Loading...
HomeMy WebLinkAboutNC0004979_Allen CAP Part 1_Appx D_Final_20151120This page intentionally left blank uivc CIURLOTM The W ILLIAM STATES LEE COLLEGE of ENGINEERING Soil Sorption Evaluation Allen Steam Station Prepared for HDR Engineering, Inc. Hydropower Services 440 S Church Street # 1000, Charlotte, NC 28202 Investigators William G. Langley, Ph.D., P.E. Shubhashini Oza, Ph.D. UNC Charlotte Civil and Environmental Engineering EPIC Building, 3252, 9201 University City Blvd, Charlotte, NC 28223 October 30, 2015 Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table of Contents Listof Tables------------------------------------------------------------------------------------------------ iii Listof Figures----------------------------------------------------------------------------------------------- iv 1. Introduction--------------------------------------------------------------------------------------------- 1 2. Background--------------------------------------------------------------------------------------------- 1 3. Experiment: Kd Determination----------------------------------------------------------------------- 2 3.1 Sample Storage and Preparation---------------------------------------------------------------- 2 3.2 Metal Oxy-hydroxide Phases-------------------------------------------------------------------- 3 3.3 Test Solution--------------------------------------------------------------------------------------- 3 3.4 Equipment Setup---------------------------------------------------------------------------------- 3 4. Model Equations for Kd Determination------------------------------------------------------------- 4 5. Leaching for Ash Samples---------------------------------------------------------------------------- 5 6. Results--------------------------------------------------------------------------------------------------- 5 7. References----------------------------------------------------------------------------------------------- 8 Appendix— A ------------------------------------------------------------------------------------------------- 9 Appendix— B------------------------------------------------------------------------------------------------ 20 iiIPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte List of Tables Table 1: Site specific soil samples analyzed for Kd........................................................................ 9 Table 2: Synthetic ground water formulation and trace metals concentrations .............................. 9 Table 3: Oxidation-reduction potential values for selected soil samples (ASTM G 200-09) ...... 10 Table 4: Summary of batch and column Kd for AB — 20 D.......................................................... 11 Table 5: Summary of batch and column Kd for AB — 28 D.......................................................... 11 Table 6: Summary of batch and column Kd for AB — 29 D.......................................................... 11 Table 7: Summary of batch and column Kd for AB — 31 D.......................................................... 12 Table 8: Summary of batch and column Kd for AB — 35 R.......................................................... 12 Table 9: Summary of batch and column Kd for AB — 20 S.......................................................... 12 Table 10: Summary of batch and column Kd for AB — 33 S........................................................ 13 Table 11: Summary of batch and column Kd for AB — 34 S........................................................ 13 Table 12: Summary of batch and column Kd for AB — 35 S........................................................ 13 Table 13: Summary of batch and column Kd for GWA — 3 BR ................................................... 14 Table 14: Summary of batch and column Kd for GWA — 7 S...................................................... 14 Table 15: Summary of batch and column Kd for GWA — 9 S...................................................... 14 Table 16: Kd Qualifiers for batch and column plots..................................................................... 15 Table 17: Ogata-Banks parameters used in developing column Kd............................................. 16 Table 18: HFO, HMO and HAO................................................................................................... 18 Table 19: Method 1313 leaching - pH, ORP and conductivity (at natural pH) ............................ 18 Table 21: Method 1313 leaching (at natural pH) data for ash samples collected at the site ........ 19 iiiIPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte List of Figures Figure 1: Tumbler for 1313, 1316 and batch Kd........................................................................... 20 Figure 2: Batch filtration set-up.................................................................................................... 20 Figure3: Column set-up............................................................................................................... 21 Figure 4: Syringe filtration for extraction of HFO/HMO/HAO................................................... 22 Figure 5: Arsenic batch Kd — AB — 20 D...................................................................................... 23 Figure 6: Arsenic column Kd — AB — 20 D................................................................................... 23 Figure 7: Boron column Kd — AB — 20 D..................................................................................... 24 Figure 8: Cadmium column Kd — AB — 20 D................................................................................ 25 Figure 9: Chromium batch Kd — AB — 20 D................................................................................. 25 Figure 10: Molybdenum column Kd — AB — 20 D........................................................................ 26 Figure 11: Selenium batch Kd — AB — 20 D.................................................................................. 27 Figure 12: Selenium column Kd — AB — 20 D.............................................................................. 27 Figure 13: Thallium batch Kd — AB — 20 D.................................................................................. 28 Figure 14: Thallium column Kd — AB — 20 D............................................................................... 28 Figure 15: Vanadium batch Kd — AB — 20 D................................................................................ 29 Figure 16: Vanadium column Kd — AB — 20 D............................................................................. 29 Figure 17: Arsenic batch Kd — AB — 28 D.................................................................................... 30 Figure 18: Arsenic column Kd — AB — 28 D................................................................................. 30 Figure 19: Boron column Kd — AB — 28 D................................................................................... 31 Figure 20: Cadmium batch Kd — AB — 28 D................................................................................. 32 Figure 21: Cadmium column Kd — AB — 28 D.............................................................................. 32 Figure 22: Molybdenum batch Kd — AB — 28 D........................................................................... 33 Figure 23: Molybdenum column Kd — AB — 28 D........................................................................ 33 Figure 24: Manganese batch Kd — AB — 28 D.............................................................................. 34 Figure 25: Iron batch Kd — AB — 28 D.......................................................................................... 34 Figure 26: Selenium batch Kd — AB — 28 D.................................................................................. 35 Figure 27: Selenium column Kd — AB — 28 D.............................................................................. 35 Figure 28: Thallium batch Kd — AB — 28 D.................................................................................. 36 Figure 29: Thallium column Kd — AB — 28 D............................................................................... 36 Figure 30: Vanadium batch Kd — AB — 28 D................................................................................ 37 ivIPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 31: Vanadium column Kd — AB — 28 D............................................................................. 37 Figure 32: Arsenic batch Kd — AB — 29 D.................................................................................... 38 Figure 33: Arsenic column Kd — AB — 29 D................................................................................. 38 Figure 34: Boron column Kd — AB — 29 D................................................................................... 39 Figure 35: Cadmium batch Kd — AB — 29 D................................................................................. 40 Figure 36: Cadmium column Kd — AB — 29 D.............................................................................. 40 Figure 37: Chromium batch Kd — AB — 29 D............................................................................... 41 Figure 38: Molybdenum column Kd — AB — 29 D........................................................................ 41 Figure 39: Selenium batch Kd — AB — 29 D.................................................................................. 42 Figure 40: Selenium column Kd — AB — 29 D.............................................................................. 42 Figure 41: Thallium batch Kd — AB — 29 D.................................................................................. 43 Figure 42: Thallium column Kd — AB — 29 D............................................................................... 43 Figure 43: Vanadium batch Kd — AB — 29 D................................................................................ 44 Figure 44: Vanadium column Kd — AB — 29 D............................................................................. 44 Figure 45: Arsenic batch Kd — AB — 31 D.................................................................................... 45 Figure 46: Arsenic column Kd — AB — 31 D................................................................................. 45 Figure 47: Boron batch Kd — AB — 31 D....................................................................................... 46 Figure 48: Boron column Kd — AB — 31 D................................................................................... 46 Figure 49: Cadmium batch Kd — AB — 31 D................................................................................. 47 Figure 50: Cadmium column Kd — AB — 31 D.............................................................................. 47 Figure 51: Molybdenum column Kd — AB — 31 D........................................................................ 48 Figure 52: Selenium column Kd — AB — 31 D.............................................................................. 48 Figure 53: Thallium batch Kd — AB — 31 D.................................................................................. 49 Figure 54: Thallium column Kd — AB — 31 D............................................................................... 49 Figure 55: Vanadium column Kd — AB — 31 D............................................................................. 50 Figure 56: Arsenic batch Kd — AB — 35 R.................................................................................... 51 Figure 57: Arsenic column Kd — AB — 35 R................................................................................. 51 Figure 58: Boron column Kd — AB — 35 R.................................................................................... 52 Figure 59: Cadmium batch Kd — AB — 35 R................................................................................. 53 Figure 60: Cadmium column Kd — AB — 35 R.............................................................................. 53 Figure 61: Chromium batch Kd— AB — 35 R................................................................................ 54 v I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 62: Molybdenum column Kd — AB — 35 R........................................................................ 54 Figure 63: Selenium batch Kd — AB — 35 R.................................................................................. 55 Figure 64: Selenium column Kd — AB — 35 R.............................................................................. 55 Figure 65: Thallium batch Kd — AB — 35 R.................................................................................. 56 Figure 66: Thallium column Kd — AB — 35 R............................................................................... 56 Figure 67: Vanadium batch Kd — AB — 35 R................................................................................ 57 Figure 68: Vanadium column Kd — AB — 35 R............................................................................. 57 Figure 69: Arsenic column Kd — AB — 20 S.................................................................................. 58 Figure 70: Boron column Kd — AB — 20 S.................................................................................... 58 Figure 71: Cadmium batch Kd — AB — 20 S.................................................................................. 59 Figure 72: Cadmium column Kd — AB — 20 S.............................................................................. 59 Figure 73: Molybdenum batch Kd — AB — 20 S............................................................................ 60 Figure 74: Molybdenum column Kd — AB — 20 S........................................................................ 60 Figure 75: Manganese batch Kd — AB — 20 S............................................................................... 61 Figure 76: Iron batch Kd — AB — 20 S........................................................................................... 61 Figure 77: Selenium column Kd — AB — 20 S............................................................................... 62 Figure 78: Thallium batch Kd — AB — 20 S................................................................................... 63 Figure 79: Thallium column Kd — AB — 20 S............................................................................... 63 Figure 80: Vanadium column Kd — AB — 20 