Loading...
HomeMy WebLinkAbout20120727 Ver 2_Stormwater Info_20140210COMMERCIAL SITE DESIGN 8312 (rfQdmc)or Road Ralvigh,NC 27613 919.848.6'1.21 Phone 9'19.848.3741 Fax mmmu2m Revised: June 15, 2012 Revised: July 12, 2012 TABLE OF CONTENTS SECTION I — EROSION AND SEDIMENT CONTROL OL ... .................. ..............................2 1.1 PROJECT DESCRIPTION ................. .............. .......... __ ............,...........,.....2 1.2 EXISTING SITE CONDITIONS .... ........ ................ ....... .... ..... ,........................................ 2 13 ADJACENT AREAS.. ............... ................ ......... ......... ............... ............................_-2 1.4 CRITICAL EROSION AREAS .....................................................,.... ..........................,...2 1.5 EROSION AND SEDIMENT CONTROL MEASURES .................... ............................... 1.6 VEGETATIVE STABILIZATION ........... ........ ............................... ..............................4 1.7 TEMPORARY STABILIZATIO N ..................................................... ..............................4 1.8 MAINTENANCE ...................... - .................................................................................... A 1.9 CONSTRUCTION SEQUENCE ......................................................... ..............................4 SECTION II — STORMWATER MANAGEMENT ................................ ............................... 2.1 STCIRMWATER NARRATIVE.—, � ..... ............... __ ............. ........................ ............... b 2.2 STORMWATER DETENTION ....................................................... ..............................6 2.3 STGRMtATER QUALITY......... ............. .................. ...................... ..........,...................6 2.4 CALCULATION METHODOLOGY... ........................................... ..............................6 2.5 MAINTENANCE ................. APPENDIX A -SUMMARY OF RESULTS ...... ...... ......................................... . .......... . ... ... .... .......................... g APPENDIX I3 - MISCELLANEOUS SITE DATA ............................................................... ..............................9 APPENDIX C - PRE DEVELOPMENT HYDROLOGIC CALCULATIONS... ............................................. 10 APPENDIX D - POST DEVELOPMENT HYDROLOGIC CALCULATIONS ............................... ........... I I APPENDIX E - HYDRODYNAMIC SEPARATOR. CALCULATIONS ............................ .............................12 APPENDIX F - PONDPACK OUTPUT .............................................................................. .............................13 APPENDIX G - STORM DRAINAGE CALCULAT IONS .................................................. .............................14 APPENDIX H - EROSION CONTROL CALCULATIONS--, ...,.1 S 1.1 PROJECT DESCRIPTION This report addresses expected crosion and sediment control and stori-riwater management for the proposed development of a Bojangles'restaurant in Lumberton, North Carolina. The property is located at the northwest corner of Dawn Drive and FaN7etteville Road (L S Hwy 301). The site total acreage is 1.65 acres. Currently the lot is an undeveloped wooded parcel with no structures or other measurable impervious areas. The proposed development will consist of a one story 3,808 square foot building with curb islands and associated park-irig. The proposed construction will result n'i an increase of inipervious area and will be approximately 68')/�o iii-ipervious. 1.2 EXISTING SITE CONDITIONS The existing site is an undeveloped wooded parcel with no structures or other measurable irnpervious areas, Drainage for the site sheet flows from cast to west across the SIM The site is bounded and accessible by Dawn Drive to the cast and southern property line. Fa;,ctteville Road (US Hwy 301) bounds the site to the north. U-ndcveloped areas covered with woods bounds the site to the west. �-Rw, WIMIN =0 The most critical erosion area will be the surface of the workia-ig area during construction operations, If grass is not established on dormant denuded -areas then there is a significant potentiaal for the covered areas to be crodcd and for scditnent to be carried in the runoff. To minimize the potential for erosion, covered areas that are temporarily inactive will be seeded within 14 worl6ng days after placement of the soil cover. All vegetative practices and erosion and sechment control features shall be designed, constructed and maintained in accordance with the North Carolina Erosion and Scd.irlicnt Control Planning Standards and Specifications. '117e features are designed to control runoff resulting from the 10-year frequency storm. flan -vices drawings with details are provided. 1.5.1 S'I'ABII,lZr-DCONSTRUC'TIONENTRANCE/EXIT (REF ER INCE NCESCPDM STI) & SPEC 6.06) Stabilized construction entrances should be used at all points where traffic will be leaving a construction site and moving directly onto as public road, Wash down facilities may be required as directed by your local approving agency, Construction entrances should be used in conjunction with the stabilization of construction roads to reduce tlie amount of mud picked up by vehicles. 2 Bojangles' Lumberton, NC BOJ- 1201 4/18/12 1.5.2 SILT FENCE (REFERENCE NCESCPDM STD & SPEC 6.62) Sediment fences will be provided down gradient of the proposed site grading at the locations shown on the drawings. The sediment fences will direct flow to either a sediment deposition area behind the fence or to a sediment trap. Silt fences are not to be used across channels or in areas of concentrated flows. 1.5.3 BLOCK AND GRAVEL INLETPRO'11"CTION (REFERENCE NCESCPDM S"I'D & SPEC 6.52) Block and gravel inlet protection will be, Litilized. on this site. The inlet protections are Utilized to help prevent sedinicrit from entering the storm drains before stabilizing the contributing watershed. This practice allows carly use of the storm drain systct-n. L5.4 ROCK PIPE INLET' PROTECTION (REFERENCE NCESCPDM STD & SPE�'C 6.55) Rock pipe inlet protection will be used at the driveway culvert to prevent sediment from entering, accumulating in and being transferred by the storm drainage systern prior to stabilization of the drainage area. This systern allows carlv use of the storm drainage system. 