-2 38 Q1110HS S3NV1S - QNnOdD 3AO8V 3NV1S 3H1 30 2/i 01 9/1 3AV31 - ` )INVS 3H1 01 21d1(13IQN3dd3d S3HV1S IIV1SNI - a31NVId III1Nn 1000 QNV iSIOW SQN3 3)IV1S 3AIl d33)1 - AVQ 3WVS 3H1 NO S3NVIS 3AII -Iltl1SNI QNV Im - S3I33dS 33211/anSHS AQOOA 2103 0NI3ddS .8-.8 'NIW Q3QN3W033d - Him 8333f18 3H1 ?1 IAO S1NVld 1008 3SV8 1NVId - n"?"W SANVS 30 Sd01 3H1 3AOSV S1NVld 1008 38V8 1NVld - S3NV1S TO IDNIINV-ld NO NNV9 WV3als 30 UOIQJaS SSOJD i MalA weld Jn l 3 0 J LL W Z 2 Q 2 0 I IdOIS'40 301 LLX3 bNIl1V" 1 ado 01 SON31 - 3Mf110f1MIS IIOS ONIISN3 0 7 { I i D m m X JLLNVId 83NIVINOO I100M 3MV9 83NIVINOO MO 100M 38V9