S............................................................................. 64 Figure 81: Arsenic column Kd — AB — 33 S.................................................................................. 65 Figure 82: Boron column Kd — AB — 33 S.................................................................................... 65 Figure 83: Cadmium batch Kd — AB — 33 S.................................................................................. 66 Figure 84: Cadmium column Kd — AB — 33 S.............................................................................. 66 Figure 85: Molybdenum batch Kd — AB — 33 S............................................................................ 67 Figure 86: Molybdenum column Kd — AB — 33 S........................................................................ 67 Figure 87: Manganese batch Kd — AB — 33 S............................................................................... 68 Figure 88: Selenium column Kd — AB — 33 S............................................................................... 68 Figure 89: Thallium batch Kd — AB — 33 S................................................................................... 69 Figure 90: Thallium column Kd — AB — 33 S............................................................................... 69 Figure 91: Vanadium column Kd — AB — 33 S............................................................................. 70 Figure 92: Arsenic batch Kd — AB — 34 S..................................................................................... 71 viIPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 93: Arsenic column Kd — AB — 34 S.................................................................................. 71 Figure 94: Boron batch Kd — AB — 34 S....................................................................................... 72 Figure 95: Boron column Kd — AB — 34 S.................................................................................... 72 Figure 96: Cadmium batch Kd — AB — 34 S.................................................................................. 73 Figure 97: Cadmium column Kd — AB — 34 S.............................................................................. 73 Figure 98: Chromium batch Kd — AB — 34 S................................................................................ 74 Figure 99: Iron batch Kd — AB — 34 S........................................................................................... 74 Figure 100: Manganese batch Kd — AB — 34 S............................................................................. 75 Figure 101: Molybdenum column Kd — AB — 34 S...................................................................... 75 Figure 102: Selenium column Kd — AB — 34 S............................................................................. 76 Figure 103: Thallium batch Kd — AB — 34 S................................................................................. 77 Figure 104: Thallium column Kd — AB — 34 S............................................................................. 77 Figure 105: Vanadium column Kd — AB — 34 S........................................................................... 78 Figure 106: Arsenic batch Kd — AB — 35 S................................................................................... 79 Figure 107: Arsenic column Kd — AB — 35 S................................................................................ 79 Figure 108: Boron column Kd — AB — 35 S.................................................................................. 80 Figure 109: Cadmium batch Kd — AB — 35 S............................................................................... 81 Figure 110: Cadmium column Kd — AB — 35 S............................................................................ 81 Figure 111: Molybdenum batch Kd — AB — 35 S.......................................................................... 82 Figure 112: Molybdenum column Kd — AB — 35 S...................................................................... 82 Figure 113: Manganese batch Kd — AB — 35 S............................................................................. 83 Figure 114: Iron batch Kd — AB — 35 S......................................................................................... 83 Figure 115: Selenium batch Kd — AB — 35 S................................................................................ 84 Figure 116: Selenium column Kd — AB — 35 S............................................................................. 84 Figure 117: Thallium batch Kd — AB — 35 S................................................................................. 85 Figure 118: Thallium column Kd — AB — 35 S............................................................................. 85 Figure 119: Vanadium column Kd — AB — 35 S........................................................................... 86 Figure 120: Arsenic batch Kd — GWA — 3 BR.............................................................................. 87 Figure 121: Arsenic column Kd — GWA — 3 BR.......................................................................... 87 Figure 122: Boron column Kd — GWA — 3 BR............................................................................. 88 Figure 123: Cadmium column Kd — GWA — 3 BR....................................................................... 88 viiIPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 124: Molybdenum batch Kd — GWA — 3 BR..................................................................... 89 Figure 125: Molybdenum column Kd — GWA — 3 BR................................................................. 89 Figure 126: Selenium batch Kd — GWA — 3 BR........................................................................... 90 Figure 127: Selenium column Kd — GWA — 3 BR........................................................................ 90 Figure 128: Thallium batch Kd — GWA — 3 BR............................................................................ 91 Figure 129: Thallium column Kd — GWA — 3 BR........................................................................ 91 Figure 130: Vanadium batch Kd — GWA — 3 BR.......................................................................... 92 Figure 131: Vanadium column Kd — GWA 3 BR...................................................................... 92 Figure 132: Arsenic batch Kd — GWA — 7 S................................................................................. 93 Figure 133: Arsenic column Kd — GWA — 7 S Trial A................................................................. 93 Figure 134: Arsenic column Kd — GWA — 7 S Trial B................................................................. 94 Figure 135: Arsenic column Kd — GWA — 7 S Trial C................................................................. 94 Figure 136: Boron column Kd — GWA — 7 S Trial A................................................................... 95 Figure 137: Boron column Kd — GWA — 7 S Trial B.................................................................... 95 Figure 138: Boron column Kd — GWA — 7 S Trial C.................................................................... 96 Figure 139: Cadmium batch Kd — GWA — 7 S.............................................................................. 97 Figure 140: Cadmium column Kd — GWA — 7 S Trial A.............................................................. 97 Figure 141: Cadmium column Kd — GWA — 7 S Trial B.............................................................. 98 Figure 142: Cadmium column Kd — GWA — 7 S Trial C.............................................................. 98 Figure 143: Molybdenum column Kd — GWA — 7 S Trial A ........................................................ 99 Figure 144: Molybdenum column Kd — GWA — 7 S Trial B........................................................ 99 Figure 145: Molybdenum column Kd — GWA — 7 S Trial C...................................................... 100 Figure 146: Manganese batch Kd — GWA — 7 S......................................................................... 100 Figure 147: Selenium column Kd — GWA — 7 S Trial A ............................................................ 101 Figure 148: Selenium column Kd — GWA — 7 S Trial B............................................................ 101 Figure 149: Selenium column Kd — GWA — 7 S Trial C............................................................ 102 Figure 150: Thallium batch Kd — GWA — 7 S............................................................................. 103 Figure 151: Thallium column Kd — GWA — 7 S Trial A............................................................. 103 Figure 152: Thallium column Kd — GWA — 7 S Trial B............................................................. 104 Figure 153: Thallium column Kd — GWA — 7 S Trial C............................................................. 104 Figure 154: Vanadium column Kd — GWA — 7 S Trial A ........................................................... 105 viiilPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 155: Vanadium column Kd — GWA — 7 S Trial B........................................................... 105 Figure 156: Vanadium column Kd — GWA — 7 S Trial C........................................................... 106 Figure 157: Arsenic batch Kd — GWA — 9S................................................................................ 107 Figure 158: Arsenic column Kd — GWA 95............................................................................. 107 Figure 159: Boron column Kd — GWA 9S............................................................................... 108 Figure 160: Cadmium batch Kd — GWA — 95............................................................................. 109 Figure 161: Cadmium column Kd — GWA — 9S......................................................................... 109 Figure 162: Molybdenum batch Kd — GWA — 95....................................................................... 110 Figure 163: Molybdenum column Kd — GWA — 9S................................................................... 110 Figure 164: Selenium batch Kd — GWA — 9S............................................................................. 111 Figure 165: Selenium column Kd — GWA — 9S.......................................................................... 111 Figure 166: Thallium batch Kd — GWA — 95.............................................................................. 112 Figure 167: Thallium column Kd — GWA — 9S.......................................................................... 112 Figure 168: Vanadium batch Kd — GWA — 95............................................................................ 113 Figure 169: Vanadium column Kd — GWA — 9S........................................................................ 113 Figure 170: pH at varying US ratio for batch Kd testing of AB — 28 D..................................... 114 Figure 171: ORP at varying L/S ratio for batch Kd testing of AB — 28 D.................................. 114 Figure 172: Conductivity at varying US ratio for batch Kd testing of AB — 28 D ..................... 115 Figure 173: pH at varying US ratio for batch Kd testing of AB — 29 D..................................... 115 Figure 174: ORP at varying L/S ratio for batch Kd testing of AB — 29 D.................................. 116 Figure 175: Conductivity at varying US ratio for batch Kd testing o AB — 29 D ...................... 116 Figure 176: pH at varying US ratio for batch Kd testing of AB — 31 D..................................... 117 Figure 177: ORP at varying L/S ratio for batch Kd testing of AB — 31 D.................................. 117 Figure 178: Conductivity at varying US ratio for batch Kd testing of AB — 31 D ..................... 118 Figure 179: pH at varying US ratio for batch Kd testing of AS — 20 S...................................... 118 Figure 180: ORP at varying L/S ratio for batch Kd testing of AS — 20 S................................... 119 Figure 181: Conductivity at varying US ratio for batch Kd testing of AS — 20 S ...................... 119 Figure 182: pH at varying US ratio for batch Kd testing of AS — 32 S...................................... 120 Figure 183: ORP at varying L/S ratio for batch Kd testing of AS — 32 S................................... 120 Figure 184: Conductivity at varying US ratio for batch Kd testing of AS — 32 S ...................... 121 Figure 185: pH at varying US ratio for batch Kd testing of AS — 34 S...................................... 121 ixIPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 186: ORP at varying US ratio for batch Kd testing of AS — 34 S................................... 122 Figure 187: Conductivity at varying US ratio for batch Kd testing of AS — 34 S ...................... 122 Figure 188: pH at varying US ratio for batch Kd testing of AS — 35 S...................................... 123 Figure 189: ORP at varying US ratio for batch Kd testing of AS — 35 S................................... 123 Figure 190: Conductivity at varying US ratio for batch Kd testing of AS — 35 S ...................... 124 Figure 191: pH at varying US ratio for batch Kd testing of GWA — 3 BR ................................ 124 Figure 192: ORP at varying US ratio for batch Kd testing of GWA — 3 BR .............................. 125 Figure 193: Conductivity at varying US ratio for batch Kd testing of GWA — 3 BR ................ 125 Figure 194: pH at varying US ratio for batch Kd testing of GWA — 9 5.................................... 126 Figure 195: ORP at varying US ratio for batch Kd testing of GWA — 9 5................................. 126 Figure 196: Conductivity at varying US ratio for batch Kd testing of GWA — 9 5.................... 127 Figure 197: Arsenic 1316 AB - 39S (2FT)................................................................................. 128 Figure 198: Boron 1316 AB - 39S(2FT).................................................................................... 128 Figure 199: Molybdenum 1316 AB - 39S(2FT)........................................................................ 129 Figure 200: Selenium 1316 AB - 39S (2FT).............................................................................. 129 Figure 201: Vanadium 1316 AB - 39S(2FT)............................................................................. 130 Figure 202: Arsenic 1316 AB - 39S (3FT)................................................................................. 