1.5.5 TEXIPORARYDOVERSIONS (REFERENCE NCESCPDM STD & SPEC 6.20) Temporary diversion ditches will be constructed to prevent work areas from upslope runoff and to divert sediment-laden water to ski mi-ner basins. 1.5.6 SKIMMER BASIN (REFERENCE NCESCPDM SID & SPEC 6.64) Skimmer basins will be. installed to provide in area for runoff to pool and settle out a portion of the sediment carried down gradient. 'Fhe skimmer allows the basin to be dcwateted from the top of the water column at a rate conducive to sediment settling within the basin before released downstream. 1.5.7 POROUS BAFFLES (REFERENCE NCESCPDM STI) & SP[-,'C 6.65) Porous baffles will be installed W1th1T1 the skimmer basins to reduce velocity and turbulence of the water flowing through them. Baffles Unprove the rate of sediment retention by distributing the flow. 3 Bojangles' — Lumberton, NC BOO -12101 4/18/12 Vegetative Cover shall be re-established within 15 working days or 30 calendar days after completion of the activity, whichever period is shorter. Refer to plans for temporary and permanent seeding schedule and specificatiOrls. Disturbed -areas will he vegetated in accordance with section 3.0 of the North Carolina Erosion and Sedimentation Control Design Manual and the seeding specifications. 'Temporary control features will remain in place and will be maintained until the up- gradient disturbed area has been stabilized with vegetative cover, I I All erosion and sediment control measures will be checked for stability and operation following every runoff - producing rainfall but 111 no case less than once every wccL Any needed repairs will be rnade tintriediatcly to maintain all rricasures as designed. Sediment fences and skimmer basins shall be inspected at least once a week and after each rainfall event. Repairs shall be made u',nmediately, Sediment deposits shall be removed as needed to provide adequate storage volume for the next raifall event, and to reduce pressure on the fence. Fencing materials and sediment deposits shall be removed, and the area brought to grade following stabilization of upgradient disturbed areas. OBTAIN A LAND DIS`I1.7RBING PERMI'F. SCI IF DULF; _\ PRE-CONS17RUCTION M I E" 11 N G� 2. INS'I'ALL GRAVEL CONS'FRUMION SI1J FENCE, SKFINKFIRB.kSINS AND L.,.,R NlJ­:1SF,'R1_,1'S,\S SlIO\VN ON TIE ,\PPRO\7E D PITASE 1 EROSION CONTROL PI \N. CLE R ONLY , \S N FCFSSARY TO INSTALL THf.-,,SE DII'VICES. SEED TEM"ORAM" DIN1­'11SIONS, 131KMSAND SKI,\LNIER BASIN 1 MBANJ�%IENJ'S C()NS'I'.RUC'FION'I'O PROV]DE 7-1),\Y S'J'ABILIZATION OF Tlll-.,SE S'l'RUC'I'UIU`S. Sld," DE 'I' ON SEEDING SCT­IFDIJIJ',,. CONTRACTOR SHALL BEGIN WYFJ I AND All. OTHER SEDI,�IEN'I'CON'F.-\IN'i\fEN'I'DE\'I("],"S FOFJ,0 ,VF-I) BY :ALL DIVERSION DFIX-1 IES/BERMS. 3. BEGIN CLE'ARING/GRUBBING AND GE.NFRAL EXCAVA'FION ON SI'Fl_: OF SE,Dni IENI'CON'l*RO1_ DI:A`1(111,'.S ONLY. I'1'IS'1*1 lE RESPONS11311,11Y OF TI IE CON'FRACTOR'I'O PHASE1/ST'AGYF`. FlIZOSIONCON1,R01.1"O ALLOW FOR CONS'FRUC-FION (SEE PITA S FE),F` ROSTON CONTROL PLAN'SHEETS). NO'1'1,' ': CONTR,WfOR SI 1.\Ll_ INSPE( REP,\IR.\I J. EROSION DEVICES AT SF LEAST ONCE A \V`F`EKA_XD AF­FFA� F!%'F,RY RAINFA11- GRADING BE PROITIBITFF) IN'Ff ("W'I'l DFAWES/SKE\n� fER BASINS UN-fll.'MEARFAS UPS'I_R 1­'1.\:M OF'11 TF'SFDFYICES HAVE BEEN 5FABILIKED AND APPRM"ED. 4 Bqjangles' Lumberton, NC B0J- 1201 4/18/12 4. BEGIN INSTALLI-NG UPSTRL 01 STORM DRAIN AGE: TNSTALL,\PPRO\"T-7,D TNLF.-F PIZO'fT"(-'['ION ASSTORIM DRAINAG&'SYSTJ��,Nl IS CONMI.F-I`F.D- TF-,.R".'\ITN,,\Tl- STORM DRAINAGE S'VSTE'M , \T'I'E\ WO R. 1121' SKI - '\ f7.\ FER BASIN DF.N'T(']--,S UN'T'll, SUCH D1-'VTCF` ' S HAVE BEEN APPROV-T) l-,'OR It [-,.MOVAL. ADDITTONAL'MEAS(' 'RFS -.MAY BE Rl�'QLJIRl"I) BY THE INSPECTOR DU TM ROUTING OF THE STORDRAINAGE SYSTJ-s-\l AND ACTUAL FIELD CONDITIONS; WTI`: SKIM4,ff.,.,R. Bz\SINS SIIAl-I- III: l,L,JN(-"1'10,N,\L'IIIROLIGIIOtJ'I'(7R.\DIN( \Nl) [IM',"AV,'�TING UNTIL APPROVED FOR REINMOVAL, STA 13 1 LIZ F" .\REBR( 5UG1 ITUPTO I �INISf I GRADF, WITI I VE,GET-ATION, PAVING, DIM I LININGS F I -['(-..SEFD-1Nl-)'\fl.,'I-(-HDF,NtTI E T) AREAS WITHIN FOURTEEN (1 4) DAYS OF CO-.\IPI,I:','I'TON OF ANY PI-JASE OF COM.,TRUCTION; NOT ,: TI Ii,' CONTRACTOR St IALL 1�"NSURE'fl IAA TI IF, EROSION CONTROL DFV­ICFS REMAIN UNDIS'11-',RBI-A) DUIRING CONSTRUCTION OFTHFBUILDING PADS AND PARKING/DRIVJ,'ARFAS \DjA(-'E'N'l"l'O'll ILSE DEVICES UNTIL "I "I If-, (:ON'f'RT]3t,-"f'TNG t'PSTRFXNIARf-;.\S 11.11 I; B12"EN STABILIZED AND APPRO\'ED. 6. ONCL UPSTRE'AM AREAS FlAVE BEEN STABTLTZED AND APPROVED, SKMLMMER BASINS CAN BE Rf-MOVED WITI I N('l'I.)t?NRAI'PR(-)\AL. ADDITION,\]- Sfl:l'l:,'Y,'NCINC7 AND SILT FENCE OtTI'LETS SHALL BJ`lNST.\LLE'D;\TTIJTS TINtF TC7 CONTAIN Rl--'j\,LkININ(.,, DENUDED AREAS IN T] IF' VICINI'IY OFTHE REMOVED BASINS ASTHE'St" AREAS ARE CONS"FRt"Cl ED AND STABILIZED (SEE PHASE 2 f,"ROSION CONTROL PLAN). (',ON'I'lNtll,'.']'O INSTA-LI, APPROVI:-M INIT"TPROTECT100 AND ENI."R.G ' DISSIPA'FORS AS STOR-M DRAI-NAGill,'SN'STEM IS COIIPLETED, OBTAIN,'\PPROVAL FROM N(.,DENR PRIOR TO INSTALLXFION OF TI [I-,SF DEVICES. S. Al I F'.N STTI-" TS.\PPROVED, RE.NIO\'I-:'I'I..:-\fi'OR,-\R-'i'DI\!L-RSIONS, SIEFFENCING, INLF'-.f'PRO'lT-CTTON, ETC.., AND SEED OUT OR PAVF,, 1-N-1T RESULTING, BARE AREAS, (-.ONNF,'.("t'.\NY RE4IAIMNG UPSTRI:A-Nl STORM DRAINAGE. Bojangles' - Lumberton, NC BOO- 1201 4/18/12 Per requirements set forth in the City of Lumberton Stormwater Management Ordinance, new development shall provide stormwater management such that storage facilities detain the 10 -year (1-hour) sionii event to the pre-devc1opment runoff rate. Additionally, 85% TSS removal must be provided for the first inch of runoff from the site. In order to satisfy these -requirements, the proposed stori-n sewer systen-i will work in conjunction with an outlet control structure and hydrodynamic separator. The following report provides detailed information regarding the hydrology and peak runoff rates for the pre- and post- development conditions of the proposed Bojangles' site. Also included are final design calculations of the proposed storm sewer systern used for detention and the hydrodynamic separator. The proposed storm sewer system in combination with a weir box is designed to detain the 10-year (I -hour) stotm event to the pre-devrelopment rate. In order to achieve detention, the implementation of a weir box at the downstreatri end of the storm sewer system with a drax-Mown orifice was used. Please refer to the attached calculations and construction drawings for more detailed 'information regarding the design of die storm sever system. 