Loading...
HomeMy WebLinkAboutWQ0039016_Complete File - Historical_20170612 �.;; ROY COOPER x , Gavernnr MICHAEL S. REGAN SecreUzry Waste Management MICHAEL SCOTT ENVIRONMENTAL QUALITY Dh-ettnr June 12. 2017 Michael Rogers UIC Program Manager Division of Water Resources 1636 Mail Service Center Raleigh, NC 27699-1636 Re: GMH Electronics Superfund Site(WQ0039016) Non-Discharge Groundwater Remediation Injection Work Plan Person County,NC Dear Mr. Rogers: The NC Superfund Section has reviewed your June 9, 2017 response to the above referenced work plan. Per our telephone discussion with Debra Watts on June 12, 2017, the work plan will be considered to substantively meet relevant state regulatory requirements if the treated water from the Multi Phase Extraction water treatment system is tested and petroleum constituents are shown to be below NC 2L standards. Records of the treated water testing results will be retained. Because the petroleum constituents in the treated water will be below the NC 2L standards the requirement for a monitoring network/compliance boundary is not necessary. A technical report summarizing the project and injection well construction records (GW-1) will be submitted upon completion of the project. Please contact me at 919-707-8335 oat beth.hartzell@ncdenr.gov if you have any questions. Sincerely, adee)-cd 26 ' Elizabeth A. Hartzell Cc: Corey Hendrix, EPA Debra Watts, DWR Jim Bateson, DEQ David Lown, DEQ Stale of North Carolina I Environmental Quality;Waste Management 217 West Jones Street 11646 Mail Service Center I Raleigh,North Carolina 27699-1646 919 707 8200 a; x.. Rogers, Michael From: Hartzell, Beth Sent: Monday, June 12, 2017 4:07 PM To: Rogers, Michael Cc: Watts, Debra; Hendrix, Corey; Lown, David; Bateson, James Subject: GMH Electronics Superfund Site Attachments: gmhwells.pdf Michael, Attached is a letter concerning the Non-Discharge Remediation Injection Work Plan for the GMH Superfund site. Let me know if you have any questions. Thanks, Beth Elizabeth A. Hartzell Environmental Engineer Division of Waste Management DEQ 919 707 8335 office Beth.hartzell@ncdenr.gov 1646 Mail Service Center Raleigh, NC 27699-1646 NI € '=' Nothing Compares,,- Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties 1 State of North Carolina. '• •• • Department of Environment and Natural Resources.- Division of Water Resources Non=Discharge Groundwater Remediation Permit Application Form THIS APPLICATION PACKAGE WILL NOT BE ACCEPTED.UNLESS ALL APPLICABLE ITEMS ARE INCLUDED APPLICATION INFORMATION . . pp / ` u ; Application 12 20/2016 .. , a 2017 • Application Type: New Project i . ,,,,atsc i liF 19 �, �.t,�,.y E-te ions,.. (‘ �q 0* LAC V noer atlinS..5e tin' New Projects — DWR to-ass gn application # '3'10((0:' :: ** Renewals/Modifications —Enter Permit# Click here fo:entertext. ... . Fee Submitted: (refer to feesc.,edue at Choose an item. http://portal.ncdenr:org/web/wq/aps/lau/fees) * For new projects: complete:this:page, signature page, and supply all:attachments. .. ** For renewals: complete this page and signature page. For modifications:::complete this page, signature page,and supply relevant:attachments. Applicant's.Name s(specify the.name o the U.S. EPA. ( P...fY f.. municipality, corporation,:individual, etc.):. ::: Owner or Signing Official's Name and Title Corey::Hendrix (person legally responsible for the facility and its compliance):. • Mailing Address: 61 .Foryth St SW,Atlanta, GA 30303 Telephone Number: : (404) 562-8738 Email.Address: hendr.�ix...corey@epa.go.v Facility Name (nameof_the project site; be.:: GMH ElectronicsSuperfund Site: :: : consistent_throughout application:package): . Physical Address: • 1800 Virgilina Road, Roxboro, NC.27574 :: County: Person Geographic Coordinates: : 36.416882, -78.542001 .. : Contact Person (who can.answer: David=Traylor • uestions about application): Telephone.Number: (404) .419-4066 . : Email Address: : dtraylor@versar:com \�� Non-Discharge Groundwater Remediation Permit Application LRevised.MAY.7,2015 ATTACHMENTS The e following be included as separate attachments to this application form. Failure to:: . . include the fallowing information:as part of theapplication package will:result in the application package being returned as incomplete. • A. Site Description and Incident Information: As specified in 15A NCAC:02T.1604(a), the:.: applicant must briefly describe the site, noting pertinent site information including: (1). .. Contaminant(s) of concern; (2) Source(s) and date(s) of the contaminant release, (3) Remedial actions to date, :. (4) Current land use, (5) Potential receptors, and (6) r Incident number and name of oversight agency; .. . B. Soils Evaluation. As specified in 15A NCAC 02T 1604(b), for systems with proposed discharge within seven feet of land surface and above the seasonal high water table, a soil evaluation of the disposal site shall be provided to the Division:by the applicant : If required by G.S. 89F, a soil:scientist shall submit this evaluation.::This evaluation shalt be presented in:a: report that includes the following components:-.:. (1) Field description of soil profile. Based on examinations of excavation pits or auger borings, the following parameters shall be described by individual diagnostic horizons to a depth of seven feet below land surface or to:bedrock: Thickness of the horizon; (B) Texture;-: (C) Color and other diagnostic features; (D) . ::Structure; (E). Internal drainage; .. .. (F) Depth, thickness and type ype of restrictive.horizon(s); (G) ... pH; (H) • Cation exchange capacity; and (I) Presence or absence and depth of evidence of any seasonal high water table. (2) Recommendations concerning annual and:instantaneous loading:ratesof : - .- • liquids, solids, other wastewater constituents and amendments. Annual hydraulic loading'rates shall be based on in-situ measurement of saturated • hydraulic conductivity in the:most restrictive horizon. Non-Discharge Groundwater Remediation Permit Application Revised MAY.7,2015 . C...Hydrogeologic Evaluation. As specified in 15A NCAC 02T .1604(c), a hydrogeologic evaluation of the disposa site shall be provided to the Division:by the applicant: This evaluation shall be conducted to.a:depth that includes the depth of existing contamination and the total depth:of the injection.well( ) s or infiltration: ies galleyY( ). This.evaluation shall be based J . . . on borings for which the numbers, locations,and depths are sufficient to define:the components of the hydrogeologic evaluation. In addition to borings, other techniques maybe used to investigate the subsurface:conditions at the site. These techniques may include geophysical well logs, surface geophysical:surveys, and tracer-studies. This evaluation shall be presented in a report that includes the following components: (1) A:descri tion of the regional and local geologyand h ydra eolo p.: g ... Y g gY; :: (2) A description, based on field observations of the site, of the site topographic :: setting, streams;:springs and other groundwater discharge features, drainage • features, existing and abandoned wells, rock outcrops; and other features that. may:affect the movement of the contaminant:plume and treated:wastewater; (3) Changes in lith:ology underlying the:site; - - - 4 : Depth to e rockiand occurrence of any rock outcrops;:: Theh draulicconductivit transmissivit and s ecific;�ieldif (5) Y. . Y . Y, Y ( p Y� unconfined aquifer) of the affected:aquifer(s); (6)::.. ::: Depth to the seasonal high water:table; (7) A discussion of the relationship between the affected aquifers of the site to local and regional geologic and hydrogeologic features; and (8) .A discussion of the:groundwaterflow:regime of the site focusing on the relationship of the plume and remediation system to groundwater receptors, groundwater discharge features, and groundwater flow media: Demonstration of Hydraulic Control:: As:specified in-15A:NCAC 02T .1604(d),;computer modeling or predictive calculations based on site-specific conditions shall be provided to the Division by the applicant to demonstrate that operation of the system:will not cause or" contribute to: (1) The migration of contaminants into previously:uncontaminated areas, and (2) A violation of the groundwater standards specified in 15A NCAC 02L.0202 at ..... the compliance boundary as described in 15A NCAC 02L.0107. ..... • Non-Discharge Groundwater Remediation Permit Application Revised MAY;7,2015 E. Maps and Cross-Sections: As specified in 15A NCAC 02T.1604(e),site plans or maps shall be ... provided to the Division by the applicant depicting the location,orientation, and:relationship of .:. facility components including: p . . ..... ... . (1) :.. •::A scaled map of the site, with site-sppecific topographic P showing all facility-related:structures and.fences within the treatment, storage and disposal areas; 2 Locations of all test auger borings or:ins ection pits:• --- (3) The location of all wells.(including usage and construction details:if available), .... esignated wellhead protection areas, streams (ephemeral, intermittent, and perennial),:springs, lakes, ponds; other surface drainage:features, and any other site activities or features:that may involve possible exposure to contamination within 500 feet of all waste-treatment, storage; and disposal sites;' (4) Setbacks specified in 15A NCAC 02T:;1606; :. .::(5) Delineation of property boundaries, review boundaries, and compliance boundaries; (6). The horizontal and vertical extent of the contaminant plume for each of the ' contaminants of concern; including isoconcentration lines and plume cross : sections (7) :. :Cross-sections depicting soil and r-ock:layers and features to a depth including :the depth of existing contamination and the total depth of the injection wells or. . infiltration galleries; and (8) features such as potentiometric surface/:water table contours-and the direction of groundwater flow: ' F. Engineering Design Documents: As specified in 15A NCAC 02T.1604(f), the following . documents shall be provided to the Division by the applicant: :. . . (1) Engineering plans for the entire system, including treatment,storage, application,and:disposal facilities and equipment except those previously . :. : :.::permitted unless they are directly tied into the new:units or are critical to the . understanding of the complete process; (2)- - . . Specifications describing materials to be used,methods of construction,.and means for ensuring quality and integrity of the finished:product, and (3) Plans that include construction details of recovery, injection, and:monitoring wells and infiltration galleries NOTE: Recoveryand monitoring wells shall be constructed in accordance:with . : the requirements of 15A NCAC 02C .0108. Injection wells shall be:constructed in accordance with the:requirements of 15A NCAC 02C .0225(g) :: • Non-Discharge Groundwater Remediation Permit Application M Revised AY 7,2015 • • • G. Operating and Monitoring Plans. As specified in•15ANCAC 02-T;1604(g), an operation and. .... monitoring plan shall be provided to the Division-by the-applicant. These documents shall be - • specific to the site and include: :..:: Theo eratin lan shall include:: ..(1) p. g p (A). . •The operating schedule including any periodic shut-down times, (B) Required maintenance activities for all structural.and mechanical - - elements,:::. . - (C): All consumable and waste materials with their intended source and disposal-locations, .. : . . .. (D) Restrictions on access to the site and equipment,.and (E) :: Provisions to ensure the quality of the treated effluent-:and:hydraulic - control.of the system at all.times When:any portion of the system ceases . _ to unction: . 2 If t e in ection wells are to be used then the=o rain Plan'Shall also.include: • J p... g p (A). ._ _ The.proposed average:and maximum daily rate and quantity of:injectant; ... (B) The average maximum injection pressure expressed in=units of pounds.per ...square inch(psi); and .. :. .. (C):- _: The total or estimated:total volume to,be injected. (3) • The monitoring plan shall be prepared:in accordance with:15A NCAC 02T :1607 . .. ;and include: (A): The monitoring well(s)that will be sampled, - (B)- The constituent(s) for which those samples will be analyzed, and - - C The schedule for sampling. = . • H. In Situ Remediation Additives..T a of owing shall be provided tote Division:by the applicant if the remediation system includes additives to promote r:emediation in situ NOTE Approved injectants can be found online•at http://portal.ncdenr.orq/web/wq/aps/gwpro. All other • substances must be reviewed by the Division of Public Health,=Department of.Health and Human Services as required by 15A NCAC 02C.0225(a): :Contact the UIC.Program for more information(Ph#919-807-5464).i (1) MSDS,.concentration at the point of injection,and percentage if present:in a mixture with.. :: - other injectants;... 2 A description,of the rationale for selecting the injectants and:concentrations proposed for injection,including an explanation or calculations-of how the proposed injectant volumes •. . and concentrations were determined; 3 . .,:A escription. of, between the injectants an,: t e contaminants present :including specific-breakdown products or intermediate compounds that may:be formed by:the injection; .. - (4) .-.. A summary of.results.if modeling or testing was performed_to investigate the injectant's •:: :::potential or susceptibility for biological;:chemical, or physical change in the subsurface; - .. ...and. .. .. . .(5) An evaluation concerning.the development :ofypro s o byproducts of: injection proc;thess,.. .. ::including increases, in the concentrations of naturally occurring substances..Such an - evaluation shall include the identification of the specific byproducts of the injection.-. - process, projected concentrations of byproducts, and areas of migration'as determined :: • - .through modeling or other predictive calculations : Non-Discharge Groundwater Remediation Permit Application: Revised MAY:7,2015 Professional Engineer's Certification: Name and Complete Address of Engineering Firm: Versar,Inc., 100 Hartsfield Centre Pkwy,Ste 610 City: Atlanta _State: GA Zip: 30354 Telephone Number: ( 404 ) 443-2777, Fax Number:( 404 ) 443-2770 I, David H.Traylor attest that this application for Non-Discharge Groundwater Remediation Permit at GMH Electronics Superfund Site has been reviewed by me and is accurate and complete to the best of my knowledge. I further attest that to the best of my knowledge the proposed design has been prepared in accordance with the applicable regulations. Although certain portions of this submittal package may have been developed by other professionals, inclusion of these materials under my signature and seal signifies that I have reviewed this material and have judged it to be consistent with the proposed design. ,,,,"""""I,,, North Carolina Professional Engineer's Seal, Signature,and Date: SS OQOFE /.6*•.�1'44) ?4363: 1 ° /1,:: %9L�NGINE�P.