Loading...
HomeMy WebLinkAbout20060888 Ver 2_Stormwater Info_20070507To: Nest Floyd Page 2 of 3 2007-04-24 16:31:46 (GMT) '14135567099 From: Tracy moore e ' rP, ~ ~, CONTENTS SECTION 1.......GENERAL INFORMATION .....................................................................1 (Erosion Control Narrative, USGS Quad Map, County Soils Map, and NCDWQ Buffer Determination) SECTION 2.......DESIGN PARAMETERS & OVERALL DRAINAGE AREAS ...............? SECTION 3.......STORM DRAINAGE SYSTEMS (Initial Grades & Hydrology) ..............10 SECTION 4.......STORM DRAINAGE SYSTEMS (Hydraulic Design) ..............................39 SECTION 5.......OUTLET DITCHES (Hydrology, Hydraulic Design, & Spec Sheets) ......90 SECTION 6.......CULVERT DESIGN ..................................................................................103 SECTION ?.......SEDIMENT TRAP SIZING .......................................................................111 SECTION 8.......NCDWQ 401/STORMWATER NARRATIVE & DATA .........................118 GENERAL INFOF:MATION (Erosion Control Narrative, USGS Quad Map, County Soils Map, and NCDWQ Buffer Determination) Z NARRATIVE FOR EROSION CONTROL Holts Lake West Subdivision Drainage & erosion control calculations contained herein (or as subsequently revised as may be requested during the review process) are hereby made a part of the Construction Drawings for "Hops Lake West Subdivision" in Johnston County, NC. This subdivision encompasses 46.24 acres and grading activities are expected to denude 15.98 acres, mostly due to proposed construction for roadways, grading, utilities (water & sewer), and storm drainage systems, ditches & other stormwater devices. The Construction Drawings (esp. the Erosion Control & Crrading Plan) show a detailed layout of the proposed erosion control measures required to contain sediment on-site. In summary, check dams may be utilized at strategic locations in ditches or channels to contain sediment from being carried away by minimal concentrated flow; silt fence has been used where sheet flow runoff is adjacent to fill areas; there are temporary and/or permanent linings specified for proposed ditches where their use is required; there are dissipater morons at the outlets of proposed culverts and storm drainage pipes where their use is required; and there are sediment traps to store sediment laden runoff before exiting the project and prior to sensitive areas, ie. wetlands. Note that there are no direct stormwater discharges or crossings of Riparian Buffers; therefore, no level spreaders are proposed for diffuse flow near such buffers. These are the basic erosion control devices used for this project. Construction on this project does occur near existing wetland areas and the existing Holts Lake. However, construction near the lake is mostly well beyond any buffers and wetlands adjacent to the lake itself and sheet flow runoff has been maintained along the grading limits near the lake. And construction adjacent to wetlands has been minimized to meet requirements of the Corps of Engineers; and stormwater discharges to wetland areas have been designed to reduce flow velocities prior to entering wetlands per recommendations by NCDWQ. Any sediment laden stormwater discharges are treated by sediment traps prior to being released downstream to such areas. Because of the above-described construction near wetlands, 404 permits will be sought from the Corps of Engineers as well as any required 401 Certification as may be required by NCDWQ. Additionally, there are portions of this subdivision located in a FEMA regulated floodplain area and therefore all requirements of the local floodplain ordinance must be met. Other regulatory criteria shall be satisfied as required by the Town of Four Oaks and/or the NCDOT. ~~ a ~~ ~ ~ g S _ ~ _ _ =Cem \~ • ~,7; . -', BM stn l„ i i ~ .. ~- ~ ~. -// ~ `1 +" r ~ r ~: ~~ ~ ~t~--+.1 ~ ~ . ~ ~ _ i ~ ` C`- - 1 ~~ i~ 1 ~., ~,I o _ r I N ~ i ' .~,~ -\ - - - Q ,~'a z fso ~~ ~ ~ ~. ~ ~~ _ ,~i `. y. - ~ ~~ Golf f ° f ° '` ~ .. ~., r ~ ,____ - ,~ ,~ ..~ _ • ; A ` ° (~ -.- -~-. .~- , -.w - ., , _ ~ _ _ ~ _ : fCfVAAON 716. - - - _ ~ L ~ ,~. +•- ~ - _ .- ~- "r- .. ~ ~. -e~- - '+~` r ' X15-' ~y ,er. y,-- _ ~ ~ ~ p .!~ . ~ - /'/j _'~ ~ 1 ~ '.:: r{ ;E3 ~, `' ' I Park ~~ >>6 - .~",~ ou Oaks ~ ~~~ ~. 4 _ - --- ~/• -- ~ c , ~ ~ Zoo ' ~ t` • • . r ~_ ., ~• ' ., . ~ • • • ',~ .Oaks ~. 'ua2 : - Jos •~-- :~" - .1- r+au • _-~ I ~ ~i \ ~ . ~ i .. . I t` ~ I, IBM 2t 11 _~~ ' .~. ~ (Keen -~;_ ~ BM 200 ~ ~~ m \~ ' ~.~ ., Lem I ~ - ~ '~~ _ •~~---~ • . •, ~ i ~ -_- ~ ~ _.. ~ r - - ~~ - - `~ ~ ~~~=' ~I ` 1 o :r. ~ . ~-- . _ y . . ~, --~~ ~` - . } ~ ._:_ .. --y -- .- _ ~ ,~~ 2 . d . - -Name'.=fal1R-OAKS Location: -035° 2T 22.85" N 078° 25' 06.57" W Date: 3/29/2007 Scale: 1 inch equals 2000 feet Copyright (C) 1998, Maptech, Inc. ~U y. ,y'r r o+ .r GeB ~J ,e: " , ~~ ;~' < U lg ! ~' sA'' Noq "~ GeD ~' .. eE ~ oA L~ -= 'Noe r w'~ S ~~ `. ~~ ,~ G 8 ~•'• ~ Rya ,F ,~ti f ~ NoA Nob G~D n` ~ NO ~ ~8` " G B G `~ ~; ~ •,: ~ ~ ~• t Co8' '' - ~ - Bb ~. ~ t~ {~ - `$b. i '` 'GeB Y i . eD~ GoA w _~~ GoAy r, c~ 4 FaA c coB z ~~ NoA ..~.NoA~ ra r _~.~ .4y ~` GeB - 13x3 i G ~'NoA~ ~ Nd" V ~A' ','" ~ !. 4.• ~ rn o _ ~. t, ' •I Cob fir. GeB ~'k 3~r 7~ ~ P Uc8 . _ m ~ •. FaA _ f Co w. ~~ Ge M r ~ ~_`f ~ G B ..BbP ~~ _._ ~ Y~/~.J~ ;~ (S.y,'; 4W~eB - Wae !' GeB .. 1 `< .q, `. y •GeB ~-. Co8 `>y ~ ~r..,67 s UcB GeB,, ` "'@t. i - b y:, J, ,. r ~ • H ~b< ~•x ~.~.o- 08, -+ty ~ ~.. V e8~ r ~ Co6 YGeD ~~ I ? ~, r~_ '~ 2n~ •~ GeD Co6 Uc6 '.~ ., B.. .. Uc i t .. ~ ~ GeB ~- O Y ,Wa8 '.• ~• '~ , ~'~ ~ Wa8 -y. Uc8 „ U ~1 ~CoB Ly..l } ~UcB ''i-rr y~r ~.. GeB a%/yj f: Ge8 •" c ~. ~~ ~~_ ~ ~-~ - `! ~= ` '-- ,' Cob r Wal .~ +tt `- ``' , • '3 t ~ ~ e faB :~.. GeD , I 1 .~ ; o ,~ ~ 'a , \ v, .Ge8 a 3' Uc8 m io Uc8 ~i ae UcC ~; ~ i ,r }r _` -r ici.~ 3 r cy _, !, _~ ~' ,~ a M U r - Jt. ~sb, . Bb Bb' c Ge ~ , n~^ y ` ~ Y.. ~"` _:~ ;~ u. ;' r GeB „~- CoB k , , ~ t ~(m ' t ~~ _ a' Ge8 k !r ~- w. ..... F r ~ ; - 'UcL. ~ °li~g r GeD •c GeB ~D c ,`< Bb _ ~ ~" ,., z,v } -y B F+ ~ { .~~Y e Gel~'k. ~l ~ ~ ~O - tar } ~ :, ~ ~~ '~1'• . '~ Q ~ .,, ~08 y. i,(e ts"i` .~: jW.~, ~ .~, ~ c ~~ \ !a {= #~ .~ ~a4r `-f f.~~ ro'jr'r - U f a~lcCr . f "`~ r e ~/ 'Ge8 ~ g ~ _ t tJcB ~ . ~ ~..~ . J_' ~,1awX-_-4 ~y"` -'t~ r y A ,,, ~ ' } _ , yYf'F' ~ wt .~ ,/ € ~' 1' i - ~ _ ~.. boa "~`rP~, :i m +F , ,µ a ~-+.~ ,, w »f' ~ ~ -u.' ~a NnEaFI'. / i :~ t ~ UCB ~, : } k~.Sj ~ ° - y~e r 1 ~ - 1-ID~.T$~•`n ` ""a,' .' ~/{E , C- c (P t^`'~ 'N/ ~ ~:" c~ . ~! /` ,- Wt :'t, c >- i ax,.8b L~~ NoB ~ ~ {; y4 ~~ ?*`.f~ r~ YS~Asr'' '~.~~t--~' ~ f ks/~A ~, Wt n s~ r F t~+ I .. 'c . - ~ ~ f~ ''^i' r-`: ,..i.' ;. ': e ° r fV e r a ~ Y _ - ~ ~.: t~,... _ ~ ,{~tti~.. ,. .r Geb `'NoB ~OV• o~ / Ge8 yr h ,` , lr ~ ~ ti ,_ a: ~ f k+ _ _ V m CoB ubli•. A5A a * x. ~ ~ <..~ Wt f~ Z~~`"~ i v ~ f 1$" '" ,! ~'AaA :70 \ ~. .~P .. ~ ~? ~Aa+ j r~ 'Z '"•~ ~r'~J,~a ~ ;i.l k Uc8- ~nt'1 r AaA- 'Lo ~ 1 `. ~~., //~ `,, ~ - ' Pa 1,~ S. d z ttixi I 'Y,~ , o _ o~ .-~: Co8 C~:~B ~'• _ i ~ _ .trJt~t'. 1 A5A AaA f~ ~ ,. B Geg ~Bb,. G' -AsA ~<roF ~. ~,~3'c 4 T-` e8 Web e~: 4 „ Q N '" t T.,~- .''ctn.', .. Co6 Geb f GeBa Wa8 CoB ~ '~ Bn-A + ~ GoA Ra + .oP o ~~ w. ~i1; ~ Co6 •t• Co GeD . ,t Co ~ ~ - - - ~oB ' ..~ •, 6, m ° !"'a ~1 ~a GoA GeD oB Y ,.~ Q ~ G~ a o Z / ( ~ ~ 1 Bb GeB •` m~ 'Uc6 °v 7' 9 Co8 •. a, FaA .r' CoB ~ ^' 'S .S. '- „`i' S ~ No8. Gr `i ~ ~ - '~ r`c - `s.. Ge8 m Uc8 ~ tLIcC e~ -0~` ' _ ~ ~` Grp ~. C.°0 Wa8 p ~ 1 ~., ~. G FaB .,s~ oy ~ a o de UcC~' t «.; +. `'~. a '`J~0 ~ ~. ~ u ,: GeD ~ WaB , , ..,GeD: .1, %~. -BnA t.r • ~.• 5 ~ ~~~~ ,1~. °v d ''.Ge6~ ,GeB `ro „ r . ~ r b. o Go WaB ~oi9 Q1cQ f ~ ~~ m .°! . 1 of `' ~ t~'°" p+ < `' e. ~'`Bb - ~ . c •~ WaB 's`~< ? o ~r,~~B ~ ~ r~ 0. a l WaB '`J 1v, ¢,r ~`,. _ _ ~`~ ,~ .~ F^ WaB ~ FaA UcC -.~- FaA , o Uc8 -: ~~;., 2~ WaBc ~~ _ ~. ~ ~~` :_~~ . i .:; •,. ; WaB~"„r GeB Co ae - ,G :Wa8 ~,. ~ NJA hs t$a6 GeB @ v GeD._. ~ Ud , '~`. - ; ,: Uc8 ~ ~,.Bb.-/ ` ~'\ J ~, ! ~ ~ Goh *~ 'u GeD c ~ Co8 - NoA y~0 ~:.r m GoA~ P~aB `~-.5~" 6~. r .`.~ FeA '''' c;~ ~ <Ra NoA 'Rr: WaB \• ~ Ud m' GeB \ _~ ~ ~ 4 ~, V;a6 •~ :-._ CoC ._ UcB r - `~ ~ tJuA .a ~. . _ o No8 UcB -; Co6 ~ F?" 9Ge@ GeB `~-r- Y1CB ~- ~~- uC ., _. c-. .. Ob- y ~ YraB ~ NoF, / GoA Nog 6 ~ Not, ~ 761 i NoA .. WaB (~/, ~~ 6 - No8 ~ Four, Oaks ~~ ~ IJOA ~~ NoA l No8 "~ _1 GoA NoA '.~~ Gr L ;8b ~0~ Ra - _ y ' 9- .Nuq '.:' m i-.. Ly - GoA Go` LY Ra NoA _~ NuA FY Nob t= ~ @ GoA Ra NoA Noe ~ ty l t~ ~ GoA FaA No ~tioe '• ~ ~ - ~ NoA ; NoA NoA a0 WaB' NoA LY NuA ~ °~ ~< - ~ ~f~ 4. - ;.'w`' NoA ~` LY "Fr.- Ma8 NoA •~. Z~ ~ ~'o "' -} - GoA _ ~~-. Ge8 ~ NuA ~ `F Wa8. jn '00 r -• 0 \.~' FaA tti ~ -: ~~ ~, '~ ~ I's . f ; aD ;. NoA -• No .: Vd ~. B ~ ,~ ,~ VdaB `~: NoB GeB'' - - .. _ _ 8 ~~ ~ '., " b d ---- 11a8 a ~ FzA _ ~,_ r ~MaB ,~- 5r 4.: xGe$'" '-m _ -NoB ~ - NoA - _ - - - C _N .~ ~ ' Ly' IGe~ .GeD Rz v, 5E ~ ~o g~ftt0 ~~ g r,8b''. CnD j ~ -= ~ a6 c0 - Ma6 ,GeB co GoA ~.~ ~~ ' No8 ~ ~ UCB Co6 / e~ `^ \ ~. _ _ ~Bb: - -. Uc6 l Nct, \ J Fay.. cy~ GeB ~ ~ Uc8 ~ NoA Fa A, Noq+ .i, r. ~ ~ _ -' Geb Eb-,sa r s. f• + Cn8 ' cB ;-. tYi._: o t - Ud j ., ~ _ ...~, 'Ge~;_. NoA Bb - No8 I. ~., T ~yc. G B WaB `'Si _ c c Ge UcB ~.~ Uc8.,. ~. ,. r :: ,:_ ;> - ~ t. `p^' f ~t GeD ~ imrfer ~Ge8 06 - G ; " "~~ ~~ ..• { t f ~~'Pr t B "_ LcC 7' tip: ~~ GeQ ~-. o' .L .fta : =. ~ ~< ~~e ~~ '9 No8 ~, Jo t„~ ~ ~•. w.~, Uc8 ~,~ ~"";. ,t : vy GAB ~ .s GeD $b Geo Y Li, ~ C Uc8 'm UC8 '1.,c - }~ .O r -. B ~ `G Noq= ~ Wa8% a0 UcC _ c ~U,cB GeB :F WaB r "T' {~c 86 ``~iGeD NoA ` ~. ~ r 1~ .U Ra • r FaA ~y ~ - Fab Ly No8 ~ ~ ~ ~_, t g., NQ :~' jNa 1 _ -.GeB. ~ ~ ~, ,m .NoB ~. O~O~ W AT ~q~G ~ ~ O "C June 8, 2006 Mr. Bill Deane Cambridge Builders 808 North Berkeley Blvd Goldsboro, NC 27534 Subject Property: Holts Lake Subdivision Alan W. Klimek, P.E. Director Division of Water Quality DWQ EXP# 06-0888 Johnston County On-Site Determination for Applicability to the Neuse Riparian Area Protection Rules (15A NCAC 2B .0233)-EXPRESS REVIEW PROGRAM Dear Mr. Deane: On June 7, 2006, at the request of Neal Floyd, I conducted an on-site determination to review one stream feature located on the subject property for applicability to the Neuse Buffer Rules (1 SA NCAC 2B .0233). The feature is labeled as "A" on the attached map initialed by me on June 8, 2006. The start point of A was flagged in the field as "Start A" and the end point of A was flagged in the field as "End A". The Division of Water Quality (DWQ) has determined that the feature labeled as "A" on the attached map is subject to the Neuse Buffer Rule. This on-site determination shall expire five (S) years from the date of this letter. Landowners or affected parties that dispute a determination made by the DWQ that a surface water exists and that it is subject to the buffer rule may request a determination by the Director. A request for a determination by the Director shall be referred to the Director in writing c/o Cyndi Karoly, DWQ 401 Oversight/Express Review Permitting Unit, 2321 Crabtree Blvd., Raleigh, NC 27604-2260. You must act within 60 days of the date that you receive this letter. Applicants are hereby notified that the 60-day statutory appeal time does not start until the affected party (including downstream and adjacent landowners) is notified of this decision. This determination is final and binding unless you ask for a hearing within 60 days. This letter only addresses the applicability to the buffer rules and does not approve any activity within the buffers. Nor does this letter approve any activity within Waters of the United States or Waters of the State. If you have any questions, please contact Cynthia Van Der Wiele at 919.715.3473 or Amy Chapman at 919-715-6823. AWKlcbk/asc /~ Attachments: Johnston Soil Survey Map cc: Mike Horan, DWQ Raleigh Regional Office -= Central Files. __ ~__ _- _ Michael F. Easley, Governor William G. Ross Jr., Secretary North Carolina Departrnent of Environment and Natural Resources Sincerely, / , Alan W. Klimek, P.E. )1 Oversight /Express Review Permitting Unit i50 Mail Service Center, Raleigh, North Carolina 27699-1650 321 Crabtree Boulevard, Suite 250, Raleigh, North Carolina 27604 hone: 919-733-1786 /FAX 919-733-6893 / InterneC htto://h2o.enrstate.nc.us/ncwetlands NO°` Carolina ~tura!(y S n Equal Opportunity/Affirmative Action Employer - 50% Recycledll0% Post Consumer Paper 1 `1~ ~` 4 ,\ `~ ~ "1 ~o q to -, r ~~ 4 ' W m ~. n a ~ V h N~~ n~ ~_ ~' M;a ~~ n ~~~,-~ -~ v~ - 'j1' a 0 r J W w \ ~ y' 7 ~, M~ `'V ~ ~`~N ~ 0 { Q ~ ~ W J w J . y ^ q , N m I` Vr Q ~ ~ v 4'tii-~io' _' ~ ~i:vCm `~'1 A ~ ( ~ y 1 ~ N ~ laW I 1 w ;, ~ 1. i ~'' ~ ; ~' '4 ~ ~ ~. W ~ ~ W ~ 0 w 4 -~-~ ~ w ,ti ~~ ~a a .4 J ~ `4 W W ~, ~, / / o N q ~ J i~ ~ \~ a ~ ~ v ~ ~~z ,. l~~ _ ~ ~ l ~ D ~_ - 1 ' a ~ ~~ ' __ m M~ j ~M~~ ~rZ I-o~OS 0 ~ v n ~ ~ 1 ~ ~' ' ,~ N~ \ I / N X011 m~._ /~ ~ ~ c ~ \ ~ ~ ~ ^ v ~ 5 ? ~ 4 U ~ ~-- ~ ` -- ---- ~ rl - ~ / ~ ~ ~ o. ~ ~ ~ / V1 tin 11 ~~ W ~ ~ ~ ~, J t Yl , .\ \ / ,, g ~ ~, ~ `~ m a v O ~. 0 n 0. z ,, 11 ,~ ~ ~ V ty~MQ'° `~ F ^, 1j ~ a ,V ~l e W N Qh~ 0 m ~~ ~ ~~- ~ <\lr' ~ -r ~ ~ \ CO ~ ~ r ,--- _ ~ - ~ ,~ . <- / / 1 ~ .,~ ~~ `- ~~~\ . ~--,, ~ / ~ / ~~ i I s ~~ `~ // -. 1 1 .. f ~ ~ }~~ d II 4 T m a ~ S ~~4 ` ` ~~'u 1\y ~d ~\ ~~ ~ ; ~ ; + av ,. _ cq 9 ~ . ~ M ~~ . i~ ~ ~ v ~Ia ~ X ~ 11 ' ~ d ~. ~ f 7 M ~. ~ ~" \ ~, y . QI i , ~ W a ~ ~ ~ MI'. '° 3 y c_w ~ ~ ~~ J l 3 ` Z ? v t~ ~ ~ --- : _ ~ i ~ v4 'Q q 411 ~ c ~ ti ~ ~ ~ . . Q' 11 U n '! W ~ i rl V \ q ~ b ~ ~ ^ r ~ a 1 . ~•...W a al 7 o~ W II _ ~\W ~ W ,- ~, ~~ d~~ -_.i~ ~ ~ ~~~~ \. \\ / ., ~ ~ ~ T. ~ Li - ~ ~ ` ~~</ ~I' ' .O ~: ~ , ~%1 ~~ _ ;~ ~ ~ ^x~ ~ ~~~ ~ ~ ~a~:_~ ~ ,. _ '~'~ 1 1 \ \ ~ ill ~ ~i /~ '^I ~ V J r,~~ ~ / ~ ~ ti 3~M ~ 0. W ..^ o~ o a 6 M m a ~,I V ~ °~ otl.°;°~ yyu~ q ~- * 11 u W a ~ J a ' e w W aye a ~. 0 ~~ . N ~ ~ ~ 11 N W Z ~ °~ w O~ ~ ~ ~ ~~ y N 1{ ~' w ~N _q ~ C}J 1111 12 5 1 ~ c ~. ~ u ~ ~ ~.. ~ - ~ ~' ~ ~ Cw ~ rv? t;, t 1 ~ ~ a'rtc~-v ~~' 2 ` - a ~ v ~ -° 1~ _ - - - ~ - , - -~ ~ ~. - ~ ~y ~~ to ~ ,~ -~ ~. ~ ~ N N N ~ '3 w ~ ~ ~ M off! ~ ~ V"~ ~ ~ ` V' ~ ~ \ ~Z NM ~~ q ~ \ '0 ~ ~ ~ av ~~w ) ~ / - ~ ~ ~ ~ / ~ `" ~-~ c~ ~ ~/ \.- i ~ ~ '~ ~ \ o ~ \ \\ '~ N ~-- \ \ / ~ \ ~~ \ / ~ xa \ 5 N ~~ ~ ~ / \ r ~, / \ v / 1'~ ~ ~ ~1 r O ~ \ h ~ '1 \ \\ ~ _ / ~ ' ~x/ ~\ ~~' / O Ln ~ 1 ~ \~ V ~ ~ ~ ~._ ~~ T~ ~ O ~ \ \ ~~ ~ V7 \ \ \ ~ ,~ .~ I ~r-> T~ _ J~ •. ~ ) J _L n " n /, ~ / , 1 ~ ._ Z ~ ~~ u 4 ~ tl m n d j ~ W' ii ~v ~~{1 ` w ~P vACCE~+ cvQb 1uaBT S To<M 5 S~'!-'1 ."- ,~ Poo ~AUe~c~a.6 iu~ET t3 x13.88 TD ~ pG Sf tit fv~~ ~L E ~.S STiF 3*9 91 ,y3 4 ~EL= I mow' 32,41 ~G,-•y~ E/P= e/G = ~33.¢G 6fG =132-GB - ., .~ - ZV !, ~ 1 ~ o~, ~-, i 40. ~ ~' , Y` !', ~~ 10, 479 ;' c ~ ~ ~ $ ' C ~_ 33 ~5 - = ________ _ (~, /1 r - ,: ~ ~. \ ~ 1,634 - _- ~ I~ . I SQ. FT. _ 42 ~ ~ 10,087 ~~ SQ. FT. I.-~ ~ 32 g ~ %~ ,.I ~-, \ 9 596 \ i~ fi ~ ~ co 1 \SQ. FT. - _ 4~ ~-~ I ~ ~-~ -I I ~ 0 10, 387 ~ ~ , I ~ /~ SQ. FT. ~ ~ ~ o l ,~ 1 I ~~ ~1 ~ i I i ~ ~ _ ~ o o, 617.: ~ ~, .-- , ~ to 1 Q. FT. ~ 3.~ ~ ~ ~ _ _ ~~ - - ~ ~ r ~-, ~ / ., ~ ~~ ~ ~, ~ , ~ ~, ~ ~ ~ ~ ~ ~Y~ . -~_ i 3fl g ~ ~ i ~- ~~ -~1 13,066 ~ -x ~'`~ . ~I 1 0 _ SQ. FT. ~~~-~ ~ ,I `~, ~ __ - ~~5 ~ ~ ~ I I N89°4( _ ~ Y --~ ~ i o ~ ~ --- + ~ !- a I ~ ~ , ~ -- ~ U ~ aQyr a \ \ - pp}~ ~i .. J _ -. Jc J~ ~ ~•.: /~~-~ Leo+, P~~ YA~.Ey - c~aa iu~rs(i) Sri ~o t„3.~z ~ EL = IZZ_ 1,GR ~--23 FaoP vACz CURB ~ti+1.E ESP= d~C . 127__A7- ~I_a ,i J v. v ~_ ~. '~ L = 54.42 ~~ e °~~ r,.~~~ ~ Ur,..~c1r 1` E~=i2z.s~._ Fl'.., ~.l.uS.c ; ..., 4r. -.N~y~ _ " P4oP V^Lt~'r C v,~! 8 1 NL-~ T STA 7*G3,41 ~ EL = ! 23, 43 IPc 8/C: l23.Z0 Pr~P rRUE}~ Cv~c6 1-JL~T sTA'`~`.~s 5,872 AFC. = rzssz EIP- B~C = IZ3.Z9 Q. FT. , , , , ,~ _ S TV ~ M .~~5 T~~~ 5 ~ ~ ~' ~" Tv~ oc ,Sri v~TVe~ ELlcvs ~~ ~ pR.oP YAtt6~ STA Gr52,17 rt EL = t2 ,9Z E/P - g~~ . 129.9 ~-.23 19, 340 SQ. FT. 1~ _ _ ~L\ ~ - - - •~ ~' ~ ., ,.~ ~ ~t ~ ~ ~ ` ~~,, 135 _ _ ~ _ \S Q_ F~ ,, _ ~ ~_ ~~, ~---~ ~ O ~ I 13\ 59 ~, I SQ. FT.` `~ I -- AGUF!; C_r ~A7 ,-~,r; .-~ a2Q.x ~ ~ ~>5.31 1 2~.7~,er ~~~ `~~ ~, \~ pRpP ~/ALtfy ` ~ L~,tE r~+t~TS (Z) sTiq p r qG . 2 8 / ~4 `I Ct EL = IZS.9 ` ~/P = F/C = 12 S, 70 \ `1 ~ y3 ~,. ~~~i- \ ~ \ 14 - p,enP VAUEY Gv<d rulE .STA 1~i~~~ .7 s/ .1 t zZ DEL = 127.8 ~P= S~c = 127.64 ~-.23 Sro~e-rte O,e-stre~.R~~ t ' {~' Sf2vGYvd-~ DEPTttS' ST.k~tdJF~S By%B~L 3/2fL'7 L ` ~~~ GATCH Bit5YU5 STkt-+~~Q-OS ee ' ~ i o~24' ~~' d"3o" f.1GDoT S~F°•bf ig+jD,a.~,.-STD.LA7GHOAsYNS i ~ p NGDoT $40.03 - STD. G4Rr'~E~ 4agTE~F-!`Itot} ~ D I _j(_ JJCDoT 840,45 (o~ 84D-QL as Appl~c~blc1 ', r- STa.