11 01 In order to achieve 85)"'o TSS removal, a hvdrodynamic separator Is proposed upstream of the detention facility. The proposed hydrodynainic separator shall be a Storrnceptor STC- 7200. Specifications for the proposed Stormceptor device can be found at http://%,v�k,Nv.stormceptor.com/en/rcchnlc,,ti-ltifori-n,,itiot.i/ilidex.htt-nI. Please refer to the attached appendices for additional information regarding the design of the proposed Storinceptor device. 2.4 CALCULATION METHODOLOGY • The 1Q year rainfall data was taken from NOA.,% Atlas 14. This rainfall depth was then 'input into the meteorological model within PonclPack for peak flow rate calculations. Please reference the miscellaneous site data section within this report for additional infortnation. • Soils data for the site was taken from the NRCS wet) soil survey websitc (http://wel-)soitsun,ey.tircs.tisda.gov/)i Please reference the miscellaneous site data section within this report for additional infori-nat.1011. • The on- and off-site topography used in the analysis is ftoni a field survey by Cornmercial Site Design- • The pre- and post-development allies of concentration were assumed to be ten (10) five (5) minutes, respectlilTely. 6 Bojangles'- Lumberton, NC BOO -12tH 4/181"12 PondPack Version 10.0 is used to generate post-development peak flow rates. Output from PondPack is included wit bin this report. 2.5 MAINTENANCE The proposed outlet control box and Stormceptor device shall, be inspected at least once every six months and within 24 hours after every storm event greater than 1.0 *inches. Inspect for signs of trash and sediment accumulation at the drowdown orifice, and remove accumulated sediment or trash as needed. 7 Bojangles'— Lumberton, NC BOJ- 1201 4/18/12 IN Bojangles'— Lumberton, NC BOJ- 1201 4/18/1? UDS/WEIR BOX SUMMARY Outflow Max WSE 415 125.66 Inflow Return Period 10-Year —&84 Drainage area 1.90 acme Impervious area 1.23 acres % Impervious = 64.74% Pipe size = 36 inches Total length = 775 feet Cross sectional area = 7.07 sf Volume provided = 5478 r[ Upstream invert = 123.70 feet Downstream invert = 12235 feet Weir elevation = 126.75 feet Weir length = 5.00 feet Orifice elevation = 122.75 feet Orifice divmoeter= 10.0 inches Outlet barrel diameter = 15 inches Outlet barrel length = 40 feet Upstream invert = 122J0 feet Downstream invert= 122.50 feet Outflow Max WSE 415 125.66 Bojangles' — Lumberton, NC BOJ- 1201 4/18/12 34' 40 49' Soil Map—Robeson County, North Carolina (Bojangles'- Lumberton, NC) ur P Scate: 17,920 9 printed on Asize (&S' x 11") sheet, N Meters A 0 50 100 200 300 a Feet 0 300 600 1,200 1,600 USDA Natural Resources Web Soil Survey 4/1212012 i" Conservation Service National Cooperative Soil Survey Page 1 of 3 3,V'39 W' eo 2 j3 Z 0 Z o CL m Z PL a) LL 41 IL (li (1) 0 0 Q Cj C-4 10) I m .T 0 16 2 ca m 0 co I E I .— am- Im E z c .0 E a, c cc m CL m z 1-0 CL r- 2 o E mr- > 0 00 LIDL tom a.- m - "L (D 0 r O 0 '0,, N E o 0 E a, a) E -ow .,o w �j 0 > 41 C) -6 m I m Z m 0 Lq 0 m o E' — 6 -- E — 0-0 :3 m c f ML '6'0 25 tt! E 0E 4°`0 �= e 0 EL M M CL Cm' uj CL E E o Z PL a) LL 41 IL (li (1) 0 0 Q Cj C-4 10) I m .T 0 di ca m c c cc 00 0 41 C) I C CL Z PL a) LL 41 IL (li (1) 0 0 Q Cj C-4 10) I m Soil Map—Robeson County, North Carolina LM3MM= Totals for Area of Interest Lumbee sandy loam Meggett fine sandy loam Norfolk loamy sand, 0 to 2 percent slopes I 1.9 - . .'i 49,2% 24.3% 26;6% 10000% USDA Natural Resources Web Soil Survey 411212012 2 " Conservation Service National Cooperative Soil Survey Page 3 of 3 �l 9 q Ck t P c aae m c 8 E c3 It 14 row", LU U. I , Ck t P c aae m c 8 E Will I'll III I I lQ Bojmnglon` — lumherurm. NC B0) 1201 4/I8/12 q +ri 6 K HR l jlj a�� . y'��' \A" 449 '" y� / � .• � r"'""...., � � � � I S ll 4. s 7N Of ,at s1�,,Rs. 4 y��� . �e„'e• ,d�$E qf, �, `� S +tip` a / ov. Ul 4� e �y. } � R �r•�: � � gyp` S {f 4f .. +tea tqy q zi 'S UZI a y t3 qy I of F� W 62 2, E w i t Type.... Runoff CN -Area Nar-.ie .... BY-PASS Page 7.01 Fi.le .... X:\BOJ - Bojanale-,\1201 - Lumberton, NO @ 301\Enaineering\Stormwater\2012-06-1I 13, RUNOFF CURVE NTJMRER DATA Impervious Area Adjustment Adjusted Sail/Surface Descriotion CN acres PIG GUG CN ----------------------- ---- --------- ----- ----- ------ Open space (Lawns,parks etc.) - Goo 76 A?D 76.00 COMPOSITE AREA & WEIGHTED CN - - -> A70 76.00 (76) S/N: Bentley Systems, Inc. Bentley PondPack (10.01.04.00) 10:54 AM 6/15/2012 Type ... . Ic Ce:cs Name .... sY Ass Page L :e.... X:\BOJ - :eager a 1201 - Lumberton, ec ! 30 G 2 Inee =in+ stogy to 6 2412 -:4 -1: E .... ........ .........................,. ......,,.........,.....,...,.., TTME, OF CONCENTRATTON OR Segment #1: 2c: User Defined sew e:t #1 Time: 10,00 Min IoLa: To: 10.00 m- aZ&: Bentley Systems, c. Bentley Pond Pack (10.00.022-00) 2:34 m 4 /18 /2012 Type.... Unit Hyd, Summary Page 8.03 Name.... BYPASS Tag: 10 Event: 10 yr File. , . . X:\BOJ - Bojangles\1201 - Lumberton, NC @ 30I\En(ginc--er..i.ng\SLormwater\2012-06-11 B� Storm... TvpeII 24hr Tag- 10 SCS UNIT HYDROGRAPH METHOD STORM EVENT: 10 year storm D u I. a Li o n, 1440.00 min Rain Depth - 5.6100 in Rain Dir = X.,\BOJ - Bojangles\1201 Lumberton, NC @ 301\Engineerincj\St Rain File -ID - 7-ypell 24hr Unit Hyd Type Default Curvilinear HYG Dir = X,\ BC) J - Bojang1es\.,.20'1 Lumberton, NC @ 301\Engineering\5t HYG File - !D = work pad.hyg - BYPASS 10 To = 5.00 min Drainage Area = .670 acres Rufloff CN= 76 Computational Time Inci°eit,ent 667 mi.. n Computed Peak Time -715.33 min Computed Peak Flow 3.22 cfs Time increment for HYG File 3.00 min Peak Time, Interpolated Qutpijd' '714,00 mi. n Peak Flow, Interpola-ed Outpu,,-. 3.08 cfs WARNING.- The difference between calculated peak f1ow and interpolazed peak flow is greater than .7491 DRAINAGE AREA TD:BY PAS S "N = '7 6 Are�--i .6'10 acres S = 3.:15'7 9 i n 0.2S .631.6 in Cuinulal ive Runoff ------------------ 1.04, 62 in '7409 cu.ft HYG plume... 