Loading...
HomeMy WebLinkAboutSW3240201_Stormwater Report_20240603 STORMWATER MANAGEMENT REPORT FOR: CRESSWIND WESLEY CHAPEL - PHASE 05 WESLEY CHAPEL, NC PREPARED FOR: KH WESLEY CHAPEL, LLC „. THUTT0 //1S9484. N HUTTOS N -#27842.0005 049480 - _ ENGINEERING : _ 6/.3/24 F`• No. F-087I ' o „,,,,,,•,`," SEPTEMBER 5, 2023 REVISED: MAY 29, 2024 Prepared by: HT THOMAS & HUTTON STORMWATER MANAGEMENT REPORT Cresswind Wesley Chapel - Phase 05 Project: Cresswind Wesley Chapel - Phase 05 T&H Job Number: J-27842.0005 Location: Potter Road Wesley Chapel, NC 28173 Date Prepared: February 17, 2023 Owner: KH Wesley Chapel, LLC Owner Address: 8913 Silver Springs Court Drive Charlotte, NC 28215 Engineer: Thomas & Hutton Engineer Address: 1020 Euclid Avenue Charlotte, NC 28203 Phone: 980-201-5505 H THOMAS & HUTTON Page 1 TABLE OF CONTENTS Section 1 -Summary of Results Page 3 Section 2- Project Narrative Page 4 Section 3- Purpose Page 4 Section 4- Regulatory Summary Page 5 Section 5-Methodology Page 5 Section 6- Hydrology Page 6 Section 7- Runoff Calculations Page 6 Section 8- Existing Conditions Page 8 Section 9- Post Development Conditions Page 8 APPENDICES Project Mapping Appendix A Aerial Location Map Exhibit A FEMA Map Exhibit B Wetlands Map Exhibit D Soils Map Exhibit E Pre-Development Drainage Map Appendix B Pre-Development Conditions Drainage Calculations Appendix C Post-Development Drainage Map Appendix D Post-Development Conditions Drainage Calculations Appendix E Water Quality Calculations Appendix F H THOMAS & HUTTON Page 2 SECTION 1 - SUMMARY OF RESULTS Table 1 - Pre Development Runoff Rates TABLE 1 Summary of Results- Existing Conditions _ Storm Event Ouffall 01 (cfs) 2-year 40 10-Year 88 25-Year 116 50-Year 141 Table 2- Post Development Runoff Rates TABLE 1 Summary of Results- Proposed Conditions Storm Event Outfall 01 (cfs) 2-year 8 10-Year 28 25-Year 44 50-Year 61 H THOMAS & HUTTON Page 3 SECTION 2 - PROJECT NARRATIVE Cresswind is a residential subdivision within Wesley Chapel, North Carolina. Phase 5 consists of approximately 104 single family detached units. The site is located in Union County along Potter Road, north of Newtown Road and south of Weddington Road. The majority of the site is currently wooded with an understory of brush. Pre-development run- off is discharged into an existing wetland system and FEMA Floodplain. The pre-development drainage basins have been delineated and are illustrated on the Pre-Development Drainage Exhibit found at the end of this report. For the purpose of this report, we will compare the predevelopment runoff rates to the post development runoff rates as shown in the summary at the beginning of this report. The pre- development basin will be routed through one wet detention pond during post development conditions and outfall into the existing wetlands and floodplain. The post-development sub-basins were delineated and are illustrated on the Post-Development Drainage Exhibit found at the end of this report. All design information for ponds and associated drainage pipes and structures can be found in the appendices of this report. The soils on this site consist of type B, and B/D hydrologic soil groups which are shown on the attached NRCS soils map within Appendix A. SECTION 3 - PURPOSE The purposes of this report are: 1. To delineate all pre-development basins that are within this project and determine which drainage basins will be affected by the proposed development. 2. To develop a stormwater model that will: a. Be in compliance with the NCDEQ stormwater regulations. b. Simulate the pre- and post-development conditions for the project. c. Predict water elevations for all proposed ponds. d. Demonstrate that all culverts are of adequate size for drainage under post- development conditions. e. Provide design flows (under future build out conditions) for the major drainage structures that can be used to properly size improvements, if needed. 3. To document that the stormwater management measures and equipment installed on site will be adequate for all existing and proposed development on the site. Two drainage models are included in this report; • Pre-Development: examines the drainage basin prior to any development within the site. • Post-Development: examines the drainage basin after site improvements have been installed. The model may need to be revised and updated for each phase that is permitted. H THOMAS & HUTTON Page 4 SECTION 4 - REGULATORY SUMMARY NCDEQ-Stormwater The North Carolina Department of Environmental Quality (NCDEQ) is responsible for administering the storm water management program. Development or re-development activities are required to apply for and receive a stormwater permit from NCDEQ. These permits address water quality and quantity. NCDEQ regulations require that peak post-development discharge rates from the basin shall be at or below pre-development rates for the 10 and 25-year storms events. The regulations also specify the 1-inch volume drawdown shall be released over a time of 48 to 120 hours to minimize hydrologic impacts to the receiving channel. See attached Exhibit E for post-development peak flow control calculations, and Exhibit F for water quality calculations. The stormwater treatment shall be designed to achieve average annual 85% Total Suspended Solids (TSS) removal and must apply to the volume of post-development runoff resulting from the one-inch rainfall. See attached Exhibit E for post-development peak flow control calculations, and Exhibit F for water quality and channel protection calculations. SECTION 5 - METHODOLOGY The pre- and post-development conditions of the site were analyzed using the Storm and Sanitary Analysis (SSA) program developed by Autodesk. The program is used to model rainfall and stormwater runoff and to perform hydraulic routing through the storm drainage system (including existing and proposed storage/detention features such as wetlands, ponds, and lakes). SSA is an advanced, powerful, and comprehensive modeling package for analyzing and designing drainage systems, stormwater sewers, and sanitary sewers. The software can simultaneously model complex hydrology, hydraulics, and water quality. The SSA program is built on the highly tested and widely utilized SWMM methodologies. For this application of the SSA program, the hydrology was simulated using the NRCS (SCS) TR-55 methodology. The hydraulics was simulated utilizing hydrodynamic routing. Hydrodynamic routing solves the complete St. Venant equations throughout the drainage network and includes modeling of backwater effects, flow reversal, surcharging, looped connections, pressure flow, tidal outfalls, and interconnected ponds. The SSA program graphical user interface (GUI) allows for the input of hydrologic data for each drainage sub-basin. See the appendices for input variables including runoff curve number, rainfall distribution pattern, hydrograph peaking factor, area of each drainage sub-basin, and time of concentration. The SSA program generates runoff hydrographs for each sub-basin based on these user-specified variables. Hydrographs are generated by SSA using the NRCS Unit Hydrograph (TR-55) Method. The model's hydraulic input data consists of a system of nodes and links. Nodes represent locations where flows enter or exit the system, pipe or channel characteristics change, or where stage/storage/time relationships are provided. Links represent traditional types of hydraulic H THOMAS & HUTTON Page 5 conveyance such as pipes, channels, control structures, weirs, etc. The sizes, inverts, lengths, and Manning "n" values for all pipes connecting the ponds or lakes are input into the model. In addition to pipe information, all pond, lake, and detention area stage-area information and the respective control structure information is input into the model. The node and link conditions are analyzed within the model for a given storm, and flow conditions are determined. Hydrographs for each drainage area are merged within the SSA program, and the hydrologic results are then combined with the hydraulic information to model the hydraulic interactions of the entire drainage system. The results include pond area and discharge rates and stage/storage information during the storm events. The storm drainage infrastructure onsite was modelled using the Storm Sewers program developed by Autodesk. This program utilizes the model rainfall and stormwater runoff through the storm drainage infrastructure to provide hydraulic grade line calculations and profiles for analyzing the proposed storm drain network. SECTION 6 - HYDROLOGY • SCS TR-55 Method was used. • The rainfall distribution used for each storm event was obtained from rainfall data publicly available for Union County, NC. The following design storms are used in the model simulations: 2-year, 24-hour Design Storm = 3.50 inches 10-year, 24-hour Design Storm = 5.20 inches 25-year, 24-hour Design Storm = 6.10 inches 50-year, 24-hour Design Storm = 6.90 inches 100-year, 24-hour Design Storm = 7.50 inches • SCS Type II Statistical Rainfall Distribution was used. This distribution pattern is determined by the Soil Conservation Service comparing regional rain-gage data. • Soils present on site consist of the following: Badin channery silty clay loam, 2 to 8 percent slopes (BdB2) - HSG C Chewacla silt loam, 0 to 2 percent slopes (ChA) - HSG B/D Goldstone-Badin complex (GsC), 8 to 15 percent slopes- HSG C Tarrus gravelly silty clay loam, 2 to 8 percent slopes (TbB2) - HSG B SECTION 7 - RUNOFF CALCULATIONS Peak flow rates for the watersheds were calculated by the SSA Program for each design storm.The pre- and post-development drainage basins are shown in appendicies that follow this report. Curve Numbers Curve numbers were generated according to procedures set forth in SCS Technical Release 55. The composite curve numbers for each drainage basin were calculated H THOMAS & HUTTON Page 6 using soils information from the Soil Survey of Union County, NC provided by The United States Department of Agriculture Soil Conservation Service. Curve numbers were weighted based on the land use and soil group within each basin. Time of Concentration Times of concentration were calculated according to procedures set forth in SCS technical Release (TR) 55. The travel times (Tt) for overland flow, shallow concentrated flow, and channel flow are added together for the drainage basin to get the time of concentration Tc. Basin information for the area of interest was collected for use in the SSA models. Basins were delineated using surveyed topographic information. Basins were drawn and the longest flow paths were found. The times of concentration were calculated based on the NRCS, three part travel time method documented in TR-55. The three equations used are summarized below: Sheet Flow: (hr) Symbol Dimension Units 0.007(nL)°,8 n Manning's n -- t1 — P 0.05 X S°4 L Length of flow ft 2 2 yr event P2 rainfall in S Slope ft/ft Shallow Concentrated Flow: (hr) Symbol Dimension Units L L Length of flow ft t2 3600 X V V* Velocity ft/s *Based on TR-55 velocity-slope relationship Channel Flow: (hr) Symbol Dimension Units L L Length of flow ft t3 3600 X V V* Velocity ft/s *Assumed to be 2 ft/s Time of Concentration: (hr) tc = tl + t2 + t3 Appendices C and E with time of concentration information are attached. H THOMAS & HUTTON Page 7 SECTION 8 - EXISTING CONDITIONS The total acreage of the drainage basins analyzed in the stormwater calculations is approximately 40 acres. The existing conditions described in this narrative will refer to the pre- development condition of the site. The pre-development conditions for the site consists predominantly of woods with an understory of brush. Stormwater runoff on the site was delineated according to the existing drainage patterns found at the site and upon the field topographic survey completed within the site. The watershed delineation was conducted to provide a comparison for pre-development and post- development flows. Outfall "01" discharges into an existing wetland (See Pre Development Drainage Map-Appendix B). SECTION 9 - POST- DEVELOPMENT CONDITIONS The post-development drainage basins are shown on the Post-Development conditions watershed map located in Appendix D of this report. The total post-development watershed area analyzed for this project is approximately 40 acres. This site maintains all pre-development discharge points in the post-development condition. Post-development peak flows are less than pre-development conditions for the 2-yr, 10-yr, and 25-yr storm events. See Appendices B through H for pre- and post-development SSA model input and results. See Summary of pre- development versus post-development results at the beginning of report. After development, the site will consist of approximately 101 single family lots in Phase 5 and associated public roads, private driveways, and stormwater management features such as drainage swales and stormwater detention ponds. It should be noted that a portion of Phase 4 lots and impervious area is included in the post development calculations for the proposed pond. Stormwater runoff from site will be conveyed to a proposed wet detention pond. The detention pond will meet NCDEQ pre- and post-development flows and meet freeboard requirements for the ten (10) year, twenty-five (25) year, and fifty (50) year storm events. The proposed detention pond was designed to meet criteria found in the NCDEQ BMP Design Manual. Additionally, the required freeboard has been provided beneath the emergency spillways and the pond embankments for the (50) year storm event. The following tables illustrate the maximum water surface elevation for the two (2) year, ten (10) year, twenty-five (25) year, fifty (50) year, and one hundred (100) year storms. H THOMAS & HUTTON Page 8 Table 3-Wet Detention Pond 06 Bottom of Pond = 577.50 Normal Pool = 582.50 Crest of Emergency Spillway = 586.50 Top of Embankment = 588.00 Wet Detention Pond 04 Max Elevation Storm Event (ftf) 2-Year 584.53 10-Year 585.56 25-Year 586.12 50-Year 586.58 100-Year 586.79 H THOMAS & HUTTON Page 9 STORMWATER MANAGEMENT REPORT CRESSWIND WESLEY CHAPEL - PHASE 05 APPENDIX A PROJECT MAPPING 27842.0005 1.11 THOMAS & HUTTON . , 11111P'. t -„ , . NT/T. ,: ,' , _ e r 1 . -I' rk, Ilb 40 , • e, ft _4°.• A , . . ... , THOMAS .,_ . .• ..., _6, . • . .40° I - t• 407, M HUTTON i • . - • , . ,,,,,, - . * JO ,.... .... . , -• ., . Ab. , ' .. ,4. 27842 - Cresswind 4 / - Phase 4 . ... , • . . . ...„ .. • ''' ', ' imp", - a : , . _. , 04/05/2022 1 . .°%t ,' • , - ' &.41. e .Ir. .,, th: . 4 .., • .; .- -I •• ,• "Ilk, • • • ....- ..r 4 . r r r--"k .. f 1 i , :. , ' •6 ,_. - .1. ,• le4' . . _ -.elf elf 2 . ,.. . 4 t. . 1-2;•••••44ra. , . . . . 4) ab . ' • , • .Y ... ' ' ""'''" --•, rra Ult Cir.* ‘ • , li,.. 6 ail I .-. • Ise pi 4 .. . .4.# • 4 .. 'Y4 . • . ' 3, to ' iNr* wr • . -.• - ,.74,,i, ,.4 4 . 4 . , ...4.v• . 0:14:-. go tli . .. . 7. ... •V' p• , •46. • , Age .:?chaier 6, low ,.,.., 7 . '•1410 .# •., ik f, 0 i„.. ,4. '`• .sih,. . ..- , r i .._ . , iv .• ,it'ii., ,,:" - . . e .. N.„ s.„ • . 4.: . • •4 '• ,. -,01d110 . S ---• A- f'• '. . . 1 • ''.• kilt. k. 0 . 1 1 . • bli.th• 700 Feet e Aie Q.,er lat 700 °4'^i. 1,-4 4 ( 'I" ..2•- . - 4,81'' g e°thinQ This map was created using geothinQ I www.geothinQ.com I Mapping Smart Land Decisions ,. A 0. , f 0 - ' 6i ' T THOMAS , 44\ ..„. 6 II. ;.. _ H HUTTON . 4 0 i i 4111,.1 4F 27842 - Cresswind t \ r FA -----"..., 4 . 1 ‘; \ �- 1 '� - } Phase 4 lob r •,, d. ;,\ FEMA * • . ? 04/O5/2022 . • 1%Annual Chance Flood Hazard 16 ....vi ' # ..IC44410' ' ..— . ;14 Regulatory Floodway f _ - r r — 25 Special Floodway ra - Area of Undetermined Flood Hazard A .. cr • 0.2%Annual Chance Flood Hazard ' % Future Conditions 1%Annual Chance Flood Hazard n p,- „i,u�, Z Area with Reduced Risk Due to �� Cir Levee l 1 !o 4 4 - Area of Minimal Flood Hazard o"I', g4ve 1 Dr Limit Lines % .,.. SN-1 .. `-' , SFHA/Flood Zone Boundary . I. t \ Oil, ' '`•-......_ %\''' ll....--- '''-'.."'"------/J"--111C--,ri-'--' . - /• --? t _ --',. 4 t ' 114. 