�OQ;- Applicant's Certification (signing authority must be in compliance with 15A NCAC 2T.0106(b) and(c)): 1, CoYelj 44{1C,LE-4>( ,attest that this application for has been reviewed by me and is accurate and complete to the best of my knowledge.I understand that if all required parts of this application arc not completed and that if all required supporting information and attachments are not included, this application package will be returned to me as incomplete. -w ,w Signature ( 4J Date 1/20/20 I SEND TWO COPIES OF THE COMPLETE APPLICATION PACKAGE,INCLUDING ALL SUPPORTING INFORMATION AND MATERIALS,TO TILE FOLLOWING ADDRESS: DIVISION OF WATER RESOURCES—UIC PROGRAM 1636 MAIL SERVICE CENTER RALEIGH,NORTH CAROLINA 27699-1636 TELEPHONE NUMBER: (919)807-6496 Non-Discharge Groundwater Remediation Permit Application Revised MAY 7,2015 ATTACHMENTS FOR NON-DISCHARGE GROUNDWATER REMEDIATION PERMIT APPLICATION GMH ELECTRONICS SUPERFUND SITE ROXBORO, NORTH CAROLINA PREPARED FOR: U.S. ENVIRONMENTAL PROTECTION AGENCY REMEDIAL ACTION CONTRACT II LITE REGION EPA CONTRACT NO. EP-S4-08=03 TASK ORDER.039 PREPARED=BY: DECEMBER 201E : . A. Site Description and Incident Information Site Location and Description The GMH Electronics Superfund Site (formerly the Halifax Road/Virgilina Road Dichloroethene [DCE] Site)is located near the intersection of Halifax Road and Virgilina Road, less than one mile northeast of Roxboro, Person County, North Carolina. The Site includes groundwater and soil contamination associated with the GMH Electronics property, which is located on the southeast corner of the intersection, and groundwater and soil contamination associated with a former gasoline station (aka, the Wrenn property), which is located on the northwest corner of the intersection. The Site is also comprised of a volatile organic compound (VOC) groundwater contaminant plume that extends approximately 0.75 miles beyond the boundaries of these two properties. Site Description and Current Status The former GMH Electronics property, located at 1800 Virgilina Road, consists of a single 8,000 square foot (ft2) brick structure located on a 1-acre parcel, and a second 3/-acre parcel, immediately to the south. The former gasoline station (aka, the Wrenn property) occupies 0.36 acres located at 1771 Virgilina Road, and contains a single 1,700 ft2 wood-framed structure. Site surroundings include residential properties, forested areas, and commercial businesses. The EPA considers these two facilities as the sources of contamination found in nearby residential water wells. Multiple chlorinated solvents, including 1,1,1-trichioroethane (TCA), 1,1- dichloroethane (DCA), and 1,1-DCE, as well as petroleum products, such as 1,2-ethylene dibromide (EDB), 1,2-DCA, benzene, toluene, total xylenes and methyl-tert-butyl ether (MTBE), have been detected in groundwater on the Site and at surrounding properties at levels which exceed federal maximum contaminant levels (MCLs) and/or North Carolina state groundwater standards. Private well (PW) 10939, located approximately 75 feet (ft) east of the GMH Electronics property, is the nearest impacted private well. Site History GMH Electronics operated from 1972 through 2004 as an electronics component assembly plant manufacturing printed circuit boards. As part of the manufacturing process, parts were washed with solvent in one of three washing machines. The wastewater was passed through carbon filters, then discharged to a 1,500-gallon septic tank located in the breezeway between the two buildings, and finally released to the environment via septic drainage lines located between the building and Halifax Road. Along the drainage line are four gravel pits to assist with the infiltration of the septic line; the size of each pit is unknown. In 1995, additional washing machines were installed and an additional drainage line was constructed between the building and the original drainage line. Prior to manufacturing operations, the GMH Electronics property operated as a store and an unmanned gasoline dispensing station. In September 1984, two 4,000-gallon petroleum underground storage tanks (USTs) were removed. In 1987, soil and groundwater sampling was performed due to a complaint of potential petroleum contamination in a nearby residential well. Sampling results indicated the presence of petroleum contamination in soil and groundwater. Subsequent sampling conducted in 1990 indicated the presence of two petroleum groundwater plumes: one emanating from the GMH Electronics property and one from the Wrenn property. The Wrenn property is currently occupied by a bar, but was previously a convenience store with retail fuel sales. In the late 1980s, two 500-gallon gasoline USTs and one 500-gallon kerosene UST were removed from the Wrenn property. The Site was listed on the NPL in 2009, and an interim Record of Decision (ROD) was signed in April 2009. The interim remedy included the extension of a municipal waterline, connection of the affected residences and businesses to the waterline, and the abandonment, locking and/or plugging of private drinking water wells. The objective for the interim remedy was to prevent exposure of humans to contaminated drinking water above acceptable risk levels. By 2010, the remedy was completed and 43 homes were connected to the City of Roxboro public water system. This interim action was intended to provide adequate protection of human health until a final ROD was signed. Previous Investigations Investigations of the Site conducted between August 1987 and July 2014 are summarized in this section. August 1987 Private Well Sampling In August 1987, the North Carolina Department of Environment and Natural Resources (NCDENR) Division of Water Quality received a complaint from a resident who lived immediately to the north of the GMH property, complaining of gasoline odors in the residence's well water. The resident indicated that abandoned gasoline stations were located at the GMH Electronics facility and across the intersection to the west. NCDENR sampled the drinking water well on the 3 resident's property and determined that several VOCs were present. These included 1,2-DCA, benzene, toluene, 1,1,1-TCA, ethyl benzene, EDB, and 2-methoxy-2-methyl-propane. Additional wells in the area had shown similar compounds in the years immediately preceding the sampling. of this well. 1990 Carbon Filter Installation and Private Well Sampling Carbon filters were installed on both the Wrenn property well and the GMH Electronics property well in 1990. Post-filter drinking water was then sampled monthly by Richard Catlin &Associates on behalf of Eanes Oil Company. Private well samples collected in the area by Richard Catlin & Associates indicated the presence of two groundwater plumes. The plumes originated at the former UST locations on both properties. Evidence from the limited, area-wide groundwater sampling indicated that the bedrock aquifer was contaminated. 1992 Person County Health Department Private Well Sampling In 1992, the Person County Health Department sampled several private wells in the area. This sampling event revealed the presence of VOC contamination in several private drinking water wells near the Site. The state recommended that two of the houses not consume water from their impacted wells due to the potential health risks. 2007 Person County Health Department Private Well Sampling In November 2007, in response to a citizen complaint, private well sampling was conducted surrounding the GMH Electronics property by the Person County Health Department. The results indicated VOC contamination, including 1,1-DCE detected in excess of 6,000 micrograms per liter (pg/L), in several of the private drinking water wells near the property. Based on these results,the NCDENR Superfund program requested that the EPA Region 4 Emergency Response and Removal Branch (ERRB) provide emergency drinking water to residents with contaminated wells. 2007 EPA Region 4 Private Well Sampling In December 2007, the EPA Region 4 ERRB expanded the scope of homes to be sampled to more than 30 residential wells surrounding the Site. The highest levels of contaminants detected included 1,1,1-TCA(1,000 pg/L), 1,1-DCE(3,500 pg/L), carbon tetrachloride(110 pg/L), 1,2-DCA (160 pg/L), and benzene(3,700 pg/L). Based on the sampling results, the EPA supplied 17 homes with bottled water and installed carbon filters on wells at five homes.Additional filter systems were installed at two residences adjacent to the properties by the North Carolina UST program. 2008 EPA and Lockheed Martin Investigation In February 2008, an environmental investigation was conducted by the EPA and the EPA Response Engineering and Analytical Contract(REAC) contractor, Lockheed Martin. The REAC contractor installed sub-slab soil gas points inside the GMH Electronics building and installed soil gas points outside the building. They also collected soil, groundwater, surface water, sediment, and granular activated carbon (GAC) cylinder samples for analyses. The findings of this investigation are summarized below: • The soil investigation revealed very low levels of 1,1-DCE and 1,1,1-TCA, and therefore did not identify a source of the chlorinated solvent plume. • The highest groundwater VOC concentrations were detected in the southwestern corner of the Site, where a septic drain field was suspected to be located. However, the location of the septic drain field was not confirmed. • No VOCs were detected in any of the six surface water samples; however, a spring sample contained 1,1,1-TCA at 3.6 pg/L and 1,1-DCE at 16.4 pg/L. This spring was used as a source of potable water. • Low levels of acetone (46.7 micrograms per kilogram [pg/kg])were detected in one of the four sediment samples. No other VOCs were detected. • The GAC units contained high concentrations of chlorinated and gasoline-related VOCs. • Several VOCs were detected in both sub-slab and exterior soil gas samples. The highest concentrations were detected from the sub-slab samples collected inside the former GMH Electronics building. Concentrations detected included 880 micrograms per cubic meter (pg/m3) of 1,1,1-TCA and 120 pg/m3 of 1,1-DCE at one location near the southern end of the building. Toxicologists from the North Carolina Superfund Section and EPA determined the risk of exposure to these contaminants via inhalation of indoor air was within acceptable ranges. The results of the 2008 investigation were included in the Expanded Site Investigation (ESI)report in which the Site was recommended for further remedial action under the Comprehensive Environmental Response, Compensation, and Liability Act.(CERCLA). 2008 EPA Focused Remedial Investigation In October and November 2008, the EPA Science and Ecosystem Support Division (SESD) conducted a Focused RI. Eighty-nine residential wells were sampled for VOCs. VOC contamination was detected in 45 of the 89 wells. Four VOCs, 1,2-DCA, 1,1-DCE, 1,1,1-TCA, and 1 benzene, were detected at levels exceeding their respective federal MCLs. A total of 17 of the 45 private drinking water wells were found to be contaminated with at least one, and up to three, of these compounds at levels exceeding MCLs. As a result of these findings, 45 homes were connected to public water supply and pumps were removed from the former potable wells. Thirteen of these 45 private wells were permanently abandoned; the remaining 32 wells were temporarily abandoned by locking the well head. Two potable wells near the Site, PW6683 and PW12058 (formerly identified as PW12056), remained active as the owners refused a connection to the municipal water line. 2010—2014 EPA Remedial Investigation In 2010, EPA tasked Black & Veatch, a Region 4 Remedial Action Contract (RAC) contractor, to perform an RI/FS.The goals of the RI were to further characterize the groundwater plume, identify the source(s) of groundwater contamination, and assess the nature and extent of soil contamination. The RI field activities included the collection and analysis of permanent and temporary monitoring well groundwater samples, soil samples, surface water samples, sediment samples, and soil gas samples. The RI also included downhole geophysical logging, transducer data collection, and groundwater level measurements. These data, along with data collected during previous investigations (i.e., historical data), were used to determine the nature and extent of site-related contamination in the groundwater and soil. The RI report concluded that sources of the contamination appear to originate from at least three areas: the former USTs on the GMH Electronics property, the former operations area on the GMH Electronics property, and the former USTs on the Wrenn property. Summaries of other major findings are included below. Soil Contamination: Organic compounds associated with solvent use, 1,1,1-TCA, 1,1-DCA, 1,1- DCE, and methylene chloride, were present in soil above regulatory screening levels. Their presence is partially consistent with the waste disposal scenario that assumes that a dissolved phase solvent solution with a combination of 1,1,1-TCA, 1,1-DCE, and 1,4-dioxane was discharged either intermittently or from a specific event from the Site operations. The low levels of chlorinated compounds in soil are consistent with the premise that a non-aqueous phase liquid (NAPL) release did not occur in the areas sampled. Petroleum hydrocarbons detected in soil above regulatory screening levels included: 1,2,4- trimethylbenzene (1,2,4-TMB), EDB, 1,2-DCA, 1,3,5-trimethylbenzene (1,3,5-TMB), benzene, ethyl benzene, isopropylbenzene, n-propylbenzene, p-isopropyltoluene, sec-butylbenzene, tert- butylbenzene, toluene, and xylenes. Of these compounds EDB, benzene, total xylenes, and toluene also exceeded groundwater screening levels. Four soil borings exhibited the highest overall concentrations of petroleum hydrocarbons: SB208 and SB219 near the former UST on the Wrenn property, and SB104 and SB218 near the former UST on the GMH property. The maximum concentration of benzene, 82,000 pg/kg, was observed at 23 to 25 ft bls on the Wrenn property at SB208. Also on the Wrenn property, total xylenes were detected at 1,100,000 pg/kg in boring SB208 from 9 to 11 ft bls. These are the highest concentrations of VOCs detected in subsurface soil and are indicative of residual or free-phase NAPL. Based on a 1991 Contamination Assessment Report(CAR) (Richard Catlin &Associates, 1991),free product was historically observed in this area. These concentrations and locations are consistent with the previous locations of gasoline USTs and dispensing operations on the Wrenn and GMH Electronic properties. The RI report concluded that delineation of the petroleum hydrocarbon subsurface soil contamination was incomplete. Arsenic, chromium, cobalt, iron, mercury, and vanadium were detected above the residential direct exposure levels on the GMH Electronics property in the surface soils (0 to 2 ft bls). Chromium, cobalt, iron, manganese, thallium, and vanadium were detected above the EPA protection of groundwater SSL and the North Carolina leachability values in the majority of the subsurface soil samples.Arsenic, lead, and mercury were also detected above the EPA protection of groundwater SSL and the North Carolina leachability values, but were not as wide-spread as the other metal exceedances. Groundwater Contamination: Chlorinated solvent-related compounds 1,1,1-TCA, 1,1,2-TCA, 1,1- DCA, 1,1-DCE, and 1,4-dioxane are present in groundwater above regulatory screening levels. In surficial aquifer monitoring wells, located solely on the GMH Electronics and Wrenn properties, exceedances were isolated at wells adjacent to the southern end of the building on the GMH Electronics property. Bedrock aquifer monitoring well exceedances were widespread in monitoring wells and offsite private wells primarily to the northeast and southwest of the GMH Electronics property. Organic compounds associated with solvent use present in fractured bedrock wells above screening levels include 1,1,1-TCA, 1,1,2-TCA, 1,1-DCA, and 1,1-DCE. • Petroleum hydrocarbon compounds present in shallow groundwater above screening levels include 1,2-DCA, benzene, total xylenes, toluene, naphthalene, 1-methyl-naphthalene, and 2- methyl-naphthalene. Shallow groundwater samples were not collected at the former GMH Electronics UST area during the RI. However, sample results from the ESI in February 2008 showed elevated levels of benzene, toluene, ethyl benzene, and total xylenes (BTEX) in shallow groundwater. Aluminum, cadmium, chromium, cobalt, iron, lead, manganese, vanadium, and zinc were detected above regulatory screening levels. Iron and manganese were detected in the majority of the wells across the Site. Of the metals exceedances in groundwater, chromium, cobalt, iron, lead, manganese, and vanadium were detected above soil screening values in background soil sample SB209, and could therefore be considered naturally occurring in the soils in the region. Occurrence of these metals in groundwater may also be expected, under certain conditions, due to elevated concentrations in soils. Aluminum, cobalt, and vanadium are not considered Site groundwater contaminants of concern (COCs) due to limited exceedances of non-promulgated standards. Likewise, cadmium and zinc exceeded the NC 2L GWS at only one location each and are therefore not considered Site groundwater COCs. Summary of the Baseline Risk Assessment The baseline risk assessment conducted during the RI included evaluation of risks to both human health and the environment from site-related contamination.The Human Health Risk Assessment (HHRA)evaluated exposure scenarios current/future industrial/commercial workers, trespassers, construction workers and residents (child and adult) concluded the following: • Unacceptable cancer risks and non-cancer hazards were identified for current/future residents exposed togroundwater(monitoringwells andprivate wells). P ) • No COCs were identified for soil. • The COCs identified in groundwater monitoring wells included benzene, carbon tetrachloride, chloroform, 1,1-DCA, 1,2-DCA, 1,1-DCE, 1,4-dioxane, ethylbenzene, manganese, 1-methylnaphthalene, 2 methylnaphthalene, naphthalene, 1,1,2-TCA, 1,2,4-TMB, 1,3,5-TMB, and xylenes. • The COCs identified in private wells included benzene, 1,1-DCA, 1,2-DCA, 1,1-DCE, 1,2,4-TMB. D� • There were no unacceptable cancer risks or non-cancer hazards identified for the indoor vapor intrusion pathway. • None of the cancer risks or non-cancer hazards for the current/future industrial/commercial worker were unacceptable. • None of the cancer risks or non-cancer hazards for the current/future trespasser were