~~p~~'AST" g.xFS. Qcf= rJCOor Std..d~-d sQO.O1~°~ Std,~~pF4,: Fa. ;,.i8": H=3'3.,t~„~gfG=3.75'atBfG A=L4" = N =3' 9". G" t. 8/G=4.Z~`~t8/G ;~~~~;~, <~~, u~ ~4 %~ « f ~' ~ ~ ' ~. ~' VA~~~ E,.,~e INC~rs - ~ f ~ Sr~NO~taos o`-Z1"~! ~ p, 3D.. j f,! GD~T 84°.0l s= S4D,aZ - ~~;~his art ' j ;: D frl G E ?.-! A Ff 'F~' 33 S Z ~o r AcUp }c~ A1GOaT%.,.d sst~ S ~= ~ ~ I / l:cobl~c \~ ~~; ~.,.~e 51r~tftirt .St~.As IJCDoT f.1C~01- 84D•4S(nr S40-g!s tis i1PP ~' Gate L+ 8,e5in - Seel. 84°.61~•aL ~-- 574. "P,~ELRST'~ Bax$S i I Std.p~PJS,;Fe. p=19": H-=3`3"*f''f•8~C-3.33~tBjG Q=Z4"' N=3'9"a!" t.6/C=3-83'ad6fG I i ll,~op tr-tGE'TS - STA~.S °`_..._. ~~~ NGnor B4o.14 ~ gq~.t~- Srd. Dao>o JNGBT ' € 1 't+ble'1 ~'~ ! %.-S_.LJ NGDoT 84D . ¢S~oi B4D.'f G as APP ' V ~-- Srtl. ~'pEEC.tST ° 8°x FS Std.Dtpth Frr D=!$"; H=Z~G" (2,5~) ~I i SToa-M SST E~ ~ I ~y% BEL ~~?f~~' SrR-~cr+~a-~ ~cPTHS~~,~~D~S <D2-1 si)1-2 5~1-3 So1~9 TRIAL GRADE/DEPTH CALCULATIONS FOR STORM DRAIN PIPE tructure tructure Rimffop Elev tandard Depth Length of Upstream Pipe Measure to Centers of Strad. Set Sbpe from Upstream Pipe et Depth rop Through Structure nvert Out nvert In Final Structure Depth Top to Inv Out inal Pipe Slope escription Open End of Pipe _ _ _ - 157.00 157.00 Pipe 40.0 0.0100 0.054000 Catch Basin 158.39 3.75 0.20 154.64 154.84 3.75 PTO. DEQTN Pipe 50.0 0.0100 ~ ~ 0.024400 Catch Basin 156.97 3.75 0.20 153.22 153.42 3.75 STa, dEPfH Pipe 36.3 0.0100 ~ ( 0.010000 Bas n 156.76 3.75 0.20 152.66 152.86 4.10 ~Kra~t d E,~TN - , I ~~ c C-~ !,• 1 Pipe 45.3 0.0100 ~ 0.024437 Catch Basin 155.10 3.75 0.20 151.35 151.55 3.75 Srv , dEOTN Pipe 40.0 , v3 37So Open End of Pipe - - - - I SO.O 1 SO. D i! S ro ~-~ S y s rEM ~* 1 ~ ~~ _3v ~ DPFN ENd l1~gt3ES Foy OgyLiLtlf/.uG Ql~~ AI.~o 1N~T~our~.ET DircH G,~A~ES (~S Nt.~dtr~~ `\ ~~ o~ \.. .~ ~r 502-1 502-2 Pr~i~~~ L'yp ~s sot-3 Soz -g Sr,~~c~~~E DEPTt>s~Gts+aES / TRIAL GRADE/DEPTH CALCULATIO NS FOR STOR M DRAIN PIPE tructure tructure Rim/Top Elev tandard Depth Length of Upstream Pipe Measure to Centers of Struct. Set Slope from Upstream Pipe et Depth rop Through Structure nvert Out nvert In Final Structure Depth Top to Inv Out Final Structure Depth Top to Inv Out escription Possible Future Open Pipe or Inlet Possible Future Pipe Valley Curb Inlet 152.57 3.33 3.33 0.20 149.24 149.44 3.33 -Sre. OEGTN Pipe 35.0 0.0050 0.005000 Valley Curbinlet 153.17 3.33 0.20 148.87 149.07 4.31 S~r,e c EXt2.f DEOTH~ e,,,~,~/ Pipe 54.2 0.0050 0.008026 ~~. ~~ __ Valley Curb Inlet 151.56 3.33 0.20 148.23 148.43 3.33 STD . D EF'TN Pipe 24.4 0.0050 ~ ~ 0.005000 Valley Curbinlet 151.80 3.33 0.20 147.91 148.11 3.89 Si°Pc EXf,G~f dFOTIi-~°„ ~,l Pi GS• a .oc4SS9 Open End of Pipe ~ ~ - - 197,6 147.G Sec Ncz>• ~--- =-- 'U l7 =~ STO,zM .~ySTE~'J ~Z I ~~ ;3~ i OPEN ~~ub G~~4pES ~~~ D~FyL1GMT/ivG P~/a~ ----- lJ~.+O lNLET~OvTC~T D.rc~ l,~.~oES ~AS Nr<d~d) r' N ~` Sr~v~-r~~.e dE~rtts/Ga~oFs SD3-2 SD3-Z SD3 -3 TRIAL GRADE/DEPTH CALCULATIO NS FOR STOR M DRAIN PIPE tructure tructure Rim/Top Elev tandard Depth Length of Upstream Pipe Measure to Centers of Strud. Set Slope from Upstream Pipe et Depth rop Through Structure nvert Out nvert In Final Structure Depth Top to Inv Out Final Structure Depth Top to Inv Out escription Possible Future Open Pipe or Inlet Possible Future Pipe Valley Curb Inlet 144 08 3.33 3.33 0.20 140.75 140.95 3.33 S1"D. DEFTM Pipe 74.7 0.0100 0.024900 Valley Curb Inlet 142.02 3.33 0.20 138.69 138.89 3.33 STD. DEPTH Pipe 24.0 0.0100 ~ ~ 0.010000 Valley Curb Inlet 142.02 3.33 0.20 138.25 138.45 3.77 Sl'pc Exr<~ J)6PTrf-Gn~fel Pipe SG,o .02232) Open End of Pipe ~ - - - 137,0 1370 Sct NtX = - - zi Sroa M S~ s T E ~-'+ ~ 3 DPEN Fti,p G,t~bES Go.~ ,d~~uGtfTl~uG A,PE ~~~ `-~v ~ /-~~+0 1/-JLFT~o~r`cr ~~rc~-G.e.ta~5 ~9s ~t~~dcd) '~. 1\ 1 ~ ` ~ ,~ ~ ~ I ~ ~ n.~ ~ I °~, ~ ~ ~ ., \ 1 ~ ~ ~ ~ ~~ ~ o ~ ~~ ~ '~ _ ~-s. ~~ a \ ~~ ~ ~ N ~ ~, d \ z~! ~1 ~ ~ \ ° r.,y. \ ~~, a ~. M ~~ M ~~ X~ C ~` t 1 \ Ca SQ \1 ij r ~ e >, '~ e \ ~ ...,4 1:' ~. o ry ~. ~. a \\ 1 4 t ° + 9 `/ \ Ss a ~~~- M \ ~ ~~ --- -- G \ -_ ~ _ / ~...~ \ ~ ~ _ ~. / ,~~~s~~ V / ~ / / /~ i~ /~ zz Sroa~ S~sTs~'~ rz `~" ~ Q2L 3/Z~r,7 ST~.uCT~iCE ut=PTt~S ~G<A.d~~ 7~ Sfl9-2 soy-z So9-3 TRIA L GRAD EIDEPT H CALC ULATIO NS FOR STORM DRAIN PIPE tructure tructure Rim/Top Elev tandard Depth Length of Upstream Pipe Measure to Centers of Struct. Set Slope from Upstream Pipe et Depth rop Through Structure nvert Out nvert In Final Structure Depth Top to Inv Out inal Pipe Slope escription Possible Future Open Pipe or Inlet e Possible Future Pipe Valley 135.48 3.33 3.33 0.20 132.15 132.35 3.33 570, QtaTN Curb Inlet 0100 0 0.012869 Pipe 74.6 . Valley 134 32 3.33 0.20 130.99 131.19 3.33 Sttl , d EP TH Curb Inlet 0000 pi 24.0 0.0100 0.01 Valley 134.32 3.33 0.20 130.55 130.75 3.77 Sl~y~ ~x,ta DE~rN' „},~~ Curb Inlet Pipe Open End of Pipe - - $ •~ - - 13v. ~ t3v. ! .ooSll¢ ScG tiltx't ~ •' _ -- .STc.~.~-~ S~ST~~`~T ~ ~ Z3 DIEM ~~..~~ G,¢~D ES F<'~ DAyLIG,H~ING Pi~G f „ _ 3~ ~ A ~ o l ,u ~ ~T fo uTt_,~ r a ~ ray Gt~G ~S RAJ N~~~~~) \ \_ ~ ~ .._ ,s- \ ' 4 a w \ s~ ~~ ° \ n ~~ ~ tl N* ~. _ .oK ~ ~ ~ ` 44 \ ~v i CS `~'\ ~ A ~ h ~ ~ K i ~ ~ 'g w 41 V1 N ~~ ~ _ ~ ,v 'v. V .~ p ~ ~~i ~ ~ ~ 0 ~ a ~~ M ~~Fv` ~ a ` ~ ) ' ~' + r'1 ~\ 0. 2 I ~ ti ` Q! Ut ~ ~ ~; ~ <c Q V M ~ ~ I ~ ~~ M ~ v \ V ` °v ~ N N ~ r' ~ ~ -~ tl < C X V -----~ - y` D. ~ ~ --- ~-- ~'~ BBL _ ,pE _--_-_ 1_ ~ ~ -- _ ~ __ ~ I h o i e~ a ~ ~ J E ~ \ ~. ~F: ... I,.. I I SoS-1 S~S-Z Sro,~M Sy s rF~-~t *~ 5' Srav~Yv,a-r f~E~ rNS~GQA Dt5 TRIA L GRAD E/DEPT H CALC ULATIO NS FOR STOR M DRAIN PIPE tructure tructure Rim/Top Elev tandard Depth Length of Upstream Pipe Measure to Centers of Struct. Set Slope from Upstream Pipe et Depth rop Through Structure nvert Out nvert In Final Structure Depth Top to Inv Out inal Pipe Slope escription Possible Future Open Pipe or Inlet Possible Future Pipe Valley 133.46 3.33 3.33 0.20 130.13 130.33 3.33 STD. DEPrH Curb Inlet 2 31 0 0100 0.008013 pipe Valley l 132.68 3.33 . . S<G 2.80 0.00 129.88 129.88 2.80 Sit A H~ M~a.t.D,<~TN- ~;~ ~;~ et Curbin Pi Open End of Pipe - - D - - 12 9.q ( Q~ 4 . c0 SZ17 Sct NcY~ - _. _.._- z4 A^~ N' ~,,~t~' ~ Tti •.a D~ lt, Bax ~fi<. a M ' t<t 1.icxt P~ .SroQ~'t .SysrE~ ~ S ~aF~ FNS GQS~~ES Fo,t DA yL/~HT/N~ ~3/~~ zs /~f =30~ =_-. ~, .-~ ~ ~ ; r ~ ~~ _ - _ _ ~~ .~ .. pp ---' " p+~ ~\ P,¢o~ ENV ~T n ;H I l2~„g8 ~,^ ~fsta r~,s t~. ,, ~ ~,,. ry I ~ ~~t r, ~°' ~FtX~ ~h,~ Oa „ - _ I (~ I its^,j"~G r.r-~ Qt,rh - I : ~~ „SAS ~~_ ~ I I b MSa rpfh ~ Z./ Z-~, I ~u ~ I \ ~ ~ rk~ ~~ ~@X a I ~ M ° _/3G.b~ N I I ~ P' z- (~ ~ ~ ~ ~ I ~~ ~ izs.~ ~ I {~ ~y / /~ ~ f Al V ! /d \ ~~ J 7as ~ Icy ~_ v / I = fAtV cu I ~ - ~ w~ - ~ I P'2o~o PfPE ~: _ tl r ' i __ I I \~ ~ Sq i,VV_ ~~IIS',~2 ~- --- _, /Z ¢~ _. ~'` ~~,, i 6 _ 'c, \ ~~,, - mss ---- % ~<. \ ~ `1 ___._ _. A~J _.:_._ _; n 3N \ `. _. ~-` ~ n .. ryN 1 { {" ~~ _. - _.. ~~ _... SDG-1A SDG - 2 s~G-2 saL-3 SDG -~J SSG-L1~ SDG-L4L SDG-~1. S06-L1. ,' SDb 3 SrD~.M Sys r,F~ ~ ~ ST,Q / G T ~~ Qg,aTt/S f~E/iCES ZLo $~ ; Ba-L 3~S'~i'7 TRIA L GRAD E/DEPT H CALC l1LATIO NS FOR STORM DRAIN PIPE trudun: tructure Rim/Top Elev tandard Depth Length of Upstream Pipe Measure to Centers of Strud. Set Slope from Upstream Pipe et Depth rop Through Structure nvert Out nvert In Final Structure Depth Top to Inv Out inal Pipe Slope escription Drop Inlet 124.50 2.50 2.50 0.20 122.00 122.20 2.50 Srb . DEPTH pipe 24.0 0.0100 I 0.018333 Valley Curb Inlet 124.69 3.33 0.20 121.36 121.56 3.33 Srb. dfP7H 24 0 0100 0 ~ ~ 0.010000 pipe . . Valley Curb Inlet 124.69 3.33 0.20 120.92 121.12 3.77 S/Pfc Ex rta D~TH - G~h~l ipe 111.4 0.0100 ~ 0.012118 Valley Curb Inlet 123.20 3.83 ~"Plc Au~.~td 1. /~°te~ ~,,,~~ ~~ 4.13 0.50 119.07 119.57 4.13 Te r1~s• Ex~<~ n~~i~_ G.~fr. pi 106.7 0.0100 ~ 0.010000 Valley Curb Inlet 12268 3.83 Aa~`~``t~ 0.20 117.80 118.00 4.88 S~opc Pipe Open End of Pipe LS a/- ~ !) 7. D It 7.O .orr7GS Su Ncxf - Open End of Pipe _ _ _ _ ~.:5~ }.~c,,g- o.099 pipe 20.0 0.0100 6ci~49596 Valley • Curb Inlet 127 64 3.33 0.20 124.31 124.51 3.33 -STD, d EP7"N Pipe 74,9 0.0100 ~ ~ 0.023231 Valley Curb Inlet 125.70 3.33 0.20 122.37 122.57 3.33 frd , DE!'T~1 pipe 24.0 0.0100 ~ ~ 0.010000 Valley i Curb Inlet 125.70 3.33 0.20 121.93 122.13 3.77 EX rLA QfPTN - G „~~ ,1 pipe 52.4 0.0100 ~ ~ 0.033779 Valley f Curb Inlet 123.29 3.33 0.20 119.96 120.16 3.33 pi3ZZ0 .STG. DE,eTN pipe 29.5 0.0100 ~~~ ST 4•l3 °7I il9 ~9 Valley Curbinlet 123.20 3.33 `~,l3 • i • '~" ~7 ~ ~- cti~~ 7o N~tchft,e ~~l.~; EIXvSG~r r ti C, le w~5. s /'i..•. u~5 .~ 566-2 y~.l 57~~2 ~ Sl~tJa-M ~'j G/ ~ ~^ ~ D PG.N ~~ G-~..~a ~.~ ~o,c- ~Q~Grb~9~1uG Q t ~ ( Ft a "DSO t ~ ~ _ ~lJ ~ II - ° ~ ` ~ ~ ~ ~ ~ ~ ~ ~' I ~ ~ ~~ r ~ ~ ~ - _ Z ~ f - cJ F ~: Z - - ~ _~ ~~ ~ ,, z ' ~ I ~. ~.~ ~ r I ~ ~ ~ ._. ~ ~ ~ a'~~ a ~ i 9 y { ~ ~ 0 ~~~ ~Z8 ~ I, M ~ I s ~~ ~ ~ ~ n -~ ~ o~ 0 N ~ J ~ ,~ - _ _ - ---- `: ~ ~ ;, _ - J ~" ~ x c ~ - _ 1 ~ I ~ - T~ ,~ ..~ - S i I ~ Z w9 pey{,~ , ..... G , % may: ~ , ~ ~ ~ ~ .o [ ` •C I ~ / -- Y, ~ % ~ ~~ ~, ~ ~s ~ ~ ~ .~ ~ i N 8 '~ u ~ ~ ~ ~ ~~ <F ~ ~ ~ I I , P ~ .~ i ~ O I ~ i J 1 ~ ~ \ ~ _ ~ . l - \> _ - ~- ~~~ r~ ~ ~ • d - ,~ h - R ~ f ~ \ / ~'~ y +L ~ . ~\ ~~ . ryti• ~ _ +B ~ 1 v ~ N ~ 1 ~ ~ ~~ ~ ~ ~ ~- -- ~ ~ Q8~ ~ ~ ~ s ~ Nom, ~ , 1 ' ~ - ~ / ~ ~' ~ ~ ~ 1- ~7 ~; '~ / ~ \ ~- (~ ~- ~ ~ ~ ~ ~ ~ L.L v i ~~ Nti ~ ~ l ~ i ~ i ~ ~ vJ' ~P W U Q (.J~ ZS SD7-Z so7-2 STO~d-Yt Sy ~'? ~r't `~ S7t~-uGt JL ~ Q EPTNS ~G,~AQ~S TRIA L GRAD E/DEPT H CALC ULATIONS FOR STOR M DRAIN PIPE tructure tructure Rim/Top Elev tandard Depth Length of Upstream Pipe Measure to Centers of Struct Set Slope from Upstream Pipe et Depth rop Through Structure nvert Out nvert In Final Structure Depth Top to Inv Out inal Pipe Slope escription Valley t C b I l 1219 3.33 3.33 0.20 118.60 118.80 3.3a Srp, DEATH n e ur pi 24 0 0 0100 0.010000 pe Valley b Inlet C 121.9 3.33 . . 0.20 118.16 118.36 2 3.77 ~i°p~ FXTdA dEQrH- ~ ,f.°/ ur Pipe Open End of Pipe - - 3G ''~ - - . f 7• g 117•S~ , ct853a3 ,~~a ro ~s~°'c Pe •a ~ ' u Prt.v. P S. r ~.S-rro r, , ~ ,tn„~e,! 7:-. .(~~7A IGr ~,~~ GF. lrr~,fC AEFF) ~`YW2^, L ~ ~ . i a :i a .;r.^c~ '/f f ten! t' G~ Ir*; S c, r ,•,.u,f`. Z9 ia~ •1' 24"' 2 C9 N W 0 W a a a 0 NWN ILL ~"' a a U O 0 O r W N W Q W N W a a Z 0 I.f. O '} V 0 J } J N d M m ~' m 0 N h ~•` Q ti E N C _~ 1+ ~ ~ n o Q~ .d. ~ N ~ M ~ k1 ° ~j . ~}„ ~9 ~9 v a o N N N N N _ ~ ~ r h ~ a J¢ ~/i ~ ~ ~ z Fwo = ~ ,p _ N ~ N 0~ ~ 0 O~ ~ ~ a ' d ~ J ~ ~) ' o ~ ~< ~ 4 ~. ~ /1 0 ~ 0 ~~ 6~ y ~i~4 ~ ~<C ~ LL W . \4 LL ~ ~= o W FON Q 0 ~ ~- o aLLO M a t G= LL ~ ~ ~~ m U V V ~ vl Z ° w a i J ! <c in . 'y m o ~ c v °-` ~ 4'^ ~~ ~. ~ k h a ca~ 5 < ~ ~ ° ~ Q' 4 ~ 4 ¢m~ v i o~ ~ v - c ~ °° i I I i W ~ U J O Z U ,' Q~Q W I I I J ~ 0 9~ i ~ I a ~ ~ ~ . 3N ~ ° y v .h ag' .:~ ? F ~w~ ,{MVFIf .. 1 VI N N ~ w q ~c~io ~ ~ ~ ( c 6~.vW ~ Q ~ 0 . N Ny kk \~'~ O Z . ~ W 2 f; x V .. ! ~ C p' ~ C7 ~ Z w ~ ti ~d < ~ Q O Q' ~"} ~ ~' ~ ~ ` 3~ U )t ~~ o tc Q r ~~ ~5~`a~1 •n n1 zti i d i r z Q U E v ti a M v ~ r a ~ i'~1 ~ ~ ~ ~ ~ ~ ui 4t ~ O ^ ti ~ C ~ ~ c C C N !n `~ N K Z K b ~ VI ~ ~ ~ y J ~' ( f~ Q ~ L~ ~ Y w " 4 W a q u N < L ~ C- ~ ~ 4 ~ c ~ j ~II a e ~ '~ " i . 1 4, h 'tt a o h 14 Q Z ti O u W y ~ v ° 4 r' !° y ~~ a a r ' ~ H~ r { ~ 4 ~ N y~ _ ~ C ~ , M ~'' ~ ,n ~' ~ ~ vl vi 6 ~ ' ~ ,~ ~ ~ 0 ~ ~ ` ~ ~ Y ~ V ~ Q y ~0 31 J N ~~ ~O M m ~' ~o ~' `~ YJ~ M E d T O a J ~ ~ ~ o vi ~9 ~q : N a z N t~1 N N t~ ~ {~ h ~ W _ (`~ ~" M W m W M :1J Q Z ~ ` ~ v' 1 _ vl 1 _ VI r ~ ~ ~~ ~ ~ ~ , N , ~ M ~ ~ _~ 0 o ~ i, ~ , + f ` o~ ~< ~ t~ J 4 ^ 0 ~ Q ~ G ~ W F~ TT T 0 3~ i N oLL~ QO ~ =y \cfi ~ ~ I LL F o~< I p O Q . O ~ ~ <~ ~ I = ~ u~yMy U ~~~' I ~ o M o i `-~ 4 cJ 4 on Maya M~°D ~ 5~ ~ N ~ `^ a N ~ v°~ ~ cV 4. v°, ., ~-a~ moo I ~ J 1n °e}~ ~a ~^ ~l I~ a m = V ~ a C a U N~ 0 V E v 6 N (, ~ y 4 ,~ ~ p ; ~ V ap ~ G= j U s v3 ;v .., mNt 4j ~ • H ~ ~ 4~ a y V i i J V r < W Q gll d 4.4 s t n ~ ~~ ti V ~ ~ ~ J O ~ uv.^~ ~ . a r i m z z I a y ~~W~ ~ ' O y I G Z ~ ~ N m o M r m z_ ~ ~ F Z ~ ' ^ IVI SN'c ~ ~ ~~! .G ,F~ h yLW J~J F a ^ I j y 2 ~ ~ ~Z J ~ W ~~~ ~` ( i~ l V r, ~v 6 [ ^ y r ~Q ~ I ' y- v1 ~~ N N ~_ -~ ~ ^ ~ `- ~~ ~ r ~ t Q ~ _ _ l 4~ Q Z ~ i •. 9 ~ i 3 t ~ a cw ~ a ~ h ~~ ,~ ~ • ~ W ~~ Q~ v Q ~ y rya ~ `? ~ ` ~a ~N V ~' ~ Q t w W 4 l Y.~ ~ Z ~ ~ 4 ; ~~` ~ V 2 4 C 2 S C t1 N f ~. a ~ ` ~.' Q ' ` ~" ~ c ~ t ~ •a ~ N n O ~ ~ l t~ t N~ M a 5~ l w~ i ~ L* a Q` q f ~ N W W Z v V ~ tdn ~ 4~ ~ ~ ~ `6 Q ~ ~ ~ ~l ~ ~ D F~ ~ ~ ~ * W ~/p r, ~/} m ~' r ~ ~.y.. ~. ~ N w: 0 e d ~ ~ ~ a1 UQ ~ a~ t m ~ "d -g ¢~ 1 '3 4 7i Z ~ ar 4 4~ rJ~ c ~ _ N 4v ~ N ¢v N 7 V1 y `~ Q Q _ ~ ~ ~ ~ i1 _ ~ ~ z •, 3 3Z ti 0 J N al ~ m M m ~' m O µ ~. h ti~ Y 0 ti .y.. d N N o ~ ~ ~ s ~ r ~ N Q Z N N a - ~ ti z ~ ~ ~ - 0 F~ N ~' ~ `~ ~ ~ o `u ~ o~ ti -` r` ~ ~ - A d J ~ N d G F y {~ '^ V -1' ~ <o .~ 1 a W ~o- ~ LL ~ 0~1 Fp ~W °LLO ~ I y ii ~ O Q aap o?LL W S~~ ~ N ~ ~ ~N y OA ~ , ' y W S ~ r N N U j QV a a = m U, z M 4° ` M ~ ~ ~ ° I ~, ~ ti oa ar} ~~n o~ ~ ~ am= ~ - d N V ~ pU ~ I W U 7 = C.1 F U ~ G Q ~ ° I I I Q U I I ~ < W O UWF a~ W U ~ ~ ~ ~p V Q p ~ N y , 1 ZO ~ F ow~d Oa V' ~~ IoW ~ ~ -~ z ~<w ~ ~ ~' ~ a ~F ' ~ u 3 N ~ N In N ~; `~ ~~ ~ M ~ C V ~~ Q \ V t ~ y v + N f > y~ N RW'p1 w0 ~vyq 9aoy V ~ ~ ~ ~ y ~ ~ 1 ~ a ~ ~ F o= ~ ~ ~ Jti; ~~ ~~, M ~ ~ ~~ f ~ ~, .~ ~ vQ i~ 4 E J~ c ~ ~ ~ M~ a ~ '~ M ~ O y% ~ V ~~ \ ~ .i Q„ ~ n ~ Cf ~' ~ \ pm~, i 1` z + `~ ,~ 4 o i ~~ ~ ti ~ ~ W v ,~, ~ a~i ~ °~h` ~ r ~ + ~ z hags ~ ~{~ ~ ( h N ~ + I h m ~ ~ °- ~'i 7 M ~ q ~ ~ ~ c ~ ~ Q - c Vl 3 d 33 R 0 J m M m °' 0 W 0 E d T O o M ~ l~ o Lj 0 z ~ N N a _ ~ ~ ~ W ~ W ryM ~ W 0 ~ ~ t~ ra-~o ~ ~ J ~ r. e ~ - a r rQ ~" ? p ~ N Q W~ J ~ y V .~. ~ O V, ~ ~ 1 I f LL ~ Q LL O Q ~o-~ 1 1 o= ~~ p 0 a N O LL ~ a ~ G 0 ~a~o z o F ~ ,~ ' ~ ~LZ m SV ~ ~ ~ ~ uY II~W h =~ ~ C ~ . ~Q c i I t-1 f nl U6 ~ ` ~ ~ ~ ` Q' ~ m ~ J ~ F 7 ~ ~ Q Q F'QK D a ~ rc~o ~a ~ N er Q' Q m U 7 O QUQ W (~ a~ W g° U ~ I I O = V ~ J N W` 0 00 ~ I Q U U W ~ ~ ~ 1 I a _ ~ ~ w v N ~ ~ W WWW ' O N 2O ~- 1 w Z v w F d a~od L/1 d` p O N M K ~ y N ~ ~ W ~ ~ ~~N y h ~ N E~ U a ~ ~ ., _ _ oo ~ ~ ~3 N N N 3 ~-. ~ 6 ~ nl . i M i. fl a ~ a L M W ~ ~ ~ d ? 4 ~ tT 3 ~ u ~ p ~ O~ 2 K ~` ~ O c, r a V ~ S ~ c o v s <~ m LL~ WQ.a !, t . a 2 0. i rc i ~~ :v- J { i cz ~ Q~~ ~ ~ ~ L ~i' ~ a A h 4i, d V ~. al ~ 4 < QQ ~ F K ~~~ ~i6 i P ~ t v M 4 > ai H W V! `~ J ~ ir. ~ ~ i vii ~' i ~ N G\ ~ V SG }~ j v v h ~* ~ ~, r ~ a. V (v al ~ o .~ 1~a1 r ~ v v Q ., p V n N 4 ' i ~ l e + ~ ~. ~ e ~ .c O, Yl h- ri vi'i Y 1 "1 i 1 h ._ 5 11~ V r 10 Q QO O $ v _ v~ ~ ~ ~' N m .1. .n V '~ V v7 M vl ~ 7 V V 3g h .~ \ mM m ~ 3 1 ti Yf ~F) l h h ins t ' 0 E o a 0 _ ~ N ~ ~ ~ a w _ z 0 K r ~ ~ - / / U r p N G Q f~ 1 ` `~ M W C O Q W ~ 0 N d JW N~ 0 T- O F N U ~ ~ ~ ~ G < LL ~ ' ~ Z \i ~` F ~ I ~ p ~ ina ~ LL o ~ , Q Q O Q a p p W ~ i O m ~ ~ Z II~~W ~ ~?~ 1` ~ N p Q U _ f a jtl1~m ~~ `` t~ ~ F<~ mrca. ¢ N D I ~ p 0. Q m = U ~ M W G ¢¢U N O ~ I I ~ V p ~ F U ~ I I ~ a W4 9~ Q U U W ~ Q V ~ ~ p ~yN Z 0 J Z a Q _ W w ` ~WO ~w N N ~, K~ ~zW `Q _ ~ W ~ ~ ~ V J U a .. ~ oo ~ ~ ~ tt} N ' M ~ ~ L p L N z ~~ ~ c O T• V a` 4' rc D wii '`? ~ ~~ v m V f ~ V ' ~V< ~ ~ ~ e Z LL d' e0 ~ .n v T G ~ ~ ~/] ~ ~ 1t l~ ; '~ 4 e1 0~ 4 ~ ~ lV ~ w ~ ; ` J ~ t ~ (p ti ~ ~ ~V > N ~ ~ ~~ ~~~ 1 ~'1 ~ ~ 0~ d M c ~ ~ a yp ~ 11 `~ V~ S ~ ~ ! ~ M ~ + ~ ~ '~' N ~ ~ Q V: n ~ i ~ ~ ( L ~ ~ V1 a ~ ~ ~ `~ ``i_ ~ `a Q ~ ~~ ~ vl ~ ~ ~' c 7 ~ ~ ] J a WD 1~ O 3S Z C9 W W a a W '"' a a U 0 O W N N a W H W a a Z L!. Q g O '"' O />- V J 0 2 n J ~M aT0 ~ m ~t~ d d w ~F O a ~ m o rn ~ 0 N N N N - ~ h ~ t.; n W ~ OA cA cy~ _ ~ ~n ~ ~ ~ ~ v ~ ~ ~/- 1/1 v ~ ~f ~ GG ~ a G F y ~ ~ ~ O V In O v p ti ~ v LL W C O ~~ .- ' del. .. ` Y. ° ~ - l~ i o aLL6 o ~ N a.<o Z J ~ =~o ~ p L, ``__ .o LL IL = m U ~ ~ YI ~ Q w U' 1 W W V) ~ ~ o ~ " ~ 'Q ~ v- tlJ S~ 1 'yam 5~ ~ ~ ~ ~ ~ ~ ° . s ~' ~ I F- a ~ ~ mm ~ o i ~ 4 ~/t , ~ O~ M ~l °am ,~°,~ ~ ~~ M U ' v ~ ~9 I 3 a ~ w 9° v ~ ( ~ ` -. y I I °_ ~u O n ` ~ I '' F O o o U ~ ( ~ ~ ~ tl I Q U ~ ~ V G W ~ y N U .. 1 V ~w~Q ~1 " 7 U O ~ ~ Q Q N ~ m N ^ ~ ~ ~ Z W ~ ^p 4 ^Ui ~ j N W ~ ~ N ~ ~ ~` ~ O~ J J ~ ` ' N N ~ ~ ° ~ ~ , In In V1 ~ v N N N r; N `. t~ ~ ~ In N 1n n N ~ N M ~ a ~ ~ l ~'') ~ < v Q h l h ` 4 ~, ~ `~4~~ ^ ~~v W ~ ~ l ~ ~ * M ` ~. N i ~ ~ ~' b v= ~ ,II S n~ ~ ~E~ 0 ~~ /. ~ V 2 ~7 v~ t e ~ t ~o„ W O W '1. ~ T V t ~ ~ f 71~ ~ ~ *~ a, t R B ~ a t ~ J~ M J h ~ ' `4 4 ~„ ~ ~ ~ -: e ~ 4 a ~ ~ v N ~ `V L Q a w a ~ 1~ tp 'V c ~n 7 ~ v, ``~ , .. c a M ~ ~ n '~ ~ c ~ i F v N _ ~ O O VI ~ ~ Q ~ t 3 'F ~ V ~ ' V a 1~ v ~ ffJ ` K ~{ ~ c y- as ~a ` N ~ VJ C ~ • • ~ T V ~ '~ _ ~ ~ ~ _ ~ ~ ra ~ + d ,. ~ ~ t ~ p ~ ~„ `9 '] ~ ~. ~9 ~ ~ ~9 ~ . ~ ~ ~ ~ c ~ h ~ C h _ O ~ ~ Y! ~ ~ ~ r ~ ~ H ~ ~ is v +1 / 3 a, ~- v v ~t~ vl c ~ ~ ~ s ti M 4 ~ Q N M ry p 1"1 y M 1 ~Ilv~ ~ ~ Nk11 O 4 a ~v Q~« ut~ 6 a ~~~W ~ ~ u a h'~t x ~ l ~ o ~dtN S 1~ 3~0 Z ~_ W w a a 0 LL w `~ r a Q V 0 Q T W N Q W vI W a a Z_ ~C G `~ r N O Q J T~ i LL LL h = a ~ e2 ~ m ~ l0 A V kl v J~ 0 ti m a ~ ~ ~ a.. 5 _ ~ q (ice cV ~ N Q o - N ~ ~ N ~ (~ a ~ ~ ~ _ 0 <~ N J ~ v! J O ~ ~ ~ W ~ O~?U ~ - vl - ~ . } 3 L (F ~ f .. < f ~ o< D g p p N N N, FJ- ~ ,.J o t'V y ~ =^ W ~ Op y U Qp ~ v 1`r~,, Y ,~Ho ' ~ I ~ v ~ ~ az LL W oo P LL ° ~~a ~' ~ ~ In Q I ~4~, { ~ ^Q^ D Q QLL~ aO Y-u~ i~~e { 1` , ~ LL . ~ S Z KEW m ¢ U ~~ W • .