131 Figure 203: Boron 1316 AB - 39S(3FT).................................................................................... 131 Figure 204: Manganese 1316 AB - 39S (3FT)........................................................................... 132 Figure 205: Molybdenum 1316 AB - 39S (3FT)........................................................................ 132 Figure 206: Selenium 1316 AB - 39S (3FT).............................................................................. 133 Figure 207: Vanadium 1316 AB - 39S(3FT)............................................................................. 133 Figure 208: Arsenic 1316 AB - 39S (4 — 6FT)........................................................................... 134 Figure 209: Boron 1316 AB - 39S (4 — 6FT).............................................................................. 134 Figure 210: Selenium 1316 AB - 39S (4 — 6FT)........................................................................ 135 Figure 211: Arsenic 1316 AB - 39S (53FT)............................................................................... 136 Figure 212: Boron 1316 AB - 39S(53FT).................................................................................. 136 Figure 213: Iron 1316 AB - 39S(53FT)..................................................................................... 137 Figure 214: Manganese 1316 AB - 39S (53FT)......................................................................... 137 Figure 215: Molybdenum 1316 AB - 39S (53FT)...................................................................... 138 Figure 216: Selenium 1316 AB - 39S (53FT)............................................................................ 138 x l P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 217: Vanadium 1316 AB - 39S (53FT)........................................................................... 139 Figure 218: pH at varying L/S ratio for 1316 testing of AB - 39S(2FT)................................... 140 Figure 219: ORP at varying L/S ratio for 1316 testing of AB - 39S(2FT)................................ 140 Figure 220: Conductivity at varying L/S ratio for 1316 testing of AB - 39S (2FT)................... 141 Figure 221: pH at varying L/S ratio for 1316 testing of AB - 39S(3FT)................................... 142 Figure 222: ORP at varying L/S ratio for 1316 testing of AB - 39S(3FT)................................ 142 Figure 223: Conductivity at varying L/S ratio for 1316 testing of AB - 39S (3FT)................... 143 Figure 224: pH at varying L/S ratio for 1316 testing of AB - 39S (4 - 6FT) ............................. 144 Figure 225: ORP at varying L/S ratio for 1316 testing of AB - 39S (4 - 6FT)........................... 144 Figure 226: Conductivity at varying L/S ratio for 1316 testing of AB - 39S (4 - 6FT) ............. 145 Figure 227: pH at varying US ratio for 1316 testing of AB - 39S (53FT)................................. 146 Figure 228: ORP at varying L/S ratio for 1316 testing of AB - 39S (53FT).............................. 146 Figure 229: Conductivity at varying L/S ratio for 1316 testing of AB - 39S (53FT)................. 147 xiIPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 1. Introduction Duke Energy Progress, Inc. (Duke Energy), owns and operates the Allen Steam Station located in Gaston County, North Carolina. The coal ash residue from the coal combustion process for power generation was placed in the plant's ash basin, which is permitted by the North Carolina Department of Environmental and Natural Resources (NCDENR) Division of Water Resources (DWR) under the National Pollution Discharge Elimination System. In a Notice of Regulatory Requirements (NORR) letter dated August 13, 2014, the Division of Water Resources (DWR) requested that Duke Energy prepare a Groundwater Assessment Plan to identify the source and cause of possible contamination, any potential hazards to public health and safety, and actions taken to mitigate them, and all receptors and complete exposure pathways. In addition, the plan should determine the horizontal and vertical extent of possible soil and groundwater contamination and all significant factors affecting contaminant transport and the geological and hydrogeological features influencing the movement, chemical, and physical character of the contaminants. The work plan was also prepared to fulfill the requirements stipulated in Coal Ash Management Act 2014 — North Carolina Senate Bill 729. The Groundwater Assessment Plan includes the collection of groundwater and surface water information to prepare a Comprehensive Site Assessment Report and support the development of a groundwater computer model to evaluate the long term fate and transport of constituents of concern (COC) in groundwater associated with the ash basin. Critical input parameters for the model are site specific soil sorption coefficients Kd for each COC. This report presents the initial results of sorption testing on selected soils from the Allen Steam Station to quantify the Kd terms. Testing was performed at the Civil and Environmental Engineering laboratories in the EPIC building at UNC Charlotte. Soil samples were collected during the geotechnical and environmental exploration program at the facility between March and June 2015, twenty nine of which were delivered to UNC-Charlotte between March 5th and June 29th of 2015. 2. Background In groundwater, sorption is quantified by the equilibrium relationship between chemicals in the dissolved and adsorbed phases. Experiments to quantify sorption can be conducted using batch or column procedures. A batch sorption procedure consists of combining soil samples and solutions across a range of soil -to -solution ratios, followed by shaking until chemical equilibrium is achieved. Initial and final concentrations of chemicals in the solution determine the adsorbed amount of chemical, and provide data for developing plots of adsorbed versus dissolved chemical. If the plot, or isotherm, is linear, the single -valued coefficient Kd, with units of volume per unit mass, represents the slope of the isotherm. Depending on the chemical, its dissolved phase concentration, and the soil characteristics, nonlinear isotherms, characterized by two or more coefficients, may result. The column sorption procedure consists of passing a solution of known chemical concentration through a cylindrical column packed with the soil sample. A plot of the chemical constituent measured in the column effluent is plotted versus time or its equivalent, pore volumes passed. 1 I Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte This so-called breakthrough curve is plotted together with the analytical solution of the advection-dispersion-adsorption equation from which the linear sorption coefficient Kd is estimated by visual curve fitting [1]. When comparing the merits of the two procedures for quantifying sorption, the batch procedure provides a more effective contact between the solution and soil, while the column procedure is more representative of in -situ groundwater flow conditions where solution soil contact may non -uniform and less than fully effective. Both batch and column procedures were employed for the sorption experiments on soils from the facility. Depending on practical considerations, the batch procedure may be designed to capture a wide range of Kd values. Metal oxy-hydroxide phases of iron, manganese, and aluminum in soils are considered to be the most important surface reactive phases for cationic and anionic constituents in many subsurface environments [2]. Quantities of these phases in a given soil can thus be considered as a proxy for COC sorption capacity for a given soil. In this study, oxy-hydroxide phases of iron, manganese, and aluminum (hereafter referred to as HFO, HMO, and HAO) were measured concurrently with sorption coefficients for selected COCs and soil samples. 3. Experiment: Kd Determination 3.1 Sample Storage and Preparation Twelve soil samples were selected for determination of sorption coefficients (Table 1). The basis for selection was to provide adequate coverage of the saturated zone beneath and down gradient of the ash basin. Preserved soils arrived at the EPIC lab in air -tight plastic bags on ice in coolers. Samples were stored in their original containers in a cold room at less than 4° C until tested. For batch and column procedures, soil samples were disaggregated, homogenized, and air-dried at room temperature in aluminum pans (21" x 13" x 4"), for a minimum of 72 hours, with turning every 12 hours. The dry samples were then sieved to a particle diameter of less than 2 mm (#10 U.S. Standard mesh). Sample splits for column testing were sieved a second time to remove particles less than 0.30 mm (#50 U.S. Standard mesh) in order to have sufficient permeability of the sample such that water passed through the column without operational problems, such as leaking or reduced flow. Bedrock samples were fragmented using a Sotec Systems Universal Testing Machine (UTM). Fragmentation was continued until the approximate grain size was 2.0 to 0.30 mm by visual inspection. Like the soil samples, bedrock samples intended for column testing were sieved a second time to remove particles less than 0.30 mm (#50 U.S. Standard mesh) to minimize operational problems associated with the smaller particle size fraction. Soil samples for batch sorption testing were weighed and placed in 250 mL wide -mouth HDPE bottles with polypropylene screw tops (in accordance with U.S. Environmental Protection Agency (EPA) Technical Resource Document EPA/530/SW-87/006-F). For each test on a single sample, soil masses of 10, 25, 50, 75, and 100 grams were placed in separate bottles. The columns were 8 inch long (20.3cm) polyethylene tubes with dimensions 0.675 in. (16 mm) I.D. by 0.75 in. (19 mm) O.D. Each column setup included two polypropylene end caps with barbed fittings which accept 0.25 to 0.375 in. (6.4 to 9.5 mm) I.D. tubing. Two discs of porous 2 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte polyethylene and polymer mesh screen were placed between the end cap and tube to retain the soil in the column. A modified slurry packing method was used to provide homogenous sample packing without preferential flow in the columns [3]. With one end cap in place acid -washed Ottawa sand was added through the open end to a depth of about 2 cm to ensure the effective dispersal of flow across the column cross section. With the lower end cap and sand in place, 3 mL of 18 MQ water (high purity de -ionized water) was added to the column. Then sample material was added in 5 cm lifts. The column assembly was weighed after each addition of water and soil. In order to eliminate trapped air, the column was placed on a vibrating table for 15 seconds. This process also ensured proper compaction while promoting a uniform density throughout the column. The sequence of adding water and sample material followed by vibrating was continued until roughly 2 cm of column head space remained. A 2 cm thick sand layer was added at the top of the compacted sample and the upper end cap was attached. The length of material in the column was measured in order to estimate the dry bulk density and porosity of the packed sample. Experimental set-up is presented in Figure 4. 3.2 Metal Oxy-hydroxide Phases The analytical method for determining hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) was adapted from Chou and Zhou [4] and that of hydrous manganese oxide (HMO) from T. T. Chao [5]. The HFO and HAO method calls for extracting the soil sample using a 0.25M NH2OH•HCl-0.25M HCl combined solution as the extractant at 50' C for 30 minutes (soil/liquid = 0.1 g of soil/25 mL of extractant). The HMO methods calls for extracting the soil samples using a 0.1 MNH2OH•HCl-0.25M HCl combined solution as the extractant at 25' C for 2 hours (soil/liquid = 0.025 g of soil/50 mL of extractant) (Figure 4). 3.3 Test Solution A synthetic groundwater, with the chemical composition provided in provided in Table 2, was prepared using reagent grade solid chemicals and 18 MSZ water. Target COC concentrations were attained by diluting concentrated reference standards to the synthetic groundwater solution. After adding the reference standards, the COC-amended feed solution was back-titrated as needed to an approximate pH range of 6.5 to 7.5 using 0.1N sodium hydroxide solution. Iron and manganese were omitted from the list of target COC given that they were considered likely to leach when exposed to the synthetic groundwater. 3.4 Equipment Setup The COC-amended solutions were prepared in 10 liter and 20 liter LDPE carboys for the batch and column experiments, respectively. For each batch experiment, 200 mL of solution and soil was added to each 250 mL bottle to obtain soil mass to solution ratios of 50, 125, 250, 375, and 500 mg/L. The soil -solution mixtures were equilibrated in a rotary mixer operating at 60 rpm for 24 hours. The experimental set-up and filtration details are presented in Figure 1 and 2. Following equilibration, water samples were drawn, filtered, and preserved for analysis of ten COCs (arsenic (As), boron (B), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), 3 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte molybdenum (Mo), selenium (Se), thallium (Tl), and vanadium (V)). Sample blanks were included in selected experiments to confirm stability of the solution. For the column experiments, Masterflex peristaltic pump drives with 12-channel, 8-roller cartridge pump heads and cartridges were connected between the carboys and the columns using Tygon tubing, valves, and fittings. The columns were operated in the up -flow mode. The flow rate was set to pass approximately twelve pore volumes, or approximately 200 mL, per day through each column. Before pumping began with the COC-amended solutions, the columns were fully saturated by slowly pumping reagent water in the up -flow mode. The COC-amended solutions were stirred continuously using magnetic stirrers. The arrangement of the carboys, pump, and columns is shown in Figure 4. Real-time, grab sample volumes of approximately 50 ml were drawn for each sampling event. The sample time and total volume pumped since the previous sampling event were recorded for calculating flow rates and pore volume passed. Concurrent samples of the feed solutions were also taken for each sampling event. Each sample was proportioned, filtered, and preserved for the analyses of eight COCs (arsenic, boron, cadmium, chromium, molybdenum, selenium, thallium, and vanadium). Iron and manganese Kd values were determined from the combination of batch and HFO-HMO values and not by the column method. 