6 111111L lic:INP.. - ki 1 kSJJ?! ....i :� i°fc,,. �oail°wn R l,aoo *.. g eo • w •• • thing This map was created using geothinQ I www.geothinQ.com I Mapping Smart Land Decisions D I_� VLF T THOMAS HUTTON 27842 - Cresswind B.a.frfh Phase 4 Soils 04/05/2022 A 3 t 46 Q A/D r22D r1 Ya Z - C B B/D C C/D D • Not Classified licn D 0 Gddston Goldstar CD w.n.ak.. 3 O r C1723 Ct 1-1717a Cral D D Clash i ;.:+s geo This map was created using geothinQ I www.geothinQ.com I Mapping Smart Land Decisions . . ir THOMAS .',.-•.' & --- - 1--—- / 1 I M HUTTON 27842 - Cresswind Phase 4 .4 Wetlands 04/05/2022 Forested Wetland /71 .. , . _El. Non-Forested Wetland Salt Marsh ,1 ,. , t.. 2 El .• Water. 8 - _o o. . . • . ,, ,• ... ,••••,.,., . 54 . • • .... •••,.,.__ . . - I , ,' ,... 1 , , • , ... . ",,,.... _ _.,____.. . .. p , II 1.: P ,1 I,----,1 i ------. II ,, k....... 'I r_ CP '.% Lazte .5',!..ft-2 :i...., 7-Ai: . •. 1.41) I . _._ geothine This map was created using geothinQ I www.geothinQ.com I Mapping Smart Land Decisions a Hydrologic Soil Group—Union County,North Carolina (Soils) fn M W 529'600 529700 529300 529900 530000 530100 530200 530300 530400 530500 530600 530700 530800 530900 531000 34°59'20"N 34°59'2d'N s \ t #_ § 7 ' ,R 5 BdB2, ,.,0 '*s. ;� TbB2 55�� BdB2 NI • r BdB2 __ . _ GsC TbB2 sil E. _8 A 7-ChA -- BdB2 .. `�. . TbB2 ' 8 _ ChA 8 $ \ - •• MOily-Branch i $ 5 �.e N coo Gd ne a r 06oa ,� oQ° i 34°58'49"N , 34°58'49"N 529700 529800 529900 530000 530100 530200 530300 530400 530500 530600 530700 530800 530900 531000 5 3 lV Map Scale:1:6,650 if printed on A landscape(11"x 8.5")sheet. °; Meters 8 N 0 50 100 200 300 8 Feet 0 300 600 m oo 1200 1800 Map projection:Web Mer ator Coer ordirlates:WG584 Edge tics:UTM Zone 17N WGS84 USDA Natural Resources Web Soil Survey 12/3/2021 111-1-11 Conservation Service National Cooperative Soil Survey Page 1 of 4 Hydrologic Soil Group—Union County,North Carolina (Soils) MAP LEGEND MAP INFORMATION Area of Interest(AOI) p c The soil surveys that comprise your AOI were mapped at Area of Interest(AOI) 1:24,000. 0 CID Soils • D Warning:Soil Map may not be valid at this scale. Soil Rating Polygons l A p Not rated or not available Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil n A/D Water Features line placement.The maps do not show the small areas of Streams and Canals contrasting soils that could have been shown at a more detailed n B scale. Transportation Q B/D r4-1. Rails Please rely on the bar scale on each map sheet for map n C measurements. ti Interstate Highways n CID US Routes Source of Map: Natural Resources Conservation Service Web Soil Survey URL: 0 D Major Roads Coordinate System: Web Mercator(EPSG:3857) n Not rated or not available Local Roads Maps from the Web Soil Survey are based on the Web Mercator Soil Rating Lines Background projection,which preserves direction and shape but distorts • • A distance and area.A projection that preserves area,such as the 1111 Aerial Photography Albers equal-area conic projection,should be used if more • • A/D accurate calculations of distance or area are required. ^r B This product is generated from the USDA-NRCS certified data as .v B/D of the version date(s)listed below. • r C Soil Survey Area: Union County, North Carolina Survey Area Data: Version 21,Sep 15,2021 • • CID Soil map units are labeled(as space allows)for map scales • • D 1:50,000 or larger. • w Not rated or not available Date(s)aerial images were photographed: Jul 18,2011—Oct 30, Soil Rating Points 2018 p A The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background O A/D imagery displayed on these maps.As a result,some minor • B shifting of map unit boundaries may be evident. • B/D USDA Natural Resources Web Soil Survey 12/3/2021 Conservation Service National Cooperative Soil Survey Page 2 of 4 Hydrologic Soil Group—Union County, North Carolina Soils Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI BdB2 Badin channery silty C 16.4 16.0% clay loam,2 to 8 percent slopes, moderately eroded ChA Chewacla silt loam,0 to B/D 11.6 11.3% 2 percent slopes, frequently flooded GsC Goldston-Badin D 5.4 5.3% complex,8 to 15 percent slopes TbB2 Tarrus gravelly silty clay B 69.1 67.4% loam,2 to 8 percent slopes,moderately eroded Totals for Area of Interest 102.6 100.0% USDA Natural Resources Web Soil Survey 12/3/2021 1111-1. Conservation Service National Cooperative Soil Survey Page 3 of 4 STORMWATER MANAGEMENT REPORT CRESSWIND WESLEY CHAPEL - PHASE 05 APPENDIX B PRE-DEVELOPMENT DRAINAGE MAP 27842.0005 1.11 THOMAS & HUTTON //\�\\y\� \\ ": T�i��i�//�/r� '//6/' ' /7//i' ��. -r '_ /��,pfir \ i'l) r \�J'\` ,l1r \ / 1 v AAAvA ii//i/J / ' / �✓ /� yfro i (� '8 .ram'/i 1 A-\ i7 fti r ' /; /li �ri v °5 Zip v v v ///111111A\11.. /v . y ., / ,,, /<�' ,� /��_--� r/// /g, / \�a 3 vr5,��� i�w��� wvA,lV�,,,) \ 1. \ r 1181111A .. / 1 / F9�_ i ' 4( /,w !� vv, `1 w-t>, •,uAvv\� �.. I IIIIIIIII II // :.=. / /�1 / y i- i� {J4 �/ �v � � - �� �� vVCI � r1,;'' , v t Io.)'/ '// o h� r flllll ioV, \ v o-^\� ����-\' y\r .: •*'-7�`ls° ��A��wv�,.A)--•// 7 �,�♦�2/) llulhl 41, v Ct41111111111(///i / " '.^ A ♦'i,) b ,I,vvA ! �L.v( I s� t v� t„,/ / it J- /i♦i�J✓r/,/ " �� v�.v ;( \ A,) A lllf� dll° " /i/ \'AAwAt `� IIIIi�11II11It1/i- % ` /-� / I ar('"7 - - ii(w1vj1111 ,^\ ( t Ilrll ,_---- // AliJ\il, A` ,_ l r 1111111j111 i L 11 //lt*'// l \I/IIII/ ) / \\ ` �_ �} I/ \`\r,�s°III/II1 ',/rr/ / •m �'1l11(IJ/ "f l V S v i /IIJ J/ \ �\ a /5 //'„ II 1111 Aill A\r / ,/ -. �� 1vh 11 1' / / . y •9 /✓//'J �\e. #9- oId 11ll�p/O vv�, JJf-, ; r w141,,I(//%/ �-� may® // /✓V�rl � /i ow 1III1 �,i/ ° /// y A 1 a / '/0/% V (1It10/JC 1 /: / I ( _ t' •V�Ir I AI I � I llll!//r/ A ( a / �\ Il�hl /I I r b'� 1 i/ Oi a AV A `� � ; - ) 1i / 1 I II III!, ,�u r v� ? T vvti vx\V\v I ,t oy vs____, 1 ; irA/ /r yvV \tViln v' (� / / �i 11 111IIIjG / not / yj li ` 4 (/ /i// r V-;\ VAVlV i ( 1/l/l --/ ��� vv 1ll1 � IIII i ai 1VII I7tt( ,f ���y����AAlh�lll\A 4' �'" ti .� �d III r °A 1<V v . , v,/,,4vv� _wOvO,,,w_Av,,,> ,./ r. - a 1..1 ♦ ! 1. Ats, vvA v )J-I � ,)),,, 'r" \IAAVAti' VAA,�jAN%A l\Ni.N-, '/'/ �,h �V��� I 9;( \ 1f C t � >\� atr r/ . .--___-"Ik j0 I i/I�AWI� " \ \\ i 't° ExlsrlNc o l r i 11�=1 ; \ '. s vAv v.. 9 / 1 1R II'J N�+rl /, '1/,// �^ \ \, I1I1///*i \ '♦/ � ' ' = (/J��- �"e v / y PHASE z 1r rr r ! l j rr � Jkf 1 • i�� l )I I I Ier III / !I , ,IY , , ~ \.t ♦0,,,,,, • / // /r� J ¢t+'i '♦ 03/ ✓ /I I Jts - 411 l E: sI 7 lz r poll !%/ ,,i /. I 1� 5e5 �\l / \ \ i• 1`�. _� \ iti �/ ,�"IIJ/ / ' 7L_ s Nv 5 1 - IAA - :\ ♦5 ♦ 1") ) IIY'''JNt , apt (� -17r I\ 1 Y\ � , ♦,� ����'�5571Y(/ rs�lrlV11t - - -i/ � ' � ♦lA�--♦� / IPI / J} \ + alllf f�. J - ' - - - � \ •c*,k // \,y'Jt- l_x, _ / V. : Ilrlp f l �u / (�l \\ -fit S / ;r� / �w"JI nNI@1\\Al �i Ike + ,\ \ ( UNDISTURBED BASIN °� �i %f _ \\\\/ 3 i - ///// $. / /7 y n�upJJI�// IMM. I Jy� t (1-�\ SUB-01 \\ \ r- r \, `its r /1~° \ r6�o x,..�1`\\\ /J / I l6:4 I"- 41 t AREA:13,14 AC. $fit `i 1 r,.--"-_ \lam /// . (,-, /,7 �..;,,Ko 50 I L<S �, 2 M \\\\\\l i �-,��� N -,----it- ( , - i 5� .��\ r > / NY C„S If Yam— Y Tc:3_ N. \���- / �.,f- ,y 1 - .. // ,r!�!. est � R A\ c (\ / y X A off\ Imp ,® \'?'? \ ... �{ ;%f / � \ 1\, ��114-\ ✓' (I . l � s •: \�� /// yr /'. i y �y 0 �\\1 �.E/=r"x aNi�`r: . aV_._s,\ \". ..� 1 �^ -i / I 1 / �' �', 1( 35 I ° - %/ dN °\\ r1,-",,l Ns \\\ iw h _..\\ <,5ir la :s -r � �-7' f / / Y / ♦szo-,II —I!I 1, s., >,,� -�' y11 I h J i .\1_ j= j�f 53s / JJJ ;rf !� 15',1 i, ♦: Iby r) c r,'', r \ . �, i t G , o r ��IIo is f ,// 1 J( r / / . y�j1it ♦ 11 1!p /'' d-' i�� SUB-03 �v� / / // I '�4w„ �`- `_V:1�(�.% �._.' 1\'''1.\''''',‘,,\ ���1��(ll�_'—'lll �0/ rTsr,� / y/ y ♦♦♦♦ >iy / ; Ill T r AREA:45.3 AC. ' -�\ J\ C / / J �'' . i\`� ����� E°J\��/ 1 ,: • / / i ' ♦♦ N i/ - �' CN:66 / \ 4', l " \ / l/ :. ) ��,- ., r 6"',��\ \/ ./, </f f r y /f//�!; Tc:5 MIN. r' - a'' r o� / �.' h /�y � IIII t ' ', 4 <�,<s 1 J M e 11111 il' c w Z. tj% � �y ,)r ',_ / '.�.\ // 0 / - .4 '' t-' � ' -7 1u,�111 'IIII II �y \:�s-.;C �•Q• EXISTING "�D \'.\ � / J 7� EXISTING 6n*r l \ \'li p,„Ills("'NNI II•P pglll1111p1/ I ,,I1 ' �, is fi PHASE z �` fi co PHASE 1 c,,o3O4fGf ~\\r - i `t O♦♦�O N �� �l NI' 4t/�I+' � a�� ®,I �pyR . .././' �::;:41";"„..'''''''', � ° , �Q�t'//!a \ J� `11 1 UNDISTURBED BASIN A4--1'- /;47,0r,-- • - --Aeittls, -? 49 ,t4�p I __icedRM \Jy SPA- //' �. .� .,,...,‘,q. i J. 'of/° to t sue o2 12 _y ,i 9 , ��' .+n: � a ♦j per , 1 -> �/$ IN //k �� �- 'l - -o \ `•�.� .\ ' lc �► \/// /rr o � AREA:23.79 AC. J���/` / / ,Y 6: _ n1 �! �'lll `'th J°' y N:79 ° / o�" G� O tiviiimatt� g '� �� ,� ` �� ��/' �`A �up �I�11 'o r�° ,7 - Tc:37 MIN. ���llrll/ ° y® r�• A ®' � �� �%,,,, 1ti zt71 5 1 ' J `T r /- 0000♦000 �ir0 ��✓ \�* / \' \ ,- >*; I /% !�'\- � �? « ' 5zs,, I I rdY� �y \1/ \ .r- 7-- / ♦ 1 %U/�/ / '"j .\, y ® ��.° Ne a \ \ittc , 4�? ,y`• ''^ \\\\\(I I r 1 4 0' I ! /1 / 9 V r r . .',e�'°�:. ♦♦♦�p� _ 17� 111/llli e > °\ C. \ sy d+.:1 Z',, �,,J\\\\\ \I 1 5' r` -, /i-: %1 >al �Op.♦►O�, III Il.;i,,, ? ,`� ,, .:,: •�' �<O\\ \\ /,,%i! �a � i y 4s+1+ •a % aIss �� � •�`� .✓ .. j a � ��� ��U "'i�//I/f,/l ♦9♦9O♦DOO • rD rj _ y.. a 4 = \�o�\\ ♦.. ; ° ' EXISTIN G': �., , harip.i..,..,„„,..... , r''.4.444, 4, i - /Ei��1 �` r \ill r, �( ? ,, � �, y �\ 1� %6°.,.. - .,,;,/,.±.$ Sce / �i=\-k \\Jo.._ i/i r �, yr y >>j'�\ \ \ /*:' \ ."0\Nr // °i„44:r / S,i /c. PHASE 3 `t., ,, ®\ #, ® r 5f.��y PHASE 4 BASIN TO POND 05 '�\7` `t , ® ,I � .�K �-.� (� ,�' /A)( ®\ �'°"' i^ �-1 �, \,° i - __. 1- \\\� � - •.1 ' ® Boa A:43.5 ���1��� ` 1\Vik, \\���"?J �`\ \ - '/✓/ ti(S' `'sf,��"u ,,—%/ 1.--.-- ,-\ •° ,-,--- 7 v' ®$,` ,-.,,,f / "�405 ,.' w AREAC:N47.3 AC. / \ t. \,\l� \�//h`-��� / )JS, �J �n�1 ''%7 i'✓✓ \\ �a��1�-'\\,I5e0 r'r m y - y ®V r/ �;e ".4. Tc:32 MIN. 't 1 `' r s C �.T'r f� � `��= -�.I �tjra(t \. �j/ ?° m} `,.\ <,+�� N /„y; • oc - �/,. t / � v� �` l ✓ ,., 1 I~ t �. '-� ,,, \ r ' t ;-- 1AN tit / 0 �AL'yhr/ / I li 4-..., l /-_-_„,, `�.� �.; , :�' ! ;�s yi �/ .r lIl /� . rr 11111111110 t s ;` '' \\l \ ) / �J it r�%a� �. amp\\-\J /� )II RI 9 •II / tl.„...,... ''� _ fir. ^! \\'s� ri/� 11 -.. ll1l� "i F� �aL I=1� ,,� ,+ %a ` v P 1, l „ o_ww, _ / .r\\�` r,v-r.. \l -"�l� �, �� / - _ _tea° < /1 IIi(-3 (,I`s\\riii `�'# ,1 ik ♦ !\ r / .NV0 ® _mod(e t tr.....,411 \ \� SHEET '_ ✓!\ \)\�i I ®' y ' , i qv� ��4� t�1� \ , i k4Iti�i / //a t( v \\_ \ \ IyI Iet'c FLOWPATH -/>"`�„---- ��I tj�, k1, _ ExIsnNG \ ''. / )j F 'J ) !\ q •1� / �\ 4ro' yq PHASE3 �r.� "'444 _ r ' /J/ / 1 if >-� . ,, /-----1-,-/\ 1('. ;.t 2 _, c,x�. �lt;4:ty , \ � % � ‘:: //// 1!/hr � ��- �Igrill ij�/y/ -`\ J// lfr`T J ° l l \I /✓-, -\-') '\ `- e ,SJ1 '� `i{ / __ ` PHASE 3 BASIN TO POND 04 ® � st �: a�O/ r// � _5 6. / /o/ _ S r}J /!%rl /rS / °> \ 1 rJ\l\ l I cJ -_`�\ l \^>1l \ li`' W j", / \I�\ / SB04 /// ,, -_ \ { \ �- /..,•\�- / /T5 -��(t(S 1 r� •i4r /�-\ 7f}�� -r. •\fl/C'�I�SI` ITr f/� J� 1\\1Z5 71 � ^ °� ,Sf�I 1�Y \\\\_, /- -,.� {\ AREA:17.9 AC. lit,' ",'• aw., g - / I )' �� .i// - _ ''11 Il// �,\J( ��l (/ ( ',1 Jj \‘‘ 1 II ) /�1 1 J �/ s \A VAA�~ _ t1 N:e6 a��" �"' _41 \//�\-. y � �l I✓ A, !(�� J -5 -.,f - ////ll//J//a J/ 'tiie'�ii )(r ) / / 7-' /ST rt r Il\ q �k \ r �1 Tc: MIN ' i J/ J / y\ / l UNDISTURBED BASIN \ -;4s / /A . �. 11 f / / / 1 1 l \ \ )I 1 k ?.-v � i / /l/ ._ ----CV r 1: ) 1 / // ) )1' / ) sUB- 7 j r JS` \ S e o /l/ , t ` l ///l ( I 1 /)/ / o ✓• - 1"1 ;�( //J/////////// r - i/ /( 1 AREA:9.12 M AC. v„ 1 \.e ^„1,, \ '^<®��,L.aa�- 7.74 °Aw< ,' , - 7/ !1 </fl/ I '/( `i • /,I /, � �_ ( 1.---:::/./i/j/////V(Ii" t// �l r llr Jji(xll l r/l L J t\" \\ \ t I\ Tc:29.12 MIN. i` \ > r =_:51 \ \,- � 1 i' ° :/;=p^ _-- iii,1 / egL.,*\IIII( li „,/,.,✓* 7 1/7//y'i�//1rl/)r/Jr 1 71 II(/It't )\I s\ ^,• ')\-'--, /J I I I j /Il / 1/v4a;,g 1 // ((J)\''j)111111I ) I J,-` - ^ \ \r_ - 11 \�\\\\ l\\ht,• (4l\ ,,,g 4` n s Ate♦♦♦♦♦ tea" t t( 11(I o 1 / .✓ �„/x l I ! / l .- \ \ / < \ PRE-DEVELOPMENT , t* _ $ �ti DRAINAGE EXHIBIT w �' °'' v V(Q�/j; 111111)1.11111 1 \ 1\`;`\l j ," SHALLOW I\\\\ \ `?-� ,'�•-' •`�%��- ®i�s®R♦ S�G'S'���rQ' ?,,'\ems�1 1)I y_ a--' '4#"„�. ",A• /1I ) I S �J�//>'llAC/ ///.�.. -Z.��_J _^ /-'/r��� CONCENTRATED 6O_=_��� -.�, 1 ///// 3,/,, ����\�'\1\ _L2,-,6�- ,♦���1�♦." ,se a�R1,-,"*.,,' i`,s,\ 4• !/ �, /) ,, l / 1 \tr ?)\�Y s' � /,ii/ir /) FLOW PATH 1, ° /s 1 s. ♦ ♦e,1� /��-;,\ �O� \_ 4,,,,":1,:� k. /\j// !�(r(,11 1 1 it\d 4\�\Q\` o S�-� ',111\\\\l (Lr°r r \ ,,_` \,,/4,8 1'jr�,,-,i \iS111 1 CRESSWIND PHASE 5 rK""%�/ ` 'ss: -.4,.. /66O ; � 'L-'// \1I(!tti\Il l\\\_/ 1\4.'- r \\t , \��`1� \J ,_,,,___,„,-..\,_�\,_� o//////ice1 0k(II MONROE,NC ` �� ♦♦C�r��i Obi+/���i/_`s°°\\yy.-'�;• ":-ac �?.o \� � i\ \ l Iti\\l / 1 \ �\ss- \�\�\\\O �Y� �(c Sy� sJ ��..�_�;i//////y � 1 ll 1 ow s�y ' �►'ht-'"i-, ----s\\ ;, 'k\ it---- _..at'! \\r _%%% (l 7)\\\�;_ fRl\'\\\iJ ° \- \\\-\, `�\\��\ „ ir' \\ \\� ` /'////fr/ l\ PREPARED FOR: - a`- / :at - \ )Ir cc 1 r //J / - \ .Z� _-"�-, �/%�!m°i j� 0\\lll1d�� • �,1�'j♦♦�♦���� ^��o \‘1----,-- _------_-_-_ \ .� JJ/ (r\~\� -�i � �`-�< _=^\mac �� �_ o\ � / /�//1s//_ \I <� ,,• -„ (// / \ : tr ♦ ♦ �� _ cS _ ��-+ // �'��\sao\� \_3:-�"\�\ r -.1�s `�\`- '/// (, a il �,?��' /� r/ \ ♦.' as♦>`' � �\ _� // �'‘,, � ��_� \ ° /i�� /// < �` KH WESLEY CHAPEL. LLC < A' -- JI/5 =,..� � O ♦♦fi'' - � ,-�, Y / 1 \ _\��� -_���ftti\ ^`,ice \� \- __✓ em''/( 1f �\ ��� - /(/f \\/ 1JI I \ Ob��+♦{� ♦♦♦♦�♦♦� !^ `~i iy / , l t r!/IJ( < a PREPARED BY: / 1 \ \,,%\ tar,. �.�\\�\\\\.>� (�_. 1;. !'.( u/i/`ice •'�.`- \\il( I/l /J I PHASE 4 UNDISTURBED BASIN ♦� 3 y\ a t\--'.,, ..ae.••.`\\--"\ .._._ _ _ - /tr /\Y� 5 \�/ . € ` = a ( // �_„° i �i`"v`=_ r�� �JJ�_ti<1v� THOMAS t —_- -_�- \ gym»S/. / \ l SUB-06 a ��. ° 5'0 1; i;,i\\: \\ ;' ``=r & 46 _ ,, / . _, AREA:7.97 AC. "Yv- o /� ,,,~ _ „ HUTTON ll�ll/ 11)J�°(/� 1 CN:72 ..n '\---.,� �� OUTF ALL 01; '�- /i��)(°)� ^�\1\ Tc:22 MIN. �?� 1 1020 Eucua Avenue I ''/,j-(' r J/,70///'--////I --- - Charlotte,NC 2a2o2•vao.2ol ssos www.thomasandhutton.com Li JOB NO: J-27842.0002 DATE: 2/16/2021 DRAWN: KSC SCALE 1"=180' REVIEWED: MSK SHEET: N/A STORMWATER MANAGEMENT REPORT CRESSWIND WESLEY CHAPEL - PHASE 05 APPENDIX C PRE-DEVELOPMENT CONDITIONS DRAINAGE CALCULATIONS 27842.0005 1- H THOMAS & HUTTON Pre-Development 02-Year Page 1 Project Description File Name 27842.0005-Pre dvelopment.SPF Project Options Flow Units CFS Elevation Type Elevation Hydrology Method SCS TR-55 Time of Concentration(TOC)Method SCS TR-55 Link Routing Method Hydrodynamic Enable Overflow Ponding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent Dry Days 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Time Step 0 00:05:00 days hh:mm:ss Reporting Time Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements Qty Rain Gages 1 Subbasins 1 Nodes 1 Junctions 0 Outfalls 1 Flow Diversions 0 Inlets 0 Storage Nodes 0 Links 0 Channels 0 Pipes 0 Pumps 0 Orifices 0 Weirs 0 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series TS-002 Intensity inches North Carolina Union 2.00 3.50 SCS Type II 24-hr Pre-Development 02-Year Page 2 Subbasin Summary SN Subbasin Area Peak Rate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-36 40.66 484.00 73.05 3.50 1.18 48.10 40.93 0 00:29:07 Pre-Development 02-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak Max HGL Max Min Time of Total Total Time ID Type Elevation (Max) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth Attained Flooding Volume Attained Occurrence (ft) (ft) (ft) (ft) (ft') (cfs) (ft) (ft) (ft)(days hh:mm) (ac-in) (min) 1 Out-28 Outfall 0.00 0.00 0.00 Pre-Development 02-Year Page 4 Subbasin Hydrology Subbasin:Sub-36 Input Data Area(ac) 40.66 Peak Rate Factor 484 Weighted Curve Number 73.05 Rain Gage ID Rain Gage-001 Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number Woods&grass combination,Poor 40.49 B 73 Woods&grass combination,Poor 0.17 D 86 Composite Area&Weighted CN 40.66 73.05 Time of Concentration TOC Method:SCS TR-55 Sheet Flow Equation: Tc=(0.007*((n*Lf)^0.8))/(0^0.5)*(Sf^0.4)) Where: Tc=Time of Concentration(hr) n =Manning's roughness Lf=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(Sf^0.5)(unpaved surface) V=20.3282*(Sf^0.5)(paved surface) V=15.0*(Sf^0.5)(grassed waterway surface) V=10.0*(Sf^0.5)(nearly bare&untilled surface) V=9.0*(Sf^0.5)(cultivated straight rows surface) V=7.0*(Sf^0.5)(short grass pasture surface) V=5.0*(Sf^0.5)(woodland surface) V=2.5*(Sf^0.5)(forest w/heavy litter surface) Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(Sf^0.5))/n R =Aq/Wp Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R =Hydraulic Radius(ft) Aq=Flow Area(ft*) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n =Manning's roughness Pre-Development 02-Year Page 5 Subarea Subarea Subarea Sheet Flow Computations A B C Manning's Roughness: 0.4 0 0 Flow Length(ft): 100 0 0 Slope(%): 1.5 0 0 2 yr,24 hr Rainfall(in): 3.5 0 0 Velocity(ft/sec): 0.07 0 0 Computed Flow Time(min): 23.04 0 0 Subarea Subarea Subarea Shallow Concentrated Flow Computations A B C Flow Length(ft): 1128 0 0 Slope(%): 3.67 0 0 Surface Type: Unpaved Unpaved Unpaved Velocity(ft/sec): 3.09 0 0 Computed Flow Time(min): 6.08 0 0 Total TOC(min) 29.12 Subbasin Runoff Results Total Rainfall(in) 3.5 Total Runoff(in) 1.18 Peak Runoff(cfs) 40.93 Weighted Curve Number 73.05 Time of Concentration(days hh:mm:ss) 0 00:29:07 Pre-Development 02-Year Page 6 Subbasin:Sub-36 Rainfall Intensity Graph 5 4.81 4.6. 