Loading...
HomeMy WebLinkAboutNC0089168_Water Quality Analysis Tech Memo_20121010 / l Date: October 10,2012 Ili Project: Vanceboro SiteUc1��� Martin Marietta Materials �v�ucM Craven and Beaufort Counties,North Carolina Subject: Water Quality Analysis Purpose The following Technical Memorandum is prepared to summarize the results of analyses performed to address the North Carolina Division of Water Quality (NCDWQ) and United States At-my Corps of Engineers (USACE) comments regarding water quality, in particular pH and salinity, associated with the proposed addition of the quarry dewatering discharge to Blounts Creek from the proposed Vanceboro Site. This memo also will provide Coastal Zone Resources (CZR) with predicted zones of potential impacts so the company can further analyze the potential impacts to essential aquatic habitats for fish, benthic invertebrates, and vegetation. This Technical Memorandum was originally submitted to NCDWQ as a combined report titled "Stability, Flood, and Water Quality Analyses", dated September 6, 2012. This amended memorandum has been prepared to clarify comments received by reviewing agencies that combining the flood and stability analysis with the water quality analysis created some confusion. Included herein is the water quality (pH and salinity) analysis only, as well as an addendum with additional information in response to comments provided by the NC Division of Marine Fisheries (NCDMF) and NC Wildlife Resource Commission (NCWRC) at a September 21, 2012 meeting held in the NCDENR Washington Regional Office. Background The estimated maximum discharge rate from quarry dewatering is approximately 18 cfs (approximately 12 mgd). As part of the application and review process for the Individual 404 Permit, the associated Water Quality Certification,and the NPDES Discharge Permit, regulatory agencies raised several concerns related to stream stability,flooding,and water quality. The dewatering discharge primarily consists of groundwater infiltration from the Castle Hayne aquifer. Groundwater Management Associates (GMA) provided water chemistry analysis from wells placed in the aquifer at the Vanceboro site that were used to perform the pump test/water quality analysis. Mmley-Horn and Associates, Inc. (KHA) gathered additional existing conditions data to pH and salinity throughout the Kimsey-Horn 1 of 15 and Associates,Inc. Blounts Creek system as well. To assess the data, KHA used spreadsheet models. The data collection and analytical methods are discussed in detail in the attached documents and summarized below. ■ Water Quality—The two main water quality parameters that the quarry dewatering discharge could affect are pH and salinity. The pH of the existing headwater/swamp streams is very low (4.0 to 5.5). The results of the analysis predict that the pH of these systems would be elevated to 6.5 to 6.9. Such a change would not necessarily be considered a negative change as more numbers and diversity of intolerant species need higher pHs to survive. The effect of the pH would likely be noticeable from the discharge point to the confluence with Herrings Run where the ambient pH level is near 6. Salinity also is a concern for estuarine species of flora and fauna. The beginning of the estuary has been established at the confluence of Herrings Run and Blounts Creek. A volumetric displacement model was developed to estimate the salinity change that would result from the addition of the dewatering discharge. The model predicts no dramatic change in salinity and such changes may be masked by natural variability of the systems from tides and runoff events. It is unlikely that mobile species (such as fish and swimming invertebrates) would be affected by such a change; however, aquatic vegetation—like salt marsh grasses—may be affected because such species can be out-competed by freshwater species. Conclusions ■ Water Quality—The results of the pH analysis suggest that CZR focus on evaluating the effects of raising the pH from 4.0-5.5 up to 6.5 to 6.9 above the confluence of Herrings Run. It is not anticipated that predicted changes to salinity would be enough to affect mobile aquatic species. CZR would likely need to provide a narrative assessment of what kinds of changes could occur (if any). The zone of impact for immobile plants and invertebrates may be larger and should be assessed by CZR from Herrings Run down to the Cotton Patch Subdivision. Changes may not be enough to require more than a narrative discussion of potential changes. Kimsey-Horn 2 of 15 and Associates,Inc, Table of Contents 1.0 Salinity Evaluation......................................................................................... 4 1.1 Background............................................................................................................4 1.2 Methods.................................................................................................................4 Figure 1-1:Salinity Sampling Points Map............................................................................................6 1.3 Results and Discussion...........................................................................................7 Table 1-1:Measured Salinity ofBlounts Creek......................................................................................7 Table 1-2:Measured vs.Predicted Salinity ofBlounts Creek Downstream of Herrings Run........I.....I........9 Figure 1 2:Measured and Predicted Salinity ofBlounts Creek..............................................................10 2.0 pH Evaluation ............................................................................................. 11 2.1 Background..........................................................................................................11 2.2 Methods...............................................................................................................11 Table 2-1:pH ofBlounts Creek at Various Quarry Discharge to Stream Water Ratios...........................11 Figure 2-1:Relationship of pH to Percent Quarry Water on Receiving Streams...................................12 2.3 Results and Discussion.........................................................................................12 References............................................................................................................ 13 Addendum....................................................................:....................................... 14 Attached: Salinity Tables GMA Aquifer Water Chemistry Sample Report Klmley-Horn 3 of 15 and Associates,Inc. 1 .0 Salinity Evaluation 1.1 Background The NCDWQ requested that Martin Marietta Materials evaluate the effect on salinity in Blounts Creek from the potential maximum quarry dewatering discharge from the proposed quarry near Vanceboro, NC, starting at the point where NCDWQ considers estuarine (i.e., salt) waters begin at the confluence of Blounts Creek with Herrings Run. Per discussions with NCDWQ, it was agreed that a simple mass balance or other appropriate analysis would be suitable for an initial study on the potential impact that the discharge may have on salinity. KHA looked at several ways to approach such an evaluation and concluded that a simple model that evaluates the potential volumetric displacement of more saline water by the less saline quarry discharge may be adequate to conservatively estimate the potential effect of the proposed discharge on the salinity of the creels. 