unacceptable. • None of the cancer risks or non-cancer hazards for the construction worker were unacceptable. The ecological risk screening concluded that the site does not pose an unacceptable ecological risk. Summary of the Record of Decision The ROD for the Site was signed in September 2014. The remedy selected in the ROD was based on data from the RI and the baseline risk assessment, as well as the evaluation of remedial alternatives contained in the FS completed in August 2014. The remedy selected for this site has been deemed necessary by EPA to protect public health, welfare, and the environment from actual or threatened releases of hazardous substances from this site into the environment. The major components of the selected remedy include the following: • Soil vapor extraction (SVE)and multi-phase extraction (MPE)for the petroleum source areas. • SVE for soil contamination in the solvent source area. • In-situ chemical reduction (ISCR)for groundwater contamination in the solvent source area. • In-situ enhanced bioremediation (ISEB) for groundwater contamination within the dissolved solvent and petroleum plumes. • In-situ chemical oxidation(ISCO)for the 1,4-dioxane plume using slow-release oxidant cylinders. The selected remedy focuses on reducing contamination that is present in the source areas on Site, and partiallytreatingcontaminated groundwater. Since the remedyis not expected to fully P restore Site groundwater, this remedy is considered to be an interim action that is necessary to move the Site towards a final ROD to address any residual contamination and restore groundwater. B. Soils Evaluation Not applicable. No discharge will occur within 7 feet of land surface and above the seasonal high water table. C. Hydrogeologic Evaluation Regional Geology Bedrock in the GMH Site vicinity consists of metamorphosed granite (Roxboro metagranite) of late-Proterozoic to late Cambrian. age. The Roxboro metagranite is predominately granitic in composition, although locally contains phases that trend more towards granodiorite (Briggs et al., 1978). The Roxboro metagranite has been exposed for over 300 million years, undergoing substantial chemical and physical weathering and erosion.The erosion allows for relief of tectonic stresses which results in the formation of joints and fractures. Throughout the region, the bedrock is overlain by a mantle of unconsolidated material known as the regolith. The regolith includes, where present, alluvial deposits, a soil zone, and a zone of weathered bedrock known as saprolite. Saprolite forms as a result of chemical and mechanical weathering of the underlying bedrock, and is typically composed of clay and coarser granular material up to boulder size, and typically reflects the texture of the rock from which it was formed. The thickness of the regolith/saprolite zone varies according to the type of parent rock, topography, and geologic history. In many areas of crystalline bedrock a transition zone of partially weathered rock may occur at the base of regolith between the saprolite and unweathered bedrock(Stewart et al., 1964; Nutter and Otten, 1969; Heath, 1980, Harned and Daniel, 1992). This transition zone is a result of incomplete mechanical and chemical weathering of the crystalline bedrock. It may be composed of rock fragments of varying size, depending upon the composition of the parent rock, and generally contains less clay than the overlying saprolite. The occurrence and thickness of this weathering transition zone is variable, being controlled by rock type and weathering history. The transition zone may serve as a zone of increased flow within the fractured rock system and a conduit for transmission of contaminated groundwater to a well or other point of discharge. Local Geology it The U. S. Geological Survey(USGS) conducted a subsurface investigation at the GMH Site from March through October, 2011 (USGS, 2013). The study included surface geologic mapping and the evaluation of 15 open-borehole bedrock wells, ranging in depth from 62 to 305 feet below land 10 surface (ft bls), using borehole geophysical logs. Within this study, three types of fractures were identified: primary(open fractures),secondary(partially open or weathered fractures), and sealed. The results of the USGS investigation indicated that there is potential interconnectivity of the fractures between the wells, and since it is the collective effect of all three features (fractures, foliation, and joints) which provides a means for water to move through the metagranite, the distribution and orientation of these features will potentially control contaminant migration. The USGS conducted a supplemental subsurface investigation at the Site from December 2012 through April 2013. The supplemental study included collection of borehole geophysical logs at four bedrock wells (MW101B, MW104B, MW107B, and MW108B). The logs included caliper, electrical resistivity,fluid temperature and heat-pulse flowmeter(both ambient and stressed), and optical televiewer (OTV) readings. Fracture zones were delineated at depth in each of the wells based on observations made for these logs including: OTV images, caliper log, resistivity decreases, and changes in the fluid stationary measurements of vertical borehole flow. During the Remedial Investigation (RI), 29 soil borings were advanced into the regolith material to depths ranging from 9.5 to 42 ft bls. The 15 borings logged by the USGS (USGS, 2013) were inferred to have a regolith thickness of 28 to 51 ft based on the casing depths. In most of the borings advanced during the RI, the regolith encountered was composed of a mixture of stiff clay to sandy clay before grading into a saprolitic zone, usually encountered between 20 to 25 ft bls. However, in some areas, such as near MW104B, saprolite was encountered as shallow as 2 ft bls. The transition zone between the regolith and the underlying bedrock was indistinguishable or not logged in most of the borings advanced during RI activities. In the boring for MW100S, the transition zone seems to consist of a mixture of granite fragments and silty clay. Because this transition zone appears to be indistinct at the GMH Site, its ability to serve as a conduit for increased flow is not clearly defined. Hvdrogeologv The Site is located near the topographic high of a north/northeasterly trending ridge. Topography is the driving force in the unconfined groundwater flow and can produce highly irregular groundwater flow paths. The groundwater system at the Site is complex and consists of a two- part system: a shallow, weathered regolith and a deeper fractured bedrock. The shallow, weathered regolith aquifer is hydraulically connected to the fractures within the underlying 11 bedrock aquifer. Groundwater level measurements from the monitoring wells collected in May 2013 were found to range from about 5 to 25 ft bls. The dominant direction of hydraulic gradient is downward with a radial outward pattern.Average horizontal groundwater gradient in the regolith calculated in May 2013 was 0.005, while gradients in the bedrock aquifer ranged from 0.0006 to 0.03. Transmissivity estimates were calculated for the 15 wells analyzed by the USGS (USGS, 2013), and ranged from 0.41 to 154 square feet per day (ft2/day). The large range of gradients and transmissivity in the bedrock aquifer most likely represents the variable interconnectivity of the fractures and their ability to create conduits for groundwater flow. Slug testing was performed during August 2015 on selected saprolite and fractured bedrock monitoring wells to estimate values of hydraulic conductivity. The following table summarizes the results of the slug testing, and presents the derived hydraulic conductivity values in feet per day (ft/day). Production Aquifer Cooper Peres Bouwer- Barker- Well Geometric Well Depth Type' et al.2 et al.3 Rice Hvorslev (ft) Black Average's Means Saprolite MW-4 12-27 Bedrock 12.06 18.18 • 15.12 14.81 Interface MW-100S 25-35 Saprolite 0.96 0.99 1.10 1.02 MW-101S 21-36 Saprolite 0.5 0.20 0.27 0.32 MW-105S 25-35 Saprolite 10.49 6.17 9.03 8.56 1.07 MW-121S 25.7-35.7 Saprolite 0.56 0.79 0.68 MW-124S 18.4-28.4 Saprolite 1.00 2.08 1.54 MW-126S 16.5-26.5 Saprolite 0.27 0.63 0.45 MW-107B 40-150 Fractured 1.34 1.61 0.77 1.24 Rock MW-122B 47-150 Fractured 0.21 0.25 0.16 0.21 0.51 Rock MW-123B 47-150 Fractured 0.21 0.24 3.33 0.23 Notes: 1.Screened interval lithology type 2.The Cooper-Bredenhoeft-Papadopulos solution method 3.The Peres-Onur-Reynolds solution method 4. Where the solution method provided a range of hydraulic conductivity values in parenthesis, the mid-range value was used to calculate an arithmetic average conductivity for each well 5.Geometric mean for all slug test results from wells screened in a given lithology type Vertical groundwater flow was demonstrated from water level measurements observed in paired shallow and bedrock wells indicating that the two aquifers are unconfined and hydraulically connected. The vertical gradients observed at MW105S/MW107B (0.001) and MW-B5/MW104B (0.009) indicate a flat gradient between the two aquifers. In contrast, vertical gradients at MW101 S/MW101 B (0.38) indicate a downward gradient. This downward gradient would enhance the migration of contaminants from the shallow, weathered regolith aquifer into the bedrock aquifer. / In order to evaluate the potential connectivity of fractures or joints in the bedrock underlying the GMH site, hydraulic head was monitored in surrounding wells by the USGS while drilling five bedrock wells during the RI. The operational assumption was that when the drill bit encountered a saturated fracture a sudden change of pressure would be transmitted throughout the fracture, and connected fractures would cause a change in water levels in surrounding wells that intersect this same fracture. Although it was difficult to determine the depth of the interconnected fractures without isolation of fracture zones, the data indicated that interconnectivity exists and the observations suggest that there is a northeast/southwestern trending fracture or fracture zone. D. Demonstration of Hydraulic Control The Thiem equation was used to predict the cumulative hydraulic influence of operation of the MPE effluent injection wells on the bedrock aquifer. Steady-state cumulative drawdowns (in this case the drawdowns are negative since injection will result in a rise in the potentiometric surface) resulting from operation of the injection wells at the target injection rate of 2.7 gallons per minute per well were calculated for 10-foot spaced grid nodes surrounding the injection well locations. The resulting drawdowns were contoured to show the zone(s) of hydraulic influence for the injection wells. A figure displaying the contoured drawdown values, along with the isocontours of the extent of groundwater contamination at the site, is included in Attachment A. Supporting calculations are also included in Attachment A. The figure shows that the locations of the injection wells were chosen to be sufficiently outside the delineated groundwater plumes such that operation of the injection wells will not hydraulically impact the contaminant plumes, and therefore will not result in migration of contaminants into previously uncontaminated areas. The water to be disposed of in the injection wells will be treated prior to discharge until it meets both EPA Maximum Contaminant Levels (MCLs) and North Carolina's NCAC 2L Groundwater Standards. Therefore operation of the injection wells will not cause any violations of groundwater standards. /3 E. Maps and Cross-Sections The requested maps and cross-sections are provided on the following pages. This page intentionally left blank F. Engineering Design Documents The Final (100%) Remedial Design for the GMH Electronics Superfund Site is provided. Refer to Section 5.2.2.6 for a discussion of the MPE water treatment systems, including the effluent injection wells. G. Operating and Monitoring Plans The Operation and Maintenance (O&M) Plan is included in Appendix I of the Final (100%) Remedial Design. O&M of the MPE treatment systems is discussed in Section 3.0. H. In Situ Remediation Additives Tyr Not applicable.No msi emediation additives will be injected into the MPE system effluent injection wells. A separate In Situ Groundwater Remediation Permit application is being submitted for the proposed in situ bioremediation injections included in the Final (100%) Remedial Design. This page intentionally left blank Well Data Tabulation GMH Electronics Superfund Site Roxboro, Person County, North Carolina Coordinates Well Total Surface Casing Screened Top of Casing Ground Well Number (NC State Plane,ft) Diameter Depth Depth Interval Elevation Elevation Easting I Northing (inch) (ft bgs) (ft bgs) (ft bgs) (ft, NAVD88) (ft, NAVD88) Surficial Monitoring.Wells MW100S 2016684 970708 2 35 NA 25-35 732.35 732.57 MW 101 S 2017030 970840 2 36 NA 21-36 746.83 747.05 MW102S 2016957 970725 2 26 NA 16-26 746.17 746.40 MW105S 2017342 970450 2 35 NA 25-35 750.73 751.04 MW106S 2017500 970440 2 35 NA 25-35 749.41 749.80 MW 121 S 2017375 970623 4 36 NA 25.7-35.7 754.01 754.24 MW124S 2017398 970522 4 28.4 NA 18.4-28.4 752.17 752.40 MW 126S 2017279 970497 4 27 NA 16.5-26.5 752.68 752.99 MW-4 2016989 970688 2 27 NA 12-27 748.69 748.95 MPE-1 2017192 970654 4 31.5 NA 10-30 ' 752.91 753.02 SVE-1 2017181 970649 2 20 NA 9.5-19.5 752.94 753.06 MW-B1 2017187 970646 2 32 NA 12-32 752.58 753.09 MW-B4 2017213 970686 _ 2 30 NA 10-30 752.08 752.83 MW-B5 2017179 970671 2 25 NA 5-25 752.47 752.73 MW-B6 2017169 970533 2 30 NA 15-30 754.95 755.40 MW-B8 2017018 970698 2 23 NA 7.5-22.5 748.28 749.05 MW-B10 2017321 970805 2 25 _ NA 10-25 752.01 752.36 MW-B13 2017154 970876 2 25 NA 5-25 748.41 748.99 Bedrock Monitoring Wells MW 101 B 2017030 970830 6 201 _ 41 OB 41-201 746.71 747.20 MW103B 2017799 971430 6 100 29 ' OB 29-100 732.68 733.25 MW104B 2017147 970640 6 150 36 OB 36-150 752.45 753.02 MW107B 2017339 970459 6 150 40 OB 40-150 751.03 751.22 MW 108B 2017110 970054 6 150 46 OB 46-150 746.46 746.70 MW109B 2016822 970156 6 150 71 OB 71-150 756.33 756.60 MW110B 2016873 970908 6 150 25 s OB 25-150 743.45 743.70 MW 112B 2017982 971032 6 141 47 OB 47-141 735.61 735.81 MW 122B 2017593 970802 6 150 47 OB 47-150 753.23 753.51 MW 123B 2017616 970815 6 150 47 OB 47-150 753.92 754.22 MW 125B 2017320 970443 6 150 40 OB 40-150 751.34 751.54 Private Wells PW6683 2016833 970345 UKN UKN UKN UKN NM NM PW9857 2016724 970604 UKN 143 52.5 OB 52.5-143 741.55 740.41 PW10553 2017504 970373 UKN 300 64 OB 64-300 752.45 751.50 PW10828 2017532 971060 UKN 81 57 OB 57-81 NM NM PW10939 2017364 970650 UKN 112 52 OB 52-112 755.47 754.63 PW10942 2017001 970498 UKN UKN UKN UKN NM NM PW11104 2016954 970362 UKN UKN UKN UKN NM NM PW11267 2017256 969993 UKN 162 49 OB 49-162 754.86 754.62 Page 1 of 2 Well Data Tabulation GMH Electronics Superfund Site Roxboro, Person County, North Carolina Coordinates Well Total Surface Casing Screened Top of Casing Ground Well Number (NC State Plane,ft) Diameter Depth Depth Interval Elevation Elevation Easting Northing (inch) (ft bgs) (ft bgs) (ft bgs) (ft, NAVD88) (ft, NAVD88) PW11518 2016621 970563 UKN UKN UKN UKN NM NM PW13890 2017715 971005 6 170 81 OB 81-170 751.26 750.52 PW13891 2017721 971072 6 80.5 65 OB 65-80.5 NM NM PW14769 2017511 970701 6 127 35 OB 35-127 NM NM PW14771 2017134 970387 UKN 126 42 OB 42-126 759.74 758.70 PW15177 2017270 970868 UKN 122 58 OB 58-122 NM NM PW20111 2017507 970376 UKN 302 64 OB 64-302 NM NM Notes: - ft-feet NA-not applicable bgs-below ground surface NM-not measured NAVD88-North American Vertical Datum of 1988 OB-open.borehole UNK-unknown Page 2 of 2 Attachment A Injection Zone of Influence Figure and Calculations injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Iniection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 ` 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -120 120 169.71 0.00 216.33 0.00 268.33 0.00 0.00 -110 120 162.79 0.00 . 