~ ~ (` ~ N^t ' M F G Q " '1 < • C ~ v a ~ J ~Z~~ m z ~ ~ p~ l4 y 1+ J4 ~ 4 ~ Fad mho M ~ N - O ~ oap °am= za $~ N N N M V' ~ Q g° I I I 1 I W U "~ ~ I I I I J C 1,1 Q r ~ O I Q 7 7 U _ TWO ~ J d O u d c vw~~ ~~W ~, J ~ ~ ~ y g ~ ~ ~ ~ Z mil- t i N ~ a~uo ~% w ~ ~ Q 4 Q u i W~ ~ raw Z~ w ~ ^1„ V 1 ~/~ ~ V ~ I 1 4 7 J W Q~ (W 1` ~ ~ ~uY T ` V] ^ Z y y l a 33 ~ ~S oQ _ u3 N N N N L q ` ~ ~ ~ ~` -gip 3 ~ ~ ~ -~ ~~~~ ~ ~ ~ 6 v 2 ~ ~ ~' W V N V V 1 .i N ~ ~o ~?f d~ ~~ ~ ~` ~ ~ . av `~ ` Ny ~ ~ 1' ~ V ~ Q° ti p p ~ eel ~ ~ r ~ ~. J l ~ 1 Z~ `y J o Q ~ e d ~ 3 ~ 1 ti ~ v ~ ~ ~ c -~ ~ ~ y ~ ~ 1 q H K Y h (~ ~, ~ ~,, , 4 9t + o! . + '~ ~ Q yW G _~ 0 ~ ~ w ~ 1 p + h~ c r Z 1 ~ ` V v ~ ~ t 1 ~ N ^1 V e ~ ` ~ ~ t v ~ Q fp ~ ~ J ~ ~ f ~ ~ ~ ~ a ~ ~"{ ~ ~1~ ~ 7 ~ ~ w J` ~ 7 ~ ~ ' - Q O Q ~ ~ ~ ~ ~ ~ ~ Q 37 LL LL AA O 1\ J\ ~ mM m \~ V7~ Q ti .N.. d O o c- s ~;, ,,,; Q o ~ ~ - ~ ~ a ~ a W M W M W J Z _ ~ ` ` t~ 0 r ~ `_ / ) o J f !a- = V ~ 1^~ ~ VI yM~ ~ W J ~_ F ~ . J • ~. u CA o o d r n d 0 ~ o O ~ LL~ <o c I ~, W LL ~ ' ~ F~ md o 1~1 I D p p Qp~ ~ Vl Q o d¢p i o ~ c~= ~ m~=~ VI Wf7 ~~ W y amp Oj~ I ~~ ~ ~ o~ ~ E n FQ~ a ~ rc~o N ~a (~ Q m = U ~ 1 ` d C a N N~ W 9° . O U O U W J ~ ~ O D Q ~ U I d d ~rii0 ~~W° N Q CQ ~ y ~ O ~ u z o ~ Q fWq ~~u N m ~ 2 ! ~ O W \~Ml, Q J J~N ; ,v h 1_` U _ > F ~ o ~3 N N ~1 .~ ~ J ~ P v ~ ~ ~ ~ Q ~ ~ ~ ~ th.~ ~:. i 1t ', l ^ l W W ~a}~~ ~ 0 v C Z ~ ~ _ ~ ~ ~ i c= ~ ~``1 J4 J~. W ~ Q Q ~ O ~ ~4.e~~ y V ~. y Q ,y n i ~ ~ -L. 1 F `~ ~~ "e ~ ~ N ~ ~ ~ 4' V1 y s~ Q J~ Z o! C7 °Q N m W o W a a cc O ~ '` a < cai v ~ o ~ $` Q J v ~ v N ~~ N Q Q ~ 'I~ ~ W H W ,~~ ~" ~ ~ N ~ l W `l ~ a ~ ~ a ~ o Z G y D ~ G ^ J\ N r 2 L~~I. ~` ~ ,~ V _ O N J E ~ ~ ~ T ' ~, b 0 N = o - a w ~ O Q ~ = _ 1 1-- VI O W ~ r F = U ~ 1 V) - p c? r!u ~< Q m J W o ~ S ~= LLU ~ o ~ c m a ~R a ~ ~r F= J~ oNa Q o~ Qoo ~. J Q O d<~p c~ ~= H C LL Z ~ ~ U Q WU' ~ ~ J ~N~ Q G < U aaUa ==m t7 ~~ F<~ ~~o I Q m = V ~ d o ~ N u 1~ V WDU ~ tl V ' W ~ U 'II _ U ~ J < W ~ V M ~ C Q 0 O W ~ ~ ~ a U ' Q a~io Mid Q U W~UU A ^_ 1 _ > ~ I"' C ~ Ny ' QJ Z Z ..,. ~ U W ~ Q O w a¢WO M N ~ y + U 0'r ~Z W _4 r ~O~ ~ vv ~ ~~ ' N '?~ a OQ '~ £~ ~ ~ 3 L14~ U /~ N a~ U a W M ,,! I ~ W W 1! `SV t d' Z ` ` ~ O Z J ~ ~ z ~o 4 a ~ ~ t. ti o ~ ~ f ~ M W Q ~ V ~ ~ v ~ ti 39 STORM DRAINAGE SYSTEMS (Hydraulic Design) 40 N N m 0 ~L C V N t~ Q,~ r- 0 ~' J n~ 1..1. N t r~ V I v I- O YJ 1 1 r t ~/~A, V / -~~~ w 0 o~~ J ~ m 1~. N W a ~' 0 m¢ U m` E •o m~ m c .~ c W ~$ d ~O a` m m m u~ ci 0 N 0 0 U Z ~~ c ~ m c a c W ~ O ~ ~ m ry Y O O m r f7 U C N V O t d V l0 N N l0 E r ^I LJ.. Z N m 3 a `~ o~ ~a ~n E ovr y N O N O O O ~ O O d f- U O 9' ~ m N ca ~m o a c m 5... ~-~+ Q. U O 0 r~ L ~ ~ m O r ~~^~ v, .~ L O O O t0 i !r N ''U^^ VJ }1 00'OS ~ :dwnS }1 OS' ~ S ~ =w!?~ ~ 00'OS~ :ul nul ~ Z I.+Z .e}S lno ~ SE' 6S ~ :dwnS }} 01.'S9 ~ =w2~ ~ S£" LS ~ ~}np nul }l SS" LS ~ :ul nul ~1 ZL+ L :e}S 1~- I. aS ~ 99'ZS I.:dwnS ~ 9L' 9S ~ :ua2~ ~ 99"ZS ~ :}np nul 3} 98'ZS L ~ul nul ~ 9Z+ ~ ~~}S £- t-aS }} ZZ'£S L :dwnS 3} L6' 9S L =w!?~ ~1 ZZ'£S L =}np nul ~ Zt~'£S L :ul nul }1 06+0 :e}S Z- <,aS }1 ~9 "t~S L :dwnS ~ 6E' 8S L :ua!?~ ~ ~9'~S L :}np nul ~1 ~8 'b'S~ :ul nul ~ Oi~+O :e}S ~-I.aS - ~ 00'LS ~ :dwnS ~ OS' 8S ~ =w!~l ~1 00'LS L :}np nul ~ 00+0 :e}S NI ... C N ~ ~ ~ W h Qa C~ O O O o"i O ~ ~ o ~0 r O ~ ~ ~ F o+ ~~ ~ M d N H ~ e ? _> < it `~ s f 5' ~ ~ ' i. ajiu 3~ O ~ N ~ ~O ~ ~y- ~ h atio a~ off, ~, Q~ ~ i~ ~O O M o' c O ~ ° o V ~ _ c ~ Q M~ ~ M 0 ~ (~ c N h o ~U ~ ~~~ 1 a l'~ O ~ rn~~ ~ O o o~V 0 a ~~ ~ ° ° ~' ~ o U N 1q O Q U ci U Q `O ~~ ~ „~QJ ' O O C O' ~` ~O + p ~~r w 0 o ~ J .~-. ~ Ol 1~ ~ t6 ~~;a ~' 0 mU m • O N ~ N C .~ w m 0 a 0 0 N N 0 n co 0 U 3 ~~ m~ W~ m~ Y 0 0 m ~; a 0 L m d E N a °d v om~ ~, o y tO o ~~o ..~~ N N F- ii o 4Z Calculation Results Summary Scenario: Base »» Info: SDl-4 No bypass target specified. Bypass is assumed ~ °~ ~~~ ~:pG 8<s%f~+: 8 P°55 -1'i~•.~ Sql-¢ ar~v6/S f~ °uT to travel to OUT. y ,.,, Sp wSJ~..+f~}in~ iS «i~(r f" .f ~w~ »» Info: Subsurface Network Rooted by: OUT »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet I Inlet I Total I Total I Capture I ~uLLer i ~u~~CL i 1 I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I I Type I I Flow I Flow I (~) I (ft) I (ft) I I I I I (cfs) I (cfs) I I ----------I -------- I I i--------I I-------I I SD1-2 --------- I Generic ------I Inlet I --------- Generic -------- Default -----I 1000 I ------------- 1.79 I---------- I 0.00 I-- I 100.0 I 0.00 I 0.00 I I SD1-1 I Generic Inlet I Generic Default 100 I 0.00 I O.OD I 100.0 i 0.00 I 0.00 I I IN I Generic Inlet I Generic Default 100 I 4.53 i 0.00 I 100.0 I 0.00 I 0.00 I I SD1-4 I Generic Inlet ( Generic Default 100 I 0.19 I 0.00 I 100.0 I 12.55 I 0.03 I I SDl-3 -------- I Generic ---------- Inlet ------ I Generic ---------- Default -------- 1000 ----- I 0.12 -------------- I 0.00 ----------- I 100.0 --- I 1.08 i 0.06 1 CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I Sections I I I I Flow I (ft/s) I Upstream I Downstream I I I I I I I (cfs) I ---- I (ft) I I-----------I (ft) I ------------I I------- I p-5 I---------~I I 1 1 ---------1 18 inch I ---------- Circular I-------- I 40.00 I-------- i 6.51 I------ I 10.45 I 152.34 I 150.62 I I p-4 I 1 1 18 inch I Circular I 45.30 I 6.38 I 9.25 I 153.69 I 152.57 I I p-3 I 1 1 18 inch I Circular I 36.30 I 6.29 I 6.58 1 159.19 I 153.86 I I P-2 I 1 1 18 inch I Circular I 50.00 I 4.52 I 8.40 I 155.46 I 154.40 I I P-1 -------- I 1 ----------- 1 18 inch I ----------- Circular ---------- I 40.00 --------- I 4.53 --------- I 11.18 ----------- I 157.82 ------------ I 155.28 I -- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line Out I I I (cfs) I I ----I (ft> ----------- I (ft) I I-----------I I------- I OUT I--------I I 6.50 I ------- 151.50 I 150.50 I 150.50 I I SD1-4 I 6.51 I 155.10 I 152.57 I 152.34 I I SD1-3 I 6.38 I 156.76 i 153.86 I 153.64 I I SD1-2 I 6.29 I 156.97 I 154.40 I 154.19 I I SD1-1 I 4.52 I 158.39 i 155.61 I 155.46 I I IN -------- i 4.53 --------- I 156.50 ------------ I 157.82 ------------ I 157.82 I ------------- Completed: 03/29/2007 08:33:26 PM Title: 106009.01 Project Engineer: Brian Rentz Leonard c:\...\stomisysteml-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003] 03/29/07 08:33:32 PM ® Haestad Methods, InC. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 43 d y m 0 C V d L ++ fl. U 0 O O r O a m .0 C N J m V N ~ W ~ ~ t0 fh ~ ~ 0 ^ T U~ C r = J . O N ~ ~ d ~ D C D [O ~ c C TC7 :j ~ ~ r r ~ ~ M N O O r l4 N ?~ ^ 'V O to N M O ~ ~ m O O E C O O O O O N ~ ~ w ~ 0 0 0 0 0 i.vLL °7 O O O ~ M E E„ o o N M ~ F- ~ u'i ~ci ~ci Sri Sri > 3 ~ , o ~ ~ N N n 0 ~ (O fD OD GD 07 N Q 00000 U ~ v 3 0- °~'~ v0~00 ~ LL ~ ~~, 00000 c N O N N N o ~ ~ t~ 0 n n n --- ~:~ ° o ° ° o ° ~ o o o ~~ W o ~~ ~- ~;o~~~ ~ ~ C y E ~ O N U (D O ~C1 CO O ~ 0 0 0 0 0 y ~~ y ~ O ~ N N O O 'a O O O C Q ~ r- O O O 20" O ~ N t0 In O O t0 N ~O M M ~ LL > ~j LL 7 ~ y .-~r.- W .~ +C ~ ... O ~ o rn n m o o ~ ~n r> rn n E ~ ao 0o ce co u'i >~ a o ~ u1 r .- r r r 7 7 7 7 7 m m a m a~ ~ O ~ ~ ~ O C U U U U U c c c c c c~ c7 c7 C7 C7 7 y j T .~.. ~ N N N N 41 C C C C C N r ' ' ~ ~ ~ ~ 0 0 Z J (/~ fn (/~ fA ~~~ w ~o~ o~~ J ~ ~ ~ W W ~~;a d> ~o ~Q U m .o d y N C .O C W N ~O a`. m n M 0 N Q W 0 0 0 F U Z a{ c ~ m c ~, W ~ m ~ N V fq Y 0 m M U C N v 0 r m V W N m E N m 7 a `~ O ;a EN O ~ M N O M W O Ec O ~ V O ~ ~ ~ m N ~- U O d m 0 .~ V '~ O a a V C .F+ J W f~ V r ~ O N ~N ~ (O O O ~ m O N N O p p t p N ( C ~ ~ d' to ~Ly ~ a> ~- •V ~ ~ ~ O ~ ~ d N to f7 M W U o ° ~ . LL 3 ~ U N ~ ~ CO ~! ` ~ ~ ~A ~ ('7 N O r ~ r r ~ ~~ E~~ ~~~ ~~a N 'O C T 3z N N (O O ~ `V U 'O GD '1 ~ (~ C7 `~ 1~ ~ ~ M N _ O tfy ~ ~ u~ ~ U ~ ~ ~ N ~ ~ T a= O N N N N N C _ O O O O O C C C 0 0 0 0 0 lL oo~o~ ~_~ ~0~~~ -~~ E C U 00000 O ~ ~' U a < O '7 N N N .,, ~ M 0 0 0 0 d N ~ d .- 0 0 0 0 CQ Q ~p ~ O O 1~ fh O U N .-. O ~ Of ~ ~ ~ a~ v v rn v ch ~ C~ O O O O O p O O O O O t C O O O O O O O M C7 O f^ N~ ~ 0 ~ ~ O c 7 V ' J ~ N f0 ~f1 O ~ C CO a 00 ~ O ~ ~ O N j ; ~^+ a C7 N O 1n 1n T ~ If) C C T r Q W L O d' N !O 4) N C ~ O ~O N (O c'o N 41 ~ ^ N C~~ r tf (`~ N r O r r IA - ~ a W my y'fl r N M O C Z ~ _ ~ 0 ~ ~~ ~ N ~ ~ 0 ~ ~ r N (7 v nZ Z~~~~ C U U U U U N ~ .. v c c c c c ._ ._ a i ~ ao w co co ao p ~- N M "er LL~ J a a d a a ~'9' h ~ ` ~ ~ h o ~ ~ ~ ~ ~ r a mc~ ~ .~ ~ L O O V ~ ~ V ~ h ~ N ~ O h r m J ~. ~ 3 a 3 ~~a y. ~ > ~ ~ ~ ~ m U v m E ~ ~ p ~ .. o W ~ ~ h m c 0 W d O ` a f0 (0 f0 i[1 n cn O N O n m O U 3 C ~ N m~ L .~ W ~p d' a' m d v N Y O O m n M U c N O L V W N R 0 E a~ a 7 d 0 0 O ~a n ode N O N ~ O ~ m 0 0 ro . ~ rn Q1 N i M F' U O '-- Appendices `fs NEW YORK DOT DISSIPATOR METHOD FOR USE IN DEFWED CHANNELS (Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.) Note: To use the following chart you must know: (1) Q full capacity (2) Qto (3) V full (4) Vto :i where Q =discharge in cfs and V =Velocity in FPS. ESTIMATION OF STONE SIZE AND DIMENSIONS FOR CULVERT APRONS Step 1) Compute flow velocity Vo at culvert or paved channel outlet. Step 2) For pipe culverts Do is diameter. For pipe arch, arch and box culverts, and paved channel outlets, Do=Ao, where A.= cross-sectional area of flow at outlet. For multiple culverts, use Do=1.25xDo of single culvert. v. = 9.52 ~'i/s Step 3) For apron grades of 10% or steeper, use recommendauons For next higher~zone. (Zones 1 through 6). O / ~~ QAP f~PQ-oN Tnrcc,vE55 s a...--~'"- pGr b'.dG,l a~4 QEV,p.G.91.3 SC '~. " Gi~r,a x x f,S -F~' ~ C L '8 ~ dMax - lZ'. ~y LE O F'RON Z (R1 [yy,~ ,/AT[ ~R~~ rc~~ CQ~ PROTECT CULVERT Li TO PREVEM SCOUR HOLE USE L2 ALWAYS t? 1 STONE FILLING (FINE) 3 x Do 4 x Do 2 STONE FILLING (LIGHT) CL. B 3 x Do 6 x Oo 3 STONE FILLING (MEDIUM) CL. 1 4 x Do 8 x Do 4 STONE FILLING (HEAVY) CL. 1 4 x Do 8 x Do 5 STONE FILLING (HEAVY) CL. 2 5 x Do 10 x Do 6 STONE FILLING (HEAVY) CL. 2 6 x Do 10 x Do 7 SPECIAL STUDY REQUIRED (ENERGY DISSIPATORS, STILLING BASIN OR LARGER SIZE STONE). ~; Fig. 8.06.b.2 ~~„ ~.-w~3x,,s= 4.s~t Width = 3 times pipe dia. (min.) 4~ iB" DETERMINATION OF STONE SIXES FOR DUMPED STONE CHANNEL LININGS AND REVETMENTS Step 1) Use figure 8.06.b.3 to determine maximum stone size (e.g. for 12 Fps=20" or 550 lbs. Step 2) Use figure 8.06.b.4 to determine acceptable size range for stone (for 12 FPS it is 125-500 lbs. for 75% of stone, and the maximum and minimum range in weight should be 25-500 lbs.) Note: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness: Diameter Mannin's Min. thickness (inches) "n" of lining (inches) Fine 3 .0.031 9 12 Light 6 0.035 12 18 Medium 13 0.040 18 24 Heavy 23 , 0.044 30 36 (Channels) (Dissapators) 8.06.6 Rev. 11A3 S ro ta~1 S y s rE r'1 ~ Z Scenario: Base 4~7 OUT DITCH4 Title: 106009.01 Project Engineer: Brian Rentz Leonard c:\...\stomtsystem2-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003) 03/11/07 08:34:42 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 SD2-3 ~ ^ ~ „ Calculation Results Summary Scenario: Base »» Info: SD2-4 No bypass target specified. Bypass is assumed to travel to OUT DITCH4. »» Info: SD2-3 No bypass target specified. Bypass is assumed to travel to OUT DITCH4. »» Info: SD2-2 No bypass target specified. Bypass is assumed to travel to OUT DITCH4. »» Info: SD2-1 No bypass target specified. Bypass is assumed to travel to OUT DITCH4. »» Info: Subsurface Network Rooted by: OUT DITCH9 »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS ~f8 ~ao7• G~ P,/„rG tpcSc dyF`SSC~ ~7,I atiroh Ezpl`~"s f S~SfL.-ts ~^7 Inlet I Total I Total I Capture I Gutter I Gutter I I Label I Inle t I I Intercepted I Bypassed l Efficiency I Spread I Depth I I I Type I I I Flow I Flow I (~) I (ft) I (ft) I I I I I I I (cfs) I (cfs) I -- --------- I I I--------I I --------I I -I I SD2-9 I Generic ------I Inlet I ----------------- Generic Default I ----- 100 I -------------I 0.52 ----------I I 0.00 - I 100.0 0 100 I 2.83 I 52 I 2 0.12 I I 0.11 I I SD2-3 I Generic Inlet I Generic Default 1000 I 0.44 I 0.00 00 0 . I I 100.0 . I 22.24 I 0.10 I I SD2-2 I Generic Inlet I Generic Default 1000 I 0.44 . I 00 0 0 10 I I 10.44 I 0.27 i I SD2-1 -------- I Generic ---------- Inlet ------ I Generic Default ----------------- % 1000 --- 5.70 I - . I 0 _-__-_ _ _________ __________ CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT DITCH9 I Label I Number I Section I Section I Length I Total I [averayc ~ ~=y u,.a,.~~., ~ de I G ••1------- Grade I I of I Size I Shape I (ft) I System I Velocity I ra I I I Flow I (ft/s) I Upstream I Downstream I I I I Sections I I I I I I I (cfs) I 1 - (ft) ---------- - I (ft) I I------------I I------- I---------- 1 I--------- 1 18 inch I----------I I Circular -------- I 66.00 I-------- I 7.02 -I I-------- I 9.93 I 149.03 I 148.63 I I p_q I 1 1 18 inch i Circular I 24.40 I 6.52 I 5.04 I 149.26 I 149.14 I I P-3 I 1 1 18 inch I Circular I 54.20 I 6.11 I 6.06 I 149.83 I 149.47 I I P-2 I 1 1 18 inch I Circular I 35.00 I 5.70 I 4.88 I 150.18 I 149.99 I ( p_1 -------- I ----------- ---------- ----------- ------- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line Out I I I (cis) I I - (ft) I -----------I (ft) I -----------I I------------ I OUT DITCH4 I-------- I 6.97 I---------- I 149.10 I I 148.51 I 146.51 I I SD2-4 I 7.02 I 151.80 I 199.14 I 149.03 I I SD2-3 I 6.52 I 151.56 I 149.47 I 149.26 I I SD2-2 I 6.11 i 153.17 I 149.92 I 149.83 I I SD2-1 ------------- I 5.70 --------- I 152.57 ------------ I 150.18 ------------ I 150.18 I - Completed: 03/11/2007 06:41:22 PM Project Engineer. Brian Rentz Leonard Title: 106009.01 $tORnCAD v5.5 (5.5003] c:\...\stormsystem2-100%capture.stm BRL Engineering 03/11/07 06:41:27 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: N ,~ ~ _ N ~ ~ln 0 O~ •~ O~~c- ~ O ~ ~ 0.. ~ .. N •• E ~~ >•~ 3 ~~ ~~~ System2 - 10-year 100% Capture ~~ w (~~v ti ~ O pp ~ 00 ~ O ~ ~ O ~~~ '~ C7~;;~r- t NO C ~~ Q Q .. N ••- E ~~ C C~~ P-1 0.004857 ~~ .35.00 ft Concrete 0+00 Scenario: w M `F MN~M ~~ppON O~tnO O ~ ~ 00~~;~~ M O C O ~-' Q. ~:° > >.~ ~ ~cn55~~ P-2 I I P-3 0.008118 ft/f~•004918~ 20 ft 24.40 ft oricrete Concrete 1+00 Station (ft) 145.00 2+00 g9 Title: 106009.01 Project Engineer: Brian Rentz Leonard c:\...\stormsystem2-100%capture.stm BRL Engineering StorrnCAD v5.5 [5.5003] 03/11/07 06:32:38 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1668 Page 1 of 1 Base ~ r ~- ~~~~ },c-~00 "- ap ~ 00 f` +~"~~ OHO N~ COQ ~ 2wOOO p~»~~UN~~~'155.00 ~~ c~ n. ~'..-..~ ~;° >.E ~ Oc~S~cn p_4 150.00 Elevation (ft) 0.004559 ft/ft 68.00 ft Concrete So d N Rf m 0 .~ C Q~ V N Q. U O O O r i O a as G1 C '~ .0 C .J m ~o° °~~ ~ J . _. ~ In N ~u;a m> ~o m¢ U m` E O U ~ O ~~ N O N N ~ ~ ~ ~ ~ N v O 01 01 01 O ~ C O D T(~ ~~ C J S W ~~ N c °r ONi ~ ~ d ' ~ ~ m ~ o rn of of o ° .~ ~ v v v d >.C7 J = O ~ N N ly N ..0. n .- ~ O ~ ~ ~ E c °o °o °o °o ~ a; ~ cw ~ > o 0 0 0 ~ .'O LL ~ ~° ~ n E E oan~ o ry r> c~ o N ~ C ~ ~ O ~ N %3E + o ~ E w °n' Op rn rn f~ "' Q~ V O O O O ~ ~ ~ o ~ m o ~~^, O ~ ~ N n v v ~n m o O- U ~ O O O f' F- ~- ~ " U o 0 0 o t` _ N N N N 7 odct c d c n r n r ~~ y ~ c " _ m ~ ° oo ° ° ~~ O.W o o ~ ~ ~ ~ ~ ~v~ 2 °1~ ~ ~ oc E o °~ o a .y ~ ~ mU a m o ~ o 0 0 o Q y~y n rn rn rn ~nooo m ~- `" cQv 0 0 0 U ~ L M M M O C V C.~ th ~ f7 07 tll ` d `~ ~ O ~ t O N Ono N ~ ~ > ~ ~ ~ ~ W ~ ~ _ 7 0 ~ O In OD 1° ~p ~ N~ N f7 ~ ~ ~ r r b r W " m = = 7 7 7 7 ~ `~w!~~ °. a~ p°DO~ ~ ~ v ~ v o c c c c a C~U°U°U°' E'n''. ~ O ' " N N 7 N C O j T N N N N ~ ~ ~~ C C C C 0 0 N L ~ N N N N 0 ~ 0 0 r ~_ ~~ ~ H C/ O J ~~ N N S"1 m 0 .` C V a NNd I.I.. a a V R .0 (C Y J m ,: ti ~ ~ ~ ~ . ~ ,y 0 3 ~ o co o ~ v'i ~ '`= 3 7 (A 0 ~ 1 I t(j 7 ~ ~ '~ 0 V . w ~ d' ,~ v ~ O a U in i O ~ 5 n O~~ y R u7 ~ C ~ o ~ ~ ti `~ ~ ~ ~~ m co h v h 7 ~ , ~ o m a ~ u~ c f0 U .~ -o ~~ LL ~ ~ m N ~ ` N O) O) T O ~ ~ C ~ ~ ~ r r E"~ ~~~ m ~~ C T 3 = N DD C7 (O M U O r CD N O ~ v v a _2. ~ E ~~ m ~, I N N N N O O O O C O O O O ~ O h h O ~_~ ~~~~ - ~ ~ o O o 0 EAU ~ O ~ N N `~~U a l0 .. ~ fq O O O O d N y~ X 0 0 0 a C Q ~ ~ h ao ao ~ u~ v v a~ v ao i ~~ n om... O O O O n 0 0 0 0 L O N st O ~ ~ N y f0 (7 J ~ O '7 ~ t0 ~ ~ ~;, N j ~ Oi O O h ~ ~ ~ ~ ~ C C o W c l6 C ~ a h ch N c0 N O) N N W ~ Oi c0 ap h N C ~ ~ ~ ~ ~ ~ ~ r r a W y y U l- ip p N M 'q ~ 3Z O ~ ~ ~ ° to cn cn O ~ ~ r N 17 aZ ~ D O O ~ ~ ~ ~ C U U U U ~ ~ C c c C N fn O W O O ~ a r N C~1 q ~ J d d a a ~~~ w ~o~ oar J ~ ~ ~~~ a o> a l6 Q U m ~o N ~ m c .