1.2 Methods KHA determined that it would be necessary to collect field data to define salinity profiles along Blounts Creek starting at the confluence of Blounts Creek with Herrings Run and ending approximately one mile downstream of the Cotton Patch Subdivision.A number of parameters were measured including conductivity, which was converted to salinity. These measurements were taken using a YSI 6920 water quality "sonde" meter. Stream velocity was measured at several observation locations to estimate channel discharge. Sampling was performed on three separate days: April 4`f', 2012; April 13`h, 2012; and May 31", 2012. Sampling dates were chosen to give a variety of flow and salinity conditions. Sampling on April 4`h occurred 3 days after approximately 0.5-1.0 inches of rain occurred in the watershed. Sampling on April 13" occurred after several dry days, with the most recent rainfall occurring a week earlier on April 6-Th (about 0.2-0.3 inches of rain). Sampling on May 31"occurred a day after tropical storm Beryl dropped approximately 3.5 inches of rain on the watershed. These sampling events represent a moderate flow, low/base flow, and high flow conditions in Blounts Creek, respectively.The sampling event on April 4`h included only two readings at the Cotton Patch Subdivision and at the confluence with Herrings Run. Sampling on April 13`h and May 13`h included measurements starting at the water surface and continuing at 2-foot intervals down to a depth of 10 feet on Blounts Creek from the confluence with Herrings Run to Blounts Bay at intervals of approximately 1,000 feet. Locations of sampling observations points can be seen in Figure 1-1.A salinity profile with isohaline lines of the April 13`h samples were developed using CADD. The resulting map is represented by the isohaline contours labeled "salinity measured 4/13/2012" in Figure,l-2: Measured and Predicted Salinity of Blounts Creels. The profile data was then used to generate predicted isohaline lines (labeled "predicted salinity") that could result from the addition of a maximum of 18 cfs of quarry dewatering discharge. MW Kimley-Horn 4 of 15 and Associates,Inc. To produce the predicted isohaline contours,a number of assumptions were made: ■ Stream discharge (with or without the addition of the dewatering discharge) does not completely mix with the more saline estuarine waters. ■ Quarry water discharge was "instantaneously" added to the stream discharge meaning that the fresh water would simply overrun the more saline water(as it currently does). These assumptions are shown by the actual measurements taken and illustrated in Figure 1-2. Due to this assumption, the addition of the quarry dewatering discharge can be seen more as a volumetric displacement with some mixing as already occurs naturally. We will be able to further establish this concept by resampling after a rain event, which would increase the stream (freshwater) discharge in a similar manner to the addition of the quarry dewatering discharge. Using a "volume displacement model' provides a way to avoid having to assess the effect of tides and other events. The model only represents a snapshot in time. A simple explanation of the model is that the volume displacement is taken as the ratio of the maximum quarry dewatering discharge to the stream discharge at any given point along the stream. The ratio of quarry dewatering discharge to the stream discharge would decrease as one progresses downstream. The model assumes that the stream discharge is proportional to the drainage area and the stream cross section at any given point along the stream.The presence of the saline water is based on the fact that it is denser than fresh water resulting in a horizontal stratification such that the freshwater overruns the more saline water as evidenced by the actual data. This tendency also can be modeled using the energy equation that takes into account the density of water as well as air pressure. If air pressure is assumed to be constant over the entire system, this allows the less dense water to "float" over the denser water. This fact further supports the assumption that the water will continue to remain stratified by salinity. Assuming a volumetric displacement as a percent increase of the quarry dewatering discharge versus the stream discharge at any given point is a sensible and conservative assumption. To determine the volumetric displacement, the ratio of discharge-based volume displacement was used to interpolate a displaced value of the salinity between every point measured. Kimtey-Horn 5 of 15 and Associates,Inc. Figure 1-1: Salinity Sampling Points Map fit ►►f Legend The Colton Patch$ubdivislbp CoAflwneo of Blounls Crook an4 Hatrings Run O SampGng Point(Ft Downstream ofConguenoe) 1310unta Creek ngioi frillStuQ Aea 0 1,000 21000 He x >=NenalBs Run Y t Inch,2,000 feet s Kiniley-Horn 6 of 15 and Associates,Inc, 1.3 Results and Discussion The flow conditions on Blounts Creek were taken during what can be characterized as two base-flow conditions (4/13/2012 base-low, and 4/4/2012 base-moderate) and one post-storm condition (5/31/2012 high-flow). Each flow condition has an effect on the salinity of Blounts Creek. Table 1-1 shows salinity of Blounts Creek at two locations. Table 1-1: Measured Salinity of Blounts Creek Measured Salinity' Sample Location Depth Base-Low Flow' Base-Moderate Hi h-Flow 4 (ft) Flow' g (4/13/2012) (4/4/2012) (5/31/2012) Immediately downstream of 3 1.08 0.07 0.03 the confluence with Herrings Run 8 3.03 -- 0.03 In front of the Cotton Patch 3 3.11 2.03 0.05 launch area 8 5.65 4.40 0.05 1 Salinity units are PSU(Undiluted sea water=35 PSU) 2 Sampling conducted after a week of no rain.Approximate estimated flow rate=25 cfs at Herrings Run and 100 cfi at the Cotton Patch Subdivision 3 Sampling conducted one day after,0.5 inch rain. Approximate calculated flow rate=50 cfs at Herrings Run and 200 cfi at the Cotton Patch Subdivision 4 Sampling conducted one day after-3.5 inch rain. Approximate calculated flow rate= 800 cfi at Herrings Run and 1,700 cfi at the Cotton Patch Subdivision. Note:Flow rates calculated from cross-sectional area and velocity readings at sampling points. Base-Low flow was estimated because velocity readings were too low to record. Although the samples represent only an instant in time, conclusions can be drawn that illustrate the salinity dynamics of Blounts Creek and the correlation of salinity and flow: ■ Salinity increases with depth. ■ Salinity increases downstream as the creek approaches Blounts Bay. ■ As flow increases,salinity decreases. Based on sampling conducted on the 4`' and 13`h of April, 2012 it can be concluded that salinity in Blounts Creek will be higher after a dry period. This increase in salinity has an upper limit dictated by the salinity of the Pamlico River at Blounts Bay. Sampling conducted on May 31", 2012 after Tropical Storm Beryl shows that a moderate intensity storm (3.5 inches of rain