4.4 4.2 4 3.8 3.47 3.2- 3 L 2.8 c 2.6 m 2.4- c if 2.2 0! 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 44 42 40- 38 36- 34- 32- 30- 28 26- y 24 U 22- o 7 20- CC 18 16- 14 12- 10 8 6- 4 2- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Pre-Development 10-Year Page 1 Project Description File Name 27842.0005-Pre dvelopment.SPF Project Options Flow Units CFS Elevation Type Elevation Hydrology Method SCS TR-55 Time of Concentration(TOC)Method SCS TR-55 Link Routing Method Hydrodynamic Enable Overflow Ponding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent Dry Days 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Time Step 0 00:05:00 days hh:mm:ss Reporting Time Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements Qty Rain Gages 1 Subbasins 1 Nodes 1 Junctions 0 Outfalls 1 Flow Diversions 0 Inlets 0 Storage Nodes 0 Links 0 Channels 0 Pipes 0 Pumps 0 Orifices 0 Weirs 0 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series TS-010 Intensity inches North Carolina Union 10.00 5.20 SCS Type II 24-hr Pre-Development 10-Year Page 2 Subbasin Summary SN Subbasin Area Peak Rate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-36 40.66 484.00 73.05 5.20 2.44 99.33 88.53 0 00:29:07 Pre-Development 10-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak Max HGL Max Min Time of Total Total Time ID Type Elevation (Max) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth Attained Flooding Volume Attained Occurrence (ft) (ft) (ft) (ft) (ft') (cfs) (ft) (ft) (ft)(days hh:mm) (ac-in) (min) 1 Out-28 Outfall 0.00 0.00 0.00 Pre-Development 10-Year Page 4 Subbasin Hydrology Subbasin:Sub-36 Input Data Area(ac) 40.66 Peak Rate Factor 484 Weighted Curve Number 73.05 Rain Gage ID Rain Gage-001 Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number Woods&grass combination,Poor 40.49 B 73 Woods&grass combination,Poor 0.17 D 86 Composite Area&Weighted CN 40.66 73.05 Time of Concentration TOC Method:SCS TR-55 Sheet Flow Equation: Tc=(0.007*((n*Lf)^0.8))/((P^0.5)*(Sf^0.4)) Where: Tc=Time of Concentration(hr) n =Manning's roughness Lf=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(Sf^0.5)(unpaved surface) V=20.3282*(Sf^0.5)(paved surface) V=15.0*(Sf^0.5)(grassed waterway surface) V=10.0*(Sf^0.5)(nearly bare&untilled surface) V=9.0*(Sf^0.5)(cultivated straight rows surface) V=7.0*(Sf^0.5)(short grass pasture surface) V=5.0*(Sf^0.5)(woodland surface) V=2.5*(Sf^0.5)(forest w/heavy litter surface) Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(Sf^0.5))/n R =Aq/Wp Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R =Hydraulic Radius(ft) Aq=Flow Area(ft*) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n =Manning's roughness Pre-Development 10-Year Page 5 Subarea Subarea Subarea Sheet Flow Computations A B C Manning's Roughness: 0.4 0 0 Flow Length(ft): 100 0 0 Slope(%): 1.5 0 0 2 yr,24 hr Rainfall(in): 3.5 0 0 Velocity(ft/sec): 0.07 0 0 Computed Flow Time(min): 23.04 0 0 Subarea Subarea Subarea Shallow Concentrated Flow Computations A B C Flow Length(ft): 1128 0 0 Slope(%): 3.67 0 0 Surface Type: Unpaved Unpaved Unpaved Velocity(ft/sec): 3.09 0 0 Computed Flow Time(min): 6.08 0 0 Total TOC(min) 29.12 Subbasin Runoff Results Total Rainfall(in) 5.2 Total Runoff(in) 2.44 Peak Runoff(cfs) 88.53 Weighted Curve Number 73.05 Time of Concentration(days hh:mm:ss) 0 00:29:07 Pre-Development 10-Year Page 6 Subbasin:Sub-36 Rainfall Intensity Graph 7.5 7- 6.5- 6 5.5 5 • L4.5- - � c 4 m -c 3.5 •m 0! 3 2.5 2 1.5 • 1 0.5 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 95 90 75- 65 - 55- N 50 0 45- z • 40 35 30- 25 20 15- 10 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Pre-Development 25-Year Page 1 Project Description File Name 27842.0005-Pre dvelopment.SPF Project Options Flow Units CFS Elevation Type Elevation Hydrology Method SCS TR-55 Time of Concentration(TOC)Method SCS TR-55 Link Routing Method Hydrodynamic Enable Overflow Ponding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent Dry Days 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Time Step 0 00:05:00 days hh:mm:ss Reporting Time Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements Qty Rain Gages 1 Subbasins 1 Nodes 1 Junctions 0 Outfalls 1 Flow Diversions 0 Inlets 0 Storage Nodes 0 Links 0 Channels 0 Pipes 0 Pumps 0 Orifices 0 Weirs 0 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series TS-025 Intensity inches North Carolina Union 25.00 6.10 SCS Type II 24-hr Pre-Development 25-Year Page 2 Subbasin Summary SN Subbasin Area Peak Rate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-36 40.66 484.00 73.05 6.10 3.18 129.18 115.97 0 00:29:07 Pre-Development 25-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak Max HGL Max Min Time of Total Total Time ID Type Elevation (Max) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth Attained Flooding Volume Attained Occurrence (ft) (ft) (ft) (ft) (ft') (cfs) (ft) (ft) (ft)(days hh:mm) (ac-in) (min) 1 Out-28 Outfall 0.00 0.00 0.00 Pre-Development 25-Year Page 4 Subbasin Hydrology Subbasin:Sub-36 Input Data Area(ac) 40.66 Peak Rate Factor 484 Weighted Curve Number 73.05 Rain Gage ID Rain Gage-001 Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number Woods&grass combination,Poor 40.49 B 73 Woods&grass combination,Poor 0.17 D 86 Composite Area&Weighted CN 40.66 73.05 Time of Concentration TOC Method:SCS TR-55 Sheet Flow Equation: Tc=(0.007*((n*Lf)^0.8))/((P^0.5)*(Sf^0.4)) Where: Tc=Time of Concentration(hr) n =Manning's roughness Lf=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(Sf^0.5)(unpaved surface) V=20.3282*(Sf^0.5)(paved surface) V=15.0*(Sf^0.5)(grassed waterway surface) V=10.0*(Sf^0.5)(nearly bare&untilled surface) V=9.0*(Sf^0.5)(cultivated straight rows surface) V=7.0*(Sf^0.5)(short grass pasture surface) V=5.0*(Sf^0.5)(woodland surface) V=2.5*(Sf^0.5)(forest w/heavy litter surface) Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(Sf^0.5))/n R =Aq/Wp Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R =Hydraulic Radius(ft) Aq=Flow Area(ft*) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n =Manning's roughness Pre-Development 25-Year Page 5 Subarea Subarea Subarea Sheet Flow Computations A B C Manning's Roughness: 0.4 0 0 Flow Length(ft): 100 0 0 Slope(%): 1.5 0 0 2 yr,24 hr Rainfall(in): 3.5 0 0 Velocity(ft/sec): 0.07 0 0 Computed Flow Time(min): 23.04 0 0 Subarea Subarea Subarea Shallow Concentrated Flow Computations A B C Flow Length(ft): 1128 0 0 Slope(%): 3.67 0 0 Surface Type: Unpaved Unpaved Unpaved Velocity(ft/sec): 3.09 0 0 Computed Flow Time(min): 6.08 0 0 Total TOC(min) 29.12 Subbasin Runoff Results Total Rainfall(in) 6.1 Total Runoff(in) 3.18 Peak Runoff(cfs) 115.97 Weighted Curve Number 73.05 Time of Concentration(days hh:mm:ss) 0 00:29:07 Pre-Development 25-Year Page 6 Subbasin:Sub-36 Rainfall Intensity Graph 85 8— 7.5 7 6.5— 6 5.5 5 t _ 4.5 @ 4 0!▪ 3.5 3 2.5 2 1.5— 1 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 125 120 115 110 105 100 95 90 85 80 75 n 70 - 65 O 60 0! • 55 50 45 40 35 30 25 20 15 10 5 i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Pre-Development 25-Year Page 1 Project Description File Name 27842.0005-Pre dvelopment.SPF Project Options Flow Units CFS Elevation Type Elevation Hydrology Method SCS TR-55 Time of Concentration(TOC)Method SCS TR-55 Link Routing Method Hydrodynamic Enable Overflow Ponding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent Dry Days 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Time Step 0 00:05:00 days hh:mm:ss Reporting Time Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements Qty Rain Gages 1 Subbasins 1 Nodes 1 Junctions 0 Outfalls 1 Flow Diversions 0 Inlets 0 Storage Nodes 0 Links 0 Channels 0 Pipes 0 Pumps 0 Orifices 0 Weirs 0 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series TS-050 Intensity inches North Carolina Union 50.00 6.90 SCS Type II 24-hr Pre-Development 25-Year Page 2 Subbasin Summary SN Subbasin Area Peak Rate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-36 40.66 484.00 73.05 6.90 3.85 156.70 140.98 0 00:29:07 Pre-Development 25-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak Max HGL Max Min Time of Total Total Time ID Type Elevation (Max) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth Attained Flooding Volume Attained Occurrence (ft) (ft) (ft) (ft) (ft') (cfs) (ft) (ft) (ft)(days hh:mm) (ac-in) (min) 1 Out-28 Outfall 0.00 0.00 0.00 Pre-Development 25-Year Page 4 Subbasin Hydrology Subbasin:Sub-36 Input Data Area(ac) 40.66 Peak Rate Factor 484 Weighted Curve Number 73.05 Rain Gage ID Rain Gage-001 Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number Woods&grass combination,Poor 40.49 B 73 Woods&grass combination,Poor 0.17 D 86 Composite Area&Weighted CN 40.66 73.05 Time of Concentration TOC Method:SCS TR-55 Sheet Flow Equation: Tc=(0.007*((n*Lf)^0.8))/((P^0.5)*(Sf^0.4)) Where: Tc=Time of Concentration(hr) n =Manning's roughness Lf=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(Sf^0.5)(unpaved surface) V=20.3282*(Sf^0.5)(paved surface) V=15.0*(Sf^0.5)(grassed waterway surface) V=10.0*(Sf^0.5)(nearly bare&untilled surface) V=9.0*(Sf^0.5)(cultivated straight rows surface) V=7.0*(Sf^0.5)(short grass pasture surface) V=5.0*(Sf^0.5)(woodland surface) V=2.5*(Sf^0.5)(forest w/heavy litter surface) Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(Sf^0.5))/n R =Aq/Wp Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R =Hydraulic Radius(ft) Aq=Flow Area(ft*) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n =Manning's roughness Pre-Development 25-Year Page 5 Subarea Subarea Subarea Sheet Flow Computations A B C Manning's Roughness: 0.4 0 0 Flow Length(ft): 100 0 0 Slope(%): 1.5 0 0 2 yr,24 hr Rainfall(in): 3.5 0 0 Velocity(ft/sec): 0.07 0 0 Computed Flow Time(min): 23.04 0 0 Subarea Subarea Subarea Shallow Concentrated Flow Computations A B C Flow Length(ft): 1128 0 0 Slope(%): 3.67 0 0 Surface Type: Unpaved Unpaved Unpaved Velocity(ft/sec): 3.09 0 0 Computed Flow Time(min): 6.08 0 0 Total TOC(min) 29.12 Subbasin Runoff Results Total Rainfall(in) 6.9 Total Runoff(in) 3.85 Peak Runoff(cfs) 140.98 Weighted Curve Number 73.05 Time of Concentration(days hh:mm:ss) 0 00:29:07 Pre-Development 25-Year Page 6 Subbasin:Sub-36 Rainfall Intensity Graph 9.5 9 8.5- 8- 7.5- 7_ 6.5 6- t 5.5- 5 4.5- cm ix 4 3.5 3- 2.5 2 1.5- 1 0.5 F O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 155 150 145 140 135 130 125 120 115 110 105 100 95 - • 90 w 85 • 80 0 75 S 70 6! 65 — 60 55 50 45 40 35 30 25 20 15 10 5 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Pre-Development 100-Year Page 1 Project Description File Name 27842.0005-Pre dvelopment.SPF Project Options Flow Units CFS Elevation Type Elevation Hydrology Method SCS TR-55 Time of Concentration(TOC)Method SCS TR-55 Link Routing Method Hydrodynamic Enable Overflow Ponding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent Dry Days 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Time Step 0 00:05:00 days hh:mm:ss Reporting Time Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements Qty Rain Gages 1 Subbasins 1 Nodes 1 Junctions 0 Outfalls 1 Flow Diversions 0 Inlets 0 Storage Nodes 0 Links 0 Channels 0 Pipes 0 Pumps 0 Orifices 0 Weirs 0 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series TS-100 Intensity inches North Carolina Union 100.00 7.50 SCS Type II 24-hr Pre-Development 100-Year Page 2 Subbasin Summary SN Subbasin Area Peak Rate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-36 40.66 484.00 73.05 7.50 4.38 177.89 160.08 0 00:29:07 Pre-Development 100-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak Max HGL Max Min Time of Total Total Time ID Type Elevation (Max) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth Attained Flooding Volume Attained Occurrence (ft) (ft) (ft) (ft) (ft') (cfs) (ft) (ft) (ft)(days hh:mm) (ac-in) (min) 1 Out-28 Outfall 0.00 0.00 0.00 Pre-Development 100-Year Page 4 Subbasin Hydrology Subbasin:Sub-36 Input Data Area(ac) 40.66 Peak Rate Factor 484 Weighted Curve Number 73.05 Rain Gage ID Rain Gage-001 Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number Woods&grass combination,Poor 40.49 B 73 Woods&grass combination,Poor 0.17 D 86 Composite Area&Weighted CN 40.66 73.05 Time of Concentration TOC Method:SCS TR-55 Sheet Flow Equation: Tc=(0.007*((n*Lf)^0.8))/((P^0.5)*(Sf^0.4)) Where: Tc=Time of Concentration(hr) n =Manning's roughness Lf=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(Sf^0.5)(unpaved surface) V=20.3282*(Sf^0.5)(paved surface) V=15.0*(Sf^0.5)(grassed waterway surface) V=10.0*(Sf^0.5)(nearly bare&untilled surface) V=9.0*(Sf^0.5)(cultivated straight rows surface) V=7.0*(Sf^0.5)(short grass pasture surface) V=5.0*(Sf^0.5)(woodland surface) V=2.5*(Sf^0.5)(forest w/heavy litter surface) Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(Sf^0.5))/n R =Aq/Wp Tc=(Lf/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R =Hydraulic Radius(ft) Aq=Flow Area(ft*) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n =Manning's roughness Pre-Development 100-Year Page 5 Subarea Subarea Subarea Sheet Flow Computations A B C Manning's Roughness: 0.4 0 0 Flow Length(ft): 100 0 0 Slope(%): 1.5 0 0 2 yr,24 hr Rainfall(in): 3.5 0 0 Velocity(ft/sec): 0.07 0 0 Computed Flow Time(min): 23.04 0 0 Subarea Subarea Subarea Shallow Concentrated Flow Computations A B C Flow Length(ft): 1128 0 0 Slope(%): 3.67 0 0 Surface Type: Unpaved Unpaved Unpaved Velocity(ft/sec): 3.09 0 0 Computed Flow Time(min): 6.08 0 0 Total TOC(min) 29.12 Subbasin Runoff Results Total Rainfall(in) 7.5 Total Runoff(in) 4.38 Peak Runoff(cfs) 160.08 Weighted Curve Number 73.05 Time of Concentration(days hh:mm:ss) 0 00:29:07 Pre-Development 100-Year Page 6 Subbasin:Sub-36 Rainfall Intensity Graph 10.5 10 9.5 9 8.5 8 7.5- L. 7 6.5 • t 6_ • c 5.5 • - - 5 ce 4.5 4 3.5 3- 2.5- 2- 1.5- 1- 0.5- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 170 160 150- 140 130- 120 110- 100 n - 90 c 80 z 0! " 70 60 50 40 30- 20- 10- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) STORMWATER MANAGEMENT REPORT CRESSWIND WESLEY CHAPEL - PHASE 05 APPENDIX D POST-DEVELOPMENT DRAINAGE MAP 27842.0005 1.11 THOMAS & HUTTON \`. I sI\I)I //i/////(f////(11,grr>,//1�/7'///, �t �-�. •"II r`�II�f1L,\, /dam \ \� >( "r, ( (,,J i////////%//////J,,// 'c,I ) 1i-f__= r�-V a �.\ifs 1 �y . �'-'/ '� /i\\\\\\\•\'..:,,. /%1/i 1///l ii Er-o I J � ,r0/I fi%(' .�_ \ U is /\�\�\\\\\w //i/iii/ r is v1., /� /, / /�SJr J^1 ' l \\ ) %IIIIVAl 1 o %,„ ��. v A l�l(</r / w 111 g Iili7(11q/ r/( 1 1 r 1 � ' � /'I/ I A /1<1 v� vv r O\�v V,. A\s S \3 I/ ! t 1 Ye a+ ' 1,„„,,,„/,.„,„, " , ,, ,,,,,,,,,,, 11I11//i1v r / r. / ( (III / v,z =� `�� � �Cilvvvg vvAVI / lll,,,„//// ✓, / o a , , I N////,/J I II Ills; L,__________..