4. Model Equations for Kd Determination After equilibration of a batch soil -solution mixture, the COC concentration in solution will be reduced due to sorption. This may be expressed as x m = [(CO — C)/m] * V where, x/m is the soil concentration (µg/g), Co is the initial solution concentration (µg/L,), C is the final solution concentration, in is the soil sample mass, and V is the volume of solution. For sorption characterized by a linear isotherm, a plot of measured solution concentration versus calculated soil concentration for each soil sample (five data points: one for each soil to solution ratio) will yield the linear Kd term as the slope of x/m versus C. For the steady-state flow regime considered in the column tests, van Genuchten and Alves [1982] presented the following form of the Ogata-Banks equation for one-dimensional, advection-dispersion equation with sorption as a close approximation to that for a finite length, lab -scale column [1, 6]: C — vtRx + VtC(x, t) = 22 [erfc(Rx 2 DRt I + exp(vx/D)erfc (2 DRt /J where, C(x,t) is the solute concentration (M/L,3), x is the column length (L), t is the elapsed time (T), Co is the feed concentration (M/L3), R is the dimensionless retardation coefficient, v is the seepage velocity (L/T), and D is the soil dispersion coefficient (L2/T). For sorption characterized by a linear isotherm, the Kd term (L3/M) is incorporated in R: 4 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte R=1+PbK d n where, Pb is the dry bulk density of the soil (M/L3) and n is the porosity. For the given test conditions where dispersion was dominant over diffusion, the soil dispersion coefficient D is equal to the product of the longitudinal dispersivity, aL (L) and the seepage velocity. Supporting data used to estimate Kd based on O-B equation are provided in Table 17. For plotting the analytical results together with the O-B equation, cumulative pore volumes corresponding to the elapsed time of each sampling event were calculated using measured water volumes pumped and the column pore volume. For each COC and soil column, Kd was estimated by visually fitting the plotted O-B equation to the measured solution concentrations. 5. Leaching for Ash Samples The site specific ash samples were subjected to two leaching protocols, Method 1313 and Method 1316. Method 1313: Liquid -Solid Partitioning as a Function of Extract pH using a Parallel Batch Extraction Procedure [6]. The procedure calls for reaching nine specific pH targets after mixing. If the natural pH of the material, without acid or based addition, is not one of the target pH positions, the natural pH is a tenth position in the procedure. For the purpose of this study, the test was conducted at the natural pH of the material only. The ash samples were extracted for 24 hours with 18 MQ water. The leachate from the extraction step were filtered using 0.45 µ filter paper and analyzed for pH, ORP, conductivity, and concentration of anions and cations. Method 1316: Liquid -Solid Partitioning as a Function of Liquid -Solid Ratio using a Parallel Batch Extraction Procedure [7]. This method consists of five parallel extractions over a range of US values from 0.5 to 10 mL eluent/g dry material. In addition to the five test extractions, a method blank without solid sample was carried out to verify that analyte interferences are not introduced as a consequence of reagent impurities or equipment contamination. The 250 mL test bottles were equilibrated for 24 hours with 18 MS2 water (and as per method specification). At the end of the contact interval, the leachate from the extraction step was filtered (0.45 filter paper) and analyzed for pH, ORP, conductivity, and concentration of anions and cations. 6. Results The oxidation and reduction potential (ORP) values of soil samples, measured as per ASTM G 200 — 09, are listed in Table 3[8]. The sorption test results are grouped by soil sample. Batch and column results are tabulated in Tables 4 to 15. The Kd result for COCs are assigned qualifiers as presented in Table 16. The parameters used in Ogata-Banks equation for developing the Kd column plots are presented in Table 17. Batch and column test results for the COCs are shown in Figure 5 through 169 for each soil sample. 5 l P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte At the conclusion of the breakthrough experiment six pore volumes of 18 MQ water was passed through the column (data not shown in column Kd plots). No significant COC desorption was observed based on the column effluent monitoring. General comments for Kd experiments: The sorption coefficients extracted from the experimental results in this study may be affected to some extent by factors related to the experimental design. They include the following: • The goal of the batch and column sorption studies was to expose each soil sample to COCs in the aqueous phase and allow COC adsorption to occur until equilibrium is achieved. A solution intended to represent a generic groundwater was used as the background solution to which COCs were added. This solution differs from the in -situ solution in groundwater from which the soil sample was sampled. As a result, the soil sample is exposed to a geochemical environment in which a number of chemical reactions may take place in addition to sorption. • The number of COCs for which sorption estimates are required for each sample necessitates combining a number of COCs in a single solution for simultaneous measurement. These COCs may interact chemically, thus altering their respective sorption characteristics for individual soil samples. • Sorption characteristics for selected COCs are sensitive to redox conditions. Experiments in the lab were conducted in atmospheric conditions unless otherwise noted. The resulting sorption coefficients may not be representative of other redox settings. • Sample splits for column testing were sieved to remove particle sizes less than 0.30 mm in order to have sufficient permeability of the sample to pass water through the column without operational problems such as leaking and reduced flow. This could also affect the observed Kd value. Specific comments for batch and column Kd experiments are summarized as follows: • Batch Kd for As in ranged from 10.1 to 2780.0 mL/g and column Kd ranged from 100 to 750 mL/g. • Batch and column Kd for B was negligible. • Batch Kd for Cd ranged from 12 to 437.1 mL/g and columns, Kd ranged between 125 to 650 mL/g. • Batch Kd for Cr ranged from 635.7 to 3749.5 mL/g. • Fe and Mn were not included in the test solution, so their occurrence in the batch test solution is indicative of leaching. HFO and HMO values converted to an equivalent mass were used as the initial concentration to predict the Kd values for Fe and Mn. If the 6 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte concentration of Fe and Mn increased with mass of soil per unit volume of test solution during batch experiments, leaching is indicated as opposed to sorption. Kd for Fe in batch ranged from 1225.7 to 3 0,5 66 mL/g and for Mn ranged between 1.4 to 31.1 mL/g. • Batch Kd for Mo ranged from 57.5 to 2669.0 mL/g and column Kd ranged from 60 to 375 mL/g. • Batch Kd for Se ranged from 2.8 to 1846.7 mL/g and column Kd ranged from 75 to 675 mL/g. • Batch Kd for Tl ranged from 60.3 to 1973.9 mL/g and column Kd ranged from 200 to 670 mL/g. • Batch Kd for V ranged from 6.5 to 1171.2 mL/g, and column Kd ranged between 170 to 700 mL/g. pH, ORP, and conductivity at different liquid to solid (L/S) ratios for the batch experiments are depicted through Figures 170 to 196. HFO, HMO and HAO results are presented in Table 18. The leaching test results for 1313 are tabulated in Table 19 and 20. From Table 20 it can be observed that leaching was negligible (close to minimum detection limit of 1 ppb) for beryllium, cadmium, chromium, cobalt, copper, nickel, lead, thallium and zinc. Arsenic, boron, iron, manganese, molybdenum, selenium and vanadium indicated leaching. The leaching trends of metals for 1316 is depicted Figure 197 through 229. 7 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte 7. References 1. Akio Ogata, R.B.B., A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media. Geological Survey Professional Paper 411 - A, 1961: p. 1-13. 2. Robert G. Ford, R.T.W., Robert W. Puls, Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. 2007, National Risk Management Research Laboratory, U.S. EPA: Cincinnati, Ohio. 3. Oliviera, I.B., A.H. Demond, and A. Salehzadeh, Packing of Sands for the Production of Homogeneous Porous Media. Soil Science Society of America Journal, 1996. 60(1): p. 49-53. 4. Chao, T.T. and L. Zhou, Extraction Techniques for Selective Dissolution of Amorphous Iron Oxides from Soils and Sediments. Soil Sci. Soc. Am. J., 1983.47(2): p. 225-232. 5. Chao, T.T., Selective Dissolution of Manganese Oxides from Soils and Sediments with Acidified Hydroxylamine Hydrochloride. Soil Science Society of America Journal, 1972. 36(5): p. 764-768. 6. W.J.Alves, M.T.v.G.a., Analytical Solutions of the One -Dimensional Convetive- Dispersive Solute Transport Equation. 1982. 7. USEPA, Method 1316: Liquid -Solid Partitioning as a Function of Liquid -to -Solid Ration in Solid Materials Using a Parallel Batch Procedure. 2012, USEPA: Alexandria, VA. p. 1-20. 8. ASTM, ASTM G 200 - 09 "Standard Test Method for Measurement of Oxidation - Reduction Potential (ORP of Soil) ". 2014, ASTM International: West Conshohocken, PA. 8 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Appendix — A Table 1: Site specific soil samples analyzed for Kd Sample Name Depth ft. AB-20D 131-132 AB-28D 70-72 AB — 29 D 60 — 62 AB-31 D 45-50 AB-35R 160-161 AB — 20 S 23 — 25 AB-33 S 30-35 AB-34S 33-35 AB — 35 S 72 GWA — 3 BR 146.5 — 148 GWA-7 S 28-30 GWA-9 S 19-21 Table 2: Synthetic ground water formulation and trace metals concentrations Chemical Concentration Units CaSO4.2H20 20.0 PPM M SO4 5.0 PPM Na HCO3 10.0 ppm Arsenic 500 ppb Boron 500 ppb Cadmium 500 ppb Chromium 500 ppb Molybdenum 500 ppb Selenium 500 ppb Thallium 500 ppb Vanadium 500 ppb 9 l P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 3: Oxidation-reduction potential values for selected soil samples (ASTM G 200-09) Sl. No. Sample Name Depth ORP (mv) ft. Trial A Trial B Trial C Average 1 AB-35S 72.0 105.7 225.7 112.0 147.8 2 AB - 22D 48-49.5 390.8 421.6 411.2 407.9 3 AB - 22D 58-62 398.7 403.9 411.7 404.8 4 AB - 26D 95-105 404.3 418.6 412.9 411.9 5 AB - 29D 60-62 275.6 291.5 285.6 284.2 6 AB - 31D 70-75 317.2 319.6 326.5 321.1 7 AB - 31D 45-50 411.3 420.2 409.1 413.5 8 AB - 33S 30-35 306.9 286.6 256.8 283.4 9 AB - 37D 20.0 338.0 337.5 341.8 339.1 10 AB -26D 75-80 379.6 408.2 416.6 401.5 11 AB-20S 23-25 -60.6 -71.6 -64.9 -65.7 12 AB-27D 28.5-30.5 283.8 337.1 288.9 303.3 13 AB-28 70-72 -516.5 -545.2 -536.1 -532.6 14 AB-30D 39-40.5 355.2 363.0 380.3 366.2 15 AB-33S 30-35 -550.3 -531.3 -544.6 -542.1 16 AB-34S 33-35 192.4 255.8 153.4 200.5 17 AB-38D 25.0 -640.4 -650.1 -650.6 -647.0 18 GWA-1S 18-20 -335.8 -469.0 -496.3 -433.7 19 GWA-4S 19-20 -437.1 -506.2 -521.0 -488.1 20 GWA-5S 24-26 402.3 393.3 384.4 393.3 21 GWA-7s 28-30 427.9 464.5 474.6 455.7 22 GWA-9S 19-21 344.1 333.6 327.3 335.0 23 GWA-9S 19-21 394.1 424.6 420.9 413.2 24 AB - 35 R 160 - 161 BED ROCK 25 AB - 32 S 50 - 55 Dry - ORP reading cannot be measured 26 AB - 20 D 131 - 132 BED ROCK 27 AB - 35 BR 160 -161 BED ROCK 28 GWA - 3 BR 146.5 - 148 BED ROCK 10lPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 4: Summary of batch and column Kd for AB - 20 D Batch Column COCs Trial - I R Trial - 2 R Arsenic 13.7 0.95 12.9 0.78 175 Boron Non -linear Sorption NA Cadmium Non -linear Sorption 650 Chromium 635.7 1 0.95 1 -- -- NA Iron Non -linear Sorption NA Manganese Non -linear Sorption NA Molybdenum Non -linear Sorption NA Selenium 7.0 0.93 -- -- 75 Thallium 286.2 0.57 -- -- 675 Vanadium 11.1 0.96 11.0 0.78 170 Table 5: Summary of batch and column Kd for AB 28 D Batch Column COCs Trial -1 R Trial - 2 R Arsenic 2628.1 0.79 2780.0 0.74 445 Boron Non -linear Sorption NA Cadmium 156.7 1 0.85 142.9 0.85 280 Chromium Non -linear Sorption NA Iron -- -- 30,566.0 0.56 NA Manganese 3.7 0.83 4.0 0.69 NA Molybdenum 288.1 0.94 419.4 0.94 150 Selenium 1846.7 0.67 -- -- 200 Thallium 324.5 0.98 327.9 0.99 335 Vanadium 856.7 0.92 1171.2 0.74 370 Table 6: Summary of batch and column Kd for AB - 29 D Batch Column COCs Trial -1 R2 Trial - 2 RZ Arsenic 30.5 0.98 29.6 0.98 375 Boron Non -linear Sorption NA Cadmium -- -- 1325.7 0.85 600 Chromium 2697.2 1 0.80 -- -- NA Iron Non -linear Sorption NA Manganese Non -linear Sorption NA Molybdenum Non -linear Sorption 150 Selenium 6.4 0.97 6.5 0.94 185 Thallium 1973.9 0.81 951.8 0.91 565 Vanadium 32.5 0.88 28.8 0.93 290 11IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 7: Summary of batch and column Kd for AB - 31 D Batch Column COCs Trial - I R Trial - 2 R Arsenic 2723.4 0.82 2470.1 0.77 625 Boron 2.7 0.77 -- -- NA Cadmium 40.4 0.99 39.1 0.99 210 Chromium Non -linear Sorption NA Iron Non -linear Sorption NA Manganese Non -linear Sorption NA Molybdenum Non -linear Sorption 60 Selenium Non -linear Sorption 625 Thallium 91.7 1 0.80 1 84.0 0.70 625 Vanadium Non -linear Sorption 625 Table 8: Summary of batch and column Kd for AB - 35 R Batch Column COCs Trial -1 R Trial - 2 R Arsenic -- -- 9.0 0.55 100 Boron Non -linear Sorption NA Cadmium -- -- 248.3 0.49 350 Chromium 3570.4 1 0.64 -- -- NA Iron Non -linear Sorption NA Manganese Non -linear Sorption NA Molybdenum Non -linear Sorption 70 Selenium 6.9 0.55 -- -- 85 Thallium 334.8 0.71 -- -- 345 Vanadium -- --1 6.5 0.48 110 Table 9: Summary of batch and column Kd for AB - 20 S Batch Column COCs Trial -1 R21 Trial - 2 R2 Arsenic Non -linear Sorption 470 Boron Non -linear Sorption NA Cadmium 182.7 1 0.97 178.5 0.99 350 Chromium Non -linear Sorption NA Iron 12,371.0 0.98 13,641.0 0.69 NA Manganese 3.6 0.64 3.7 0.71 NA Molybdenum 2669.0 0.65 -- -- 275 Selenium Non -linear Sorption 340 Thallium 78.3 1 0.73 1 75.0 0.83 200 Vanadium Non -linear Sorption 440 12IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 10: Summary of batch and column Kd for AB - 33 S Batch Column COCs Trial - I R 2 1 Trial - 2 R Arsenic Non -linear Sorption 575 Boron Non -linear Sorption NA Cadmium 437.1 1 0.94 1 419.4 0.96 520 Chromium Non -linear Sorption NA Iron Non -linear Sorption NA Manganese 3.5 0.84 