7407 cu.ft (area under HYG curve) '**** SCS UNIT HYDROGRA?H PARAMETERS Time Concentrat.ion, Tc = 5.000 min (TD: BYPASS) Computational Incr, Tin = .66 min - 0,20000 Tt> Unit Hyd. Shape Factor = 483.432 (3'7.461 Under r-ising limp) K = 483.43/645.333, K .7491 (also, K = 2/(].+(Tr/Tp)) Receding/Rising, Tr/Tp - 1�6696 (soivod from K .7491) Unix peak, qp 9.11. cfs Unit peak time Tp = 3.333 min Unit receding limb, Tr 13.333 min Total unit Uiffle, Tb 16. 66'7 min SIN: Bentley Systems, Inc. Bentley PondPack 10:54 AM 6/15/2012 Bpjangles'— Lumberton, NC BOJ- 1201 4/18/12 ,4 NV_7d ONIGt✓d ---• - € ? "J RFi4 }dLES') b�4ii �SS ?fc" �E f7 iYi #? €i# 1 }"�1 ➢1�2{ q. 3,s K Amt Y�:t tr�a4 t. in ,i Ct�i iiUU�sed t E�#'3 t.lis 9192 -GZ9 (PQD 3NCHd3-13.L Ogg _ " M&Y703onvio "Nil N VNI70&VO1418O 'NO183URM 4 . . w. -lZBZ VN17QZiVO H_1'.dt?N '3J L.t 18VHO ante 3Nrd N&3Hinos em G%/h � € 377I,+1 11 rt t � $ ,rtld€� fiWV k%C3 '3N7 "SdNb� nv_Ls3H.s37*JNVd'o8 stN3wovaoauaorrvanra®xv za-ax -sa '. �� 0, w enrnrcrn.�sr :b"�'NA10lJ,NHi7.� � u w � Ho i H1 g Ifflo .11 6, fiOa> qp yy�p >yegHQxx �a'LLLL a �ati=, M U S✓7+,p C F�a+ww a. aroaa� nun. w* °. cs �a F66S Fw»WS p W pit s r�$QZ�..orsw5 az w`a.`' C, HM g K3S�g.QZ nw 21H�p v Pi'3 c`�a zd.xc a is Ufl_ N n s ,ri M m �1A1QWM11wm ®®■■■■■'■■■m milli R111111 Iug 30111 111111111, p. lam - CN- �£ ,t y� QtiJ zYA Y L+TM4� MoSM. M3 wh ly[pp WCiy. Si 3 k.0 sQ �.Yti �y'{f�ay1 6e}3 tJ lI..� I } !pRy ®N C65 NATjR S..4C 4 9ti,q Sri, aw -tia ` -,ffiRR_ z2W mu s ' e M I �'u ;:. .< r a " A% S 1, ®L 5 �w a, lu U� t5 II.I g �F g q y s. W 6UH m� F.. Hai aH YyV��U gg �W S F�; ' }- 45' "/I e4t Uw" yU er,_ii C QH 'yi ¢8 § �w a, lu U� t5 II.I g �F g q y s. W 6UH -vge.... nnoozz cm-area Page 7,03 onmmrF CURVE muMBoe DATA Impervious Area edjuouneoL Adjusted Soil/Surface Description CN acres %C �oc Cm ----------------------------- -- -------- ----- ---- ---- Woods - good 77 .880 /7.00 Brush - hrp;h, weed, grass mix - no 73 1.020 r3.0$ comroazTn AREA a WEIGHTED nm ---* 1.900 74.85 (75) o/m: Bentley Systems, Inc. Bentley pnudPmok 110.01.04.00> 10'54 Am 6/15/2012 Type.... Tc Calcs Name. . . . P11E Page 6.03 Eii .... X. \BOO v Bojan les \1201 - LsmherLcn, NC @ 301 \Engi eer.ng\Sroz:mwa er\ 2012 - 0 6- 11 B_ TIME UI CONCENi'Rl-TiON t;.ALCU �,- '70R....... < . < . . . . ... . . . ....... . ........ . .. . Segment 2.: Tc; User D f? ne , egm nr #1 Time: 1-0.00 rein Total Tc: 10.00 rain SIN; Bentley Svstems, Inc. Bentley PondPack 0.01.09.00) N:54 AM 6/1512312 Tvpe.... Runoff CN-Area Name. . . . TO UDS Page 7.03 Fille .... X-\BOJ - Bojangles\1201 - Lumberton, NC � 3O'1Engi-nee-rina\Stormwater\2012-06-11 f3' RUNOFF CURVE NUMBER DATA Impervious Area Adjustment Adjusted Soil/Surface Description CTq acres uC '16 UC CN -------------------------------- ---- --------- ----- ----- ------ impervious Areas - -Paved rarkLng Io 018 1.230. 98,00 4 COMPOSITE AREA & WEIGHTED CN 1,230 98.00 (98) SIN t Bentley Systems, inc. Bentley Pond Pack (10.01.04.00) 10:54 AM 6/15/2012 Type ... . Synthetic Cumulative Be;D,h Page 7 Name..., Distribution A T,-ig: 10 Event: 10 yr File, . , . X : \BOJ - Bojangies \1201 - Lumberton, INC @ 301 \Er.gineerinct\•Stormwater \:102.2- 04 -1.1 B Storm... Basrribution A Tag: 10 TI'HE OF CONCENTRATION CALC'ULATCR Segment C.: Tc: User Defined SecJnenL ##1 Time: 5.00 min Total. Tc: 5.00 min SIN: Bentley Systems, Inc. Bentley PrndPack (10.00.022.00, :34 PH 4/18/2'012 Type.... Unit Hyd. Suinnaz.y Page 8.06 Name:.... PRE Tag: 10 Event: 10 yr. Fl.le.... X:\BOJ - Bo-jangles\11201 - Lumberton, NC @ 301\ Engi nee ring\ Storrnwater\ 2012 -06 -11 B S torrn ... Typell 24hr Tag- 10 SCS UNIT HYDROGRAPH METHOD STORM EVENT: 10 year storm Duration = 1440.00 min Rain Depth = 5.6100 in Rain Dir = X.\BO,l - Rojangles\.1201 Lumberton, NC @ 301\Engineering\St Rain File -ID = - 'rypeI 1 2.4 h r Unit Hyd Type = D e f Ia u 1 C-Li r v -' I i n e a r HYG Dir = X:\BO,J Rojangles\1201 Lumberton, NC @ 30I\Engineering\St HYG File - 11a = work _pad.hy �g - PRE 10 Tc = 10.00 min Drainage Area = 1.900 acres Runoff CN= 75 =�—== == = ==--. �, - -- - ------------- Computational Time Increment 1.333 min Computed Peak Time 720,00 min Computed Peak Flow 7.69 cfs Time Inrenient for H ' File 3.00 min Peak Time, Interpolated Outout = 720.00 min Peak Filow, Interpolated Output 7.69 cis DRAINAGE AREA ID: PRE -N .75 Area 1.900 acres S 3.3333 in 0.2S . 6557 in Cumu]ative Runoff ------------------- 2.9525 in 20363 cu.ft HIG Volume— 20363 cu. ft (area under 11YG curve) **�*x SCS T1NIT HYDRO GRAPH PARAMETERS ""* Tiin,e Concentration, Tc - 10.000 min (iD; PRE) Computational Tncr, Tm - 1.333 min = 4.20000 To Unit Hyd. Shape Factor 483.432 (37.46% under rising limb) K = 483.43/645.333, K .7491 (also, K = 2/(14-(Tr/To)) Receding/Rising, Tr/Tp 1.6698 (solved from K .7491) Unit peak, tip 12,92 cfs, Unit peak time Tp 6.667 in i n Jnit receding Limb, Tr = 26.667 min Total unIt ti.rne, Tb 33.333 min SIN: Bentlev Systems, Inc. Bentley PondPack (10, 01.44.44) 10:54 AN 6/1512012 Type.... U-n-JL Hyd. Surunary Page 8.09 Name.... TO UDS Tag: 10 Event: 10 yr File-- X:\BOJ - Bojangles\1201 - Lumberton, NC Cd 301\Engi.neering\5tormwater\2012-06-11 Bt Storm... TypeTI 24hr Tag: 10 SCS UNIT HYDROGRAPH METHOD STORM EVENT: 10 vear story, Duration 1440.00 min Rain Depth - 5.6100 in Rain Dir X:\BOJ - Bojangles\1201 - Lumberton, NC @ 301 \Enqineering\S7 Rain File --ID - TypeII 24hr Unit Hyd Type Default Curvilinear HYG Dir X:\BOJ - Bojangles\1201 - Lumberton, NC @ 301 \Enqineer-ing\St HYG File - ID work pad.hyq - TO UDS 10 To 5.00 min Drainage Area = 1.230 acres Runoff CN= 98 Computational TiMe Increment .66'7 min Computed Peak Tiiue 715.33 min Computed Peak Flow 8.98 cfs Time Increment for HYG Fil],e 3.00 min Peak Time, interpolated Output 714,00 min Peak -Plow, Interpolated Output 8.84 cfs WARNING: T'ne difference between calculated peak flow and interpolated peak 'low is greater than 1.50% DRATNAGE AREA TD:TO UDS C N Area acres S .2041 in 0.2S .0408 in Cumulative Runoff ------------------- 5.3/23 in 2398V cu.ft HYG Volume... 2396V cu.ft (area under HYG curveD ***** SCS UNIT HYDROGRAPH PARAMETERS k***-k Time Concentration, To = 5,000 min (ID: TO UDS) Computational. Incr, Tm = 667 min =_ 0,20000 Tp Unit Hyd. Shape Factor - 483.432 (3'1.46% under rising limb) K = 483.43/645.333, K .'