for a 24-hour duration storm represents a 1- to 2-year occurrence interval) has the ability to completely push salinity out of Blounts Creels.These fluctuations of salinity appear to be a natural dynamic of Blounts Kimley-Horn 7 of 15 and Associates,Inc. Creek between Herrings Run and the Cotton Patch Subdivision. The maximum proposed quarry discharge of 18 cfs (12 million gallons per day) would be only 1-2% of the flow rate measured after Tropical Storm Beryl. As such, the effects of the quarry discharge likely would not be noticeable during these kinds of flow conditions and should not have the same effect on the salinity profile as a moderate intensity storm such as Tropical Storm Beryl. Accordingly, it appears more likely that effects from the quarry discharge only would be noticeable at discharges closer to base-flow conditions. The volume displacement model was developed as a tool to predict the effects on salinity from an increase of 18 cfs (approximately 12 mgd) on salinity in Blounts Creek due to the proposed quarry dewatering discharge at base-flow conditions.Table 1-2 and Figure 1-2 show how the model predicts that the isohaline lines would be deeper and further downstream when comparing the natural-stream discharge plus quarry discharge versus the actual, measured conditions—i.e., the natural-stream discharge alone. The model shows that additional flow essentially "pushes" salinity downstream, but to a much smaller degree than discharge from a 3.5-inch rainfall would,for instance. In this scenario, comparing the salinity measurements taken during the two base-flow discharges (low and moderate) demonstrate how the addition of the quarry discharge could affect the system. The difference between the discharges from the low-base flow and moderate base flow at Herrings Run would be very similar to the discharge difference between the low-base flow and the low-base flow with the quarry discharge added to it. The difference between the discharges of the low-base flow and moderate-base flow at the Cotton Patch Subdivision are much larger than the difference between the low-base flow and low-base flow plus quarry discharge would be. The volume displacement model over-estimated the predicted salinity (0.07 measured versus 0.7 predicted) at the Herrings Run . confluence. The model also underestimated the predicted versus measured salinity at 3 feet (2.0 measured versus 1.6 predicted) and 8 feet (4.4 measured versus 2.8 predicted) at the Cotton Patch Subdivision. In any event, the volume displacement model does appear to provide an indication of the relative predicted changes to salinity from the addition of the quarry discharge that can be expected during low to moderate base flow conditions. Klmley-Horn 8 of 15 and Associates,Inc. Table 1-2: Measured vs. Predicted Salinity of Blounts Creek Downstream of Herrings Run Distance Depth Measured Distance Depth Measured Downstream Below Predicted Downstream Below Predicted of Herrings Surface Salinity' Salinity' of Herrings Surface Salinity' Salinity' Run(ft) (ft) (411312012) Run(ft) (ft) (4/13/2012) 200 0 0.88 0.51 6,000 0 2.04 1.51 200 2 1.08 0.96 6,000 2 2,14 2.07 200 4 1.70 1.34 6,000 4 2.55 2.25 200 6 2.72 2.13 6,000 6 3.41 2.78 200 8 3.03 2.85 6,000 8 4.51 3.69 200 10 3.12 3.07 6,000 10 5.33 4.72 1,000 0 1.29 0.75 8,000 0 2.22 1.64 1,000 2 1.33 1.31 8,000 2 2.27 2.23 1,000 4 1.77 1.52 8,000 4 2.49 2.33 1,000 6 2.87 2.23 8,000 6 3.98 2.88 1,000 8 3.46 3.12 8,000 8 4.92 4.22 1,000 9.6 3.56 3.50 8,000 10 5.39 5.05 2,000 0 1.61 0.94 10,000 0 2.47 2.10 2,000 2 1.67 1.64 10,000 2 2.51 2.48 2,000 4 2.02 1.82 10,000 4 3.41 2.65 2,000 6 2.65 2.28 10,000 6 4.27 3.54 2,000 8 3.74 3.11 10,000 8 5.00 4.38 2,000 10 4.02 3.86 10,000 9.1 5.48 5.08 3,000 0 1.87 1.38 12,000 0 2.64 2.25 3,000 2 1.96 1.89 12,000 2 3.01 2.70 3,000 4 2.07 1.99 12,000 4 3.23 3.04 3,000 6 2.36 2.15 12,000 6 4.05 3.35 3,000 8 3.96 2.78 12,000 8 5.76 4.31 3,000 10 4.51 4.10 12,000 10 6.07 5.80 4,000 0 1.76 1.30 13000 0 2.84 2.42 4,000 2 1.89 1.80 13,000 2 3.11 2.88 4,000 4 2.20 1.97 13,000 4, 3.47 3.16 4,000 6 3.33 2.49 13,000 6 5.01 3.70 4,000 8 4.13 3.54 13,000 8 5.65 5.11 4,000 10 4.64 4.27 13,000 10 6.10 5.72 5,000 0 1.92 1.42 14,000 0 3.24 2,75 5,000 2 1.97 1.93 14,000 2 3.28 3.24 5,000 4 2.44 2.09 14,000 4 3.49 3.31 5,000 6 3.30 2.67 14,000 6 4.87 3.69 5,000 8 4.20 3.53 14,000 8 6.36 5.09 5,000 10 4.73 4.34 14,000 9.3 6.45 6.38 I Salinity units are PSU(Undiluted sea water=35 PSU) Note:Highlighted cells are approximate location of the Cotton Patch Subdivision Kimley-Horn 9 of 15 and Associates,Inc. FNi ��y{ Ucll/ry� t j SALINITY, MEASURED —2 t t f' i k4/13/2012) 1,5 Z,O 3.0 (4/4/2012) 4.C1 4.5 r 5.5 610 —4 L — SALINITY, PREDICTED Ld — c ZO 2.5 I 4.0 4,5 f 5.0 w 5.5 6,0 — I COTTON PATCH SUBDIVISION I j I � I I f 410 0 2r 00 14000 =FjKimiey-Worn 10 of 15 I and,Associates,Inc. 2.0 pH Evaluation 2.1 Background The proposed discharge from the Vanceboro quarry into Blounts Creek will mostly come from the Castle Hayne aquifer. Based on data from aquifer testing conducted by Groundwater Management Associates (GMA), discharge from the Castle Hayne aquifer near the Vanceboro Site had a pH of 6.94, an alkalinity of 321 mg/L, and a total hardness of 316 mg/L. Based on these numbers, it was assumed that the hardness and alkalinity are primarily from calcium carbonate (CaCO3), which would give this discharge a very strong buffering capacity. Additionally, the pH of the water in Blounts Creek above the confluence with Herrings Run was measured between 4.0 and 5.5 by CZR and KHA. Given the available water quality data, a simple water chemistry model was developed to determine what the predicted pH of the Blounts Creek system might be with the introduction of the quarry dewatering discharge. 2.2 Methods It is assumed that the alkalinity of the quarry dewatering discharge is carbonate (CO'),.bicarbonate (HCO3), and carbonic acid (H2CO3). Natural acidity in the stream is likely tannic acid and other organic acids; however, for the sake of this study it was assumed that the pH is from hydrogen ions only(H*). This assumption that there will be no buffering from organic acids is conservative because the organic acids likely would provide some buffering at the lower pH. A spreadsheet model was developed to assess the proton condition and to assess various ratios or percentages of quarry water to stream water. Since the pH of the quarry water was 6.94, it was assumed that bicarbonate (HCO3) would be the dominant base form. Table 2-1 shows the predicted pH of the stream as a volumetric ratio of quarry discharge water to stream water. Table 2-1:pH of Blounts Creek at Various Quarry Discharge to Stream Water Ratios %Quarry %Stream Ratio of Quarry to H2CO3 HCO3 H* H Water Water Stream Water P 10% 90% 1:9 1.54E-04 1.66E-04 4.65E-07 6.33 20% 80% 1:4 2.08E-04 4.33E-04 2.42E-07 6.62 30% 70% 3:7 2.63E-04 6.99E-04 1.89E-07 6.72 40% 60% 2:3 3.17E-04 9,66E-04 1.65E-07 6.78 50% 50% 1:1 3.72E-04 1.23E-03 1.51 E-07 6.82 60% 40% 3:2 4.26E-04 1.50E-03 1.43E-07 6.85 70% 30% 7:3 4.81 E-04 1.77E-03 1.37E-07 6.86 80% 20% 4:1 5.35E-04 2.03E-03 1.32E-07 6.88 90% 10% 9:1 5.89E-04 2,30E-03 1.29E-07 6.89 ' Receiving stream waters are assumed to have a pH of/f.0 