3.4 0.85 NA Molybdenum 435.8 0.94 375.5 0.90 350 Selenium Non -linear Sorption 600 Thallium 128.3 1 0.99 1 115.2 0.97 440 Vanadium Non -linear Sorption 580 Table 11: Summary of batch and column Kd for AB - 34 S Batch Column COCs Trial -1 R Trial - 2 R Arsenic 1784.3 0.87 1831.2 0.87 500 Boron 2.1 0.63 -- -- NA Cadmium 12.0 0.93 12.6 0.94 125 Chromium 3749.5 0.51 -- -- NA Iron 1225.7 0.87 -- -- NA Manganese 1.4 0.81 -- -- NA Molybdenum Non -linear Sorption 360 Selenium Non -linear Sorption 480 Thallium 60.3 1 0.72 1 61.0 0.70 425 Vanadium Non -linear Sorption 490 Table 12: Summary of batch and column Kd for AB - 35 S Batch Column COCs Trial -1 R2 Trial - 2 R2 Arsenic 518.7 0.67 498.7 0.70 750 Boron Non -linear Sorption Cadmium 63.8 1 0.99 64.4 0.99 350 Chromium Non -linear Sorption NA Iron -- -- 2176.7 0.62 NA Manganese -- -- 5.1 0.46 NA Molybdenum 511.5 0.99 753.4 0.90 375 Selenium -- -- 1738.7 0.51 400 Thallium 63.2 0.99 66.2 0.99 475 Vanadium Non -linear Sorption 700 13IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 13: Summary of batch and column Kd for GWA - 3 BR Batch Column COCs Trial - I R Trial - 2 R Arsenic 11.5 0.85 10.1 0.73 125 Boron Non -linear Sorption 70 Cadmium Non -linear Sorption 360 Chromium Non -linear Sorption NA Iron Non -linear Sorption NA Manganese Non -linear Sorption NA Molybdenum -- -- 375.5 0.90 75 Selenium 2.8 0.73 -- -- 100 Thallium 111.2 0.54 -- -- 370 Vanadium 132.6 0.99 -- -- 150 Table 14: Summary of batch and column Kd for GWA - 7 S Batch Column COCs Trial - I R Trial - 2 R Trial A Trial B Trial C Arsenic 2054.5 0.89 2018.5 0.89 520 520 675 Boron Non -linear Sorption NA Cadmium 24.9 0.83 21.8 0.97 145 150 175 Chromium 715.3 1 0.48 -- -- NA Iron Non -linear Sorption NA Manganese 31.1 T 0.86 1 -- -- NA Molybdenum Non -linear Sorption 260 325 325 Selenium Non -linear Sorption 325 325 350 Thallium 78.3 0.73 85.0 0.83 425 450 500 Vanadium Non -linear Sorption 500 575 575 Table 15: Summary of batch and column Kd for GWA - 9 S Batch Column COCs Trial -1 R2 Trial - 2 RZ Arsenic 206.1 0.90 220.5 0.91 250 Boron Non -linear Sorption NA Cadmium 304.4 1 0.93 1 322.7 0.99 600 Chromium Non -linear Sorption NA Iron Non -linear Sorption NA Manganese Non -linear Sorption NA Molybdenum 57.5 0.90 -- -- 100 Selenium 51.1 0.89 57.0 0.92 75 Thallium 339.2 0.98 337.2 0.96 600 Vanadium 108.9 0.97 120.3 0.99 250 14IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table l 6: Kd Qualifiers for batch and column plots Batch Kd Qualifiers Sl. Description Qualifier No. Identification Number 1 The concentration distribution is sufficient for the selected L/S Q — B — 1 ratio and given COC under consideration. 2 The range of final COC concentration is narrow, such that Q — B — 2 normal variation due to the analytical method resulted in a non -linear isotherm. 3 The range of final COC concentration is narrow and low, such Q — B — 3 that normal variation due to the analytical method resulted in a non -linear isotherm. 4 Leachable COC is present in the soil sample prior to testing. Q — B — 4 This resulted in higher concentration of COC in the final COC concentration at the end of batch experiment. The mass balance approach for estimating sorption can only be done if leachable COC is known. 5 Anomalous variability in the experimental results resulted in a Q — B — 5 non -linear isotherm. 6 Initial COC concentration in the synthetic ground water is not Q — B — 6 sufficient to produce a well-defined linear isotherm. Column Kd Qualifiers Sl. Description Qualifier No. Identification Number 1 The breakthrough curve is sufficient for applying the Ogata- Q — C — 1 Banks model equation. 2 The COC reached breakthrough although the concentration Q — C — 2 was less than the feedstock. Other chemical interactions between soil and synthetic ground water occurring after the initial breakthrough caused a transient decrease in effluent concentration with increased pore volumes. 3 Effluent and influent concentrations are essentially the same Q — C — 3 over the period of data collection, indicating minimal COC sorption onto the soil (observed frequently with boron and molybdenum). 4 Breakthrough was not observed. A conservative estimate of Q — C — 4 sorption was made by assuming breakthrough occurred at the end of the data collection period. 5 The model equation is fit to the initial segment of the Q — C — 5 breakthrough curve to yield a conservative estimate of sorption. 15IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 17: Ogata-Banks parameters used in developing column Kd Sample Name AB-20D AB-28D AB-29D AB-31D AB-35R AB-20S AB-33S Depth ft. 131 - 132 70 - 72 60 - 62 45 - 50 160 - 161 23 - 25 30 - 35 Parameter Units Effective porosity (n)0.42 0.34 0.29 0.31 0.52 0.33 0.52 Bulk density (b) /cm 1.54 1.74 1.87 1.82 1.28 1.76 1.28 Column diameter cm 1.50 Column area cm 1.77 Column length cm 16.50 17.00 17.00 16.50 17.00 17.00 17.00 Diffusivity Do cm /s 9.00E-06 b 0.05 a 0.66 w=a*(n-b) 0.24 0.19 0.16 0.17 0.31 0.19 0.31 Effective molecular diffusion coefficient D* cm2/s 2.19E-06 1.73E-06 1.45E-06 1.56E-06 2.76E-06 1.69E-06 2.78E-06 Dispersivity factor 0.02 - 0.20 Dis ersivi cm 0.33 - 3.40 Average flow rate (Q) cm /da 122.15 108.88 124.76 119.30 92.94 112.79 121.36 Bulk volume cm3 29.16 30.04 30.04 29.16 30.04 30.04 30.04 Pore volume cm 12.21 10.28 8.82 9.12 15.48 10.06 15.54 Hydraulic detention Day 0.24 0.28 0.24 0.24 0.32 0.27 0.25 Linear velocity cm/day 165.11 180.11 240.45 215.85 102.09 190.64 132.78 161Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Ogata - Banks parameter's continued... Sample Name AB - 34 S AB - 35 S GWA - 3 BR GWA - 7 S GWA - 9 S Depth ft. 33 - 35 72 146.5 - 148 28 - 30 19 - 21 Parameter Units Trial A Trial B Trial C Effective porosity (n) 0.44 0.34 0.39 0.34 0.35 0.37 0.56 Bulk density b /cm 1.49 1.76 1.63 1.76 1.72 1.68 1.16 Column diameter cm 1.50 Column area cm 1.77 Column length cm 17.00 17.00 17.50 17.00 17.00 17.40 17.30 Diffusivity (Do) cm2/s 9.00E-06 b 0.05 a 0.66 w = a*(n - b) 0.25 0.19 0.22 0.19 0.20 0.21 0.34 Effective molecular diffusion coefficient (D*) cm2/s 2.29E-06 1.71E-06 1.99E-06 1.70E-06 1.79E-06 1.87E-06 3.05E-06 Dispersivity factor 0.02 - 0.20 Dis ersivi cm 0.34 - 3.50 Average flow rate Q cm'/day 110.12 133.03 94.15 108.03 113.58 134.82 125.09 Bulk volume cm 330.04 30.04 30.93 30.04 30.04 30.75 30.57 Pore volume cm 13.10 10.13 11.93 10.11 10.57 11.24 17.21 Hydraulic detention Day 0.27 0.23 0.33 0.28 0.26 0.23 0.24 Linear velocity cm/day 142.92 223.16 138.12 181.73 182.62 208.69 125.73 171Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 18: HFO, HMO and HAO Sample Name Depth HFO HMO HAO ft. mg/Kg mg/Kg mg/Kg AB - 20 D 131 - 132 2203.8 332.6 1111.3 AB - 27 D 28.5 - 30.5 1310.7 333.8 1093.4 AB - 28 D 70 - 72 1888.8 137.2 1125.0 AB - 29 D 60 - 62 3691.3 239.1 1953.8 AB - 30 D 39.0 - 40.5 2246.4 414.6 2490.7 AB - 31 D 45 - 50 2013.8 225.7 1980.0 AB - 35 R 160 -161 2128.8 161.8 1478.8 AB - 20 S 23 - 25 3933.8 19.1 1175.0 AB - 33 S 30 - 35 1208.5 228.8 1487.5 AB - 34 S 33 - 35 161.0 184.9 15.8 AB - 35 S 72 1785.0 23.9 2087.5 GWA - 3 BR 146.5 - 148 4697.5 688.8 7244.2 GWA - 7 S 28 - 30 1016.3 283.0 1051.3 GWA - 9 S 19 - 21 1490.4 795.1 1507.5 Table 19: Method 1313 leaching - pH, ORP and conductivity (at natural pH) Sample Name Depth Collected Trial ORP Conductivity pH ft. mV gs1cm. AB - 39S 53 A 239.7 52.7 8.87 B 239.8 49.4 8.85 AB - 39S 3 A 239.8 23 7.05 B 239.7 25 6.87 AB - 39S 2 A 238.7 101.4 9.13 B 239.8 98.2 9.11 AB - 39S 4-6 A 239.7 46.2 8.02 B 239.5 49.2 7.23 18IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Table 20: Method 1313 leaching (at natural pH) data for ash samples collected at the site Sample Name Depth Collected Trial As I B I Be I Cd Cr Co Cu I Fe I Mn I Mo Ni I Pb I Se Tl V I Zn ft. ppb AB - 39S 53 A 26.1 62.6 <1 <1 <1 <1 <1 8.0 2.6 27.5 <1 <1 119.3 <1 29.4 2.1 B 29.2 63.3 <1 <1 <1 <1 <1 9.6 2.7 29.0 <1 <1 131.4 <1 34.5 1.7 AB - 39S 3 A 23.4 83.0 <1 <1 <1 <1 <1 11.7 20.4 23.7 <1 <1 111.5 <1 26.9 2.1 B 27.0 89.2 <1 <1 <1 <1 <1 20.4 22.0 26.3 1.0 <1 127.9 <1 32.7 1.7 AB - 39S 2 A 9.1 150.7 <1 <1 <1 <1 <1 25.8 2.8 7.8 <1 <1 3.6 <1 11.9 1.1 B 9.1 162.8 <1 <1 <1 <1 <1 8.9 2.0 7.9 <1 <1 3.4 <1 11.5 2.2 AB-39S 4-6 A 13.2 82.5 <1 <1 <1 <1 1.4 186.8 1 199.1 6.6 <1 <1 17.6 <1 6.5 1.4 B 20.7 84.6 < 1 < 1 3.3 3.7 15.6 2289.4 433.9 3.4 < 1 6.0 16.3 < 1 25.9 8.6 191Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Appendix — B Figure 1: Tumbler for 1313, 1316 and batch Kd Figure 2: Batch filtration set-up 201Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 3: Column set-up 21IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Figure 4: Syringe filtration for extraction of HFO/HMO/HAO 22IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Kd plots Arsenic 4 3 bm 2 I 0 Kd = 13.7 mT Kd = 12.9 mL.--g v = 0.0137x R2 = 0.94-56 • 0-0129x RI = 0.7773 50 10D Figure 5: Arsenic batch Kd — AB — 20 D Q-13-1 500 400 300 200 100 0 0 50 100 150 Pore voLurnes passed Figure 6: Arsenic column Kd — AB — 20 D Q—C—I @ Trial A * Trial B 150 200 250 300 AgfL Arsenic - Column AB - 20 D 200 As in Effluent As in Feed Kd 160 nLL/g Kd 175 mL/g Kd 190 rnL/g 23IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Boron - Colunm AB - 20 D 600 500 400 • •• • 300 100 1 0 1 1 1 1 1 0 50 100 150 200 Pore volumes passed Figure 7: Boron column Kd — AB — 20 D Q—C-3 • B in Effluent • B in Feed 24IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium - Column AB - 20 D 500 400 300 200 • • 100 • Cd in Effluent • Cd in Feed - - Kd 600 mLfg Kd 65 0 n Lfg - - Kd 700 mLlg © 0 50 100 150 200 Fore volumes gassed Figure 8: Cadmium column Kd — AB — 20 D Q—C-5 Chromium 12 an I an 6 3 - • r' 0 0 5 Figure 9: Chromium batch Kd — AB — 20 D Q—B-3 y 0.6357x R-2 = 0.947 10 15 µgm • Trial C 20 25IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 500 I 300 200 100 01 Molybdenum - Column AB - 20 D 0 50 100 150 200 Pore volumes passed Figure 10: Molybdenum column Kd — AB — 20 D Q—C-3 • Mo in Effluent • Mo in peed 26IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium 4 Kd = 7.0 mLlg 3 �' r na 2 r y — 0.007x R2 — 0.9275 r 1 • r Trial C 0 0 100 200 300 400 500 600 Ftg/L Figure 11: Selenium batch Kd — AB — 20 D Q—B-1 Selenium - Column AB - 20 D 500 400 300 CIO a U 200 100 0 0 50 100 150 Pore volumes passed Figure 12: Selenium column Kd — AB — 20 D Q—C—I 200 Se in Effluent Se in Feed Kd 60 mLlg Kd 75 mUg Kd 90 mLlg 27IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte I Kd= 286-2mL..'g • R Thallium v = 0.2962x bt 4 R2 = 05659 • .......................................................... 2 • • 0 10 20 ......................................................................................................................................... J191L Figure 13: Thallium batch Kd — AB — 20 D Q—B-3 500 400 300 4 200 100 0 0 50 100 150 Pore volumes passed Figure 14: Thallium column Kd — AB — 20 D Q—C-5 • • Trial A a Trial B 30 40 50 Thallium - Column AB - 20 D • TI in Effluent • TI in Feed — • — Kd 650 mL/g Kd 675 mL/g — • — Kd 700 niL/g 200 28 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Vanadium 2 1.5 Kd= 11.1 r1iLg Kd= 11.0 r,,Lg • v = O.011lx • R2 = 0_9603 , �� • -rr y = 0.011x R' = 0.7774 • Trial A • Trial B 0 0 20 40 60 80 100 120 140 u Figure 15: Vanadium batch Kd — AB — 20 D Q—B-1 300 250 • • •••• • ••• • 200 • a 150 100 50 !•• i 0 0 50 100 150 Pore voLumes passed Figure 16: Vanadium column Kd — AB — 20 D Q—C-1 • V in Effluent • V in Feed - • - Kd 150 rnL/g Kd 170 mL/g - • - Kd 190 mL/g 200 29IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 10 8 6 4 2 0 (l Kd = 262S.1 tnL:t I) - Arsenic y = 2.78x R2 = 4.7354 y = 2.62S1x R� = 0.7947 • • • • 1 2 Ag/L Figure 17: Arsenic batch Kd — AB — 28 D Q—B-3 Arsenic - Column AB - 28 D 500 400 300 a Q 200 100 0 0 50 100 150 Pore volumes passed Figure 18: Arsenic column Kd — AB — 28 D Q—C-5 • Trial A 200 3 As in Effluent As in Feed Kd430 mL/g Kd 445 mL/g Kd 460 mL/g 30IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 600 500 400 300 200 100 0 Boron - Column AB - 28 D 0 50 100 150 200 Pore volumes passed Figure 19: Boron column Kd — AB — 28 D Q—C-3 r B in E ffluent • B in Feed 31IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium 5 Kd= 156.7 mL.ig Kd = 142.9 mL.-"-g • 0 4 U 3 y = 0.1567x R2 = 0.8489 v = 0.1429x 2 R2 = 0.8488 0• Trial A • Trial B D 5 10 15 20 25 3D Mg/L Figure 20: Cadmium batch Kd — AB — 28 D Q—B-3 Cadmium - Column AB - 28 D 500 400 300 200 100 0 0 50 100 150 Pore volumes passed Figure 21: Cadmium column Kd — AB — 28 D Q—C-4 200 • Cd in Effluent • CdinFeed Kd 260 mL/g Kd 280 niL/g Kd 300 mLJg 32 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Molybdenum Kd = 288.1 mL!'g Kd = 419.4 mL.--'g y = G4194x R'= 0-9406 6 0-'-)Sglx R 2 = 0-9393 4 2 • • Trial A Trial B • 5 10 15 Ag/L Figure 22: Molybdenum batch Kd — AB — 28 D Q—B-3 500 400 300 200 100 0 0 50 100 150 Pore volumes passed Figure 23: Molybdenum column Kd — AB — 28 D Q—C—1 20 25 30 Molybdenum - Column AB - 28 D 200 Mo in Effluent Mo in Feed Kd 140 mL/g Kd 150 niL/g Kd 160 mL/g 33 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte 16 Kd= 3-7 mLig Kd = 4.0 niL-g 12 U sl 8 4 0 L D I T%Janmam-u- y = 3-9766x R" = 0.691 y = 3-7083x R'= 0.831 00 mg/L Figure 24: Manganese batch Kd — AB — 28 D Q—B—I Iron 250 Kd = 30566.0 mL/9 2 A a Trial B 3 200 — -- ----- -------------- ----- - y = 30566x R2 = 0.5605 150 IDD 50 0 *Trial A @Trial B 0 0.002 0.004 0.006 0.008 0.01 mg/L Figure 25: Iron batch Kd — AB — 28 D Q-13-4 34 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium 14 Kd = 1846.7 mL/g 12 10 s an a� 6 • 4 • 2 • • Trial C • 0 0 1 2 Figure 26: Selenium batch Kd — AB — 28 D Q—B-3 �7663 4 Cg/]L Selenium - Column AB - 28 D 500 •— 400 •• • •• • • 300 P ' 200 • r rr � r I r. 100 + r i r 0 - • 0 50 100 150 Pore volumes passed Figure 27: Selenium column Kd — AB — 28 D Q—C-1 y=1.8467x RI = 0.6714 5 • Se in Effluent • Se in Feed — • — Kd 175 mL/g Kd 200 mL/g — • — Kd 225 mL/g 200 r� 35IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 10 Kd = 324-5 mL :g Kd = 327-9 m1 8 6 M =L 4 0 0 5 Thallium y = 0-3279x R2 = 0.992 Figure 28: Thallium batch Kd — AB — 28 D Q—B-3 500 400 300 a H 200 100 0 10 15 11 Thallium - Column AB - 28 D 0 50 100 150 Pore volumes passed Figure 29: Thallium column Kd — AB — 28 D Q—C-4 y = 0-3245x R2 = 0-9844 * Trial A .Trial B 24 25 200 TI m Effluent TL in Feed Kd 325 mLfg Kd 335 mLfg Kd 345 mLfg 36IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Vanadium 4 Kd = 856.7 mLlg i Kd = 1171 _? mL:. 