-1491 ial5o, K = 20(1 +(Tr/Tp)) Receding/Rising, Tr/Tp = 1.6696 (solved from K .7491) Unit peak, qp = 1-6.72 cfs Unit peak time Tp = 3,333 min Unit receding limb, Tr - 13,333 min Total unit time, Tb = 16.66'1 min S/N: Bentley Systems, Inc, Bentley PondPack (10.01.04.00) 10:54 AM 6115/2012 12 Bo ' ianf-,Ies'— Lumberton, NC BOJ- 201 4/18/12 UOV41A 01 0 All ' * 0 Project Information Date 4113/2012 Project Name Bojangles' Project Number BOJ-1 201 Location Lumberton, NO Stormwater Quality Objective This report outlines how Stormceptor System can achieve a defined water quality objective through the removal of total suspended solids (TSS). Attached to this report is the Stormceptor Sizing Summary. Stormceptor System Recommendation The Stormceptor System model STC 7200 achieves the water quality objective removing 86% TSS for a Fine (organics, silts and sand} particle size distribution. The Stormceptor oil and sediment separator is sized to treat stormwater runoff by removing pollutants through gravity separation and flotation. Stormceptor's patented design generates positive TSS removal for all rainfall events, including large storms. Significant levels of pollutants such as heavy metals, free oils and nutrients are prevented from entering natural water resources and the re-suspension of previously captured sediment (scour) does not occur. Stormceptor provides a high level of TSS removal for small frequent storm events that represent the majority of annual rainfall volume and pollutant load. Positive treatment continues for large infrequent events, however, such events have little impact on the average annual TSS removal as they represent a small percentage of the total runoff volume and pollutant load. Stormceptor is the only oil and sediment separator on the market sized to remove TSS for a wide range of particle sizes, including fine sediments (clays and silts), that are often overlooked in the design of other stormwater treatment devices. t�l}t,' storms dominate hydrologic activity, US EPA reports "Early efforts in stormwater management focused on flood events ranging from the 2-yr to the 100-yr storm. Increasingly stormwater professionals have come to realize that small storms (i.e. < I in. rainfall) dominate watershed hydrologic parameters typically associated with water quality management issues and BMP design. These small storms are responsible for most annual urban runoff and groundwater recharge. Likewise, with the exception of eroded sediment, they are responsible for most pollutant washoff from urban surfaces. Therefore, the small storms are of most concern for the stormwater management objectives of ground water recharge, water quality resource protection and thermal impacts control." "Most rainfall events are much smaller than design storms used for urban drainage models. In any given area, most frequently recurrent rainfall events are small (less than I in. of daily rainfall)." "Continuous simulation offers possibilities for designing and managing SMPs on an individual site-by-site basis that are not provided by other widely used simpler analysis methods. Therefore its application and use should be encouraged." — US EPA Stormwater Best Management Practice Design Guide, Volume 1 — General Considerations, 2004 ►• ..�M Each Stormceptor system is sized using PCSVVMM for Stormceptor, a continuous simulation model based on US EPA SWMM. The program calculates hydrology from up-to-date local historical rainfall data and specified site parameters. With US EPA SWMM's precision, every Stormceptor unit is designed to achieve a defined water quality objective. The TSS removal data presented follows US EPA guidelines to reduce the average annual TSS load. Stormceptor`s unit process for TSS removal is settling. The settling model calculates TSS removal by analyzing (summary of analysis presented in Appendix 2): • Site parameters • Continuous historical rainfall, including duration, distribution, peaks (Figure 1) • Interevent periods • Particle size distribution • Particle settling velocities (Stokes Law, corrected for drag) • TSS load (Figure 2) • Detention time of the system The Stormceptor System maintains continuous positive TSS removal for all influent flow rates. Figure 3 illustrates the continuous treatment by Stormceptor throughout the full range of storm events analyzed. It is clear that large events do not significantly impact the average annual TSS removal. There is no decline in cumulative TSS removal, indicating scour does not occur as the flow rate increases. loll Roy/ (cfs) Figure 1. Runoff Volume by Flow Rate for WILMINGTON INTL AP — NC 9457, 19'49 to 2006 for 1.23 ac, 100% impervious. Small frequent storm events represent the majority of annual rainfall volume. Large infrequent events have little impact on the average annual TS S removal, as they represent a small percentage of the total annual volume of runoff, ti storm events. Conversely, large infrequent events carry an insignificant percentage of the total annual pollutant load. lim OTS, 1-10 70 60 E 50 0 40 30 E 20 10 I Z= Stormceptor Model STC 72,00 Drainage Area (ac) 1.23 TSS Removal (%) 86 Impervious (%) 100 Figure 3. Cumulative TSS Removal by Flow Rate for WILMINGTON INTL AP ® 9457, 1949 to 2005. Stormceptor continuously removes TSS throughout the full range of storm events analyzed. Note that large events do not significantly impact the average annual TSS removal. Therefore no decline in cumulative TSS removal indicates scour does not occur as the flow rate increases. MATERIALS' Appendix 1 Date 4/1312012 Project Name Bojangles' Project Number BOJ-1 201 Location Lumberton, NC Designer Information Company CSD Contact T. Janes Notes STC 2400 N/A STC 3600 Drainage Area STC 4800 Total Area (ac) 1,23 Imperviousness (%) 100 The Stormceptor System model STC 7200 achieves t!)e water quality objective removing 86% TSS for a Fine (organics, silts and sand) particle size distribution. UTTM Name WILMINGTON INTL AP State NC ID 9457 Years of Records 1949 to 2005 Latitude 34'16'3"N Longitude I 77-53'59"W Water Quality Objective rS Removal (%) 85 Upstream Storage IIII II TSS Removal Stormceptor Model STC 450i 61 STC 900 72 STC 1200 72 STC 1800 72 STC 2400 78 STC 3600 79 STC 4800 83 STC 6000 84 STC 7200 86 STC 11000 STC 13000 STC 16000 jIt If Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal. Fine (organics, silts and sand) Particle Size Distribution Specific Settling Particle Size Distribution Specific Settling Gravity