Kimley-Horn 11 of 15 and Associates,Inc. Figure 2-1: Relationship of pH to Percent Quarry Water on Receiving Streams 7.0 7 -- - - 6.0 f I T 1 - 5.0 4. - - 0% 10% 20% 30% 40% 50% 60% 70% 8010 90°/a 100% Percent Quarry Water 2.3 Results and Discussion The model predicts that as the ratio of quarry water to stream water goes from 1:9 (10% quarry water) to 9:1 (90% quarry water), the pH will begin to rise from 6.3 to 6.8. The pH at the Herrings Run confluence was measured at approximately 6.5 on April 13`h, 2012. This means that the pH below the confluence of Herrings Run and Blounts Creek will likely remain at current conditions; however, the pH of Blounts Creek upstream of the confluence with Herrings Run is expected to increase from a range of 4.0-5.5 (as measured on April 13`h, 2012) to 6.3-6.9 from the addition of the quarry dewatering discharge. Kimley-Horn 12 of 15 and Associates,Inc. References Chow,Ven Te(1959). Open-Channel Hydraulics. Caldwell,NJ:The Blackburn Press. Fry, Brian (2002). Conservative Mixing of Stable Isotopes Across Estuarine Salinity Gradients:A Conceptual Framework for Monitoring Watershed Influences on Downstream Fisheries Production. Estuaries and Coasts,25,264-271. Stenstrom, Petter (2004). Hydraulics and mixing in the Hudson River estuary: A numerical model study of tidal variations during neap tide conditions. Journal of Geophysical Research, 109(C04019), 1-12. Snoeyink,Vernon L., &Jenkins,David(1980). Water Chemistry.New York,NY.John Wiley&Sons. UNESCO (1981). Background Papers and Supporting Data on the Practical Salinity Scale 1978 (UNESCO Technical Papers in Marine Science 37). Place de Fontenoy, Paris:United Nations Educational, Scientific and Cultural Organization. U.S. Geological Survey (1993). Low-Flow Characteristics of Streams in North Carolina (United States Geological Survey Water-Supply Paper 2403). Denver; CO: US Government Printing Office. E-" Kirinley-Horn 13 of 15 and Associates,Inc. Addendum Response to Comments Provided by NC Division of Marine Fisheries and NC Wildlife Resource Commission on September 21,2012 Date: October 10, 2012 Project: Vanceboro Site Martin Marietta Materials Craven and Beaufort Counties,North Carolina Subject: Response to Comments by NC Division of Marine Fisheries and NC Wildlife Resource Commission Kimley-Horn and Associates, Inc. (K-IA), Martin Marietta Materials (MMM), Coastal Zone Resources (CZR) met with NC Division of Marine Fisheries (NCDMF) and NC Wildlife Resources Commission (NCWRC) on September 21, 2012 held in the NCDENR Washington Regional Office to discuss their comments on the K14A Technical Memorandum "Flooding, and Water Quality Analyses", dated September 6, 2012. This addendum has been prepared to provide additional information/discussion in regard to the general comments provided at the meeting. ■ Comment—The predictive model for the potential change of salinity indicates that, on average for a given concentration,that salinity will be less at any given location below Herrings Run. Kimley-Horn Response—Extensive salinity stratification data was gathered on a day of normal springtime base flow and another day of storm discharge conditions (one day after Tropical Storm Beryl) in April 2012. Less extensive data was also gathered during a preliminary site visit where the estimated flow was approximately twice the previous base flow observed during the extensive data gathering. KHA noted that salinity was flushed from the system after Tropical Storm Beryl to well below the Cotton Patch Subdivision. The other springtime base flow sampling events suggested that the salt wedge appears to move downstream with an increase in flow. The estimated discharge difference between the two normal springtime flow conditions is approximate to the proposed quarry discharge. The results suggest that the salinity wedge appears to be similar, but may simply be displaced downstream. ■ Comment An increase in freshwater discharge could lead to oxygen depletion by increasing the amount of stratification due to a larger wedge of freshwater over running the more saline water. Strong salinity gradients were recording during recent fish kills along Blounts Creek. Kimley-Horn Response—It is understood that a strong gradient could prevent the transfer of oxygen to lower portions of the water column. It is our understanding that the fill kills referred to occurred during droughts.Under drought conditions,the freshwater discharges are lower by volume,but move EM" Kirnley-Horn 14 of 15 � 1 and Associates,Inc. more slowly resulting in less potential for turbulent mixing. Such advective conditions could prevent turbulent mixing and oxygen transfer, allowing for the formation of a strong salinity gradient created by fresh water overrunning. Turbulent mixing (as opposed to diffusion, for instance) is likely the most prevalent means of transferring dissolved oxygen throughout the water column and weakening a salinity gradient.The increased discharge from the quarry would actually increase the opportunity for turbulent mixing by adding more kinetic energy to the system. This, in turn, would help transfer more dissolved oxygen across the salinity gradient into the deeper water by mixing. ® Comment—Increased erosion from the increase in quarry discharge may result in increased turbidly. Klmley-Horn Response—The stability analysis conducted shows that even if the full 18 cubic feet per second (cfs) of discharge were instantly distributed to Outfalls 1 and 2, the velocities and shear stresses experienced throughout the streams would not be increased to the point that excessive erosion would occur, thereby increasing turbidity downstream. Additionally, the anticipated discharge of 18 cfs would likely gradually increase over a period of years, further allowing any change in channel geometry to reach equilibrium gradually without becoming unstable. Therefore, significant bank failure and stream bed erosion that could cause a significant amount of turbidity or sedimentation is not anticipated. ® Comment— There is a concern that the quarry discharge would either contain nutrients or create some mechanism,such as erosion,that would release nitrogen or phosphorus. Kimley-Horn Response— The groundwater from the Castle-Hayne aquifer is not known to carry excessive amounts of nitrogen. See the response above for a discussion of potential erosion. Kimley-Horn 15 of 15 ® and Associates,Inc. Attachment 1 Salinity Tables Measured vs.Predicted Salinity Distance Downstream of Confluence Depth below Salinity measured Salinity Predicted with Herring Run(ft) Surface(ft) (4113/2012) 200 0 0.88 0.51 200 2 1.08 0.96 200 4 1.70 1.34 200 6 2.72 2.13 200 8 3.03 2.85 200 10 3.12 3.07 400 0 1.09 0.63 400 2 1.27 1.17 400 4 1.68 1.44 400 6 2.95 2.21 400 8 3.08 3.00 400 10 3.14 3.10 600 0 1.28 0.75 600 2 1.39 1.33 600 4 1.82 1.57 600 5 2.32 2.03 600 6 2.80 2.52 600 7.88 3.07 2.91 800 0 1.23 0.72 800 2 1.31 1.26 800 4 1.85 1.54 800 6 2.77 2.24 800 8 3.39 3.03 800 8.76 3.39 3.39 1000 0 1.29 0.75 1000 2 1.33 1.31 1000 4 1.77 1.52 1000 6 2.87 2.23 1000 8 3.46 3.12 1000 9.6 3.56 3.50 1500 0 1.48 0.86 1500 2 1.61 1.54 1500 4 1.89 1.72 1500 6 2.89 2.31 1500 8 3.63 3.20 1500 10 3.87 3.73 2000 0 1.61 0.94 2000 2 1.67 1.64 