3 y = LI712.x = 0.8567x R" = 0.7392. R2 = 0.9237 2. i 1 i i i . Trial A . Trial B 0 0 1 2 3 4 5 991L Figure 30: Vanadium batch Kd — AB — 28 D Q—B-3 Vanadium - Column AB - 28 D 300 250 200 a a a 150 } 100 50 0 0 50 100 150 Pore volumes passed Figure 31: Vanadium column Kd — AB — 28 D Q—C-4 • V in Eiiluent • V in Feed — • — Kd 360 mL/g Kd 370 mL/g — • — Kd 380 mL/g 200 37IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 6 4 Arsemic Kd = 30-5 mLlg Kd = 29-6 mDg y = 0-03 05x v = 0-0296x k' = 0-9807 2 L 0 50 100 AWL Figure 32: Arsenic batch Kd — AB — 29 D Q—B-1 Arsenic - Column AB - 29 D 500 400 300 2 Q 200 100 0 0 50 100 150 Pore volumes passed Figure 33: Arsenic column Kd — AB — 29 D Q—C-4 . Trim A • Trial B 150 200 a As in Effluent • As in Feed — — Kd 350 mL/g Kd 375 mLIg — • — Kd 400 nmL/g 200 381Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 600 500 400 a ¢ 300 200 100 0 Boron - Column AB - 29 D 0 50 100 150 200 Pore volumes passed Figure 34: Boron column Kd — AB — 29 D Q—C-3 * B in Effluent • B in Feed 39IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium 6 Kd = 1325.7 mLlg y = 1.3257x • Rz U516 4 tM • 0 0 1 2 Fig/L Figure 35: Cadmium batch Kd — AB — 29 D Q—B-3 500 400 300 200 100 0 Cadmium - Column AB - 29 D • Trial A • Trial B 3 4 Cd in Effluent • Cd in Feed — Kd 580 mLlg —Kd 600 mL/g — Kd 620 mLlg 0 50 100 150 200 Pore volumes passed Figure 36: Cadmium column Kd — AB — 29 D Q—C-5 40IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Chromium 12 Kd = 2697.2 mLlg • 9 y = 2.6972x R2 — 0-7952 DA a 6 • 3 • • Trial C • • 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 µgiL Figure 37: Chromium batch Kd — AB — 29 D Q—B-3 Molybdenum - Column AB - 29 D 500 400 • a • • • Mo in Effluent 300 �' • Mo in Feed —.— Kd140n-L/g 200 • • r Kd 150 mLlg ! — • — Kd 160 mLlg 100 r • r 0 0 50 100 150 200 Pore volumes passed Figure 38: Molybdenum column Kd — AB — 29 D Q—C—I 41IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium 3 Ind = 6.4 mL.'g Kd = 6.5 mL!'g 4 2 y = 0.0065x C° R = 0.9415 y = 0.0064x 1 °' '- �° R_ = 0.966 �#°fe °c • Trial A @ Trial B 0 0 100 200 300 400 u9(L Figure 39: Selenium batch Kd - AB - 29 D Q-B-1 500 400 300 a 200 100 0 Selenium - Column AB - 29 D VDI/40 • Se in Effluent • Se in Feed -•— Kd175mL1g Kd 185 mLfg - — Kd 195 mLlg 0 50 100 150 200 Pore volumes passed Figure 40: Selenium column Kd - AB - 29 D Q-C-1 42IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Thallium 1 [} Kd= 1973.9 m .+g Kd = 951.9 mLlg 8 • 6 0.918x = 1.9739x R� = 0.9076 i Rt — 0.8093 4 • • 2 _ • Trial A Trial B 0 0 2 4 6 8 10 11 Figure 41: Thallium batch Kd — AB — 29 D Q—B-3 500 400 300 • 200 Thallium - Column AB - 29 D • 100 —i 0 0 50 100 150 Pore volumes passed Figure 42: Thallium column Kd — AB — 29 D Q—B-5 • Tlin Effluent • TI in Feed — Kd 550 mL/g Kd 565 mL/g — — Kd 580 mL/g 200 43IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 3 , 2 b, l 0 L D Vanadium Kd = 32.5 mL.ig Kd = 28.8 mL!g • = 0.0325x R2 = 0.8804 - = 0.0288x R2 = 0.934 • • • Trial A • Tria] S 20 40 60 119(L Figure 43: Vanadium batch Kd — AB — 29 D Q—B-3 Vanadium - Column AB 29 D 300 250 200 a 150 100 50 0 0 50 100 150 Pore volumes passed Figure 44: Vanadium column Kd— AB — 29 D Q—C-1 80 • V in Effluent • V inFeed — • — Kd 280 mLfg Kd290 mLlg — • — Kd 300 mLlg 200 44IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 10 6 4 21 Arsenic Kd = 2723.4 mLlg Kd = 2470.1 mL/g ' y = :7234x R2 = 0.815 v = 2.4701x • R 2= 0.7718 • .Trial A Trial B D 0.0 0.5 LO 1.5 2.0 2.5 3.0 liJ Figure 45: Arsenic batch Kd — AB — 31 D Q—B-3 Arsenic - Column AB - 31 D 500 400 300 a 200 100 0 0 50 100 150 200 Pore volumes passed Figure 46: Arsenic column Kd — AB — 31 D Q—C-5 As in Effluent As in Feed Kd 600 mL/g Kd 625 mL/g Kd 650 mL/g 45IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Boron 1.2 1.0 0.8 Ca 0.6 0.4 0.2 • Trial C 0.0 0 50 100 150 200 250 300 Ag/L Figure 47: Boron batch Kd — AB — 31 D Q—B—I Boron - Column AB - 3 1 D 600 500 400 ¢ 300 200 100 0 0 50 100 150 Pore volumes passed Figure 48: Boron column Kd — AB — 31 D Q—C-3 200 127x '742 350 400 • B in Effluent * B in Feed 46IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 4 Kd=40.4niL g Kd = 39.1 mLfg 3 u 2 1 Cadmium y = 0.0404x R' = 0.9914 y = 0-0391x R2 = 0.9928 • Trial A • Trial B 20 40 60 80 100 Irk Figure 49: Cadmium batch Kd — AB — 31 D Q—B-2 Cadmium - Column AB - 31 D 500 400 300 200 100 0 0 50 100 150 Pore voLumes passed Figure 50: Cadmium column Kd — AB — 31 D Q—C-2 • Cd in Effluent + Cd in Feed — Kd 200 mL/g —Kd 210 mL/g — Kd 220 mL/g 200 47IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Molybdenum - Column AB - 31 D 500 400 300 2 0 200 100 0 0 50 100 150 Pore volumes passed Figure 51: Molybdenum column Kd — AB — 31 D Q—C-5 500 400 300 200 100 0 0 50 100 150 Pore volumes passed Figure 52: Selenium column Kd — AB — 31 D Q—C-5 Selenium - Column AB - 31 D • Mo in Effluent Mo in Feed - • — Kd 600 mL/g Kd 60 mL/g - — Kd 650 mL/g 200 • Se in Effluent • Se in Feed - — Kd 600 mL/g Kd 625 mL/g - — Kd 65 0 mL/g 200 48IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Thallium 8 - Kd= 9 1 -7 mLig Ind = 84-0 mL:'g 6 = 0-0917x R-- = 0-8024 M q4 2 Y = 0-084x • •• R2 = 0-6995 Trial A Trial 13 0 10 20 30 40 50 60 70 A Figure 53: Thallium batch Kd — AB — 31 D Q—B-3 Thallium - Column AB - 31 D 500 400 300 a H 200 100 0 0 50 100 150 Pore voLumes passed Figure 54: Thallium column Kd — AB — 31 D Q—C-5 • T1 in Effluent • T1in Feed — • — Kd 600 mL/g Kd 625 mL/g — • — Kd 650 mL/g 200 49IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte jUU 250 200 150 100 50 0 0 Vanadium - Column AB - 3 1 D • V in Effluent • V in Feed - • - Kd 600 m.L/g - Kd 625 m.L/g - • - Kd 650 m.L/g 50 100 150 200 Pore volumes passed Figure 55: Vanadium column Kd — AB — 31 D Q—C-5 50 1 P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte 5 Kd = 9 mL..'g 4 3 on 2 1 P Trial A • Tria] B 0 0 50 100 Figure 56: Arsenic batch Kd — AB — 35 R Q—B-4 s00 400 300 a 200 100 0 Arsenic y = 0.009x R2 = 0.5475 i 150 200 250 300 9 Arsenic - Column AB - 35 R 0 40 80 Pore volumes passed Figure 57: Arsenic column Kd — AB — 35 R Q—C—I 120 As in Effluent As in Feed Kd 90 mLlg Kd 100 mLlg Kd 110 mLlg 51IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 600 500 400 300 200 100 Boron - ColunmAB - 35 R 40 80 120 Pore volumes passed Figure 58: Boron column Kd — AB — 35 R Q—C-3 i B in Effluent • B in Feed 52IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 5 IKd = 248.3 ml,f'g 4 Cadmium 6 y = 0.12.8lx y = 0.2483x R2 = 0.042 U 3 R2 = 0-4947 2 0 s Trial A 0 5 10 15 20 25 M Figure 59: Cadmium batch Kd — AB — 35 R Q—B-3 500 400 300 j 200 100 0 0 40 s0 Pore voLumes passed Figure 60: Cadmium column Kd — AB — 35 R Q—C-5 Cadmium - ColumnA13 - 35 R • • • Cd in Effluent . Cd in Feed - — Kd 325 mLlg —Kd 350 mL/g — Kd 375 mLlg 120 5 3 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Chromium 12 Kd = 3570.4 mLlg 9 nr, 6 y — 3.5704x • R2 = 0.6392 3 • 0 0.0 0.5 1-0 1.5 2.0 N91L • Trial C Figure 61: Chromium batch Kd— AB — 35 R Q—B-3 500 400 300 c+. u. 0 200 100 0 0 40 80 Pore volumes passed Figure 62: Molybdenum column Kd — AB — 35 R Q—C—I Molybdenum - Column AB - 35 R ii • • • • 2.5 • Mo in Effluent • Mo in Feed — • — Kd 60 mLL/g Kd 70 mUg — • — Kd 80 mL/g 120 54IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 5 4 3 U 2 1 0 - 0 Selenium 1.00 200 300 400 500 P9/L Figure 63: Selenium batch Kd — AB — 35 R Q—B-4 Selenium - Column AB 35 R 500 400 300 200 100 0 0 40 80 Pore volumes passed Figure 64: Selenium column Kd — AB — 35 R Q—C-1 120 • Se in Effluent • Se in Feed — Kd 75 n-Llg —Kd 85 mLlg — Kd 95 mLlg 55IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Thallium 14 Kd — 334.8 mL/g 12 10 8 as 6 • 4 • 2 • • 0 0 5 10 15 20 gg/L Figure 65: Thallium batch Kd — AB — 35 R Q—B-3 500 400 300 200 100 0 25 Thallium - Column AB - 35 R 0 40 s0 Pore volumes passed Figure 66: Thallium column Kd — AB — 35 R Q—C-5 y = 0.3348x R2 — 0.7141 • Trial C 30 35 40 Tl in Effluent • Tl in Feed — • — lid 325 mL/g Kd 345 mL/g — • — Kd 365 mL/g 120 56IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Vanadium 2 Kd = 6 - 5 mL•.'g 1-5 a� 1 y = 0-0065x = 0-0064x 0-5 ��• � R2 = 0.2503 • Trial • Trial: B D 0 50 100 150 A Figure 67: Vanadium batch Kd — AB — 35 R Q—B-4 300 250 200 150 100 50 0 0 Vanadium - Column AB - 35 R • Pore voLumes passed Figure 68: Vanadium column Kd — AB — 35 R Q—C-1 • V in Effluent • V in Feed - • - Kd 1001nL1g Kd 110 mL/g - - - Kd 1201nUg 120 57IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Arsenic - Column AB - 20 S 500 400 300 a 200 100 1 0 0 50 100 150 Pore volumes passed Figure 69: Arsenic column Kd — AB — 20 S Q—C-5 600 500 400 300 ai 200 100 0 0 Boron - Column AB - 20 S • As in Effluent • As in Feed — • — Kd 450 mL/g Kd 470 mLlg — — Kd 490 mLlg 200 50 100 150 200 Pore volumes passed Figure 70: Boron column Kd — AB — 20 S Q—C-3 • B in Effluent • B in Feed 58IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium 6 Kd =183.7 mL.?g Kd =178.5 mUg 4 — on y = 0.1827x Iil'1.1 5.S �1�E'•i• R2 = 0.9689 Y 4YIt}Yfl - 1,,V1++ y = 0.1785x R2 = 0.9856 • + Trial A + Trial B 0 0 5 10 15 20 25 9 Figure 71: Cadmium batch Kd — AB — 20 S Q—B-3 Cadmium - Column AB - 20 S 500 400 300 200 100 0 0 50 100 150 Pare voLumes passed Figure 72: Cadmium column Kd — AB — 20 S Q—C-4 • Cd in Effluent + Cd in Feed - Kd 325 mL/g —Kd 350 mLlg - Kd 375 mLlg 200 59IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Molybdenum 0.5 1.0 1.5 2.0 2.5 K/L Figure 73: Molybdenum batch Kd — AB — 20 S Q—B-3 Molybdenum - Column AB - 20 S 500 400 • Mo in Effluent 300 •' + Mo in Feed u � ✓' . ✓' — - — Kd 250 mLlg � 200 •+ ++++ +• � ✓ ✓ • i Kd 275 mL/g r ✓ ✓' — — Kd 300 mLlg 100 -- 0 '� • 0 50 100 150 200 Pore volumes passed Figure 74: Molybdenum column Kd — AB — 20 S Q—C—I 60IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Kd = 36 mL!g Kd = 3-7 rnL."g I 0 1 0.0 0.1 mangsinese y = 3.6922x R'= 0.7086 y = 3.5997x & 0 R= 0.6431 rr a Trial A a Trial B 0-2 0.3 0-4 0.5 M911L Figure 75: Manganese batch Kd — AB — 20 S Q-13-4 500 Kd= 12371-0mIJg Kd = 13,641.0 mL."g 400 300 tw bb 1-00 100 46 0 0.000 0.010 Figure 76: Iron batch Kd — AB — 20 S Q-13-1 Iron y = 13641x R2 = 06982 2372x ).9815 P Trial A e Trial B 0-020 0.-03,0 0.040 M9/1L 61 IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium - Column AB - 20 S 500 400 r ��• •� �• • • Se in Effluent 300 o Se in Feed J n l• — • — Kd 330 mLfg 200 �• f Kd 340 mLlg — — Kd 350 mLlg 100 0 �`+� i�• 0 50 100 150 200 Pore volumes passed Figure 77: Selenium column Kd — AB — 20 S Q—C-4 62IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Th2IIium 8 Kd= 78.3 mL!g Kd = 75.0 mL:'g 6 • 4 - y = 0.0783x R2 = 0.7345 ,. 2 _ y = 0.075x •• R2=0.8265 •TrialA .Trial • 0 0 1.0 20 30 40 50 60 70 80 1Lg/L Figure 78: Thallium batch Kd — AB — 20 S Q—B-4 Thallium - Column AB - 20 S 500 400 300 a a, F 200 100 0 0 50 100 150 Pore voLumes passed Figure 79: Thallium column Kd — AB — 20 S Q—C-1 • T1 in Effluent • Tlin Feed — • — Kd 190 mL/g Kd 200 mL/g — • — Kd 210 mL/g 200 63IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 300 250 200 150 100 50 0 0 Vanadium - Column AB - 20 S • V in Effluent • V in Feed — • — Kd 420 1nL./g Kd 440 mLfg — • — Kd 460 1nLlg 50 100 150 200 Pore volumes passed Figure 80: Vanadium column Kd — AB — 20 S Q—C-5 641Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Arsenic - Column AB - 33 S 500 400 300 200 100 0 0 50 100 Pore voLurnes passed Figure 81: Arsenic column Kd — AB — 33 S Q—C-5 600 500 400 a 300 cq 200 100 0L 0 Boron - Column AB - 33 S • • As in Effluent • As in Feed — • — Kd 550 mLlg Kd 575 nLlg — • — Kd 600 nLig 150 50 100 150 Pore voLumes passed Figure 82: Boron column Kd — AB — 33 S Q—C-3 • B in Effluent . B in Feed 65IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium 5 Kd = 437.1 mL!g Kd = 419.4 mL.+g 4 v = 0.4371x ,= R- = 0.942 3 - tM y = 0.4194x R2 = 0.9632 2 1 • Trial A • Trial 13 D 0 2 4 6 8 to 12 Ate Figure 83: Cadmium batch Kd — AB — 33 S Q—B-3 500 400 300 a U 200 100 0 0 50 100 Pore volumes passed Figure 84: Cadmium column Kd — AB — 33 S Q—C-5 Cadmium - Column AB - 33 S • •i •i i • •• i • ••• • Cd in Effluent . Cd in Feed - — Kd 500 mL/g —Kd 520 mL/g Kd 540 mL/g 150 66IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 10 6 4 2 0 - Molybdenum Kd = 435.8 mL/g Kd = 3755 mL.Ig y = 0.4358x R 2= 0.9421 y = 03755x R2 09032 a Trial A o Trial B 0 5 10 15 Aa Figure 85: Molybdenum batch Kd — AB — 33 S Q—B-3 Molybdenum - Column AB - 33 S jUU 400 300 CT 200 100 0 0 50 100 Pore voLumes passed Figure 86: Molybdenum column Kd — AB — 33 S Q—C-4 2D 25 150 • Mo in Effluent • MoinFeed Kd 325 mL/g Kd 350 nlL/g Kd 375 niL/g 67 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte 5 Kd = 3.5 mUg Kd = 3.4 mLfg 4 3 U 2 1 0.0 • • Manganese y = 3.5124x R.2 = 0.8388 . • 1 y = 3.387x R.' = 0-8475 a Trial A • Trial B 0_2 0.4 06 mglL Figure 87: Manganese batch Kd — AB — 33 S Q—B-1 500 400 300 a 200 100 0 0 50 100 Pore volumes passed Figure 88: Selenium column Kd — AB — 33 S Q—C-5 0.8 1.0 1.2 Selenium - Column AB - 33 S 150 • Se in Effluent • Se in Feed — Kd 575 mLlg —Kd 600 mL/g — Kd 625 mLlg 68IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte r rr s Kd= 128-3 mLig Ind = l 15-? mL!g 6 y = D.1283x R2 = 0.9902 bm y = 0.1152x 0.9692 2 4r.'. a Trial A Trial B 0 0 10 20 34 40 50 60 70 Pg/1• Figure 89: Thallium batch Kd — AB — 33 S Q—B-3 Thallium - Column AB - 33 S 500 400 300 F 200 100 0 0 50 100 Pore voLumes passed Figure 90: Thallium column Kd — AB — 33 S Q—C-4 • Tl in Effluent • Tlin Feed — • — Kd 430 mL/g Kd 440 mL/g — • — Kd 450 mL/g 150 69IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 300 250 200 150 100 50 0 0 Vanadium. - Column AB - 3 3 S • V in Effluent • V in Feed — • — Kd 560 mLfg Kd 580 mLfg — • — Kd 600 mLlg 50 100 150 Pore volumes passed Figure 91: Vanadium column 1d — AB — 33 S Q—C-5 70IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 10 8 6 i� 4 2 0 0 Arsenic Kd = 1784.3 mLlg Kd = 1831.2 mL!g • • y = 1.8312x R2 = 08745 y = 1.7843x R2 = 0_8706.. 00 • • 60 1 2 3 ftg/L Figure 92: Arsenic batch Kd — AB — 34 S Q—B-3 Arsenic - Column AB - 34 S Soo 400 300 a 200 100 0 0 50 100 Fore volumes passed Figure 93: Arsenic column Kd — AB — 34 S Q—C-5 • Trial A • Trim B 4 5 150 As in Effluent As in Feed Kd 475 mLlg Kd 500 mLlg Kd 525 mLlg 71IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 1.0 0.8 0.6 0.4 0.2 Boron 100 200 300 Pg/]L Figure 94: Boron batch Kd — AB — 34 S Q—B-4 600 500 400 ¢ 300 200 100 0 0 Boron - Colut nAB - 34 S 50 100 150 Pore volumes passed Figure 95: Boron column Kd — AB — 34 S Q—C-3 • B m Effluent • B in Feed 400 72IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 3 Ind= 12.0mL?g Ind = 12.6 mi.,''g 2 0 1 0 Cadmium • y=0.0126X :.