208.09 0.00 259.42 0.00 0.00 -100 120 156.20 0.00 200.00 0.00 250.60 0.00 0.00 -90 120 150.00 0.00 192.09 0.00 241.87 0.00 0.00 -80 120 144.22 0.00 184.39 0.00 233.24 0.00 0.00 -70 120 138.92 0.00 176.92 0.00 224.72 0.00 0.00 -60 120 134.16 0.00 169.71 0.00 216.33 0.00 0.00 -50 120 130.00 0.00 162.79 0.00 208.09 0.00 0.00 -40 120 126.49 0.00 156.20 0.00 200.00 0.00 0.00 -30 120 123.69 0.00 150.00 0.00 192.09 0.00 0.00 -20 120 121.66 0.00 144.22 0.00 184.39 0.00 0.00 -10 120 120.42 0.00 138.92 0.00 176.92 0.00 0.00 0 120 120.00 0.00 134.16 0.00 169.71 0.00 0.00 10 120 120.42 0.00 130.00 0.00 162.79 0.00 0.00 20 120 121.66 0.00 126.49 0.00 156.20 0.00 0.00 30 120 123.69 0.00 123.69 0.00 150.00 0.00 0.00 40 120 126.49 0.00 121.66 0.00 144.22 0.00 0.00 50 120 130.00 0.00 120.42 0.00 138.92 0.00 0.00 60 120 134.16 0.00 120.00 0.00 134.16 0.00 0.00 70 120 138.92 0.00 120.42 0.00 130.00 0.00 0.00 80 120 144.22 0.00 121.66 0.00 126.49 0.00 0.00 90 120 150.00 0.00 123.69 0.00 123.69 0.00 0.00 100 120 156.20 0.00 126.49 0.00 121.66 0.00 0.00 110 120 162.79 0.00 130.00 0.00 120.42 0.00 0.00 120 120 169.71 0.00 134.16 0.00 120.00 0.00 0.00 130 120 176.92 0.00 138.92 0.00 120.42 0.00 0.00 140 120 184.39 0.00 144.22 0.00 121.66 0.00 0.00 150 120 192.09 0.00 150.00 0.00 123.69 0.00 0.00 160 120 200.00 0.00 156.20 0.00 126.49 0.00 0.00 170 120 208.09 0.00 162.79 0.00 130.00 0.00 0.00 180 120 216.33 0.00 169.71 0.00 134.16 0.00 0.00 190 120 224.72 0.00 176.92 0.00 138.92 0.00 0.00 200 120 233.24 0.00 184.39 0.00 144.22 0.00 0.00 210 120 241.87 0.00 192.09 0.00 150.00 0.00 0.00 220 120 250.60 0.00 200.00 0.00 156.20 0.00 0.00 230 120 259.42 0.00 208.09 0.00 162.79 0.00 0.00 240 120 268.33 0.00 216.33 0.00 169.71 0.00 0.00 -120 110 162.79 0.00 210.95 0.00 264.01 0.00 0.00 -110 110 155.56 0.00 202.48 0.00 254.95 0.00 0.00 Page 1 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/ri) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) . INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -100 110 148.66 0.00 194.16 0.00 • 245.97 0.00 0.00 -90 110 142.13 0.00 186.01 0.00 237.07 0.00 0.00 -80 110 136.01 0.00 178.04 0.00 228.25 0.00 0.00 -70 110 130.38 0.00 170.29 0.00 219.54 0.00 0.00 -60 110 125.30 0.00 162.79 0.00 210.95 0.00 0.00 -50 110 120.83 0.00 155.56 0.00 202.48 " 0.00 0.00 -40 110 117.05 0.00 148.66 0.00 194.16 0.00 0.00 -30 110 114.02 0.00 142.13 0.00 186.01 0.00 0.00 -20 110 111.80 0.00 136.01 0.00 178.04 0.00 0.00 -10 110 110.45 0.00 130.38 0.00 170.29 0.00 0.00 0 110 110.00 0.00 125.30 0.00 162.79 0.00 0.00 10 110 110.45 0.00 120.83 0.00 155.56 0.00 0.00 20 110 . 111.80 0.00 117.05 0.00 148.66 0.00 0.00 30 110 114.02 0.00 114.02 0.00 142.13 0.00 0.00 40 110 117.05 0.00 111.80 0.00 136.01 0.00 0.00 50 110 120.83 0.00 110.45 0.00 130.38 0.00 0.00 60 110 125.30 0.00 110.00 0.00 125.30 0.00 0.00 70 110 130.38 0.00 11.0.45 0.00 120.83 0.00 0.00 80 110 136.01 0.00 111.80 0.00 117.05 0.00 0.00 90 110 142.13 0.00 114.02 0.00 114.02 0.00 0.00 100 110 148.66 0.00 117.05 0.00 111.80 0.00 0.00 110 110 155.56 0.00 120.83 0.00 110.45 0.00 0.00 120 110 162.79 0.00 125.30 0.00 110.00 0.00 0.00 130 110 170.29 0.00 130.38 0.00 110.45 0.00 0.00 140 110 178.04 0.00 136.01 0.00 111.80 0.00 0.00 150 110 186.01 0.00 142.13 0.00 114.02 0.00 0.00 160 110 194.16 0.00 148.66 ' 0.00 117.05 0.00 0.00 170 110 202.48 0.00 155.56 0.00 120.83 0.00 0.00 180 110 210.95 0.00 162.79 0.00 125.30 0.00 0.00 190 110 219.54 0.00 170.29 0.00 130.38 0.00 0.00 200 110 228.25 0.00 178.04 0.00 136.01 0.00 0.00 210 110 237.07 0.00 186.01 0.00 142.13 0.00 0.00 220 110 245.97 0.00 194.16 0.00 148.66 0.00 0.00 230 110 254.95 0.00 _ . 202.48 0.00 155.56 0.00 0.00 240 110 264.01 0.00 210.95 0.00 162.79 0.00 0.00 -120 100 156.20 0.00 205.91 0.00 260.00 0.00 0.00 -110 100 148.66 0.00 197.23 0.00 250.80 0.00 0.00 -100 100 141.42 0.00 188.68 0.00 241.66 0.00 0.00 -90 100 134.54 0.00 180.28 0.00 232.59 0.00 0.00 Page 2 of 24 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/ri) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for rf and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 • INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -80 100 128.06 0.00 172.05 0.00 223.61 0.00 0.00 -70 100 122.07 0.00 164.01 0.00 214.71 0.00 0.00 -60 100 116.62 0.00 156.20 0.00 205.91 0.00 0.00 -50 100 111.80 0.00 148.66 0.00 197.23 0.00 0.00 -40 100 107.70 0.00 141.42 0.00 188.68 0.00 0.00 -30 100 104.40 -0.01 134.54 0.00 180.28 0.00 -0.01 -20 100 101.98 -0.05 128.06 0.00 172.05 0.00 -0.05 -10 100 100.50 -0.07 122.07 0.00 164.01 0.00 -0.07 0 100 100.00 -0.08 116.62 0.00 156.20 0.00 -0.08 10 100 100.50 -0.07 111.80 0.00 148.66 0.00 -0.07 20 100 101.98 -0.05 107.70 0.00 141.42 0.00 -0.05 30 100 104.40 -0.01 104.40 -0.01 134.54 0.00 -0.01 • 40 100 107.70 0.00 101.98 -0.05 128.06 0.00 -0.05 1 50 100 111.80 0.00 100.50 -0.07 122.07 0.00 -0.07 60 100 116.62 0.00 100.00 -0.08 116.62 0.00 -0.08 70 100 122.07 0.00 100.50 -0.07 111.80 0.00 -0.07 80 100 128.06 0.00 101.98 -0.05 107.70 0.00 -0.05 90 100 134.54 0.00 104.40 -0.01 104.40 -0.01 -0.01 100 100 141.42 0.00 107.70 0.00 101.98 -0.05 -0.05 110 100 148.66 0.00 111.80 0.00 100.50 -0.07 -0.07 120 100 156.20 0.00 116.62 0.00 100.00 -0.08 -0.08 130 100 164.01 0.00 122.07 0.00 100.50 -0.07 -0.07 140 100 172.05 0.00 128.06 0.00 101.98 -0.05 -0.05 150 100 180.28 0.00 134.54 0.00 104.40 -0.01 -0.01 , 160 100 188.68 0.00 141.42 0.00 107.70 0.00 0.00 170 100 197.23 0.00 148.66 0.00 111.80 0.00 0.00 180 100 205.91 0.00 156.20 0.00 116.62 0.00 0.00 190 100 214.71 0.00 164.01 0.00 122.07 0.00 0.00 200 100 223.61 0.00 172.05 0.00 128.06 0.00 0.00 210 100 .232.59 0.00 180.28 0.00 134.54 0.00 0.00 220 100 241.66 0.00 188.68 0.00 141.42 0.00 0.00 230 100 250.80 0.00 197.23 0.00 148.66 0.00 0.00 240 100 260.00 0.00 205.91 0.00 156.20 0.00 0.00 -120 90 150.00 0.00 201.25 0.00 256.32 0.00 0.00 -110 90 142.13 0.00 192.35 0.00 246.98 0.00 0.00 -100 90 134.54 0.00 183.58 0.00 237.70 0.00 0.00 -90 90 127.28 0.00 174.93 0.00 228.47 0.00 0.00 -80 90 120.42 0.00 166.43 0.00 219.32 0.00 0.00 -70 90 114.02 0.00 158.11 0.00 210.24 0.00 0.00 Page 3 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/ri) 3 3 Q=flow rate in ft3/day=-520 ft /da (-2.7 gpm) Y 9P ) T=transmissivity=50 ft2/day avg.from slug tests si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -60 90 108.17 0.00 150.00 0.00 201.25 0.00 0.00 -50 90 102.96 -0.03 142.13 0.00 192.35 0.00 -0.03 -40 90 98.49 -0.10 134.54 0.00 183.58 0.00 -0.10 -30 90 94.87 -0.17 127.28 0.00 174.93 0.00 -0.17 -20 90 92.20 -0.21 120.42 0.00 166.43 0.00 -0.21 -10 90 90.55 -0.24 114.02 0.00 158.11 0.00 -0.24 0 90 90.00 -0.25 108.17 0.00 150.00 0.00 -0.25 10 90 90.55 -0.24 102.96 -0.03 142.13 0.00 -0.27 20 90 92.20 -0.21 98.49 -0.10 134.54 0.00 -0.32 30 90 94.87 -0.17 94.87 -0.17 127.28 0.00 -0.33 40 90 98.49 -0.10 92.20 -0.21 120.42 0.00 -0.32 50 90 102.96 -0.03 90.55 -0.24 114.02 0.00 -0.27 60 90 108.17 0.00 90.00 -0.25 108.17 0.00 -0.25 70 90 114.02 0.00 90.55 -0.24 102.96 -0.03 -0.27 80 90 120.42 0.00 92.20 -0.21 98.49 -0.10 -0.32 90 90 127.28 0.00 94.87 -0.17 94.87 -0.17 -0.33 100 90 134.54 0.00 98.49 -0.10 92.20 -0.21 -0.32 110 90 142.13 0.00 102.96 -0.03 90.55 -0.24 -0.27 120 90 150.00 0.00 108.17 0.00 90.00 -0.25 -0.25 130 90 158.11 0.00 114.02 0.00 90.55 -0.24 -0.24 140 90 166.43 0.00 120.42 0.00 92.20 -0.21 -0.21 150 90 174.93 0.00 127.28 0.00 94.87 -0.17 -0.17 160 90 183.58 0.00 134.54 0.00 98.49 -0.10 -0.10 170 90 192.35 0.00 142.13 0.00 102.96 -0.03 -0.03 180 90 201.25 0.00 150.00 0.00 108.17 0.00 0.00 190 90 210.24 0.00 158.11 0.00 114.02 0.00 0.00 200 90 219.32 0.00 166.43 0.00 120.42 0.00 0.00 210 90 228.47 0.00 174.93 0.00 127.28 0.00 0.00 220 90 237.70 0.00 183.58 0.00 134.54 0.00 0.00 230 90 246.98 0.00 192.35 0.00 142.13 0.00 0.00 240 90 256.32 0.00 201.25 0.00 150.00 0.00 0.00 -120 80 144.22 0.00 196.98 0.00 252.98 0.00 0.00 -110 80 136.01 0.00 187.88 0.00 243.52 0.00 0.00 -100 80 128.06 0.00 178.89 0.00 234.09 0.00 0.00 -90 80 120.42 0.00 170.00 0.00 224.72 -0.00 0.00 -80 80 113.14 0.00 161.25 0.00 215.41 0.00 0.00 -70 80 106.30 0.00 152.64 0.00 206.16 0.00 0.00 -60 80 100.00 -0.08 144.22 0.00 196.98 0.00 -0.08 -50 80 94.34 -0.17 136.01 0.00 187.88 0.00 -0.17 Page 4 of 24 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/rf) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -40 80 89.44 -0.26 128.06 0.00 178.89 0.00 -0.26 -30 80 85.44 -0.34 120.42 0.00 170.00 0.00 -0.34 -20 80 82.46 -0.40 113.14 0.00 161.25 0.00 -0.40 -10 80 80.62 -0.43 106.30 0.00 152.64 0.00 -0.43 0 80 80.00 -0.45 100.00 -0.08 144.22 0.00 -0.53 10 80 80.62 -0.43 94.34 -0.17 136.01 0.00 -0.61 20 80 82.46 -0.40 89.44 -0.26 128.06 0.00 -0.66 30 80 85.44 -0.34 85.44 -0.34 120.42 0.00 -0.68 40 80 89.44 -0.26 82.46 -0.40 113.14 0.00 -0.66 50 80 94.34 -0.17 80.62 -0.43 106.30 0.00 -0.61 60 80 100.00 -0.08 80.00 -0.45 100.00 -0.08 -0.60 70 80 106.30 0.00 80.62 -0.43 94.34 -0.17 -0.61 80 80 113.14 0.00 82.46 -0.40 89.44 -0.26 -0.66 90 80 120.42 0.00 85.44 -0.34 85.44 -0.34 -0.68 100 80 128.06 0.00 89.44 -0.26 82.46 -0.40 -0.66 110 80 136.01 0.00 94.34 -0.17 80.62 -0.43 -0.61 120 80 144.22 0.00 100.00 -0.08 80.00 -0.45 -0.53 130 80 152.64 0.00 106.30 0.00 80.62 -0.43 -0.43 140 80 161.25 0.00 113.14 0.00 82.46 -0.40 -0.40 150 80 170.00 0.00 120.42 0.00 85.44 -0.34 -0.34 160 80 178.89 0.00 128.06 0.00 89.44 -0.26 -0.26 170 80 187.88 0.00 136.01 0.00 94.34 -0.17 -0.17 180 80 196.98 0.00 144.22 0.00 100.00 -0.08 -0.08 190 80 206.16 0.00 152.64 0.00 106.30 0.00 0.00 200 80 215.41 0.00 161.25 0.00 113.14 0.00 0.00 210 80 224.72 0.00 170.00 0.00 120.42 0.00 0.00 220 80 234.09 0.00 178.89 0.00 128.06 0.00 0.00 230 80 243.52 0.00 187.88 0.00 136.01 0.00 0.00 240 80 252.98 0.00 196.98 0.00 144.22 0.00 0.00 -120 70 138.92 0.00 193.13 0.00 250.00 0.00 0.00 -110 70 130.38 0.00 183.85 0.00 240.42 0.00 0.00 -100 70 122.07 0.00 174.64 0.00 230.87 0.00 0.00 -90 70 114.02 0.00 165.53 0.00 221.36 0.00 0.00 -80 70 106.30 0.00 156.52 0.00 211.90 0.00 0.00 -70 70 98.99 -0.09 147.65 0.00 202.48 0.00 -0.09 -60 70 92.20 -0.21 138.92 0.00 193.13 0.00 -0.21 -50 70 86.02 -0.33 130.38 0.00 183.85 0.00 -0.331 -40 70 80.62 -0.43 122.07 0.00 174.64 0.00 -0.431 -30 70 76.16 -0.53 114.02 0.00 165.53 0.00 -0.53 Page 5 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(sf-s2) Thiem equation: Q = In(r2/rf) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection_well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for sf Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 I INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -20 70 72.80 -0.60 106.30 0.00 156.52 0.00 -0.60 1 -10 70 70.71 -0.65 98.99 -0.09 147.65 0.00, -0.75 0 70' 70.00 -0.67 92.20 -0.21 138.92 0.00 -0.88 1 10 70 70.71 -0.65 86.02 -0.33 130.38 0.00 -0.98 20 70 72.80 -0.60 80.62 -0.43 122.07 0.00 -1.04 30 70 76.16 -0.53 76.16 -0.53 114.02 0.00 -1.06 40 70 80.62 -0.43 72.80 -0.60 106.30 0.00 -1.04 50 70 86.02 -0.33 70.71 -0.65 98.99 -0.09 -1.07 60 70 92.20 -0.21 70.00 -0.67 92.20 -0.21, -1.09 70 70 98.99 -0.09 70.71 -0.65 86.02 -0.33 -1.07 80 70 106.30 0.00 72.80 -0.60 80.62 -0.43 -1.04 90 70 114.02 0.00 76.16 -0.53 76.16 -0.53 -1.06 100 70 122.07 0.00 80.62 -0.43 72.80 -0.60' -1.04 110 70 130.38 0.00 86.02 -0.33 70.71 -0.65 -0.98 120 70 138.92 0.00 92.20 -0.21 70.00 -0.67 -0.88 130 70 147.65 0.00 98.99 -0.09 70.71 -0.65 -0.75 140 70 156.52 0.00 106.30 0.00 72.80 -0.60 -0.60 150 70 165.53 0.00 114.02 0.00 76.16 -0.53 -0.53 160 70 174.64 0.00 122.07 0.00 80.62 -0.43 -0.43 170 70 183.85 0.00 130.38 0.00 86.02 -0.33 -0.33 180 70 193.13 0.00 138.92 0.00 92.20 -0.21 -0.21 • 190 70 202.48 0.00 147.65 0.00 98.99 -0.09 -0.09 200 70 211.90 0.00 156.52 0.00 106.30 0.00 0.00 210 70 221.36 0.00 165.53 0.00 114.02 0.00 0.00 220 70 230.87 0.00 174.64 0.00 122.07 0.00 0.00 230 70 240.42 0.00 183.85 0.00 130.38 0.00 0.00 240 70 250.00 0.00 193.13 0.00 138.92 0.00 0.00 -120 60 134.16 0.00 189.74 0.00 247.39 0.00 0.00 -110 60 125.30 0.00 180.28 0.00 237.70 0.00 0.00 -100 60 116.62 0.00 170.88 0.00 228.04 0.00 0.00 -90 60 108.17 0.00 161.55 0.00 218.40 0.00 0.00 -80 60 100.00 -0.08 152.32 0.00 208.81 0.00 -0.08 -70 60 92.20 -0.21 143.18 0.00 199.25 0.00 -0.21 -60 60 84.85 -0.35 134.16 0.00 189.74 0.00 -0.35 -50 60 78.10 -0.49 125.30 0.00 180.28 0.00 -0.49 -40 60 72.11 -0.62 116.62 0.00 170.88 0.00 -0.62 -30 60 67.08 -0.74 108.17 0.00 161.55 0.00 -0.74 -20 60 63.25 -0.84 100.00 -0.08 152.32 0.00 -0.91 -10 60 60.83 -0.90 92.20 -0.21 143.18 0.00 -1.11 Page 6 of 24 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/rf) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 0 60 60.00 -0.92 84.85 -0.35 134.16 0.00 -1.27 10 60 60.83 -0.90 78.10 -0.49 125.30 0.00 -1.39 20 60 63.25 -0.84 72.11 -0.62 116.62 0.00 -1.46 30 60 67.08 -0.74 67.08 -0.74 108.17 0.00 -1.48 40 60 72.11 -0.62 63.25 -0.84 100.00 -0.08 -1.53 50 60 78.10 -0.49 60.83 -0.90 92.20 -0.21 -1.60 60 60 84.85 -0.35 60.00 -0.92 84.85 -0.35 -1.62 70 60 92.20 -0.21 60.83 -0.90 78.10 -0.49 -1.60 80 60 100.00 -0.08 63.25 -0.84 72.11 -0.62 -1.53 90 60 108.17 0.00 67.08 -0.74 67.08 -0.74 -1.48 100 60 116.62 0.00 72.11 -0.62 63.25 -0.84 -1.46 110 60 125.30 0.00 78.10 -0.49 60.83 -0.90 -1.39 120 60 134.16 0.00 84.85 -0.35 60.00 -0.92 -1.27 130 60 143.18 0.00 92.20 -0.21 60.83 -0.90 -1.11 140 60 152.32 0.00 100.00 -0.08 63.25 -0.84 -0.91 150 60 161.55 0.00 108.17 0.00 67.08 -0.74 -0.74 160 60 170.88 0.00 116.62 0.00 72.11 -0.62 -0.62 170 60 180.28 0.00 125.30 0.00 78.10 -0.49 -0.49 180 60 189.74 0.00 134.16 0.00 84.85 -0.35 -0.35 190 60 199.25 0.00 143.18 0.00 92.20 -0.21 -0.21 200 60 208.81 0.00 152.32 0.00 100.00 -0.08 -0.08 210 60 218.40 0.00 161.55 0.00 108.17 0.00 0.00 220 60 228.04 0.00 170.88 0.00 116.62 0.00 0.00 230 60 237.70 0.00 180.28 0.00 125.30 0.00 0.00 240 60 247.39 0.00 189.74 0.00 134.16 0.00 0.00 -120 50 130.00 0.00 186.82 0.00 245.15 0.00 0.00 -110 50 120.83 0.00 177.20 0.00 235.37 0.00 0.00 -100 50 111.80 0.00 167.63 0.00 225.61 0.00 0.00 -90 50 102.96 -0.03 158.11 0.00 215.87 0.00 -0.03 -80 50 94.34 -0.17 148.66 0.00 206.16 0.00 -0.17 -70 50 86.02 -0.33 139.28 0.00 196.47 0.00 -0.33 -60 50 78.10 -0.49 130.00 0.00 186.82 0.00 -0.49 -50 50 70.71 -0.65 120.83 0.00 177.20 0.00 -0.65 -40 50 64.03 -0.82 111.80 0.00 167.63 0.00 -0.82 -30 50 58.31 -0.97 102.96 -0.03 158.11 0.00 -1.00 -20 50 53.85 -1.10 94.34 -0.17 148.66 0.00 -1.28 -10 50 50.99 -1.19 86.02 -0.33 139.28 0.00 -1.52 0 50 50.00 -1.23 78.10 -0.49 130.00 0.00 -1.71 10 50 50.99 -1.19 70.71 -0.65 120.83 0.00 -1.85 Page 7 of 24 L Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q= In(r2/ri) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x (ft) y(ft) INJ-MPE-1 0 0 _ INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 20 50 53.85 -1.10 64.03 -0.82 111.80 0.00 -1.92 30 50 58.31 -0.97 58.31 -0.97 102.96 -0.03 -1.97 40 50 64.03 -0.82 53.85 -1.10 94.34 -0.17 -2.09 50 _ 50 70.71 -0.65 50.99 -1.19 86.02 -0.33 -2.17 60 50 78.10 -0.49 50.00 -1.23 78.10 -0.49 -2.20 70 50 86.02 -0.33 50.99 -1.19 70.71 -0.65 -2.17 80 50 94.34 -0.17 53.85 -1.10 64.03 -0.82 -2.09 90 50 102.96 -0.03 58.31 -0.97 58.31 -0.97 -1.97 100 50 111.80 0.00 64.03 -0.82 53.85 -1.10 -1.92 110 50 120.83 0.00 70.71 -0.65 50.99 -1.19 -1.85 120 50 130.00 0.00 78.10 -0.49 50.00 -1.23 -1.71 130 50 139.28 0.00 86.02 -0.33 50.99 -1.19 -1.52 140 50 148.66 0.00 94.34 -0.17 53.85 -1.10 -1.28 150 50 158.11 0.00 102.96 -0.03 58.31 -0.97 -1.00 160 • 50 167.63 0.00 111.80 0.00 64.03 -0.82 -0.82 170 50 177.20 0.00 120.83 0.00 70.71 -0.65 -0.65 180 50 186.82 0.00 130.00 0.00 78.10 -0.49 -0.49 190 50 196.47 0.00 139.28 0.00 86.02 -0.33 -0.33 200 50 206.16 0.00 148.66 0.00 94.34 -0.17 -0.17 210 50 215.87 0.00 158.11 0.00 102.96 -0.03 -0.03 220 50 225.61 0.00 167.63 0.00 111.80 0.00 0.00 230 50 235.37 0.00 177.20 0.00 120.83 0.00 0.00 240 50 245.15 0.00 186.82 0.00 130.00 0.00 0.00 -120 40 126.49 0.00 184.39 0.00 243.31 0.00 0.00 -110 40 117.05 0.00 174.64 0.00 233.45 0.00 0.00 -100 40 107.70 0.00 164.92 0.00 223.61 0.00 0.00 -90 40 98.49 -0.10 155.24 0.00 213.78 0.00 -0.10 -80 40 89.44 -0.26 145.60 0.00 203.96 0.00 -0.26 -70 40 80.62 -0.43 136.01 0.00 194.16 0.00 -0.43 -60 40 72.11 -0.62 126.49 0.00 184.39 0.00 -0.62 -50 40 64.03 -0.82 117.05 0.00 174.64 0.00 -0.82 -40 40 56.57 -1.02 107.70 0.00 164.92 0.00 -1.02 -30 40 50.00 -1.23 98.49 -0.10 155.24 0.00 -1.33 -20 40 44.72 -1.41 .89.44 -0.26 145.60 0.00 -1.67 -10 40 41.23 -1.55 80.62 -0.43 136.01 0.00 - -1.98 0 40 40.00 -1.60 72.11 -0.62 126.49 0.00 -2.21 10 40 41.23 -1.55 64.03 -0.82 117.05 0.00 -2.36 20 40 44.72 -1.41 56.57 -1.02 107.70 0.00 -2.43 30 40 50.00 -1.23 50.00 -1.23 98.49 -0.10 -2.55 Page 8 of 24 r `ri Dction Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(sf-s2) Thiem equation: Q = In(r2/ri) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests sf =drawdown at distance rf =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for rf and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 40 40 56.57 -1.02 44.72 -1.41 89.44 -0.26 -2.69 50 40 64.03 -0.82 41.23 -1.55 80.62 -0.43 -2.80 60 40 72.11 -0.62 40.00 -1.60 72.11 -0.62 -2.83 70 40 80.62 -0.43 41.23 -1.55 64.03 -0.82 -2.80 80 40 89.44 -0.26 44.72 -1.41 56.57 -1.02 -2.69 90 40 98.49 -0.10 50.00 -1.23 50.00 -1.23 -2.55 100 40 107.70 0.00 56.57 -1.02 44.72 -1.41 -2.43 110 40 117.05 0.00 64.03 -0.82 41.23 -1.55 -2.36 120 40 126.49 0.00 72.11 -0.62 40.00 -1.60 -2.21 130 40 136.01 0.00 80.62 -0.43 41.23 -1.55 -1.98 140 40 145.60 0.00 89.44 -0.26 44.72 -1.41 -1.67 150 40 155.24 0.00 98.49 -0.10 50.00 -1.23 -1.33 160 40 164.92 0.00 107.70 0.00 56.57 -1.02 -1.02 170 40 174.64 0.00 117.05 0.00 64.03 -0.82 -0.82 180 40 184.39 0.00 126.49 0.00 72.11 -0.62 -0.62 190 40 194.16 0.00 136.01 0.00 80.62 -0.43 -0.43 200 40 203.96 0.00 145.60 0.00 89.44 -0.26 -0.26 210 40 213.78 0.00 155.24 0.00 98.49 -0.10 -0.10 220 40 223.61 0.00 164.92 0.00 107.70 0.00 0.00 230 40 233.45 0.00 174.64 0.00 117.05 0.00 0.00 240 40 243.31 0.00 184.39 0.00 126.49 0.00 0.00 -120 30 123.69 0.00 182.48 0.00 241.87 0.00 0.00 -110 30 114.02 0.00 172.63 0.00 231.95 0.00 0.00 -100 30 104.40 -0.01 162.79 0.00 222.04 0.00 -0.01 -90 30 94.87 -0.17 152.97 0.00 212.13 0.00 -0.17 -80 30 85.44 -0.34 143.18 0.00 202.24 0.00 -0.34 -70 30 76.16 -0.53 133.42 0.00 192.35 0.00 -0.53 -60 30 67.08 -0.74 123.69 0.00 182.48 0.00 -0.74 -50 30 58.31 -0.97 114.02 0.00 172.63 0.00 -0.97 -40 30 50.00 -1.23 104.40 -0.01 162.79 0.00 -1.23 -30 30 42.43 -1.50 94.87 -0.17 152.97 0.00 -1.66 -20 30 36.06 -1.77 85.44 -0.34 143.18 0.00 -2.11 -10 30 31.62 -1.98 76.16 -0.53 133.42 0.00 -2.51 0 30 30.00 -2.07 67.08 -0.74 123.69 0.00 -2.81 10 30 31.62 -1.98 58.31 -0.97 114.02 0.00 -2.96 20 30 36.06 -1.77 50.00 -1.23 104.40 -0.01 -3.00 30 30 42.43 -1.50 42.43 -1.50 94.87 -0.17 . -3.16 40 30 50.00 -1.23 36.06 -1.77 85.44 -0.34 -3.33 50 30 58.31 -0.97 31.62 -1.98 76.16 -0.53 -3.48 Page 9 of 24 I Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 . 