�) „\\ ,I ,_r, i„),,VA�1„ I�, 40214@ poh ,„,,., \1,� II II(// 4. r ��� X Y///iJrJ c<r a Ef dimC. A \ s�V lllljll(Ij/ D3 OUTFACE oz ///�/,^ ' __ �� )0I I 1 Fll�l I)r J _ at ��3gan �(�jAA 1\ ��' I�Illlll �> L� �11 � IN/// j/"� ��i111III(I) �I1 r-.A._ ,j�///IIV /( ° I I I \ / /i 1 /,, l -,�lw ( I 1\ P. � - �/1 I_), /r^ / Q\. II IIII\ / r // A e I E -')/ VA .E, V r/// �'•��V >/ 11�I % v J/ \'\ / K 5 / // 1/ / /',I , � :I\ 1 , , . ; 1 /�,e-�/� v /I q i k I �� 111 d y� �v •a s i 6�VI ► tip \� J�f �h ) 7_ rvu { //l1 e � V IIII ��I I,,11, �1 v ` <� V// / � vAA i`;� vA iy...a����iiIIlll / �" I Wn� I f \�� lC. Y �!' �I�I Iv- `lam va AA. \ a 1 it \ r i /I ) /i(/////- v,I A 1 % v� v*\ / `*� le !IIII tl ;I' v" I �, a l tll r t1a / q�iJr9 v��v v�v - ••:. `' �y///'./� 11 I tl �� vvE I� s' Vv���''ti.. I(it "' I 1 //i// �Av�A\A V \ f' la.A� V�v/r,,// �/ I /� ,//�V' Ap i S�� _ �� a / /-- 'r \` \ \�\�, / v.�� ♦, did ) 1* < \g \ \' _ o a ftiqp vv 5 v, v \v •,/ '40% ,,, by �� /'/ �/ J /r s�%� v\ ,n a\ t VA i �l I // Ill AV1\ V'AlV 4 \ / 4N,' i )r. /4 4 VA \, A\ v 1 v�11 / ,//l yV ,, Avg ¢ �/'// /' g A m � 1 / I r I/q%! A - 1/' A // EXISTING / IlI�7I r- 1 /iN l/ll/ II I 1 1 5� ) 11 l i/ ^h I� > v� ' u a 1'; v. AIi / PHASEI �-1 'y Til ul --. _-rl' ///`it' '�li ii* -' 1(1/r`- \ EEl lo, l (/ \ I '\ s a° // / .yc":.� \ ) r �� >y� ,//1 J/))I(A�- \ / I/ �/ � �u�' illI �v P`--' /i / l // �i � JI Ili I IIUr= / Ig l r✓ / l01111111411 AIM V1 d y // /i� IIor fE II / f r ��/111Mar:4,-.4.,,,,,S �� �� r " /I5, ]I \'j /,/� IAA III vI? a A ... ,{ �� /•/ / A \%�IJJj/�y/L '' �I` � 1tp� II 11\.^�n� 'di � §g�� �Ia�wv �,% ! i �,,"//�`\\ r\ x���\VAv ,_ .AV•\ /'/ „�' 1/ r.,,,,,„_„, 1 - \ ''9 UNDISTURBED BASIN \ _ / \• \i/ i __ --�y%/,, .ee, I (I;iA�N `L uJ ,� sueol \�\ ' ‘..,, , W� \: 4.:; /`—, `�\ -. ~ �-/r A aaad PbQQI IIs_ ve.I , { L37l \ \lfi \ \ �� �' `4 / M\iJo ,/ ",{ ril �� AREA 1314 AG \ / I 'r"'� a @ � :Il _msI , �® y Tc 32 MIN. \ .\\ ''��' \� \ \�sn- -r\ ?V / �� � ,= JJ rK>/ `� \\°rI � r /r sr �) � I 1 I "aaaaaad� _ ° v, �.,o I(!1 s \\\� /\,� 1 I ( � 1 z ___ ��1//s ��~)�> �- WILLOUGHBY ROAI //�// // e;A+`'�Ad��'' g' 11 I ' I��t ',;-;eF,onrfaa-_ ��1. �' °1 //I( �' / \\��</^\ 161 __� lal 7t Y r,�\ f -_- � "w yi \. 60'PPUBLIC R/W / (/%' BI .9':^ A I j l 1a an +&;f6re..-�.. 'a l� Sti�z % flll,l'.' / ��' \I jr, _-I l'4\`',� (a -�! I ///f / a 1 t.e pg 711' :11\ \4'A' _ :I : "ri \„ , 1 l) a( i \� \ _ IJI 14.\c :\\\-, l r J- % �����_� //�.J �1�'. c ci / 4 Egg �1.,'� 4!s "I',,' 6 96"'`� \3�� r ¢ \„i iiiu l 1�I ) \ ! ^\:�f 7 , J l T t i �<„r(>. 1:• :6:0, ')_BL / 9J Y 1 a `� ,r d 1 I I ;I ,1 �, , - I `I l �\t / / f �a `< -it s]so_3�.ssszfi,o �,• !. //: . / / I I l� \�> \ 1.,, f( \ /i\\\\1� s' I / J' :�I II A \ ' JN; 6. , -cfilse s ,� \ \ ./ / // \l0 1 1`ra I V'\''s `\ r \ � .> 1\ ( \ I.,11 "°es �i f aaAaaaaa3 I �! II 9B L d. // /,! - 71 17 911/P l9 t lied. i ( .MIMa14' z.� 4�1�a:..a. `� / //,lf j, , i l\\ \4\\\\,, 1,, `\ 'r�//'l\e°,7,7 111\\l'''i I / / ' , IS J I I - II; PHASE 2 BASIN TO POND• 6'9°• \ EISTIN2 / l \ �� \\ i / 1.t ;^ v!� / r g. _ ell 03 <e. RASE 2 i - / / // ,e4._ i/ a v,, ,A 4\Av / `, ���`�! I//, 1(Il •.��:�aAyy e m i" w, sue-o3 I /'/ !/ '. 1 / , _ _ AREA:45.3 Ac. / Qf ( _ �\ // / �,� .:�1.� r/ > \ \ ♦ /\ <�\�, ///.4\\I1• I o I / q//" 31 4 N 86 !If', ,,%. Q. , V \ \ /'/,//t' \` /%/�\ h \�//J/l .a� / l \ �� �r� I F Lo / / ",/7 b Tc 5 MIN. �i- a , r //// > 3��11`�,\ / �1i�` >Y q / �' I 1 '^ / j 1 d fI / �I 911 II�m l o '\4 e'' �o` aV r'•- / /f p/ / s • /. pca. .1►. ♦ \\af \ i2�<1 1\l\\ E V/ Z 0 % �f I 11 �? III �( 3 54 F I m9 "y o ate \e4 y3•\ .,�' a' 4 ��.• a�vV / EXISTING ✓/% \ S'/, \\\\\ \ "\ csi09 U /% � q III' II ' 629 '# �� t•,I ♦; PHASE % (r \\ / / /, \�\� O I /, I \�/// V�7� � /ill 1161]48.896.29 /��hr/4/°✓ f�. �\ � I/ � 3 �% q/ \Q NO C /l.! 1- ice/ 01j111 i3,6 s2 '° ,, �° .\ O ij/�v A4 \ '' ////�..I \;I I� __ COS -c/ /r. as a 4 a g''� / ` ,e. ,IIII ` s ,'9 - 1 1 ,.e a ••f f• > �' ?T wk. ,,,�i...f \,/�", 0 o° p \ � ,�,, \\\ it I L 1— N I %^y/iJ° A suBo2BAAsw �\I ., wI_ I;t, - �i+, � / � � \ e.� ®� ° ry `' � �' \ `� HIE: ��� a �/ / '�s t 3>- ' / 3 /1\•., 4 > s: /4 .� i a :, \ .2p %' , r a o E UNDISTURBED / -� / � 4// Rs / 1;:- > ',,Z�1 �o s �3 i ���r9i� ( ss ry -i3 <�\ y// /i•. � r� \ I -E� // oa 'aa AREA:23�s Ac. // ' m..bx 11 ,. , ..:•. a �`�' �:p ,, °'i "` ,,°oz %�/� %` a \, -4 fs� _ 0ro 0/' 0'gatltl, cN:�9 / ,, 3 /, o \ s'r 5 roe\ //� m 3 \ 'C'o / i \ 1 /I -(aj � /4; o . ` /t, -� � �fY �.e- ate ®•�- a ea3 , \ I lIl �"I � __� — T0N h'r E o V`aa 'o♦:/ - se J �i, /�' Q s 0 6 \�• \cam\ 9/ \ -;)1i aam F : r 2 w�,) Spy'' I ( 3,>.�ilY., :a / 3\ // .. ��G po s .<••a'3o e %. s ,h� �,`! " \ e"eor /ro °')� \ / � '� /1 - I�I o Uhi /-7y�� 6�` �,� pa / r...� 03 ♦ • :4 / /30 ��2/' . ./ sqs �NI,I,• ,52,, / a \ a.♦ f� ,3 \ \ : /1/ 0 llN' I I oZ 0 I / I• ,�' V s\ e// .'3 Fo - \__, >.� ' •u - 1— I \°' 0 3q b�so „ \ \I ///pl �_-ifN///�\\�a __,,1#! 1. Ih., _}_ JIi I\1 -i p� / ,. - / ry °.3 ..%1'i• ` / / ` \-so�•J SJS_ •-56bd4(55559 i,\J 4 96poC J'.0./ 3), ,,,,„ / 0^N, - \%\III I I - -�I{ `'�I�� II I �E�i A A - ". 1 �; o �. \� 4" o Y /-,3 0,• a .-9s3 A l,_ (w \N \,+�. To ,.Yr eI01 ro 46/ ` �\� l S\\ �� �I I �1��ii il �= 0 �/ � ?°:.. a�.. o%o / �i /: °°'". \ nt• o° \ �:,.s . �' r 5y / °3 Ei \ \ �3�/�. - �l(/• ��� � a °+oQaY r'¢'ffro0s s �o`Z` r /'o .. /,.so\ 'J �.� "O s' / Iv I m G 1W ``Im \io59 • 1'S 3` 4s����A '' / �26"% : \\��\\\\\ ✓'/ \, ////// LIf�ti/.�,.» _ �- . 3� / Fp -�. .r° `:� s9:; I � %� e. / - s ' 3 ,p \\\\ \D• � ll///�'y�,I\-, ""i\. �\- �-� _ ---/ , 4 . 1"A:a.". ati// a '', , a0s , \ o voa! m` /'/,M,`.si,,,/. 2 ' \ // I a1 U �i�\ l / - - ' 3 .,�0 '.•/° ! moo,/ /�`r a 3 "''y /y'''' �'-�----- J053 - --, / .I0 \' , ' . ''' , 32 \✓ -v:�.\- z yy jN/j;-( w _ , >'i` �'+.,r'I/-' / \�\ __-�-�-i.,. .�_ � /.: .,' / • ^' �g9�°�\\ .: •°,., >° o'' l•,/ ::t•'<3, � 3 (\ /.o s..-�,.� �__,.,..�• � :�50 w a oti'.� .�i� oo.)���' fal/� l i�11'�_e� �-__—_ //��' % -\\\\\\\ ,=�-�-� - i l� ,. aP ,rod „� � /y..�w, /,,C. '% y✓• \�• '�10� �\y �,..,,o ,� w.\��r \oy. o°I ��. __ / /- g �/ � \l� ���•� ,T, �'� �. ,s, \' I, �O / O o 0� � 9 3°4. r\' / •3 / I �vl�% ! I I r \\\\\ -- .., i.. Oro. /\ O . 0]E• \ a % p ✓/ - / \ � °�3 J-• � \, / ro0�/\ 2f 94f.00E m a I 4../ I% � / �. � �� -�� /r _- \\\. awe.. •iS`' ° �off, i za 'a• 30, :o s > / a. oO\ - /=� / � \� \ ��/// I � PHASE 4 BAS'�TO POND ` a E I \ # `-=$";G ? ;" Qg ,l\�ti �, 34 3 o.'x • I I" \ r' f h,r y •�'p iw" i/� I !.� ���J-1 -/`\tl\ ..9o- 'ra7ty���a�� � di\ $. '\ '° y? A 4 0 � yo .;M -^ I M (m _ -� i. 516� �-ro .�,Iys�/ ♦'1,/ � ,�` \ ��_ If— �__ \ 3 �`. .�.,.\ -..` :', fads s ?.aoo C'ss. S.:-OS _ ,.•r ,--N ° \s's /r�/ //\1 \ ii C— 7 2 %r�li,,--,��:. I / oo OF' �'S9 ,,, \ 00 T,�.o�•'.?�/,. 3•`C2� o:' . 0 '- ARE 43.5 AC. _ '\ " 6 I /''oe.\\a\ /i its, ,.I ...SJ/ `� If / /� i • G C mnl / '�o r ,4; A , .� h, /xav `5,' T`> '° \ 54"y'• ,.,I..5 / / / �... / I v �, N:73 a- «r �MAII °- 4 i/� � o\ ,-Il : �s � off"/ C �° EXISTING \ VN 4if- / ^cO'&. �'os 5 MIN. ` � J _ �I(�/:�., '�?, un� I Q J/l Y .b°/ > p / cot� "e 3 � /J B �� _ E \P,,,: . _ - H- ,1, 7/� �,-� O I( \ / Ya'. 3 0'V/- yo k�M. PHASE 3 /.j ;` - \.a. o �� �'0`4 i3S .� �`'°, .w/ _1 1 2 d�i �\ } '' �:„I , .t? \e,'..\• ;f. d \\ w of::7.;o, ♦of,s a'/ seyE,�"\. �`; . m !"-' I m ^ I�:° I'" ,t Z i 961\. \li ./:1 \ f���//, ,/�fr'! �a, 1? .., W `\, .Lti I. ��� y. 'm-"4 aY 1\\.' 9...� 5�� \�\O �,� /ti`"^ 30•,y. � O°,�(yJ S° � �, 999'S92J 6�� �' 46564� z w.:I' rI�.i\.O \ v,��y /!,�%;� '.'+ � �\ �. • I %r I O•• i �: �n \ 2°6 f/ 0�h,ti ` ' 'Cs,��. /c/ 96' ...�.... ®.`�...= 2 6 5_0�5 y _ I5125' W \ • .. ��� .` /a'to\ W r\\l 2 � \ .2�. � 3oo,i ,sR!. . , of. \ .F ,. - ,u� �.9 s'\� -a � / o '0' ' m,ss�s�M/ �63\ !'' ' \ ���/".��% t . \'a\_. ^��\:,�_ \ � \l I a, r."il, 4C> . 0 a " \ems '�w . t . `n.. iGs-. - ��zs TT .7 �. /' \. V., I' s.' -G•'N',\ r _ \ -i o \ ♦e 4 _ -?�li' \ \ .f` I �"\�--. mow♦ '�S %6�3, -O, ( acW .° d / :° Y ',1 / mf/ �,e, , \ k w� �\\tll'. i a17 Q !\\I l 1 \ ° --.' a{!'0 w ,3,0? • TT.\ jo, ,3° � `WM\;`c, ,14,-` a e',l „m/ pi J PHASE 4 Jj/ ad\ \ -o - ��`/�• „"' l'1 '-�' / e \'„E ,:`III ! !. W 2 `/%) I \.,�p36 P� r] \ 05 '� N 43�: �°` J\O �FI=n' _ PHASE 4 v Ir^i/l r� 1!I_ �// } \� J) ( q, ,s�; �� LI ao \�\®,PHA 3 BASIO•POND } � `ti��7 � �"3•/\ 9 m J• o���y� _ r�J/ p 4� .FI'� • i �4�`\ Yi1 -.�' q Q J{ / 's� •.a*'op�d P`� .,v%'' Op __�` 04 - 3 " A Jg�- 4 �y .rsa �� � '6�Io \ , [1 to W \ 4 \ suB-oa \ 5 owoS \ s 6665 8 626.306' /.;C^ ai�a�/ i ( 1y! i� PHASE5BS eN05 POND06 �71 'll � UIIIIIII _� _I ~3 z a ' �-, , /\ s ` •'a� `>' \. ___- \ 3o�%r` i E•;. \m ss '3/ ^'/� I' ;a'13s I er // ! -,a j1j rp e Q U °\ 4 \w AREA:I7.9 AC. r / \�" ,.!�.+� 9 AREA:30.93 AC. 'I \ �y.• '\ �--. /' er \a. •s> \ i r oz J aO r a l O o \\\�\�l\�s'.��/ ,\ ; s wi / W CN:86 \ /'lP cW �o '� 03. // aq � roroi M\.�2o �'ia p (.�fr .94,lyJ ,y:y 'r�`° CN:8293 *T t - 4� i,I}III��_ IV H\j l\)III \po�\'. �,f.5 .y l Tc'S MIN. �-` ` °o. .i • / � ,,,P P /x- '90f r--/. A ). L kk l'%�yt Tc:5 MIN. I P. +-- ' 1 _ , U� V 1 Z �7)Vv� 0so, 05 v f'' �. �., �/ p r ) // %.G 30 '2> 6�T. I n � A ( W ._:,.- --,� �-, �,� - //0 I A,• ,,yar^ / Sr 1 � 1 �fi Q m C � �� d \ �M 1� � y1 36,, (A.\. 1 yi ) � \ ��,,.''� P A 1 lamed�� 'LIB( l �U Z Z G �=l�i ," .-M'� iY� � '�.�.....�- `�i ��// �/-^_ �� 1�16. '� a 111 po. v �, oo �,�� as � I��-• �' ///(\ v �,. � ,�� la, _.- a „ fal I'�, � �da �o — � -�'', '- a"' t?2....--,. , i.-.r, _ 5\ a v s 4 r�,.� /lo` `�//1/(l I / 1� ��� 2��.J7" eR .i pI II I?. __ J p W = ^' �M �ro %n Y# xs� '"T" s- -�,��.,,,� /-- ffloo"•/,F.� \, yv i VV�� tl'F7./ l l S �.v� .1/a SAL D ?.fIILO ��IL Ch m J o ti p I;, f,u�� .�K,�-., - -r' ��� V ♦ :a' :5 ;� °s v 'i ya,9 k ha-_-y-T P///I(I l j �0 �� a,aj<_ •�ItiS --- (,1 _�I.� Q w J a .v l,M� Im = '-_ �'", .. / '^s3.> ' °° r �'�' - lll, R y 9; I � = It0.4 �1� --�'- -- -� [ ':� �^,�`�•�f,C r' - .N _ ,`v _// _'J j!,ro 50�' .� k..t.' IIII/I � �1� /E �, .� Y:ke ����f _ � W v �p 11I�' _ -�';� .. � ��� 1#10 \.x zeo° s J,Lil-S S I tl ' N, i �. �l r, ��� I�' i �.\4«, coo -�w,_ -'- ` �.��- 4� IAA �'. yo .'° stl 1�It ,� �� \,, �'.� .,�I 1%) /d 'i --- �: r�l'•14 � l l' �__ U g v. _ - IS',(`' 4� 3 0, '' -� 1 C\ ��:• ',A \A ti �J� -���s F l ��1' ids,. r.. � _ / :;". tN v 3sr-- ���� I J �7 , . �\__� ?aanaay�'g ,aa ''' ana° >- ✓-T' - 1I ,I\I', `7'r a,>"l 6 , y v> A�.� , - d//r,a /d -"� �1fti,,f 0II I \ •a.a •oaao� 'd--( - ,,,-� .,, .j, "I 1 S,'.,: /- As �+ �' A\ �� 'A•/(//' /`,'?A���V A,•a5 `�I;���' ��, -- �. Y j`-V aaoe- _ u1�...-1, r1IN--_� ."�- \ / V , ,,�°r.'.ia�/_ ,1` u,� "\v'_ A� c�'�� 4�•� ®` "'-s �?,i� Irk � �j Iv. -� l/� a r ��-1/ ��! r yv 7\'�� 'a.> % n l` v \ , A\ ,('�y vv A` 1 y 'I / \ e',�9P4 T T-•/tl /4/ S..' \V ,-- \,3\ q PWET.ETENTION 'b\ \ L`".�"WET DETENTION i \ o,/ v�,, �``� � r,�lf1�►y/�I'�"�ly IQJp1�u'I�l I a / /� as .>ram:- wLi. '"�''//%�///i�\ i \ vz"T" "-I `L yo6 \ \\� 1 ) \'\-` POND OB \\, 1 \ �'"R' 1 Q ��an.�Ifill npi '�A I -- °f/j d ,.F - - /N/% >Pl. v --- - v. pi4 ,w�� y `I f \-� a Vv �•"' _ _� k� �I '.»`�yi/i�i/i/i�//r/ 4l ��AA, - ,..__,A- A� 2 � �_-, 1 vv�- � �•�/� l �� ��- _,..�� �� 1 / / Jill ( � . v� . �. t- H � v _ �/i/i `�� ,� y. I -_ 3 •.,�(f 1((l l( / l ��A _>_ .�� � � I0�� \ �� � V -- � ��vv v / �I aw s doe No. d-2]eaz0005 �abov / \vA 11/!i ) wvvvvEvKSD a A v\v z � y �.� "° r �� � v� I / 111 '�j11111 r a q � �.._ //bJ /' ' �, DATE' oz/n/z3 rtil�t.,4�s - �_�-l'14,��'` .�////,igiI(\141, -L_ _ �. .. pi. �""4 / ^ _�AVVAAiAA, ��'c `��� ---re:��J/�L_ ,-^v-..,,1 d r DRAWN: 02/ /' / /J1/<f ,,. <___ • Q I t, °S�l\\ ` ?;_ _ \ (GRAPHIC SCALE REvi wEo: msK llIl� �(S+yl(I>t r �V1I1111I11I 11Uglilj111�''�- Y\\ � �' ° r / -/ ® ` w I L APPROVED:MSK /, / / hs o� I -,S l-n-- �° SCALE: I" 200' / TI ` — ` I n IN FEET) / - . __1.Jlll STORMWATER MANAGEMENT REPORT CRESSWIND WESLEY CHAPEL - PHASE 05 APPENDIX E POST-DEVELOPMENT CONDITIONS DRAINAGE CALCULATIONS 27842.0005 T THOMAS & HUTTON i Post-Development 002-Year Page 1 Project Description File Name 27842.0005-Post.SPF Project Options Flow Units CFS Elevation Type Elevation HydrologyMethod SCS TR 55 Time of Concentration('IOC)Ivvthod SCS TR 55 link Routing Ivlthod Hydrodynamic Enable OwrflowPonding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent DryDays 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Tune Step 0 00:05:00 days hh:mm:ss Reporting lime Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements ety Rain Gages 1 Subbasins 2 Nodes 4 Junctions 1 Outfalls 2 Flow Diversions 0 Inlets 0 Storage Nodes 1 links 5 Channels 0 Pipes 1 Pumps 0 Orifices 2 Wens 2 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series 1S-002 Intensity inches North Carolina Union 2.00 3.50 SCS Type uI24-hr Post-Development 002-Year Page 2 Subbasin Summary SN Subbasin Area PeakRate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-53 11.43 484.00 65.42 3.50 0.77 8.83 8.53 0 00:05:00 2 Sub-55 30.93 484.00 82.75 3.50 1.84 56.88 59.59 0 00:05:00 Post-Development 002-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak IvhxHGL Max Mn Time of Total Total lime ID Type Elevation (Ivhx) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Hooded Flooded Elevation Elevation Attained Depth Attained Flooding Volume Attained Occurrence (It) (fl) (fl) (0) (ft') (cfs) (0) (0) (0) (days hh:mm) (ac-in) (min) 1 CS-05 Junction 578.00 586.50 582.50 999.00 1.00 4.44 582.49 0.00 4.01 0 00:00 0.00 0.00 2 Out-29 Outfall 574.20 46.43 575.61 3 Out-spillway-03 Outfall 574.20 0.00 574.20 4 Pond-06 Storage Node 578.00 588.00 582.50 1.00 58.35 584.53 0.00 0.00 Post-Development 002-Year Page 4 link Summary SNElement Element From To(Outlet) Length Inlet Outlet Average Diameter or Manning's Peak Design Flow Peak Flow/ Peak Flow Peak Flow Peak Flow Total Time Reported ID Type (Inlet) Node Invert Invert Slope Height Roughness Flow Capacity Design Flow Velocity Depth Depth/ Surcharged Condition Node Elevation Elevation Ratio Total Depth Ratio (8) (It) (It) (%) (in) (cfs) (cfs) (ft/sec) (6) (min) 1 L nk-05 Pipe CS-05 Out-29 83.52 578.00 574.20 4.5500 30.000 0.0150 46.43 75.83 0.61 15.46 0.43 0.78 0.00 Calculated 2 CS-RIM-05 Orifice Pond-06 CS-05 578.00 578.00 60.000 0.00 3 Orifice-05 Orifice Pond-06 CS-05 578.00 578.00 4.000 0.59 4 FMERSPILLWAY-05 Weir Pond-06 Out-spillway-03 578.00 574.20 0.00 5 WEIR-OS Weir Pond-06 CS-05 578.00 578.00 3.85 Post-Development 002-Year Page 5 Subbas in Hydrology Subbasin:Sub-53 Input Data Area(ac) 11.43 Peak Rate Factor 484 Weighted Curve Number 65.42 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 9.98 B 61 >75%grass cover,Good 0.17 D 80 Paved roads with curbs&sewers 1.28 A 98 Composite Area&Weighted CN 11.43 65.42 Time of Concentration TOC Ivbthod:SCS TR 55 Sheet Flow Equation: Tc=(0.007*((n*If)^0.8))/((P^0.5)*(SP0.4)) Where: Tc=Time of Concentration(hr) n =Ivfanning's roughness If=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(SP0.5)(unpaved surface) V=20.3282*(Sf 0.5)(paved surface) V=15.0*(SP0.5)(grassed waterway surface) V=10.0*(Sf 0.5)(nearlybare&untitled surface) V=9.0*(S1n0.5)(cultivated straight rows surface) V=7.0*(S14.5)(short grass pasture surface) V=5.0*(Sf`0.5)(woodland surface) V=2.5*(SP`0.5)(forest w/heavy litter surface) Tc=(If/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(SP`0.5))/n R=AI/Wp Tc=(Lf/\ /(3600sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R=Hydraulic Radius(ft) Aq=Flow Area(ft5) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n=Ivhnningsroughness User-Defined TOC override(minutes):5 Subbasin RunoffRe sults Total Rainfall(in) 3.5 Total Runoff(in) 0.77 Post-Development 002-Year Page 6 Peak Runoff(cfs) 8.53 Weighted Curve Number 65.42 Tune of Concentration(days hh:mm:ss) 000:05:00 Post-Development 002-Year Page 7 Subbasin:Sub-53 Rainfall Intensity Graph 3 2.9- 2.8- _ 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 1.8 t 1.7 1.6 - 1.5 — o `c 1.4 • 1.3 IX 1.2 1.1 1 , 0.9 0.8 0.7 0.4 0.3 0.2 0.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 8.5 8 7.5- 7 6.5 6- 5.5 5 w - • 4.5- c 4 z 3.5- 3- 2.5 1 0.5 .. . . . 