2000 4 2.02 1.82 2000 6 2.65 2.28 2000 8 3.74 3.11 2000 10 4.02 3.86 1of6 Measured vs.Predicted Salinity Distance Downstream of Confluence Depth below Salinity measured Salinity Predicted with Herring Run(ft) Surface(ft) (4/13/2012) 2500 0 1.89 1.40 2500 2 1.92 1.90 2500 4 2.03 1.95 2500 6 2.08 2.04 2500 8 3.76 2.52 2500 10 4.35 3.92 3000 0 1.87 1.38 3000 2 1.96 1.89 3000 4 2.07 1.99 3000 6 2.36 2.15 3000 8 3.96 2.78 3000 10 4.51 4.10 3500 0 1.67 1.24 3500 2 1.89 1.73 3500 4 2.07 1.94 3500 6 2.93 2.30 3500 8 3.94 3.20 3500 10 4.51 4.09 4000 0 1.76 1.30 4000 2 1.89 1.80 4000 4 2.20 1.97 4000 6 3.33 2.49 4000 8 4.13 3.54 4000 10 4.64 4.27 4500 0 1.82 1.35 4500 2 1.84 1.83 4500 4 2.19 1.93 4500 6 3.27 2.48 4500 8 4.08 3.48 4500 10 4.67 4.23 5000 0 1.92 1.42 5000 2 1.97 1.93 5000 4 2.44 2.09 5000 6 3.30 2.67 5000 8 4.20 3.53 5000 10 4.73 4.34 6000 0 2.04 1.51 6000 2 2.14 2.07 6000 4 2.55 2.25 6000 6 3.41 2.78 6000 8 4.51 3.69 6000 10 5.33 4.72 2of6 Measured vs.Predicted Salinity Distance Downstream of Confluence Depth below Salinity measured Salinity Predicted with Herring Run(ft) Surface(ft) (4/13/2012) 7000 0 2.08 1.54 7000 2 2.24 2.13 7000 4 2.32 2.26 7000 6 3.45 2.62 7000 8 4.65 3.76 7000 10 5.34 4.83 8000 0 2.22 1.64 8000 2 2.27 2.23 8000 4 2.49 2.33 8000 6 3.98 2.88 8000 8 4.92 4.22 8000 10 5.39 5.05 9000 0 2.41 2.05 9000 2 2.50 2.42 9000 4 2.71 2.53 9000 6 4.09 2.91 9000 8 4.71 4.18 9000 10 5.34 4.81 10000 0 2.47 2.10 10000 2 2.51 2.48 10000 4 3.41 2.65 10000 6 4.27 3.54 10000 8 5.00 4.38 10000 9.1 5.48 5.08 11000 0 2.50 2.13 11000 2 2.55 2.51 11000 4 2.68 2.57 11000 6 3.95 2.87 11000 8 5.39 4.17 11000 10 5.86 5.46 12000 0 2.64 2.25 12000 2 3.01 2.70 12000 4 3.23 3.04 12000 6 4.05 3.35 12000 8 5.76 4.31 12000 10 6.07 5.80 13000 0 2.84 2.42 13000 2 3.11 2.88 13000 4 3.47 3.16 13000 6 5.01 3.70 13000 8 5.65 5.11 13000 10 6.10 5.72 14000 0 3.24 2.75 14000 2 3.28 3.24 14000 4 3.49 3.31 14000 6 4.87 3.69 14000 8 6.36 5.09 14000 9.3 6.45 6.38 3of6 Measured Salinity After Tropical Storm Beryl (5/31/2012) Distance Downstream of Depth Below Surface Temperature Salinity Measured Confluence with Herring Run(ft) (ft) VC) (PSU) 0 0 20.84 0.03 0 2 20.85 0.03 0 4 20.85 0.03 0 6 20.94 0.03 1,000 0 21.00 0.03 1,000 .2 21.00 0.03 1,000 4 21.00 0.03 1,000 6 21.00 0.03 1,000 8 21.00 0.03 2,000 0 21.05 0.03 2,000 2 21.04 0.03 2,000 4 21.05 0.03 2,000 6 21.05 0.03 2,000 8 21.05 0.03 3,000 0 21.13 0.03 3,000 2 21.14 0.03 3,000 4 21.08 0.03 3,000 6 21.08 0.03 3,000 8 21.06 0.03 4,000 0 21.08 0.03 4,000 2 21.12 0.03 4,000 4 21.10 0.03 4,000 6 21.06 0.03 4,000 8 21.07 0.03 5,000 0 21.16 0.03 5,000 2 21.13 0.03 5,000 4 21.14 0.03 5,000 6 21.11 0.03 5,000 8 21.11 0.03 6,000 0 22.07 0.04 6,000 2 21.35 0.04 6,000 4 21.41 0.04 6,000 6 21.35 0.04 6,000 8 21.18 0.04 7,000 0 22.01 0.04 7,000 2 21.23 0.04 7,000 4 21.25 0.04 7,000 6 21.20 0.04 7,000 8 21.22 0.04 8,000 0 21.87 0.04 8,000 2 21.70 0.04 8,000 4 21.47 0.04 8,000 6 21.36 0.04 8,000 8 21.44 0.04 9,000 0 22.17 0.04 9,000 2 21.54 0.04 9,000 4 21.35 0.04 9,000 6 21.20 0.04 9,000 8 21.38 0.04 4of6 Measured Salinity After Tropical Storm Beryl (5/31/2012) Distance Downstream of Depth Below Surface Temperature Salinity Measured Confluence with Herring Run(ft) (ft) (°C) (PSU) 10,000 0 21.76 0.04 10,000 2 21.47 0.04 10,000 4 21.34 0.04 10,000 6 21.35 0.04 10,000 8 21.33 0.04 11,000 0 22.55 0.04 11,000 2 21.87 0.04 11,000 4 21.72 0.04 11,000 6 21.38 0.04 11,000 8 21.37 0.04 12,000 0 22.40 0.08 12,000 2 22.92 0.07 12,000 4 21.53 0.04 12,000 6 21.40 0.04 12,000 8 21.42 0.04 13,000 0 22.95 0.05 13,000 2 22.32 0.05 13,000 4 21.67 0.04 13,000 6 21.53 0.04 13,000 8 21.50 0.05 14,000 0 22.70 0.05 14,000 2 22.39 0.04 14,000 4 21.88 0.05 14,000 6 21.42 0.05 14,000 8 21.38 0.05 15,000 0 25.10 0.06 15,000 2 24.47 0.06 15,000 4 22.27 0.05 15,000 6 21.79 0.05 15,000 8 21.50 0.05 16,000 0 25.02 0.08 16,000 2 22.60 0.08 16,000 4 21.67 0.06 16,000 6 21.61 0.05 16,000 8 21.60 0.05 17,000 0 24.30 0.07 17,000 2 21.99 0.06 17,000 4 21.74 0.06 17,000 6 21.65 0.06 17,000 8 21.61 0.06 18,000 0 25.66 0.17 18,000 2 23.65 0.21 18,000 4 21.68 0.09 18,000 6 21.75 0.11 19,000 0 26.17 0.10 19,000 2 22.09 0.10 19,000 4 21.98 0.11 19,000 6 22.20 0.11 5 of 6 Measured Salinity After Tropical Storm Beryl (5/31/2012) Distance Downstream of Depth Below Surface Temperature Salinity Measured Confluence with Herring Run(ft) (ft) Vc) (PSU) 20,000 0 26.58 0.25 20,000 2 24.76 0.16 20,000 4 22.26 0.30 20,000 6 22.30 0.32 21,000 0 26.31 0.28 21,000 2 23.77 0.20 21,000 4 22.82 0.43 21,000 6 23.48 1.00 22,000 0 26.97 0.46 22,000 2 22.80 0.37 22,000 4 23.32 0.90 22,000 6 23.45 1.05 23,000 0 26.23 0.39 23,000 2 23.20 0.43 23,000 4 24.03 1.23 23,000 6 24.11 1.24 24,000 0 26.79 0.48 24,000 2 26.32 0.57 24,000 4 24.30 0.99 24,000 6 24.04 1.19 25,000 0 27.16 0.81 25,000 2 25.68 0.75 25,000 4 24.30 0.91 25,000 6 24.05 1.13 26,000 0 27.77 0.94 26,000 2 26.90 0.87 26,000 4 25.36 0.84 26,000 6 24.43 1.01 26,000 8 24.19 1.20 27,000 0 26.90 1.02 27,000 2 26.55 1.02 27,000 4 24.95 1.00 27,000 6 24.56 1.13 27,000 8 24.38 1.19 28,000 0 27.82 1.03 28,000 2 25.49 1.09 28,000 4 24.90 1.16 28,000 6 24.69 1.18 28,000 8 24.40 1.46 6 of 6 Attachment 2 GMA Aquifer Water Chemistry Sample Report ,10/02/2007 15:28 1-252-758-8885 GMA GREENVILLE NC PAGE 05/14 4 �, Environmental C�hcmists Inc. �* 6602 Windmill Way•Wilmington,North Corolfna 28405 D (910)M-0223 Mono a (910)3924424 Fax G('hwiw a.-pixoni Analytical &Consulting Chcmists NCDENR.DWQ Certificate 49.4,IMS Certificate B37729 NEW WELL INORGANIC CHEMCA L ANALYSIS Page 1 of 14) Nal I-Atl;Rsrm Web— lm;rWhdforpkmrMewcreah. WATER SYSTEM 10#: County: McAnfott -- Name o1'Watersystem- Mmlin Marietta Agetes , Sample Type. X Source for Platt Review Location Where Collected: at 1 040m, 0n pe mmm e w s t ro pmm. Location Code: � Ilect'ez►TJ>yte �11eCrtio�7'>11mt� . Collected By* JO 110luey r�r�t 0 g/0 7/0 7 —110-.4 AM Mail Results to(water system rep entative)t GMfA 2025 �vtirah X?ti�y+� Phone Glreenville.NC 17850 Fax#e L_ 1 LABORATORY IDI#: 3 17 2 9 U SAMPLE UNSATISFACTORY 11 RESA,MPLE REQUIRED REQUIRED DETECTED QUANTIFIED ALLOWABLEC)rfAM �yHO) ' I �lT �, ) 011AMINA11 CCX REPORTING RESULTS LIMIT 0100 f Turbidity 0 0 1 030 titu i 13 2 7 Z NTU N/A.,....... 1005.. . .. .. .. Arsenio12 5 0.005 mg/L '. ......,X... .... ..:........................._.........._ .`;,.......rnlz/J4 0.010 mg/L 1010 barium 169 0:400 mg/L X i 2.000 mg/L 101.5 Cadmium 169 0.001 mg/L. ( 0.00,11, rn /L 0.005 m 1016 Calcium 169 0.00 nag/z. �1 �..1..X_.1,.__ �_r�1�J4 'N/A 101`7 Chloty�le 1.2 g 5.0 mg/L •; 0 7. �..tz��1[. 250.4 mg/L 1020 Chromium 16 9 0.020 m m 0.100 mg/L 1022 Copper 1..6__9 0.050 mg/L _._..�,��=, ,...__zrrvJl� 1.300 mg/L 1024 Cyanide 1 5 4 0,040 mg/L X — m 0.200 mg/f, 1025 Fluoride 107 O.100 mg/L, 9 0.4 ma11. 4.000 mg/L 1028 iron 1 6 9 0.060 mg/L C� _. ._2��._8 0,300 mg/L 1030 Lead 1 2 5 0.003 mg/L - X 0.015 mg& � 1031 MagnesiuM 1ju 1 .0 Mg/L 0 9 .5. .