21-rT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x (ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120. 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) - 60 30 67.08 -0.74 30.00 -2.07 67.08 -0.74 -3.55 70 30 76.16 -0.53 31.62 -1.98 58.31 -0.97 -3.48 80 30 85.44 -0.34 36.06 -1.77 50.00 -1.23 -3.33 90 30 94.87 -0.17 42.43 -1.50 42.43 -1.50 -3.16 100 30 104.40 -0.01 50.00 -1.23 36.06 -1.77 -3.00 110 30 114.02 0.00 58.31 -0.97 31.62 -1.98 -2.96 120 30 123.69 0.00 67.08 -0.74 30.00 -2.07 -2.81 130 30 133.42 0.00 76.16 -0.53 31.62 -1.98 -2.51 140 30 143.18 0.00 85.44 -0.34 36.06 -1.77 -2.11 150 30 152.97 0.00 94.87 -0.17 42.43 -1.50 -1.66 160 30 162.79 0.00 104.40 -0.01 50.00 -1.23 -1.23 170 30 172.63 0.00 114.02 0.00 58.31 -0.97 -0.97 180 30 182.48 0.00 123.69 0.00 67.08 -0.74 -0.74 190 30 192.35 0.00 133.42 0.00 76.16 -0.53 -0.53 200 30 202.24 0.00 143.18 0.00 85.44 -0.34 -0.34 210 30 212.13 0.00 152.97 0.00 94.87 -0.17 -0.17 220 30 222.04 0.00 162.79 0.00 104.40 -0.01 -0.01 230 30 231.95 0.00 172.63 0.00 114.02 0.00 0.00 240 30 241.87 0.00 182.48 0.00 123.69 0.00 0.00 -120 20 121.66 0.00 181.11 0.00 240.83 0.00 0.00 -110 20 111.80 0.00 171.17 0.00 230.87 0.00 0.00 -100 20 101.98 -0.05 161.25 0.00 220.91 0.00 -0.05 -90 20 92.20 -0.21 151.33 0.00 210.95 0.00 -0.21 -80 20 82.46 -0.40 141.42 0.00 201.00 0.00 -0.40 -70 20 72.80 -0.60 131.53 0.00 191.05 0.00 -0.60 -60 20 63.25 -0.84 121.66 0.00 181.11 0.00 -0.84 -50 20 53.85 -1.10 111.80 0.00 171.17 0.00 -1.10 -40 20 44.72 -1.41 101.98 -0.05 161.25 0.00 -1.46 -30 20 36.06 -1.77 92.20 -0.21 151.33 0.00 -1.98 -20 20 28.28 -2.17 82.46 -0.40 141.42 0.00 -2.57 -10 20 22.36 -2.56 72.80 -0.60 131.53 0.00 -3.16 0 20 20.00 -2.74 63.25 -0.84 , 121.66 0.00 -3.58 10 20 22.36 -2.56 53.85 -1.10 111.80 0.00 -3.66 20 20 28.28 -2.17 44.72 -1.41 101.98 -0.05 -3.63 30 20 36.06 -1.77 36.06 -1.77 92.20 -0.21 -3.75 40 20 44.72 -1.41 28.28 -2.17 82.46 -0.40 -3.98 50 20 53.85 -1.10 22.36 -2.56 72.80 -0.60 -4.26 60 20 63.25 -0.84 20.00 -2.74 63.25 -0.84 -4.42 70 20 72.80 -0.60 22.36 -2.56 53.85 -1.10 -4.26 Page 10 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2,and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 80 20 82.46 -0.40 28.28 -2.17 44.72 -1.41 -3.98 90 20 92.20 -0.21 36.06 -1.77 36.06 -1.77 -3.75 100 20 101.98 -0.05 44.72 -1.41 28.28 -2.17 -3.63 110 20 111.80 0.00 53.85 -1.10 22.36 -2.56 -3.66 120 20 121.66 0.00 63.25 -0.84 20.00 -2.74 -3.58 130 20 131.53 0.00 72.80 -0.60 22.36 -2.56 -3.16 140 20 141.42 0.00 82.46 -0.40 28.28 -2.17 -2.57 150 20 151.33 0.00 92.20 -0.21 36.06 -1.77 -1.98 160 20 161.25 0.00 101.98 -0.05 44.72 -1.41 -1.46 170 20 171.17 0.00 111.80 0.00 53.85 -1.10 -1.10 180 20 181.11 0.00 121.66 0.00 63.25 -0.84 -0.84 190 20 191.05 0.00 131.53 0.00 72.80 -0.60 -0.60 200 20 201.00 0.00 141.42 0.00 82.46 -0.40 -0.40 210 20 210.95 0.00 151.33 0.00 92.20 -0.21 -0.21 220 20 220.91 0.00 161.25 0.00 101.98 -0.05 -0.05 230 20 230.87 0.00 171.17 0.00 111.80 0.00 0.00 240 20 240.83 0.00 181.11 0.00 121.66 0.00 0.00 -120 10 120.42 0.00 180.28 0.00 240.21 0.00 0.00 -110 10 110.45 0.00 170.29 0.00 230.22 0.00 0.00 -100 10 100.50 -0.07 160.31 0.00 220.23 0.00 -0.07 -90 10 90.55 -0.24 150.33 0.00 210.24 0.00 -0.24 -80 10 80.62 -0.43 140.36 0.00 200.25 0.00 -0.43 -70 10 70.71 -0.65 130.38 0.00 190.26 0.00 -0.65 -60 10 60.83 -0.90 120.42 0.00 180.28 0.00 -0.90 -50 10 50.99 -1.19 110.45 0.00 170.29 0.00 -1.19 -40 10 41.23 -1.55 100.50 -0.07 160.31 0.00 -1.61 -30 10 31.62 -1.98 90.55 -0.24 150.33 0.00 -2.23 -20 10 22.36 -2.56 80.62 -0.43 140.36 0.00 -2.99 -10 10 14.14 -3.32 70.71 -0.65 130.38 0.00 -3.97 0 10 10.00 -3.89 60.83 -0.90 120.42 0.00 -4.79 10 10 14.14 -3.32 50.99 -1.19 110.45 0.00 -4.51 20 10 22.36 -2.56 41.23 -1.55 100.50 -0.07 -4.17 30 10 31.62 -1.98 31.62 -1.98 90.55 -0.24 -4.21 40 10 41.23 -1.55 22.36 -2.56 80.62 -0.43 -4.54 50 10 50.99 -1.19 14.14 -3.32 70.71 -0.65 -5.16 60 10 60.83 -0.90 10.00 -3.89 60.83 -0.90 -5.69 70 10 70.71 -0.65 14.14 -3.32 50.99 -1.19 -5.16 80 10 80.62 -0.43 22.36 -2.56 41.23 -1.55 -4.54 90 10 90.55 -0.24 31.62 -1.98 31.62 -1.98 -4.21 Page 11 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 100 10 100.50 -0.07 41.23 -1.55 22.36 -2.56 -4.17 110 10 110.45 0.00 50.99 -1.19 14.14 -3.32 -4.51 120 10 120.42 0.00 60.83 -0.90 10.00 - -3.89 -4.79 130 10 130.38 0.00 70.71 -0.65 14.14 -3.32 -3.97 140 10 140.36 0.00 80.62 -0.43 22.36 -2.56 -2.99 150 10 150.33 0.00 90.55 -0.24 31.62 -1.98 -2.23 160 10 160.31 0.00 100.50 -0.07 41.23 -1.55 -1.61 170 10 170.29 0.00 110.45 0.00 50.99 -1.19 -1.19 180 10 180.28 0.00 120.42 0.00 60.83 -0.90 -0.90 190 10 190.26 0.00 130.38 0.00 70.71 -0.65 -0.65 200 10 200.25 0.00 140.36 0.00 80.62 -0.43 -0.43 210 10 210.24 0.00 150.33 0.00 90.55 -0.24 -0.24 220 10 220.23 0.00 160.31 0.00 100.50 -0.07 -0.07 230 10 230.22 0.00 170.29 0.00 110.45 0.00 0.00 240 10 240.21 0.00 180.28 0.00 120.42 0.00 0.00 -120 0 120.00 0.00 180.00 0.00 240.00 0.00 0.00 -110 0 110.00 0.00 170.00 0.00 230.00 0.00 0.00 -100 0 100.00 -0.08 160.00 0.00 220.00 0.00 -0.08 -90 0 90.00 -0.25 150.00 0.00 210.00 0.00 -0.25 -80 0 80.00 -0.45 140.00 0.00 200.00 0.00 -0.45 -70 0 70.00 -0.67 130.00 0.00 190.00 0.00 -0.67 -60 0 60.00 -0.92 120.00 0.00 180.00 0.00 -0.92 -50 0 50.00 -1.23 110.00 0.00 170.00 0.00 -1.23 -40 0 40.00 -1.60 100.00 -0.08 160.00 0.00 -1.67 -30 0 30.00 -2.07 90.00 -0.25 150.00 0.00 -2.32 -20 0 20.00 -2.74 80.00 -0.45 140.00 0.00 -3.19 -10 0 10.00 -3.89 70.00 -0.67 130.00 0.00 -4.56 0 0 0.00 -10.00 60.00 -0.92 120.00 0.00 -10.92 10 0 10.00 -3.89 50.00 -1.23 110.00 0.00 -5.12 20 0 20.00 -2.74 40.00 -1.60 100.00 -0.08 -4.42 30 0 30.00 -2.07 30.00 -2.07 90.00 -0.25 -4.40 40 0 40.00 -1.60 20.00 -2.74 80.00 -0.45 -4.79 50 0 50.00 -1.23 10.00 -3.89 70.00 -0.67 -5.79 60 0 60.00 -0.92 0.00 -10.00 60.00 -0.92 -11.85 70 0 70.00 -0.67 10.00 -3.89 50.00 -1.23 -5.79 80 0 80.00 -0.45 20.00 -2.74 40.00 -1.60 -4.79 90 0 90.00 -0.25 30.00 -2.07 30.00 -2.07 -4.40 100 0 100.00 -0.08 40.00 -1.60 20.00 -2.74 -4.42 110 0 110.00 0.00 50.00 -1.23 10.00 -3.89 -5.12 Page 12 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 ,INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 120 0 120.00 0.00 60.00 -0.92 0.00 -10.00 -10.92 130 0 130.00 0.00 70.00 -0.67 10.00 -3.89 -4.56 140 0 140.00 0.00 80.00 -0.45 20.00 -2.74 -3.19 150 0 150.00 0.00 90.00 -0.25 30.00 -2.07 -2.32 160 0 160.00 0.00 100.00 -0.08 40.00 -1.60 -1.67 170 0 170.00 0.00 110.00 0.00 50.00 -1.23 -1.23 180 0 180.00 0.00 120.00 0.00 60.00 -0.92 -0.92 190 0 190.00 0.00 130.00 0.00 70.00 -0.67 -0.67 200 0 200.00 0.00 140.00 0.00 80.00 -0.45 -0.45 210 0 210.00 0.00 150.00 0.00 90.00 -0.25 -0.25 220 0 220.00 0.00 160.00 0.00 100.00 -0.08 -0.08 230 0 230.00 0.00 170.00 0.00 110.00 0.00 0.00 240 0 240.00 0.00 180.00 0.00 120.00 0.00 0.00 -120 -120 169.71 0.00 216.33 0.00 268.33 0.00 0.00 -110 -120 162.79 0.00 208.09 0.00 259.42 0.00 0.00 -100 -120 156.20 0.00 200.00 0.00 250.60 0.00 0.00 _ -90 -120 150.00 0.00 192.09 0.00 241.87 0.00 0.00 -80 -120 144.22 0.00 184.39 0.00 233.24 0.00 0.00 -70 -120 138.92 0.00 176.92 0.00 224.72 0.00 0.00 -60 -120 134.16 0.00 169.71 0.00 216.33 0.00 0.00 -50 -120 130.00 0.00 162.79 0.00 208.09 0.00 0.00 -40 -120 126.49 0.00 156.20 0.00 200.00 0.00 0.00 -30 -120 123.69 0.00 150.00 0.00 192.09 0.00 0.00 -20 -120 121.66 0.00 144.22 0.00 184.39 0.00 0.00 -10 -120 120.42 0.00 138.92 0.00 176.92 0.00 0.00 0 -120 120.00 0.00 134.16 0.00 169.71 0.00 0.00 10 -120 120.42 0.00 130.00 0.00 162.79 0.00 0.00 20 -120 121.66 0.00 126.49 0.00 156.20 0.00 0.00 30 -120 123.69 0.00 123.69 0.00 150.00 0.00 0.00 40 -120 126.49 0.00 121.66 0.00 144.22 0.00 0.00 50 -120 130.00 0.00 120.42 0.00 138.92 0.00 0.00 60 -120 134.16 0.00 120.00 0.00 134.16 0.00 0.00 70 -120 138.92 0.00 120.42 0.00 130.00 0.00 0.00 80 -120 144.22 0.00 121.66 0.00 126.49 0.00 0.00 90 -120 150.00 0.00 123.69 0.00 123.69 0.00 0.00 100 -120 156.20 0.00 126.49 0.00 121.66 0.00 0.00 110 -120 162.79 0.00 130.00 0.00 120.42 0.00 0.00 120 -120 169.71 0.00 134.16 0.00 120.00 0.00 0.00 130 -120 176.92 0.00 138.92 0.00 120.42 0.00 0.00 Page 13 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q= In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) . T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 j INJ-MPE-2 60 INJ-MPE-3 120 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 140 -120 184.39 0.00 144.22 0.00 121.66 0.00 0.00 150 -120 192.09 0.00 150.00 0.00 123.69 0.00 0.00 160 -120 200.00 0.00 156.20 0.00 126.49 0.00 0.00 170 -120 208.09 0.00 162.79 0.00 130.00 0.00 0.00 180 -120 216.33 0.00 169.71 0.00 134.16 0.00 0.00 , 190 -120 224.72 0.00 176.92 0.00 138.92 0.00 0.00 200 -120 233.24 0.00 184.39 0.00 144.22 0.00 0.00 210 -120 241.87 0.00 192.09 0.00 150.00 0.00 0.00 220 -120 250.60 0.00 200.00 0.00 156.20 0.00 0.00 230 -120 259.42 ' 0.00 208.09 0.00 162.79 0.00 0.00 240 -120 268.33 0.00 216.33 0.00 169.71 0.00 0.00 -120 -110 162.79 0.00 210.95 0.00 264.01 0.00 0.00 -110 -110 155.56 0.00 202.48 0.00 254.95 0.00 0.00 -100 -110 148.66 0.00 194.16 0.00 245.97 0.00 0.00 -90 -110 142.13 0.00 186.01 0.00 237.07 0.00 0.00 -80 -110 136.01 0.00 178.04 0.00 228.25 0.00 0.00 -70 -110 130.38 0.00 170.29 0.00 219.54 0.00 0.00 -60 -110 125.30 0.00 162.79 0.00 210.95 0.00 0.00 -50 -110 120.83 0.00 155.56 0.00 202.48 0.00 0.00 -40 -110 117.05 0.00 148.66 0.00 194.16 0.00 0.00 -30 -110 114.02 0.00 142.13 0.00 186.01 0.00 0.00 -20 -110 111.80 0.00 136.01 0.00 178.04 0.00 0.00 -10 -110 110.45 0.00 • 130.38 0.00 170.29 0.00 0.00 0 -110 110.00 0.00 125.30 0.00 162.79 0.00 0.00 10 -110 110.45 0.00 120.83 0.00 155.56 0.00 0.00 20 -110 111.80 0.00 117.05 0.00 148.66 0.00 0.00 30 -110 114.02 0.00 114.02 0.00 142.13 0.00 0.00 40 -110 117.05 0.00 111.80 0.00 136.01 0.00 •0.00 50 -110 120.83 0.00 110.45 0.00 130.38 0.00 0.00 60 -110 125.30 0.00 110.00 0.00 125.30 0.00 0.00 70 -110 130.38 0.00 110.45 0.00 120.83 0.00 0.00 80 -110 136.01 0.00 111.80 0.00 117.05 0.00 0.00 90 -110 142.13 0.00 114.02 0.00 114.02 0.00 0.00 100 -110 148.66 0.00 117.05 0.00 111.80 0.00 0.00 110 -110 155.56 0.00 120.83 0.00 110.45 0.00 0.00 120 -110 162.79 0.00 125.30 0.00 110.00 0.00 0.00 130 -110 170.29 0.00 130.38 0.00 110.45 0.00 0.00 140 -110 178.04 0.00 136.01 0.00 111.80 0.00 0.00 150 -110 186.01 0.00 142.13 0.00 114.02 0.00 0.00 Page 14 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 160 -110 194.16 0.00 148.66 0.00 117.05 0.00 0.00 170 -110 202.48 0.00 155.56 0.00 120.83 0.00 0.00 180 -110 210.95 0.00 162.79 0.00 125.30 0.00 0.00 190 -110 219.54 0.00 170.29 0.00 130.38 0.00 0.00 200 -110 228.25 0.00 178.04 0.00 136.01 0.00 0.00 210 -110 237.07 0.00 186.01 0.00 142.13 0.00 0.00 220 -110 245.97 0.00 194.16 0.00 148.66 0.00 0.00 230 -110 254.95 0.00 202.48 0.00 155.56 0.00 0.00 240 -110 264.01 0.00 210.95 0.00 162.79 0.00 0.00 -120 -100 156.20 0.00 205.91 0.00 260.00 0.00 0.00 -110 -100 148.66 0.00 197.23 0.00 250.80 0.00 0.00 -100 -100 141.42 0.00 188.68 0.00 241.66 0.00 0.00 -90 -100 134.54 0.00 180.28 0.00 232.59 0.00 0.00 -80 -100 128.06 0.00 172.05 0.00 223.61 0.00 0.00 -70 -100 122.07 0.00 164.01 0.00 214.71 0.00 0.00 -60 -100 116.62 0.00 156.20 0.00 205.91 0.00 0.00 -50 -100 111.80 0.00 148.66 0.00 197.23 0.00 0.00 -40 -100 107.70 0.00 141.42 0.00 188.68 0.00 0.00 -30 -100 104.40 -0.01 134.54 0.00 180.28 0.00 -0.01 -20 -100 101.98 -0.05 128.06 0.00 172.05 0.00 -0.05 -10 -100 100.50 -0.07 122.07 0.00 164.01 0.00 -0.07 0 -100 100.00 -0.08 116.62 0.00 156.20 0.00 -0.08 10 -100 100.50 -0.07 111.80 0.00 148.66 0.00 -0.07 20 -100 101.98 -0.05 107.70 0.00 141.42 0.00 -0.05 30 -100 104.40 -0.01 104.40 -0.01 134.54 0.00 -0.01- 40 -100 107.70 0.00 101.98 -0.05 128.06 0.00 -0.05 50 -100 111.80 0.00 100.50 -0.07 122.07 0.00 -0.07 60 -100 116.62 0.00 100.00 -0.08 116.62 0.00 -0.08 70 -100 122.07 0.00 100.50 -0.07 111.80 0.00 -0.07 80 -100 128.06 0.00 101.98 -0.05 107.70 0.00 -0.05 90 -100 134.54 0.00 104.40 -0.01 104.40 -0.01 -0.01 100 -100 141.42 0.00 107.70 0.00 101.98 -0.05 -0.05 110 -100 148.66 0.00 111.80 0.00 100.50 -0.07 -0.07 120 -100 156.20 0.00 116.62 0.00 100.00 -0.08 -0.08 130 -100 164.01 0.00 122.07 0.00 100.50 -0.07 -0.07 140 -100 172.05 0.00 128.06 0.00 101.98 -0.05 -0.05 150 -100 180.28 0.00 134.54 0.00 104.40 -0.01 -0.01 160 -100 188.68 0.00 141.42 0.00 107.70 0.00 0.00 170 -100 197.23 0.00 148.66 0.00 111.80 0.00 0.00 Page 15 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q= In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 _ Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 180 -100 205.91 0.00 156.20 0.00 116.62 0.00 0.00 190 -100 214.71 0.00 164.01 0.00 122.07 0.00 0.00 200 -100 223.61 0.00 172.05 0.00 128.06 0.00 0.00 210 -100 232.59 0.00 180.28 0.00 134.54 0.00 0.00 220 -100 241.66 0.00 188.68 0.00 141.42 0.00 0.00 230 -100 250.80 0.00 197.23 0.00 148.66 0.00 0.00 240 -100 260.00 0.00 205.91 0.00 156.20 0.00 0.00 -120 -90 150.00 0.00 201.25 0.00 256.32 0.00 0.00 -110 -90 142.13 0.00 192.35 0.00 246.98 0.00 0.00 -100 -90 134.54 0.00 183.58 0.00 237.70 0.00 0.00 -90 -90 127.28 0.00 174.93 0.00 228.47 0.00 0.00 -80 -90 120.42 0.00 166.43 0.00 219.32 0.00 0.00 -70 -90 114.02 0.00 158.11 0.00 210.24 0.00 0.00 -60 -90 108.17 0.00 150.00 0.00 201.25 0.00 0.00 -50 -90 102.96 -0.03 142.13 0.00 192.35 0.00 -0.03 -40 -90 98.49 -0.10 134.54 0.00 183.58 0.00 -0.10 -30 -90 94.87 -0.17 127.28 0.00 174.93 0.00 -0.17 -20 -90 92.20 -0.21 120.42 0.00 166.43 0.00 -0.21 -10 -90 90.55 -0.24 114.02 0.00 158.11 0.00 -0.24 0 -90 90.00 -0.25 108.17 0.00 150.00 0.00 -0.25 10 -90 90.55 -0.24 102.96 -0.03 142.13 0.00 -0.27 20 -90 92.20 -0.21 98.49 -0.10 134.54 0.00 -0.32 30 -90 94.87 -0.17 94.87 -0.17 127.28 0.00 -0.33 40 -90 98.49 -0.10 92.20 -0.21 120.42 0.00 -0.32 50 -90 102.96 -0.03 90.55 -0.24 114.02 0.00 -0.27 60 -90 108.17 0.00 90.00 -0.25 108.17 0.00 -0.25 70 -90 114.02 0.00 90.55 -0.24 102.96 -0.03 -0.27 80 -90 120.42 0.00 92.20 -0.21 98.49 -0.10 -0.32 90 -90 127.28 0.00 94.87 -0.17 94.87 -0.17 -0.33 100 -90 134.54 0.00 98.49 -0.10 92.20 -0.21 -0.32 110 -90 142.13 0.00 102.96 -0.03 90.55 -0.24 -0.27 120 -90 150.00 0.00 108.17 0.00 90.00 -0.25 -0.25 130 -90 158.11 0.00 114.02 0.00 90.55 -0.24 -0.24 140 -90 166.43 0.00 120.42 0.00 92.20 -0.21 -0.21 150 -90 174.93 0.00 127.28 0.00 94.87 -0.17 -0.17 160 -90 183.58 0.00 134.54 0.00 98.49 -0.10 -0.10 170 -90 192.35 0.00 142.13 0.00 102.96 -0.03 -0.03 180 -90 201.25 0.00 150.00 0.00 108.17 0.00 0.00 190 -90 210.24 0.00 158.11 0.00 114.02 0.00 0.00 Page 16 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 27T(s1-s2) Thiem equation: Q= In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 200 -90 219.32 0.00 166.43 0.00 120.42 0.00 0.00 210 -90 228.47 0.00 174.93 0.00 127.28 0.00 0.00 220 -90 237.70 0.00 183.58 0.00 134.54 0.00 0.00 230 -90 246.98 0.00 192.35 0.00 142.13 0.00 0.00 240 -90 256.32 0.00 201.25 0.00 . 