•'''*' Y=0.012X Rz = 0.9401 R� = 0.9341 + Trial A a Trial B 40 so 120 160 LlgAL Figure 96: Cadmium batch Kd — AB — 34 S Q—B-2 Cadmium - Column AB - 34 S 500 • • • 400 • • • + • • Cd in Effluent • 300 — + Cd in Feed Kd 100 mL�g 200 + ••+•••+ �. • + i .' Kd 125 mLlg i ° • — Kd 150 mLlg 100 • �• • • 0 0 50 100 150 Pore voLumes passed Figure 97: Cadmium column Kd — AB — 34 S Q—C-2 73IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 12 9 3 0 0.0 Chromium 0.5 1.0 1.5 2.0 ligAL Figure 98: Chromium batch Kd — AB — 34 S Q—B-3 20 Kd=1225.7 mL/g Iron y = 1225.7x • 15 R2 = 0.8741 • 10 5 i • • Trial C 0 0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 mg/L Figure 99: Iron batch Kd — AB — 34 S Q—B-2 74IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Mangenese 20 Kd =1.4 mLlg 16 y = 1.4338x Rz = 0.8059 12 on on S 4 — • 0 ' 0 2 4 InZ-1 Figure 100: Manganese batch Ka — AB 34 S Q—B—I Sao 400 300 0 200 100 0 0 50 100 Pore volumes passed Figure 101: Molybdenum column Kd — AB — 34 S Q—C-4 • Trial C 8 10 12 Molybdenum - Column AB - 34 S • Mo in Effluent • Mo in Feed - - Kd 340 mLlg Kd 360 mLlg - • - Kd 380 mL/g 150 75IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 500 400 300 200 100 0 0 Selenium - Column A13 - 34 S • Se in Effluent a Se in Feed — • — Kd 460 mLlg Kd 480 mLlg — • — Kd 500 mLlg 50 100 150 Pore volumes passed Figure 102: Selenium column Kd — AB — 34 S Q—C-5 76IPage Soil Sorption Evaluation Allen Steam Station Thallium 7 Kd= 60.3 mIJg 6 Kd = 6 1. 0 in g 5 y = 0.061x R2 = 0.7015 4 3 2 �M •• 1 •—• •• 0 0 20 40 60 ug/L Figure 103: Thallium batch Kd — AB — 34 S Q—B-3 Thallium - Column AB - 34 S Sao 400 300 a a, F 200 100 0 0 50 100 Pore voLumes passed Figure 104: Thallium column Kd — AB — 34 S Q—C-2 UNC Charlotte Ic y = 0.0603x R2 = 0.721 • Trial A • Taal B 80 100 • T1 in Effluent • Tlin Feed — — Kd 400 mL/g Kd 425 mL/g — • — Kd 450 mL/g 150 77IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 300 250 200 150 100 50 0 0 Vanadium - Column AB - 3 4 S • V in Effluent • V in Feed — • — Kd 470 mLfg Kd 490 mLfg — • — Kd 510 mLlg 50 100 150 Pore volumes passed Figure 105: Vanadium column Kd — AB — 34 S Q—C-5 78IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 10 Kd = 518.71n.Llg Kd = 498.7 inLlg 8 6 4 0 0 2 4 Arsenic y = 0.5187x R2 = 0.6686 Y — 0.4987x R2 = 0.7023 e* • Trial A + Trial B Figure 106: Arsenic batch Kd — AB — 35 S Q—B-3 500 400 300 a 200 100 0 6 8 10 12 14 Pg/L Arsenic - Column AB - 35 S 0 50 100 150 200 Pore volumes passed Figure 107: Arsenic column Kd — AB — 35 S Q—C-5 250 As in Effluent As in Feed Kd 725 mL/g Kd 750 mL/g Kd 775 mL/g 79IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 600 500 400 300 200 100 Boron - Column AB - 35 S 50 100 150 200 Pore volumes passed Figure 108: Boron column Kd — AB — 35 S Q—C-3 • B in Effluent • B in Feed 80IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium 5 Kd= 63-8 mLrg Kd = 64"4 mL!g 4 .} y = 0"0644x R2 = 0-994 7 3 bf = 0.0638x R` = 0.9946 f� 1 �* . Trial A • Trial B C} 4 10 24 30 40 50 60 70 A Figure 109: Cadmium batch Kd — AB — 35 S Q—B-3 Cadmium - Column AB - 35 S 500 4D0 • • •• • 300 J 200 • •••' • .-�� 100 0 D 50 100 150 200 Pore voLumes passed Figure 110: Cadmium column Kd — AB — 35 S Q—C-2 250 • Cd in Effluent • Cd in Feed • — Kd 325 mL/g —Kd 350 mLlg — Kd 375 mLlg 81IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte ID 8 r, bb 4 2 Molybdenum Kd = 511.5 mL!g Kd = 753.4 mL!g • y = (}_7534x y = M 115x R2 = � .9009 R2=0-9876 + • . Trial A • Trial B 0 0 5 10 15 20 p Figure 111: Molybdenum batch Kd — AB — 35 S Q—B-3 Molybdenum - Column AB - 35 S 500 • 400 a • • • Mo in Effluent • . J 300 , • Mo in Feed CT / • - • - Kd 55 mLlg o 200 • • / / • Kd 375 mLlg / - Kd 400 mLlg 100 • f / 0 •'�-�-• 0 50 100 150 200 250 Pore voLumes passed Figure 112: Molybdenum column Kd — AB — 35 S Q—C-4 82IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Manganese 30 Kd = 5.1 mL.-g 25 OP 20 4D en y = 51143x 1-5 R2 = D.4373 y = 51489x 05 • R2 = 0459 a Trial A a Trial B o-O. 0-00 0.05 0.10 015 0.20 0.25 030 0.35 __rl Figure 113: Manganese batch Kd — AB — 35 S Q-13-4 Iron 200 Kd = 2176.7 mL.. g 150 v= '1176-7x • R 2 0.6167 bm 100 ------ 50 Z y = 1652.7x R2 = 0-1692 a Trial A Trial B 000 002 004 006 008 010 012 mg/L Figure 114: Iron batch Kd — AB — 35 S Q-13-4 83 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium 10 Kd = 173 5 _" mL?'g r r 8.......................................................................... 6 bf y = 1.7954x a R� = 0-4241 4 rr _ y = 1.7387x R2 = il_51 H 2 r r r r r r • Trial A • Trial B 0 0 1 2 3 4 119/]L Figure 115: Selenium batch Kd — AB — 35 S Q—B-3 500 400 300 200 100 0 0 50 100 150 200 Pore voLumes passed Figure 116: Selenium column Kd — AB — 35 S Q—C-4 Selenium - Column AB - 35 S it r A' / I I: • Se in Effluent • Se in Feed - — Kd 375 mL/g Kd 400 mL/g - — Kd 425 mL/g 250 84IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 7 6 - 5 4 - �n 3 2 1 (} 0 ThaRium Kd = 63.2 mL/g Kd = 662 mUz y = 0.0662x = R= = 0.9949 _ 0_0632x R09902 ®Tria1A oTria1B 20 40 60 80 100 120 M Figure 117: Thallium batch Kd — AB — 35 S Q—B-2 Thallium - Column AB - 35 S 500 400 300 a a, F 200 100 0 0 50 100 150 200 Pore voLumes passed Figure 118: Thallium column Kd — AB — 35 S Q—C-2 • T1 in Effluent • Tlin Feed — • — Kd 450 mL/g Kd 475 mL/g — • — Kd 500 miL/g 250 85IPage Soil Sorption Evaluation 300 250 200 150 100 50 0 0 Allen Steam Station Vanadium - Column AB - 3 5 S 50 100 150 Pore volumes passed Figure 119: Vanadium column Kd — AB — 35 S Q—C-5 200 UNC Charlotte • V in Effluent • V in Feed — • — Kd 675 mLfg Kd 700 mLfg — • — Kd 725 mLlg 250 86IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 4 31 2 M4 Arsenic Kd = 11.5 mL.19 Kd = 10.1 mLg y = 0.0115x R2 = 0-8549 • y = 0.0101x • # R2 = 0.7329 Trial A • Trial B 50 100 150 200 250 300 350 ..-fw Figure 120: Arsenic batch Kd — GWA — 3 BR Q—B-4 Arsenic - Column GWA - 'I BR Soo 400 300 a 200 100 0 0 50 100 Pore volumes passed Figure 121: Arsenic column Kd — GWA — 3 BR Q—C—I 150 As in Effluent As in Feed Kd 115 mL/g Kd 125 mLlg Kd 135 mL/g 87IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 600 500 400 a 300 200 100 0 Boron - Column AB - GWA - 3 BR ta..00 ' =i!••:12 1 �• r 1 r r r r r r 1 r� r 1 / • • 0 50 100 Pore volumes passed Figure 122: Boron column Kd — GWA — 3 BR Q—C— 1 Cadmium - Column AB - GNVA - 3 BR 500 400 300 200 100 0 0 50 100 Pore volumes passed Figure 123: Cadmium column Kd — GWA — 3 BR Q—C-5 • B in Effluent • B in Feed — Kd 60 nL/g Kd 70 mL/g — • — Kd 80 mL/g 150 150 Cd in Effluent Cd in Feed Kd 340 mL/g Kd 360 mL/g Kd 380 mL/g 88IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Molybdenum denum 10 S 6 bb r� 2 U 0 5 10 15 AWL Figure 124: Molybdenum batch Kd — GWA — 3 BR Q—B-3 Molybdenum - Column AB - GWA - 3 BR 500 Go • •••r • r •• toot* • • • • . . • 400 • 300 r r C 200 • r • r r r r' 100 r � 0 iL � 0 50 100 Pore voLumes passed Figure 125: Molybdenum column Kd — GWA — 3 BR Q—C-1 20 25 150 • Mo in Effluent • Mo in Feed — Kd 65 mLlg — Kd 75 mLlg — Kd 85 mLlg 89IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium 0 0 50 100 150 200 250 300 350 400 ug/L Figure 126: Selenium batch Kd — GWA — 3 BR Q—B-4 Selenium - Column AB - GWA - 3 BR 500 400 300 200 100 0 0 50 100 Pore voLumes passed Figure 127: Selenium column Kd — GWA — 3 BR Q—C-1 150 Se in Effluent Se in Feed Kd 90 mL/g Kd 100 mL/g Kd 110 mL/g 90IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Thallium 8 IKd= 111_2 mL1g ............................................. . . on 4 y = 0.1112x ,..• _ _ _. _ _ R2 = 0.5423 2 • • Trial A • Trial B 0 10 20 30 40 50 1a Figure 128: Thallium batch Kd — GWA — 3 BR Q—B-3 Thallium - Column AB - GWA - 3 BR 500 400 300 a a, F 200 100 0 0 50 100 Pore voLum¢es passed Figure 129: Thallium column Kd — GWA — 3 BR Q—C-5 • T1 in Effluent • Tlin Feed — • — Kd 350 mL/g Kd 370 ML,/g — • — Kd 390 mL/g 150 91IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Vanadium 12 6 6 3 0 0 20 40 60 A9/L Figure 130: Vanadium batch Kd — GWA — 3 BR Q—B-3 300 250 200 150 100 50 0 Vanadium - Column AB - GWA - 3 BR •• i 0 50 100 Pore volumes passed Figure 131: Vanadium column Kd — GWA — 3 BR Q—C— 1 0.1326x = 0.9999 �= Trial C 80 100 • V in Effluent • V in Feed - • - Kd 140 mLlg Kd 150 mL/g - • - Kd 160 mL/g 150 92IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Arsenic 1 L} Kd = 2054.5 mL/g Kd = 2018.5 mL/g 8 6 - y = 2.0545x cm R2 = 0.8889 cm 4 • 2 • • • 0 1 Figure 132: Arsenic batch Kd — GWA — 7 S Q—B-3 500 400 300 200 100 0 y = 2_0185x 172 — fti RC?TF 2 3 1 Arsenic - Column GWA - 7S Trial A •• • Trial A • Trial. B 4 5 • • • As in Effluent • As in Feed - • — Kd 500 mL/g Kd 520 mL/g - • — Kd 540 n►L/g 0 50 100 150 200 Pore voLumes passed Figure 133: Arsenic column Kd — GWA — 7 S Trial A Q—C-5 93IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 500 400 300 a Q 200 100 0 0 50 100 150 Pore voLumes Passed Figure 134: Arsenic column Kd — GWA — 7 S Trial B Q—C-5 Arsenic - Column GWA - 7S Trial C 500 400 300 200 100 0 0 50 100 150 Pore voLumes Passed Figure 135: Arsenic column Kd — GWA — 7 S Trial C Q—C-5 Arsenic - Column GWA - 7S Trial B • r' • As in Effluent • As in Feed - — Kd 500 mLlg Kd 520 mUg - • — Kd 540 rnUg 200 200 As in Effluent As in Feed Kd 650 nL/g Kd 675 nUg Kd 700 mLlg 94IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 600 500 •• 400 ~ 300 Boron - Column GWA - 7S Trial A 00 • • 200 •gar•••''• • 100 0 0 50 100 150 Pare voLumes passed Figure 136: Boron column Kd — GWA — 7 S Trial A Q—C-3 Boron - Column GWA - 7S Trial B 600 r•r• •r rr• • 500 •• ••• • • 400 • • •• • 300 200 •+•.••••.• • 100 0 0 50 100 150 Pore voLumes passed Figure 137: Boron column Kd — GWA — 7 S Trial B Q—C-3 200 200 • B m Effluent • B in Feed B in Effluent + B in Feed 95IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Boron - Column GWA - 7S Trial C 600 500 • • . —� • ••• �•' •• r••r'•r•'rr 400 ' ' • 300 • B in Effluent r 200 •••••••••• •BinFeed • 100 01 0 50 100 150 200 Pore volumes passed Figure 138: Boron column Ka — GWA — 7 S Trial C Q—C-3 96IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium 4 Kd = 24.9 nlL.'g Kd=21.8 3 :nL g ! • y = 0_024 9x U RE = 0.827 & 2 y=1_1218x R0-972 1. !f 0 4 20 40 Figure 139: Cadmium batch Kd — GWA — 7 S Q-13-2 500 60 so u9/L ! Trial A ! Trial $ too 12D 140 Cadmium - Column GWA - 7S Trial A 400 + 40 300 • 200 i i 100 iR • •�+l�r! •��+��r��ir+ 0 0 50 100 150 Pore voLumes passed Figure 140: Cadmium column Kd — GWA — 7 S Trial A Q—C-2 • Cd in Effluent ! Cd in Feed - • - Kd 130 mL/g Kd 145 mL/g - • - Kd 160 mL/g 200 97IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Cadmium - Column GWA - 7S Trial B 500 .• 400 .. . • • • 300 200 •.••• 100 OXi! !!!•!••!• !!!•!!!•!•! i 0-�♦!'• - 0 50 100 150 Pare voLumes passed Figure 141: Cadmium column Kd — GWA — 7 S Trial B Q—C-2 Cadmium - Column GWA - 7S Trial C 500 • Cd in Effluent • Cd in Feed - • - Kd 140 mL/g Kd 150 mL/g - • - Kd 160 mL/g 200 • 400 •• •' • • • Cd in Effluent 300 • • Cd in Feed Kd 160 mL/g 200 . • • • •' Kd 175 mL/g .• r• ' — • — Kd 190 mLlg . • • 100 •• ••••••••• oeo, ••• 0 �- — A_ 0 50 100 150 200 Pore voLumes passed Figure 142: Cadmium column Kd — GWA — 7 S Trial C Q—C-2 981Page Soil Sorption Evaluation Allen Steam Station L NC Charlotte Molybdenum - Column GWA - 7S Trial A 500 • 400 • • Mo in Effluent S• 300 Mo in Feed •r' r — — Kd 240 mL/g z 200 •• •••• -r--.r r • Kd 260 mL/g r Kd 280 mL/g 100 r �' • r. r r• 0 L •i••• 0 50 100 150 200 Pore voLumes passed Figure 143: Molybdenum column Kd — GWA — 7 S Trial A Q—C-4 Molybdenum - Column GWA - 7S Trial B 500 400 300 a a. n. 0 200 N 100 0 0 50 100 150 Pore voLumes passed Figure 144: Molybdenum column Kd — GWA 7 S Trial B Q—C-4 • Mo in Effluent • Mo in Feed - • — Kd 300 mL/g Kd 325 mL/g - • — Kd 350 mL/g 200 99IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Molybdenum - Column GWA - 7S Trial C 500 400 300 200 100 0 0 50 100 150 Pare voLumes passed Figure 145: Molybdenum column Kd — GWA — 7 S Trial C Q—C-4 3D 25 20 15 10 5 A 00 maimganese 02 04 06 -911. Figure 146: Manganese batch Kd — GWA — 7 S Q—B—I • Mo in Effluent • Mo in Feed - — Kd 300 mL/g Kd 325 mL/g - — Kd 350 mL/g 200 1001Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 500 Selenium - Column GWA - 7S Trial A 400 • ••• ••• so •.•. • • Se in Effluent 300 • • Se in Feed ,i +'• — — Kd 305 mL/g AD ` 200 *-so /a i Kd325 mL/g i — • — Kd 345 mL/g 100 0 0 50 100 150 200 Pore volumes passed Figure 147: Selenium column Kd — GWA — 7 S Trial A Q—C-4 Selenium - Column GWA - 7S Trial B 500 400 . ••• . •• • Se in Effluent 300 . + Se in Feed • — • — Kd 310 mL/g 200 +••••••• +• Kd325mL/g W 10 • — — Kd 340 mL/g 100 • 0 i •— - 0 50 100 150 200 Pore volumes passed Figure 148: Selenium column Kd — GWA — 7 S Trial B Q—C-4 101 (Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium - Column GWA - 7S Trial C 500 400 — 300 200 •+-i—s �= 100 0 •-w •-� �-f• 0 50 • Se in Effluent • Se in Feed — — Kd 325 mLlg Kd 350 mLlg Kd 375 mLlg 100 150 200 Pore volumes passed Figure 149: Selenium column 1d — GWA — 7 S Trial C Q—C-4 102IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 6b 4 2 Thallium Kd = 78.3 nL:2g Kd = 750 mUg y = 00783x R 2 = 0.7345 y = 0.075x R 2 = 08265 00 • o Trial A o Trial B to 20 30 40 50 60 70 so 991L Figure 150: Thallium batch Kd — GWA — 7 S Q-13-3 Thallium - Column GWA - 7S Trial A 50( 400 0 TI in Effluent 300 • TI in Feed — - — Kd 400 nil -/a 200 Kd 425 niL/g — - — Kd 450 mL/g 100 0 0 50 100 150 200 Pore voLumes passed Figure 15 1: Thallium, column Kd — GWA — 7 S Trial A Q—C-4 103 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Thallium - Column GWA - 7S Trial B 500 400 • TI in Effluent 300 • Tlin Feed * • • .... • - • - Kd 425 mL/g 200 Kd 450 mL/g ' I - • - Kd 475 mL/g 100 .' +ram•••• • 0 0 50 100 150 200 Pore volumes passed Figure 152: Thallium column Kd — GWA — 7 S Trial B Q—C-4 500 400 300 A F� 200 100 • Thallium - Column GWA - 7S Trial C • .. • T1 in Effluent . TI in Feed - • - Kd 480 nil -,'a ^'.g Kd 500 mL/g 'i••• -•- Kd520mL/g • 0 •-- 0 50 100 150 Pore volumes passed Figure 153: Thallium column Kd — GWA — 7 S Trial C Q—C-4 200 104IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Vanadium - Column GWA - 7S Trial A 300 250 200 _ 150 100 50 • V inEffluent • V in Feed — • — Kd 475 mL/g Kd 500 mL/g — • — Kd 525 mL/g 0 • — 0 50 100 150 200 Pore volumes passed Figure 154: Vanadium column Kd — GWA — 7 S Trial A Q—C-5 300 250 200 Vanadium - Column GWA - 7S Trial B • • • + • • • V inEffluent • V in Feed a R 150 — . } — Kd 525 mL/g •••••"•'•• Kd550mL/g 100 — • — Kd 575 mL/g 50 0 i• 0 50 100 150 200 