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 002-Year Page 8 Subbasin:Sub-55 Input Data Area(ac) 30.93 Peak Rate Factor 484 Weighted Curve Number 82.75 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 12.75 B 61 Paved parking&roofs 18.18 C 98 Composite Area&Weighted CN 30.93 82.75 Time ofConcentration User-Defined TDC override(minutes):5.00 Subbasin Runoff Results Total Rainfall(in) 3.5 Total Runoff(in) 1.84 Peak Runoff(cfs) 59.59 Weighted Curve Number 82.75 Time of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 002-Year Page 9 Subbasin:Sub-55 Rainfall Intensity Graph 3.1 3 — - 2.9 — 2.8 - 2.7 2.6 2.5 2.4 2.3 2.2 2.1_- 2 - 1.9 • 1.8 s • 1.7 1.6 8 1.5 c 1.4 ce 1.3 1.2 . • 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 L I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 62 60 58 56 54 52 50 48 46 44 42 40 38 - 36 wU 34 32 0 30 S 28 • 26 24 22 20 18 16 14 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 002-Year Page 10 Pipe Input SN Element Length Inlet Inlet Outlet Outlet Total Average Pipe Pipe Pipe Manning's Entrance Exit/Bend Additional Initial Flap No.of ID Invert Invert Invert Invert Drop Slope Shape Diameter or Width Roughness Losses Losses Losses Flow Gate Barrels Elevation Offset Elevation Offset Height (It) (It) (ft) (8) (8) (It) (%) (m) (in) (cI) 1 Link-05 83.52 578.00 0.00 574.20 0.00 3.80 4.5500 CIRCULAR 30.000 30.000 0.0150 0.5000 0.5000 0.0000 0.00 No 1 Post-Development 002-Year Page 11 Pipe Results SN Element Peak Time of Design Flow Peak Flow/ Peak Flow Trawl Peak Flow Peak Flow Total Tune Froude Reported ID Flow Peak Flow Capacity Design Flow Velocity Time Depth Depth/ Surcharged Number Condition Occurrence Ratio Total Depth Ratio (cfs) (days hh:mm) (cfs) (ft/sec) (mm) (ft) (mm) 1 L nk-05 46.43 0 00:00 75.83 0.61 15.46 0.09 0.43 0.78 0.00 Calculated Post-Development 002-Year Page 12 Storage Nodes Storage Node:Pond-06 Input Data Invert Elevation(ft) 578.00 Max(Rim)Elevation(ft) 588.00 Max(Rim)Offs et(&) 10.00 Initial Water Elevation(ft) 582.50 Initial Water Depth(ft) 4.50 Ponded Area(ft2) 1.00 Evaporation less 0.00 Outflow Weirs SN Element Weir Flap Crest Crest Length Weir Total Discharge ID Type Gate Elevation Offset Height Coefficient (ft) (ft) (ft) (ft) 1 EMER SPILLWAY05 Trapezoidal No 586.50 8.50 20.00 999.00 3.33 2 WEIR-05 Rectangular No 584.00 6.00 3.00 2.50 3.33 Outflow Orifices SN Element Orifice Orifice Flap Circular Rectangular Rectangular Orifice Orifice ID Type Shape Gate Orifice Orifice Orifice Invert Coefficient Diameter Height Width Elevation (m) (in) (m) (ft) 1 CS-RIM05 Bottom Rectangular No 60.00 60.00 586.50 0.63 2 Orifice-05 Side CIRCULAR No 4.00 582.50 0.61 Output Summary Results Peak Inflow(cfs) 58.35 Peak Lateral Inflow(cfs) 58.35 PeakOutflow(cfs) 4.44 Peak Fxflltration Flow Rate(cfm) 0 MaxHGLElevation Attained(ft) 584.53 Max HGLDepth Attained(ft) 6.53 Average HGLElevation Attained(ft) 583.42 Average HGLDepth Attained(ft) 5.42 Time of MaxHGLOccurrence(days hh:mm) 0 14:01 Total Exfiltration Volume(1000-fl) 0 Total Flooded Volume(ac-in) 0 Total lime Flooded(min) 0 Total Retention lime(sec) 0 Post-Development 010-Year Page 1 Project Description File Name 27842.0005-Post.SPF Project Options Flow Units CFS Elevation Type Elevation HydrologyMethod SCS TR 55 Time of Concentration('IOC)Ivvthod SCS TR 55 link Routing Ivlthod Hydrodynamic Enable OwrflowPonding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent DryDays 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Tune Step 0 00:05:00 days hh:mm:ss Reporting lime Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements ety Rain Gages 1 Subbasins 2 Nodes 4 Junctions 1 Outfalls 2 Flow Diversions 0 Inlets 0 Storage Nodes 1 links 5 Channels 0 Pipes 1 Pumps 0 Orifices 2 Wens 2 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series 1S-010 Intensity inches North Carolina Union 10.00 5.20 SCS Type uI24-hr Post-Development 010-Year Page 2 Subbasin Summary SN Subbasin Area PeakRate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-53 11.43 484.00 65.42 5.20 1.82 20.81 21.69 0 00:05:00 2 Sub-55 30.93 484.00 82.75 5.20 3.33 103.03 105.77 0 00:05:00 Post-Development 010-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak IvhxHGL Max Mn Time of Total Total lime ID Type Elevation (Ivhx) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth .Attained Flooding Volume Attained Occurrence (It) (ft) (ft) (ft) (ft') (cfs) (0) (ft) (It) (days hh:mm) (ac-in) (min) 1 CS-05 Junction 578.00 586.50 582.50 999.00 1.00 20.17 582.49 0.00 4.01 0 00:00 0.00 0.00 2 Out-29 Outfall 574.20 46.43 575.61 3 Out-spillway-03 Outfall 574.20 0.00 574.20 4 Pond-06 Storage Node 578.00 588.00 582.50 1.00 104.36 585.56 0.00 0.00 Post-Development 010-Year Page 4 link Summary SNElement Element From To(Outlet) Length Inlet Outlet Average Diameter or Mhnning's Peak Design Flow Peak Flow/ Peak Flow Peak Flow Peak Flow Total Time Reported ID Type (Inlet) Node Invert Invert Slope Height Roughness Flow Capacity Design Flow Velocity Depth Depth/ Surcharged Condition Node Elevation Elevation Ratio Total Depth Ratio (0) (It) (It) (%) (in) (cfs) (cfs) (ft/sec) (6) (min) 1 L nk-05 Pipe CS-05 Out-29 83.52 578.00 574.20 4.5500 30.000 0.0150 46.43 75.83 0.61 15.46 0.97 0.78 0.00 Calculated 2 CS-RIM-05 Orifice Pond-06 CS-05 578.00 578.00 60.000 0.00 3 Orifice-05 Orifice Pond-06 CS-05 578.00 578.00 4.000 0.73 4 FMERSPILLWAY-05 Weir Pond-06 Out-spillway-03 578.00 574.20 0.00 5 WEIR-OS Weir Pond-06 CS-05 578.00 578.00 19.44 Post-Development 010-Year Page 5 Subbas in Hydrology Subbasin:Sub-53 Input Data Area(ac) 11.43 Peak Rate Factor 484 Weighted Curve Number 65.42 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 9.98 B 61 >75%grass cover,Good 0.17 D 80 Paved roads with curbs&sewers 1.28 A 98 Composite Area&Weighted CN 11.43 65.42 Time of Concentration TOC Ivbthod:SCS TR 55 Sheet Flow Equation: Tc=(0.007*((n*If)^0.8))/((P^0.5)*(SP0.4)) Where: Tc=Time of Concentration(hr) n =Ivfanning's roughness If=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(SP0.5)(unpaved surface) V=20.3282*(Sf 0.5)(paved surface) V=15.0*(SP0.5)(grassed waterway surface) V=10.0*(Sf 0.5)(nearlybare&untilled surface) V=9.0*(S1n0.5)(cultivated straight rows surface) V=7.0*(S14.5)(short grass pasture surface) V=5.0*(SP`0.5)(woodland surface) V=2.5*(SP`0.5)(forest w/heavy litter surface) Tc=(If/V/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(SP`0.5))/n R=AI/Wp Tc=(Lf/\ /(3600sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R=Hydraulic Radius(ft) Aq=Flow Area(ft2) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n=Ivhnningsroughness User-Defined TOC override(minutes):5 Subbasin RunoffRe sults Total Rainfall(in) 5.2 Total Runoff(in) 1.82 Post-Development 010-Year Page 6 Peak Runoff(cfs) 21.69 Weighted Curve Number 65.42 Tune of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 010-Year Page 7 Subbasin:Sub-53 Rainfall Intensity Graph 4.4 4.2 4 3.8 3.6 3.4 3.2 3 2.8 2.6 c 2.4 m2.2 • c 2 Ce 1.8 1.6 1.4 1.2 1 0.8 0.4 0.2- O▪ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 22 21- 20- 19 18 17 16 15 14 13 12 o 11 0 o 10 9 8 6 5- 4- 3 2 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 010-Year Page 8 Subbasin:Sub-55 Input Data Area(ac) 30.93 Peak Rate Factor 484 Weighted Curve Number 82.75 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 12.75 B 61 Paved parking&roofs 18.18 C 98 Composite Area&Weighted CN 30.93 82.75 Time ofConcentration User-Defined TDC override(minutes):5.00 Subbasin Runoff Results Total Rainfall(in) 5.2 Total Runoff(in) 3.33 Peak Runoff(cfs) 105.77 Weighted Curve Number 82.75 Time of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 010-Year Page 9 Subbasin:Sub-55 Rainfall Intensity Graph 4.6 4.4- _ 4.2 4 3.8 3.6 3.4 3.2 3 2.8 t 2.6 c 2.4 m 2.2 . . c @ 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 -ram 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 110 105: 100- 95 90 85 80 75 70 65 U 60 55 0 S 50 45 40- 35- 30 25- 20- 15 10 5- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 010-Year Page 10 Pipe Input SN Element Length Inlet Inlet Outlet Outlet Total Average Pipe Pipe Pipe Manning's Entrance Exit/Bend Additional Initial Flap No.of ID Invert Invert Invert Invert Drop Slope Shape Diameter or Width Roughness Losses Losses Losses Flow Gate Barrels Elevation Offset Elevation Offset Height (It) (It) (ft) (8) (8) (It) (%) (m) (in) (cI) 1 Link-05 83.52 578.00 0.00 574.20 0.00 3.80 4.5500 CIRCULAR 30.000 30.000 0.0150 0.5000 0.5000 0.0000 0.00 No 1 Post-Development 010-Year Page 11 Pipe Results SN Element Peak Time of Design Flow Peak Flow/ Peak Flow Trawl Peak Flow Peak Flow Total Tune Froude Reported ID Flow Peak Flow Capacity Design Flow Velocity Time Depth Depth/ Surcharged Number Condition Occurrence Ratio Total Depth Ratio (cfs) (days hh:mm) (cfs) (ft/sec) (mm) (ft) (mm) 1 L nk-05 46.43 0 00:00 75.83 0.61 15.46 0.09 0.97 0.78 0.00 Calculated Post-Development 010-Year Page 12 Storage Nodes Storage Node:Pond-06 Input Data Invert Elevation(ft) 578.00 Max(Rim)Elevation(ft) 588.00 Max(Rim)Offs et(&) 10.00 Initial Water Elevation(ft) 582.50 Initial Water Depth(ft) 4.50 Ponded Area(ft2) 1.00 Evaporation less 0.00 Outflow Weirs SN Element Weir Flap Crest Crest Length Weir Total Discharge ID Type Gate Elevation Offset Height Coefficient (ft) (ft) (ft) (ft) 1 EMER SPILLWAY05 Trapezoidal No 586.50 8.50 20.00 999.00 3.33 2 WEIR-05 Rectangular No 584.00 6.00 3.00 2.50 3.33 Outflow Orifices SN Element Orifice Orifice Flap Circular Rectangular Rectangular Orifice Orifice ID Type Shape Gate Orifice Orifice Orifice Invert Coefficient Diameter Height Width Elevation (m) (in) (m) (ft) 1 CS-RIM05 Bottom Rectangular No 60.00 60.00 586.50 0.63 2 Orifice-05 Side CIRCULAR No 4.00 582.50 0.61 Output Summary Results Peak Inflow(cfs) 104.36 Peak Lateral Inflow(cfs) 104.36 PeakOutflow(cfs) 20.17 Peak Fxflltration Flow Rate(cfm) 0 MaxHGLElevation Attained(ft) 585.56 Max HGLDepth Attained(ft) 7.56 Average HGLElevation Attained(ft) 583.61 Average HGLDepth Attained(ft) 5.61 Time of MaxHGLOccurrence(days hh:mm) 0 12:37 Total Exfiltration Volume(1000-fl) 0 Total Flooded Volume(ac-in) 0 Total lime Flooded(min) 0 Total Retention Time(sec) 0 Post-Development 025-Year Page 1 Project Description File Name 27842.0005-Post.SPF Project Options Flow Units CFS Elevation Type Elevation HydrologyMethod SCS TR 55 Time of Concentration('IOC)Ivvthod SCS TR 55 link Routing Ivlthod Hydrodynamic Enable OwrflowPonding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent DryDays 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Tune Step 0 00:05:00 days hh:mm:ss Reporting lime Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements ety Rain Gages 1 Subbasins 2 Nodes 4 Junctions 1 Outfalls 2 Flow Diversions 0 Inlets 0 Storage Nodes 1 links 5 Channels 0 Pipes 1 Pumps 0 Orifices 2 Wens 2 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series 1S-025 Intensity inches North Carolina Union 25.00 6.10 SCS Type uI24-hr Post-Development 025-Year Page 2 Subbasin Summary SN Subbasin Area PeakRate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-53 11.43 484.00 65.42 6.10 2.46 28.15 29.56 0 00:05:00 2 Sub-55 30.93 484.00 82.75 6.10 4.16 128.61 130.56 0 00:05:00 Post-Development 025-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak IvhxHGL Max Mn Time of Total Total lime ID Type Elevation (Ivhx) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth .Attained Flooding Volume Attained Occurrence (It) (fl) (fl) (fl) (It) (cfs) (0) (ft) (It) (days hh:mm) (ac-in) (min) 1 CS-05 Junction 578.00 586.50 582.50 999.00 1.00 31.68 582.49 0.00 4.01 0 00:00 0.00 0.00 2 Out-29 Outfall 574.20 46.43 575.61 3 Out-spillway-03 Outfall 574.20 0.00 574.20 4 Pond-06 Storage Node 578.00 588.00 582.50 1.00 129.12 586.12 0.00 0.00 Post-Development 025-Year Page 4 link Summary SNElement Element From To(Outlet) Length Inlet Outlet Average Diameter or Manning's Peak Design Flow Peak Flow/ Peak Flow Peak Flow Peak Flow Total Time Reported ID Type (Inlet) Node Invert Invert Slope Height Roughness Flow Capacity Design Flow Velocity Depth Depth/ Surcharged Condition Node Elevation Elevation Ratio Total Depth Ratio (8) (It) (It) (%) (in) (cfs) (cfs) (ft/sec) (6) (min) 1 L nk-05 Pipe CS-05 Out-29 83.52 578.00 574.20 4.5500 30.000 0.0150 46.43 75.83 0.61 15.46 1.28 0.78 0.00 Calculated 2 CS-RIM-05 Orifice Pond-06 CS-05 578.00 578.00 60.000 0.00 3 Orifice-05 Orifice Pond-06 CS-05 578.00 578.00 4.000 0.80 4 FMERSPILLWAY-05 Weir Pond-06 Out-spillway-03 578.00 574.20 0.00 5 WEIR-OS Weir Pond-06 CS-05 578.00 578.00 30.88 Post-Development 025-Year Page 5 Subbas in Hydrology Subbasin:Sub-53 Input Data Area(ac) 11.43 Peak Rate Factor 484 Weighted Curve Number 65.42 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 9.98 B 61 >75%grass cover,Good 0.17 D 80 Paved roads with curbs&sewers 1.28 A 98 Composite Area&Weighted CN 11.43 65.42 Time of Concentration TOC Ivbthod:SCS TR 55 Sheet Flow Equation: Tc=(0.007*((n*If)^0.8))/((P^0.5)*(SP0.4)) Where: Tc=Time of Concentration(hr) n =Ivfanning's roughness If=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(SP0.5)(unpaved surface) V=20.3282*(Sf 0.5)(paved surface) V=15.0*(SP0.5)(grassed waterway surface) V=10.0*(Sf 0.5)(nearlybare&untitled surface) V=9.0*(S1n0.5)(cultivated straight rows surface) V=7.0*(S14.5)(short grass pasture surface) V=5.0*(Sf`0.5)(woodland surface) V=2.5*(SP`0.5)(forest w/heavy litter surface) Tc=(If/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(SP`0.5))/n R=AI/Wp Tc=(Lf/\ /(3600sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R=Hydraulic Radius(ft) Aq=Flow Area(ft5) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n=Ivhnningsroughness User-Defined TOC override(minutes):5 Subbasin RunoffRe sults Total Rainfall(in) 6.1 Total Runoff(in) 2.46 Post-Development 025-Year Page 6 Peak Runoff(cfs) 29.56 Weighted Curve Number 65.42 Tune of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 025-Year Page 7 Subbasin:Sub-53 Rainfall Intensity Graph 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 3.4 3.2 s 3 c 2.8 2.6 - 2.4 2.2 2 - 1.8 - 1.6 1.4 - 1.2 1 0.8 0.4 0.2. O▪ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 31 30 29 28 27 26 25 24 23 22 21 20 19 - 18 - U• 17 — `-' 16 0 15 c 14 • 13 12 11 10 9 8 7 6 5 4 3 2 1 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 025-Year Page 8 Subbasin:Sub-55 Input Data Area(ac) 30.93 Peak Rate Factor 484 Weighted Curve Number 82.75 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 12.75 B 61 Paved parking&roofs 18.18 C 98 Composite Area&Weighted CN 30.93 82.75 Time ofConcentration User-Defined TDC override(minutes):5.00 Subbasin Runoff Results Total Rainfall(in) 6.1 Total Runoff(in) 4.16 Peak Runoff(cfs) 130.56 Weighted Curve Number 82.75 Time of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 025-Year Page 9 Subbasin:Sub-55 Rainfall Intensity Graph 5.4 5.2 5 4.8 4.6 - 4.4 4.2 4 - 3.8 3.6 — 3.4 3.2 -c 3 c 2.8 m 2.6 2.4 Ce 2.2 2 1.8 1.6 1.4 — 1.2 1 0.6 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 135 130- 125 120 115 110 105 100 95 90 85 80 . 