150.00 0.00 0.00 -120 -80 144.22 0.00 196.98 0.00 252.98 0.00 0.00 -110 -80 136.01 0.00 187.88 0.00 243.52 0.00 0.00 -100 -80 128.06 0.00 178.89 0.00 234.09 0.00 0.00 -90 -80 120.42 0.00 170.00 0.00 224.72 0.00 0.00 -80 -80 113.14 0.00 161.25 0.00 215.41 0.00 0.00 -70 -80 106.30 0.00 152.64 0.00 206.16 0.00 0.00 -60 -80 100.00 -0.08 144.22 0.00 196.98 0.00 -0.08 -50 -80 94.34 -0.17 136.01 0.00 187.88 0.00 -0.17 -40 -80 89.44 -0.26 128.06 0.00 178.89 0.00 -0.26 -30 -80 85.44 -0.34 120.42 0.00 170.00 0.00 -0.34 -20 -80 82.46 -0.40 113.14 0.00 161.25 0.00 -0.40 -10 -80 80.62 -0.43 106.30 0.00 152.64 0.00 -0.43 0 -80 80.00 -0.45 100.00 -0.08 144.22 0.00 -0.53 10 -80 80.62 -0.43 94.34 -0.17 136.01 0.00 -0.61 20 -80 82.46 -0.40 89.44 -0.26 128.06 0.00 -0.66 30 -80 85.44 -0.34 85.44 -0.34 120.42 0.00 -0.68 40 -80 89.44 -0.26 82.46 -0.40 113.14 0.00 -0.66 50 -80 94.34 -0.17 80.62 -0.43 106.30 0.00 -0.61 60 -80 100.00 -0.08 80.00 -0.45 100.00 -0.08 -0.60 70 -80 106.30 0.00 80.62 -0.43 94.34 -0.17 -0.61 80 -80 113.14 0.00 82.46 -0.40 89.44 -0.26 -0.66 90 -80 120.42 0.00 85.44 -0.34 85.44 -0.34 -0.68 100 -80 128.06 0.00 89.44 -0.26 82.46 -0.40 -0.66 110 -80 136.01 0.00 94.34 -0.17 80.62 -0.43 -0.61 120 -80 144.22 0.00 100.00 -0.08 80.00 -0.45 -0.53 130 -80 152.64 0.00 106.30 0.00 80.62 -0.43 -0.43 140 -80 161.25 0.00 113.14 0.00 82.46 -0.40 -0.40 150 -80 170.00 0.00 120.42 0.00 85.44 -0.34 -0.34 160 -80 178.89 0.00 128.06 0.00 89.44 -0.26 -0.26 170 -80 187.88 0.00 136.01 0.00 94.34 -0.17 -0.17 180 -80 196.98 0.00 144.22 0.00 100.00 -0.08 -0.08 190 -80 206.16 0.00 152.64 0.00 106.30 0.00 0.00 200 -80 215.41 0.00 161.25 0.00 113.14 0.00 0.00 210 -80 224.72 0.00 170.00 0.00 120.42 0.00 0.00 Page 17 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 220 -80 234.09 0.00 178.89 0.00 128.06 0.00 0.00 230 -80 243.52 0.00 187.88 0.00 136.01 0.00 0.00 240 -80 252.98 0.00 196.98 0.00 144.22 0.00 0.00 -120 -70 138.92 0.00 193.13 0.00 250.00 0.00 0.00 -110 -70 130.38 0.00 183.85 0.00 240.42 0.00 0.00 -100 -70 122.07 0.00 174.64 0.00 230.87 0.00 0.00 -90 -70 114.02 0.00 165.53 0.00 221.36 0.00 0.00 -80 -70 106.30 0.00 156.52 0.00 211.90 0.00 0.00 -70 -70 98.99 -0.09 147.65 0.00 202.48 0.00 -0.09 -60 -70 92.20 -0.21 138.92 0.00 193.13 0.00 -0.21 -50 -70 86.02 -0.33 130.38 0.00 183.85 0.00 -0.33 -40 -70 80.62 -0.43 122.07 0.00 174.64 0.00 -0.43 -30 -70 76.16 -0.53 114.02 0.00 165.53 0.00 -0.53 -20 -70 72.80 -0.60 106.30 0.00 156.52 0.00 -0.60 -10 -70 70.71 -0.65 98.99 -0.09 147.65 0.00 -0.75 0 -70 70.00 -0.67 92.20 -0.21 138.92 0.00 -0.88 10 -70 70.71 -0.65 86.02 -0.33 130.38 0.00 -0.98 20 -70 72.80 -0.60 80.62 -0.43 122.07 0.00 -1.04 30 -70 76.16 -0.53 76.16 -0.53 114.02 0.00 -1.06 40 -70 80.62 -0.43 72.80 -0.60 106.30 0.00 -1.04 50 -70 86.02 -0.33 70.71 -0.65 98.99 -0.09 -1.07 60 -70 92.20 -0.21 70.00 -0.67 92.20 -0.21 -1.09 70 -70 98.99 -0.09 70.71 -0.65 86.02 -0.33 -1.07 80 -70 106.30 0.00 72.80 -0.60- 80.62 -0.43 -1.04 90 -70 114.02 0.00 76.16 -0.53 76.16 -0.53 -1.06 100 -70 122.07 0.00 80.62 -0.43 72.80 -0.60 -1.04 110 -70 130.38 0.00 86.02 -0.33 70.71 -0.65 -0.98 120 -70 138.92 0.00 92.20 -0.21 70.00 -0.67 -0.88 130 -70 147.65 0.00 98.99 -0.09 70.71 -0.65 -0.75 140 -70 156.52 0.00 106.30 0.00 72.80 -0.60 -0.60 150 -70 165.53 0.00 114.02 0.00 76.16 -0.53 -0.53 160 -70 174.64 0.00 122.07 0.00 80.62 -0.43 -0.43 170 -70 183.85 0.00 130.38 0.00 86.02 -0.33 -0.33 180 -70 193.13 0.00 138.92 0.00 92.20 -0.21 -0.21 190 -70 202.48 0.00 147.65 0.00 98.99 -0.09 -0.09 200 -70 211.90 0.00 156.52 0.00 106.30 0.00 0.00 210 -70 221.36 0.00 165.53 0.00 114.02 0.00 0.00 220 -70 230.87 0.00 174.64 0.00 122.07 0.00 0.00 230 -70 240.42 0.00 183.85 0.00 130.38 0.00 0.00 Page 18 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) 240 -70 250.00 0.00 193.13 0.00 138.92 0.00 0.00 -120 -60 134.16 0.00 189.74 0.00 247.39 0.00 0.00 -110 -60 125.30 ' 0.00 180.28 0.00 237.70 0.00 0.00 -100 -60 116.62 0.00 170.88 0.00 228.04 0.00 0.00 -90 -60 108.17 0.00 161.55 0.00 218.40 0.00 0.00 -80 -60 100.00 -0.08 152.32 0.00 208.81 0.00 -0.08 -70 -60 92.20 -0.21 143.18 0.00 199.25 0.00 -0.21 -60 -60 84.85 -0.35 134.16 0.00 189.74 0.00 -0.35 -50 -60 78.10 -0.49 125.30 0.00 180.28 0.00 -0.49 -40 -60 72.11 -0.62 116.62 0.00 170.88 0.00 -0.62 -30 -60 67.08 -0.74 108.17 0.00 161.55 0.00 -0.74 -20 -60 63.25 -0.84 100.00 -0.08 152.32 0.00 -0.91 -10 -60 60.83 -0.90 92.20 -0.21 143.18 0.00 -1.11 0 -60 60.00 -0.92 84.85 -0.35 134.16 0.00 -1.27 10 -60 60.83 -0.90 78.10 -0.49 125.30 0.00 -1.39 20 -60 63.25 -0.84 72.11 -0.62 116.62 0.00 -1.46 30 -60 67.08 -0.74 67.08 -0.74 108.17 0.00 -1.48 40 -60 72.11 -0.62 63.25 -0.84 100.00 -0.08 -1.53 50 -60 78.10 -0.49 60.83 -0.90 92.20 -0.21 -1.60 60 -60 84.85 -0.35 60.00 -0.92 84.85 -0.35 -1.62 70 -60 92.20 -0.21 60.83 -0.90 78.10 -0.49 -1.60 80 -60 100.00 -0.08 63.25 -0.84 72.11 -0.62 -1.53 90 -60 108.17 0.00 67.08 -0.74 67.08 -0.74 -1.48 100 -60 116.62 0.00 72.11 -0.62 63.25 -0.84 -1.46 110 -60 125.30 0.00 78.10 -0.49 60.83 -0.90 -1.39 120 -60 134.16 0.00 84.85 -0.35 60.00 -0.92 -1.27 130 -60 143.18 0.00 92.20 -0.21 60.83 -0.90 -1.11 140 -60 152.32 0.00 100.00 -0.08 63.25 -0.84 -0.91 150 -60 161.55 0.00 108.17 0.00 67.08 -0.74 -0.74 160 -60 170.88 0.00 116.62 0.00 72.11 -0.62 -0.62 170 -60 180.28 0.00 125.30 0.00 78.10 -0.49 -0.49 180 -60 189.74 0.00 134.16 0.00 84.85 -0.35 -0.35 190 -60 199.25 0.00 143.18 0.00 92.20 -0.21 -0.21 200 -60 208.81 0.00 152.32 0.00 100.00 -0.08 -0.08 210 -60 218.40 0.00 161.55 0.00 108.17 0.00 0.00 220 -60 228.04 0.00 170.88 0.00 116.62 0.00 0.00 230 -60 237.70 0.00 180.28 0.00 125.30 0.00 0.00 240 -60 247.39 0.00 189.74 0.00 134.16 0.00 0.00 -120 -50 130.00 0.00 186.82 0.00 245.15 0.00 0.00 Page 19 of 24 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Iniection.Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 21rT(s1-s2) Thiem equation: Q= In(r2/ri) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s, Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) . s2(ft) r2(ft) s2(ft) (ft) -110 -50 120.83 0.00 177.20 0.00 235.37 0.00 0.00 -100 -50 111.80 0.00 167.63 0.00 225.61 0.00 0.00 -90 -50 102.96 -0.03 158.11 0.00 215.87 0.00 -0.03 -80 -50 94.34 -0.17 148.66 : 0.00 206.16 0.00 -0.17 -70 -50 86.02 -0.33 139.28 0.00 196.47 0.00 -0.33 -60 -50 78.10 -0.49 130.00 0.00 186.82 0.00 -0.49 -50 -50 70.71 -0.65 120.83 0.00 177.20 0.00 -0.65 -40 -50 64.03 -0.82 111.80 0.00 167.63 0.00 -0.82 -30 -50 58.31 -0.97 102.96 -0.03 158.11 0.00 -1.00 -20 -50 53.85 -1.10 94.34 -0.17 148.66 0.00 -1.28 -10 -50 50.99 -1.19 86.02 -0.33 139.28 0.00 -1.52 0 -50 50.00 -1.23 78.10 -0.49 130.00 0.00 -1.71 10 -50 50.99 -1.19 70.71 -0.65 120.83 0.00 -1.85 20 -50 53.85 -1.10 64.03 -0.82 111.80 0.00 -1.92 30 -50 58.31 -0.97 58.31 -0.97 102.96 -0.03 -1.97 40 -50 64.03 -0.82 53.85 -1.10 94.34 -0.17 -2.09 50 -50 70.71 -0.65 50.99 -1.19 86.02 -0.33 -2.17 60 -50 78.10 -0.49 50.00 -1.23 78.10 -0.49 -2.20 70 -50 86.02 -0.33 50.99 -1.19 70.71 -0.65 -2.17 80 -50 94.34 -0.17 53.85 -1.10 64.03 -0.82 -2.09 90 -50 102.96 -0.03 58.31 -0.97 58.31 -0.97 -1.97 100 -50 111.80 0.00 64.03 -0.82 53.85 -1.10 -1.92 110 -50 120.83 0.00 70.71 -0.65 50.99 -1.19 -1.85 120 -50 130.00 0.00 78.10 -0.49 50.00 -1.23 -1.71 130 -50 139.28 0.00 86.02 -0.33 50.99 -1.19 -1.52 140 -50 148.66 0.00 94.34 -0.17 53.85 -1.10 -1.28 150 -50 158.11 0.00 102.96 -0.03 58.31 -0.97 -1.00 160 -50 167.63 0.00 111.80 0.00 64.03 -0.82 -0.82 170 -50 177.20 0.00 120.83 0.00 70.71 -0.65 -0.65 180 -50 186.82 0.00 130.00 0.00 78.10 -0.49 -0.49 190 -50 196.47 0.00 139.28 0.00 86.02 -0.33 -0.33 200 -50 206.16 0.00 148.66 0.00 94.34 -0.17 -0.17 210 -50 215.87 0.00 158.11 0.00 102.96 -0.03 -0.03 220 -50 225.61 0.00 167.63 0.00 111.80 0.00 0.00 230 -50 235.37 0.00 177.20 0.00 120.83 0.00 0.00 240 -50 245.15 0.00 186.82 0.00 130.00 0.00 0.00 -120 -40 126.49 0.00 184.39 . 0.00 243.31 0.00 0.00 -110 -40 117.05 0.00 174.64 0.00 233.45 0.00 0.00 -100 -40 107.70 0.00 164.92 0.00 223.61 0.00 0.00 Page 20 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q= In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -90 -40 98.49 -0.10 155.24 0.00 213.78 0.00 -0.10 -80 -40 89.44 -0.26 145.60 0.00 203.96 0.00 -0.26 -70 -40 80.62 -0.43 136.01 0.00 194.16 0.00 -0.43 -60 -40 72.11 -0.62 126.49 0.00 184.39 0.00 -0.62 -50 -40 64.03 -0.82 117.05 0.00 174.64 0.00 -0.82 -40 -40 56.57 -1.02 107.70 0.00 164.92 0.00 -1.02 -30 -40 50.00 -1.23 98.49 -0.10 155.24 0.00 -1.33 -20 -40 44.72 -1.41 89.44 -0.26 145.60 0.00 -1.67 -10 -40 41.23 -1.55 80.62 -0.43 136.01 0.00 -1.98 0 -40 40.00 -1.60 72.11 -0.62 126.49 0.00 -2.21 10 -40 41.23 -1.55 64.03 -0.82 117.05 0.00 -2.36 20 -40 44.72 -1.41 56.57 -1.02 107.70 0.00 -2.43 30 -40 50.00 -1.23 50.00 -1.23 98.49 __ -0.10 -2.55 40 -40 56.57 -1.02 44.72 -1.41 89.44 -0.26 -2.69 50 -40 64.03 -0.82 41.23 -1.55 80.62 -0.43 -2.80 60 -40 72.11 -0.62 40.00 -1.60 72.11 -0.62 -2.83 70 -40 80.62 -0.43 41.23 -1.55 64.03 -0.82 -2.80 80 -40 89.44 -0.26 44.72 -1.41 56.57 -1.02 -2.69 90 -40 98.49 -0.10 50.00 -1.23 50.00 -1.23 -2.55 100 -40 107.70 0.00 56.57 -1.02 44.72 -1.41 -2.43 110 -40 117.05 0.00 64.03 -0.82 41.23 -1.55 -2.36 120 -40 126.49 0.00 72.11 -0.62 40.00 -1.60 -2.21 130 -40 136.01 0.00 80.62 -0.43 41.23 -1.55 -1.98 140 -40 145.60 0.00 89.44 -0.26 44.72 -1.41 -1.67 150 -40 155.24 0.00 98.49 -0.10 50.00 -1.23 -1.33 160 -40 164.92 0.00 107.70 0.00 56.57 -1.02 -1.02 170 -40 174.64 0.00 117.05 0.00 64.03 -0.82 -0.82 180 -40 184.39 0.00 126.49 0.00 72.11 -0.62 -0.62 190 -40 194.16 0.00 136.01 0.00 80.62 -0.43 -0.43 200 -40 203.96 0.00 145.60 0.00 89.44 -0.26 -0.26 210 -40 213.78 0.00 155.24 0.00 98.49 -0.10 -0.10 220 -40 223.61 0.00 164.92 0.00 107.70 0.00 0.00 230 -40 233.45 0.00 174.64 0.00 117.05 0.00 0.00 240 -40 243.31 0.00 184.39 0.00 126.49 0.00 0.00 -120 -30 123.69 0.00 182.48 0.00 241.87 0.00 0.00 -110 -30 114.02 0.00 172.63 0.00 231.95 0.00 • 0.00 -100 -30 104.40 -0.01 162.79 0.00 222.04 0.00 -0.01 -90 -30 94.87 -0.17 152.97 0.00 212.13 0.00 -0.17 -80 -30 85.44 -0.34 143.18 0.00 202.24 0.00 -0.34 Page 21 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for si Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s - x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -70 -30 76.16 -0.53 133.42 0.00 192.35 0.00 -0.53 -60 -30 67.08 -0.74 123.69 0.00 182.48 0.00 -0.74 -50 -30 58.31 -0.97 114.02 0.00 - 172.63 0.00 -0.97 -40 -30 50.00 -1.23 104.40 -0.01 162.79 0.00 -1.23 -30 -30 42.43 -1.50 94.87 -0.17 152.97 0.00 -1.66 -20 -30 36.06 -1.77 85.44 -0.34 143.18 0.00 -2.11 -10 -30 31.62 -1.98 76.16 -0.53 133.42 0.00 -2.51 0 -30 30.00 -2.07 67.08 -0.74 123.69 0.00 -2.81 10 -30 31.62 -1.98 58.31 -0.97 114.02 0.00 -2.96 20 -30 36.06 -1.77 50.00 -1.23 104.40 -0.01 -3.00 30 -30 42.43 -1.50 42.43 -1.50 94.87 -0.17 -3.16 40 -30 50.00 -1.23 - 36.06 -1.77 85.44 -0.34 -3.33 50 -30 58.31 -0.97 31.62 -1.98 76.16 -0.53 -3.48 60 -30 67.08 -0.74 30.00 -2.07 67.08 -0.74 -3.55 70 -30 76.16 -0.53 31.62 -1.98 58.31 -0.97 -3.48 80 -30 85.44 -0.34 36.06 -1.77 50.00 -1.23 -3.33 90 -30 94.87 -0.17 42.43 -1.50 42.43 -1.50 -3.16 100 -30 104.40 -0.01 50.00 -1.23 36.06 -1.77 -3.00 110 -30 114.02 0.00 58.31 -0.97 31.62 -1.98 -2.96 120 -30 123.69 0.00 67.08 -0.74 30.00 -2.07 -2.81 130 -30 133.42 0.00 76.16 -0.53 31.62 -1.98 -2.51 140 -30 143.18 0.00 85.44 -0.34 36.06 -1.77 -2.11 150 -30 152.97 0.00 94.87 -0.17 42.43 -1.50 '\ -1.66 160 -30 162.79 0.00 104.40 -0.01 50.00 -1.23 -1.23 170 -30 172.63 0.00 114.02 0.00 58.31 -0.97 -0.97 180 -30 182.48 0.00 123.69 0.00 67.08 -0.74 -0.74 190 -30 192.35 0.00 133.42 0.00 76.16 -0.53 -0.53 200 -30 202.24 0.00 143.18 0.00 85.44 -0.34 -0.34 210 -30 212.13 0.00 152.97 0.00 94.87 -0.17 -0.17 220 -30 222.04 0.00 162.79 0.00 104.40 -0.01 -0.01 230 -30 231.95 0.00 172.63 0.00 114.02 0.00 0.00 240 -30 241.87 0.00 182.48 0.00 123.69 0.00 0.00 -120 -20 121.66 0.00 181.11 0.00 240.83 0.00 0.00 -110 -20 111.80 0.00 171.17 0.00 230.87 0.00 0.00 -100 -20 101.98 -0.05 161.25 0.00 220.91 0.00 -0.05 -90 -20 92.20 -0.21 151.33 0.00 210.95 0.00 -0.21 -80 -20 82.46 -0.40 141.42 0.00 201.00 0.00 -0.40 -70 -20 72.80 -0.60 131.53 0.00 191.05 0.00 -0.60 -60 -20 63.25 -0.84 121.66 0.00 181.11 0.00 -0.84 Page 22 of 24 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 21-1T(s1-s2) Thiem equation: Q = In(r2/ri) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for rt and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -50 -20 53.85 -1.10 111.80 0.00 171.17 0.00 -1.10 -40 -20 44.72 -1.41 101.98 -0.05 161.25 0.00 -1.46 -30 -20 36.06 -1.77 92.20 -0.21 151.33 0.00 -1.98 -20 -20 28.28 -2.17 82.46 -0.40 141.42 0.00 -2.57 -10 -20 22.36 -2.56 72.80 -0.60 131.53 0.00 -3.16 0 -20 20.00 -2.74 63.25 -0.84 121.66 0.00 -3.58 10 -20 22.36 -2.56 53.85 -1.10 111.80 0.00 -3.66 _ 20 -20 28.28 -2.17 44.72 -1.41 101.98 -0.05 -3.63 30 -20 36.06 -1.77 36.06 -1.77 92.20 -0.21 -3.75 40 -20 44.72 -1.41 28.28 -2.17 82.46 -0.40 -3.98 50 -20 53.85 -1.10 22.36 -2.56 72.80 -0.60 -4.26 60 -20 63.25 -0.84 20.00 -2.74 63.25 -0.84 -4.42 70 -20 72.80 -0.60 22.36 -2.56 53.85 -1.10 -4.26 80 -20 - _82.46 • -0.40 28.28 -2.17 44.72 -1.41 -3.98 _ _ 90 -20 92.20 -0.21 36.06 -1.77 36.06 -1.77 - -3.75 100 -20 101.98 -0.05 44.72 -1.41 28.28 -2.17 -3.63 110 -20 111.80 0.00 53.85 -1.10 22.36 -2.56 -3.66 120 -20 121.66 0.00 63.25 -0.84 20.00 -2.74 -3.58 130 -20 131.53 0.00 72.80 -0.60 22.36 -2.56 -3.16 140 -20 141.42 0.00 82.46 -0.40 28.28 -2.17 -2.57 150 -20 151.33 0.00 92.20 -0.21 36.06 -1.77 -1.98 160 -20 161.25 0.00 101.98 -0.05 44.72 -1.41 -1.46 170 ,- -20 171.17 0.00 111.80 0.00 53.85 -1.10 -1.10 180 -20 181.11 0.00 121.66 0.00 63.25 -0.84 -0.84 190 -20 191.05 0.00 131.53 0.00 72.80 -0.60 -0.60 200 -20 201.00 0.00 141.42 0.00 82.46 -0.40 -0.40 210 -20 210.95 0.00 151.33 0.00 92.20 -0.21 -0.21 220 -20 220.91 0.00 161.25 0.00 101.98 -0.05 -0.05 230 -20 230.87 0.00 171.17 0.00 111.80 0.00 0.00 240 -20 240.83 0.00 181.11 0.00 121.66 0.00 0.00 -120 -10 120.42 0.00 180.28 0.00 240.21 0.00 0.00 -110 -10 110.45 0.00 170.29 0.00 230.22 0.00 0.00 -100 -10 100.50 -0.07 160.31 0.00 220.23 0.00 -0.07 -90 -10 90.55 -0.24 150.33 0.00 210.24 0.00 -0.24 -80 -10 80.62 -0.43 140.36 0.00 200.25 0.00 -0.43 -70 -10 70.71 -0.65 130.38 0.00 190.26 0.00 -0.65 -60 -10 60.83 -0.90 120.42 0.00 180.28 0.00 -0.90 -50 -10 50.99 -1.19 110.45 0.00 170.29 0.00 -1.19 -40 -10 41.23 -1.55 100.50 -0.07 160.31 0.00 -1.61 Page 23 of 24 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Iniection Wells MPE-INJ-1, MPE-INJ-2, and MPE-INJ-3 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-1 0 0 INJ-MPE-2 60 0 INJ-MPE-3 120 0 Calculate the cumulative hydraulic effect of the 3 injection wells for a 360 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-1 INJ-MPE-2 INJ-MPE-3 Cumulative s x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) r2(ft) s2(ft) (ft) -30 -10 31.62 -1.98 90.55 -0.24 150.33 0.00 -2.23 -20 -10 22.36 -2.56 80.62 -0.43 140.36 0.00 -2.99 -10 -10 14.14 -3.32 70.71 -0.65 130.38 0.00 -3.97 0 -10 10.00 -3.89 60.83 -0.90 120.42 0.00 -4.79 10 -10 14.14 -3.32 50.99 -1.19 110.45 0.00 -4.51 20 -10 22.36 -2.56 41.23 -1.55 100.50 -0.07 -4.17 30 -10 31.62 -1.98 31.62 -1.98 90.55 -0.24 -4.21 40 -10 41.23 -1.55 22.36 -2.56 80.62 -0.43 -4.54 50 -10 50.99 -1.19 14.14 -3.32 70.71 -0.65 -5.16 60 -10 60.83 -0.90 10.00 -3.89 60.83 -0.90 -5.69 70 -10 ' 70.71 -0.65 14.14 -3.32 50.99 -1.19 -5.16 80 -10 80.62 -0.43 22.36 -2.56 41.23 -1.55 -4.54 90 -10 90.55 -0.24 31.62 -1.98 31.62 -1.98 -4.21 100 -10 100.50 -0.07 41.23 -1.55 22.36 -2.56 -4.17 110 -10 110.45 0.00 50.99 -1.19 14.14 -3.32 -4.51 120 -10 120.42 0.00 60.83 -0.90 10.00 -3.89 -4.79 130 -10 130.38 0.00 70.71 -0.65 14.14 -3.32 -3.97 140 -10 140.36 0.00 80.62 -0.43 22.36 -2.56 -2.99 150 -10 150.33 0.00 90.55 -0.24 31.62 -1.98 -2.23 160 -10 160.31 0.00 100.50 -0.07 41.23 -1.55 -1.61 170 -10 170.29 0.00 110.45 0.00 50.99 -1.19 -1.19 180 -10 180.28 0.00 120.42 0.00 60.83 -0.90 -0.90 190 -10 190.26 0.00 130.38 0.00 70.71 -0.65 -0.65 200 -10 200.25 0.00 140.36 0.00 80.62 -0.43 -0.43 210 -10 210.24 0.00 150.33 0.00 90.55 -0.24 -0.24 220 -10 220.23 0.00 160.31 0.00 100.50 -0.07 -0.07 230 -10 230.22 0.00 170.29 0.00 110.45 0.00 0.00 240 -10 240.21 0.00 180.28 0.00 120.42 0.00 0.00 Page 24 of 24 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity= 50 ft2/day avg.from slug tests Si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -120 120 169.71 0.00 216.33 0.00 0.00 -110 120 162.79 0.00 208.09 0.00 0.00 -100 120 156.20 0.00 200.00 0.00 0.00 -90 120 150.00 0.00 192.09 0.00 0.00 -80 120 144.22 0.00 184.39 0.00 0.00 -70 120 138.92 0.00 176.92 0.00 0.00 -60 120 134.16 0.00 169.71 0.00 0.00 -50 120 130.00 0.00 162.79 0.00 0.00 -40 120 126.49 0.00 156.20 0.00 0.00 -30 120 123.69 0.00 150.00 0.00 0.00 -20 120 121.66 0.00 144.22 0.00 0.00 -10 120 120.42 0.00 138.92 0.00 0.00 0 120 120.00 0.00 134.16 0.00 0.00 10 120 120.42 0.00 130.00 0.00 0.00 20 120 121.66 0.00 126.49 0.00 0.00 30 120 123.69 0.00 123.69 0.00 0.00 40 120 126.49 0.00 121.66 0.00 0.00 50 120 130.00 0.00 120.42 0.00 0.00 60 120 134.16 0.00 120.00 0.00 0.00 70 120 138.92 0.00 120.42 0.00 0.00 80 120 144.22 0.00 121.66 0.00 0.00 90 120 150.00 0.00 123.69 0.00 0.00 100 120 156.20 0.00 126.49 0.00 0.00 110 120 162.79 0.00 130.00 0.00 0.00 120 120 169.71 0.00 134.16 0.00 0.00 130 120 176.92 0.00 138.92 0.00 0.00 140 120 184.39 0.00 144.22 0.00 0.00 150 120 192.09 0.00 150.00 0.00 0.00 160 120 200.00 0.00 156.20 0.00 0.00 170 120 208.09 0.00 162.79 0.00 0.00 180 120 216.33 0.00 169.71 0.00 0.00 -120 110 162.79 0.00 210.95 0.00 0.00 -110 110 155.56 0.00 202.48 0.00 0.00 -100 110 148.66 0.00 194.16 0.00 0.00 -90 110 142.13 0.00 186.01 0.00 0.00 -80 110 136.01 0.00 178.04 0.00 0.00 -70 110 130.38 0.00 170.29 0.00 0.00 -60 110 125.30 0.00 162.79 0.00 0.00 -50 110 120.83 0.00 155.56 0.00 0.00 -40 110 117.05 0.00 148.66 0.00 0.00 Page 1 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(sf-s2) Thiem equation: Q= In(r2/ri) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -30 