Pore volumes passed Figure 155: Vanadium column Kd — GWA — 7 S Trial B Q—C-5 1051Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Vanadium - Column GWA - 7S Trial C 300 250 ••••• •••• • ••• • • • • • • • • V inEffluent 200 • V in Feed _ 150 — . — Kd 560 mL/g ••••••••••• Kd570mL/g 100 — • — Kd 580 mL/g 50 0 0 50 100 150 200 Pore volumes passed Figure 156: Vanadium column Kd — GWA — 7 S Trial C Q—C-5 1061Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte Arsenic 10 lid= 206.1 mL:'g Ind = 220.5 niL g y = 0 22Q5m RT = 0.9101 6 bm y = 0.2061m = Rz = 0.8994 4 2 y` o- Thal A • Trial B €} 14 20 30 40 Figure 157: Arsenic batch Kd — GWA — 9S Q—B-3 Arsenic - Column GWA - 9 S 500 400 300 2 U d 200 100 0 0 50 100 Pore volumes passed Figure 158: Arsenic column Kd — GWA — 9S Q—C-4 50 • As in Effluent + As in Feed — • — Kd 240 mL/g Kd 250 mLlg — • — Kd 260 mLlg 150 107IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 600 500 400 300 200 100 �aai�i�•�i a Boron - Column GWA - 9 S •••• •• ••• • eat • 0 0 50 100 Pore volumes passed Figure 159: Boron column Kd — GWA — 9S Q—C-3 150 • B in Effluent • B in Feed 108IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 6 Kd = 304.4 mL!g Kd = 322.7 in H =L 2 0 5 Cadmium y = G3227x R'= 09867 y = 0.3044x R 2 = 0.9339 @ Trial A * Trial B Figure 160: Cadmium batch Kd — GWA — 9S Q—B-3 75 j 500 400 300 200 100 0 0 50 100 Pore volumes passed Figure 161: Cadmium column Kd — GWA — 9S Q—C-5 10 15 20 AWL Cadmium - Column GWA - 9 S 150 • Cd in Effluent CdinFeed Kd 575 rnL/g Kd 600 mL/g Kd 625 mL/g 109 I P a g e Soil Sorption Evaluation Allen Steam Station UNC Charlotte Molybdenum 7.0 Kd = 57.5 mLfg 6.0 5.0 y = 0.0575x Rz = 0.9012 4.0 on 3.0 • 2.0 • 1.0 a • • Trial C 0.0 0 20 40 60 80 100 120 ltg/L Figure 162: Molybdenum batch Kd — GWA — 9S Q—B-3 Molybdenum - Column GWA - 9 S 500 400 • • • Mom Effluent 300 r I • Mo in Feed - • - Kd 90 mL/g o � 200 Kd 100 mLlg i — • — Kd 110 mLlg 100 0 1" • 0 50 100 150 Pore volumes passed Figure 163: Molybdenum column Kd — GWA — 9S Q—C—I 110IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Selenium Kd= 51-0 mL1g Kd = 57-0 mL,'g 6 y = 0.057x RI = 0,.9245 U bp 4 = 0.051x R= = 0.893 • •! Trial A - Trial B 0 0 20 40 60 80 100 120 140 FOWL Figure 164: Selenium batch Kd — GWA — 9S Q—B-2 Selenium - Column GWA - 9 S 500 400 • ••• •++ • •� • • • • • • • SeinEffluent 300 • • Se in Feed fl. J - - Kd 60 mL/g • d • : , 200 • t, . , Kd 75 mL/g • — — Kd 90 niL/g 100 r � r 0 . • 0 50 100 150 Pore voCumes passed Figure 165: Selenium column Kd — GWA — 9S Q—C-1 111 (Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 10 Kd= 339.2 mL.-g Kd= 337_? mL' 8 TMWHIIM • y = i)_3392x bt y = [}_3372x R 2 = 0_955 2 - + • Trial A • Trial B 0 0 5 10 15 20 25 P Figure 166: Thallium batch Kd — GWA — 9S Q—B-3 Thallium - Column GWA - 9 S 500 400 300 • 200 100 • T1 in Effluent • Tlin Feed — • — Kd 575 mL/g Kd 600 mLlg — • — Kd 625 mLlg 0 0 50 100 150 Fore voCumes passed Figure 167: Thallium column Kd — GWA — 9S Q—C-5 112IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Vanadium 4 Kd = 108.9juLt • ' Kd = 120.3 niUg y = 0.1203x 3 R2 = 09858 a`n 2. Y=0.108 X • R2 = 0-9735 1 • • Tri al A r Tiral R 4 0 5 10 15 20 25 30 35 40 Ply Figure 168: Vanadium batch Kd — GWA — 9S Q—B-3 300 250 200 150 100 50 0 Vanadium - Column GWA - 9 S • • •••• • ••• • 0 50 100 Pore volumes passed Figure 169: Vanadium column Kd — GWA — 9S Q—C-4 • V in Effluent • V in Feed — • — Kd240 mL/g Kd250 mL/g — • — Kd260 mL/g 150 113IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte pH vs LA`S 6.35 Trial A Trial B 6-25 6-15 6-05 5-95 5-S-7 0 20 40 60 80 100 120 L `S Figure 170: pH at varying US ratio for batch Ka testing of AB — 28 D RP vs LIS 3 77 0 Trial A Trial B 360 350 4U 330 i?0 V 0 20 40 60 80 100 120 LS Figure 171: ORP at varying US ratio for batch Kd testing of AB — 28 D 114IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 31D 28D 25D onductvity vs LA`S i 22 o • 190 • Trial A • Trial B 160 0 20 40 60 80 100 120 US Figure 172: Conductivity at varying US ratio for batch Kd testing of AB — 28 D pH vs L1S 9_Q a Tri al A w Trial B 8.8 8 6 8.4 8.2 • 8_0 0 20 40 60 80 100 120 LDS Figure 173: pH at varying US ratio for batch Kd testing of AB — 29 D 1151Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte ORP vs L/S 260 250 240 230 220 210 w Trial A • Trial B 0 20 40 60 80 1DO 120 US Figure 174: ORP at varying L/S ratio for batch Kd testing of AB — 29 D 320 290 2{} 23 (} 200 170 C onductivit vs LA'S 8 I • Trial A a Trial B 0 20 40 64 so 100 120 US Figure 175: Conductivity at varying L/S ratio for batch Kd testing o AB — 29 D 1161Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte pH vs L/S o Trial A *Trial B 5.10 5.05 5_00 4_95 4_90 L/S Figure 176: pH at varying US ratio for batch Kd testing of AB — 31 D CIRP vs L/ 420 • Trial A a Trial B 410 # 400 • 390 s 380 370 0 20 40 60 84 1DO 120 L/S Figure 177: ORP at varying L/S ratio for batch Kd testing of AB — 31 D 1171Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte onductvity vs LI 1U4 162 160 158 0 15 154 0 20 40 60 80 LGO 120 US Figure 178: Conductivity at varying US ratio for batch Kd testing of AB — 31 D pH vs L/ _2 w Trial A *Trial B 6_0 5.8 • 5_ • 54 • 5.2 0 20 40 60 8o 100 120 US Figure 179: pH at varying US ratio for batch Kd testing of AS — 20 S 1181Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte ORP vs Ll 380 w Trial A • Trial B 360 340 3?0 300 • 20 0 ?0 40 60 80 1DO 1.20 US Figure 180: ORP at varying US ratio for batch Kd testing of AS — 20 S C onductivit vs LA'S 250 +Trial A r Tr al B 230 210 190 o 170 • 150 L 0 20 40 60 80 100 110 L'S Figure 181: Conductivity at varying US ratio for batch Kd testing of AS — 20 S 119IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte pH vs L/S 7_4 Trial A • Trial B 7-2 • TO 6.8 6i • 6_4 0 20 40 60 80 100 120 US Figure 182: pH at varying US ratio for batch Kd testing of AS — 32 S C3RP vs LIS 30 ■ Trial A • Trial S 370 350 s 0 330 310 290 0 20 40 60 80 100 1.20 L/ Figure 183: ORP at varying US ratio for batch Kd testing of AS — 32 S 1201Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 3D 32D 284 24D 0 200 160 onductvity vs LI • • Trial A • Trim S 0 20 40 60 80 too 120 US Figure 184: Conductivity at varying US ratio for batch Kd testing of AS — 32 S pH vs L/ 4_5 • Trial A *Trial S 4.85 • 4_ 75 4.65 4.55 4.45 0 20 40 60 8o 100 120 US Figure 185: pH at varying US ratio for batch Kd testing of AS — 34 S 121 IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte ORP vs L/S 500 w Trial A a Trial B 480 =x 460 - i 440 420 400 0 -)0 40 60 80 1 DO 1.20 US Figure 186: ORP at varying US ratio for batch Kd testing of AS — 34 S C onductivit vs LA'S 350 3114 25(} :200 0 150 *Trial A *Trial B 104 0 20 40 60 80 100 120 LDS Figure 187: Conductivity at varying US ratio for batch Kd testing of AS — 34 S 1221Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte pH vsL/ 4_95 *Trial A *Trial B 4_90 4_85 4_80 4_75 • 7 0 —. 0 24 40 60 so 100 120 L"S Figure 188: pH at varying US ratio for batch Kd testing of AS — 35 S ORP vs L.'S 410 400 390 0 380 370 360 • Trial A • Trial P • 4 20 40 60 80 100 120 LS Figure 189: ORP at varying US ratio for batch Kd testing of AS 35 S 123IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte Conductivity vs L/S 173 a Trial A a Trial B 170 18 165 163 • L 60 0 20 40 (Y0 80 too 120 LIS Figure 190: Conductivity at varying US ratio for batch Kd testing of AS — 35 S pH vs LA'S 9.0 *Trial a1 A .* Trial B 8.5 • 8.0 • M r. 0 • 6_v 1) 20 40 60 80 100 120 US Figure 191: pH at varying US ratio for batch Kd testing of GWA — 3 BR 124IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 305 295 285 0 25 165 • ORP ors L/S 0 8 0 0 e Trial A • Trial B 0 20 40 60 80 100 120 L/S Figure 192: ORP at varying L/S ratio for batch Kd testing of GWA — 3 BR 176 174 172 170 0 168 166 Conductivity vs L/S I •Trial A *Trial B 0 20 40 60 80 LOO 120 LDS Figure 193: Conductivity at varying L/S ratio for batch Kd testing of GWA — 3 BR 1251Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte pH vs LDS TO w Trial A *Trial B • 6. 6.6 • 6.4 6.2 6.0 p 24 40 64 so IDD 12D US Figure 194: pH at varying L/S ratio for batch Kd testing of GWA — 9 S OP vs L'S 390 30 • 371? • 0 360 • 350 340 ■ Trial A a Trial S • 0 24 40 60 80 100 120 US Figure 195: ORP at varying L/S ratio for batch Kd testing of GWA — 9 S 1261Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte .M 185 180 175 0 170 15 Conduc" vs L/ 0 20 40 60 80 LGO 120 US Figure 196: Conductivity at varying L/S ratio for batch 1d testing of GWA — 9 S 1271Page Soil Sorption Evaluation Allen Steam Station 4316 plots 3 6 9 12 92 9 6 3 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 197: Arsenic 1316 AB - 39S (2FT) 0 3 6 9 12 400 400 300 a 200 c O O m 100 0 0 3 6 9 L:S Ratio (mLlg-dry) Figure 198: Boron 1316 AB - 39S (2FT) • 300 200 100 0 12 UNC Charlotte 1281Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 40 30 Q CL c 3 20 0 3 6 9 12 0 3 6 9 L:S Ratio (mLlg-dry) Figure 199: Molybdenum 1316 AB - 39S (2FT) 20 0 2 4 6 15 CL 10 7 N d U3 5 0 12 8 10 20 Trial (A) 15 10 5 fl 0 3 6 9 'fit L:S Ratio (mLlg-dry) Figure 200: Selenium 1316 AB - 39S (2FT) 129IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 4 6 8 10 12 9 6 3 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 201: Vanadium 1316 AB - 39S (2FT) 0 2 12 9 • Trial 130IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 2 60 45 • rL PL U 30 U) 4 6 8 10 • Trial 0 3 6 9 L:S Ratio (mUg-dry) Figure 202: Arsenic 1316 AB - 39S (3FT) 0 2 4 6 400 C • 300 a E- 200 0 L MO W 100 • 0 60 45 30 15 0 12 8 10 400 Trlai (A) 300 200 100 • 0 0 3 6 9 12 L:S Ratio (mUg-dry) Figure 203: Boron 1316 AB - 39S (3FT) 131 (Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 2 60 45 • 0 4 6 8 10 o • Trial 0 3 6 9 L:S Ratio (mLlg-dry) Figure 204: Manganese 1316 AB - 39S (3FT) 0 2 4 6 120 90 a A 60 a 0 30 0 W 45 30 15 0 12 8 10 20 Trial (A) 90 60 • 30 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 205: Molybdenum 1316 AB - 39S (3FT) 132IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 600 450 2 a E 300 d ai U) 150 0 3 6 9 12 600 450 300 150 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 206: Selenium 1316 AB - 39S (3FT) 0 3 6 9 12 80 60 M a E 40 3 �a m c R 20 0 0 3 6 9 L:S Ratio (mLlg-dry) Figure 207: Vanadium 1316 AB - 39S (3FT) • Trial (A) • 80 60 40 20 0 12 133IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 Q 2 0 3 6 9 12 • Trial 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 208: Arsenic 1316 AB - 39S (4 — 6FT) 0 3 6 9 12 600 600 450 • 150 0 0 3 6 9 L:S Ratio (mLlg-dry) Figure 209: Boron 1316 AB - 39S (4 — 6FT) 12 450 300 150 0 134IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 3 6 9 12 0 32 24 0 3 6 9 L:S Ratio (mLlg-dry) Figure 210: Selenium 1316 AB - 39S (4 — 6FT) 32 24 16 8 0 12 1351Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 320 240 2 2 160 N N 3 6 9 12 320 240 160 80 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 211: Arsenic 1316 AB - 39S (53FT) 0 3 6 9 12 $40 630 a 420 c O O m 210 0 0 3 6 9 L:S Ratio (mLlg-dry) Figure 212: Boron 1316 AB - 39S (53FT) • Trial (A) $40 630 420 210 0 12 136IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 3 6 9 12 10 8 6 4 2 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 213: Iron 1316 AB - 39S (53FT) 0 3 6 9 12 8D 60 Q N 40 O ai c m 20 0 4 3 • 0 3 6 9 L:S Ratio (mLlg-dry) Figure 214: Manganese 1316 AB - 39S (53FT) • Trial (A) Trial (B) • Trial (A) 80 60 40 20 0 12 137IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 3 6 9 12 200 150 Q 100 c ar 7. O 50 0 200 150 100 50 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 215: Molybdenum 1316 AB - 39S (53FT) 0 3 6 9 12 360 360 270 2 Q E 180 d m cn 90 0 • Trial (A) 270 180 90 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 216: Selenium 1316 AB - 39S (53FT) • • • Trial (A) • 1381Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 100 75 25 0 3 6 9 12 0 3 6 9 L:S Ratio (mLlg-dry) Figure 217: Vanadium 1316 AB - 39S (53FT) 100 75 50 25 0 12 139IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 16 12 2 8 Q 4 0 3 6 9 12 16 12 8 4 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 218: pH at varying L/S ratio for 1316 testing of AB - 39S (2FT) p 3 6 9 12 4 00 300 E 200 a O 100 0 • Trial (A) Trial (B) • • 400 300 200 100 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 219: ORP at varying L/S ratio for 1316 testing of AB - 39S (2FT) 1401Page Soil Sorption Evaluation 0 —V 330 c� a .�,, 220 Allen Steam Station 3 6 9 12 440 330 220 110 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 220: Conductivity at varying US ratio for 1316 testing of AB - 39S (2FT) UNC Charlotte 141 IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 2 16 12 x 8 C. • • • 4 0 4 6 8 10 16 12 8 4 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 221: pH at varying L/S ratio for 1316 testing of AB - 39S (3FT) 0 2 4 6 8 10 360 360 320 E 280 d O 240 200 • • Trial 320 280 240 200 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 222: ORP at varying US ratio for 1316 testing of AB - 39S (3FT) 142IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 4 6 8 10 60 45 30 15 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 223: Conductivity at varying US ratio for 1316 testing of AB - 39S (3FT) _U 0 2 60 • 45 30 • 143IPage Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 16 12 2 8 !Z 4 0 3 6 9 12 16 12 8 4 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 224: pH at varying L/S ratio for 1316 testing of AB - 39S (4 - 6FT) 0 3 6 9 12 2 30 240 E 160 a O 80 0 • Trial (A) 320 240 160 80 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 225: ORP at varying US ratio for 1316 testing of AB - 39S (4 - 6FT) 1441Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 3 6 9 12 160 120 P c� a � 80 w 0 U 40 0 160 120 80 40 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 226: Conductivity at varying US ratio for 1316 testing of AB - 39S (4 - 6FT) 1451Page Soil Sorption Evaluation Allen Steam Station UNC Charlotte 0 16 12 2 8 !Z 4 0 3 6 9 12 16 12 8 4 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 227: pH at varying L/S ratio for 1316 testing of AB - 39S (53FT) 0 3 6 9 12 2 80 210 E 140 a O 70 0 • Trial (A) 280 210 140 70 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 228: ORP at varying US ratio for 1316 testing of AB - 39S (53FT) 1461Page Soil Sorption Evaluation Allen Steam Station 0 2 4 6 240 180 c� a .�,, 120 U 60 0 8 10 240 180 120 60 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 229: Conductivity at varying US ratio for 1316 testing of AB - 39S (53FT) UNC Charlotte 1471Page