75 • 70 0 65 , • K• 60 55 50 45 40 35 30 25 20 15 \`\` 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 025-Year Page 10 Pipe Input SN Element Length Inlet Inlet Outlet Outlet Total Average Pipe Pipe Pipe Manning's Entrance Exit/Bend Additional Initial Flap No.of ID Invert Invert Invert Invert Drop Slope Shape Diameter or Width Roughness Losses Losses Losses Flow Gate Barrels Elevation Offset Elevation Offset Height (It) (It) (ft) (8) (8) (It) (%) (m) (in) (cI) 1 Link-05 83.52 578.00 0.00 574.20 0.00 3.80 4.5500 CIRCULAR 30.000 30.000 0.0150 0.5000 0.5000 0.0000 0.00 No 1 Post-Development 025-Year Page 11 Pipe Results SN Element Peak Time of Design Flow Peak Flow/ Peak Flow Trawl Peak Flow Peak Flow Total Tune Froude Reported ID Flow Peak Flow Capacity Design Flow Velocity Time Depth Depth/ Surcharged Number Condition Occurrence Ratio Total Depth Ratio (cfs) (days hh:mm) (cfs) (ft/sec) (mm) (ft) (mm) 1 L nk-05 46.43 0 00:00 75.83 0.61 15.46 0.09 1.28 0.78 0.00 Calculated Post-Development 025-Year Page 12 Storage Nodes Storage Node:Pond-06 Input Data Invert Elevation(ft) 578.00 Max(Rim)Elevation(ft) 588.00 Max(Rim)Offs et(&) 10.00 Initial Water Elevation(ft) 582.50 Initial Water Depth(ft) 4.50 Ponded Area(ft2) 1.00 Evaporation less 0.00 Outflow Weirs SN Element Weir Flap Crest Crest Length Weir Total Discharge ID Type Gate Elevation Offset Height Coefficient (ft) (ft) (ft) (ft) 1 EMER SPILLWAY05 Trapezoidal No 586.50 8.50 20.00 999.00 3.33 2 WEIR-05 Rectangular No 584.00 6.00 3.00 2.50 3.33 Outflow Orifices SN Element Orifice Orifice Flap Circular Rectangular Rectangular Orifice Orifice ID Type Shape Gate Orifice Orifice Orifice Invert Coefficient Diameter Height Width Elevation (m) (in) (m) (ft) 1 CS-RIM05 Bottom Rectangular No 60.00 60.00 586.50 0.63 2 Orifice-05 Side CIRCULAR No 4.00 582.50 0.61 Output Summary Results Peak Inflow(cfs) 129.12 Peak Lateral Inflow(cfs) 129.12 PeakOutflow(cfs) 31.68 Peak Fxflltration Flow Rate(cfm) 0 Max HGLElevation Attained(ft) 586.12 Max HGLDepth Attained(ft) 8.12 Average HGLElevation Attained(ft) 583.71 Average HGLDepth Attained(ft) 5.71 Time of MaxHGLOccurrence(days hh:mm) 0 12:34 Total Exfiltration Volume(1000-fl) 0 Total Flooded Volume(ac-in) 0 Total lime Flooded(min) 0 Total Retention Time(sec) 0 Post-Development 050-Year Page 1 Project Description File Name 27842.0005-Post.SPF Project Options Flow Units CFS Elevation Type Elevation HydrologyMethod SCS TR 55 Time of Concentration('IOC)Ivvthod SCS TR 55 link Routing Ivlthod Hydrodynamic Enable OwrflowPonding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent DryDays 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Tune Step 0 00:05:00 days hh:mm:ss Reporting lime Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements ety Rain Gages 1 Subbasins 2 Nodes 4 Junctions 1 Outfalls 2 Flow Diversions 0 Inlets 0 Storage Nodes 1 links 5 Channels 0 Pipes 1 Pumps 0 Orifices 2 Wens 2 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series 1S-050 Intensity inches North Carolina Union 50.00 6.90 SCS Type uI24-hr Post-Development 050-Year Page 2 Subbasin Summary SN Subbasin Area PeakRate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-53 11.43 484.00 65.42 6.90 3.07 35.08 36.88 0 00:05:00 2 Sub-55 30.93 484.00 82.75 6.90 4.91 151.74 152.72 0 00:05:00 Post-Development 050-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak IvhxHGL Max Mn Time of Total Total lime ID Type Elevation (Ivhx) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth .Attained Flooding Volume Attained Occurrence (It) (ft) (ft) (ft) (ft') (cfs) (0) (ft) (It) (days hh:mm) (ac-in) (min) 1 CS-05 Junction 578.00 586.50 582.50 999.00 1.00 43.16 582.49 0.00 4.01 0 00:00 0.00 0.00 2 Out-29 Outfall 574.20 59.65 575.61 3 Out-spillway-03 Outfall 574.20 1.57 574.20 4 Pond-06 Storage Node 578.00 588.00 582.50 1.00 151.24 586.58 0.00 0.00 Post-Development 050-Year Page 4 link Summary SNElement Element From To(Outlet) Length Inlet Outlet Average Diameter or Manning's Peak Design Flow Peak Flow/ Peak Flow Peak Flow Peak Flow Total Time Reported ID Type (Inlet) Node Invert Invert Slope Height Roughness Flow Capacity Design Flow Velocity Depth Depth/ Surcharged Condition Node Elevation Elevation Ratio Total Depth Ratio (0) (It) (It) (%) (in) (cfs) (cfs) (ft/sec) (6) (min) 1 L nk-05 Pipe CS-05 Out-29 83.52 578.00 574.20 4.5500 30.000 0.0150 46.43 75.83 0.61 15.46 1.58 0.78 0.00 Calculated 2 CS-RIM-05 Orifice Pond-06 CS-05 578.00 578.00 60.000 1.55 3 Orifice-05 Orifice Pond-06 CS-05 578.00 578.00 4.000 0.85 4 ElMIERSPILLWAY-05 Weir Pond-06 Out-spillway-03 578.00 574.20 1.57 5 WEIR-OS Weir Pond-06 CS-05 578.00 578.00 40.76 Post-Development 050-Year Page 5 Subbas in Hydrology Subbasin:Sub-53 Input Data Area(ac) 11.43 Peak Rate Factor 484 Weighted Curve Number 65.42 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 9.98 B 61 >75%grass cover,Good 0.17 D 80 Paved roads with curbs&sewers 1.28 A 98 Composite Area&Weighted CN 11.43 65.42 Time of Concentration TOC Ivbthod:SCS TR 55 Sheet Flow Equation: Tc=(0.007*((n*If)^0.8))/((P^0.5)*(SP0.4)) Where: Tc=Time of Concentration(hr) n =Ivfanning's roughness If=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(SP0.5)(unpaved surface) V=20.3282*(Sf 0.5)(paved surface) V=15.0*(SP0.5)(grassed waterway surface) V=10.0*(Sf 0.5)(nearlybare&untitled surface) V=9.0*(S1n0.5)(cultivated straight rows surface) V=7.0*(S14.5)(short grass pasture surface) V=5.0*(Sf`0.5)(woodland surface) V=2.5*(SP`0.5)(forest w/heavy litter surface) Tc=(If/V)/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(SP`0.5))/n R=AI/Wp Tc=(Lf/\ /(3600sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R=Hydraulic Radius(ft) Aq=Flow Area(ft5) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n=Ivhnningsroughness User-Defined TOC override(minutes):5 Subbasin RunoffRe sults Total Rainfall(in) 6.9 Total Runoff(in) 3.07 Post-Development 050-Year Page 6 Peak Runoff(cfs) 36.88 Weighted Curve Number 65.42 Tune of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 050-Year Page 7 Subbasin:Sub-53 Rainfall Intensity Graph 6 5.8- 5.6- 5.4 5.2 5 4.8 4.6 4.4 4.2 4 3.8 3.6 t 3.4 • 3.2 3 ▪ 2.8 • 2.6 IX 2.4 2.2 2 1.8 1.6 1.4 0.8 0.6 0.4 0.2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 38 36 34 32- 30- 28- 26- 24- - 22 w 20 18- z K 16- 14- 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 050-Year Page 8 Subbasin:Sub-55 Input Data Area(ac) 30.93 Peak Rate Factor 484 Weighted Curve Number 82.75 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 12.75 B 61 Paved parking&roofs 18.18 C 98 Composite Area&Weighted CN 30.93 82.75 Time ofConcentration User-Defined TDC override(minutes):5.00 Subbasin Runoff Results Total Rainfall(in) 6.9 Total Runoff(in) 4.91 Peak Runoff(cfs) 152.72 Weighted Curve Number 82.75 Time of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 050-Year Page 9 Subbasin:Sub-55 Rainfall Intensity Graph 6.2 6 — - — 5.8 1 5.6_- 5.4 5.2 5 4.8 4.6 4.4 3.8 3.6 s 3.4 3.2 m 3 c 2.8 ce 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 O▪ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 170 160 150 140 130 120- 110 - 100 w - 46 90 - c 80 z 70 60 50 40 30 20 10 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 050-Year Page 10 Pipe Input SN Element Length Inlet Inlet Outlet Outlet Total Average Pipe Pipe Pipe Manning's Entrance Exit/Bend Additional Initial Flap No.of ID Invert Invert Invert Invert Drop Slope Shape Diameter or Width Roughness Losses Losses Losses Flow Gate Barrels Elevation Offset Elevation Offset Height (It) (It) (ft) (8) (8) (It) (%) (m) (in) (cI) 1 Link-05 83.52 578.00 0.00 574.20 0.00 3.80 4.5500 CIRCULAR 30.000 30.000 0.0150 0.5000 0.5000 0.0000 0.00 No 1 Post-Development 050-Year Page 11 Pipe Results SN Element Peak Time of Design Flow Peak Flow/ Peak Flow Trawl Peak Flow Peak Flow Total Tune Froude Reported ID Flow Peak Flow Capacity Design Flow Velocity Time Depth Depth/ Surcharged Number Condition Occurrence Ratio Total Depth Ratio (cfs) (days hh:mm) (cfs) (ft/sec) (mm) (ft) (mm) 1 L nk-05 46.43 0 00:00 75.83 0.61 15.46 0.09 1.58 0.78 0.00 Calculated Post-Development 050-Year Page 12 Storage Nodes Storage Node:Pond-06 Input Data Invert Elevation(ft) 578.00 Max(Rim)Elevation(ft) 588.00 Max(Rim)Offs et(&) 10.00 Initial Water Elevation(ft) 582.50 Initial Water Depth(ft) 4.50 Ponded Area(ft2) 1.00 Evaporation less 0.00 Outflow Weirs SN Element Weir Flap Crest Crest Length Weir Total Discharge ID Type Gate Elevation Offset Height Coefficient (ft) (ft) (ft) (ft) 1 EMER SPILLWAY05 Trapezoidal No 586.50 8.50 20.00 999.00 3.33 2 WEIR-05 Rectangular No 584.00 6.00 3.00 2.50 3.33 Outflow Orifices SN Element Orifice Orifice Flap Circular Rectangular Rectangular Orifice Orifice ID Type Shape Gate Orifice Orifice Orifice Invert Coefficient Diameter Height Width Elevation (m) (in) (m) (ft) 1 CS-RIM05 Bottom Rectangular No 60.00 60.00 586.50 0.63 2 Orifice-05 Side CIRCULAR No 4.00 582.50 0.61 Output Summary Results Peak Inflow(cfs) 151.24 Peak Lateral Inflow(cfs) 151.24 PeakOutflow(cfs) 44.72 Peak Fxflltration Flow Rate(cfm) 0 MaxHGLElevation Attained(ft) 586.58 Max HGLDepth Attained(ft) 8.58 Average HGLElevation Attained(ft) 583.79 Average HGLDepth Attained(ft) 5.79 Time of MaxHGLOccurrence(days hh:mm) 0 12:31 Total Exfiltration Volume(1000-ft3) 0 Total Flooded Volume(ac-in) 0 Total lime Flooded(min) 0 Total Retention Time(sec) 0 Post-Development 100-Year Page 1 Project Description File Name 27842.0005-Post.SPF Project Options Flow Units CFS Elevation Type Elevation HydrologyMethod SCS TR 55 Time of Concentration('IOC)Ivvthod SCS TR 55 link Routing Ivlthod Hydrodynamic Enable OwrflowPonding at Nodes YES Skip Steady State Analysis Time Periods NO Analysis Options Start Analysis On 00:00:00 0:00:00 End Analysis On 00:00:00 0:00:00 Start Reporting On 00:00:00 0:00:00 Antecedent DryDays 0 days Runoff(Dry Weather)Time Step 0 01:00:00 days hh:mm:ss Runoff(Wet Weather)Tune Step 0 00:05:00 days hh:mm:ss Reporting lime Step 0 00:05:00 days hh:mm:ss Routing Time Step 1 seconds Number of Elements ety Rain Gages 1 Subbasins 2 Nodes 4 Junctions 1 Outfalls 2 Flow Diversions 0 Inlets 0 Storage Nodes 1 links 5 Channels 0 Pipes 1 Pumps 0 Orifices 2 Wens 2 Outlets 0 Pollutants 0 Land Uses 0 Rainfall Details SN Rain Gage Data Data Source Rainfall Rain State County Return Rainfall Rainfall ID Source ID Type Units Period Depth Distribution (years) (inches) 49 Time Series 1S-100 Intensity inches North Carolina Union 100.00 7.50 SCS Type DI 24-hr Post-Development 100-Year Page 2 Subbasin Summary SN Subbasin Area PeakRate Weighted Total Total Total Peak Time of ID Factor Curve Rainfall Runoff Runoff Runoff Concentration Number Volume (ac) (in) (in) (ac-in) (cfs) (days hh:mm:ss) 1 Sub-53 11.43 484.00 65.42 7.50 3.54 40.46 42.55 0 00:05:00 2 Sub-55 30.93 484.00 82.75 7.50 5.47 169.25 169.25 0 00:05:00 Post-Development 100-Year Page 3 Node Summary SN Element Element Invert Ground/Rim Initial Surcharge Ponded Peak IvhxHGL Max Mn Time of Total Total lime ID Type Elevation (Ivhx) Water Elevation Area Inflow Elevation Surcharge Freeboard Peak Flooded Flooded Elevation Elevation Attained Depth .Attained Flooding Volume Attained Occurrence (It) (ft) (ft) (ft) (ft') (cfs) (0) (ft) (It) (days hh:mm) (ac-in) (min) 1 CS-05 Junction 578.00 586.50 582.50 999.00 1.00 55.14 582.49 0.00 4.01 0 00:00 0.00 0.00 2 Out-29 Outfall 574.20 74.47 575.78 3 Out-spillway-03 Outfall 574.20 10.80 574.20 4 Pond-06 Storage Node 578.00 588.00 582.50 1.00 167.76 586.79 0.00 0.00 Post-Development 100-Year Page 4 link Summary SNElement Element From To(Outlet) Length Inlet Outlet Average Diameter or Munning's Peak Design Flow Peak Flow/ Peak Flow Peak Flow Peak Flow Total Time Reported ID Type (Inlet) Node Invert Invert Slope Height Roughness Flow Capacity Design Flow Velocity Depth Depth/ Surcharged Condition Node Elevation Elevation Ratio Total Depth Ratio (8) (It) (It) (%) (in) (cfs) (cfs) (ft/sec) (6) (min) 1 L nk-05 Pipe CS-05 Out-29 83.52 578.00 574.20 4.5500 30.000 0.0150 55.14 75.83 0.73 15.46 1.95 0.78 0.00 Calculated 2 CS-RIM-05 Orifice Pond-06 CS-05 578.00 578.00 60.000 10.42 3 Orifice-05 Orifice Pond-06 CS-05 578.00 578.00 4.000 0.87 4 ElMIERSPILLWAY-05 Weir Pond-06 Out-spillway-03 578.00 574.20 10.80 5 WEIR-OS Weir Pond-06 CS-05 578.00 578.00 43.84 Post-Development 100-Year Page 5 Subbas in Hydrology Subbasin:Sub-53 Input Data Area(ac) 11.43 Peak Rate Factor 484 Weighted Curve Number 65.42 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 9.98 B 61 >75%grass cover,Good 0.17 D 80 Paved roads with curbs&sewers 1.28 A 98 Composite Area&Weighted CN 11.43 65.42 Time of Concentration TOC Ivbthod:SCS TR 55 Sheet Flow Equation: Tc=(0.007*((n*If)^0.8))/((P^0.5)*(SP0.4)) Where: Tc=Time of Concentration(hr) n =Ivfanning's roughness If=Flow Length(ft) P =2 yr,24 hr Rainfall(inches) Sf=Slope(ft/ft) Shallow Concentrated Flow Equation: V=16.1345*(SP0.5)(unpaved surface) V=20.3282*(Sf 0.5)(paved surface) V=15.0*(SP0.5)(grassed waterway surface) V=10.0*(Sf 0.5)(nearlybare&untilled surface) V=9.0*(S1n0.5)(cultivated straight rows surface) V=7.0*(S14.5)(short grass pasture surface) V=5.0*(SP`0.5)(woodland surface) V=2.5*(SP`0.5)(forest w/heavy litter surface) Tc=(If/V/(3600 sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) Channel Flow Equation: V=(1.49*(R^(2/3))*(SP`0.5))/n R=AI/Wp Tc=(Lf/\ /(3600sec/hr) Where: Tc=Time of Concentration(hr) Lf=Flow Length(ft) R=Hydraulic Radius(ft) Aq=Flow Area(ft2) Wp=Wetted Perimeter(ft) V=Velocity(ft/sec) Sf=Slope(ft/ft) n=Ivhnningsroughness User-Defined TOC override(minutes):5 Subbasin RunoffRe sults Total Rainfall(in) 7.5 Total Runoff(in) 3.54 Post-Development 100-Year Page 6 Peak Runoff(cfs) 42.55 Weighted Curve Number 65.42 Tune of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 100-Year Page 7 Subbasin:Sub-53 Rainfall Intensity Graph 6.5 6 5.5 5 4.5 4 c 3.5 m 3 2.5 2 1.5 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 44 42- 40- 38 36 34 32 30 28 26 U 24 22 o . 7 20 18 16- 14- 12 10- 8- 6 4 r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 100-Year Page 8 Subbasin:Sub-55 Input Data Area(ac) 30.93 Peak Rate Factor 484 Weighted Curve Number 82.75 Rain Gage ID Composite Curve Number 32 Area Soil Curve Soil/Surface Description (acres) Group Number >75%grass cover,Good 12.75 B 61 Paved parking&roofs 18.18 C 98 Composite Area&Weighted CN 30.93 82.75 Time ofConcentration User-Defined TDC override(minutes):5.00 Subbasin Runoff Results Total Rainfall(in) 7.5 Total Runoff(in) 5.47 Peak Runoff(cfs) 169.25 Weighted Curve Number 82.75 Time of Concentration(days hh:mm:ss) 0 00:05:00 Post-Development 100-Year Page 9 Subbasin:Sub-55 Rainfall Intensity Graph 7 6.5 6 5.5 5 4.5- . 4- c _ - 3.5 m c 2.5 2 1.5 1 0.5 O• 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Runoff Hydrograph 180 170- 160 150 140 130 120 110 w 100 o 90 O C 80 70 60 50 40 30 1l\ 20 10 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Time(hrs) Post-Development 100-Year Page 10 Pipe Input SN Element Length Inlet Inlet Outlet Outlet Total Average Pipe Pipe Pipe Manning's Entrance Exit/Bend Additional Initial Flap No.of ID Invert Invert Invert Invert Drop Slope Shape Diameter or Width Roughness Losses Losses Losses Flow Gate Barrels Elevation Offset Elevation Offset Height (It) (It) (ft) (8) (8) (It) (%) (m) (in) (cI) 1 Link-05 83.52 578.00 0.00 574.20 0.00 3.80 4.5500 CIRCULAR 30.000 30.000 0.0150 0.5000 0.5000 0.0000 0.00 No 1 Post-Development 100-Year Page 11 Pipe Results SN Element Peak Time of Design Flow Peak Flow/ Peak Flow Trawl Peak Flow Peak Flow Total Tune Froude Reported ID Flow Peak Flow Capacity Design Flow Velocity Time Depth Depth/ Surcharged Number Condition Occurrence Ratio Total Depth Ratio (cfs) (days hh:mm) (cfs) (ft/sec) (mm) (ft) (mm) 1 L nk-05 55.14 0 12:26 75.83 0.73 15.46 0.09 1.95 0.78 0.00 Calculated Post-Development 100-Year Page 12 Storage Nodes Storage Node:Pond-06 Input Data Invert Elevation(ft) 578.00 Max(Rim)Elevation(ft) 588.00 Max(Rim)Offs et(&) 10.00 Initial Water Elevation(ft) 582.50 Initial Water Depth(ft) 4.50 Ponded Area(02) 1.00 Evaporation less 0.00 Outflow Weirs SN Element Weir Flap Crest Crest Length Weir Total Discharge ID Type Gate Elevation Offset Height Coefficient (ft) (ft) (ft) (ft) 1 EMER SPILLWAY05 Trapezoidal No 586.50 8.50 20.00 999.00 3.33 2 WEIR-05 Rectangular No 584.00 6.00 3.00 2.50 3.33 Outflow Orifices SN Element Orifice Orifice Flap Circular Rectangular Rectangular Orifice Orifice ID Type Shape Gate Orifice Orifice Orifice Invert Coefficient Diameter Height Width Elevation (m) (in) (m) (ft) 1 CS-RIM05 Bottom Rectangular No 60.00 60.00 586.50 0.63 2 Orifice-05 Side CIRCULAR No 4.00 582.50 0.61 Output Summary Results Peak Inflow(cfs) 167.76 Peak Lateral Inflow(cfs) 167.76 PeakOutflow(cfs) 65.94 Peak Fxflltration Flow Rate(cfm) 0 Max HGLElevation Attained(ft) 586.79 Max HGLDepth Attained(ft) 8.79 Average HGLElevation Attained(ft) 583.84 Average HGLDepth Attained(ft) 5.84 Time of MaxHGLOccurrence(days hh:mm) 0 12:26 Total Exfiltration Volume(1000-fl) 0 Total Flooded Volume(ac-in) 0 Total lime Flooded(min) 0 Total Retention lime(sec) 0 25-YR CAPACITY HEC-22 Energy Grade Line Computations Struct. Q EGLo HGLo Total Pipe EGLi HGLi Ea EGLa Surface Elev. ID (cfs) (ft) (ft) Loss (ft) (ft) (ft) (ft) (ft) (ft) ,16 I 586.12 586.12 585.83 15 25.1 586.32 586.12 0.13 586.45 586.25 2.9 586.56 594.13 14 24.3 586.71 586.33 587.83 586.55 2.9 588.09 593.14 13 23.4 588.23 587.88 589.55 588.30 2.8 589.80 595.29 12 21.4 589.91 589.62 593.62 591.61 3.0 593.62 598.91 11 20.3 593.72 593.46 0.09 593.81 593.54 3.2 593.97 598.84 10 19.1 594.07 593.83 0.06 594.12 593.89 3.3 594.24 598.46 9 17.2 594.32 594.13 600.74 598.28 