-_-.. rntr/L. N/A 1032 Manganese 1 6 9 0,010 mg/L 0 0.2 4-9._ mgLL 0.050 mg/L � 1035 Nleraury 1 0 3 0.0004 tag/[, X mWL 0.002 mg/L "Note,Concentrations for T,.cad bnd Coppff art action levels,not MCLs. 16096 7-7579 10/02/2007 15:28 1-252-758-8835 GMA GREENVILLE NC PAGE 06/14 F-17vjrp=Q:gta1 Chemist Inc. "" # "' 6602'Windmill Way d Wilmington,Notth C2mlina 28405 (910)392-0223 Phono + (910)392-4424 Fox 4w 17C11emW aL",Isp to Analytical &Consulting Chemists NCAENft:AWQ Ccrtifiealte#94,D S COutificnte#37729 NEW WELL INORGANIC CHEAUC,A L ANALXSIS Page 2 of 10 (Continvao) N4ta:AU hftMntton mwt tkbw1fed fir phm tovicw I;wlt WATER SXS7CEW ID#: Maxim Yfarietta Collec ton Date Collectiox.Time Location Code: —Spigot at well it 0 7„t 0 7 10,40* inn+rron c�aAf'M LABO ATOXtV W 37729 - — rv.-taZmrntnn�t:4•P�—._-- __— _. _nrmvf.'t"�`.:b' - ___ _ .___ ! AHQt7IItH6 1 M MEMO DETEGM ' — Cc� C(WAMNMT c tJC01M I RLToy(TfflGtMT (i,4.tARL) QUANIiFlt?i) .ALLOWABLE RU,CU1Li'S* I LIMff 1036 ! Nickel 1 6 9 0.100 mglT. N/A ;.., 1040 i Nitrate 10 9 j 1.00 mg/L ! 10.00 - - _...............:...... ... . .. ..... . _... _._...._......... ......................... ... ragl „ _1041 Nitrite 1 0 9 0.10 mP� .00 I--• � i � mkt ..._.._..._..__.._...�._.... ...._._...j - ...._..._....._ . ,.,.r.._....._....._..........---..._..._......... C mg/L .1045 ' ,SejeWum 1 2 5 0.010 wg)L ; - ��,..+. 0,050 mg/L .4. ......_. - -__.._._.--._..................... . �... ,...... --....__..._...._.. _._.__._.._._..._.._._...._.._..__.......,:........!__.........�...__.._ ......._._..__... 1050 Silver 1 6 9 0.05 Mg/L _..!._ m ![, ! O..IO -.._..._._.......-_._ .................._..........._.._...._..... 1052 1 Spolittttll j 16 9 ! I.0 xia i MgLL N/A 1 . _.,..._......._......_�._._......._............. . ...._._.__..._..... . .............-._.._...._._._._....__._.._ 1055 Sulfate......_.... 1 3 7 .5.0... mg/L 1 � -- ��...._ 250 0 wg/L ........._._......_..._......_.._. _......._...__._..._._.... 1069 Acidity 144 1.0 mg/L j - ® 33. - mu/t,! N/.A 1074 I Antimony j 125 0.003 ....... .....x .. ... 1., � ........__...._._........... ` uw Mg/ 1075 Beryllium 169 .9 0.002 >naglL ; _....... „ m_ 0.0 L ' 04 mg/L �.. .. ...................._...,..... _..._._.. .._ _...._.............. . 1085 Thallium 1 2 5 0.001 .zlag/1:, L. .... !.. _ nl,olt,._L. 0.002 mg/L 1.095 Zinc... ..._._. .. 1.6 9 . � 1.0 .....m ,..l......^_. X , . �.........._...._.........._.... m� .........0.._.. ..... 1905.. ,.. Color 129 5.. ... ...units ' S 0........_. nnib^ ....,. 15...units....... 1915 TOW Hardness i 141 1.0• mg/L ; N/A i 31 . ;. ... _... ................ ;. .. ................... ......_. -...._--..... .. L i 1925 1 PH N/A N/A _ ffi..9 units 6.50-$.50 unifis ���. _ , 1927 Alkalinity 142 1A .... a ... .. ® _....... ' .....,... ..- .lid::. .... mfr/L • ' SOUN/lS.........._. ;._. _ . 1930 'Total Dissolved Solids i 13 9 10.0 mg/L l n 408. 0 mg/L '"None:Conccntmpptions for Lead and CoNtr Stu faction lovals,not MCLs. PATE, _->- TIME, ANALYSES ANALYSES BEGUX . � Q 8/0 7/0 7 0 4 : 5 0 PM ANALYSES COMPLETE, D: 111 0 8/15/0 7 0 4:3 0 PM 1»mntK Laboratory Log#: 16 0 9 6 Certified By �'')�istit, ( r�r'lr�, l;•�t�, . , - COMMENTS. ` � REPORT# 7=-7 5 7 9 10/02/2007 15:28 1-252-758-8895 GMA GREENVILLE NC PAGE 07/14 nvironmental Chemists, Inc. 6602 Windmifi Way - Wlfxtington,MC 28405 (910)$92-OM(LoLb) + (91.0):492-4424(F:jx) 710 Bowserkown Road •Manteo,NC 27954 ANAt,Yj10A1-&OONSULTINQ (252)47$-5702 CHEMISTS NCD]ENR;DWQ C?3 UNCATS 494,M8 CERTIFICATE 0$7729 Customer: GMA plate of Report: September 17,2007 2025-E Eastgatc))rive emvW%SAC 27850 Purchase Order No.: Attn:Jay Volley Report Number: 7-7579 HTIPM.09 ANALY8I5 Date Collected: 08/07/07 Report Tot Jay l-Tolley Sampled By: James Holley Pro ject: Martin Maxietta Aggregates L D.##16096 Page 3 of 1.0 TRIHALOMETHANE I+(DRMATION I'fD'i"FNlgAL,7 Aar laoulbation Chlorine Residual after incubation = 3.1 ppm C12 froml a 30 ppm)Dose THMMFP Artalytsis Chloroform mg/L - 0.21.6 Bromtofarm mg/L o 0.001 Chlorodibroxl omlethax►e WWL = <0.001 Bromodichlorometlrane mgAL 0.016 'A'lNP mg/JL= 0.232 4 hour Chloxi'ae Vemand= 1.7,6 ppm Caz HALOACETIC ACID FORMATION )POTENTIAL-I Day hrcubaatio u . IIAAFP Analysis Monochloroacetic Acid rng/L 0.002 Dichloroacotic Acid mg/L 0.051 Trichloroacetic Acid mgfL 0,058 Monobromoacetic AcRd mg/L = <0.001 IDib>ranioacetic Acid mg/L 0.001 TFP mg/L= 01109 Reviewed by A�f44u, �l-1)FT,a„(..--) '10102/2007 15:28 1-252-758-8835 GMA GREENVILLE NC PAGE 08/14 6602 Windmill Way*Wilmington, North Ctttolina 28405 (9 to)192.0221 Phone a (910)392-4424.Vax rXhem ri<)I.io tty? Analytical &Cotnsulting Chemists NCDFNR:DWQ Certificate#94,DL9 Ccttiftcate I137729 '�"R.—+-r-,,,.,'�',�.•.�""�-�--�'��vn.F�Y..+...�.'Ir4 ru. .. 1 +yN. ._—�=�—+==r.--h�.n4rm.�rrm.•w.�.v-.r..�..c y.i.l A4�mnn.-�...nnnn+n�r -erovn.wurv..�.utu•u�1..•. .—... •. -wn VOLATILE E ORGANIC CHEMICALS ANALYSIS(VOCS) Page 4 of 10 Nate:l4rtiaCottt>;itivnmii�tte euppuea for awriptimrce trcdit WATER SYSTEM IM#: �� —_ County., Beaufort - N•ama of Water System: Iae n Narietta AgE mg,,�_, sample Type.- E3 gutty kolnt X SpeelaUNa�n comp111attce Location Where Collected: $ igo� fat Wel! dte: Lncatrarl Code-, ___..__._._—�----•-- ---_-:_=:=jl.T (?l1CClIlU7L � $ !p-Q11ec#0.lr._Ti C (I Collected By: _James-Ro � 0 8 7/0 7 /0 7 10:.4 0 Malt Results to(water systm repmentanve): G ,w _ 2025--E EflgtgAte Drive , Phone G>t >mviille 27,f nQ Ear#: L.. LABORATORY ID #: 3 7 7 2 9 0 SAW LE E UNSATISFACTORY 0 RESAMP'LE,REQUIRED —=_�.-'i.. •-- 1., . ,,;:gym-.�;T:,.---3-__---T;m=v>aerc:� '-- ..._._...__._.�.—=._.: ..........CONTAM .....:!�.•ry�..�:ans;«....� :— j NtEI7�bD ftCQTJIAFU 1LQ�t7l:tl�G i#r f QI7AN�SI713D -ALLOWA13LE— CONTAMINANT L4D8 REAQRTINO LP {i.b. R,1k ) RESr7[T9* LTMiT 09 2030 p-rurpmyrtoluetre 2.17 0.0005 mg/L ' X J. to r, • NIA 2216CNlotome#hane 217 0.0005 mg/r, ; X ----- -- to NIA 2x12 , l i0.bftmdditivarvtucthanc 2 ti 1 0.0005 mlr/1. X , _.- —. —,.--. m�i. • NIA. 2214 j 1Bmmo�kicthanc 217 tt.. 0.0005 ..._ X .. .. �.- m I ,.. N/A. 2216 �`1110IC3Lt11fliIG 217 0.0UOS m X .w y e NIA 22Y$ Fruorginchloromediane 17 05 mg/.L ' _�Y :.. mj/L, i NIA 4� ► Umcblordbuiatdiene 217 0.0005 mg/L . X — mglL NIA ............. 2...._...... _:.. 2248 hlaphthalcna 17 0,0005 > ..,..I. ..:.................. . -...�__..... ..:. N/A 2378 ` 12d Trichlorobonzatc i 217 0.0005 mgfL, X mgJL 0.07 mg�L 2380 Cls-1,Z-X�iehibnnott►yleno Z.t.:?,... .. . . .0,006..M _X_.. ._._. �.: 0,07 mg/L 240$ i i}ibromamcthana 217 0.0005 L ! .,_ ^ mjeL ' N/A 241U i,i-17rcTtlorapropene 217 0.0005 mph ;C mg/L . N/A 2�t12 : 1,3�17ichlbmprnitane : 217 0.0005 mgl, X ... .... mpJL ; N/A 2413 1,3-vicblumpropma 217 0,0005 r0A x —-----. -- mg(L NIA. 241A : 1,2,3 Trrchlorepropane 217 0.0005 mg1L , X — -- _ — zttg/Ir N/A 241� 2,?rr7lchfgtYtptgpntte 217 0.00 05 mgtL X —_--- -- n1g/L ; NIA. 2411t 1 Jt�llimathylbcrtaade 21 7 0.0005 zdglX. . X —�------- mg/L : N/A 2420 t23-TrichlaroHenrene 217 0,0001 mg/L X _ __ mg/L Nh 2422 n-13uty1f>an�errc 2 1 7 0.0005 7v..., X ------ �,._... me)L. N/A 2424 1,3,5 T[imethylbetrza»c 217 0.0005 mg/L, x __— mg/,L N/A 2426 �ctt-Butylbenzvnc 217 0.0005 M'glh x _ mg/L N/!1, 2425 217 0.0005 fti X ^— —�— mg/L NIA II 2430 Brrnnochloromctftanc 217 0,0005 mg/L x -------- mg/L N/A I� 2941 Chtomiorm 217 O.000S mgll, X , - mg/L NIA i *14ote:If result exceeds allowable limit,the labomtory must fax onalytiml m,ults to the State within 48 hours # 16096 7-7579 .. 