~ c W U d O a` O m O h a 0 N Q 0 m 0 H U 7 C D N m W ~ K ~ m y v N Y O O m U C O L d 'O l0 N G1 l0 2 E N m n. 0 °o ~ ~a E '~ O ~ N N O UTl Of C ~ O O O N i M h U O sZ Appendices NEW YORK DOT DISSIPATOR METHOD FOR USE IN DEFINED CHANNELS (Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.) Note: To use the following chart you must know: (1) Q full capacity (2) Qto (3) V full (4) VIo where Q =discharge in cfs and V =Velocity in FPS. ESTIMATION OF STONE SIZE AND DIMENSIONS FOR CULVERT APRONS Step 1) Compute flow vclociry Vo at culvert or paved channel outlet. Step 2) For pipe culverts Do is diameter. For pipe arch, arch and box culverts, and paved channel outlets, Do=Ao, where A.= cross-sectional area of flow at outlet. For multiple culverts, use Do=] 25xDo of single culvert. Step 3) For apron grades of 10% or steeper, use recommendauons For next higher zone. (Zones 1 through 6). ~, = S. 4 S F~ s UsE Z~~E 1 ,fi4 ti-~xa ~~--- 8.06.5 Rcv. 12/93 ~ U'~[8 s DIAMETER (Ft.) Figtue 8.06.b.1 S3 D ~~N THiGr~-1~S5 pu B.oG.I aid R .41,3 vSC 't` " giHaK X ~, S 7Ccr LL ~~ ~, u~Mau lp ,~ ~ ~Z ,~ .S~t 8.06.6 CIF gar PRQTECT Ct1VtlTf TO pREVEtlT SCOUR Z APRON MATERIAL ~ HOLE USE l2 ALWAYS L1 ~ ~~~. 1 STONE FILLING (FINE) CL. A 3 x Do 4 x Do 2 STONE FILLING (LIGHT) CL. B 3 x Do 6 x Do 3 STONE FILLING (MEDIUM) CL. 1 4 x Do 8 x Do 4 STONE FILLING (HEAVY) CL. 1 4 x Do 8 x Do 5 STONE FILLING (HEAVY) CL. 2 5 x Do 10 x Do 6 STONE FILLING (HEAVY) CL 2 6 x Do 10 x Do ~ RGY DISSIPATORS, STILLING O O I NE) RE ST OR LARGER S BASW Fig. 8.06.b.2 a ~ ~~ ~- ~ = 3 X J. S ' = 4- S ~E Width = 3 times pipe dia. (min.) t8" L= 4xl,S' = G` t _..----' DETERMINATION OF STONE SIXES FOR DUMPED STONE CHANNEL LININGS AND REVETMENTS Step 1) Use figure 8.06.b.3 to determine maximum stone size (e.g. for 12 Fps=20" or 550 lbs. Step 2) Use figure 8.06.b.4 to determine acceptable size range for stone (for 12 FPS it is 125-500 lbs. for 75% of stone, and the maximum and minimum range in weight should be 25-500 lbs.) Note: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness: Diameter Mannin's Min. thickness (inches) "n" of lining {inches) Fine 3 0.031 9 12 Light 6 0.035 12 18 Medium 13 0.040 18 24 Heavy 23 0.044 30 36 ((~annels) (Dissapators) Rev. 1?A3 Sra,¢.-,~-~ SysrF~ ~3 Scenario: Base N SD3-2 S4 SD3-1 Project Engineer. Brian Rentz Leonard Title: 106009.01 StormCAD v5.5 [5.5003] c:\...\stormsystem3-100%capture.stm BRL Engineering .Page 1 of 1 03/11/07 06:39:10 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 OUT DITCH1 Calculation Results Summary Scenario: Base SS »» Info: SD3-3 No bypass target specified. Bypass is assumed ~ ~ov7~ ~°P~~~~ to travel to OUT DITCHI. v ssumed ~ i ~ d~sFj^ is _s ~..~s_ f »» Info: SD3-2 No bypass target specified. s a Bypass ~~~~ Fx¢i6, se B7f'S„~ to travel to OUT DITCHI . d f .,,.. tAr s s f~r,s y »» Info: SD3-1 No bypass target specified. Bypass is assume to travel to OUT DITCHI. » » Info: Subsurface Network Rooted by: OUT DITCHI »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS Inlet I Total I Total I Capture I Gutter I Gutter I I Label I Inlet I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I Type I I I Flow I Flow I ($) I (ft) I (ft) I I I I I I I (cfs) I (cfs) I I ----------I I -------- I I--------I I-------I I SD3-3 --------------- I Generic Inlet I----------------------I I Generic Default 1000 I ------------- 1.95 I---------- i 0.00 - I- I 100.0 0 100 I 5.42 63 I 8 I 0.17 I I 0.09 I I SD3-2 I Generic Inlet I Generic Default 100$ I 0.19 I 0.00 00 0 . I 0 I 100 . I 10.44 I 0.27 I I SD3-1 -------- I Generic Inlet ---------------- I Generic Default 100 ----------------------- I 7.06 ------ . I . CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT DITCHI I Label I Number I Section I Section I Length I Total I Average I nyuiauii~ ~ =,Y..~u,.~--- I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I I Flow I (ft/s) I Upstream I Downstream I I I I I Sections I I I I I I (cfs) I - I (ft) ----------- I (ft) I I------------I I-------I P-3 ----------I---------I I 1 1 18 inch I ---------- Circular I--------I I 56.00 -------- I 8.65 I--------- I 9.66 I I 139.39 I 137.79 I I P_2 I 1 1 18 inch I Circular I 29.00 I 7.22 I 6.82 I 139.73 I 139.35 I I P_1 -------- I 1 1 18 inch --------------------- I Circular ----------- I 74.70 --------- I 7.06 ----- I 9.55 I 141.78 I 140.04 I I Label I Total I Ground I Hydraulic I Hydraulic i . I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line Out I I I (cfs) I --- I (ft) I I----------- (ft) I I-----------I I------------I I OUT DITCHI -------- I 8.62 I-------- I 138.50 I 137.55 I 137.55 I I SD3-3 I 8.65 I 142.02 I 139.45 I 139.39 I I SD3-2 I 7.22 I 142.02 I 140.04 I 139.73 I I SD3-1 ------------- I 7.06 --------- I 194.08 ------------ I 141.78 ------------ I 141.78 I ---------- Completed: 03/11/2007 06:37:34 PM Title: 106009.01 Project Engineer: Brian Rentr Leonard o BRL Engineering StorrnCAD v5.5 [5.5003] c:\...\stormsystem3-100 /ocapture.stm 03/11/07 06:38:00 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: System3 - 10-year 100% Capture ~, Scenario: Base ~~~ +.OOp~ ~'~00 Or. '~ 0+;~~ + .. ~OO~ Q ~~~•~~ ~~ C~~ ~~ 0~~~.-O ~apapN(O "" pp ~'`~ O 00 lr7M~ 'M 1~~};~~ + ~~ .. MO CQ.. ~ ~ > > ~ ~ ~~ c c~~ P_ ~ F-2 0+00 0 ,~ ~0 0 ft/~ COncretet 0.010000 24.00 ft Concrete w ~ to N ,~' ~ ,rd'aptyN OMB 'M 0~~;~c- MO COQ Q ~~»,~j ~~ ~ ~~~ 056 p~21 ~ifr Con cr to 1+00 Station (ft) a-. ,~ O ~ O 2w000 U~M~M 145.00 ~~~~~ ~+ .. ~C~a. j-..-~ ~~>.~~ O cn ~ IY c~ Slo 140.00 Elevation (ft) 135.00 2+00 Title: 106009.01 Project Engineer: Brian Rentz Leonard c:\...\stormsystem3-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003] 03/11/07 06:38:27 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 s~ L Q. (.~ 0 O O ~ r m 0 a o ~ C G1 d = V N ~ L C N J m U N ~ ~ r t) ~ ~ O ~ v ~ fh M %C7 J 2 ~mc °h° o v ~` ~ ~ v a M c i.C7 ~ O Yy;y ° ' N fD o o w - ~i h n a I- TLL ... (p E c O O O o 0 0 m o cw o 0 0 ~ i ~'O ILL ~~ E E ., o ~ °' N ~' C In IA ~A ~' O V) _ E w ~ O N N Q N o V ~ i . ~ ~ - _ °' ^ 3 o °' v c - ° ~ u n o ~~„~„ o00 __ L ~~ N N N C c h h h y c c `'' ° o o ° - o~W~ m ~ o ~~~ o ~ c E F-- 0 ~ ~V ~ ~ c o 0 0 y ~ y hW O N ca:°. 0 0 ~ a~ c~i c-i co 20" O O p N n ( > d' M P') N ~- ~ W ,-. ~ 7 N C C O O O O E ~p^ v N N ~ ~~ ~ ~ ~ d ~ W - - -' > > > ~°. `~ `w° d ~ O ~ C U U U .` ~ ~ N c c c N d d C9 C7 (7 7 N N ~~ N ~ C C C. i ~ ~ ~ ~ ~ ~ 0 J ~ ~ N goo o~~ J ~ ~ N ~ l6 ~~;a d > ~o c Q ~U m E •• o a~ ~ N C .~ C W t+i d 0 a` O co m n M 0 N f Q N 0 n 0 I- U Z c ~ m c ~~ w ~ 0 ~ ~ CD m v Y 0 0 m n c~ U C N 0 r m V l0 N N l6 E ~, ai a `~ 0 O ~a c~ ao E4 O O N N O N Of O ~ O O O .. ~ ~ ~ r i ~ h U O SS d N lp m 0 .` d V L O Q. d d a a V C r J m L, ~: e ~ ~~~ ~ ~ w c o a ~ o~r,~ ~- ~ ,u~• m ~ ~ ~ .~ ~ ~ a n c~ n - ~ 6 M ~ ~ ~ ~ O O~ co u~ . ~7 (O O ~ ~ ~ ~ C Q > ~` ~ y' m E U d1 ~ tl•) O V~ ~ ~ ~ '1, ~ 4o o m N p c ~ _ to to c0 ~ ~ Q m C ~ ~ V V ~ ~ c~ v rn o h , ~ W n ~ ~ ~ ~ ~ ~ ~ U d \ ~~ W ~ ~ i• d o v u `m o rn n ~~M ~ m nc~ E~~ ~3" n m N 'C ~ O N 3i m ao co rn v nncn ~ of of N ~ ~ ~ ~ ~ ~ U C E ~ ~- O O m ~ N n T F.. n= U O N N N ~ C_ O O O ~ ~~ 0 0 o ~ a~ c m ~ N c0 O m C . C O f0 OD C C.d O O O W W l ~ O ~ D N ~ ~ ~ (p ~ O U m m a •v_ ~ n D O N ~p ~, ~ y O O N N y d X 0 0 ~ N C Q U m a ~0 i. M m O O N O N ` a~ Q C N ~ ~ O O O ~ C ~ O O O ~ t L O O O ~~ n O O ~ N ~ ~ ~ n N J ~ a d ~ ~ C O ~ W ~o'^ MIiM j~ ~ ~ ~ C C o W c ~n rn u~ ~ ~ O n f0 N N N ~ ^ O c0 tG M y ~ ~ ~ ms C - ~ e - a w E 2 ~ ~~ ~ m v N c m ~ a ~ 0 p Z ENO p o o ~ % % ~ % <a o > > c > c p c E aZ ~~~ o«N C U U U of i~ O N O O N C C C E (p ~ N VI GO t0 oD ~ . , Q (n r- ~ { ~ r ~ r ~ r N f7 ~ M I- U O ~ ~ aaa. ss . Appendices NEW YORK DOT DISSIPATOR METHOD FOR USE IN DEFINED CHANNELS (Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.) Note: To use the following chart you must know: (1) Q full capacity (2) Qto (3) V full (4) Vto where Q =discharge in cfs and V =Velocity in FPS. ESTIMATION OF STONE SIZE AND DIMENSIONS FOR CULVERT APRONS Step 1) Compute [low velocity Vo at culvert or paved channel outlet. Step 2) For pipe culverts Do is diameter. For pipe arch, arch and box culverts, and paved channel outlets, Do=Ao, where A.= cross-sectional area of flow at outlet. For multiple culverts, use Do=1.25xDo of single culvert. Step 3) For apron grades of 10% or sleeper, use recommendations For next higher~zone. (Zones 1 through 6). ~o = 9.r7~r;/~ s Itcv. 12/93 VS, ZvuE Z -~ 8.06.5 Sic Ncx~ ~_-. V D'" IB ~ DIAMETER (Ft.) Figure 8.06.b.1 n APkOr..t TM/GKNESS ~_ pew 8.00.! a.,d Qtv. p, G,9r-3 fv~ GL'B ~ ~ ~M.X . lZ„ (pU ~ QlP,estP W LEND OF PRON Z 1(A1 [vu~ 7[tf ~R~, ~ICF~ pRCITECf GULVEf7f L1 TO PFiEVEM SCOUR HOLE USE LZ ALWAYS L2 1 STONE FILLING (FINE) A 3 x Do 4 x Do 2 STONE FILLING (LIGHT) CL. B 3 x Do 6 x Do 3 STONE FILLING (MEDIUM) . 1 4 x Do 8 x Do 4 STONE FILLING (HEAVY) CL. 1 4 x Do 8 x Do 5 STONE FILLING (HEAVY) CL. 2 5 x Do 10 x Do 6 STONE FILLING (HEAVY) CL 2 6 x Do 10 x Do 7 SPECIAL STUDY REQUIRED (ENERGY DISSIPATORS, STILLING BASIN OR LARGER SIZE STONE). Fig. 8.06.b.2 r~" Width = 3 times pipe dia. (min.) t8" ~=~~r-s'= 9.o~'t DETERMINATION OF STONE SIXES FOR DUMPED STONE CHANNEL LININGS AND REVETMENTS Step 1) Use figure 8.06.b.3 to determine maximum stone size (e.g. for 12 Fps=20" or SSO lbs. Step 2) Use figure 8.06.b.4 to de{~rmine acceptable size range for stone (for 12 FPS it is 12S-S00 lbs. for 75% of stone, and the maximum and minimum range in weight should be 2S-S00 lbs.) Note: In determining channel velocities for stone linings and revelment, use the following coefficients of roughness: Diameter Mannin's Min. thiclaless (inches) "n" of lining (inches) Fine 3 0.031 9 12 Light 6 0.035 12 18 Medium 13 0.040 18 24 Heavy 23 0.044 30 36 (Channels) (Dissapators) g.~6.6 Rev. I7A3 J T~LM SySTFM ~`~' Scenario: Base N SD4-2 SD4-1 ~i Title: 106009.01 Projed Engineer: Brian Rentz Leonard c:\...\storrnsystem4-100%capture.stm BRl Engineering StomtCAD v5.5 [5.5003] 03/11/07 07:33:04 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 OUT DITCH2 Calculation Results Summary Scenario: Base ~z »» Info: SD4-3 No bypass target specified. Bypass is assumed to travel to OUT DITCH2 . ~,.,, ~ j0n7o ~+p~~'~ » » Info: SD4-2 No bypass target specified. Bypass is assumed ~O K Ass ~ ~ ~ to travel to OUT DITCH2. TklSG g p~ssrs Arc 7o.~f`~'"~c »» Info: SD4-1 No bypass target specified. Bypass is assumed S sfc~s~~" "'° ' ~k;cti EXpl4r_g ~'.s to travel to OUT DITCH2. y r » » Info: Subsurface Network Rooted by: OUT DITCH2 »» Info: Subsurface Analysis iterations: 2 »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet Inlet I Total Total I Capture I Gutter I Gutter I I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I I Flow I Flow I (%) I (ft) I (ft) I I I I I (cfs) I (cfs) I -- - ------------ I I I--------I I --------I I-------I I SD4-3 I --------------- Generic Inlet I---------------------- I Generic Default 100% I------------- I 1.16 I I------ - I 0.00 I 100.0 I 5.88 I 0.18 I I SD9-2 I Generic Inlet I Generic Default 100% I 0.19 I 0.00 I 100.0 I 19.35 I 0.10 I I SD4-1 I --------- Generic Inlet --------------- I Generic Default 100% ----------------------- I 4.79 -------------- I 0.00 I ------------ 100.0 ------------ I 10.52 I ---------- 0.27 I --------- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT DITCH2 I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of I Size I Shape I (ft) I System I Velocity i Grade I Grade I I I Sections I I I I Flow I (ft/s) I Upstream I Downstream I I I I I I I (cfs) I I (ft) ----------- I (ft) I I------------I I-------I I P-3 I ----------I---------I 1 1 18 inch I ----------I Circular I --------I 88.00 ( -------- 6.10 I----------I I 5.05 I 131.52 ( 131.05 I I P-2 I 1 1 18 inch I Circular I 24.00 I 4.96 I 6.22 I 131.85 I 131.47 I I P-1 I --------- 1 1 16 inch I --------------------- Circular I ----------- 74.60 --------- I 4.79 -------- I 6.76 I ------------ 132.99 ----------- I 132.05 I -------------- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line Out I I I (cfs) I -- I ---------I (ft) I -----------I (ft) I -----------I I------------ I OUT DITCH2 I------ I I 6.04 I -- 131.60 I 130.58 I 130.58 I I SD4-3 I 6.10 I 139.32 I 131.56 I 131.52 I I SD4-2 I 9.96 I 134.32 I 132.05 I 131.85 I I SD4-1 ------------- I 9.79 I ---------- 135.48 I ------------ 132.99 ------------ I 132.99 I ------------ Completed: 03/11/2007 07:32:42 PM Title: 106009.01 Project Engineer: Brian Rentr Leonard c:\...\stormsystem4-100%capture.stm BRL Engineering StomICAD v5.5 [5.5003] 03/11/07 07:32:49 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base Profile: System4 - 10-year 100% Capture Scenario: Base y w ~~ ~~ ~- Or M ~ `~r-MM_O ti0 ~ w. N O ~- - ~M~ M "'OMMO ~ ,~~ ~ ~ ~ + NO ~~~ Q ~'..- ~ rn + ~ ~M ~ 0~> C ~~~ ~ » ~ ~N ~ • ~ ~~ C C~~ P-1 P-2 'nr•F, P-3 ~ +~ ~ ~ O .'~ O =„=omo 140.00 U~M •M ~OO~Mr 0 + ~~~Q ~- .. ~ ~ ~ ~ ~ C+~ C~~ 0.012869 ft/ft 74.60 ft 0.010000 ft/ft 0.005114 ft/ft Concrete 24.00 f 0+00 Concret~+00 88.00 ft Concrete Station (ft) ~3 135.00 Elevation (ft) 130.00 2+00 Project Engineer: Brian Rentz Leonard Title: 106009.01 StormCAD v5.5 [5.5003] c:1...~storntsystem4-100%ppture.stm BRL Engineering +1.203-755-1666 Page 1 of 1 03/11/07 07:37:13 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA ~ 4, d 7 Q U O O !; m ~ a o ~ c m as ~ ~ ~ L r NJN 1J. W U - ~ ~ 0 m ~ LLN7 . ` ~ ~ d ~ M M i.C9 ~ ~ = J j d C O O LLi ~ ~ y~ N N .O C ... _ ~ J M ~ M ~ E O m ~O ~ y n rn ' O N ~ U ~ O d F- LL ~- ~T E C O O O ~ ~ ~ w O O O . , O > .'O LL ~ ~ EEC, o°rN N H F Sri ui ui %3 E ~ o E ~~ a iQ~ m U o00 ~ v ~,~ ~° o~ o~o~~ ~ . ~ ° ~ O r 'LL Ov F H ~ C L N N N "'' ~ c y c ~ f~ t~ c `'' ° 0 o ° o~~ 0 ~~~ °'~ o = ~-~~ ° a~V ~ ~ ~ c o 0 0 ~ N ~ N O N C U - Q f0 X 0 0 j L M M r M M ti ~ ~ M M M C O LL7 °) ~ ~ O ~ M M M a~ W .~ ~ 7 i' d C C O Vim' cNj M Ems aivv ~ ~ M ~ M m ~ •- w ~ 3 7 `~' w ~•~- ~ ~ ~ ~ C U U U . . . ~ ~ ~ c c c U U C9 7 y T N ~ ~ I c c e N ~ a ' 0 0 ~ J ~ ~ ~ ~~;~ w c °o ° o~n~ J ~ ~ fa. ~ l0 cuia ~ > ~ O m Q U m ~o a~ N N C W U N .O d m m O N n r~ 0 N ro 0 n O F.. U Z 7 o~ n c M m c W~ ~~ m„ Y 0 0 m r M U c N V O L d a N d f6 2 E N N 3 a 0 O ~a c ro E~ o m °r' N O N O ° E o o `o 0 N ci ~ U O d N m 0 .~ c m N a d d a o. .0 c ca J m `T' ~ rn o ~ ~ o v ici ~ci ~, o o ° ~ ~ ~ v v Sri a~ ... •~j ~ CO O 10 ~ v ~ a U o °\ ~ . LL 3 U D O ~ 0 ~ t0 N ' (/~ (, f 7 M f` ) ~ E ~~ ~ ~ ... m ~ 3= N O) LL~ N V ~ O~ 0 N 7 ~ N ~ Ur ~ r M ~ U C ~ E ~ co ~ ~ T aS O N N N ~ 0 0 0 ~ ~ c o 0 0 m ~_ ~ ~ E~~ o 0 0 ~o~ ~ o ~ a v l0 ~ y N O N N N ~ '- O O W C Q U ~ a d ~ ~ T co 0 ~ a ~ u~ N o ~N.~ _ O O O C O O O C L O O O C ~ <O O O v 0 ~ N ~ 0 0 t0 C ~ ~ ~ ~ ~ ~ ~ O O M 07 ~ ; C ~ C d W O c pro ~rn~ > l0 ~ N O O N C ~" - ~ ~ ~ ~ a W 2 m U d y 1- N ~ N M ~ 3Z ooh ° O cnv~0 ~ ~ N M Z ~ D ~ a ~ ~ ~ ~ N C C C N_ y fq ao 0 0 ~ e.. N 10 J a a d 6 ~ ~ ~ ~ ~ ~ ~~~ v ~ o ~ s ~ ~ ~~~ S ~ ~ ~~~ ` >a ~ ~ m Sp ~. ~ 4 ~ ~ ~ ~ ~ ~ m € ~ V- , m O n c o o~ W d 0 ` a !0 m m ~i r~ 0 N t 0 r 0 I- U Z ~a c w m~ v~ c D w ,~ ~~ m„ Y O O m c~ U c N V O L d V l0 N O) Of E ai 7 a e °o~ ~a N Q « r O N 01 O ~ O O O ~ ~ r N F- ii O GS !o!o Appendices NEW YORK DOT DISSIPATOR METHOD FOR USE IN DEFINED CHANNELS (Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.) Note: To use the Following chart you must know: (1) Q full capacity (2) Qto (3) V full (4) Vto where Q = discharge in cfs and V =Velocity in FPS. ESTIMATION OF STONE SIZE AND DIMENSIONS FOR CULVERT APRONS Step 1) Compute [low velocity Vo at culvert or paved channel outlet. Step 2) For pipe culverts Do is diameter. For pipe arch, arch and box culverts, and paved channel outlets, Do=Ao, where A.= cross-sectional area of flow at outlet. For multiple culverts, use Do=1.25xDo of single culvert. Step 3) For apron grades of 10% or steeper, use recommendations For next higher zone. (Zones 1 through 6). Rev. 12J93 zs - 20 - ~ 15- a r H U 10- ° I d K~~~ ° a.= ~g1, s Figure 8.06.b.1 ........... 1 ~;~;; ~ 1 , 11• i11111i e111 ,111 IIII ~1~ ' 1 ei11 ; I~ iii 11~ ;~ 1; cell Ilil 11~ •IIII 111 III 111 11111 Ile 1 1.ii .iie1 1i:.eiii; ii• iii 16.1 . 111 III 11111 III 111 a 11~ l 1 e ie 1 111; eli eeiiee iiii~ 1 1 ; e 1, illllll ellli1111111e111111 111 111 illli Iii iii iie iiiiiiriiliii, iiie 11 1 ' ; 1 1. 111 1 ~ 1 l i 1 1 ~ I I 1 i e l 1 1 1 I i i l e e e i X11 111 111 ii111i11111 i 1e1111 illllle 1 i1i 11 1 III .11111 111 111 II I 'el iie 11~leiilei i i i e iil li 11 11111 I 11 e111 11 1111 ~ ell ele i111e Illill 1 i I II I i~ ii1 1iii15 ei~illiliiii111ie ice ei~ 11111 +1 e1 1 ;'; 1 11 11 111111 Ilellle ill 11111 111eI11e111111e1111 II II 1 ,111 11 ' 1, i e i 1 1 e1e11111 Ilele Ililele 1111111 111 11111 111 11111: 1111 111 111 11111 111 1 1 11 111 111 11111 •11 111111 111 111 1 1 1 . 