3.3 600.74 604.06 8 15.2 600.80 600.65 605.26 602.95 3.1 605.26 608.18 7 11.6 605.34 605.13 0.05 605.39 605.18 3.1 605.51 609.05 6 7.7 605.54 605.45 0.03 605.58 605.48 2.9 605.60 609.05 5 7.4 605.71 605.44 0.82 606.54 606.26 2.3 606.63 614.29 94 6.9 606.72 606.49 0.90 607.63 607.39 1.9 607.78 613.65 4 3.2 607.82 607.71 0.22 608.03 607.93 1.6 608.09 615.63 3 2.5 608.11 608.05 0.04 608.16 608.09 1.5 608.20 615.63 2 1.5 608.21 608.19 0.03 608.24 608.22 1.2 608.27 618.37 1 1.0 608.28 608.27 608.28 608.10 1.0 608.28 618.37 95 2.9 607.81 607.73 0.06 607.87 607.78 1.9 607.96 613.65 56 3.2 605.55 605.44 608.07 606.90 1.6 608.07 611.03 55 1.8 608.08 608.05 0.02 608.10 608.07 1.5 608.12 611.02 39 2.2 605.28 605.23 0.04 605.32 605.27 1.4 605.35 608.70 40 1.4 600.75 600.73 0.01 600.77 600.74 1.9 600.78 604.06 41 1.4 594.29 594.17 594.67 594.39 0.7 594.67 598.46 42 0.7 590.85 590.73 0.18 591.03 590.91 0.6 591.13 595.29 79 586.12 586.12 582.79 77 66.4 586.39 586.12 0.10 586.49 586.22 8.5 586.65 595.80 32 64.7 586.75 586.50 0.23 586.98 586.72 7.8 587.06 595.03 31 77.8 587.21 586.84 0.24 587.45 587.08 7.8 587.78 598.01 30 78.4 587.93 587.55 0.24 588.17 587.79 7.7 588.49 599.05 29 67.5 588.67 588.22 0.72 589.38 588.93 7.3 589.70 597.99 28 50.7 590.02 589.22 0.21 590.23 589.43 4.9 590.52 597.99 27 49.3 591.15 589.58 0.49 591.64 590.07 5.8 592.27 596.91 87 47.1 592.84 591.41 1.59 594.43 593.00 5.7 595.04 598.77 73 15.0 595.10 594.95 0.06 595.16 595.02 5.6 595.20 598.34 72 12.8 595.24 595.13 0.10 595.33 595.23 5.3 595.37 600.55 76 9.9 595.39 595.33 0.11 595.50 595.44 4.5 595.52 598.32 71 7.8 595.56 595.46 0.14 595.70 595.60 4.2 595.72 595.98 75 6.7 595.81 595.59 0.24 596.06 595.83 4.2 596.12 596.58 70 4.7 596.21 595.98 0.63 596.83 596.61 4.4 596.91 597.98 69 2.3 596.93 596.88 0.15 597.08 597.03 4.0 597.11 599.17 26 33.0 595.32 594.62 0.56 595.88 595.17 6.2 596.10 600.09 25 30.2 596.33 595.74 0.59 596.92 596.33 6.7 597.27 601.33 24 11.9 597.36 597.14 0.08 597.44 597.21 6.8 597.56 601.33 23 11.3 597.64 597.44 0.05 597.69 597.48 7.0 597.79 602.38 22 9.3 597.96 597.53 600.05 598.64 2.2 600.05 604.12 21 5.7 600.12 599.96 602.45 601.36 1.7 602.45 606.01 96(5) 5.0 602.56 602.30 604.41 603.38 1.7 604.41 607.42 20 4.4 604.49 604.29 605.92 604.95 1.5 605.92 609.50 19 2.4 605.94 605.88 0.05 605.99 605.93 1.5 606.03 608.90 17 1.1 605.92 605.91 607.64 607.18 0.7 607.64 613.23 36 2.6 600.48 600.24 0.15 600.63 600.39 1.1 600.85 604.23 35 1.1 598.46 598.32 0.14 598.61 598.46 0.7 598.73 602.45 53 17.6 597.35 597.15 0.21 597.56 597.36 3.1 597.66 602.94 52 2.2 597.68 597.63 605.78 604.66 1.5 605.78 610.36 51 0.9 605.78 605.78 606.93 606.27 0.9 606.93 611.16 54 13.6 597.78 597.49 0.14 597.92 597.63 3.3 598.09 603.80 90 12.2 598.18 597.95 0.21 598.39 598.16 3.3 598.45 602.87 59 11.0 598.52 598.33 0.18 598.70 598.51 3.3 598.79 602.78 58 6.2 598.95 598.55 601.96 600.03 2.5 601.96 605.13 1T.1 THOMAS&HUTTON T:\AutoCAD\Reports\HEC-22\HEC-22 Reporting HEC-22 Energy Grade Line Computations Struct. Q EGLo HGLo Total Pipe EGLi HGLi Ea EGLa Surface Elev. ID (cfs) (ft) (ft) Loss (ft) (ft) (ft) (ft) (ft) (ft) 57 2.7 601.99 601.91 606.74 605.52 1.6 606.74 612.35 60 2.4 598.81 598.75 604.95 603.78 1.5 604.95 610.53 34 2.6 596.12 596.05 0.05 596.17 596.10 5.8 596.23 600.09 50 2.0 592.29 592.25 0.03 592.31 592.27 3.3 592.35 596.91 68 16.9 589.72 589.67 0.06 589.78 589.73 6.3 589.82 590.25 67 16.0 589.88 589.72 0.05 589.94 589.77 5.7 590.02 590.25 66 14.9 590.08 589.93 0.07 590.15 590.00 4.9 590.22 592.48 80 13.1 590.33 590.06 595.76 593.13 3.4 595.76 598.42 81 11.3 595.84 595.64 596.87 595.73 2.0 596.87 600.79 65 9.3 597.05 596.62 599.55 598.52 2.0 599.61 602.90 64 7.1 599.71 599.46 602.09 601.18 1.7 602.09 605.58 63 4.0 602.16 602.00 604.89 604.21 1.3 604.89 608.61 62 1.6 604.90 604.87 609.33 608.77 0.9 609.33 612.97 45 11.2 590.21 589.17 592.57 591.53 2.5 592.99 596.78 89 3.9 593.06 592.90 594.78 594.14 1.3 594.78 598.60 88 1.6 594.79 594.77 0.03 594.82 594.79 1.0 595.25 598.93 47 3.8 593.06 592.89 0.18 593.24 592.97 1.4 593.45 596.78 46 1.6 594.57 594.28 594.93 594.64 0.7 594.93 599.05 33 1.5 591.17 590.79 593.28 592.90 0.8 593.28 597.21 1T.1 THOMAS&HUTTON T:\AutoCAD\Reports\HEC-22\HEC-22 Reporting HEC-22 Storm Drain Computations Structure ID Length Drainage Runoff Tc Rain"I" Runoff Known Q Total Q Pipe Full Q Velocity Velocity Invert Elevation Slope (ft) Area Coeff"C" (min) (in/hr) "Q" (cfs) (cfs) Dia. (cfs) Full Design From To (ac) (cfs) (in) (ft/s) (ft/s) U/S D/S �15 16 93 0.24 0.55 8 7.50 25.1 25.1 36' 74.5 10.54' 9.50 583.65 582.50 1.25% 14 15 140 0.26 0.55 8 7.56 24.3 24.3 30 43.3 8.82 9.07 585.21 583.65 1.11% 13 14 160 0.35 0.55 8 7.62 23.4 23.4 30 43.3 8.82 8.98 586.99 585.21 1.11% 12 13 162 0.27 0.55 8 7.68 21.4 21.4 30 61.2 12.47 11.36 590.59 586.99 2.22% 11 12 35 0.29 0.55 7 7.69 20.3 20.3 30 40.6 8.27 8.26 590.73 590.39 0.98% 10 11 27 0.17 0.55 7 7.71 19.1 19.1 30 38.7 7.88 7.85 590.98 590.73 0.89% 9 10 184 0.15 0.55 7 7.76 17.2 17.2 30 76.8 15.65 12.60 597.47 591.05 3.50% 8 9 135 0.36 0.55 7 7.80 15.2 15.2 30 76.8 15.65 12.18 602.20 597.47 3.50% 7 8 18 0.20 0.55 7 7.81 11.6 11.6 24 22.6 7.21 7.24 602.38 602.20 1.00% 6 7 28 0.09 0.55 7 7.83 7.7 7.7 24 22.6 7.21 6.52 602.66 602.38 1.00% 5 6 166 0.14 0.55 6 7.93 7.4 7.4 18 10.5 5.95 6.44 604.37 602.71 1.00% 94 5 209 0.24 0.50 6 8.07 6.9 6.9 18 8.8 4.98 5.51 605.84 604.38 0.70% 4 94 89 0.15 0.55 5 8.14 3.2 3.2 15 5.4 4.41 4.58 606.46 605.84 0.70% 3 4 28 0.22 0.55 5 8.17 2.5 2.5 15 5.4 4.41 4.32 606.66 606.46 0.70% 2 3 56 0.11 0.55 5 8.22 1.5 1.5 15 5.4 _4.41 3.80 607.05 606.66 0.70% 1 2 28 0.22 0.55 5 8.25 1.0 1.0 15 5.4 4.41 3.39 607.25 607.05 0.70% 95 94 28 0.69 0.50 5 8.25 2.9 2.9 15 5.4 4.41 4.47 606.04 605.84 0.70% 56 7 104 0.31 0.55 5 8.22 3.2 3.2 15 12.8 10.44 8.65 606.48 602.38 3.93% 55 56 28 0.39 0.55 5 8.25 1.8 1.8 15 4.6 3.73 3.49 606.62 606.48 0.50% 39 8 33 0.48 0.55 5 8.25 2.2 2.2 15 6.5 5.27 4.77 603.95 603.63 1.00% 40 9 28 0.32 0.55 5 8.25 1.4 1.4 15 14.5 11.78 7.53 598.87 597.47 5.00% 41 10 28 0.31 0.55 5 8.25 1.4 1.4 15 6.5 5.27 4.22 593.99 593.71 1.00% 42 13 36 0.16 0.55 5 8.25 0.7 0.7 15 4.6 3.73 2.75 590.57 590.39 0.50% 77 79 88 0.32 0.55 5 5.95 66.4 66.4 54 139.2 8.75 8.64 578.19 577.75 0.50% 32 77 211 0.44 0.55 5 5.99 64.7 64.7 544 139.2 8.75 8.59 579.25 578.19 0.50% 31 32 153 0.01 0.50 9 7.36 77.8 77.8 54 139.2 8.75 8.99 580.01 579.25 0.50% 30 31 151 0.13 0.55 9 7.43 78.4 78.4 54 139.2 8.75 9.01 580.77 580.01 0.50% 29 30 325 0.14 0.55 8 7.57 67.5 67.5 48 101.7 8.09 8.65 582.39 580.77 0.50% 28 29 36 0.34 0.55 8 7.62 50.7 50.7 36 103.5 14.65 14.56 585.63 584.76 2.41% 27 28 34 0.14 0.55 8 7.63 49.3 49.3 30 63.7 12.97 14.31 586.44 585.63 2.41% 87 27 120 0.07 0.55 8 7.66 47.1 47.1 30 63.7 12.97 14.19 589.33 586.44 2.41% 73 87 45 0.52 0.55 7 7.69 15.0 15.0 30 29.0 5.91 5.95 589.56 589.33 0.50% 72 73 97 0.73 0.55 7 7.76 12.8 12.8 30 29.0 5.91 5.73 590.04 589.56 0.50% 76 72 187 0.49 0.55 7 7.89 9.9 9.9 30 29.0 5.91 5.34 590.98 590.04 0.50% 71 76 119 0.26 0.55 6 7.98 7.8 7.8 24 16.0 5.10 5.06 591.57 590.98 0.50% 75 71 60 0.47 0.55 6 8.02 6.7 6.7 18 7.4 4.21 4.76 591.87 591.57 0.50% 70 75 121 0.54 0.55 6 8.13 4.7 4.7 15 4.6 3.73 4.24 592.48 591.87 0.50% 69 70 120 0.50 0.55 5 8.25 2.3 2.3 15 4.6 3.73 3.72 593.07 592.48 0.50% 26 87 86 0.12 0.55 6 7.92 33.0 33.0 30 33.3 6.78 7.72 589.90 589.33 0.66% 25 26 108 0.21 0.55 6 7.98 30.2 30.2 30 33.3 6.78 7.68 590.61 589.90 0.66% 24 25 28 0.14 0.55 6 8.00 11.9 11.9 24 16.0 5.10 5.58 590.75 590.61 0.50% 23 24 i 18 0.21 0.55 6 8.01 11.3 11.3 24 16.0 5.10 5.52 590.85 590.75 0.50% IT.I THOMAS&HUTTON T:\AutoCAolReports\HEC-221HEC-22 Reporting HEC-22 Storm Drain Computations Structure ID Length Drainage Runoff Tc Rain"I" Runoff Known Q Total Q Pipe Full Q Velocity Velocity Invert Elevation Slope (ft) Area Coeff"C" (min) (in/hr) "Q" (cfs) (cfs) Dia. (cfs) Full Design From To (ac) (cfs) (in) (ft/s) (ft/s) U/S D/S '22 23 113 0.25 0.55 6 8.05 _9.3 9.3 18' 16.3 9.22' 9.52 597.83 595.13 2.40% 21 22 121 0.16 0.55 6 8.11 5.7 5.7 18 16.3 9.22 8.40 600.74 597.83 2.40% 96(5) 21 85 0.15 0.55 5 8.15 5.0 5.0 15 10.0 8.13 8.13 602.76 600.74 2.38% 20 96(5) 68 0.18 0.55 5 8.18 4.4 4.4 15 10.0 8.14 7.86 604.38 602.76 2.39% 19 20 33 0.53 0.55 5 8.25 2.4 2.4 15 4.6 3.73 3.77 604.54 604.38 0.50% 17 20 105 0.25 0.55 5 8.25 1.1 1.1 15 10.0 8.16 5.43 606.90 604.38 2.40% 36 22 29 0.57 0.55 5 8.25 2.6 2.6 15 4.7 3.83 3.93 599.72 599.57 0.53% 35 23 28 0.25 0.55 5 8.25 1.1 1.1 15 4.6 3.73 3.10 598.03 597.89 0.50% 53 25 113 0.41 0.55 6 8.05 17.6 17.6 30 29.0 5.91 6.19 594.57 594.00 0.50% 52 53 195 0.29 0.55 5 8.23 2.2 2.2 15 14.5 11.78 8.50 604.33 594.57 5.00% 51 52 35 0.19 0.55 5 8.25 0.9 0.9 15 14.5 11.78 6.51 606.07 604.33 5.00% 54 53 38 0.35 0.55 6 8.07 13.6 13.6 24 16.0 5.10 5.72 594.76 594.57 0.50% 90 54 74 0.26 0.55 6 8.12 12.2 12.2 24 16.0 5.10 5.60 595.12 594.76 0.50% 59 90 74 0.55 0.55 5 8.17 11.0 11.0 24 16.0 5.10 5.49 595.49 595.12 0.50% 58 59 83 0.78 0.55 5 8.20 6.2 6.2 15 14.1 11.51 11.13 599.45 595.49 4.77% 57 58 120 0.59 0.55 5 8.25 2.7 2.7 15 14.1 11.51 8.85 605.15 599.45 4.77% 60 59 160 0.52 0.55 5 8.25 2.4 2.4 15 14.4 11.75 8.67 603.44 595.49 4.98% 34 26 28 0.57 0.55 5 8.25 2.6 2.6 15 9.1 7.45 6.41 590.46 589.90 2.00% 50 27 28 0.43 0.55 5 8.25 2.0 2.0 15 4.6 3.73 3.58 589.08 588.94 0.50% 68 29 222 0.21 0.55 7 7.71 16.9 16.9 42 71.2 7.40 6.06 583.50 582.39 0.50% 67 68 36 0.25 0.55 7 7.72 16.0 16.0 30 61.3 12.48 10.49 584.30 583.50 2.23% 66 67 52 0.45 0.55 7 7.74 14.9 14.9 30 58.1 11.83 9.90 585.33 584.30 2.00% 80 66 158 0.44 0.55 7 7.78 13.1 13.1 24 48.0 15.29 13.01 592.41 585.33 4.50% 81 80 153 0.49 0.55 7 7.85 11.3 11.3 24 28.6 9.12 8.57 594.86 592.41 1.60% 65 81 171 0.51 0.55 6 7.93 9.3 9.3 18 13.3 7.53 8.13 597.60 594.86 1.60% 64 65 175 0.72 0.55 6 8.02 7.1 7.1 18 13.3 7.53 7.65 600.40 597.60 1.60% 63 64 200 0.54 0.55 6 8.13 4.0 4.0 15 8.2 6.67 6.61 603.59 600.40 1.60% 62 63 194 0.34 0.55 5 8.25 1.6 1.6 15 10.2 8.33 6.01 608.44 603.59 2.50% 45 30 157 0.79 0.55 6 8.10 11.2 11.2 18 12.9 7.29 8.20 590.45 588.09 1.50% 89 45 205 0.52 0.55 5 8.22 3.9 3.9 15 7.9 6.45 6.43 593.52 590.45 1.50% 88 89 48 0.34 0.55 5 8.25 1.6 1.6 15 7.9 6.45 5.01 594.24 593.52 1.50% 47 45 36 0.84 0.55 5 8.25 3.8 3.8 15 4.6 3.73 4.18 592.03 591.85 0.50% 46 30 36 0.35 0.55 5 8.25 1.6 1.6 15 6.5 5.27 4.37 594.21 593.85 1.00% 33 77 141 0.33 0.55 5 8.25 1.5 1.5 15 7.9 6.46 4.96 592.53 590.42 1.50% IT.I THOMAS&HUTTON T:\AutoCAolReports\HEC-221HEC-22 Reporting 4 IN/HR INLET SPREAD HEC-22 Inlet Capacity Results Structure Q=CIA/Kc Known Longitudinal Cross Cross Prey. Total Depth Gutter Spread Inlet Type Grate Grate Curb Curb Intercept Bypass Bypass Remark (cfs) Q Slope Slope Slope Bypass Gutter d Width T Length Width Opening Opening Flow Flow Structure (cfs) SL Sx Sw Flow Flow (ft) (ft) (ft) (in) (in) Length Height Qi Qb (ft/ft) (ft/ft) (ft/ft) (cfs) (cfs) (in) (in) (cfs) (cfs) 94 0.5 -1.00 0.02 0.04 0.0 0.5, 0.1 2.0 1.9 Combination I 56.0 18.0 56.0 4.2 0.5_ _ 95 1.4 -1.00 0.02 0.04 0.1 1.5 0.1 2.0 5.1 Combination 56.0 18.0 56.0 4.2 1.5 1 0.5 0.04 0.02 0.041 0.5 0.1 2.0 3.2 Combination 28.0 18.0 28.0 4.2 0.4 0.1 95 2 0.3 0.04 0.02 0.041 0.3 0.1 2.0 2.0 Combination 28.0 18.0 28.0 4.2 0.2 0.0 3 3 0.5 -1.00 0.02 0.04 0.0 0.5 0.1 2.0 2.4 Combination 28.0 18.0 28.0 4.2 0.5 4 0.3 0.03 0.02 0.04 0.3 0.1 2.0 2.8 Combination 28.0 18.0 28.0 4.2 0.3 0.0 94 5 0.3 0.02 0.02 0.04 0.3 0.1 2.0 2.7 Combination 28.0 18.0 28.0 4.2 0.3 0.0 8 6 0.2 -1.00 0.02 0.04 0.3 0.5 0.1 2.0 2.2 Combination 28.0 18.0 28.0 4.2 0.5 7 0.5 0.03 0.02 0.04 0.2 0.6 0.1 2.0 3.8 Combination 28.0 18.0 28.0 4.2 0.5 0.1 8 8 0.8 0.03 0.02 0.04 0.2 1.0 0.1 2.0 4.7 Combination 28.0 18.0 28.0 4.2 0.7 0.3 9 9 0.3 0.03 0.02 0.04 0.3 0.6 0.1 2.0 3.8 Combination 28.0 18.0 28.0 4.2 0.5 0.1 10 10 0.4 -1.00 0.02 0.04 0.1 0.5 0.1 2.0 2.4 Combination 28.0 18.0 28.0 4.2 0.5 11 0.7 0.02 0.02 0.04 0.7 0.1 2.0 4.2 Combination 28.0 18.0 28.0 4.2 0.5 0.2 42 12 0.6 0.02 0.02 0.04 0.6 0.1 2.0 4.1 Combination 28.0 18.0 28.0 4.2 0.5 0.1 13 13 0.8 0.02 0.02 0.04 0.1 0.9 0.1 2.0 4.9 Combination 28.0 18.0 28.0 4.2 0.7 0.3 14 0.6 0.40 0.13 0.6 0.0 2.0 2.3 Grate inlet 23.8 23.8 0.6 0.0 15 0.5 -1.00 0.05 0.5 0.1 2.0 3.8 Grate inlet 23.8 23.8 0.5 39 1.1 0.03 0.02 0.04 1.1 0.1 2.0 5.0 Combination 28.0 18.0 28.0 4.2 0.8 0.3 40 40 0.7 0.03 0.02 0.04 0.3 1.0 0.1 2.0 4.9 Combination 28.0 18.0 28.0 4.2 0.7 0.3 41 41 0.7 0.03 0.02 0.04 0.3 1.0 0.1 2.0 4.8 Combination 28.0 18.0 28.0 4.2 0.7 0.3 42 42 0.4 0.02 0.02 0.04 0.4 0.8 0.1 2.0 4.6 Combination 28.0 18.0 28.0 4.2 0.6 0.2 55 0.9 0.02 0.02 0.04 0.9 0.1 2.0 5.0 Combination 28.0 18.0 28.0 4.2 0.6 0.3 6 56 0.7 0.02 0.02 0.04 0.7 0.1 2.0 4.6 Combination 28.0 18.0 28.0 4.2 0.5 0.2 7 90 0.6 -1.00 0.29 0.6 0.1 2.0 2.3 Grate inlet 23.8 23.8 0.6 96(5) 0.3 0.02 0.02 0.04 0.3 0.1 2.0 2.9 Combination 28.0 18.0 28.0 4.2 0.3 0.0 17 0.6 0.04 0.02 0.04 0.6 0.1 2.0 3.4 Combination 28.0 18.0 28.0 4.2 0.5 0.1 20 19 1.2 0.03 0.02 0.04 1.2 0.1 2.0 4.9 Combination 28.0 18.0 28.0 4.2 0.8 0.4 36 20 0.4 0.04 0.02 0.04 0.1 0.5 0.1 2.0 3.2 Combination 28.0 18.0 28.0 4.2 0.4 0.1 21 21 0.4 0.02 0.02 0.04 0.1 0.4 0.1 2.0 3.7 Combination 28.0 18.0 28.0 4.2 0.4 0.1 22 22 0.6 0.02 0.02 0.04 0.1 0.6 0.1 2.0 4.5 Combination 28.0 18.0 28.0 4.2 0.5 0.2 23 23 0.5 0.02 0.02 0.04 0.2 0.6 0.1 2.0 4.4 Combination 28.0 18.0 28.0 4.2 0.5 0.2 24 24 0.3 0.01 0.02 0.04 0.3 0.7 0.1 2.0 4.7 Combination 28.0 18.0 28.0 4.2 0.5 0.2 25 25 0.5 0.01 0.02 0.04 0.5 0.9 0.2 2.0 6.1 Combination 28.0 18.0 28.0 4.2 0.6 0.3 26 26 0.3 0.02 0.02 0.04 0.3 0.6 0.1 2.0 4.3 Combination 28.0 18.0 28.0 4.2 0.5 0.1 87 27 0.3 0.02 0.02 0.04 0.0 0.3 0.1 2.0 3.2 Combination 28.0 18.0 28.0 4.2 0.3 0.0 28 28 0.8 0.04 0.02 0.04 0.0 0.8 0.1 2.0 4.0 Combination 28.0 18.0 28.0 4.2 0.6 0.2 67 29 0.3 0.04 0.02 0.04 0.3 0.1 2.0 2.3 Combination 28.0 18.0 28.0 4.2 0.3 0.0 68 30 0.3 0.03 0.02 0.04 0.3 0.1 2.0 2.6 Combination 28.0 18.0 28.0 4.2 0.3 0.0 45 11-1 THOMAS&HUTTON T:\AutoCAolReports\HEC-221HEC-22 Reporting HEC-22 Inlet Capacity Results Structure Q=CIA/Kc Known Longitudinal Cross Cross Prey. Total Depth Gutter Spread Inlet Type Grate Grate Curb Curb Intercept Bypass Bypass Remark (cfs) Q Slope Slope Slope Bypass Gutter d Width T Length Width Opening Opening Flow Flow Structure (cfs) SL Sx Sw Flow Flow (ft) (ft) (ft) (in) (in) Length Height Qi Qb (ft/ft) (ft/ft) (ft/ft) (cfs) (cfs) (in) (in) (cfs) (cfs) '31 0.0 0.09 0.14 0.0 0.0 2.0 2.1 Grate inlet I 23.8 23.8 0.0 _ 32 1.0 -1.00 1.0 0.1 2.0 352.1 Grate inlet 23.8 23.8 1.0 33 0.7 0.01 0.05 0.7 0.1 2.0 4.2 Grate inlet 23.8 23.8 0.6 0.2 77 34 1.3 0.02 0.02 0.04 0.5 1.7 0.2 2.0 6.9 Combination 28.0 18.0 28.0 4.2 1.0 0.7 50 35 0.6 0.02 0.02 0.04 0.7 1.2 0.2 2.0 6.0 Combination 28.0 18.0 28.0 4.2 0.8 0.5 34 36 1.3 0.02 0.02 0.04 0.4 1.6 0.2 2.0 6.8 Combination 28.0 18.0 28.0 4.2 1.0 0.7 35 45 1.8 -1.00 0.02 0.04 0.5 2.2 0.2 2.0 6.9 Combination 56.0 18.0 56.0 4.2 2.2 46 0.8 0.03 0.02 0.04 0.8 0.1 2.0 4.4 Combination 28.0 18.0 28.0 4.2 0.6 0.2 47 47 1.9 -1.00 0.02 0.04 0.4 2.3 0.2 2.0 7.0 Combination 56.0 18.0 56.0 4.2 2.3 50 1.0 0.02 0.02 0.04 0.7 1.7 0.2 2.0 6.9 Combination 28.0 18.0 28.0 4.2 1.0 0.7 67 51 0.4 0.04 0.02 0.04 0.4 0.1 2.0 2.8 Combination 28.0 18.0 28.0 4.2 0.4 0.1 54 52 0.6 0.04 0.02 0.04 0.6 0.1 2.0 3.5 Combination 28.0 18.0 28.0 4.2 0.5 0.1 53 53 0.9 0.03 0.02 0.04 0.1 1.0 0.1 2.0 4.7 Combination 28.0 18.0 28.0 4.2 0.7 0.3 25 54 0.8 0.04 0.02 0.04 0.1 0.8 0.1 2.0 4.1 Combination 28.0 18.0 28.0 4.2 0.6 0.2 24 57 1.3 0.07 0.01 1.3 0.1 2.0 6.9 Grate inlet 23.8 23.8 0.7 0.6 58 58 1.7 0.06 0.11 0.6 2.4 0.1 2.0 3.2 Grate inlet 23.8 23.8 2.0 0.4 59 59 1.2 0.01 0.07 1.2 2.4 0.2 2.0 4.9 Grate inlet 23.8 23.8 1.7 0.7 80 60 1.2 0.10 0.00 1.2 0.0 2.0 13.2 Grate inlet 23.8 23.8 0.4 0.8 59 62 0.8 0.02 0.00 0.8 0.0 2.0 33.9 Grate inlet 23.8 23.8 0.1 0.6 63 63 1.2 0.01 0.05 0.6 1.9 0.2 2.0 5.1 Grate inlet 23.8 23.8 1.3 0.6 64 64 1.6 0.03 0.05 0.6 2.2 0.1 2.0 4.9 Grate inlet 23.8 23.8 1.5 0.7 65 65 1.1 0.01 0.00 0.7 1.9 0.1 2.0 55.8 Grate inlet 23.8 23.8 0.2 1.7 81 66 1.0 0.13 0.05 1.9 2.9 0.1 2.0 4.1 Grate inlet 23.8 23.8 2.0 0.9 67 67 0.6 0.02 0.02 0.04 1.8 2.4 0.2 2.0 7.8 Combination 28.0 18.0 28.0 4.2 1.2 1.1 68 0.5 0.02 0.02 0.04 0.0 0.5 0.1 2.0 3.7 Combination 28.0 18.0 28.0 4.2 0.4 0.1 69 1.1 0.03 0.06 1.1 0.1 2.0 3.7 Grate inlet 23.8 23.8 0.9 0.2 70 70 1.2 0.01 0.01 0.2 1.4 0.1 2.0 13.1 Grate inlet 23.8 23.8 0.5 0.9 75 71 0.6 -1.00 0.08 1.0 1.5 0.2 2.0 4.3 Grate inlet 23.8 23.8 1.5 72 1.6 0.02 0.13 1.6 0.2 2.0 3.2 Grate inlet 23.8 23.8 1.4 0.2 73 73 1.2 -1.00 0.13 0.2 1.4 0.2 2.0 3.4 Grate inlet 23.8 23.8 1.4 75 1.0 0.02 0.05 0.9 2.0 0.1 2.0 4.7 Grate inlet 23.8 23.8 1.4 0.6 71 76 1.1 0.05 0.03 1.1 0.1 2.0 4.7 Grate inlet 23.8 23.8 0.7 0.4 71 77 0.7 -1.00 0.2 0.9 0.1 2.0 326.8 Grate inlet 23.8 23.8 0.9 80 1.0 0.02 0.00 1.3 2.3 0.1 2.0 33.5 Grate inlet 23.8 23.8 0.4 1.9 66 81 1.1 0.02 0.12 1.7 2.7 0.2 2.0 3.8 Grate inlet 23.8 23.8 2.2 0.6 80 87 0.1 0.02 0.02 0.04 0.1 0.3 0.1 2.0 2.9 Combination 28.0 18.0 28.0 4.2 0.3 0.0 27 88 0.8 0.01 0.02 0.04 0.8 0.2 2.0 5.2 Combination 28.0 18.0 28.0 4.2 0.5 0.2 47 89 1.2 0.01 0.02 0.04 1.2 0.2 2.0 6.3 Combination 28.0 18.0 28.0 4.2 0.7 0.4 45 IA THOMAS&HUTTON T:\AutoCADlReports\HEC-22kHEC-22 Reporting APPENDIX I ITEM 6 STORM DRAIN PIPE MAXIMUM CAPACITY TABLE (1) PIPE SIZE (2) MAXIMUM CAPACITY 12" 6 15" 9 18" 13 24" 25 30" 43 36" 42" 90 48" 120 54" 160 60" 200 66" 250 (1) CONCRETE PIPE (2) CAPACITY (c.f.i.) BASED ON INLET CONTROL FOR MAXIMUM DEPTH IN STANDARD CATCH BASIN 6/90 RIP RAP APRON DESIGN Rip Rap Apron Design Project Name: Cresswind PH5-FES-16 Drainage Specialist: DAC Date: May 30, 2024 Checked By: MSK Date: May 30, 2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter, it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter, it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 8.5 Outlet pipe diameter,Do(in.) 36 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW(Fig.8.06a) Discharge(cfs) 21.9 Velocity(ft./s) 9.1 Step 2. Based on the tailwater conditions determined in Step 1, enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.6 Minimum apron length, La(ft.) ** 20 Apron width at pipe outlet(ft.) 9 Apron shape W=Do+La Apron width at outlet end(ft.) 23 **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. D.= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X d,nax Minimum TW Maximum TW Max Stone Diameter, dmax(Inches): 11 Apron Thickness (Inches): 16 71= **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) I_ IOutlet } �JI1I 1 • • pipe i �- .r .. 1 • : Nri diameter (Do) `I : �grs� ater < 0. 5Do ogliem : Pe a ' r 14: , iiierimiiiffi for: .,. - - ..1liti iiomuirnir ry a' ' ro • so 0 Ve A 1 1I , 1- , . ;00' 1 '.\. •At 11111111 ill \ 1 0i1,Ii4 i'•,,A.„•,:,i:•t..:.l:..,i:..,r,11r,AI 11 414i.I• i• r01, 0 H1 .11 ',iff,44 l,ir,.,.p. 41 1 • 1, II .I �. 'P:111.1 "--M=--._,..m.,:l:l uem_-, ),t'1._- : . � •1 �• . .. .. ... r ! .. nnun nn 1�ll �IIP , 4 4 p n nNl n . . : _ ►► f '1:t tit. ►;4� Q • ' tlillllir� ; ' pir , i air: :: • , . , ` a� :i .,,, 20 a1�I111M l 1 ��i — d 1 i I • 11!1 �III1 1 liit ■•wr�MwS,' - rIllIllhI1 111 _ 3 ,1 I 1 ' 0 , ►► �, •• - i � . nil .�. 10 � � 1111' N . . � _... _ : : :j f i ' it � Jlrll +• I ry� ..t : : :1 :: ;• l:_�: . . uIi1� ' NJIII��III� � I�i�l �•�:irlM� .,. , . I , f�1 +�I'�IUII.11:11!II' ilia 2 V) I .4 . ii„,—.1-1--ird, r 7,,,,, IMIr,Il1�r ��IIIIM 0 MIIIIIIIN , , , , r +1- i�1 II r•� � ` a l.;I' ,. �;11=11!;7111MII1111 MI11111111 MOM M , _ ��, ! I + �'gt111111I111111111 2 i S i1M I1!iI - • r = 2 % hie �' l ��I • I 414010. wilard02101 . �NI Iia I'IIIIIIM � ;... ... .'� _ ,5 d �r irvd°r 1111111(::::1111 21 MI v _ 15 _ - �I'ell �,_ II 0 3 5 10 20 5'.) 100 200 500 1000 Discharge (ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw < 0.5 diameter) Rev. 1: 93 8.063 Rip Rap Apron Design Project Name: Cresswind PH5-FES-79 Drainage Specialist: DAC Date: May 30, 2024 Checked By: MSK Date: May 30, 2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter, it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter, it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 22.4 Outlet pipe diameter,Do(in.) 54 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW(Fig.8.06a) Discharge(cfs) 70.1 Velocity(ft./s) 8.7 Step 2. Based on the tailwater conditions determined in Step 1, enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.9 Minimum apron length, La(ft.) ** 28 Apron width at pipe outlet(ft.) 14 Apron shape W=Do+La Apron width at outlet end(ft.) 33 **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. D.= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X d,nax Minimum TW Maximum TW Max Stone Diameter, dmax(Inches): 16 Apron Thickness (Inches): 24 71= **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) } 1 I Outlet _ . j • W ■ Do + a . 1 ::....:.. .1. .. . pipe r - , ..., . ; -; .9 -r diameter (Do) - , . . : ::. .:.. ..11/A J� a Ld --el 80 , , , i ,.. . .,, pytif - ilwater < 0. 5D0 JIIIIIII r pp. * I • AA* .. .. ' I Ii 1:, `r o so �I1 ,.. .. . . :,: . " : _-_ 4, 0 ,. .' • r D . •-•IIIM I= i ' ' '. 0.00ir . it .,,t,O\ 50 . " Jr, _ , _ •:•_;•;, ,\(\., , „ „„iiir \\I\c‘‘`'. , • •, • ;; _ ,_ : . ..• ,„ t,- _ iits• or 4, ,,.. ,t : t : .:: 5 49 • I-+ . i . ..1 ... .. 1 Ar ! ., nn1111111? .rI. 4 ' 111n fiIII ' 01P. . . : ._ ... . ' �, • I I :i ,, fir. 20 Ar" • • •.1 .•- = , - ' 12-•-i `- .-- .15 %. . '�i'III n =Momilin= Il Hos ilia . 4411611 451 3 ::f.. . • ,.i :I._ ._1— . �r ! /'" . . , ._1 II h . ©•1 aziotop * .-40 — , e �... ' ! ��/� $III A 1 4. .1 1 ,• i II ^r 0 ... •* �, i .✓ �.� ',INII.11:11!Ilr. dllw 2 (n� . . �rri i ,., ;;� , � I� n MIIIIII �nINN i "�'fi'Itµ~. I •� I a.-� {- 1 .I MIIIUIII M ���M � �. _ ,It .I� ,I�I;I�I11����IIIIIgIIlll1 _ II lull f.. : I 1 ail qprilisIIIIIIIII ftl .:N j-' 1111111 111 } _ : i. , � ,v. .J. Atiti • . -sue pipa iIIIUI s) ii 1111111 IIIM • 4 J�0.6 �'_• ._. .—..,m��la ram....... ........u...n,.—. ......... . v = 15 • - --.---���� , 4. . ...., . .. : . .,. 0 3 5 10 20 59 100 200 500 1000 Discharge (ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw < 0.5 diameter) Rev. 1: 93 8.063 Rip Rap Apron Design Project Name: Cresswind PH5-FES-93 Drainage Specialist: DAC Date: May 30, 2024 Checked By: MSK Date: May 30, 2024 Step 1. Determine the tailwater depth from the channel characteristics below the pipe outlet for the design capacity of the pipe. If the tailwater depth is less than half the outlet pipe diameter, it is classifies as minimum tailwater conditions. If the tailwater is greater than half the pipe diameter, it is classified as maximum tailwater conditions. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a minimum tailwater condition unless reliable flood stage elevations show otherwise. Rational Method for Flow Total Drainage Area(Acres): 30.9 Outlet pipe diameter,Do(in.) 30 Tailwater depth(Feet) 0.5 Tailwater Method To Be Used Min TW(Fig.8.06a) Discharge(cfs) 28.0 Velocity(ft./s) 4.5 Step 2. Based on the tailwater conditions determined in Step 1, enter Figure 8.06a or Figure 8.06b and determine the d50 rip rap size and minimum apron length(La). The d50 size is the median stone size in a well-graded rip rap apron. Step 3. Determine the apron width at the pipe outlet,the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Riprap d50, (ft.) 0.5 Minimum apron length, La(ft.) ** 16 Apron width at pipe outlet(ft.) 8 Apron shape W=Do+La Apron width at outlet end(ft.) 19 **-Minimum Apron Length Is 10 Feet per CLDS 20.23 Step 4. Determine the maximum Stone Diameter. D.= 1.5 X d50 Determine the Apron Thickness,Ta= 1.5 X d,nax Minimum TW Maximum TW Max Stone Diameter, dmax(Inches): 9 71= Apron Thickness (Inches): 14 **-Minimum Apron Thickness Is 10 Inches per CLDS 20.23 Step 5. Fit the rip rap apron to the site by making it level for the minimum length La. Extend the apron farther downstream and along the channel banks until stability is assured. Keep apron as straight as possible and align it with the flow of the receiving stream. Make any necessary alignment bends near the pipe outlet so that the entrance into the receiving stream is straight. Some locations may require lining of the entire channel cross section to assure stability. It may be necessary to increase the size of the rip rap where protection of the channel side slopes is necessary. Where overfalls exist at pipe outlets or flows are excessive, a plunge pool should be considered. Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) I_ } 1 IOutlet diameter (Do) • pipe i r -_� I I ...� • : :::� 'N�r _ �J1 ` r' A • La _� ¶°. NuI lwater .< 0. 500 gif. . e • .:: .,. a 1 : , 'PrAfiN' 4 „..3 , 70 _.. .. ro 60 • .. ..i /III act, : MIIIIIIIII:'-:4". .A.'ilfrAr•aiiii r b �I1 Nsi.(‘ . i '.. .. : . :.: 1•:.: : . .: ,. . t.- _ . borie 4'. .... .t -- f : :::. I II 41 r/.lg1•0 I,1 1 iI111 P•"P.1 4 . - 1 . - .. . . . . }}.++. . .. ' r •. IIIIIIIIIul1/11 •> 0 Eti,•i.,i, : 6i'0•0;0..Olir,•• 4 39 i 2 .� .;;: /� mnlllnui� .. ii11IE :.�. . s ,..;,.� 1 �1 *4. L9 20 • 15 ow.. 1 11�1 �11��1M 11:= III'•w'.r ®�� MEI ;PI . , . 7 11111tRIPPNCONPere . : : : ., ...::..:: . . . : : : " I_ ' ' : Air Afei .1 ._.. ::._. .__. ..- • ,III ;, 1 i.H • __. 4Ø!dL ' 2 /IACl) N i�II.�MIM:�l1�n:•„ MIIIIM 11 MIIII IIIN ' 4' ' { ` ;11 i1+" '. 0 a } ; ii '•' /:11=11. . I INII IIII IZ MM l�l . e,'� ii , i �,� A>� I�I /'gt1�11IIIIIIIIII 11N s11111UI1i i . - rl�l■ : _ 25 / /i r •• .dlI'N�'. • liiiigI111IIIIIInnNIe n u moll ;--. .i ,.., ... v - .;. • •- , olluillF1113 - �� t. J�l : :C �� : : : ..4 :: } .-�. �.: ;� IM11 .., . . , . _ x ,, jEl�. iII �IIIIII CD 11 13 v - •. fr 1 IMIIinii (11111114 :''.I - 15 • N.b..•+r-•r"`'' tor- -... opirfir 11 IIII sill 1 ID it t ►. ans 0 3 5 10 20 50 100 200 500 1000 Discharge (ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw < 0.5 diameter) Rev. 1: 93 8.063 STORMWATER MANAGEMENT REPORT CRESSWIND WESLEY CHAPEL - PHASE 05 APPENDIX F WATER QUALITY CALCULATIONS 27842.0005 Pl. THOMAS & HUTTON Water Quality Calculations Cresswind-Wesley Chapel(Phase 05) Project No.27842.0005 WET POND 06 Project/Drainage Area: 30.93 Acres Required Water Quality Volume: I 65,008 I Cubic Feet Impervious Area: 18.18 Acres (Project Area(Acres)X 43,560 SF X 1"/12=Required Cubic Feet Volume) 58.8%Percent Impervious Runoff Coefficient: Rv=.05+0.9(I)= I 0.58 I (Required Collection of First 1"of Rainfall from the Project Site and Release over a Minimum 48 Hour(Maximum 120 Hours)in Cubic Feet Per Second) Min.48-Hour Release Rate: I 0.376ICFS Required Orifice Size:I 4.00 I Drawdown Time(Hours): I 59.47 Water Quality Elevation Orifice Flow Calculation Elev. Area Storage Q=CdA*sgrt(2gh) (ft) (sf) (cu.ft) Cd= 0.62 (Sharp Orifice) NWL 582.50 54,778 0.00 A= 0.087 sf TOP OF BERM 588.00 76,035 363,211 g= 32.174 ft/s' Elevation Pond Depth Storage h= 0.98 ft (ft) (ft) (cu.ft) 7Q= 0.304 cfs 583.48 0.98 65,008 VPP-Vshelf U,.e- Abottomofshelf where: 0.w = Average depth In bet volume of permanent pool(lest') I Average Depth Calculation v... - Volume over the shell ally(feed)-see below Ammedee, Area of wet pond el he bottom of the shelf(rear) Vpp Designed @ Elevation 582.50 172,326 C.t.t ha^o.qn,...„,,,.•.•r.ameb.„,.,,„,•wtdtn,,,,,,,,,,e...a... Permanent Pool SA Designed @ Elev 582.50 43,743 = Depth of water el.deep side of the shelf es sure,etpermanenlpool at n,. Area of wet pond at the bottom of the shelf 51,434 Perlmebr P elf loa a parmanpl pool aurae bamm onn. Dmax over shelf 0.50 wtaa fn7rot, tn-••+e„,„m„r- Wtlth s measured deep aide manhe dry el(e eof the t) shelf as mseeur.d et gmlenent pod(feet) Perimeter of Permanent Pool 1,124 Width of submerged part of shelf 3.00 Volume over the shelf only 843.26 e e , ,,see se ere enrs wae,rad nsm u.;a.ar,fsedl Average Depth 3.33 - EalEMEN0EISEMm SA/DA Method 20% O. 0.69 - 0_40 Drainage Area 30.93 acres , _, ,_ , „ Table value 1.87 Surface Area Required 25,140.82 square feet Stage Storage Calculations Cresswind -Wesley Chapel (Phase 05) Project No. 27842.0005 WET POND 06 FOREBAY VOLUME CONTOUR CONTOUR DEPTH (FT) INC.VOL. CUM.VOL.AVG. ELEV AREA(SF) AVG. END END(CU. FT.) 578 5,281 N/A N/A 0 579 6,181 1 5,731 5,731 580 7,146 1 6,664 12,395 581 8,176 1 7,661 20,056 582 9,271 1 8,723 28,779 582.5 10,613 0.5 4,971 33,750 1_ TOTAL FOREBAY VOLUME: 33,750 CU.FT PERCENTAGE OF PERMANENT POOL VOLUME: 19.59% PERMANENT POOL VOLUME CONTOUR CONTOUR DEPTH (FT) INC.VOL. CUM.VOL.AVG. t ELEV AREA(SF) AVG. END END(CU. FT.) 578 34,228 N/A N/A 0 579 35,969 1 35,098 35,098 580 37,740 1 36,855 71,953 581 39,540 1 38,640 110,594 582 41,369 1 40,455 151,048 582.5 43,743 0.5 21,278 172,326 PERMANENT POOL VOLUME: 172,326 CU.FT TEMPORARY PONDING ZONE CONTOUR CONTOUR DEPTH (FT) INC.VOL. CUM.VOL.AVG. ELEV AREA(SF) AVG. END END(CU. FT.) 582.5 54,778 N/A N/A 0 583 58,180 0.5 28,240 28,240 584 61,638 1 59,909 88,148 585 65,152 1 63,395 151,543 586 68,723 1 66,938 218,481 587 72,351 1 70,537 289,018 588 76,035 1 74,193 363,211 TEMPORARY PONDING ZONE VOLUME: 363,211 CU. FT. Cresswind Wesley Chapel-Phase 05 Job: J-27842.0005 O� T z KH Wesley Chapel,LLC Date: 9/5/23 c4 4 Thomas&Hutton Engineering Co. Revised: 5/29/24 Anti-Flotation Design Considerations By: MSK ANTI-FLOTATION DESIGN CONSIDERATIONS FOR: Wet Detention Pond 06 CONTROL STUCTURE ELEVATIONS Top Structure Elevation: 586.50 Bottom Structure Elevation: 577.00 CONTROL STRUCTURE FLOTATION Buoyant Force Calculate submerged volume: Vs= (Acs x Hcs) Where: V,= Submerged volume(cf) Les= Length of control structure(ft) = 6.00 ft Wes= Width of control structure(ft) = 6.00 ft Acs= Cross-sectional area of control structure(sf) = 36.00 sf Lsb= Length of structural base(ft) = 10.00 ft Wsb= Width of structure base(ft) = 10.00 ft Tsb= Thickness of structural base(in) = 13.00 in Asb= Cross-sectional area of extended base(sf) = 100.00 sf Hes= Height of control structure(ft) = 9.50 ft Solve equation for Vs: V,= (AC5 x HeS)+(Asb x Tsb) = 450.33 cf Calculate buoyant force: Fb= Vs x Ywater Where: Fb=buoyant force(lbf) Ywater= Specific weight of water = 62.40 lbf/cf Fb= 28,101 lbf Z:\27842\27842.0005\Engineering\Calculations and Reports\Storm Water\Antiflotation Calc\27842.0005-Wet Detention Pond 06-Anti- Flotation Calcs-2024-05-29 Page 1 of 3 Cresswind Wesley Chapel-Phase 05 Job: J-27842.0005 Z KH Wesley Chapel,LLC Date: 9/5/23 2 Thomas&Hutton Engineering Co. Revised: 5/29/24 c��'eene` Anti-Flotation Design Considerations By: MSK Downward Force Calculate Downward Force of Control Structure Fdos= (Vcs-Vweir-Vorifice)X yconcrete Where: WteS= Weight of control structure(lbs) ?concrete= Specific weight of concrete = 150.00 lbf/cf Aes= Cross-sectional area of control structure(sf) = 36.00 sf Hes= Height of control structure(ft) = 9.50 ft Tes= Wall thickness of control structure(ft) = 0.50 ft Ves= Volume of control structure(cf) = 104.50 cf Dop= Diameter of SD Outlet Pipe(ft) = 2.50 ft Aop= Area of SD Outlet Pipe opening(ft) = 4.91 sf Vop= Volume of weir = 2.45 cf Wweir= Width of weir(ft) = 3.00 ft Hweir= Height of weir opening(ft) = 2.50 ft Aweir= Area of weir opening(ft) = 7.50 sf Vweir= Volume of weir = 3.75 cf DlAorifice= Diameter of orifice opening(in) = 4.00 in Aorifice= Area of orifice opening(sf) = 0.087 sf Vorifice= Volume of orifice opening(sf) = 0.044 cf FdCS= 14,738 lbf Size Anti-Flotation Footing to Resist Bouyant Force Fd„+Fdft>Fb Fdft=(Lb X Wb X Db)X?concrete Where: FdeS= downward force of control structure(lbf) = 14738 lbf Fb=buoyant force(lbf) = 28101 lbf ?concrete= Specific weight of concrete = 150.00 lbf/cf Leb= Length of Extended Base Slab = 10.00 ft Web= Width of Extended Base Slab = 10.00 ft Teb= Thickness of Extended Base Slab = 13.00 in Fdft= downward force of anti-flotation footing(lbf) = 16250 lbf Z:\27842\27842.0005\Engineering\Calculations and Reports\Storm Water\Antiflotation Calc\27842.0005-Wet Detention Pond 06-Anti- Flotation Calcs-2024-05-29 Page 2 of 3 Cresswind Wesley Chapel-Phase 05 Job: J-27842.0005 O�g T Z KH Wesley Chapel,LLC Date: 9/5/23 2e Thomas&Hutton Engineering Co. Revised: 5/29/24 Anti-Flotation Design Considerations By: MSK Fd +Fd fr= 30988 lbf>Fb= 28101 lbf Factor of Safety Confirm anti-flotation block is sized for minimum factor of safety(FS)of 1.10. Fs = (Fdcs+Fdft)/Fb 1.10 > 1.10 Z:\27842\27842.0005\Engineering\Calculations and Reports\Storm Water\Antiflotation Calc\27842.0005-Wet Detention Pond 06-Anti- Flotation Calcs-2024-05-29 Page 3 of 3