10/02/2007 15:28 1-252-758-8835 GMA GREENVILLE NC PAGE 09/14 6602 Windmill Way o Wilmington,XoAlb Corolinn28405 4=0 (910)392-0223Phoned (910)392•-4424Pax I.C'•hemWCaol.com ,A nalytical &Consulting Chemists NCDENR:AWQ Cort11'toate 094.DLS Cortificate#37729 VOLATILE ORGANIC COEMCALS ANALYSIS(VCCs) Page 5 of 10 Nvw;All infotmrrhon m4 Ue-rapped far enmpllooco oWit,wationued) WATER SYSTCM 10#. _Martthi rietta f ~Collection Date~ CI �tln Ti-me _..- _..:. Location Code: Well � 0 8 0 7/0 7tmpwly Am urns) �41VI LABORATORY M #: 37729 �.____..-',`..W."'h.vamc�.. _ •._u>_.•...... •rh.•xi—o . ...r-s1:crncv...+�C^--. .—__ - tATrh..- CMTAM i -�� RRQlJTRBO AETECT$p-1 - __ —QUANTRgM CODE c�QMANNANT CODE REPORTWGIPM I AROVER.tt_L. ( ]EtRStI7LTS ALLLUMT ABLE .1t.L. 2942 .1.Bromofbrm ..... 217 Q0005 In x ., i - . ._. ,.- .,.-•In - N/A 2'94 ; f�rpingdiahloromethane i 217 _....... - - ..._......... 0 X. . ... ......... I NIA 2944 orodibronlvmethmie i 217 ; 0.0005 mg/L R R ,- — mg/X, N/A r. 2955 7(yiertea(Total} i 217 _0,0005 Ogg,. . x_.__._.. _"�_ -'tng 10_00 Mg/L. 296r1 ' D9vhlmrnnctriene . . ..._�......... 0,0005...Mg/L _.._.. .X.. ..'......_.--.._.—........ . n' ..�.. ._.0.005....M� 29b5 .... o C1t1vro6v1aCnc....._ ........ 2 l 7 0,0005 mg/L .i. ....... .. .. .......... • ..—.— ._................ ........... .. mp) ' N/A....... ....... . Z bb....' 1�'olorotoluena 2l 7 ' 0,0005 rn -...i. ..._. ... . .•.. t-.........-- — mL. NIA •. 967 m-llichlorobeiizxnv. . .........i .. '. �.. . — N/A;.... 2<16$ a JOicblorot na ne 217 i 0.0005 mt~!I _ _..,.._......_..mg/L 0,60 mg/L _• 29b9 : p Uivbiorct,,tnc 2 j'7' 0.0005 tttglL X _ . —. _ .,. . ..a'? 0.075 tnglL 297f► Vi:zy1 Chtaridc ­...._.......... 21'7 X - .y _ MAIL. 0.002 mg/L 2977 L1,-laivhlotcdVlc:te 217 0.0005 MAIL x 2978 l,l IknHlaraetltznJe 21 7 0 0005 MAIL .X T -- — mg/L ; N/A 2979 Tram-t,2;DicltloroothyJtnc 217 0.0005 tnpfl _. . __..... ' .... ....._..._.__...._._.—....._...mp/L I .a.00s-0.10 217 0000 mg/f MAIL �..r.T.•TT- 2980 1,2-GiGhttrrctiatJ�ana , . '� tng/1.. ...mgJ1L• 2J$1 I,1.Il-7CrivfilarocU�ane I 217 ,,- 0,000.5 mg/L x _ � _ -mgfX 6.20 mgl� Carbon 7'ctraehiodde 217 0.0005 Mg/L. _ tutg/JG i f1.00S .mom.. Z9$3 1,2-DichlofvprbpmJa 217 0.0005 rog/b. : ro 0-005 mg/L 29$4 Tdchloroethyhtc.. .. ... ........ ... 217 0.�5..'i .. ., . ,. _�_..._. 0.005....m�... 29$S x,1,2-Ttichloroetliane 217 0.0005 TA , 7; — ---- m�L ! 0.005 tntrr/G 29$6 i,i,i,Z Tvtrt+ohlaroetltane 217 0.0005 mg/L ' _ s _— mgtt-. N/A.. 29$7 7'ctrrtchloroethylenv 21 7 0.0005 mg/L. ' 3C --T t , 0.005 mg/L' 29$$ 1.12,2 Tetrachlarocthanv 21.7 O.000S MAIL t _. ^_ mglL N/A 29$9 CfdoroUcrrrarie 217 0.0005 MAIL x i T -TV , 0.10 Jn&/L z$9p BenzcTty 2 IV 0.000.5 mg/i — MAIL ; 005 tng/L 2991 Tfrinene 217 0.0005 :mg/L , x xdlt/L nL 3p/lrao 2992 Ftlryiac o z j 7 a:ooas m I, _ :mg/L 0.70 mW 2993 Bs�nnobcnzcnc 217 0.0005 mg/1_. ! 7x rngll. i N/l� 2994 IsaprtrpylbenDcrto 2 I? 0.0005 tng/L ' X MAIL ..N/A 6 299 Styxcne .... ... 2,1 7 0_0005 mgJL • --. .. y .v ? L 0.10 m.VL 29y8 n-Fropylbcn�cnG 217 0.0005 utA x — -- - --- -- Mgl/l • - NIA t•..,,..i;J.::..+_:::�'�____.._._,_•..•.•�v:•::.-.:.._._._.-__•-•"---'-'�.;L,..v�+u_.•�c•.,---.�--_--.—.—__...__—«_—__.._._r.k..�•.,:rrtS-R•—+...0�.,u W.-or..-,.�....'- ......_._--.—.__..._.. `Nota; if r liit exceeds allow It limit the laboratory must fax nnniytivul results to thv state within 48 hours :._...._�._r-•,—•m•.�-•n•.rnn•�yr-.•:r.�.Y.. .'.1«.•�_i1 ,�.•.•••r+w•...•r:.•nv_vvunwr.v...�i�r..a-r.a........ .,_._r.._... . DATE: 7'IaV.LE: II 08/08/07 1.1. ,0.0 . .r4N,A.L'1''S�S i01);G1UN: (MTurytt/t'tr) �,,x:ryAtHprYH> ANALYSES CCHbt PLETED: i 0$/13 /0 7 1� : 0 0 �' •4 Lnborn#ory t og#: 1609b,_ C ertitiod W','�:oiv�>�EMS�7� RFMRT# 7-�75'_9 v •1d/02•/2007 15;28 1-252-758-8835 GMA GREENVILLE NC PAGE 10/14 En-viLonmental.C,hc>; fists, Inc, d � 6602 Windmill Way o Wilmington,Nodh Cuolina 28405 (910)392-0223 Phono • (910)392-4424 Pax !.?ChcmWfalncL,cc�m Analytical &Consulting Chemists NOWNRI,DWQ Certificate#94,DIL$Certificate 07729 PESTICIDES AND SYNTHETIC OIIGANX CHEMICALS ANALYSIS(SOCs) Page 6 of 10 xat: WATER SYSTEM El#: Cd>;lptyi Ana- 'out, Nione of Water System., Martin]Vfierleita A t+~ tes Sample Type: 0 Entry)Paint X SpeciAvNon-camplfsnco ](,oenti!on Where Collected: SPfsr0t 9t 1 Ueatlon Coal: y-Ca1�ecElo>d.D.9tc _. -.�. Collectfon 7`fine 1 Co>aeew By; James]ilolle 0 810 7/0 7 - - - - : 0 AM -. m.1E i:1Y3in':'.:.��.•u�..._._.-.ter.-ria.��.v......u....._.—.�......� .—. v .+.fir.+.var nv7w i Mail RMIlts to(water system representative): GUA (125 E Eas!gate Drive phone GXc_mville,NC 2785.0 Fax#: S., ooRc1.To tv TD #:3 7 7 2 9 0 SAMME UN81AT,•N ACTt}RY 0 ttl~t'SAWLE REQUIRED _...,_—__—_.U::.F"e.:µ'.Np'Hh:l..w,•.•._,ry:.-Y'_:.—`tom..-. � ..— —_—._ze rrmr.r--.--�._—_.L.•�:+'7�4`:1T."::::�__ ...�_...::5^ai iSb`.'^_^..',^'w".'.:�_'.-� �ON7fAtvl METHOD REQUIRED i UDETECTE'D QUAN DIED ALLOWABLE COMA MANT MORT=LTIvIIT (i.c.<R.R.L) CQDF. CODS R.L. : ! RESULTS` LIMIT 2005 ' ndritl ! 0.O000I mg/L X ---- mg/L 0.002 my/L , 2010 : Lindtotc 2 1 0 0.00002 mg1L : —— mg/I 0,0002 mg/L ,t?0 2015 IVlethoxychlor 2 1 U 001 nrtA. X —— M.g/L . 0,04 m� 2020 7CoxapherAe 2. 1.0 0.001 mL�.....: X . .. ----... .. ...__.....T • ... 0-403 ..mJ. .... ... .. . -_ . .... ........._. .. 202.1 Carbaryl 235 0.004 mg/L X _ tng/G ! N/A 2022 i Methomyl 2 3 5 . 0,004 mgjL 7� — � mg1L N/A2d31 1paiapon — �m -�-mg/X, ' .. . ._.� . . ..... ....._.............. �� j . .0.2 mg/L 2035 : l�i(2 ethylhcxyl)adipatc 2 2 S 0,0006 mWt : X —---- mg/L 0.4 mg/.1.. 2036 Chtamyl(vydatc) ......._;. .: ... .2.3 5 U.002 �'� ' . ...^ ——... ... .. ......._.mom.•.ti..0.2. . . g/`. 267 Simazinc 2 1 0 0.6007 mg1K. X _— —,� mg/L 0.004 mg/i, 2040 1'iclorttm 2 0 3 0,0001 rrtp :1 X mg/L 0' ' mgJL 2041 ' l"jlttose _.0. 0.U002 mg/L X.. _.- --. .-... mg/t 0.007 mgll.. 2d42 ; Tie acttlbrocyctbpCntaclicne 22 3 00 0,0001 mg/L X m/L 0.03 mpJl i — 2043 Aldicarb Sttlft�xide 2 3 5 0.0605 mg/L ; X —-- — m L N/A 2644 Al 6ic Sulfone.. . 2..3 5 OMOS m�.. X —— ,.; N./.A.•. .: i 2045 metolach101' 210 0.0008 mg/L X —--� mg/L N/A1 2046 Carbofaran 235 53 5 0.000' mg/L X —_ mg/L 0.04 mg/L, 2047 Aldicarb 235 0.0005 m�lL X _------ mg/L N/A 2650 Atrazine 21.0 0.0001 mg/t, x Y _ - mcv> 0.003 raga, �l 2051 Alachlor 2 1 0 0-0002 mg/L X —------ tnglL 0,002 mg/L �! ;i 2065 HcptaClilOP 0 0.00004 mg/L _— _..,. _.... .._. .. ..._... ..... -- _m ,_ 0.0004m�/L Note;tPresult cxcecdS allowable limit,the Inboratory must ft analytical resuils to the$tote within 48 hours. # 16096 7-7579 � Ib/02/2007 15:20 1-252-758-8835 GMA GREENVILLE NC PAGE 11/14 ' s Eny�urp=entgA Qhcmists, Inc. 1' H Y 002 Windmill Way.Wilmington,North Carolina 28405 (910)392-0223 Phone a (910)39244UFo FChomWLabobcom Aaufyl cal &dot lilting Chemists NCDIENR:DWQ Certificate 04,DLS Certificate 437729 P�+�'$TjCIDUS AND SYlVMWIC ORGAMC CIMMICALS ANALYSIS(SOC9) Page 7 of Aa Nolo:sal 10—don tnmt Uo(conti.roltmbd)lMQ for emtrplirtrtoe..4it, "C.ollection�bate: ~:9wle-m-101wY3'imet__i�� 0 07107 Y IGocatfon Carle. Well .. :40 A1Vl[ t t� ( Dp YY) (S"Ciry AM of rM) xasmmwn xta #: 3 7 7 2 9 CONTAM MEMOD DEMOTED I _ (jVANfAFfF17 i ALLOWABLE CODE CONTAMMANT CODE ttb' ATMO I.1M ABOVE RILL. 1 SU7UY 9 t LIMIT .. .• -.w�.•r.�k.«�.,..r..e..+..wrkw�..+l.,...«�w:�.l...y (, .,...�.lt. 20Gt5 ; 3 Hydroxyearbof`umn i 2.15.._. .. _ 0.004:...... ...'. .... .. .... i ._........— T —.