1 1 1 1 1 1 11 111 III 11111 1 I 111• 11111 111 I 111111 111 1 ' 1111111111111 III 111 1 111 1111 1 1 1 1 11 I 11 I i1 1e 2 Iel1 1113 11111111 le 4 Illelllil 11 1111 11 1 e 1. 1111 11 11 11 „ 11 a e11111 II ' 111 1 11 I 1 1111 e 1 1 • 11 1 llllll 1 11 11111 1 11 " 11111 1111 i ; ' i 1 lt 1111 l ll 111 Ie11 1 e11 111 11111 Ile X11 111 IIII 11 11111e111 11111' 1 ill Ill 1111111 1 111 ill 11111 111 1111111,1 lle •1111 ieli I e I 1111 i Il l 111 11 1 1 e e e 1 l l 1 I l i ~o• ~s• 20• zs DIAMETER (Ft.) cJs~ 2oNe 1 ~= ~' 8.06.5 ScG I-1 t x t RJ -_ n G7 ~. rZ p ~ p AFpfF? o N rfH~GKNESS,1 P!1` D.0`.ll~ an L~ !LlY. ~.4/.~ U SG L - ~HrX x /.S ~o r CL f~ i / ~M C)t ~ Gj ! f . -t=~,~Xrs= 9if Sgy t = 12,• W L.E O Z ((,1 ~ffv,~ APrtV~Y MATERIAL O PRO[ECr CU.VEf[f L1 TO PREVEHr Sf.OUF[ HOLE USE L2 ALWAYS L2 1 STONE FILLING (FINE) CL. A 3 x Do d x Do 2 STONE FILLING (LIGHT) CL. B 3 x Do 6 x Do 3 STONE FILLING (MEDIUM) CL. 1 4 x Do e x Do 4 STONE FILLING (HEAVY) CL. 1 4 x Do 8 x Do 5 STONE FILLING (HEAVY) CL. 2 5 x Do 10 x Do 6 STONE FILLING (HEAVY) CL. 2 6 x Do 10 x Do 7 SPECIAL STUDY REQUIRED (ENERGY DISSIPATORS, STILLING BASIN OR LARGER SIZE STONE). Fig. 8.06.b.2 IS" i Width = 3 times pipe dia. (min.) ~$.~ (, ~ ~ X I • S' ~ ~o, 01<t< `_ DETERMINATION OF STONE SIXES FOR DUMPED STONE CHANNEL LINIlVGS AND REVETMENTS Step 1) Use figure 8.06.b.3 to determine maximum stone size (e.g. for 12 Fps=20" or 550 lbs. Step 2) Use figure 8.06.b.4 to determine acceptable size range for swne (for 12 FPS it is 125-500 lbs. for 75% of swne, and the maximum and minimum range in weight should be 25-500 lbs.) Note: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness: Diameter Mannin's Min. thiclrness (inches) "n" of lining (inches) Fine 3 0.031 9 12 Light 6 0.035 12 18 Medium 13 0.040 18 24 Heavy 23 0.044 30 36 (C~annels) (Dissapato[s) 8.06.6 : - - - -Rev. tags Sro,~r--~ Sysr~-~I ~S Scenario: Base P-2 OUT DITCHS SD5-2 !~S P_ ~ SD5-1 Title: 106009.01 Project Engineer: Brian Rentz Leonard o BRL En ineerin StormCAD v5.5 [5.5003] c:\...\.ctormsystem5-100 /ocapture.stm 9 9 +1.203-755-1666 Page 1 of 1 03/11/07 09:05:16 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA Calculation Results Summary Scenario: Base ~9 »» Info: SD5-2 No bypass target specified. Bypass is assumed oK _ qSS~,,,,;~ la0?° L•Pf°^c to travel to OUT DITCHS. ~o~ F,pc tl<si31- »» Info: SD5-1 No bypass target specified. Bypass is assumed '(k.<JC gyP,sscs Arc. T9 -tc/4"l c to travel to OUT DITCH5. Syslc~s fl^~~'°J'~ `'k'eh Ex/1.,~^sTk.s, » » Info: Subsurface Network Rooted by: OUT DITCHS » » Info: Subsurface Analysis iterations: 2 » » Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS i Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I Intercepted I Bypassed I Efficiency I Spread I Depth i I I Type I I I I Flow I Flow I (%) I (ft) I (ft) I I I I I I (cfs) I (cfs) i ------------ I I-------- I I I--------I ------I I I I SD5-2 I Generic Inlet I ----------------------I-------------I 1.01 I Generic Default 100` I ---------- 0.00 I I 100.0 I 4.56 7 94 ( 0.15 I 22 I I 0 I SD5-1 I Generic Inlet I ------------------------- Generic Default 1000 I 3.60 ---------------------------------- I 0.00 I -----100.0- . I . CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT DITCHS I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I Sections I I I I Flow I (ft/s) I Upstream I Downstream I I I I I I I (cfs) I -- I (ft) I I----------- (ft) I I------------I I-------I----------I---------I P_2 I 1 1 18 inch I ---------- Circular I-------- I 92.00 I-------- I 4.59 I-------- I 4.78 I 130.70 I 130.20 I I P-1 I 1 1 18 inch I ------------------------------ Circular ---------- I 31.20 --------- I 3.60 --------- i 5.27 --------- I 130.85 I 130.77 I I Label I Total I Ground I Hydraulic I Hydraulic I i I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line Out I I (cfs) I I -- (ft) I -----------I (ft) I -----------I I------------ I OUT DITCHS I-------- I 4.55 I I--------- I 130.90 I 129.85 I 129.85 I I SD5-2 I 4.59 I 132.68 I 130.77 I 130.70 I I SD5-1 ------------- I 3.60 --------- I 133.46 ------------ I 130.85 ------------ I 130.85 I ------------- Completed: 03/11/2007 09:04:53 PM Title: 106009.01 Project Engineer: Brian Rentz Leonard c:\...\stormsystem5-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003 03/11/07 09:04:58 PM ® Haestad Methods, Inc. 37 Brookside Road Watefiury. CT 06708 USA +1-203-755-1666 Page 1 of 1 7D Profile Scenario: Base Profile: Systems - 10-year 100% Capture .~ Scenario: Base M '~ ~ $ M w 0 0 ~ t"~~O O~ 'M O+;M~ ~~ .. ~ O O fl. ~~~~~ ~~ ~~~ w O M ~ ~ O ~ 0 0 0 0 QjN(s)O ~ ~ 'N M~};M~ N~C~~Q ~ .. ~:°»~~ ~~ c c~~ P-1 0.008013 ft/ft 31.20 ft Concrete 0+00 ~-. ~ ~ OHO 2~~0~ O O O U M N N F-N~-M~ ~~ c`- a. ~..-•~~ ~~>.~~ Oct ~~~ 1+00 Station (ft) P-2 0.005217 ft/ft 92.00 ft Concrete 135.00 130.00 Elevation (ft) 125.00 2+00 Title: 106009.01 Project Engineer: Brian Rentz Leonard c:1...~stormsystem5-100%capture.stm BRL Engineering Stom1CAD v5.5 [5.5003] 03/11/07 09:06:56 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 71 G1 7 Q. t6 U 0 0 O d ~ 1 m O Q O G1 .` ~ C d d ~ V ~ ~ L J ~M W U ~'O ~'~ ~ N ~ O O M M TC7 = J d ~ ~ ti ~ 0 0 ~ c~ (~ J M M r r O ~ l0 y ?i y c O. O y ~ U M ~ F- T IL .~ 03 S O O O O O O N O O LL TO ~ ~ E E .. o 0 ~ H ~ ui ~ci 3 E i . 3 cn E u^, ~ ~ :? Q ~ U o 0 N v °~ ° c°o 0 ~'~ o ~ F-LL~`~ 0 0 _ ~ C L N N p C C n n ~ y c ° 0 0 - Y.. ' o ~ -~ 0 0 i ~ i c u ocEyE F--~ C-- 0 d U `~ <° C O O W y ~ N Ono N C Q ~ v O O = ~ M O M 00 ~ M N `O C O ~ ~ i6 O O) ~ M N W .~ ~ 7 ti'' N C C O ~ ~ E lC ~ M N ~ > ._. M M N .- ~ W > > w w ~ O ~ C U U .` .` N N ` a m c~ c~ °' a ~ a~ d .. F' c c to - ~ ~ ~ J ~ ~ P~~ w ~o~ o~~ J ~ ~ O W ~~;a d~ ~p mQ U m •o `w ~ C .~ C W c'S d 'o a fO0 t0 b n c%~ 0 N m 0 m 0 F U 7 ~a c m m c m e w ~ ~~ m d ,v_ N Y O O fD n M U C 41 O L N V N N m W E a~ m a `~ 0 O ~ •; a ~~ EN o ~ t0 N `" O N O O € o oo` ..~~ d :~ V % F' U O ~z m ca m 0 ~L ~. d V N a m a a V C N NJN 1.(. W ` Y _ ~' O O ~ M \~ y ~ ~~~,,, N f0 O C ~ ~ tt N U M O d t0') ~ U ,-. -~ 3°, LL V d ~ OD ` ~ O O) ~ ~ CJ N Eve ~ ~ ~ ~ ~ N ~ C T 3 = N ~f/ O U ~ ~ r 7 ~ O O ~ (, M M ~ U F =~ ~ N N ~ 0 0 _= o0 ~_ -~~ o 0 ~ D a U l6 ,,, ~ y 00 N ~ N N ~ O O N C Q U a ~ y M h r 2 O ~ O O C ~ ~ O O p O O t O O N O C ~ N 07 `~ M O) J N C 000 ~ O C ._ O O ~ N l0~ N N C C > ._. r ~ O W c ~ ao 03 ~ G ao ~~io^ o of f~/~l C ~ ~ C7 N y r_ W DO N 0 3Z p ~ ° cn O 0 m N ~ ~ N aZ O O ~ ~ C U U ~ ~ C C_ N y (n oo ao d f0 a d J ~° a C, h q~ Q ~ ~ ~_ -0 ~ V S J `7 W !~. ~ ~ Q ~ ~ ~ 0 c o O ~ ~ J ~ m ~ R a N Q . U m m N 01 C O) W U d 'o a` (D l0 M O N Q O r co O H U r .~ C ~ m~ W ~ ~ ~ m y v N Y O O m n c0 U C N U O N O7 d N E N ti 7 a 0 °o ~ ~a E~ om~ N O N W O ~ O O O p .. ~ ~ d f- U O 7'3 ' Appendices NEW YORK DOT DISSIPATOR METHOD FOR USE IN DEFINED CHANNELS (Source: "Bank and channel lining procedures", New York Department of Transportation, Division of Design and Construction, 1971.) Note: To use the following chart you must know: (1) Q full capacity (2) Qto (3) V full (4) Vto where Q =discharge in cfs and V =Velocity in FPS. ESTIMATION OF STONE SIZE AND DIMENSIONS FOR CULVERT APRONS Step 1) Compute flow velocity Vo at culvert or paved channel outlet. Step 2) For pipe culverts Do is diameter. For pipe arch, arch and box culverts, and paved channel outlets, Do=Ao, where A.= cross-sectional area of flow at outlet. For multiple culverts, use Do=1.25xDo of single culvert. Step 3) For apron grades of 10% or sleeper, use recommendations For next higher~zone. (Zones 1 through 6). z~ 2C ~ ~: a LL } F U O ~~ vo = 4.78 Ft/S ,,. ' ,~;~ '~'~ . ;~; ~ , ~ ~~~~i ~i ~~ ~ iii ~~ ~ ~~~ i~~ i ~ ~ ~ ~ ~ i iii i~i ~ ' ~ii~ it~ iiiiii ~iiii ~i~ ~~i i 7 ' i i~~ i i ii~~~ ii ~ 5 ~ ~iiii i~iiii~ ~i~ ~i~ iii i~ ~~~ii~~ ~iiii iii i , ~~ i ~ ~~ ~~~ ; ~ ~ ,~ ~~~ 2 ~~; 3 ~~ ~~~~~,~ ,~~ . ~ . ,~ ~ i~d ~ I I K;s':~~ 'I' ,c ~n~ 7 v p°~tg ~ J pIAMETER (Ft.) Figure 8.06.b.1 vsE ? ti~ Z -------~ ~~ 8.06.5 ttcv. 12/93 SeG tltxt /~~ •-. ~9 ~--,2~>° AAA A~<aN T~~~C~u~55 = ---------- p~~ B.oG,! ..,/ ,4~r, ~, G., 41..3 Esc dMax X I.S" i ~~ SA~ t= lZ" t.ENG O F'rtON m Z i(31 APRON MATERV~L pfi7iEGT CU.VERi L1 TO PREVEM SCOUR HOLE USE L2 ALWAYS l2 1 STONE FILLING (FINE) CL A 3 x Do 4 x Do 2 STONE FILLING (LJGHT) CL. B 3 x Do 6 x Do 3 STONE FILLING (MEDIUM) CL. 1 4 x Do S x Do 4 STONE FILLING (HEAVY) CL. 1 4 x Do 8 x Do 5 STONE FILLING (HEAVY) CL. 2 5 x Do 10 x Do 6 STONE FILLING (HEAVY) CL. 2 6 x Do 10 x Do 7 SPECIAL STUDY REQUIRED (ENERGY DISSIPATORS, STILLING BASIN OR LARGER SIZE STONE). Fig. 8.06.b.2 ~_-_--- Width = 3 times pipe dia. (min.) /8" ~--~= DETERMINATION OF STONE SIXES FOR DUMPED STONE CHANNEL LINWGS AND REVETMENTS Step 1) Use figure 8.06.b.3 to determine maximum stone size (e.g. for 12 Fps=20" or 550 lbs. Step 2) Use figure 8.06.b.4 to determine acceptable size range for stone (for 12 FPS it is 125-500 lbs. for 75% of stone, and the maximum and minimum range in weight should be 25-500 lbs.) Note: In determining channel velocities for stone linings and revetment, use the following coefficients of roughness: Diameter Mannin's Min. thiclmess (inches) "n" of lining (inches) Fine 3 0.031 9 12 Light 6 0.035 12 18 Medium 13 0.040 18 24 Heavy 23 0.044 30 36 (Channels) (Dissapators) 8.6.6 Rev. 1?J93 ~s Scenario: Base ouT SD6-1 A SD6-1 Title: 108009.01 Project Engineer: Brian Rentz Leonard c:\...\stormsystem6-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003] 03/05/07 10:37:38 PM m Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Calculation Results Summary -------------- -------------- Scenario: Base »» Info: SD6-4 No bypass target specified. Bypass is assumed [ ~"'~` ~SS"""'~ ~°O7• L•~j~~c- to travel to OUT. J ~r~ a ~~ ~`rt1 »» Info: Subsurface Network Rooted by: OUT ~ysf~•--, ~^r `'°y~ "'~"`h »» Info: Subsurface Analysis iterations: 2 expla~~. 1'~%s . »» Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS ~~ I Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I I Flow I Flow I (o) I (ft) I (ft) I I I I I (cfs) - I (cfs) I ----------I I ------------I I --------I I --------I I--------I I SD6-4 I --------- Generic ------ Inlet I--------- I Generic ------- Default ------ 1000 I------------ I 3.19 I I 0.00 I 100.0 I 11.17 I 0.29 I I SD6-3 I Generic Inlet I Generic Default 100 I 0.76 I 0.00 I 100.0 I 6.25 I 0.19 I I SD6-2 I Generic Inlet I Generic Default 100°s 1 0.67 ( 0.00 I 100.0 I 3.73 I 0.14 I I SD6-1 I Generic Inlet I Generic Default 100°s I 0.60 I 0.00 I 100.0 I 0.00 I 0.00 I i SD6-lA I ---------- Generic --------- Inlet ------ I Generic ---------- Default ------- 1000 ------ I 2.59 -------------- I 0.00 ------------ I 100.0 I ------------- 0.00 --------- I 0.00 I --------- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I Sections I I I I Flow I (ft/s) I Upstream I Downstream I I I I I I I (cfs) 1 --- ---------- I (ft) I -----------I (ft) I ------------I I------- I P-5 I---------- I 1 I---------I 1 29 inch I ----------I Circular I --------I 68.00 I I ----- 17.51 I 5.57 I I 120.05 I 119.70 I I P-4 I 1 1 29 inch I Circular l 106.70 I 14.41 I 8.12 I 120.44 I 120.26 I I P-3 I 1 1 18 inch I Circular 1 111.90 ( 3.79 I 6.21. I 121.66 I 120.57 I I P-2 I 1 1 18 inch I Circular I 24.00 I 3.13 I 5.50 I 122.03 I 121.82 I I P-1 -------- I 1 ------------ 1 18 inch I ---------- Circular ----------- I 29.00 I --------- 2.54 I --------- 6.44 ---------- I 122.60 ------------ I 121.99 I -------------- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) I Line In I Line Out I I - I (cfs) I -------- ----------- I (ft) I I-----------I (ft) I -----------I I------- I OUT I I I 17.96 I 119.00 I 119.70 I 119.70 I I SD6-4 I 17.51 I 122.68 I 120.26 I 120.05 I i SD6-3 I 14.41 ( 123.20 I 120.57 I 120.44 I 15D6-2 I 3.79 I 124.69 I 121.82 I 121.66 I I SD6-1 I 3.13 ( 124.69 I 122.10 I 122.03 I I SD6-lA --------- I 2.54 I ---------- 124.50 ----------- I 122.60 I ------------- 122.60 I ------------ Completed: 03/29/2007 09:51:47 PM Title: 106009.01 Project Engineer: Brian Rentr Leonard c:~..lstormsystem6-100%capture.stm BRL Engineering StonnCAD v5.5 [5.5003] 03/29/07 09:51:58 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Baae Profile: System6 - 10-year 100% Capture Scenario: Base O '~ w~-. O ~ C N C ~`O ~?~f0 N~.XN ..NOO O l'7 ~OO,m `NIt1N ~~~0 v '-N /D ~- ~Nf00 p'.<~ ?N~~N ~^'~{N O 7.-Q +.. j .. .. m>E m•~ E fOio»EE (n fn ~ Q' (n ~ ul ~ c ~ ul (n [/J C C d' UJ F 1 I P-2 0.018 24.0 p h3 Wft Concrete 0.010000 ft/ft 24.00 ft Concrete 0+00 P-3 ~~~ 0.012 ,t- 111.40 ft Co ncre to 1+00 n n~~n ,,~0)OO `O NNW a~~~~ IAA.-N ~+, .. ~ C ~ ~ d p~>>E~ (n r0~ C2N 0.010028 Wft 106.7p ft Co n cre fe 2+00 Station (ft) ~ O ". O m.~O ~O~~m pp fD r lO ~e-N~ tD~~N + .. ~~ .. 0~>0E3 fnN c ~R[A Ow0 ,., o 0 0 `r0 n 17~~~ ~c~ a t-..-.. E ~~>E~ O rn ~ ~ to 125.00 0.011765 ~--oo. BB.oo ft o, Po~>7 Concrete ~ o` 115.00 G~ 3+00 od[~ 4+00 ~O, /lrMO/ Pv nl.~ S/o~~ as ft1 /FArRr! ~/ /~G'4.s~. rC ~o p ~tCct StApG ~ ~~ 120.00 Elevation (ft) TW = L~,o FF,"1 A Flcoc! S! did j - E~Ev ~ I19.7'/- Title: 106009.01 Project Engineer: Brian Rentr Leonard c:\...\stormsystem6-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003] 03/29/07 09:50:01 PM ©Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ~~ m N O .~ d V d V .~+ O. U O O O O a m m __ C ++ J m U d O ~ ~ ~ - O C7 f0 ~t ~O (O O t0 sr O . . ~ N ~ N N N ~p T(7 c v ~ ~ = J j ~ C O O N ~ (D t0 ap 47 N W~ ~ N N O O C _ ~ J N ~ r ~ E ~~° ' m O ~ n v~ ~ UJ ~ N C ) M a n I- TLL .~ E C O O O O O N O G w 7 O O O O O .'O lL ~ ~ EE„ O CO C'7 c) ~ oo.-vo :; 1= ~ iti ~ci ~ci ~n ui ~ ; E , ~ O ~A C7 N f`7 1~ N Q m M~ O (D O TUo 0 0 0 0 ~ W o ~ ~ :° v o n o rn u~ ~ ~ n . O-- U N O O O ch F-LL `-' F 00000 __ ~ l0 J L N N N N N C ~~ ~ h h~ h h ~ c 0 0 0 0 0 0 o ~ 0 0 0 0 0 i i i i i ~ ~ °'°'=~ u u v ~ Sr o ~ ~~~~ 0 ~ U O ~ CD N ~ u~ u~ o m ~ C O O O O O y O ~ ~ ~ O N ~ N ~ O C Q v 0 0 0 0 0 o ~ t~ ~ co ~ t ~ M f~ 00 ~ N M ('7 7 ~ 2Q c O (O N h 0 ~ O c~ O O a0 lC N ~ O T h ~ N r r N W .. ~ ~ O a~ c c O »- ornrnoco O CD f0 N !O E .~ N N ~ ~ ~ ~ ~ ~ W r r 7 7 ~ 7 7 w w w w w ~ ~ ~ ~ ~ ~ C U U U U U N N d N N C C C C C ~m a ~ d m a~ a~ m c c c c c ~ ~ ~ N M a co cc co c0 tD J ~ ~ ~ ~ 0 N ~ ~ ~ ~ ~~,~ ~o~ O ~ J ~ ~ ~ W C ~ d G) > ~ 0 W Q U m • O N ~ N C .~ C W d .O a m ~ f 0 n r~ 0 ~ N a ~ ~ ~ 6 p i~ 4 ~ O ~ H U ;~ r i~ ~a c 01 ! E~ V' m3 f c ~ _~ 5 W~ ~~ m„ Y O O m r r> i I ~ C I f ~ v e L ~ N 'O N r-1 m = 0 d r l y m a 4 + c . O ~L ~a E ~ ~~~ + 01 T W n o € o 3 °°~ a~ Q '. N G1 ~ 1- U O 79 a~ N m 0 .~ C d V O a d d 'a R C ~.+ NJ LMi W s ~ -~ v ~ v ~' ~ ~ a ~~ N O7 Q O I~ O c0 O O ~ ' O ~ i (O t+) f7 ~ LL ~ m o M M ~ o ~ ~ ri e v co Sri m ~- U O O M I~ D) m m ~ o aD ~[i p_ r N M ~ CO l0 U o °~ ~ , ~ _ 3 ` ~ N O O O) (n C7 N N N N r r r r E°~ ~ ~ .~ f`6 ~~ C !~ N O M (D V' ~ ~ ~o co o co v o p~ N N r 0 0 ~ (~ N ~ ~ ~ N ~ U . N = v W N ~ T aS ~ N N N N N C ~ _ _ _ _ O O O O O _= c ooooa m C. C O ~A (O N LL] O O O O b p y E ~ '~ O O O O O ~~~ ~ o ~ `~ U a m..~m o ~ ~ ~ o ~ ~ d~d~ cioooo N C Q p t0 a N M O W O~ ~ N .-. ` G. Q.'' M O O CO O N O ~ _ _ y~ C 0 0 0 0 0 p 0 0 0 0 0 L 0 0 0 0 0 C~ 0 0 7 1~ o N" N N r O (00 J _ fp N ~ O O ~ r O O O y ~ lC ~ C N ~ r r r C ~ o W C l9 'L'' ~ O (O N h 0 O M m O O C ~ ~ tl N ~ N O ~ 1 - m a W ~o ~d C 0 r N M Z ~ C ~ ~ ~ O cn cn ~ N O ~ ~ `~ Q •- N M et i ~ i dZ 0 0 0 0 ~ ~ ~ ~ N O y C N_ C C C C N~ ~ O ~ N N r a~ a 10 J dri.d d ~ ~ l V1 4 l~ .~ 0 Q v~r moo o°r J ~ ~ ~~W a a > d' ~ W U m E •o `m ~ d c rn c W U 01 'o a (0 f0 47 M O N t Q O n m 0 U r rn~ c ~ d~ m C Ol c ~ w ,~ ~~ m m v 0 0 m r M U C V O L 01 'O .~.. N N W E N N a a O d E~ O '~' N O H ~ o E o 000 ~~~ N N ~ tJ O 80 Scenario: Base OUT p 1 IN Title: 106009.01 Project Engineer: Brian Rentz Leonard c:\...\stomtsystem6-11-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003] 03/05/07 10:39:04 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Calculation Results Summary Scenario: Base 81 »» Info: SD6-L1-4 No bypass target specified. Bypass is DIC- IoD 7. L•pl~~G - ASS.