110 114.02 0.00 142.13 0.00 0.00 -20 110 111.80 0.00 136.01 0.00 0.00 -10 110 110.45 0.00 130.38 0.00 0.00 0 110 110.00 0.00 125.30 0.00 0.00 10 110 110.45 0.00 120.83 0.00 0.00 20 110 111.80 0.00 117.05 0.00 0.00 30 110 114.02 0.00 114.02 0.00 0.00 40 110 117.05 0.00 111.80 0.00 0.00 50 110 120.83 - 0.00 110.45 0.00 0.00 60 110 125.30 0.00 110.00 0.00 0.00 70 110 130.38 0.00 110.45 0.00 0.00 80 110 136.01 0.00 111.80 0.00 0.00 90 110 142.13 0.00 114.02 0.00 0.00 100 110 148.66 0.00 117.05 0.00 0.00 110 110 155.56 0.00 120.83 0.00 0.00 120 110 162.79 0.00 125.30 0.00 0.00 130 110 170.29 0.00 130.38 0.00 0.00 140 110 178.04 0.00 136.01 0.00 0.00 150 110 186.01 0.00 142.13 0.00 0.00 160 110 194.16 0.00 148.66 0.00 0.00 170 110 202.48 0.00 155.56 0.00 0.00 180 110 210.95 0.00 162.79 0.00 0.00 -120 100 156.20 0.00 205.91 0.00 0.00 -110 100 148.66 0.00 197.23 0.00 0.00 -100 100 141.42 0.00 188.68 0.00 0.00 -90 100 134.54 0.00 180.28 0.00 0.00 -80 100 128.06 0.00 172.05 0.00 0.00 -70 100 122.07 0.00 164.01 0.00 0.00 -60 100 116.62 0.00 156.20 0.00 0.00 -50 100 111.80 0.00 148.66 0.00 0.00 -40 100 107.70 0.00 141.42 0.00 0.00 -30 100 104.40 -0.01 134.54 0.00 -0.01 -20 100 101.98 -0.05 128.06 0.00 -0.05 -10 100 100.50 -0.07 122.07 0.00 -0.07 0 100 100.00 -0.08 116.62 0.00 -0.08 10 100 100.50 -0.07 111.80 0.00 -0.07 20 100 101.98 -0.05 107.70 0.00 -0.05 30 100 104.40 -0.01 104.40 -0.01 -0.01 40 100 107.70 0.00 101.98 -0.05 -0.05 50 100 111.80 0.00 100.50 -0.07 -0.07 Page 2of20 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/ri) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and-10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) • INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 60 100 116.62 0.00 100.00 -0.08 -0.08 70 100 122.07 0.00 _ 100.50 -0.07 -0.07 80 100 128.06 0.00_ 101.98 _ -0.05 -0.05 90 100 134.54 0.00 104.40 -0.01 -0.01 _100 100 141.42 0.00 107.70 0.00 0.00 110 100 148.66 0.00 111.80 0.00 0.00 120 100 156.20 0.00 116.62 0.00 0.00 130 100 164.01 0.00 122.07 0.00 0.00 140 100 172.05 0.00 128.06 0.00 0.00 _ 150 100 180.28 0.00 134.54 0.00 0.00 160 100 188.68 0.00 141.42 0.00 0.00 170 100 197.23 0.00 148.66 0.00 0.00 _ _ 180 100 205.91 0.00 156.20 0.00 0.00 __ -120 90 150.00 0.00 201.25 0.00 0.00 -110 90 142.13 0.00 192.35 0.00 0.00 -100 90 134.54 0.00 183.58 0.00 0.00 -90 90 127.28 0.00 174.93 0.00 0.00 -80 90 120.42 0.00 166.43 0.00 0.00 -70 90 , 114.02 0.00 158.11 0.00 0.00 -60 90 108.17 0.00 150.00 0.00 0.00 -50 90 102.96 -0.03 142.13 0.00 -0.03 _ -40 90 98.49 _ -0.10 134.54 0.00 -0.10 -30 90 94.87 -0.17 127.28 0.00 -0.17 -20 90 92.20 -0.21 120.42 0.00 -0.21 -10 90 90.55 -0.24 114.02 0.00 -0.24 0 90 90.00 -0.25 108.17 0.00 -0.25 10 90 90.55 -0.24 102.96 _ -0.03 -0.27 _ 20 90 92.20 -0.21 98.49 -0.10 _ -0.32 30 90 94.87 -0.17 94.87 -0.17 -0.33 40 90 98.49 -0.10 92.20 -0.21 -0.32 50 90 102.96 -0.03 90.55 -0.24 -0.27 60 90 108.17 0.00 90.00 -0.25 -0.25 70 90 114.02 0.00 90.55 -0.24 -0.24 80 90 120.42 0.00 92.20 -0.21 -0.21 90 90 127.28 0.00 94.87 -0.17 -0.17 100 90 134.54 0.00 98.49 -0.10 -0.10 110 90 142.13 0.00 102.96 -0.03 -0.03 120 90 150.00 0.00 108.17 0.00 0.00 130 90 158.11 0.00 114.02 0.00 0.00 140 90 166.43 0.00 120.42 0.00 0.00 Page 3 of 20 I Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2TrT(s1-s2) Thiem equation: Q= In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) _ y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 150 90 174.93 0.00 127.28 0.00 0.00 160 90 183.58 0.00 134.54 0.00 0.00 170 90 192.35 0.00 142.13 0.00 0.00 180 90 201.25 0.00 150.00 0.00 0.00 -120 80 144.22 0.00 196.98 0.00 0.00 -110 80 136.01 0.00 187.88 0.00 0.00 -100 80 128.06 0.00 178.89 0.00 0.00 -90 80 120.42 0.00 170.00 0.00 0.00 -80 80 113.14 0.00 161.25 0.00 0.00 -70 80 106.30 0.00 152.64 0.00 0.00 -60 80 100.00 -0.08 144.22 0.00 -0.08 -50 80 94.34 -0.17 136.01 0.00 -0.17 -40 80 89.44 -0.26 128.06 0.00 -0.26 -30 80 85.44 -0.34 120.42 0.00 -0.34 -20 80 82.46 -0.40 113.14 0.00 -0.40 -10 80 80.62 -0.43 106.30 0.00 -0.43 0 80 80.00 -0.45 100.00 -0.08 -0.53 10 80 80.62 -0.43 94.34 -0.17 -0.61 20 80 82.46 -0.40 89.44 -0.26 -0.66 30 80 85.44 -0.34 85.44 -0.34 -0.68 40 80 89.44 -0.26 82.46 -0.40 -0.66 50 80 94.34 -0.17 80.62 -0.43 -0.61 60 80 100.00 -0.08 80.00 -0.45 -0.53 70 80 106.30 0.00 80.62 -0.43 -0.43 80 , 80 113.14 0.00 82.46 -0.40 -0.40 90 80 120.42 0.00 85.44 -0.34 -0.34 100 80 128.06 0.00 89.44 -0.26 -0.26 110 80 136.01 0.00 94.34 -0.17 -0.17 120 80 144.22 0.00 100.00 -0.08 -0.08 130 80 152.64 0.00 106.30 0.00 0.00 140 80 161.25 0.00 113.14 0.00 0.00 150 80 170.00 0.00 120.42 0.00 0.00 160 80 178.89 0.00 128.06 0.00- 0.00 170 80 187.88 0.00 136.01 0.00 0.00 180 80 196.98 0.00 144.22 0.00 0.00 -120 70 138.92 0.00 193.13 0.00 0.00 -110 70 130.38 0.00 183.85 0.00 0.00 -100 70 122.07 0.00 174.64 0.00 0.00 -90 70 114.02 0.00 165.53 0.00 0.00 -80 70 106.30 0.00 156.52 0.00 0.00 Page 4 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -70 70 98.99 -0.09 147.65 0.00 -0.09 -60 70 92.20 -0.21 138.92 0.00 -0.21 -50 70 86.02 -0.33 130.38 0.00 -0.33 -40 70 80.62 -0.43 122.07 0.00 -0.43 -30 70 76.16 -0.53 114.02 0.00 -0.53 -20 70 72.80 -0.60 106.30 0.00 -0.60 -10 70 70.71 -0.65 98.99 -0.09 -0.75 0 70 70.00 -0.67 92.20 -0.21 -0.88 10 70 70.71 -0.65 86.02 -0.33 -0.98 20 70 72.80 -0.60 80.62 -0.43 -1.04 30 70 76.16 -0.53 76.16 -0.53 -1.06 40 70 80.62 -0.43 72.80 -0.60 -1.04 . 50 70 86.02 -0.33 70.71 -0.65 -0.98 60 70 92.20 -0.21 70.00 -0.67 -0.88 70 70 98.99 -0.09 70.71 -0.65 -0.75 80 70 106.30 0.00 72.80 -0.60 -0.60 90 70 114.02 0.00 76.16 -0.53 -0.53 100 70 122.07 0.00 80.62 -0.43 -0.43 110 70 130.38 0.00 86.02 -0.33 -0.33 120 70 138.92 0.00 92.20 -0.21 -0.21 130 70 147.65 0.00 98.99 -0.09 -0.09 140 70 156.52 0.00 106.30 0.00 0.00 150 70 165.53 0.00 114.02 0.00 0.00 160 70 174.64 0.00 122.07 0.00 0.00 170 70 183.85 0.00 130.38 0.00 0.00 180 70 193.13 0.00 138.92 0.00 0.00 -120 60 134.16 0.00 189.74 0.00 0.00 -110 60 125.30 0.00 180.28 0.00 0.00 -100 60 116.62 0.00 170.88 0.00 0.00 -90 60 108.17 0.00 161.55 0.00 0.00 -80 60 100.00 -0.08 152.32 0.00 -0.08 -70 60 92.20 -0.21 143.18 0.00 -0.21 -60 60 84.85 -0.35 134.16 0.00 -0.35 -50 60 78.10 -0.49 125.30 0.00 -0.49 -40 60 72.11 -0.62 116.62 0.00 -0.62 -30 60 67.08 -0.74 108.17 0.00 -0.74 -20 60 63.25 -0.84 100.00 -0.08 -0.91 -10 60 60.83 -0.90 92.20 -0.21 -1.11 0 60 60.00 -0.92 84.85 -0.35 -1.27 10 60 60.83 -0.90 78.10 -0.49 -1.39 Page 5 of 20 I Infection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2TrT(s1-s2) Thiem equation: Q= In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 20 60 63.25 -0.84 72.11 -0.62 -1.46 30 60 67.08 -0.74 67.08 -0.74 -1.48 40 60 72.11 -0.62 63.25 -0.84 -1.46 50 60 78.10 -0.49 60.83 -0.90 -1.39 60 60 84.85 -0.35 60.00 -0.92 -1.27 70 60 92.20 -0.21 60.83 -0.90 -1.11 80 60 100.00 -0.08 63.25 -0.84 -0.91 90 60 108.17 0.00 67.08 -0.74 -0.74 100 60 116.62 0.00 72.11 -0.62 -0.62 110 60 125.30 0.00 78.10 -0.49 -0.49 120 60 134.16 . 0.00 84.85 -0.35 -0.35 130 60 143.18 0.00 92.20 -0.21 -0.21 140 60 152.32 0.00 100.00 -0.08 -0.08 150 60 161.55 0.00 108.17 0.00 0.00 160 60 170.88 0.00 116.62 0.00 0.00 170 60 180.28 0.00 125.30 0.00 0.00 180 60 189.74 0.00 134.16 0.00 0.00 -120 50 130.00 0.00 186.82 0.00 0.00 -110 50 120.83 _ 0.00 177.20 0.00 0.00 -100 50 111.80 0.00 167.63 0.00 0.00 -90 50 102.96 -0.03 158.11 0.00 -0.03 _-8_0 50 94.34 -0.17 148.66 0.00 -0.17 70 _ 50 86.02 -0.33 139.28 0.00 -0.33 -60 _ 50 78.10 -0.49 130.00 _ 0.00 -0.49 _ -50 50 70.71 -0.65 120.83 0.00 -0.65 -40 50 64.03 -0.82 111.80 0.00 -0.82 -30 50 58.31 -0.97 102.96 -0.03 -1.00 -20 50 53.85 -1.10 94.34 -0.17 -1.28 ' -10 50 50.99 -1.19 86.02 -0.33 -1.52 0 50 50.00 -1.23 78.10 -0.49 -1.71 10 50 50.99 -1.19 70.71 -0.65 -1.85 20 50 53.85 -1.10 64.03 -0.82 -1.92 30 50 58.31 -0.97 58.31 -0.97 -1.94 40 50 64.03 -0.82 53.85 -1.10 -1.92 50 50 70.71 -0.65 50.99 -1.19 -1.85 60 50 78.10 -0.49 50.00 -1.23 -1.71 70 50 86.02 -0.33 50.99 -1.19 -1.52 80 50 94.34 -0.17 53.85 -1.10 -1.28 90 50 102.96 -0.03 58.31 -0.97 -1.00 100 50 111.80 0.00 64.03 -0.82 -0.82 Page 6 of 20 injection Well Zone of Influence Calculations " GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/ri) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests Si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 hIN Use simplified well coordinates: x(ft) y(ft) J-MPE-4 0 0 • J-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) _ s2(ft) Cumulative s(ft) 110 50 120.83 0.00 70.71 -0.65 -0.65 120 50 130.00 0.00 78.10 -0.49 -0.49 130 50 139.28 0.00 86.02 -0.33 -0.33 __ 140 50 148.66 0.00 94.34 -0.17 -0.17 150 50 158.11 0.00 102.96 -0.03 -0.03 160 50 167.63 0.00 111.80 0.00 0.00 170 50 177.20 0.00 120.83 0.00 0.00 180 50 186.82 0.00 130.00 0.00 0.00 -120 40 126.49 0.00 184.39 0.00 0.00 -110 40 117.05 0.00 174.64 0.00 0.00 -100 40 107.70 0.00 164.92 0.00 0.00 -90 40 98.49 -0.10 155.24 0.00 -0.10 -80 40 89.44 -0.26 145.60 0.00 -0.26 -70 40 80.62 -0.43 136.01 0.00 -0.43 -60 40 72.11 -0.62 126.49 0.00 -0.62 -50 40 64.03 -0.82 117.05 0.00 -0.82 -40 __ _ 40 56.57 -1.02 107.70 0.00 _ -1.02 -30 _ 40 50.00 -1.23 98.49 -0.10 -1.33 -20 40 44.72 -1.41 89.44 -0.26 -1.67 -10 40 41.23 -1.55 80.62 -0.43 -1.98 0 40 40.00 -1.60 72.11 -0.62 -2.21 10 40 41.23 -1.55 • 64.03 -0.82 -2.36 20 40 44.72 -1.41 56.57 -1.02 -2.43 30 40 50.00 -1.23 50.00 -1.23 -2.45 40 40 56.57 -1.02 44.72 -1.41 -2.43 50 40 64.03 -0.82 41.23 -1.55 -2.36 60 40 72.11 -0.62 40.00 -1.60 -2.21 70 40 80.62 -0.43 41.23 -1.55 -1.98 80 40 89.44 -0.26 44.72 -1.41 -1.67 90 40 98.49 -0:10 50.00 -1.23 -1.33 100 40 107.70 0.00 56.57 -1.02 -1.02 110 40 117.05 0.00 64.03 -0.82 -0.82 120 40 126.49 0.00 72.11 -0.62 -0.62 130 40 136.01 0.00 80.62 -0.43 -0.43 140 40 145.60 0.00 89.44 -0.26 -0.26 150 40 155.24 0.00 98.49 -0.10 -0.10 160 40 164.92 0.00 107.70 0.00 0.00 170 40 174.64 0.00 117.05 0.00 0.00 180 40 184.39 0.00 126.49 0.00 0.00 -120 30 123.69 0.00 182.48 0.00 0.00 Page 7 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) - Thiem equation: Q = In(r2/ri) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg. from slug tests si =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 . 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -110 30 114.02 0.00 172.63 0.00 0.00 -100 30 104.40 -0.01 162.79 0.00 -0.01 -90 30 94.87 -0.17 152.97 0.00 -0.17 -80 30 85.44 -0.34 143.18 0.00 -0.34 -70 30 76.16 -0.53 133.42 0.00 -0.53 -60 30 67.08 -0.74 123.69 0.00 -0.74 -50 30 58.31 -0.97 114.02 0.00 -0.97 -40 30 50.00 -1.23 104.40 -0.01 -1.23 -30 30 42.43 -1.50 94.87 -0.17 -1.66 -20 30 36.06 -1.77 85.44 -0.34 -2.11 -10 30 31.62 -1.98 76.16 -0.53 -2.51 0 30 30.00 -2.07 67.08 -0.74 -2.81 10 30 31.62 -1.98 58.31 -0.97 -2.96 20 30 36.06 -1.77 50.00 -1.23 -2.99 30 30 42.43 -1.50 42.43 -1.50 -3.00 40 30 50.00 -1.23 36.06 -1.77 -2.99 50 30 58.31 -0.97 31.62 -1.98 -2.96 60 30 67.08 -0.74 30.00 -2.07 -2.81 70 30 76.16 -0.53 31.62 -1.98 -2.51 80 30 85.44 -0.34 36.06 -1.77 -2.11 90 30 94.87 -0.17 42.43 -1.50 -1.66 100 30 104.40 -0.01 50.00 -1.23 -1.23 110 30 114.02 0.00 58.31 -0.97 -0.97 120 30 123.69 0.00 67.08 -0.74 -0.74 130 30 133.42 0.00 76.16 -0.53 -0.53 140 30 143.18 0.00 85.44 -0.34 -0.34 150 30 152.97 0.00 94.87 -0.17 -0.17 160 30 162.79 0.00 104.40 -0.01 -0.01 170 30 172.63 0.00 114.02 0.00 0.00 180 30 182.48 0.00 123.69 0.00 0.00 -120 20 121.66 0.00 181.11 0.00 0.00 -110 20 111.80 0.00 171.17 0.00 0.00 -100 20 101.98 -0.05 161.25 0.00 -0.05 -90 20 92.20 -0.21 151.33 0.00 -0.21 -80 20 82.46 -0.40 141.42 0.00 -0.40 -70 20 72.80 -0.60 131.53 0.00 -0.60 -60 20 63.25 -0.84 121.66 0.00 -0.84 -50 20 53.85 -1.10 111.80 0.00 -1.10 -40 20 44.72 -1.41 101.98 -0.05 -1.46 -30 20 36.06 -1.77 92.20 -0.21 -1.98 Page 8 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q= In(r2/ri) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -20 20 28.28 -2.17 82.46 -0.40 -2.57 -10 20 22.36 -2.56 72.80 -0.60 -3.16 0 20 20.00 -2.74 63.25 -0.84 -3.58 10 20 22.36 -2.56 53.85 -1.10 -3.66 20 20 28.28 -2.17 44.72 -1.41 -3.58 30 20 36.06 -1.77 36.06 -1.77 -3.53 40 20 44.72 -1.41 28.28 -2.17 -3.58 50 20 53.85 -1.10 22.36 -2.56 -3.66 60 20 63.25 -0.84 20.00 -2.74 -3.58 70 20 72.80 -0.60 22.36 -2.56 -3.16 80 20 82.46 -0.40 28.28 -2.17 -2.57 90 20 92.20 -0.21 36.06 -1.77 -1.98 100 20 101.98 -0.05 44.72 -1.41 -1.46 110 20 111.80 0.00 53.85 -1.10 -1.10 120 20 121.66 0.00 63.25 -0.84 -0.84 130 20 131.53 0.00 72.80 -0.60 -0.60 140 20 141.42 0.00 82.46 -0.40 -0.40 150 20 151.33 0.00 92.20 -0.21 -0.21 160 20 161.25 0.00 101.98 -0.05 -0.05 170 20 171.17 0.00 111.80 0.00 0.00 180 20 181.11 0.00 121.66 0.00 0.00 -120 10 120.42 0.00 180.28 0.00 0.00 -110 10 110.45 0.00 170.29 0.00 0.00 -100 10 100.50 -0.07 160.31 0.00 -0.07 -90 10 90.55 -0.24 150.33 0.00 -0.24 -80 10 80.62 -0.43 140.36 0.00 -0.43 -70 10 70.71 -0.65 130.38 0.00 -0.65 -60 10 60.83 -0.90 120.42 0.00 -0.90 -50 10 50.99 -1.19 110.45 0.00 -1.19 -40 10 41.23 -1.55 100.50 -0.07 -1.61 -30 10 31.62 -1.98 90.55 -0.24 -2.23 -20 10 22.36 -2.56 80.62 -0.43 -2.99 -10 10 14.14 -3.32 70.71 -0.65 -3.97 0 10 10.00 -3.89 60.83 -0.90 -4.79 10 10 14.14 -3.32 50.99 -1.19 -4.51 20 10 22.36 -2.56 41.23 -1.55 -4.10 30 10 31.62 -1.98 31.62 -1.98 -3.97 40 10 41.23 -1.55 22.36 -2.56 -4.10 50 10 50.99 -1.19 14.14 -3.32 -4.51 60 10 60.83 -0.90 10.00 -3.89 -4.79 Page 9 of 20 1 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 70 10 70.71 -0.65 14.14 -3.32 -3.97 80 10 80.62 -0.43 22.36 -2.56 -2.99 90 10 90.55 -0.24 31.62 -1.98 -2.23 100 10 100.50 -0.07 41.23 -1.55 -1.61 110 10 110.45 0.00 50.99 -1.19 -1.19 120 10 120.42 0.00 60.83 -0.90 -0.90 130 10 130.38 0.00 70.71 -0.65 -0.65 140 10 140.36 0.00. 80.62 -0.43 -0.43 150 10 150.33 0.00 90.55 -0.24 -0.24 160 10 160.31 0.00 100.50 -0.07 -0.07 170 10 170.29 0.00 110.45 0.00 0.00 180 10 180.28 0.00 120.42 0.00 0.00 -120 0 120.00 0.00 180.00 0.00 0.00 -110 0 110.00 0.00 170.00 0.00 0.00 -100 0 100.00 -0.08 160.00 0.00 -0.08 -90 0 90.00 -0.25 150.00 0.00 -0.25 -80 0 80.00 -0.45_ 140.00 0.00 -0.45 -70 0 70.00 -0.67_ 130.00 0.00 -0.67 -60 0 60.00 -0.92 120.00 0.00 -0.92 -50 0 50.00 -1.23 110.00 0.00 -1.23 -40 0 40.00 -1.60 100.00 -0.08 -1.67 -30 0 30.00 -2.07i 90.00 -0.25 -2.32 -20 0 20.00 -2.74 80.00 -0.45 -3.19 -10 0 10.00 -3.89 70.00 -0.67 -4.56 0 0 0.00 -10.00_ 60.00 -0.92 -10.92 10 0 10.00 -3.89 50.00 -1.23 -5.12 20 0 20.00 -2.74 40.00 -1.60 -4.34 30 0 30.00 -2.07 30.00 -2.07 -4.14 40 0 40.00 -1.60 20.00 -2.74 -4.34 50 0 50.00 -1.23 10.00 -3.89 -5.12 60 0 60.00' -0.92 0.00 -10.00 -10.92 70 0 70.00 -0.67 10.00 -3.89 -4.56 80 0 80.00 -0.45 20.00 -2.74 -3.19 90 0 90.00 -0.25 30.00 -2.07 -2.32 100 0 100.00, -0.08 40.00 -1.60 -1.67 110 0 110.00, 0.00 50.00 -1.23 -1.23 120 0 120.00 0.00 60.00' -0.92 -0.92 130 0 130.00! 0.00 70.00 -0.67 -0.67 140 0 140.00j 0.00 80.00 j -0.45 -0.454 150 0 150.00; 0.00 90.00 -0.25 -0.254 Page 10 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-4 and MPE-INJ-5 21-rT(s1-s2) Thiem equation: Q = In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 160 0 160.00 - 0.00 100.00 -0.08 -0.08 170 0 170.00 0.00 110.00 0.00 0.00 180 0 180.00 0.00 120.00 0.00 0.00 -120 -120 169.71 0.00 216.33 0.00 0.00 -110 -120 162.79 0.00 208.09 0.00 0.00 -100 -120 156.20 0.00 200.00 0.00 0.00 -90 -120 150.00 0.00 192.09 0.00 0.00 -80 -120 144.22 0.00 184.39 0.00 0.00 -70 -120 138.92 0.00 176.92 0.00 0.00 -60 -120 134.16 0.00 169.71 0.00 0.00 -50 -120 130.00 0.00 162.79 0.00 0.00 -40 -120 126.49 0.00 156.20 0.00 0.00 -30 -120 123.69 0.00 150.00 0.00 0.00 -20 -120 121.66 0.00 144.22 0.00 0.00 -10 -120 120.42 0.00 138.92 0.00 0.00 0 -120 120.00 0.00 134.16 0.00 0.00 10 -120 120.42 0.00 130.00 0.00 0.00 20 -120 121.66 0.00 126.49 0.00 0.00 30 -120 123.69 0.00 123.69 0.00 0.00 40 -120 126.49 0.00 121.66 0.00 0.00 50 -120 130.00 0.00 120.42 0.00 0.00 60 -120 134.16 0.00 120.00 0.00 0.00 70 -120 138.92 0.00 120.42 0.00 0.00 80 -120 144.22 0.00 121.66 0.00 0.00 90 -120 150.00 0.00 123.69 0.00 0.00 100 -120 156.20 0.00 126.49 0.00 0.00 110 -120 162.79 0.00 130.00 0.00 0.00 120 -120 169.71 0.00 134.16 0.00 0.00 130 -120 176.92 0.00 138.92 0.00 0.00 140 -120 184.39 0.00 144.22 0.00 0.00 150 -120 192.09 0.00 150.00 0.00 0.00 160 -120 200.00 0.00 156.20 0.00 0.00 170 -120 208.09 0.00 162.79 0.00 0.00 180 -120 216.33 0.00 169.71 0.00 0.00 -120 -110 162.79 0.00 210.95 0.00 0.00 -110 -110 155.56 0.00 202.48 0.00 0.00 -100 -110 148.66 0.00 _ 194.16 0.00 0.00 -90 -110 142.13 0.00 186.01 0.00 0.00 -80 -110 136.01 0.00 178.04 0.00 0.00 -70 -110 130.38 0.00 170.29 0.00 0.00 Page 11 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q= In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -60 -110 125.30 0.00 162.79 0.00 0.00 -50 -110 120.83 0.00 155.56 0.00 0.00 -40 -110 117.05 0.00 148.66 0.00 0.00 -30 -110 114.02 0.00 142.13 0.00 0.00 -20 -110 111.80 0.00 136.01 0.00 0.00 -10 -110 110.45 0.00 130.38 0.00 0.00 0 -110 110.00 0.00 125.30 0.00 0.00 10 -110 110.45 0.00 120.83 0.00 0.00 20 -110 111.80 0.00 117.05 0.00 0.00 30 -110 114.02 0.00 114.02 0.00 0.00 40 -110 117.05 0.00 111.80 0.00 0.00 50 -110 120.83 0.00 110.45 0.00 0.00 60 -110 125.30 0.00 110.00 0.00 0.00 70 -110 130.38 0.00 110.45 0.00 0.00 80 -110 136.01 0.00 111.80 0.00 0.00 90 -110 142.13 0.00 114.02 0.00 0.00 100 -110 148.66 0.00 117.05 0.00 0.00 110 -110 155.56 0.00 120.83 0.00 0.00 120 -110 162.79 0.00 125.30 0.00 0.00 130 -110 170.29 0.00 130.38 0.00 0.00 140 -110 178.04 0.00 136.01 0.00 0.00 150 -110 186.01 0.00 142.13 0.00 0.00 160 -110 194.16 0.00 148.66 0.00 0.00 170 -110 202.48 0.00 155.56 0.00 0.00 180 -110 210.95 0.00 162.79 0.00 0.00 -120 -100 156.20 • 0.00 205.91 0.00 0.00 -110 -100 148.66 0.00 197.23 0.00 0.00 -100 -100 141.42 0.00 188.68 0.00 0.00 -90 -100 134.54 0.00 180.28 0.00 0.00 -80 -100 128.06 0.00 172.05 0.00 0.00 -70 -100 122.07 0.00 164.01 0.00 0.00 -60 -100 116.62 0.00 156.20 0.00 0.00 -50 -100 111.80 0.00 148.66 0.00 0.00 -40 -100 107.70 0.00 141.42 0.00 0.00 -30 -100 104.40 -0.01 134.54 0.00 -0.01 -20 -100 101.98 -0.05 128.06 0.00 -0.05 -10 -100 100.50 -0.07 122.07 0.00 -0.07 0 -100 100.00 -0.08 116.62 0.00 -0.08 10 -100 100.50 -0.07 111.80 0.00 -0.07 20 -100 101.98 -0.05 107.70 0.00 -0.05 Page 12 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2uT(s1-s2) Thiem equation: Q = In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity= 50 ft2/day avg.from slug tests • s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 ,INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 30 -100 104.40 -0.01 104.40 -0.01 -0.01 40 -100 107.70 0.00 101.98 -0.05 -0.05 50 -100 111.80 0.00 100.50 -0.07 -0.07 60 -100 116.62 0.00 100.00 -0.08 -0.08 70 -100 122.07 0.00 100.50 -0.07 -0.07 80 -100 128.06 0.00 101.98 -0.05 -0.05 90 -100 134.54 0.00 104.40 -0.01 -0.01 100 -100 141.42 0.00 107.70 0.00 0.00 110 -100 148.66 0.00 111.80 0.00 0.00 120 -100 156.20 0.00 116.62 0.00 0.00 130 -100 164.01 0.00 122.07 0.00 0.00 140 -100 172.05 0.00 128.06 0.00 0.00 150 -100 180.28 0.00 134.54 0.00 0.00 160 -100 188.68 0.00 . 