—... zag/t N/A 2067 HcpYacb3ort poxidc 2- Q, 0,00002 mgJJ I ......_.i....—......_..__..._............._......—._.mg/L ' 0.0002 mg/L _..... _.. 2070 ' Dieldrin 2 Y Q4 '; 0.0002 mgn X mg/L 1 N/A 207$ i Dutachlor ? 2 1 0 0.008 m?JL i —--- — mg/L N/A i Ptopt�Stioa~..._... 2 1 Q ! _.....0.00d m .�.._..... L......__:. ._—..—.—.•`-_..--�:.—...'" c..i...._......__N/A.... 2.145 E-2,4-f? _.......1.......2.-Q.:... ..__' (1.000] mg/L - .-.... —_-- --._•.'ng/I' ; 0.07 mgL 2110 0.0002 ...mg(L ; . . —---- . m .. 0.05 y . .Ing/t' 22'74 ! Hexat 11�viu111zez�a 21 U o.0001 m/L; — — mg/L a:tioi m /1- 228 ! rii(2-ethyii>@xyl)lhthaigte • 2 2 5 i 0.00132 mgJ1. : _..._......---...__...._._.._._..---._._._--° ..;. QaG rr, JL _._............... ... ..... . ...•..._...__._................__.. ......_.._...__._._......,._........ 23b�i ; > �n (a)izyr►� -.5 o.aooa �,, �c --.: ..._.. _....... _ mg/L i 0.000z , 2326 i Petttuchiorapltenol i 203 t1.00004 mg/L X ------ mLr i 0,001 mg/L ,2350 Aldrin ... ..._....... ...... 210 i 0.0002 ..mg/ ....,, _... .mg/L_ N/�A.. .2.1_.U. ...1.. �i_f1U0 mJ� .. —— unto t1.U0t15 m�rJJ: 244Q ' bicamba .. .. 203 ._. ' ... 0.001 _m)L i ....... .. . . ' _.•.• ...._._.._..........m ._.... . ?! .•. 2595 ; Motdbuzin 2 1 Q 0.0008 mg/L ? . . .. -......._--- _.._..._.._..........rng/L N/A 2931 DBCP 219 0.00002 mg/L 7t _ -. .mg/L 2 4 Ethylonc Aibrotkndo(f3lpJ} 2.1 0.00001 mg/L 0.00005 Ing/L 2959 .. : ._ .. 0.0002 mg/L ...: .. . ... .... ..T.. --..- mo, ; 0.002 mg/L —"Note:Itresult eaods i lnwnble limit,the laboratory must fax analytical;results to the Stato within 48 hours, ANALYSES DU GUN, 0 8/0 010 7 a 7:0 0 AM .. . . ... .. (,lninnorrv)- ..... .•.. .....,.._CSPeehY,AM�r.?�., ANALYSES COMP)MUD: I 0 812�/a 7 LflbbrA'ip1Cy irp0#: - X�d,Q�_-�. , Ce>I'tifie8 i&�l:• 1 �%, y.���Ni:� , A Y J.��C',,,-,)r lrY-�ut_��' (Mnt mid sign name) COMtY1ENTS- � (/ REPORT H 7--7 5_7 9 . _ i 1'0/02/2007 15:28 1-252-758-8035 GMA GREENVILLE NC PAGE 12/14 Environmental chemi,04s' .1"C. mlp 6602 Windutill Way a Witotutgtou.North Carolina_78,165 (910) 3 92-022 3 111ione 0 (910 J 392-442� Fax Lit,'11f:11tw.a nol,cc+sg Apak-ticttl&Consulting C lmniyts NC'1DIEN11. DWQ Ceilifietttc#94,DLS Certificate#k37729 .,,m,.m.,....,,�,,,...Y.,n.,r._„•...a..�....,...,_,...__._.,,.__,_.._..�_.__.�_„M,,..........._.,....�y.,.,.w,...:.N....W.,,..,.,...•...n--�__..................,.n.,,�.,•,�n„d...,_.a.>~,.,.,�.___..�.....,..,_....._.-.-.,t..r,..... ,,.,, • ,,,_�_........ ._n,...,.�.,,.��. .�.._...�...,._._,.....,. �...M.. tiwoGzCAL AraAL;YsrSt Note:AlUppraprioto information must be supplied for aimptinnca credit. page 8 Of 10 Water sywila IM. _ - w ._ � � ' County. NAme of Water system: �VI fir�!n �2�r;� � n I � 4 I �^�, c b _ 4. _ Sample Type: ❑ Routine disWbution 0 JRcpeat n plrtn Px1virew :0 Speaial/Non-coattpliance Location Where Collected, S ,' :snmptc tvJd,J6'C be calicctcd atom clistrihation»stare for routine cunt Itnacp not th6 wall hou�a Location Come: S ?L 1 to Colle�tiio Collected Dy_ .ra / Wail 'Resttlta to(waiter system repxuseti Wtive): t�1sb...C.otltylele fotrRATF—lTSalmples: Previous Positive Location Code: S � � �I Qy► Pmvions Collection Date: _ _ / Proximity or.T.I-Sample to Ptrevious]Positive. 6re4n yfil�� ,�.. a �. ..__d. ❑ Same Top 0 Ne ter to the Spume Id lituthex from Me Source NIQue No.: m If Chlorinated.: Total Chlorine Residual: tnp/L Fax No.: 'Free Chlorine Residual: _ariWL �Sri — '�'� �'�' �� •��'� �... tenpo»giblo parson'n tttaih Combined Chlorine Residual M91L _ ,�' �y �. ,�l7"i�"'M�• ��� (C,'rMrhinr!d f:hfnWnc h Inm1C,'h/rnins nlf+l+nv JrYaa/„hlrarinq) Note:Also recoM gave value¢on,your watLr wago roport, a Repeat Samples Required front Client Laboratory I:l* 37722 ❑ Reaamplo required From Client RESULTS t)Nl'AM]NANT ME:"I'TTOD CODE PR8St3NTt'} Af)t4EN'r INVALID t•UI7E H i t)Cgnlluent(➢sowdi/No Coliforrn Growth 1'uttttd atal(;aliftorm 3 1 2 2)'1'k3TC/P1ocolitomGiowthPound crz11/Fi,Coli _ I)"l'urbid Oultui NNo col.i#brm Growth Foond a)C3ver 31)tJo1» c71si •fcterotropltic P.C. efu/nil, 5}Tnipn)ler smnple orAnalysis __ ti uumbCr� IVOtCti: 1f�T _ c,►Iifi�rm I$ncicrin iu present,Iflo iat,orntary nw;rt fnx ttnnlyticrtl rctuttti lot 111t t3UAC willYirt 4t3 Ilclurs, 7 Ir Pe-nl/-F.soli Wootitt is prent t,Cho Inborniory muni fax urtaiytic:tl i'e81110%to llte State on d1ky te81 a+.mpleted, 'Gtvnlf cl+antttptas(code N5)shauld hr:n4CvmpQnigct by ttn axpinnntian in tltc❑omthcttt>a tiulo4v. Analyai,t3eun: _ /_ /C i� � S� J _M 'd Analysis C ntrq-Aeted: __—M nmh...Hnb.,,uMV•lJ VnYCW�•lfrtmm.��mm•.+fv'•,.-..m_...w.wmnm..+w,.wmn.Yll:s ,HM+W.h.. l,4Mr,M+vn..m.Wmrrlmrn,M,vn..n..,.v.��..vnn,H.W�iIm.mMWUJn..H,..;iboratoxy Log It: Certified (Print and Sign 114.4 '� 10/02/2007 15:28 1-252-758-8835 GMA GREENVILLE NC PAGE 13/14 'e'Flonda Radiochemistry Sm-vices, Iric., (4M 1110-M3 kc(40VZ14744 Page 9 of 10 RADIOLOGICAL ANALYSIS NWa c11tvdimnaUon mrnt ha,.enpyliod Bor eompl;�ce ortdif_ /� �^ WA"A ER SYSTEM 10 4; T_ _. _ _ _ _ conttlty: Name of Water System. �w�✓ /✓�A/_�-����rC j.L- tom - Sample Type-, ❑Ow'st4blution 0Entry point 13Composite X�CCIRWOA-Coxnpliance •• Cagectiol�_�1►at� Mail Results to(system repmeutative): P�� � DAM Ttam 3xwylk to le � C -- —(MMAM-9m) Cade 110MOM 2-4 Qtr 3 QO Telephone Pt(...,___) .__-.__ -.,,r, e^,r.!..-�.._.:..�._:_._—•,:._ vro-w�r4na-.at-.!ur_rJr.'=.�-_:..__.�_--_�.__,:_u-.,u:::�..--....... ......:..._._ .... ... LABORATORY UDi#; 1 2 7 0 9 C3 SAMPLE UNSAs'JlVAC'1"bf3Y 0 RESAM(PLE REQUY'RED ttIZQMR >� 1 b YGc CYsri UAN[MD CONThNx CONTAMINANT M{rODE PXPt RTINGL"T (La<tLkL) � 8c ��M- RQ U � LIMI'�}3t.t COIF CODE (RAL.) (x) RESULTS 4;6 00-06-q:7... Owss Alpha 435 3 pC i2 © - �. - phi/L 9�. ..� 15 pCil 4004 Radon K/A 100 PUL Cl _ _ PCUL _//-- NIA 4006 Umnium 456 2 Pero.. E3 � _� � ... pCi1L ��,1 20,1 pCi/L 4010 Combined Rddivat N/A N/A N/A, __Pe". _ .5 pCi/L 4020 Ritdiunt 226 446 1 PCi/L ,'lam -_ wi/L -� /_ 3 pCUL 4030 Radium 229 452 1 pCi/1. PCUL �e 2 pCilll. 4100 Gross Beta 4 3 5 4 pCin �... _ PCut 50 pCi/L 41()2 T[6um N/A 1,0W pCi1L Cl -_-� _ uL -_._ _.__ 20,(x)o pCiA.. 4172 Strontium 89 N/A 10 pci/L (3 _- .__ cuL _ 1*l/A 4174 simridtttn 90 425 2 pCi/11 © -- peat, _._ ..--- 8 p0/L 4264 iodine 131 NIA 1 pci/L 0 r„ PCaL � NIA 4no Cesium 134 N/A It) pCA a -- PCUL - -- _ N/A "Note: 1f irLsult excaxb-allowable limit,the laboratory must fax analytical nmults to t1te Slate witbiut 48 hom, DATE: '>t`]t E: ANALYSES BEGUN! (3 -0 /-L, l (,7 7— l� (n Z ''� xMl ANAL.YSF,S(,()M P1.. TE1D, ( 0 1 ,��i�� ��:•�� f'"ib1 l_+.1bormor-y Log #; ei l9rted 1By:� 1�% 12,31-43 _ )- REPORT# LnRJ of V- IQrf F i rN.. f� A H Q Yi � �1 � � � iU � � •• W �7 ZJO (15 A + N A 4i `Htl U r, •. ° U Na j o ►� .. "r ty 2 U fY1 'ry •. s all, •• O Ul r� �'O1 t-i U J O 9C N a o ld a fd to v, .. N {// o � � � � W r• c7 C-4 phi .-{ `•+.. ^b -�+ .,, w I m V r M I ti p sa o a 1 `� � O tU N •�' N eANO Lo p U p Id r-i 17, ` o u0 v w g w + ti7 Ul W' 9l N 9 v r� w ul U-) wi W v 1-)-1 "it O 4 Gy I� o 11 d U o r-ftV Cl) ,^'•-. ti,•, .4J .. L; G) •I-+ v �N,. tl] 4 0 to t!l lR N �fl �q IC4 -o v p t7 C7 -4 { V U i + I U• t➢ a+ k O O O 0 O i O � fil f� H r I �+ v G Q v +J �� U L�f A U kw7 k1 e. s�tU � rx fas) W C7 u! Na w �� pb0 04 N 44 a +i a) w \y , N;a Iry��lla PT/VT 39dd QN 3111AN3MJ9 VWJ 9888-89L-ZSZ-T 8Z:5T L00Z/,ZQ/01'