Velocity Gravity Velocity . ..... . Hm % fuss, Pm % ft/S 20 20 1.3 0.0013 60 20 1.8 0.0051 150 20 2.2 0.0354 400 20 2,65 0.2123 2000 20 2.65 0.9417 • Stormceptor performance estimates are based on simulations using PGSWMM for Stormceptor. • Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal, • Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes. • Only the Stormc:eptor models STC 450i to STC 7200 may accommodate multiple inlet pipes. • Inlet and outlet invert elevation differetces are as follows: ffmm�� Inlet Pipe Configuration STC 450i 7200 Single inlet pipe Multiple inlet pipes E�t� 3 in, 1 3 in. Falsity �- 3 in, Only one inlet pipe. • Design estimates are based on stable site conditions only, after construction is completed. • Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative, • Design estimates maybe modified for specific spills controls. Please contact your local Stormceptor representative for further assistance. For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormeeptor.com --- - - ------------- - 4 INE Appendix 2 Summary of Design Assumption! I SITE DETAILS Site Drainage Area Tcstal Area (ac) - 1.23 Imperviousness (%) 100J I STOW-TA Ttrrr4M7r4= Width (ft) 463 Slope (%) 2 Impervious Depression Storage (in.) 0.02 Pervious Depression Storage (in.) 0.2 Impervious Manning's n 0.015 Pervious Manning's n 0.25 Sediment build-up reduces the storage volume for sedimentation. Frequency of maintenance is assumed for TSS removal calculations. Maintenance Frequency (months) 1 12 Upstream Attenuation Infiltration Parameters I i Horton's equation is used to estimate infiltration Max. Infiltration Rate (in/hr) 2.44 1 'Min. Infiltration Rate (in/hr) OA �decay Rate (s-1) 0,00055 Regeneration Rate (s-1) Evaporation Daily Evaporation Rate (incheslday) Dry IT-Teather Flow Dry Weather Flow (cfs) Stage-storage and stage-discharge relationship used to model attenuation upstream of the Stormceptor System is identified in the table below. Storage Discharge ac-ft cfs 0 0 A. I m Removing fine particles from runoff ensures the majority of pollutants, such as heavy metals, hydrocarbons, free oils and nutrients are not discharged into natural water resources. The table below identifies the particle size distribution selected to define TSS removal for the design of the Stormceptor System, Fine or anics silts and sand) Particle Size Distribution Specific Settling Particle Size Distribution Specific Settling Gravity Velocity Gravity Velocity Pm % fus HM % ft/s 20 20 1.3 — 0,0013 60 20 1.8 0.0051 150 20 2,2 0.0354 400 20 2,65 0,2123 2000 20 2.65 0.9417 111111 •1 M U- 60 'n 16 50 :3 E 40 30 20 10 0 PC SVVMM for Sto rmcepto r Grain Size Distributions 1 10 100 1000 10000 MEMEE= -*-N,JDFP - Finel)istribkjlion —OK-110 --k-F-95Sand --n-CoarseDisIrIbution Figure 1. PCSWMM for Stormceptor standard design grain size distributions. 8 WTERIAWLS7, TSiS Loading Parameters 'SS Ltadino Function Parameters Target Event Mean Concentration 125 (EMC) (mg/L) Exponential Buildup Power 0.4 Exponential Washoff Exponential 0.2 WIR-rTI-111i PCSWMM for Stormceptor calculates annual hydrology with the US EPA SWMM and local continuous historical rainfall data. Performance calculations of the Stormceptor System are based on the average annual removal of TSS for the selected site parameters. The Stormceptor System is engineered to capture fine particles (silts and sands) by focusing on average annual runoff volume ensuring positive removal efficiency is maintained during all rainfall events, while preventing the opportunity for negative removal efficiency (scour). Smaller recurring storms account for the majority of rainfall events and average annual runoff volume, as observed in the historical rainfall data analyses presented in this section, Rainfall Station WILMINGTOWIVTt:V Rainfall File Name NC9457.NDC Total Number of Events 8741 Latitude 34 °16 °3 "N Total Rainfall (in.) 2970.8 Longitude 77'53'59'VV Average Annual Rainfall (in.) 52.1 Elevation (ft) 33 Total Evaporation (in.) 203.2 Rainfall Period of Record (y) 57 Total Infiltration (in.) 0.0 Total Rainfall Period (y) 57 Percentage of Rainfall that is 96.4 Runoff (%) moll Rainfall Depth No. of Events Percentage of Total Volume Percentage of Total Events Annual Volume in. % in. % 0..25 5902 67.6 419 14.1 0,50 1122 12.8 413 13,9 0.75 607 6.9 376 12.7 too 328 3.8 287 97 1.26 233 23 262 8,8 1.50 153 1 8 211 71 1 75 113 13 185 62 200 72 0.8 135 45 226 48 0.5 102 3.4 250 31 OA 74 25 275 29 03 76 2,6 300 24 0.3 69 2.3 325 12 0.1 38 13 350 10 0.1 34 11 375 9 QA 33 11 4,00 12 0.1 47 1,6 425 6 0.1 25 0.8 4..50 5 01 22 OJ 475 3 00 14 05 5,00 4 00 19 0.7 5.25 3 00 15 0.5 550 1 0.0 5 0,2 5, 75 1 00 6 02 600 1 0,0 6 02 625 1 00 6 0.2 650 1 00 6 02 675 1 00 7 02 700 2 00 14 0.5 7,25 1 0,0 7 02 7.50 2 0,0 16 06 7..75 1 0,0 8 0,3 8,00 0 00 0 0,0 825 0 00 0 0,0 x8.25 3 0.0 37 1.2 3z��� Rainfall Depth (in.) 10 MATERIALS" Jb, gmz= 100 90 80 IN. 30 20 iff Flow Rate Cumulative Mass cfs % 0.035 47,6 0.141 64,9 0,318 75A 0.565 83, 5 0,883 891 1271 937 1,73 961 226 97,6 286 985 3,531 99,0 4.273 99.4 5.085 99.7 5968 99.8 6922 999 7.945 99.9 9.041 1000 10.206 IMO 11,442 1000 12.749 100,0 14 126 100,0 15.574 IMO 17,092 100,0 18,681 1000 20,341 1000 22.072 100,0 23.873 1000 25.744 100 D 27.587 1000 297 1000 1,783 IMO Flow (C 9) MATERWIALS" .�' Bojan les' — Lumberton, NC 1,1 -1 2111 4/18/12 Type.... maote.� Network Summary gag* 2.01 mamc.... Watershed File.... x'\aoJ - opjauglen\120I - Lumberton, 0IC @ 301\EmJiooeriog\8tozmvotar\20I2-06-11 B, MASTER DESIGN STORM SUMMARY Network Storm Callecti,on: Lumberton TotaI Depth Rainfall Return Event io Type RmF zo ------------ ----- -------------- ---------------- 18 5.6100 Synthetic Curve Typezz 24bz axerEu NETWORK SUMMARY Soo Unit 8ydcograph Method <°Node—Out fall; *mode=oive,z*ino/) (Trno= HYG Truncation: Blaok=mooe/ L=-Left/ a~mt/ LR~Leftamt) Qpenk m o 714.00 7201 .00 72O.00 '717 00 '714. 00 '714 00 723.O0 Max Opeak Max mSEc Pond storage Cf-S ft -u.ft -------- -------- ------------ 3-D8 7-68 7.69 6.7* 8.84 8.84 4.15 125.66 4537 a/m� Bentley Systems, zuc. Bentley aondPack (10.81.04.00) 10:54 AM 6/I5/20I2 Return aYG Vol Node zo --------------- Type --- Event cu.f-L Tzum B,rAyo A-Rsa ----- I0 ---------- -- 7407 PRE anEA IO 20363 °eoE OUT JCz lU 20363 °80a 1 eo8z JOT 18 31394 To oos AREA 10 23987 oo3 IN POND 10 23987 oos 0nr POND IU 23986 Qpenk m o 714.00 7201 .00 72O.00 '717 00 '714. 