+~~ ~ assumed to travel to OUT. ~ ~. r p %~~ ~CS~ In . » » Info: SD6-L1-2 No bypass target specified. Bypass is assumed to travel to OUT. ~lktsC 8~~a~ss~s a~a t= S~,n~r~~e fJs}v,s »» Info: Subsurface Network Rooted by: OUT »» Info: Subsurface Analysis iterations: 2 » » Info: Convergence was ach ieved. CALCULATION SUMMARY FOR SURFACE NETWORKS I Label I Inlet I Inlet I Total I Total I Capture I Gutter I Gutter I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I Flow I Flow I (~) I (ft) I (ft) I - --- I --------- I ------ -------- --------- I ----- (cfs) I -------------I (cfs) I ----------I I ------------I I --------I ------- I ------ I SD6-L1-4 I I Generic I Inlet I Generic Default I 100 I 0.17 I 0.00 I 100.0 I 3.03 I 0.12 I SD6-L1-3 I Generic Inlet I Generic Default 1000 I 0.52 I 0.00 I 100.0 I 3.09 I 0.1. I SD6-L1-2 I Generic Inlet I Generic Default 1000 I 0.19 I 0.00 I 100.0 I 1.38 I 0.0~ i SD6-L1-1 I Generic Inlet I Generic Default 100 I 0.19 I 0.00 I 100.0 I 2.00 I O.1C I IN ----------- I Generic ---------- Inlet I ------- Generic --------- Default -------- 100 I ------ 8.90 I -------------- 0.00 I ----------- 100.0 I ------------- 0.00 I --------- O.OC ------- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT I Label I Number I Section I Section I Length I Total I Average I Hydraulic I Hydraulic I I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I Sections I I I I Flow I (ft/s) I Upstream I Downstream I I I I -- --- ---------- I --------- I ---- -- - I (cfs) I -- - - I (ft) I (ft) I - -- I I I- - I P-5 I 1 1 I 18 inch I - - -I Circular I -------- 29.50 I-------- I 9.90 I - - ---- I 8.14 I-----------I I 121.17 I -------- - I 120.59 I I P-4 I 1 1 18 inch I Circular I 52.90 I 9.75 I 11.63 I 123.13 I 121.49 I I P-3 I 1 1 18 inch I Circular I 24.00 I 9.24 I 7.17 I 123.55 I 123.43 I I P-2 I 1 1 18 inch I Circular I 74.90 I 9.09 I 9.93 I 125.48 I 123.96 I I P-1 I 1 1 -------------------- 18 inch I ---------- Circular I ----------- 20.00 -------- I 8.90 --------- I 16.85 I ------------ 127.65 ----------- I 125.78 I -------------- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I I I Flow I (ft) ( Line In I Line Out I I I ---------- (cfs) I -------- I -----------I (ft) I -----------I (ft) I ----------- I I I OUT I I 9.88 I 123.20 I 120.57 I I 120.57 I I SD6-L1-4 I 9.90 I 123.29 I 121.49 I 121.17 I I SD6-L1-3 I 9.75 I 125.70 I 123.43 I 123.13 I I SD6-L1-2 I 9.29 I 125.70 I 123.96 I 123.55 I I SD6-L1-1 I 9.09 I 127.69 I 125.78 I 125.98 I I IN I ------------ 8.90 I --------- 128.00 I ------------ 127.65 1 ------------ 127.65 I ------------ Completed: 03/29/2007 10:03:05 PM Title: 106009.01 Project Engineer: Brian Rentz Leonard c:1...Gstomisystem6-11-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003] 03/29/07 10:03:34 PM ® Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario: Base o Iwo ~~o~ O ~ ~ N O ••N~ + ~ .. o~~ a f0>~~ ? in ~ o: cn Profile: System6-L1 - 10-year 100% Capture Scenario: Base ~~ ~~w~ _~~ d,M "~Nf0~ ~ N~~N~ -~o~~lo. O~°jo E~ ~ ~ C c ~ ~ o 'O~ a ~s 0 0'0,~ ~o0 0 ~'~@f ~ r~ e 0+00 1+00 Station (ft) ~n ~ .-. M .-. ~~nj~C7 _ +>=M ~ w NhN C7~w~`'~ N~AN~ N _e-rOm ... ~ O~"N~' J+..~~•~ „NNf~.- MONK N ~m ~ O ~ ~ OCO G ~ - E .~ +~~~~ r CO <p ~o;orn r`w.h ~noo r~nv~~S~cA Q~~CEj vnr°.~~~°' oo~o fn fA C C~fn J + .. j~e- + NT ~ , •-CO d p~a»E~ NC G. f- .. - ~~>~~ r4tA~~~rn Oin~D:N 02 P_ 323 j f 4 C7oq~ g e fe t/ft 024 0 0~ 0 f 33, - Concrete S2,q p 9 ftjft Concrete 0.013220 f 2s.so ft Concrete 130.00 125.00 D "` 120.00 + Wt ~FID M SDb -.3 FL = 1 ZD -S 7 2+00 11 5.00 3+00 82 Elevation (ft) Title: 106009.01 Project Engineer: Brian Rentz Leonard c:\...lstormsystem6-11-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003 03/29/07 10:04:51 PM ~ Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1866 Page 1 of 1 83 d L r Q. U 0 O O G1 ~ N m O a C d ~ C V L N J m ~? ~ u~ 0o u~ r n ~ O ~ co v u~ . ~ 4) ~ r~ u~ ri ri N N T(? C r ~ ~ = J ~ C ~ O (O M O~ conrnv v `` ~ C ~ , r~ ui ci co N ~ ~ ~ N _ ~ J omv.no (p y O O O N h CA A O ~ U O) m O> O> C F- TLL .~ N 0 O O O O O 3 y v O O O O O ~ E E ,-~ O N LL) O dp O O ~ N N ~ !- ~ ui ui ui Sri ui ~ E , c ~ . M ~ M X1'7 ~ N Q y N N N (h M V ~ i , ~ ~ O O O N O C~ O ~ ~ O 000000 ~ LL ~ „ 0 0 0 0 0 N N N N N o ~ c ~ ~ n n ~ ~ F- c `.' ° ° 0 ° ° ° - o ~ 0 o o o i Sri ri ~ ~ -- ~~' Sr ~ ~ c~ ~ ~E 0 ~ U ~n o 0 0 0 ~ m co 0 0 C O O O O O y y~ N c7 a a rn c~ N O O O O C a ~ N O O O O j w O [h (7 n M ~ C7 M n M ~ ~ r (h M C7 M •-. ~ c o w n r~ m ~ ~n r> ch rn rn f6 fD V' N '- ~ ~ N ~ ~ N ~ _N ~ W .-. ~ ~ 'C N C c O . O '7 O O CA O f0 n n N ~ ~ E oo ~ Sri ~i ri ~ ~... N ~ N N ~ m r r W r 7 7 7 7 ~ w w w w w ~ 0 0 0 0 C U U U U U N N N N ~ N N N m d ~ ~ ~ ~ ~ a~ a ~ T d m a~ d a~ ~~' c c c c c m - - - - - y J J J J ~ J tpQ Z (/~ (~ fn l~ ~ M ~ r.. C O ~ O ~ ~ J ~ ~ t~ ~ l6 ~~;a a~ ~ ~o ma U m` E •o m ~ N C C W U N ~O a O (O O n c%~ 0 N O n m 0 H U Z c ~ _d m~ m c of c w m ~~ m y Y O O m n C7 U C vi 0 r d v m N d E N d a c~ 0 O O d m ~ E ~? o °= a0 ,0 0 o aTi 0 o N ~ y N ~ (.) O W N m 0 .~ V N O a d d a a i.. C .NJ 1.t. m r ~ a h ® ~ (y ~ .'~ ~ w O O O N U j to ~cocprnn O ~ ~ ui ~ci ui n ~ ~ N ~ O ~ _ c ~ c0 fp CO (O t0 N `-' V O a N f0 c0 l6 ~ N r' f0 O a N ~ aD v n m U o ~~ ~_ 3 ao cp co p> n ~ m n rn v v~ ~ ~ to ~ M O N r ~ ~ N ~ ~ r E v ~^, ~ ~ .-. ~ ~ y ~ C T 3 = d u~ ao ~ c~ n U ~ ~ ~ O r ~ n u~ ri ri 2 (~ N ~ ~ N N ~ U ^ . -- ~ , E '~ -- f6 `~ a i ~~ 2 a O N N N N N ' T C • r O O O O O G U c 0 0 0 0 0 m ~~~oo ~_~ ~~~~~ -~~ E ~ 'v 00000 t0 O ~ ` ~O NF U a l0 ,,, ~ tp f7 'p ~' O f`7 N 0 0 0 0 N d N~ N O O O O ~ C Q U ~ a N O O O O U N .-. ~ N O n N ` Q ~ ~ O c7 O M C7 C~ O O O O O p O O O O O L O O O O O C O T O ~ O ' ~ N ~ N O O d N n N u~ N J n~con ~ ~ ~n .n .- ~ ~ ~ ~ ~ N N O O N ~ C> j~ r ~ ~ ocW c o ncncp o ~ io co rn rn my ^ ~ M C ~ ~ -?~ N N ~ ~ a W ~ U r r r y ~ J J J J 3 Z f0 t0 f0 f0 ~ ~ 0 ~ 0 ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ J J J J 0 Nz a 000 Z y ~ ~ ~ p p U U U U U N C C C C C y (n t7p 00 GD 00 CO ~ r r ~- r r N O ~ N M ~ ~ ~ a a a a a ~ '~ s u ~ ~• ~ ~ ~ ; ~ t o ~ ~ ~ ~ v y S~ "~ .. ~ ~~~ ~ m o 0 ~ - o~~ S ~~°' Q ~~'a > C a~ ~ d m U ~' m € .. p \~ m N C . ~ C W v a~ 0 ` a f0 b n M O N Q 0 n 0 U a{ c ~ m~ C ~ W ~p R' a' m y v .y Y O O m ti M U C N V O L d V f0 N d W E N m 7 a 0 O O r ~a ~o 4 ~' o N O tlTl O O EC O « O ~ ~ 01 N N « i C7 H ii o BS Scenario: Base OUT P-2 P-1 SD7-2 SD7-1 Title: 106009.01 Project Engineer: Brian Rentz Leonard c:l..lstomtsystem7-100%capture.stm BRL Engineering StomtCAD v5.5 [5.5003] 03/05/07 10:40:30 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Calculation Results Summary Scenario: Base »» Info: Subsurface Network Rooted by: OUT »» Info: Subsurface Analysis iterations: 2 » » Info: Convergence was achieved. CALCULATION SUMMARY FOR SURFACE NETWORKS B~ I Label I Inlet I Inlet I Total I Total I Capture I Gutter i Gutter I I I Type I I Intercepted I Bypassed I Efficiency I Spread I Depth I I I I I Flow I Flow I (o) I (ft) I (ft) I I I I I (cfs) I (cfs) I I ------------I I -------- I I--------I I-------I---------------I I SD7-2 I Generic Inlet I ----------------------I------------- Generic Default 1000 I 0.48 I---------- I 0.00 I I 100.0 I 0.00 I 0.00 I I SD7-1 I Generic Inlet I ------------------------- Generic Default 100 I 3.02 ------------------------------------ I 0.00 ----------- I 100.0 I -------------- 0.00 -------- I 0.00 I ---------- CALCULATION SUMMARY FOR SUBSURFACE NETWORK WITH ROOT: OUT I Label I Number I Section I Section I Length I Total I Average I Hydraulic l Hydraulic I I I of I Size I Shape I (ft) I System I Velocity I Grade I Grade I I I Sections I I I I Flow I (ft/s) I Upstream I Downstream I I I I I I I (cfs) I --- I (ft) ----------- I (ft) I I------------I I-------I----------I--------- I P-2 I 1 1 16 inch I----------I I Circular I -------- 36.00 I-------- I 3.49 I------- I 1.98 I I 119.73 I 119.70 I I P-1 I 1 1 18 inch ----------------------------- I Circular ------------ I 24.00 -------- I 3.02 --------- I 5.44 ----------- I 119.74 ------------ I 119.74 I -------------- I Label I Total I Ground I Hydraulic I Hydraulic I I I System I Elevation I Grade I Grade I ( I Flow I (ft) I Line In I Line Out I I I (cfs) I --------- I (ft) I----------- I (ft) I I-----------I I------- I OUT 1-------- I 3.46 I-- I 119.00 I 119.70 I 119.70 I I SD7-2 I 3.49 I 121.95 I 119.74 I 119.73 I I SD7-1 -------- I 3.02 --------- I 121.95 ------------ I 119.74 ------------ I 119.74 I ------------- Completed: 03/29/2007 10:14:00 PM Title: 106009.01 Project Engineer. Brian Rentz Leonard c:\...~,stormsystem7-100%gpture.stm BRL Engineering StormCAD v5.5 [5.5003] 03!29!07 10:14:07 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 Profile Scenario:. Base Profile: System? - o ~" two ~~~`~ ~~~ o~ ~~ O a.; N r- ~OO~ ~. ~ ~ > ~ ~ ~~ C LYE 87 10-year 100% Capture Scenario: Base $~ ~~w~ ~~~~~ ~ d'r-r- '~ N~-,F;N~- Ov O ~Otn Np ~O~ D. $ tiO1~ O ~ ~ ~ E ti~»~_~ ~ ce~~~ o ~ ~ ~~cn ~~ a ~ _~~~? OcnS~c~ 125.00 E'-1 d 120.00 Elevation (ft) TW = G2,o FEMA F/o~d S1~dy _ ~c~v -- 119.7*/- 0.010000 24.00 ft 0. o Concrete 3g o03~ f~ft a Concrete 1 15.00 0+00 1+00 Ar.-nor ~-~ S/°~+G Station (ft) Title: 106009.01 Project Engineer: Brian Rentz Leonard c:1...~storrnsystem7-100%capture.stm BRL Engineering StormCAD v5.5 [5.5003] 03/29/07 10:15:10 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ~8 L it a U \° 0 O O ~ ~ N !C m p O G1 ~~ ~ ~ d V N V C ~+ N JM W U ~v0.. ~ ~ n n m ~ ~ . '` of ai o >, C~ c .. = J .~~~ n n ~ ~ ~ of of ~ ~^~ J N O l6 y ; N ~ O ~ O d1 V 1- ~.tL M M E c oo °o N O Ti y O O T ~ 'CLL ~ ~ E ~ ~ O O H ~ O u) ; ~ . O ~ E i Q y a v v, TV ~ 0 0 O C N c0 O ~! o U ri o H LL ~ " 0 0 lU y.Ct N N c n ~ ~ m c `'' o ° o ~ o i i ~ ,. ~ ~~c•- u u c E ~ c ~ O ?~ U 'n m C O O y C7 O N y N n C Q ~ .... O O y ~ ~ O ~ ~ f0 00 GO N W .-. ~ ~ Q C C O E~~ ~ ~ ' ~ ~ ~ ~ r ~ N W > > w w ~ ~ C U U .C •~ N N C C c~ c~ a `~ m m c c ~ ~ ~ ~ J (n p) ~~;r 0 c o o ~ J ~ ~ 1~ ~ l6 ~ ,~ a a~ > ~o ~Q . U GD •o m ~ c .~ C W ~i d 'o a` ro n M O N N 0 n m 0 H U Z a .e e ~ m c of e W ~ K ~ m y 9 Y O O m n M U C N d l0 N d W E w a `~ e O ~a n rn E4 o m do o a~'i 0 00 G1 a~'. N ~ U O 89 m 0 .~ C d V O a d m a 'a '~ C r N J m 6 ,~ ° //~\ c ~.. D c ~ V, \ v 0 ~ ~ ~ ~^ J ~ ~ t~ l6 1 ~ ~~ia ~~ a ~> o ~ ~ ~ ~ ~ m U tl) C ~ ~ 2 ~ 41 fA ~ O N ~ C N Ol •~ tO r C W d N N U ~ W U d o ~~ W O U N n ~ ~ N O O m (7 m f0 E"c ,~ ~ ~ ~- w ~~ ~ C T O 3~ N N ~ f`7 + U 9 n n O ~ O O Q ~ ~ U ¢^. ~ O ... m~ O n `~ ~° o a 2 I- O) N N V C ~ O O C C ~ ~ ~ 7 ~ C m ~_~ ~~ m~ -~~ E~.~ o o ~v co ~ ~ w m ~~U m a m .o M O N Y '° ., m w ~ o ~?~~~ o c o a~Q ~ m n ~ o ~ r~ 2 0 ° ` . ~ m o c o~ ~ ~ 0 _ ~.. 0 0 0 0 ~ 0 t o o L c ~ 0 o o v ~ J v c N ~ V R M O N O N;~~ oo r W = ~ c ~ o W c o m ~~o m ~ dia^ aG m i c ~ n ~ E lV N N N m N ~ N ~ O Z ~ (~ O \° 0 O W N N~ ~ N ~ ~ d O o Z -~ ti ~ ~ E . .- O m h C N ~ 0 0 N C C O N O C (n 00 OD ~ E O O ~ N y N ~ i d d I- U O 9n OUTLET DITCHES (Hydrology, Hydraulic Design, and Spec Sheets) 91 J~ ~~ m ~ N W Z U `0 r W J H O O /~ V J O Q.' D } o ~' v o ~ ~ ~ ~ ~ ~ r N N N N N N c - 1~ I~ E~ t~ ~ (~ a w ~ ~ ~ aQ W ~ a z O ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ lY~l `/j 1^ ~ v ~ ~ ~ .. ~ M (~ °~ ~ N N 4 z ~ ~ a V ~~ p v~i~ ~ V o" ~ v I ~s ~ .{ W S LL ~ a° M V ~ ~ ~ ~~ ~ ~ T ~r'• ~ O w o~ w a LL Q N ~ !~ 0 ~ t}- O ~ y ~ ao ~O O ~ q W G ~ isoG m ~ ~ 1~1_ VI ~ r/1 ~ ~ ``__ v! ~ 11 -- vl 4 l fo~ ~ u~l y z~~~ o,~ ~' f M .. - 4 M ~ av ~~ -, i ~ N ~ t ~ W~' ~ a~ U, ~ N ~ M ~ ~- i ~~ ~ ~ ~ i H~ Z ~ Q ~ ~ 11~ F O 4 !~ ~ Q J O OF ~ ~ 4 O N ~ Vl U VJ Q QUO U' ~ _ ~ ~ O M 0 O O O c i m ~ O © 0 D O Q ~ W • ' ~1~ ~GI ~ ~ z ~ w ~ s ~ ., _ q _ 1n ~ ~n F ~ ~ ~J N 2 N 2 °~ t Z ~ ? bl ~ ~ ~~ N N N ~- N 5 'nL i~ v M Y 1i l~ ~+ C I,~~ ~ ~ yy < S ~i d y N~• ~y 4 V J ~ ~) v e R 1v~1Z ~ .jN~ ~ Q Ct~I~S ~ ~ ~V L ~ ~ ~ nZ ~ ~ ~ ~ ~ `~ c e"' ~ w h ~.F ~~ p ~ ~ L S v ~nJw~1~~ ~ ~ C t L ~ ~ ~ ~ ~ c W t ~. W W ~ • 0 ~ ~ F ~ ~ ~ ~ ~I ^~ ~ I~ ~ ~ ~~L q ~mW - ~ E~ o ~ ~~ 4 ti~ = ~ yg ~ c T i ~Z Y c o `~ ~; .~ on b N ~ d ,n M~~,~ 1U; ~~~ ati ~ a ~ a~ ~ f ~ ~ ~ ~ Y L0 f , v ~ V e~i ~' 4 ~ b '~` ~ LQ `L t ~ `~ ~ f W O 1. h ~ v b 1d S ~" v ti ~ 51.1 d ~ ~ i~. v ~. ~ °~ v ~ ~ ~^ ~ i y ~ ~ ~ ~ " a ~ Q 4 0 ~ ~ ` p o a ~ ~ ~ Q O o ~ ~ ~ p Q o ~ a o p Q \\ OvrL~T C)tTGt~ ~/1,gQE.S ~S.e. D~Tl-~T l~ia"GN ~~ (`D~l~ P,-,ptis~d ayrl~t' a~~s.~, rti~.t [s.,~~- At F~a! n~ a s~t.~.-, Sysl~ It Frr olf~!! D~t1Gf' FJ~~tt-t Gr`<-~c5 ~ StG ~lD~r? f~s~~~ p.~~Jff'Gfnl~l5) 9 S F ~ ~ `` ~ '~ ~ ~ ~ ~ ~ ~ ~ ~- ~ i ~: a -Q ~ t ` ~ i ~ °~ s ~ ~ V ~ ~ ~ '~ V M 0 o ~ 2 a ,~ ~,~,3~~ a ~~~~ ~y~ tid~~~ ,~`e2~ ~~ ~~~~ra~ ~~`Z~WT _~~0~ 1 o N~ ~ ~ h ~ T v ~ ~ v G Q ~,z~~- ~ r Z Z ~ F ~ ~ ~ ~ ~ .- , 0 ~ 0 c ~ ~~ F a v ~~ ,JeQ m~ ~ m 0 =Z F- ~ ~ Q F ~ W H Z_ OJ Z OO zQ (~ N (~f W W O U J Z ~ - Z Z 0 c G ~~i 4p ~~ ,. <~. .o .Q v ~ ? r v ~ J p ~ c 1: ~ ~' 'c f ~ 2 S ~^ r N C `~ `i ` ,C r ~ j a ~ p ., "~ ., J ti 1, ~ o ~ ~ ~ 4. m a v ` 0 j ~ ~ 3 ~ .~! j ~! st "~ f i i U ~ ~l ~ ~ ~ ~ ~ a 2, ~` ~~ ~- 2 ~ Q Q 1l ~ ~ ~ ~ ~ _~ ~~ ~ ~ h . ° j > > 5 ~ 5 > ~ ~ ~ ~ ~ ., ~ 1 4 p C z o _~~ ~~` 2 2 n Z ~ i 2 QO ~ N C ~~ `~ ~ Q Q L, o p ~ ° ~ ° o ~ C i Q of N ~n h In ~t- °` N nj 2 h ~ o ?~ o Q ~ ar ~ ~ N ~ Q J Q ~ J ~ h ~ o~ U ~' ~ Z N 2 ~ Z N N Z Z ~ Z m o c °M` v ~ v M n N °~` ~ ~ ~ ' ~' = z~ N N N ,,:~ N ~ ~ N ~ 1. ~ Q f s o o~ ~ a ~ ~ M ~ M M ~ M ~n ~ r' -. ~ N ~' _ _ ~ Q ~ `` J ~ ~ - .. _ ~ - - -' - v t ~, ~ ~ N M ~ ^l Q 1 1 ~ N ^'~ M M c ~ c° , _ C ~ Q.i v~ _ [ ~ 1L ~. _ _ N N ~ yr S ~ f i -_ - r t ~ N a ~ '_ p ) 0 Qt ~ 0 ~}- 1n M l ~ Yp _ 'z 4 O D O 4 0 0 0 p p 0 0 ~ ~ b H v ,` ~ V J LI N Q _O ~ ~ h t Q: ~ t' n i °~ + r ~ St _ - t ~ QO cn ZVI l ~ l ~ Qn ZH ~ ~ Z ~ ~ yo ¢• ~Q V ~ J ~ _ C~O °_ ~ n n 4 ~ M 0 O M ~ G ~ Q M .< ` m ri Li Li ~ n r °' °` r °~ °~ ~` ~ ti U r W o ~- a J 9. ~ 4.. ~ 44 H a v Ir a ~ Iv 1 ~ ~ p y ~ /y V (~y~ V ~ ~ ~ Aryr V ~ ~Y V ~y V (] V (~( v ry v r ~.~ l ~1 ~ M \ w~ ~ ~ o t ~: ~ ~ `- a ~, a i ~_ ~ ~ ~ ao LL ~ "~ ~ n `-1 ri ~ ~ R ~ :~ ~ ^ c a ~= ~ ~ ti ~~ .. ,~ 1 = a v ~ ` is ~ 11 n D 0 1~ ~ I. C ~ ! ~ 8 E` ~ W ~ ~ y ~ ~ W ti •- ~ •- r ~. o O o -~ ~ 7 ~ U p ~ %.S ~ '~ ~~~i f vT ~ ~Q vvv.~ Q. ~ ~ c`Z d ~ ~ ~ .~ +n 5 Z Z 1 V ~ 0 y~y ~ J ~K A J~ ~p~1 m °' FU- ~ O Q ~ (7 W J Z H Z O "J ~ ~ Z O Z Q ,w~,w v/ WW U J Z Q 2 p+ Z } ~1 *w 1 ~ h 1' ~ ~ < < s`a ~ c o ~ ;~ i1 ~ ,~a V C ~i f `i ~~V ~~~ i ~ ~ W t~ y~'klu '~ ~ t~ "v+H4 • .< ~ < ~ - f ~ S 1^ ^i ,y~ ~ ~ L1 0 V h L N 't ~ 4 ~1 ~ n ~ M ~ V ~ : v 1.~ ~ h ~~ 1~ ~ O' vvi ` v4 m 2 E 4 V ~ V V h ( ~ ~ i~ V V ~ ~ _. V M "~ 4 ~ ~ J ' H ~ ~ ' V ~ ~ V ~ `~ ~ ~ H h v 3 j ~ 3 ` '1 ~ 3 F "~ Q l Y 3i ~: Q 3 c ~l ~ ~ ~ ~ ` ~! ~ . ~ i 4 ~ ~~ ~~` ~ ~ ~ ~ o~ id ~ ~ a r n ~ ,j , J 1 1 ~ 1 ~ ~ ~ 1 ~ c S S z°p ~a~~ 2 Z ~ 2 tiJ ~, ~ z ~ ~ Z ~ QO N ~W _ ~s 1n 4 p V' O L' 4 O p 4 O p ~ ` In E ~ >° .d ti ~ 4i ~ ~ N of (n n o: , ~ N ~ ~ m ~ ` 0 ~ ~ ~' `~ 0~ ~ ~' N Q ~ ~ o% U m Z Z a' Z ~^ Z ~ 2 Z M N m Z e ~ ~ Q A ~ ~ N h Q. ~ Q ~ ~ M ~ L; ~ ~. Z o ~ H ~ N ~ ~ N ` ~ n1 ~ J ~~ a ~ `Q N ~ N ~ ~ ~ _ ~ 0~ ~ 1n ~ o M V M m° - '~ _ _ ~" _ - Q _ - O U _ _ _ _ = ,~ M ~~ M M ° M _ _ M _ _ M _ M nl tT W v O 4q ~ Ha l V4 Q O O O ~ a` p _ _ - m g N '0' _ _ O _ O Q _ 0 _ - ~ O c ~ O L1 4 M 0 ~ M O ~ a 1n `~ M a M a o _z p 4 O D O 0 O z z ~ d ~ n ± ~~ ~C V n „ v ,h d ~~ ~•4 o - ` ~ Z Z p ~ 2_'' ~ ¢~ Z=v, ~ ~ 2 z J V ~ v ~ ~ A off O °~ off. $ rA ~ ~ p 1 N p `0' w 4 J p . `i - V- Q' y - ly "'l OQ ~ r a £ mm o t T f Z f W aJ ° a ~ '' C C ~ a ~ ~ C ~ ~ Q ~ v v ;,€ n N 0 ~ ,~ o ~ ~ 4 ~1 ~ ~ ~ ~ ~ c ~ r. a.` ~ ~ ~ : ~ ~~ 7 Q ~ ~~ ' ~~ p ~ ~C ~ " ~ ~' . ~ ~ ~ 7 ~ n ~ ~ \' ~ ~ ~. ` ~ W µ~ N ~ u N ~' y ~ y .1 o ~ ~ tt- O v p v 3 V Q W Z f ~ - ~ ~= ~ h '~ ' a z p i~ Q µ Q it ~ , A ~ ~ V V V V ~ Q ~ W ~ am ~ ~ ~ r ~ ,. ~ y , a ~ ~ f- ~ v ~ 4 ~ ~ p ~ n ~~ ~~^ b Y j ~yl~:-\ Vd O-4 q4 9S o ~ ~ o ~~ 4. .O aD m am _.~- °° ~ ~ ~~ ~ c~ o 0 ~ v I n .~'' ^ - r ~ ^ ~ ~ ~^ ~- m fir. ~ ~ ~-- ~ m m d ~ d ^ ~ fl- ~ dD m O O ~ O ~ ,r-1 - ,~. m ip ~ ~ ~ v ~ ~ ,ci .-1 N ~ (7 tn~ m~ ~ v r-.j N N N N c-1 ~ ~ 1 ~ ~ ~ oZ ~ mZ ~ o m C ` ~ ttt S~ .Q .Y Q m p F- - ti ~ N ~ 00 ~ (*J ` '~ C'7 ~y ci m 0 x x i x ,~ ~ x x a~ ~ ~~ °$ gy ~ ~ ; m ~ ~c ` ~ ~ ~ ~ ~ , ~ ~~ 1 ~ ~~ ~ ~ am O ao O ~ O (A o ~~ ~ N a~ Nom o~ o-~ ~ m ~~~ o0 00 oo U W d, . m C O ~ O O m ~ ~ C WW U C7 O L ~ a ~ J 0 ~ ~ a ~' ' '~ M W ~ m ~ ~ ~ t i... co > = c o ~ ~;~ ~ ~ E Q j J N N I ~ U ~ ~+ c o °° ~ ~ ~ ~ ~ ,,nn VJ W N ~ ~ ~ ~ 0 ~ L c m ~Cj ~N r-1N M x M x M LiJ ~ X x x ~ x o O n M m ~*, m ~, mO mO m ~ ~ ~.j N ~, a... E ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~~ Z _ s a~oZ ~~ ~Z ~~ ! -Y ~ ~~ ~ ~ ~ ~ s a o 1 ~~ Qm tn~ ~N ~ Ncn NM. I NM ,~~ ~ ~~ N M `ACV E x x x x ( x x x x 1 x X m ~- 1 "" m ~ "'~ m o j ,moo ~ .~-i ~N ~ ,~-~ ~ Na0 ~ a~ m r- ~ ~N ~N ~~ coven ? Nd Nevi ~ My i cvi ~ cv I f ~ ~~ i o I ~ I <~-1 O ci 0 `~ O O ri O 0 0 O N D O 000 oco om o ~..~ 00 O ,,.~ o ~+ o ~-+ 0.~ 0O 0 0 o ,r.~ 0 00 00 00 00 o 0 0 m 3 Q ~ m 3 rn n. o 0 ~ m o ~ m m m m o m % ~ ~ C (n cL ~ ~ ~ p L . C L m cv , a'` m `i v~ ~M SU ~ m ~ C ) ~ U U ~ .. O r-~ ~ .ri f~ ~ C`1 ~ ~ as c ~ M.. ri ~ N I~ N i ` i ~ ~ ~~ ~ ~ ~ ~~ ~ ~ N ~~ ~ ~~ MN ~ N N 0 w w w CO O o °' Mm ~ ~~ p m ON ~~ WN ~-iN ~ X m X x x * x X ti x X ~ x ~" mm x ~. x N mM mM ~ ti c cflo mo ~ c~ m0 m M mo cfl0 mo mQ mc~i m~ ~ N N N ~ Q m x ~ y m x S] ~ .. ~ m C X x m~ ~ Q ~ '~ ,~ m~ S] ~ ', ~ m x C~ m 2R O '-~ Q M a's C C a m 14 E m ~ ~~ m r'3 m [U ~ m3 ~ ~ 0°03 m G'3 ~ 'CS \ m a ~ ~ ~ ~ ~ m~ -6 3 ~ ~ 1... ~ `o ~ my ~ W m ~- S~ m 3 m ~ m~ ~ ~ ~~ v ~tD .o~~ ~ ~-'' ~ l! V '~ O O~ O~ 'a ~ O 0 ~ O ~~ 0 C ~ "~} ~ Q$ Q~ ~ 0 Q.