00 '714 00 723.O0 Max Opeak Max mSEc Pond storage Cf-S ft -u.ft -------- -------- ------------ 3-D8 7-68 7.69 6.7* 8.84 8.84 4.15 125.66 4537 a/m� Bentley Systems, zuc. Bentley aondPack (10.81.04.00) 10:54 AM 6/I5/20I2 Type .... Vol: Elev -v plume Name.... UD Page 12. 01 File.... X. \11017 - Bojangles \1201 - Lumberton, NC @ 01 \Engineering \Stormwater \2012 -06 -11 B USER DEFINED VOLUM2 RA`PING 'TABLE Elevation vo:1_ume tit? (cu.lt) 122.75 0 122.30 0 122.35 1 122. 90 4 122.95 10 123.00 19 123.05 31 123.10 45 123.15 65 123.20 38 123.25 116 123.30 140 123.35 135 123.40 226 123.45 273 123.50 324 123.55 332 123.60 44.5 123.65 513 123.70 536 123.75 6r3 123.80 746 123.85 830 123.90 919 123.95 1O:10 124.00 1104 124.05 1200 124.10 1291 124.15 1.390 124.20 1.5O0 124.25 1603 124.30 1707 124.35 1€313 124.40 1919 124.45 2027 124.50 2135 124.55 2245 124.60 2354 124.65 2463 24.70 257 3 124.75 2683 124.00 2793 124.135 2903 124.901 3012 124.95, 3121 125.00 3229 125.05 333 "7 SIN: Bentley Systems, Inc. Bentley PondFack (10.01.04.00) 10:54 AM 6/1;512012 Type.... Vo-1: Elev-Volume Name. .. . UDS Page '-2.02 Bile.... X:\BO.'1 - Boianglies\1201. - LLnnberton, NC @ 301\Engineerinc j\Stormwater\2012-06---1l B USE DEFINED VOLUME RATING TABLE Elevation Volume (ft ) (cu. -ft) ---------- 125.10 ---------- 3444 125.15 3550 125.20 3654 1.25.25 3758 -25.30 3860 125..35 3960 125.40 4058 4153 125-150 4248 125.55 4340 125.60 4428 125.65 4514 125.70 4596 1.25.75 4675 125.80 4749 125.85 4617 1.25.90 4879 125.95 4.937 126.00 4989 126.05 5035 126.10 5078 126.15 5115 126.20 5146 126.25 5174 126.30 5198 126.35 5217 126.40 5233 126.45 5244 126.50 5253 126.55 5259 126.60 5262 126.65 5265 126.70 5266 126.75 5266 SIN -. Bentley Systems, Inc. Bentley PondPack (10.01.04AO) 10;54 AM 6/15/2012 Type.... Outlet Input Data Name.... Outlet I Page 1.3.01 File.... X:\BOJ - Bojangles\1201 - Lumberton, NC @ 301\Engineering\Stormwater\2012-06-11 B, REQUESTED POND WS ELEVATIONS: Min. Elev. 122.'75 ft Increment .05 ft Max. Elev.- 126.75 ft k** * k * * * k *,k *k * *A k *,+, * * k **A* OUTLET CONNECTIVITY - - -> Forward Flow Only (UpStroam to DnSt_rpaizi) * --- Reverse -Plow Only (D Stream Lo UpSt_ream� r - - -> Forward and Reverse Bot[i Allowed Structure No. Out fall. El, f1t, E2, ft ----------------- ---- ----- ----- --------- Orifice -Circu"lar W 00 - - -> " 1' 1.22.750 126.750 Weir-Rectangular wo - - -> TW 126,750 126.750 TW SETUP, DS Channel SIN: Bentley PondPack {10.01.04.M 10:54 AM Bentley Systems, Inc. 6/15/2012 Type.... Cutlet input Data Name.... Outlet " "" Page 13.02 File.... X : \30U - Bcjangle \1 OI - Lumberton, NC (a 301\ Engineering \Storznwater \20?2 -06 -'1 B- OUTLET STRU=IRE !NPUT DATA Structure ID = 00 S- ructure Type = Orsf:i..ce- C7rCUl.ar 4 of openings = 1 Invert Elev. = 122. "J5 ft Diameter = .8333 ft Orifice Coeff. - .600 Structure TD Structure Type # of Openings Crest Elev, Weir Length Weir Coeff. WO Weir - Rectangular 1 126.;5 ft 4.00 ft 3.000000 Weir TW effects (Use adjustment equation) Structure T `"W Stricture Type - Tub SETUP, DS Channel FREE OUTFATIL CONDITIONS, SPEC -TED CONVERGENCE TOLERANCES... Maximum Iterations= 40 Min. TW tolerance = .01 ft Max. TW tolerance = .01 ft Min. HW tolerance = .01 ft Max. HW tolerance = .01 ft Min. Q tolerance = 400 cfs Max. Q tolerance = .00 cfs S /N: Bentley Systems, Inc,. e' 3.entley.PondPack (10.01.04.00) 10:54 AM 6/15/2012 Type.... Pond Routing Summary Page 14.13 Name. . . . JDS OUT Tarp: 10 Event: 10 yr File.... X. \BOJ - RQjaTiqles\1200 - Lumberton, NC La 301\Engineering\Stormc,,ater\2012-06-11 B, Storm... TypeTT 24hr Tag: 10 LEVEL POOL ROUTTMG SUMMARY HYG Dir = X:\ROJ - Bojangles\1201 - Lumberton, NC id 301\ Engineering\ Stormwater\ Inflow HYG file = woi"kj)ad.hyg - UPS IN 10 Outflow HYC file = work_pad.hyg - UDS 011,31, 10 Pond Node Data - UDS Pond Volume Data = UPS Pond Outlet Data = Outlet 1 No infiltration 1NITTA' CONDITIONS Starting WS Elev = 122.15 fL Starting Volume 0 cu.ft Starting Out " -ow = .00 CfS Starting infilt�, .00 CfS Starting Total Qout= .00 CfS Time Increment 3.00 min INFLOW/OUTFLOW HYDROGRAPH SUMMARY Peak Inflow 884 cfs at 714.00 min Peak Outflow 4.15 cfs at '123.00 min-, ----------------------------- Peak Ele vat 4on 125A6 ----------------------- ft Peak Storage = 4537 cu.fL MASS BALANCE (cu. it) f, + Initial Vol = 0 + HYG Vol IN = 23987 - Infiltration = 0 - HYG Vol OUT = 23986 - Retained Vol = a ---------- Unrouted Vol = - cu. t: ( . 001 '. of Inflow Volume) SIN: Bentley Systems, inc. Bentley PondPack (10.01.04.00) 10:54 AM 6/15/2012 14 Bojangles' Lumberton, NC BOJ-1201 4/tS/12 4 v5 a 6 LO + m` I � 0 Z� 0) .0 CL c) M ,L4 0) = U) U) U) .0 (o LO C, ti D M ca n co 0 67) C 10 I W c �? 0 SG E Lq Lo N N U7 � C) C� Lq Lq cu (D N m t; N cq 2 OL C' 7� .2 a co C? -5 0 -26 E E CL V) (D < 2 7E C) tj Lt co (D 0 U) CL En 3: r- T- LLJ D Cl LL IL ET E p 0 m m6 n. �5 w L) it o IL L an cn 0 CD M 0 -q a) f�11 mar C- 29— CD 0 r CD C < LU G5 E IL clLO � 08— ❑ CD (P > 8— C-4 CD LO -0 C y :3 2 Ej- O(D C) Lq 2, C.o iC 0 0 > 0 LO ip C� 6 5— > a) C LU CV 0 C3 Lo =Z n m U- OL L) Cl) C) LO 'ma 0 0 C3 a) 'a M q w C? Lo 0 0 co U >,LL c U3 . ...... .... E LO "Q R 0 W c >, CD U m -E L) o M c L) E 3 CY fl ca C) Ca 0 0 r) Z LL U) c ro a z T- 000 0 Im r co R— m boo D co 0 rl rD 0 C) Lo 0 0 co 0 z E Z iii 0 0 0 T 96- U) U- CL .I2 4— 0 0 L— 0 ■ ch 0 0 N LL R— m boo D co 0 rl rD 0 C) Lo 0 0 co 0 z E Z iii 0 0 0 0 0 0 N LU C� N LL N 4� 4� %4�— ( D CL V) 0 CO LO NN C) 0 ()0 —0 LJ (D a) Lo (o C: c 0 R— m boo D co 0 rl rD 0 C) Lo 0 0 co 0 z E Z iii Project - 1. Lill 11-M-LO n, NC Date I I -JLII- 12 Project No. BOJ- 120 1 Designer .1113 Outlet 11) 11-1 Outlet flowrate 6.74 c ts Pipe diameter 15 incites Number of pipes I Pipe separation it feet Outlet pipe slope 0.6 —percent Fi2ure 8.06.b. I Pipe diameter (ft) Zone from graph above = I Outlet pipe diameter 15 11 Length fi. Outlet flowrate 6. 7 c I Width - 3.8 11. Outlet velocity I'uscc Stone diameter - 3 wi. Material - ('Ila.,�, A Thickness ill. Zone Material Diameter Thickness Length J Width I Class A 3 9 4 x D(o) 3 x D(o) 2 Class B 6 22 6 x D(o) 3 x D(o) 3 .. ..... . .. .. . .............. Class 1 13 22 8 x D(o) 3 x D(o) 4 . . ........... Class 1 13 22 8 x D(o) 3 x D(o) 5 Class 11 23 27 10 x D(o) 3 x D(o) 10 x D(o) 3 x D(o) 6 Class 11 23 27 7 Special study required 1. Calculation,, based on NY DOT method - Pages 8.06.05 through 8.06.06 in NC Froslon Control Manual 2. Outlet velocity based on full-flow velocity Design of Riprap Outlet Protection-verI111503 7/16/2012 il \�� . : M, E eg- 0 m 06 n > /\ )E 0 A 0 oa E t: E _J&- 259 C \\ wa 4 E7 — E>' o— -6 p 9 — 75 Cr 0,00 It 6 a- W Z; E 5, 0 :zi > Lo 0 0 8 C 5 M S?s q co 0 2 Lu 0 c 5 a) �? a 02 06 LO 0 > �j igF C) Ct :D > 'D N co C) LL C ca L— cu ca 0 0 C<� 0 a7 x co E S ui o 0 -7 co LO 'D 0 E 41 0 0 C) — (D ci Q) m 93 C fly ui 2 < LL 0 z U) w cr, CN C Q1 LO CD C) w C) > <> CD OD 0 N 0 C) 0 F- 2 a Q7 .0 U m (D -r- U) 2 '0 Pt co 0 (n ,M A 0 76 O 0 (D ::: ai C 0 w 0 0 E CO LO 0) <r m m (D C: :3 0 E lco Q) 9 9 CD 00 D 0 LO to LO O� T C) @ E C) E 0 V; RS '6 to CD C:j .!. 7E 0 1 V) CJ M < 2 N -J ev 0 0 ti CL 3: -Q U- U- c N co I M. M ET E ; 0 L: 0 m 'i CL > w0 I go F, va o o z c� E © Ul tU E < w c 0 w c .� oy F- x o 4- 4- 0 4- CU U) 0 "t 0 w c6 ui U- 04 E 0 0 0 0 CU iE 0 -i (n co LO 0 04 C'4 — M. M ET E ; 0 L: 0 m 'i CL > w0 I go F, va o o z c� E © Ul tU E < w c 0 w c .� oy F- x o DESIGN OF RIPRAP OUTLET PROTECTION WORKSHEET Project Bolianules' - Lumberton, NC Date I 1- Jul -12 Project No, 130J-1201 Designer JJB Outlet ID 11-2 Outlet flowrate 6.74 c fs Pipe diameter ?4 inches Number of pipes I Pipe separation feet Outlet pipe slope 0.5 percent 25 20 15 10 5 0 0 Uure 8.06.b.1 1 2 3 4 5 6 7 9 9 1 Pipe diameter (ft) Zone from graph above Outlet pipe diameter 4 in. Outlet flowrate _(). 7 (: 1:.1 Outlet velocity 1,1 ft,",ec Material - Class A Length = IR o fir Width = 6J) t L Stone diameter — M. Thickness — Q) 1, Calculations based on NY TOOT' method -Pages 8.06.05 through 8.06.06 in NC Frosion Control Manual 2. Outlet velocity based on full-flow velocity Design of Riprap Outlet Protection-verl 0 1503 7/16/2012 • 15 Boja ngles' — Lumberton, NC BOO -1201 4/18/12 Project. B( jangles - Lumberton, NC Cates by JJB Project No. BOJ-1201 Date 18-May-I 2 Skimmer Basin ID SB- I Drainage Area Data Area Rational V Disturbed area 1,25 ac. 0.50 Undisturbed wooded area 0_25 Undisturbed grassy area 0.30 Other Freeboard (from sediment depth) Total draina-e area to trap 1.25 a C Cornposite Rational V 0, >0 10 Runoff Calculations Rainfall Runoff 2-year storm 5.74 in 3,6 cfs I0 -year storm 7.50 in/hr 4.7 cfs Skimmer Basin Design Data and Constraints required skirniner basin volume 3,600 —cubic feet per disturbed acre required skimmer basin surface area 0.01 x Q(10) Skimmer Basin Dimensions Bottom length 60,0 ft Bottorn width 14.0 It Sediment depth 3.5 EL Freeboard (from sediment depth) 1.5 ft Depth to crest of spillway 4.0 ft Side:. slopes 2.0 H: I V Spillway length 10.0 ft I [eight of berm 5.0 ft Top of basin length 80,0 ft Top of basin width 34.0 fi Skimmer Basin Data Required Provided Sediment storage volurne 4500 cu, ft, 4930 cu. ft. Sediment surface area 2040 sq. I't, 2070 sq. ft. Sediment storage depth 3.5 ft. (max.) 3,5 ft Basin bottom length to width ratio —".OL,: I W finin) 4,3L:1 W Spillway length 10,0 ft. (rain) M.0 Ft I (l -Year flow depth over spillway 1.00 ft. (rnax) 0.27 ft Freeboard at I O-Year dischar(ye 0.50 ft. (111in) 0 7 3 ft Note: CaICUlations based on NC Sediment and Erosion Control Manual "MUMMYEIRIN o or rni-MMMMM Project B(ijangles - Lumberton, NC Cales by JJB Project No. BO.1-1 201 Date l8- May -12 Skimmer Basin ID SB-2 Drainage Area Data Area Rational 'c' Disturbed area 0.60 ac. MO Undisturbed wooded area Undisturbed grassy area Other Total drainage area to trap Composite Rational 'c' 0.60 ac. 0.50 0.25 030 Minoff Calculations Rainfall Runoff 2 -year storm 5.74 in hr 1.7 cfs 10 -year storm 7.50 in/hr 2.3 cfs Skimmer Basin Design Data and Constraints Required skininler basin volume 3,600 cubic feet per disturbed acre Required skinimer basin surface area 0.01 x Q(10) Skirnmer Basin Dimensions Bottom length 26.0 ft Bottom width 110 tl Sediment depth 15 It Freeboard (,from scdMient depth) 1.5 11 Depth to crest of spillway 4,0 ft Side slopes 2.0 WIV Spillway length I(M) ft Heiaht of berin L- 5.0 11 Top of basin length 46,0 ft Top of basin width 112 0 ft Skimmer Basin Data Required Provided Sediment storage volume 21 160 CLI. ft. 2240 cu. ft. Sediment surface. area 990 sq. ft. 1040 ,q. ft. Sediment storage depth 3�5 ft. (max.) 3.5, 11 Basin bottom length to width ratio 2.01,:1 W (min) 2,2 L: I W Spillway length 10.0 ft. (min) I0,0 ft I0- `hear flow depth over spillway 1,00 ft. (Inax) 0.17 ft, Freeboard at I0- Year discharge 0.50 ft. (niin) 0.811 ft Note: Calculations based on NC Sediment and Erosion Control Manual I I FFIJ I 4- 4- (1) Q) Q) Lj- I I I I � \. . ca 4 6 0 �E co 0 0 > 3. 4.0 0. U) 0 o a d y in 0 I I I Q) (D (1) LLa), (1) LL (1) Lj- I will c CL Ion HOW. Elemew MeMod solve T"O, IF I I) ut t) at a J c! 1 r1pora ry Diversion Tdzingular Channel Marulirirj's Formula Channel Depth MaMINUO' COOM( 0021) siopa X3000,,) flYft Left Sde Slope 3 00 H V Ru I Ight SdE,, Slope �'j 00 IrIj V D sch a 2 2f Hs =251-fs Results Grth('�f SIOPe D('3Pffi (142 1( F-12ow An-,3 Q 5 111 Vve)t�d PeOrl. 2 62 ft 'T ()p Width 249 111 Cnbcni Depth () 51 fl Grth('�f SIOPe (J 009852 lt;ft Veic"Coy 4 '35 Itfs Vetubty Head 029 it Specific Enear 0 7! it I raudo NUmb I I , J9 P i0w t ype Temporary Diversion Ditches Worksheet for Triangular C�hiannel 044-- CTO A 0 7, 2.zs- CFS C TIi_ ?14R Ac- LS-MA'o wi-r O A)'fTrt-4. 7-0 Aj �7 7-5�pl K Plojed L-.rigineer Mhan BfOn Surf,-,,hell 0110), (Jaymn, Commercial Site Dessqn fl,,JWMaSte v6 1 j(3141.-,,! 04i;1fljQ 07 14 01 PM 4,, Haestad Methods fric, 1'� Brookssdp Road Waterliury, CT 06708 tjSA (2031) 755 16(16 paqf., $ of " Cross Section Cross Section for Triangular Channel WOrkp,haO l, low [, kmlen noo CA,mrtne! Depth 0 42 fi. v 1 a Proleu Em"Pfmu�r VvWlan Snan surc"W"Al 2 Cognmercial Site Design Flow M "Im I %, f" f I 'I V, C"-I�,,( art 2 TD,' 14 Y PM Haestad melhWs, Inc, 37 BroaksKie Road Waterbury, CT 06708 USA (203) 755-1666 P;4,10 I r{f 1 Slope (3300,00 full D (,,� p', h 042 fl Lefl Side, slapo 3 DO H v P�pfzf &ae slop'e 3 0 1", J H v e 2!. ofs 0 42 fi. v 1 a Proleu Em"Pfmu�r VvWlan Snan surc"W"Al 2 Cognmercial Site Design Flow M "Im I %, f" f I 'I V, C"-I�,,( art 2 TD,' 14 Y PM Haestad melhWs, Inc, 37 BroaksKie Road Waterbury, CT 06708 USA (203) 755-1666 P;4,10 I r{f 1