~ ~~ Q O o o U V ~ ~ ~ m `~ ~ ~ O ~`1 ~ ~ ~ f- m O <-t O m U ~ C /V}~ ~ n N ~ ~ ].. c C (A ~~ .-~ ~ c m m si ` O c~ ~- ~ ~ m c s, m r- ~ ~ U x ~ C ~ +-~ ~~ m ~U-~ T3 C% ~cn ~ O~~oDD~ °~ o m ~ ~ ~ ~ ~ 0 m `i O Q S] ~ O ~ O O ,~ ~ ~ O ~ t - ti V ~ N v ! zj ,, 1 Z '~ ~ ~ O~ ~ Z :~ ~ mm O~z ~ tD~ ~ ~~ o m~ m ~ ~ N. ~ mZa ~i 3 tf)3 m ~ 3 ~ ? ~ ~: O Z rid m p~ ,r~ N OJ ~ o m~ p ' ~ m ~ ,. O ~ m ~~~ ~ a ~ ; ~ . d ~ ~ °- `^ a ~ ~ a "sal-~"°~ ' o a~ an r~ 'P~3 . - m m m 0 C C O m O w m c m m D C m U m E Q 0 Z 00 c m a 0 m m v m 9 O t C O m m 0 v O d c . a m~ ~~ _T ~ l o; i m• o, ~~ d, 0 C' m: m 1 m m; C ~ m ~ Mi O . mi m 7 yr~- F O Z z Q - wsal-3~tS 9G _ ow o~ ~ o - L o O O. m • ~o ~ a c7;. O U w o a C ~ .-• CD O c0 ~ C7 p ~ O a U 7 ,n cp ch W p » ~ ... ~1 N d m N O `-' .f2 ~ ~ ~ _ ~ O O ~ ~ ~O N .~ O ~O cv o. ~ C~ »~ _ O N c`i~ c+~ .- c~ ` C m ~ - O ~ a o ~-- ~ m a ~ ~ ~~ ^ OA _ q~ ~ ~-/ m .~ o ~ 'n .~ ~ ~ -- o ~}-" O - .C ~ d ^ O m N _ _ ~~ ^ E ~ .., ~~ Z3 . m ~ a~ Z ~' > ~°, m _1 v~ ~ ~ a R _ E m~ ~ (/T ~ V O A ~ ~ N ~ ~ ~ ~ ~d ~ ~ ~ ~ m `~ m V ~ /'~~ ~ '~T U ~ d .~ ® m ® N ~ ~ i ,,, ` L7J ~ ~ ~ v. O ~ ~ ~ m ~ Q ` O ~ c"~ ~~-, co ~~ Vic' ~c~v O ~o~ ~ m O o~ ~ - O -- ~- m ~ o ~ O _ ~ - ~ ~^ r ~ - 3 ~ ~ m ~ ~- I ~ rn O ~ ~ ~. h ~ o l ~ N ® O ~ C Q ~ = ~a ~ ~ [jJ O mo •n ~ oom Q ~ Qa ~~ C ~ m a° ,~ ~® m L ( ~ a ~ m~ a U O O m U C m ~ ~ m~ C ~ ~- a 1 ~ ~°L n ~ V .~ a m~ ~ ~ C ~ ~ ~ m U i m d =DU m 3. 2~ a ~ m m 3 ~ ° ._.. ~ a N a~ ~= Qo ~ t o o Q ° ~~ O o m Q ~ ~ ~ N N fn U ~ O ~ m m ~ a c~ O ~ ~ n m :_r ~ A, W ^ ~. ~ ~ ~ a~ ~ ~ E _ V Q m~ C ~ d ~ ~ CD N O ~ ~ N O) O ~' C m Q m r,Q N O~ ~~ OCO Ors n No O m y 0 ~ ~ "_ v ~ --~ ui ~ ~O v m m ~ C O 2 °~ nL1 _ E ~ ~ ~ ~ ~ ~ a O C U /W Y C w ~ ~ P ~O` O O ~~= ~~ ON Q m O 0C3 .. ~ ~ ~~ ~N XO ~ C-O • ~' O ~ ~~ x X ~~ X X X X O t~ X ~O ('~ m~ h ~ m W C] ~p ~ O COQ `~N ~~ ,C20 m ~ .~ _ o N cv U ~ m ~ ® o ~,., `- m a r n m .mac m c~ ~ m gym ~ m ~~ ~ aac~ V c ~ ~ ~ .n LA v Wm m `- m ~ ~ . N p ~ ID O O O ~ ..- O m O -~ ~ tL >- p T Q Q ~ )... ~ v ~ m~ NU~_ mm> Q -B2O-~ O~~ ~vsQm V 0~,~_~m ~ m L3.L-QD a o m~ ~+"-62Be m ~ O?'+-O m O~ 0 O p o O-Q p O a O m O~ ~ 'L' ism m ~ O O mOO-fl ~N~Zr~c~u- _ ~ .~+-=aZ°-U~ i--N ---N=~Zd~ dZau. ~~ O m~ m V~ .-• .«- n ~ x ~a O X .~ .na ~ O ~ L- --~ ` p O C o~~~ . u ~ ~ U J } o~ ~ 1--- O W W 0 U J ~ ~y N y i ~- } ~ ~ °` .! 2 ~ al' d O 1--' U~ Q fy„ ~..2 .1 t~ ~~ 7/ PERFORMANCE SPECIFICATION ~~ C Tom.-,po~~.,-y k ,~~~+ V ~{~b ~ 'r TLS M `~.'^,~~~,,'~~ AM IEA N GREFIV° The North American Green S75 straw erosion control blanket is constructed with a 100% agricultural straw fiber matrix and has a functional longevity of approximately 12 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographic location, and elevation). The straw fiber shall be evenly distributed over the entire area of the mat. The blanket shall be covered on the top with a lightweight photodegradable polypropylene net having an approximate 0.50 x 0.50 inch (1.27 x 1.27 cm) mesh size. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The following list contains further physical properties of the S75 erosion control blanket. Pro e Thickness Resiliency Mass per Unit Area Water Absorption Swell Stiffness/Flexibility Light Penetration Smolder Resistance MD Tensile Strength MD IIongation TD Tensile Strength Test Method ASTM Dfi525 ECTC Guidelines ASTM D6475 ASTM D1117/ECTC ECTC Guidelines AST'M D1388/ECTC ECTC Guidelines ECTC Guidelines ASTM D5035 ASTM D5035 ASTM D5035 TD IIongation ASTM D5035 **Material is smolder resistant according to specified test MD -Machine direction TD -Transverse direction Slo e Desi Data Channel Desi Data Typical 0.33 in (8.38 mm) 78.80% 6.42 oz/yd2 (218 g/mz) 424% 15% 6.31 oz-in (70,523 mg-cm) 11% Yes'"t 115.20 lbs/fl (1.68 kN/m) 11.90% 93.601bs/ft (1.37 kN/m) 9.60% Cover Factors C Channel Rou hness Coefficients Slo e Gradient S Flow De th Mannin 's `n' Slo e Len L <_ 3:1 5 0.50 ft 0.15 m 0.055 <_ 20 ft 6 m 0.029 0.50-2.00 ft 0.055-0.021 20 - 50 0.110 Z 2.00 ft 0.60 m 0.021 > 50 ft (15 2 m) 0.190 Max. Permissible Shear Stress 1 55 lb / ft~ 74 0 Pa Bench Scale Testingr Unvegetated 2.Olbs/ftz Channel Approximate Max Flow Velocity 5.00 ft/s (1.52 m/s) - - s For most accurate design data consult ECMDST"' ~ s~ ~"° ' oa4 I-~'-LS' - •o3Z Manning's 'n' expressed in English units for unvegetated blankets Ls ~ - i•°, - ~ cZl tBench Scale Performance Testing Bench scale tests are index property tests. These tests are not indicative -of field performance and therefore should not be used in design to establish performance levels for rolled erosion control products.. Bench scale tests are performed according to methods developed by the Erosion Control Technology Council (ECTC). Updated 9/2004 98 .s., __ ~..~~~'~~ .per. yo i.c .- ' ' " ~~ PERFORMANCE SPECIFICATION ~ ` ~ ~ ~~ `L_ T t ~~( 1~ 9 T~ "^,~~ y - ~ ~v y~ ~ ~ f ~~`~, AM~IC•AN GREEN° The North American Green S150 straw erosion control blanket is constructed with a 100% agricultural straw fiber matrix and has a functional longevity of approximately 12 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographic location, and elevation). The straw fiber shall be evenly distributed over the entire area of the mat.:The blanket shall be covered on the top and bottom with a lightweight photodegradable polypropylene net having an approximate 0.50 x 0.50 inch (1.27 x 1.27 cm) mesh size. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The following list contains further physical properties of the S150 erosion control blanket. Thickness Resiliency Mass per Unit Area Water Absorption Swell Stillness/Flexibility . Ground Cover Smolder Resistance MD Tensile Strength MD IIongation TD Tenstle Strength TD IIongation **Material is smolder resis MD -Machine direction TD -Transverse direction Sl Desi Data Test Method ASTM D6525 ECTC Guidelines ASTM D6475 ASTM D1117/ECTC ECTC Guidelines ASTM D1388/ECTC ECTC Guidelines ECTC Guidelines ASTM D5035 ASI'M D5035 ASTM D5035 ASTM D5035 tart according to specified test Channel Desi Data Typical 0.32 in (8.13 mm) 80.5Q% 7.59 oz/ yd2 (2.57 g/ mz) 327% 14.90% 6.06 oz-in (67,699 mg-cm) 89% Yes'"` 156 ~s/ft (227 kN/m) °' 23 /° . 1081bs/ft (1.57 kN/m) 22% o e Cover Factors C Channel Rou hness Coefficients Slo e Gradient S Flow De th Mannih 's `ri Slo Len L < 3:1 3:1- 2:1 <_ 0.50 ft 0.15 m 0.055 <_ 20 ft 6 m 0.004 0.106 0.50-2.00 ft 0.055-0.021 20 - 50 0.062 0.118 Z 2.00 ft 0.60 m 0.021 >_ 50 ft (15.2 m) 0.120 0.180 Max. Permissible Shear Stress 1.751bs/ft2 84.00 Pa tBench Scale Testing I Unvegetated 2 41bs/ ftz Channel Approximate Max Flow Velocity 6.00 Ells (1.83 m/s) .S~-l.o' _ .044 For most accurate design data consult ECMDST"' ,,o ~ - ~, s ~ - _~? z Manning's'n expressed in English units for unvegetated blankets ~.s'-z.p' - . oz i tBench Scale Performance Testing Bench scale tests are index property tests. These tests are not indicative of field performance and therefore should not be used in design to establish performance levels for rolled erosion control products. Bench scale tests are performed according to methods developed by the Erosion Control Technology Council (ECTC). Updated: 9/2004 %7 PERFORMANCE SPECIFICATION =- ~ ~ -~-~~ ~_ ~~ :~ - T err '=-. SC150 EX=- -~-~.~:. AMERICAN GREEN' The North American Green SC150 extended-term degradable erosion control blanket is constructed with a 70% agricultural straw and 30% coconut fiber matrix and has a functional longevity of approximately 24 months (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographic location, and elevation). The straw and coconut fibers shall be evenly distributed over the entire area of the mat. The blanket shall be covered on the top with a heavyweight polypropylene netting having ultraviolet additives to delay breakdown and an approximate 0.625 x 0.625 inch (1.59 x 1.59 cm) mesh size. The blanket shall be covered on the bottom with a lightweight polypropylene net having a 0.50 inch x 0.50 inch (1.27 cm x 1.27 cm) mesh size. The blanket shall be sewn together on 1.50 inch (3.81 cm) centers with degradable thread. The following list contains further physical properties of the SC150 erosion control blanket. Pro e Thickness Resiliency Mass per Unit Area Water Absorption Swell Stiffness/Flexibility Light Penetration Smolder Resistance MD Tensile Strength MD Elongation TD Tensile Strength Test Method ASTM D5199/ECTC ECTC Guidelines ASTM D6475 ASTM D1117/ ECTC ECTC Guidelines ASTM D1388/ECTC ECTC Guidelines ECTC Guidelines ASTM D~035 ASTM D5035 ASTM D5035 TD Elongation ASTM D5035 **Material is smolder resistant according to the specified test MD -Machine direction TD -Transverse direction ('haruiel Design Data 152.401bs/ ft (2.22 kN/ m) 23.10 J1V G L~.oa • +~..~~ Cover Factors Channel Rou ess Coefficients Slo e Gradient S Flow De th Mannin 's `n Slo eLen L 53:1 3:1-2:1 >_2:1 50.50 ft 0.15m 0.050 5 20 ft 6 m 0.001 0.048 0.100 ~- 0.50-2.00 ft 0.050-0.018 20 - 50 0.051 0.079 0.145 ~z 2.00 ft 0.60 m 0.018 z 50 ft (15.2 m) 0.100 0.110 0.190 Max. Permissible Shear Stress 2.00 lbs/ftz 96.0 Pa For most accurate design data consult 1;t;MlJS' m Manning's'n value expressed in English units Bench Scale Testingt Unvegetated 3.91bs/ft2 Channel Approximate Max Flow Velocity 8.00 ft/s (2.44 m/s) -S'-l.a' - .039 ,.o'-~.s' - .o2v i.s'-z.o' - .oie tBench Scale Performance Testing Bench scale tests are index property tests. These tests are not indicative of field performance and therefore should not be used in design to establish performance levels for rolled erosion control products. Bench scale tests are performed according to methods developed by the Erosion Control Technology Council (ECTC). Typical 0.34 in (8.64 mm) 75 11.44 oz/ydz (388 g/m2) 200 30% 1.11 oz-in (12,397 mg-cm) 11.70% Yeses 205.20 lbs/ ft (2.99 kN/ m) 28.00% Updated 9/2004 ~ Db PERFORMANCE SPECIFICATION AMGR~. ~ SC25O p~_ The composite turf reinforcement mat (C-TRM) shall be amachine-produced mat of 70% straw/30% coconut fiber matrix incorporated into a permanent three-dimensional turf reinforcement matting. The matrix shall be evenly distributed across;. the entire width of the matting and stitch bonded between heavy duty UV stabilized top and bottom nets with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings and an ultra heavy duty UV stabilized, dramatically corrugated (crimped) intermediate netting with 0.50 x 0.50 inch (1.27 x 1.27 cm) openings. The middle corrugated netting shall form prominent closely spaced ridges across the entire width of the mat. The three nettings shall be stitched together on 1.50 inch (3.81 cm) centers with UV stabilized polypropylene thread to form a permanent three-dimensional turf reinforcement matting. Slope Design -Unvegetated Cover Factors Slope Gradient (S) Slope Length (L) 5 3:1 3:1-2:1 z 2:1 <_ 20 ft (6 m) 0.0010 0.0209 0.0507 20 - 50 ft r 0.0081 0.0266 0.0574 >_ 50 ft (15.2 m) 0.0455 0.0555 0.081 Channel Design Data Roughness Coefficients -Unvegetated Flow Depth Manning's 'ri <_ 0.50 ft (0.15 m) 0.040 0.50 - 2.00 ft 0.040-0.012 >_ 2.00 ft (0.60 m) 0.011 Approxunate Permissible Flow Velocity Unvegetated = 9.5 ft/s (2.9 m/s) Vegetated =15 ft/s (4.6 m/s) Maximum Permissible Shear Stress* Short Duration Long Duration Phase 1 UNVEGETATED 3.0 lbs/ftz (144 Pa) 2.51bs/ftz (120 Pa) Phase 2 PARTIALLY VEGETATED 8.0 lbs/ft2 (384 pa) 8.O lbs/ft2 (384 Pa) Phase 3 FULLY VEGETATED 10.0 lbs/ftz (480 Pa) 8.0 lbs/ftz (384 Pa) .S-i•o - ,031 ~,p_ ~,~ _ , OLI l.S-t,o - •c1Z Values are approximate, precise values obtained from ECMDSTM *Performance values obtained through third party testing at the Texas Transportation Institute, Colorado State University, and/or Utah State University based on soil loss failure criteria not exceeding 0.50 inches (1.27 cm). JD J 0 Table 8.05f Manning's Roughness Coefficient Lining Category Lining Type n -.value n value for Depth Rang 0-0.5 ft 0.5-2.0 ft (0-15 cm) (15-60 cm) es 2.0 ft (> 60 cm) Rigid Concrete 0.015 0.013 0.013 Grouted Riprap 0.040 0.030 0.028 Stone Masonry 0.042 0.032 0.030 Soil Cement 0.025 0.022 0.020 Asphalt 0.018 0.016 0.016 Unlined Bare Soil 0.023 0.020 0.020 Rock Cut 0.045 0.035 0.025 Gravel Riprap 1-inch (2.5-cm) Dso 0.044 0.033 0.030 2-inch (5-cm) Dso 0.066 0.041 0.034 Rock Riprap 6-inch (15-cm) Dso 0.104 0.069 0.035 12-inch (30-cm) Dso -- 0.078 0.040 Note: Values listed a*e representative values for the respective depth ra~rges. Manning's roughness coefficients, n, vary with the flow depth. DETERMINING SHEAR STRESS Shear stress, T, at normal depth is computed for the lining by the following equation: T=yds Td =Permissible shear stress where: T ~~ shear stress in lb/ft2 y - unit weight of water, 62.4 lb/ft3 d flow depth in ft s = channel gradient in ft/ft. If the permissible shear stress, Td, given in Table B.OSg is greater than the computed shear stress, the riprap or temporary lining is considered acceptable. If a lining is unacceptable, select a lining with a higher permissible shear stress and repeat the calculations for normal depth and shear stress. In some cases it may be necessary to alter channel dimensions to reduce the shear stress. Computing tractive force around a channel bend requires special considerations because the change in flow direction imposes higher shear stress on the channel bottom and banks. The maximum shear stress in a bend, Tb, is given by the following equation: Tb = KbT where: Tb = bend shear stress in lb/ft2 Kb = bend factor T = computed stress for straight channel in Ib/ft2 The value of Kb is related to the radius of curvature of the channel at its center line, Rc, and the bottom width of the channel, B, Figure 8.OSe. The length of channel requiring protection downstream from a bend, Lp, is a function of the roughness of the lining material and the hydraulic radius as shown in Figure 8.OSf. 8.05.12 Rev. t?/93 1~Z Appendices Table 8.058 Permissible Shear Stresses for Riprap and Temporary Liners Permissible Unit Shear Stress, Td Lining Category Lining Type (Ib/ft2) Temporary Woven Paper Net 0.15 Jute Net 0.45 Fiberglass Roving: Single 0.60 Double 0.85 Straw with Net 1.45 Curled Wood mat 1.55 Synthetic Mat 2.00 dso Stone Size (inches) Gravel Riprap 1 0.33 2 0.67 Rock Riprap 6 2.00 g 3.00 ~ 2 4.00 15 5.00 1 g 6.00 2 ~ 7.80 24 8.00 Adapted From: FIIWA, FIGC-1~, April 1983, pgs. 17 & 37. ~ eSlg n PrOCedU re- The following is a step-by-step procedure for designing a temporary liner for a Temporary Liners channel. Because temporary liners have a short period of service, the design D may be reduced. For liners that are needed for six months or less, the 2-yr frequency storm is recommended. Step ~1. Select a liner material suitable for site conditions and application. Determine roughness coefficient from manufacturer's specifications or Table 8.OSe, pg. 8.05.10. Step 2. Calculate the normal flow depth using Manning's equation (Figure 8.OSd). Check to see that depth is consistent with that assumed for selection of Manning's n in Figure 8.OSd, pg. 8.05.11. For smaller runoffs Figu~ 8.OSd is notLas'clearly defined. Recommended solutions can be determined by using the Manning equation. Step 3. Calculate shear stress at normal depth. Step 4. Compare computed shear stress with the permissible shear stress for the liner. Step 5. If computed shear is greater than permissible shear, adjust channel dimensions to reduce shear or select a more resistant lining and repeat steps 1 through 4. Design of a channel with temporary lining is illustrated in Sample Problem 8.OSb, pg. 8.05.14. 8.U5.13 Rev. t?/93 Io3 CULVERT DESIGN Fc~ il~..o,c~s~ +~4 ti r G ~ ~vF~-r ~-_ l 2 eo ~~~€s51~,~. Q y ; B2L 3~Z~~a 7 - . ---- DES1bN ~7"s.t'i-'t = n+z5~ ~'»LEr ~lL~.S/4N -= Qro DQ<ttNliGE ~a-~iA = GZ./s /¢G~E.S ~Otl~'nG~ Ircj ~''~ G~tOL` 1'%-fa~ C = S~ ^' p - `~` -~ ~,,J. ,. /,~ b G --- O , S' f~~ fo Y~ I de vt 1 o p n v+ f r' ~ b • s f -e a ~' "' ~q AG LslS 8/~ a tr'Sn; fiCc.~.~' Pi~f>an rL~LS~' j"kG G~iSSi..-g wr~~ ba ~Ot-/rt_-..r,..j`~ p/LSl~vt~ ~^-'Gf1.-~a~5 ~ws~/L~/d~- So i-o ~vy G ~ O~ ,14' iS A 'ieq~ L.inSG-fY~~i'~`C V4/vG rir 'n-~f5 //"C(c~`ivL[r .$~M>// ~r°,in.~SG Ar'L4. _ G',•~St- F: -,~! ~G L3 385 / ~~ = K /28 3= ii ^- GS z ;ss I(ZOOD" f ~.8 S-S_ ! c 1's ~2S ~ GL~. A --- C,./vtrt S~zc Qrs%~~ G3f3 cfs .Sec ~%/i~~r, Pars f . C~/~~t Ors%~~ .., ~~.IoTE Th;S Gy/vvt w.'1/ bt %~sa4FlGc! a-t- a r~PklivG/r ~o~...~ cltv4/"i~'~ Wi ~%1 tkG (bb-T~ 61vc.I~l~."/~ d,.G fr tc.~l~c-f~S ~ Cv~vG'`" f „~!l) 14'!/7 bG %n e+~!/4~" c.~, f.o~. ~SSv~!'i'~//7 ~ ;n S~etll[~- S'~'oi^-i G~V,'li,fS Gv/~!/1" will fi.•~Cfi~'-~ PQ 66~vG/y ~t°.~,.~.~.r~~C1' fo c4.,~fi2G {,7R~~o5f4f~G p~<ss.~~GS t~.,G i"a /-i's11~ wahv'S do~,.~-/StrGa^'~. SLC F.o//Owln, FJ0.4G5 to Ytr;~Yf._ 'din/ ^' 126.3 a/ --> ESt_ Bef~-•tc+~4~s(~6...-c) a=4Se^' /2 /./ r~ LS ~~1~dd ~133N0 ~lOtf18 S311~02ld OOOI~ '. 0 0 ~ o loS stead o~vaodao~Ni aNV d ON 'J.1Nf100 NOlSNHOf 0 A~N3°JV 1N3W39tlNVW A~N39if3W3'N2i3a33 ° o0 0 0 rn ° 1 O 0 N O O 0 a N O O O N N O O O O N O O O m O O O = ~ r O w o O m o w w z w O U O ~ _ O ~ N (n D _ Q~ __. -_. W O O N O O O O O O O O to O O O Y O O O N O .- .- .- ~ .~- ~ Q1 00 1~ lt]AVN)133~ NI NOIlVA3l3 !U!o 1 0 CHART Iso ~ )orooo EXAMPLE (~~ (2) (3~ )68 8,000 6 6 p. 4L Isclwa (33 left) 156 6,000 O.t2o df 5. {44 5,000 4 ~ x ttrr np 6, 5. 132 . tfft 5 4. 4. 3,000 (1) L_s a.s 120 ~j L_I T.4 4' 2,000 (~ L_L T.T 3. 3. IQB •p 10 eNt 3. 95 1,000 800 2• / 2-' 84 600 / 500 / e 2. ~ 72 400 300 / *~e~/ -,/ 3 _ 1.5 1.5 NWrS .. x.35 -- U ~ / N ~ W ~ D 3,,, Z ~ 60 0 2 ~ / . W ~~LS ,,, ~~~~ = 0 Z 4 ~ ~ a /~ D ~.} f- 5 0 / W i 00 o Z ~ / _ ~ a I.o I.o J5G ~ /42 ai 50 H1ly,,~%'~ ENTRANCE E ~ (.o C ~` r'IN~ 3a 0 0 40 S L TYPE w -9 , r,~tJu/ 9 Ze ~ ac til 36 30 (I) stlfor• fdp• dth a 3 _9 . r 3EZ ~ f e3v, c'~~ 33 2 1 31 0 Madr+otl use ~~ (2) .Fr r. Groorf fnd ~tA t~c5 a W 8 _ / ~f / ~0 -e ` o `/ ~s ~ h.ee.ett _,_~ Acs~ d ~j k \~jS 3~2 (3) Groor• en projfctlnp A . A~°' C~~ r~~ ` i ~» \I3 g .7 ~ I ~ ~ t.c ~ 24 6 To w• ecolt (2) or (3) project tMn ot. (1) ~.~ tn~s ,fE ~ p~ ~ Rb° ~ P 21 5 , horizent ot-r to sc et• atrolpht inclined lint through 6 - n '1~'r~5h rr~~+ I ' 4 D and 0 •colfa, er nrfref o. _ 6 J ' $ 3 illustro»d_ ~'~` `j, P 2 h~5 "S ~~~ ~'~ 3~Zr,~v1 ~ ~~HEADWATER DEPTH c '~o~' c~~ FOR e~,x a pc~h;s~s 12 `., . w G r'ti°~ ~X~ 3 CONCRETE PIPE CULVERTS S(riRa `r/S5'~~j FtEADwATER SCALES 2 a3 W ~~- F..t ~ NLET CONT ~s~sPr, rP~ ROL aid v~ REVISED MAY 1964 kd~ , w~?~5 d~ BURE AU Of pUBUC ttOAD3~ JAlI 1963 S~ P°P~ A ;At~ °~ I8J r ,~Js~.6~~v c the N`~ ~0.~' .frv ^^ ID7 ca tin ~r J M I~Y1 0 V ~ .~ M 11 W V ~. a _ _ c ~ ~ ~ _ ~: t~ ~ Z Q y ~ 3? -~- 4 a, 3 ~~ _ ~ a. ~,~_~ d~~~~~ a T ~ v~ [~ ~ N -J I I1 ~., U W\ ,a d ., y p' 't. e^ ra sn\ -- u ~ r~ } ~_ ~P~~ J~ s y ~~ ' 11 i ~~ M 4' i ~_ ~~ d ~ N ~ X 7 ~.-~"' ~~ /_ --- ~ ~l1 = / ~ ~~ 4 ~.? ~y x w? ~~ .:~ ~~ S l ~~ Q` ~} fly' ii '~ 0 ,~ C ,~ v o o ~., f 1 C .~ ~ ~ ~`~ .. i G9 ~ t A rC~ y~ i ~-r~~ ~^ i C ~~ ;n ~._ / ~~ J i~,~ ` ~ J ~ 1 ~ ~ ~ ~\ } ~ 4 ~\ y ~ Qo_ ~ ~.,,, V 4iri 6 ' `7 r r' ' ~, :G~ M =~2 ~__ _ a ~~ ~ ~, .. ~~. _,, . _ ~_ 4 - ,, ~„ p A c R i c 7 4 v -_ "' 2 ~ ~ C ti~ ~o ~_ - ~?„ .r<° ~1a~~ ji !rF ~ i ~, , ~ `~,~-.. CW6e ~> 2 H? '?' ~\ XZ _ \~ta~ 1~ i ~' ,. F 4 " ~ ~~ ~~ 1~ ^ ^ i /vlr/ ~i t~ R ~ 1~_ V W v, t 1,ry M F a ~ ~ ~ ~ ~ ~ ~ ~ - ~~ ~ . 1n a u ~ ~ -`. ~ ~ ~ ,i ~ ~ _ a J y ~ ~ ~ z 2 _ - ~D8 109 Culvert Calculator Report Check on Final Culvert - Q25 Comments: Q25 Design Storm -Final Analysis to Compare with Initial Inlet Control Chart Solve For: Headwater Elevation Culvert Summary ~- pp,~l;.,~ Orrrt~~ t Lr" • ~~ Stc 13.+lili• giSO, ~P E1<v = 120.93-£~/.naog)= t2~-7L Allowable HW Elevation 120.93 ft Headwater Depth/Height 2.27 Computed Headwater Elev~ 120.77 ft Discharge 63.30 cfs atc{e~ F~'°^~ CfMA ~/neJ.(f+.dy% 30 ft F-- l~~ ~ 120 InletControlHWElev. 120.30 ft TailwaterEievation c p . Outlet Control HW Elev. 120.77 ft Control Type Outlet Control Grades Upstream Invert 115.10 ft Downstream Invert 114.80 ft Length 56.00 ft Constructed Slope 0.005357 ft/ft Hydraulic Profile Profile PressureProfile Depth, Downstream 5.50 ft Slope Type N/A Normal Depth 1.47 ft Flow Regime N/A Critical Depth 1.56 ft Velocity Downstream 4.30 ft/s Critical Slope 0.004430 ft/ft Section Section Shape Circular Mannings Coefficient 0.012 Section Material Concrete Span 2.50 ft Section Size 30 inch Rise },°rs, 3-3a 3E~- HRd T-G. ~. 2.50 ft " Tp !!e~p Fem.-,Dov~fnPP"~ QDa"~~{.:;<•~ ~ ul f 41nc~~`~ Number Sections . ` ... Outlet Control Properties Outlet Control HW Elev. 120.77 ft Upstream Velocity Head 0.29 ft Ke 0.20 Entrance Loss 0.06 ft Inlet Control Properties Inlet Control HW Elev. 120.30 ft Flow Control Urtsubmerged Inlet Type Groove end w/headwall Area Full 14.7 ft' K 0.00180 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 2 C 0.02920 Equation Forrn 1 y 0.74000 Title: Holts Lake West Subdivision Project Engineer: Brian Rentr Leonard c:\...\106009.01\design\5-culverts\106009-01.cvm BRL Engineering CulvertMaster v3.0 [3.0003] 03/26/07 01:36:57 PM 0 Haestad Methods, Inc_ 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 IID Culvert Calculator Report Check on Final Culvert - Q10 Comments: Q10 For Outlet Design Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation 120.93 ft Headwater Depth/Height 1.98 Computed Headwater Elev~ 120.06 ft Discharge 55.10 cfs ' J t~"~> ~~ ~ Inlet Control HW Elev. 119.70 ft Taiiwater Elevation ~H*t 119.70 ft ~- F~~--~ ~ "" ~ Outlet Control HW Elev. 120.06 ft Control Type Outlet Control Grades Upstream Invert 115.10 ft Downstream Invert 114.80 ft Length 56.00 ft Constructed Slope 0.005357 ft/ft Hydraulic Profile Profile PressureProfile Depth, Downstream 4.90 ft Slope Type N/A Normal Depth 1.34 ft Flow Regime N/A Critical Depth 1.45 ft Velocity Downstream 3.74 ft/s Critical Slope 0.004184 ft/ft % D~'~Lf Na ~'r VC(ntif~' i5 ~~ ~ 1J~-i-Gi-rsi•/G i1 Qio ~ 1 / G~fio ~l Q<~VI~/'~Y Or /7 Section ' Section Shape Circular Mannings Coefficient 0.012 Section Material Concrete Span 2.50 ft Section Size 30 inch Rise 2.50 ft Number Sections 3 Outlet Control Properties Outlet Control HW Elev. 120.06 ft Upstream Velocity Head 0.22 ft Ke 0.20 Entrance Loss 0.04 ft Inlet Control Properties Inlet Control HW Elev. 119.70 ft Flow Control Unsubmerged Inlet Type Groove end w/headwall Area Full 14.7 ftz K 0.00180 HDS 5 Chart 1 M 2.00000 HDS 5 Scale 2 C 0.02920 Equation Form 1 y 0.74000 Title: Holts Lake West Subdivision Project Engineer: Brian Rentz Leonard c:\...\106009.01\design\5-culverts\106009-01.cvm BRL Engineering CulvertMaster v3.0 [3.0003] 03/26/07 01:41:09 PM ®Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 SEDIMENT TRAP SIZING I~Z SEDIMENT TRAP DESIGN - NCDENR METHOD (REV 6106) Sediment Trap ID: Sed. Trap #1 HYDROLOGY Project No.: 106009.01 By: BBL Date: 3/23/D 7 Runoff Variables Description Drainage Area: 2.33 AC D A , ~-,,r, o v tt~ t ~ ~' icy ~ 1 Q10: 9.06 CFS qss.-mac D~..~a'~d Are~+ = D,~4.dNt ~o o~~/'s~tc lit areas Denuded Area: 2.33 AC tk4t .~•7 b~ „scd T~ ~ so ~,.,, ~.., _ (~, „SG~,,,, ~; vG) . HYDRAULIC DESIGN Req'd Volume: 3600 ft3/Denuded Acre = 8388 ft3 Req'd Surf. Area: 0.01 AC/Q10 cfs = 0.091 AC = 3947 ftz Set Geometry: Surface Area: Begin by trying L=2W criteria & Req'd Surf. Area Min W: (2W)(W) = Req'd Surf. Area Min W = 44.4 ft Min L: =(2)(Min W) Min L = 88.8 ft Depth: Min D: Req'd Volume/Min Surf. Area Min D = 2.1 ft Use for Final Dimensions: L = 90 ' r.J . gS ~ U = Z. S ~ Spillway Weir Length: Trial & Error Weir Length (Weir Length Cannot be Greater Than Trap Width) 1.5' Min Dam Height Above Spillway: "H" = 0.5' (Max) & 1' (Min) Allowable Freeboar "H" _ (Q10/CwL)73 where Cw = 3.0 for Broad-Crested Weir Cw = 3.0 Assume No Attenuation, So Q10,N = Q10o,_,T (Conservative) TryL= 5.0 ft ~ H= 0.71 ft TryL= 10.0 ft ~ H= 0.45 ft TryL= 15.0 ft H= 0.34 ft Min Spillway L = ~ ~ o Check Min L5' Dam Height Above Spillway: N = • 3Q ` + ~ •~' ~~«b~~.~d = 1- 34 ~ ~ /- 5' .~~ ~ iii SEDIMENT TRAP DESIGN - NCDENR METHOD (REV 6/06) Sediment Trap ID: Sed. Trap #2 HYDROLOGY Project No.: 106009.01 By: Bel. Date: 3/2316 7 Runoff Variables Description Drainage Area: 1.82 AC o.A. ~-,.er,, OvtlGt ~%!ch ~L Q10: 7.08 CFS ~SlJMG dr~udcd glCa = o.A.d~c io ofFs%t~ Lod st~~-5 Denuded Area: 1.82 AC JJ ~.~~ ~. ~„~47 bG vsG.A~ ~"'P Qo//"P'^~- (C~'+sG~Vaf': /c~ HYDRAULIC DESIGN Req'd Volume: 3600 ft3/Denuded Acre = 6552 ft3 Req'd Surf. Area: 0.01 AC/Q10 cfs = 0.071 AC = 3084 ftz Set Geometry: Surface Area: Begin by trying L=2W criteria & Req'd Surf. Area Min W: (2W)(W) = Req'd Surf. Area Min W = 39.3 ft Min L: =(2)(Min W) Min L = 78.5 ft Depth: Min D: Req'd Volume/Min Surf. Area Min D = 2.1 ft Use for Final Dimensions: L = 80 ` ~ = 4~ ~ D = Z. 5"~ ~ Spillway Weir Length: Trial & Error Weir Length (Weir Length Cannot be Greater Than Trap Width) 1.5' Min Dam Height Above Spillway: "H" = 0.5' (Max) & 1' (Min) Allowable Freeboar "H" _ (Q10/CwL)~ where Cw = 3.0 for Broad-Crested Weir Cw = 3.0 Assume No Attenuation, So Q10,N = Q10o~ (Conservative) TryL= 5.0 ft ~ H= 0.61 ft TryL= 10.0 ft ~ H= 0.38 ft TryL= 15.0 ft ~ H= 0.29 ft Min Spillway L = 10.0' Check Min 1.5' Dam Height Above Spillway: H . , .3B' ~ /.o ` F"~~c6=4~d = /- 38 ` ~ 1. S ~ ak- i~4 SEDIMENT TRAP DESIGN - NCDENR METHOD (REV 6/06) Sediment Trap ID: Sed. Trap #3 HYDROLOGY Runoff Variables Drainage Area: 1.51 AC Q10: 6.09 CFS Denuded Area: 0.71 AC HYDRAULIC DESIGN Project No.: 106009.01 By: Q~L Date: 3~Z3~° 7 Description Q<~+ast~ld /1 reA ~ To t~l p•r}. _~ /-S/AG - b• 99 ~vi'/`s%tC Lelilr<e, T L.~1.~<s~ fly-•<~ t o, i4 ~1,-,an p..~,.,, .s or~sltc trtAr<~~ D-7! i}L Req'd Volume: 3600 ft3/Denuded Acre = 2556 ft3 Req'd Surf. Area: 0.01 AC/Q10 cfs = 0.061 AC = Set Geometry: Surface Area: Depth: 2653 ft2 Begin by trying L=2W criteria & Req'd Surf. Area Min W: (2W)(VV) = Req'd Surf. Area Min W = 38.4 ft Min L: =(2)(Min W) Min L = 72.8 ft Min D: Req'd Volume/Min Surf. Area Min D = 1.0 ft Use for Final Dimensions: L = 74' w = 3 7 ' U = 2 -D' Spillway Weir Length: Trial & Error Weir Length (VNeir Length Cannot be Greater Than Trap Width) 1.5' Min Dam Height Above Spillway: "H" = 0.5' (Max) & 1' (Min) Allowable Freeboar "H" _ (Q10/CwL)~ where Cw = 3.0 for Broad-Crested Weir Cw = 3.0 Assume No Attenuation, So Q10,N = Q10o,n (Conservative) TryL= 5.0 ft ~ H= 0.55 ft TryL= 10.0 ft ~ H= 0.35 ft TryL= 15.0 ft ~ H= 0.26 ft Min Spillway L = Iv.o ' Check Min 1.5' Dam Height Above Spillway: H = - 3S' Y i• o ~ f%<t b~ v~ _ ~. 3 S ~ ~ ~- S" ~ ° k ~ ~~s SEDIMENT TRAP DESIGN - NCDENR METHOD (REV 6106) Sediment Trap ID: Sed. Trap #4 HYDROLOGY Project No.: 106009.01 By: 82L Date: 3/23/07 Runoff Variables Description Drainage Area: 1.87 AC D A {re.-, c.~tt~t 0 %~~~ ~ Q' Q10: 7.14 CFS Ass~r~ Oc.>~~cd Arm . o.A. d~c f•• os'F's•'ic /..mot sl~c~.s Denuded Area: 1.87 AC tktt r-~~7 be ys~d f~~- Bor,-o,..,_ ~~~~1~ryptivt) HYDRAULIC DESIGN Req'd Volume: 3600 ft3/Denuded Acre = 6732 ft3 Req'd Surf. Area: 0.01 AC/Q10 cfs = 0.071 AC = Set Geometry: Su-face Area: Depth: Use for Final Dimensions: 3110 ft2 Begin by trying L=2W criteria & Req'd Surf. Area Min W: (2W)(VV) = Req'd Surf. Area Mini W = 39.4 ft Min L: =(2)(Min W) Min L = 78.9 ft Min D: Req'd Volume/Min Surf. Area Min D = 2.2 ft L=Bo~ ~= 4D~ 0=2•a' Spillway Weir Length: Trial & Error Weir Length (Weir Length Cannot be Greater Than Trap Width) 1.5' Min Dam Height Above Spillway: "H" = 0.5' (Max) & 1' (Min) Allowable Freeboar "H" _ (Q10/CwL)'~ where Cw = 3.0 for Broad-Crested Weir Cw = 3.0 Assume No Attenuation, So Q10,N = Q10our (Conservative) TryL= 5.0 ft ~ H= 0.61 ft TryL= 10.0 ft ~ H= 0.38 ft TryL= 15.0 ft H= 0.29 ft Min Spillway L = t D. o ' Check Min 1.5' Dam Height Above Spillway: N = . 38 ~ ~ l.o ' F~~c6•~4 ~.d = ~ • 3 $ ~ ~ /..S' o k -' !IG SEDIMENT TRAP DESIGN - NCDENR METHOD (REV 6106) Sediment Trap ID: Sed. Trap #5 HYDROLOGY Runoff Variables Drainage Area: 1.17 AC Q10: 4.80 CFS Denuded Area: 0.46 AC HYDRAULIC DESIGN Project No.: 106009.01 By: Bk-L Date:.3/Z3/~ 7 _ Description D.A . f re,.-, Dvflt~' I)i~l~l~ ~S~ Ot.,.~dt~ Ar-Ga = T•t.~l D.A. = l•l7AG - .04 AL~t~-tsrtGLDtArt~T~D,D,~S~ -G7 AG ~DF~S~fG Lrt~rCQ Ti SDS~ D • 4~ s} ~. Req'd Volume: 3600 ft3/Denuded Acre = 1656 ft3 Req'd Surf. Area: 0.01 AC/Q10 cfs = 0.048 AC = Set Geometry: Surface Area: Depth: 2091 ftZ Begin by trying L=2W criteria & Req'd Surf. Area Min W: (2W)(W) = Req'd Surf. Area Min W = 32.3 ft Min L: =(2)(Min W) Min L = 64.7 ft Min D: Req'd Volume/Min Surf. Area Min D = 0.8 ft Use for Final Dimensions: L = (~~ ' ~J = 33 r D = Z-~ ~ Spillway Weir Length: Trial & Error Weir Length (Weir Length Cannot be Greater Than Trap Width) 1.5' Min Dam Height Above Spillway: "H" = 0.5' (Max) & 1' (Min) Allowable Freeboar "H" _ (Q10/CwL)~ where Cw = 3.0 for Broad-Crested Weir Cw = 3.0 Assume No Attenuation, So Q10,N = Q10our (Conservative) TryL= 5.0 ft H= 0.47 ft TryL= 10.0 ft _ H= 0.29 ft TryL= 15.0 ft ~ H= 0.22 ft Min Spillway L = ~o•o Check Min 1.5' Dam Height Above Spillway: N = . L9 ' + ~•~' FrtGbAard = 1. z 9 ' ~ 1. S ~ ok 117 SEDIMENT TRAP DESIGN - NCDENR METHOD (REV 6/06) Sediment Trap ID: Sed. Trap #6 Project No.: 106009.01 By: 8 2-L Date: 3~2 3~0 7 HYDROLOGY ~ S~~ ~ gcle~ Runoff Variables Description Drainage Area: 5.24 AC p,q , {~rG..-~ SDG (4.4/ AG) + SD 7 (D-t33.tG) = S.Z4 AC Q10: 17.90 CFS Q,o , Gw , ¢.4r(•s4) r . ~3(•ra) _ , S!~ s Denuded Area: 4.54 AC t4 _ r~~.3ss ~ ~ I~,o~ ~„/S of sflz, r~t~ r~~H S02 ~ sDG-~~) L l~~ N "' 17S'(N•P~) - "' ~~~~~L.P•) =SSA r 3 3fFS HYDRAULIC DESIGN = C~ ss ~ = 9,0 ,5.~ 1D •~+~^~f~5 •~ pia = G•l ' ~h~ r2.r3 Req'dVolume:3600ft3/Denuded Acre .-_Q„. /,s~)(G.r1(s;24)- r7.9o~fs = 16344 ft3 ~~~~.1ec~ Araa.: TofA/ a,A. -v.7o~C(orlr;}~L>iA~~h) 7~ s6L-/ Req'd Surf. Area: 0.01 AC/Q10 cfs 9•s9 Qc ~ , „rr:~s~ = 0.179 AC = 7797 ft2 o+N~ is ,tee all+ D n~A/~ ~ Set Geometry: Surface Area: Begin by trying L=2W criteria & Req'd Surf. Area Min W: (2W)(VV) = Req'd Surf. Area Min W = 62.4 ft Min L: =(2)(Min W) Min L = 124.9 ft Depth: Min D: Req'd Volume/Min Surf. Area Min D = 2.1 ft Use for Final Dimensions: (_ /ZL ~ ~•.~ = l0 3 ~ D = 2, S Spillway Weir Length: Trial & Error Weir Length (Weir Length Cannot be Greater Than Trap Width) 1.5' Min Dam Height Above Spillway: "H" = 0.5' (Max) & 1' (Min) Allowable Freeboar "H" _ (Q10/CwL)~ where Cw = 3.0 for Broad-Crested Weir Cw = 3.0 Assume No Attenuation, So Q101N = Q10o~ (Conservative) TryL= 10.0 ft H= 0.71 ft Try L = 20.0 ft H = 0.45 ft Try L = 25.0 ft ~ H = 0.38 ft Min Spillway L = 2So Check Min 1.5' Dam Height Above Spillway: It = • 3g ~ + t ,o' Frtcb«>~~ = ~• 38 ' ~ /. S' e,L = Th;S Tray is f1C~uc>/x !is-L%nc TkGrt>=`~rG Th;,S Trap/ mf'~`c-rs 0. ~ .SLCo~,C~ Ti~Gw~tv+G-•~9` ~~ .f`o ~ "' /• £3 T f1C~F..S ho~ Qra; n.aSL /'rtR ~i~a.'i•" w%!1 pc~55 ~^'"~ "~~+ rh.'S IJ~St'rto"--, rraP_ ~/^lJG4irL/ fh,'S /trap dcS~J-~ .'s vv'~ CoNS~QVsfTt1~~' . iii NCDWQ 401/STORMWATER NARRATIVE & DATA 1l ~ NARRATIVE FOR NCDWQ STORMWATER Holts Lake West Subdivision The Town of Four Oaks does not have an adopted stormwater ordinance. However, due to impacts to wetland areas and the required 4.04/401 permitting process, certain NCDWQ stormwater requirements may be triggered or required. Therefore, apre-submittal meeting was held with stormwater staff at NCDWQ Central Office. It was determined that stormwater quality and/or quantity controls would not be required IF the project did not exceed the low-density threshold of 30% impervious area (per 401 General Certification that corresponds to Nationwide 39 Permit). However, as discussed with NCDWQ staff, due to recent policy the total boundary for this impervious area calculation cannot include pockets of unusable areas. In other words, wetlands within the project could not be included in the total boundary calculation. In the Engineer's experience with these calculations, this was a new way of computing impervious area and significantly limits the leftover impervious area for individual homesites. However, after performing the calculation per NCDWQ policy, it was decided that the 30% impervious threshold could still be met; although leftover impervious areas for individual homesites would be much less than originally predicted. The proposed impervious area calculation is summarized on Sheet SP-1 of the Construction Drawings. As computed, there is 221,519 sq.ft. remaining impervious area for homesite and related construction on proposed lots. Currently, the Owner plans to allot 6,000 sq.ft. per lot to 5 of the lots and spread the remaining area of 3,909 sq.ft. per lot to the remaining 491ots. The final impervious area restrictions shall be recorded on the final plat of the subdivision. Additionally, NCDWQ stormwater staff recommended that we try to reduce all stormwater discharges to a low velocity (preferably less than 2 ft/sec) prior to discharging to any adjacent wetland areas. This criteria resulted in design of flatter outlet ditches and rip rap linings near the wetlands fringe, just prior to discharge. See Construction Drawings and calculations herein for more specific information regarding this low velocity recommendation.