141.42 0.00 0.00 170 -100 197.23 0.00 148.66 0.00 0.00 180 -100 205.91 0.00 156.20 0.00 0.00 -120 -90 150.00 0.00 201.25 0.00 0.00 -110 -90 142.13 0.00 192.35 0.00 0.00 -100 -90 134.54 0.00 183.58 0.00 0.00 -90 -90 127.28 0.00 174.93 0.00 0.00 -80 -90 120.42 0.00 166.43 0.00 0.00 -70 -90 114.02 0.00 158.11 0.00 0.00 -60 -90 108.17 0.00 , 150.00 0.00 0.00 -50 -90 102.96 -0.03 142.13 0.00 -0.03 -40 -90 98.49 -0.10 134.54 0.00 -0.10 -30 -90 94.87 -0.17 127.28 0.00 -0.17 -20 -90 92.20 -0.21 120.42 0.00 -0.21 -10 -90 90.55 -0.24 114.02 0.00 -0.24 0 -90 90.00 -0.25 108.17 0.00 -0.25 10 -90 90.55 -0.24 102.96 -0.03 -0.27 20 -90 92.20 -0.21 98.49 -0.10 -0.32 30 -90 94.87 -0.17 94.87 -0.17 -0.33 40 -90 98.49 -0.10 92.20 -0.21 -0.32 50 -90 102.96 -0.03 90.55 -0.24 -0.27 60 -90 108.17 0.00 90.00 -0.25 -0.25 70 -90 114.02 0.00 90.55 -0.24 -0.24 80 -90 120.42 0.00 92.20 -0.21 -0.21 90 -90 127.28 0.00 94.87 -0.17 -0.17 100 -90 134.54 . 0.00 98.49 -0.10 -0.10 110 -90 142.13 0.00 102.96 -0.03 -0.03 Page 13 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 120 -90 150.00 0.00 108.17 0.00 0.00 130 -90 158.11 0.00 114.02 0.00 0.00 140 -90 166.43 0.00 120.42 0.00 0.00 150 -90 174.93 . 0.00 127.28 0.00 0.00 160 -90 183.58 0.00 134.54 0.00 0.00 170 -90 192.35 0.00 142.13 0.00 0.00 180 -90 201.25 0.00 150.00 0.00 0.00 -120 -80 144.22 0.00 196.98 0.00 0.00 -110 -80 136.01 0.00 187.88 0.00 0.00 -100 -80 128.06 0.00 178.89 , 0.00 0.00 -90 -80 120.42 0.00 170.00 0.00 0.00 -80 -80 113.14 _ 0.00 161.25 0.00 0.00 -70 -80 106.30 0.00 152.64 0.00 0.00 -60 -80 100.00 -0.08 144.22 0.00 -0.08 -50 -80 94.34 -0.17 136.01 0.00 -0.17 -40 -80 89.44 -0.26 128.06 0.00 -0.26 -30 -80 85.44 -0.34 120.42 0.00 -0.34 -20 -80 82.46 -0.40 113.14 0.00 -0.40 -10 -80 80.62 -0.43 106.30 0.00 -0.43 0 -80 80.00 -0.45 100.00 -0.08 -0.53 10 -80 80.62 -0.43 94.34 -0.17 -0.61 20 =80 82.46 -0.40 89.44 -0.26 -0.66 30 -80 85.44 -0.34 85.44 -0.34 -0.68 40 -80 89.44 -0.26 82.46 -0.40 -0.66 50 -80 94.34 -0.17 80.62 -0.43 -0.61 60 -80 100.00 -0.08 80.00 -0.45 -0.53 70 -80 106.30 0.00 80.62 -0.43 -0.43 80 -80 113.14 0.00 82.46 -0.40 -0.40 90 -80 120.42 0.00 85.44 -0.34 -0.34 100 -80 128.06 0.00 89.44 -0.26 -0.26 110 -80 136.01 0.00 94.34 -0.17 -0.17 120 -80 144.22 0.00 100.00 -0.08 -0.08 130 -80 152.64 0.00 106.30 0.00 0.00 140 -80 161.25 0.00 113.14 0.00 0.00 150 -80 170.00 0.00 120.42 0.00 0.00 160 -80 178.89 0.00 128.06 0.00 0.00 170 -80 187.88 0.00 136.01 0.00 0.00 180 -80 196.98 0.00 144.22 0.00 0.00 -120 • -70 138.92 0.00 193.13 0.00 0.00 -110 -70 130.38 0.00 183.85 0.00 0.00 Page 14 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -100 -70 122.07 0.00 174.64 0.00 0.00 -90 -70 114.02 0.00 165.53 0.00 0.00 -80 -70 106.30 0.00 156.52 0.00 0.00 -70 -70 98.99 -0.09 147.65 0.00 -0.09 -60 -70 92.20 -0.21 138.92 0.00 -0.21 -50 -70 86.02 -0.33 130.38 0.00 -0.33 -40 -70 80.62 -0.43 122.07 0.00 -0.43 -30 -70 76.16 -0.53 114.02 0.00 -0.53 -20 -70 72.80 -0.60 106.30 0.00 -0.60 -10 -70 70.71 -0.65 98.99 -0.09 -0.75 0 -70 70.00 -0.67 92.20 -0.21 -0.88 10 -70 70.71 -0.65 86.02 -0.33 -0.98 20 -70 72.80 -0.60 80.62 -0. 43 -1.04 30 -70 76.16 -0.53 76.16 -0.53 -1.06 40 -70 80.62 -0.43 72.80 -0.60 -1.04 50 -70 86.02 -0.33 70.71 -0.65 -0.98 60 -70 92.20 -0.21 70.00 -0.67 -0.88 70 -70 98.99 -0.09 70.71 -0.65 -0.75 80 -70 106.30 0.00 72.80 -0.60 -0.60 90 -70 114.02 0.00 76.16 -0.53 -0.53 100 -70 122.07 0.00 80.62 -0.43 -0.43 110 -70 130.38 0.00 86.02 -0.33 -0.33 120 -70 138.92 0.00 92.20 -0.21 -0.21 130 -70 147.65 0.00 98.99 -0.09 -0.09 140 -70 156.52 0.00 106.30 0.00 0.00 150 -70 165.53 0.00 114.02 0.00 0.00 160 -70 174.64 0.00 122.07 0.00 0.00 170 -70 183.85 0.00 130.38 0.00 0.00 180 -70 193.13 0.00 138.92 0.00 0.00 -120 -60 134.16 0.00 189.74 0.00 0.00 -110 -60 125.30 0.00 180.28 0.00 0.00 -100 -60 116.62 0.00 170.88 0.00 0.00 -90 -60 108.17 0.00 161.55 0.00 0.00 -80 -60 100.00 -0 .08 152.32 0.00 -0.08 -70 -60 92.20 -0.21 143.18 0.00 -0.21 -60 -60 84.85 -0.35 134.16 0.00 -0.35 -50 -60 78.10 -0.49 125.30 0.00 -0.49 -40 -60 72.11 -0.62 116.62 0.00 -0.62 -30 -60 67.08 -0.74 108.17 0.00 -0.74 -20 -60 63.25 -0.84 100.00 -0.08 -0.91 Page 15 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Iniection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q= In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2 =drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node 1 INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -10 -60 60.83 -0.90 92.20 -0.21 -1.11 0 -60 60.00 -0.92 84.85 -0.35 -1.27 10 -60 60.83 -0.90 78.10 -0.49 -1.39 20 ,-60 63.25 -0.84 72.11 -0.62 -1.46 30 -60 67.08 -0.74 ' 67.08 -0.74 -1.48 40 -60 72.11 -0.62 63.25 -0.84 -1.46 50 -60 78.10 -0.49 60.83 -0.90 -1.39 60 -60 84.85 -0.35 60.00 -0.92 -1.27 70 -60 92.20 -0.21 60.83 -0.90 -1.11 80 -60 100.00 -0.08 63.25 -0.84 -0.91 90 -60 108.17 0.00 67.08 -0.74 -0.74 100 -60 116.62 0.00 72.11 -0.62 -0.62 110 -60 125.30 0.00 78.10 -0.49 -0.49 120 -60 134.16 0.00 84.85 -0.35 -0.35 130 -60 143.18 0.00 92.20 -0.21 -0.21 • 140 -60 152.32 0.00 100.00 -0.08 -0.08 150 -60 161.55 0.00 108.17 0.00 0.00 160 -60 170.88 0.00 116.62 0.00 0.00 170 -60 180.28 0.00 125.30 0.00 0.00 180 -60 189.74 0.00 134.16 0.00 0.00 -120 -50 130.00 0.00 186.82 0.00 0.00 -110 -50 120.83 0.00 177.20 0.00 0.00 -100 -50 111.80 0.00 167.63 0.00 0.00 -90 -50 102.96 -0.03 158.11 0.00 -0.03 -80 -50 94.34 -0.17 148.66 0.00 -0.17 -70 -50 86.02 -0.33 139.28 0.00 -0.33 -60 -50 78.10 -0.49 130.00 0.00 -0.49 -50 -50 70.71 -0.65 120.83 0.00 -0.65 -40 -50 64.03 -0.82 111.80 0.00 -0.82 -30 -50 58.31 -0.97 102.96 -0.03 -1.00 -20 -50 53.85 -1.10 94.34 -0.17 -1.28 -10 -50 50.99 -1.19 86.02 -0.33 -1.52 0 -50 50.00 -1.23 78.10 -0.49 -1.71 10 -50 50.99 -1.19 70.71 -0.65 -1.85 20 -50 53.85 -1.10 64.03 -0.82 -1.92 30 -50 58.31 -0.97 58.31 -0.97 -1.94 40 -50 64.03 -0.82 53.85 -1.10 -1.92 50 -50 70.71 -0.65 50.99 -1.19 -1.85 60 -50 78.10 -0 .49 50.00 -1.23 -1.71 70 -50 86.02 -0.33 50.99 -1.19 -1.52 Page 16 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 2TrT(s1-s2) Thiem equation: Q = In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity= 50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 80 -50 94.34 -0.17 53.85 -1.10 -1.28 90 -50 102.96 -0.03 58.31 -0.97 -1.00 100 -50 111.80 0.00 64.03 -0.82 -0.82 110 -50 120.83 0.00 70.71 -0.65 -0.65 120 -50 130.00 0.00 78.10 -0.49 -0.49 130 -50 139.28 0.00 86.02 -0.33 -0.33 140 -50 148.66 0.00 94.34 -0.17 -0.17 150 -50 158.11 0.00 102.96 -0.03 -0.03 160 -50 167.63 0.00 111.80 0.00 0.00 170 -50 177.20 0.00 120.83 0.00 0.00 180 -50 186.82 0.00 130.00 0.00 0.00 -120 -40 126.49 0.00 184.39 0.00 0.00 -110 -40 117.05 0.00 174.64 0.00 0.00 -100 -40 107.70 0.00 164.92 0.00 0.00 -90 -40 98.49 -0.10 155.24 0.00 -0.10 -80 -40 89.44 -0.26 145.60 0.00 -0.26 -70 -40 80.62 -0.43 136.01 0.00 -0.43 -60 -40 72.11 -0.62 126.49 0.00 -0.62 -50 -40 64.03 -0.82 117.05 0.00 -0.82 -40 -40 56.57 -1.02 107.70 0.00 -1.02 -30 -40 50.00 -1.23 98.49 -0.10 -1.33 -20 -40 44.72 -1.41 89.44 -0.26 -1.67 -10 -40 41.23 -1.55 80.62 -0.43 -1.98 0 -40 40.00 -1.60 72.11 -0.62 -2.21 10 -40 41.23 -1.55 64.03 -0.82 -2.36 20 -40 44.72 -1.41 56.57 -1.02 -2.43 30 -40 50.00 -1.23 50.00 -1.23 -2.45 40 -40 56.57 -1.02 44.72 -1.41 -2.43 50 -40 64.03 -0.82 41.23 -1.55 -2.36 60 -40 72.11 -0.62 40.00 -1.60 -2.21 70 -40 80.62 -0.43 41.23 -1.55 -1.98 80 -40 89.44 -0.26 44.72 -1.41 -1.67 90 -40 98.49 -0.10 50.00 -1.23 -1.33 100 -40 107.70 0.00 56.57 -1.02 -1.02 110 -40 117.05 0.00 64.03 -0.82 -0.82 120 -40 126.49 0.00 72.11 -0.62 -0.62 130 -40 136.01 0.00 80.62 -0.43 -0.43 140 -40 145.60 0.00 89.44 -0.26 -0.26 150 -40 155.24 0.00 98.49 -0.10 -0.10 160 -40 164.92 0.00 107.70 0.00 0.00 Page 17 of 20 Injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-4 and MPE-INJ-5 21-rT(s1-s2) Thiem equation: Q= In(r2/r1) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 170 -40 174.64 0.00 117.05 0.00 0.00 180 -40 184.39 0.00_ 126.49 0.00 0.00 -120 -30 123.69 0.00 182.48 0.00 0.00 -110 -30 114.02 0.00 172.63 0.00 0.00 -100 -30 104.40 -0.01 162.79 0.00 -0.01 -90 -30 94.87 -0.17 152.97 0.00 -0.17 -80 -30 85.44 -0.34 143.18 0.00 -0.34 -70 -30 76.16 -0.53 133.42 0.00 -0.53 -60 -30 67.08 -0.74� 123.69 0.00 -0.74 -50 -30 58.31 -0.97 114.02 0.00 -0.97 -40 -30 50.00 -1.23 104.40 -0.01 -1.23 -30 -30 42.43 -1.50 94.87 -0.17 -1.66 -20 -30 36.06 -1.77 85.44 -0.34 -2.11 -10 -30 31.62 -1.98 76.16 -0.53 -2.51 0 -30 30.00 -2.07 67.08 -0.74 -2.81 10 -30 31.62 -1.98 58.31 -0.97 -2.96 20 -30 36.06 -1.77_ 50.00 -1.23 -2.99 30 -30 42.43 -1.50 42.43 -1.50 -3.00 40 -30 50.00 -1.23 36.06 -1.77 -2.99 50 -30 58.31 -0.97 31.62 -1.98 - -2.96 60 -30 67.08 -0.74 30.00 -2.07 -2.81 70 -30 76.16 -0.53 31.62 -1.98 -2.51 80 -30 85.44 -0.34 36.06 -1.77 -2.11 90 -30 94.87 -0.17\ 42.43 -1.50 -1.66 100 -30 104.40 -0.01 50.00 -1.23 -1.23 110 -30 114.02 0.00 58.31 -0.97 -0.97 120 -30 123.69 0.00_ 67.08 -0.74 -0.74 130 -30 133.42 0.00 76.16 -0.53 -0.53 140 -30 143.18 0.00_ 85.44 -0.34 -0.34 150 -30 152.97 0.00 94.87 -0.17 -0.17 160 -30 162.79 0.00 104.40 -0.01 -0.01 170 -30 172.63 0.00_ 114.02 0.00 0.00 180 -30 182.48 0.00_ 123.69 0.00 0.00 -120 -20 121.66 0.00 181.11 0.00 0.00 -110 -20 111.80 0.00_ 171.17 0.00 0.00 -100 -20 101.98 -0.05 161.25 0.00 -0.05 -90 -20 92.20 -0.21 151.33 0.00 -0.21 -80 -20 82.46 -0.40 141.42 0.00 -0.40 -70 -20 72.80 -0.60 131.53 0.00 -0.60 -60 -20 63.25 -0.84 121.66 0.00 -0.84 Page 18 of 20 injection Well Zone of Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Infection Wells MPE-INJ-4 and MPE-INJ-5 2rrT(s1-s2) Thiem equation: Q = In(r2/r1) Q=flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T=transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 =-10 ft(head required for 2.7 gpm injection rate) s2=drawdown at distance r2 Use 0.25.ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 - 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) -50 -20 53.85 -1.10 111.80 0.00 -1.10 -40 -20 44.72 -1.41 101.98 -0.05 -1.46 • -30 -20 36.06 -1.77 92.20 -0.21 . -1.98 -20 -20 28.28 -2.17 82.46 -0.40 -2.57- -10 -20 22.36 -2.56 72.80 -0.60 -3.16 0 -20 20.00 -2.74 63.25 -0.84 -3.58 10 -20 22.36 -2.56 53.85 -1.10 -3.66 20 -20 28.28 -2.17 44.72 -1.41 -3.58 30 -20 36.06 -1.77 36.06 -1.77 -3.53 40 -20 44.72 -1.41 28.28 . -2.17 -3.58 50 -20 53.85 -1.10 22.36 -2.56 -3.66 60 -20 63.25 -0.84 20.00 -2.74 -3.58 70 -20 72.80 -0.60 22.36 -2.56 -3.16 80 -20 82.46 -0.40 28.28 -2.17 -2.57 90 -20 92.20 -0.21 36.06 -1.77 -1.98 100 -20 101.98 -0.05 44.72 -1.41 -1.46 110 -20 111.80 0.00 53.85 -1.10 -1.10 120 -20 121.66 0.00 63.25 -0.84 -0.84 130 -20 131.53 0.00 72.80 -0.60 -0.60 140 -20 141.42 0.00 82.46 -0.40 -0.40 150 -20 151.33 0.00 92.20 -0.21 -0.21 160 -20 161.25 0.00 101.98 -0.05 -0.05 170 -20 171.17 0.00 111.80 0.00 0.00 180 -20 181.11 0.00 121.66 0.00 0.00 -120 -10 120.42 0.00 180.28 0.00 0.00 -110 -10 110.45 0.00 170.29 0.00 0.00 -100 -10 100.50 -0.07 160.31 0.00 -0.07 -90 -10 90.55 -0.24 150.33 0.00 -0.24 -80 -10 80.62 -0.43 140.36 0.00 -0.43 -70 -10 70.71 -0.65 130.38 0.00 -0.65 -60 -10 60.83 -0.90 120.42 0.00 -0.90 -50 -10 50.99 -1.19 110.45 0.00 -1.19 -40 -10 41.23 -1.55 100.50 -0.07 -1.61 -30 -10 31.62 -1.98 90.55 -0.24 -2.23 -20 -10 22.36 -2.56 80.62 -0.43 -2.99 -10 -10 14.14 -3.32 70.71 -0.65 -3.97 0 -10 10.00 -3.89 60.83 -0.90 -4.79 10 -10 14.14 -3.32 50.99 -1.19 -4.51 20 -10 22.36 -2.56 41.23 -1.55 -4.10 30 -10 31.62 -1.98 31.62 -1.98 -3.97 Page 19 of 20 • r F Injection Well Zone of-Influence Calculations GMH Electronics Site Calculate Hydraulic Influence of Injection Wells MPE-INJ-4 and MPE-INJ-5 • 2TrT(s1-s2) Thiem equation: Q = In(r2/ri) Q =flow rate in ft3/day=-520 ft3/day(-2.7 gpm) T =transmissivity=50 ft2/day avg.from slug tests s1 =drawdown at distance r1 _-10 ft(head required for 2.7 gpm injection rate) 4 s2=drawdown at distance r2 • . Use 0.25 ft(radius of injection well)for r1 and -10 ft(head required for 2.7 gpm injection rate)for s1 Use simplified well coordinates: x(ft) y(ft) INJ-MPE-4 0 0 INJ-MPE-5 60 0 Calculate the cumulative hydraulic effect of the 2 injection wells for a 300 ft x 240 ft grid with 10 ft node spacing. Grid Node INJ-MPE-4 INJ-MPE-5 x(ft) y(ft) r2(ft) s2(ft) r2(ft) s2(ft) Cumulative s(ft) 40 -10 41.23 -1.55 22.36 -2.56 -4.10 50 -10 50.99 -1.19 14.14 -3.32 -4.51 a. 60 . -10 60.83 -0.90 10.00 -3.89 -4.79 • 70 -10 70.71 -0.65 14.14 -3.32 -3.97 • 80 -10 80.62 -0.43 22.36 -2.56 -2.99 90 -10 90.55 -0.24 31.62 -1.98 -2.23 100 -10 100.50 -0.07 41.23 -1.55 -1.61 110 -10 110.45 0.00 50.99 -1.19 -1.19 120 -10 120.42 0.00 60.83 -0.90 -0.90 130 -10 130.38 0.00 70.71 -0.65 -0.65 140 -10 140.36 0.00 80.62 -0.43 -0.43 150 -10 150.33 0.00 90.55 -0.24 -0.24 160 -10 160.31 .0.00 100.50 -0.07 -0.07 170 -10 170.29 0.00 110.45 0.00 0.00 180 -10 180.28 0.00 120.42 0.00 0.00 Page 20 of 20 I • 7 ► ,` I £$ Legend •► I I I • Injection Wells ► / ; / 1 / / � Total Solvent-related ► ► ► s / , � / COC 1,4-Dioxane / r `" I 1 I — — Isoconcentration Contour(Ng/L) w , / I 1 ` / 1 (dashed where inferred) i / I _: I Total Solvent-related VOC COCs 0.00 I, I I 1 I —_ Isoconcentration Contour(pg/L) / / I / I (dashed where inferred) x I I / ► Total Petroleum-related VOC/SVOC E -1.00 ♦ �' / I I J / 1 . s — COCs Isoconcentration Contour(pg/L) o -2.00 so , // // '/ / / . .. !,,,,,,"'I' ,,, (dashed where inferred) so♦ 1 I / ♦ ♦ / / :x Modeled change in groundwater i, O 4.00 ♦ • 1 ♦�♦, / - • , / elevation due to injection well -4.00 ♦ I f I ♦ / I operation in feet(negative values ♦♦ 1 •�, .• 1 i indicate an increase in groundwater / ♦ / 1 ► / " elevation) Co -2:00 Tg ♦ I ♦i I ► ► / I o -1.00 / / / , I I >''. i GMH Electronics Site / Zi / ♦♦♦ I/,� ► i I 0.00 ♦ ♦ ♦♦ ► ♦ ♦ I I / I Isconcentration Contours from Black& 6 ♦ ♦♦ I ♦ ♦ I ` ► Veatch 2014a, Remedial Investigation ♦ ♦ I I ♦ I / Report, Revision 2, June. U ♦ ♦ • ♦ • / I ♦ ♦ I ' I , I / / o .-6 I / I or I ► W �, .4 •I I• / , I II j / M �=r ♦•� // 'I '/ ♦ I / , I / I/ o ♦ ' �e A / I ♦ ♦ I ► ► I / N ♦` ��� I I / / I I ► ► I w ♦ ♦ ♦ / / ♦ / ► I , I 1 r I 1 1- 1 r ri ♦ 1 I ♦ ♦ I / / / / / I ♦♦ 0 40 80 160 a / / 1 / , I I I Feet ♦ I I I I o I I I ,/ I ,♦ NAD 1983 North Carolina o / I 1/ , I iN ' ♦ - may,I I /I f I I /' ♦/♦ MD / ♦ /r..y' I /I ! t/I , ♦I , t ♦�� /I I KY / VA , ♦\\I I I I / e / I '/ I / / / / I p 00 • I �► l�� E , I / ♦ , / I I I ♦ TN �,�1 �r �rS ♦s� 4�� / I 'I / t'.I I I I I I I I r��1�y�'�e/ r,A61Y '% .11;* �� ♦ , / ,rlr>fjnRt� Z� ISC t" a I 1 , / I I , ---...: d , t i III I / a , ♦ 4, %` ' ' • i ' ♦1; 4 II ♦ ♦ I /♦♦♦ A00 O GA Person County, ♦ 1 / r oo /♦ ® -4:00 North Carolina I • • e ' ♦ II ' 1 I I I — — ' ♦ it ' �► GMH Electronics Site 1 ♦ ♦ 11 / f ♦ I // 4 -2'p0 Roxboro, Person County 1 ♦ ♦ p ► "" / vI/ �' North Carolina 1 ♦ ♦ p ► I // 1 ♦ II 1 / ,y 0.00 1 ' II ' `. ',Atli.: I /i Modeled Hydraulic ♦ ♦ it .b ► v, I ►I • ♦ ♦ I/ 1 gam. / �I Effect of Injection Wells • ♦ II I / ► I `•• t 1 ,/ /,' � V E R S A R r •� • •• • E • .. . ... . .. ... EX157/NG DRIVEWAY .... ... .. .. .. .. .. .. .. .. J 1 o I o (. 1 .I:. H CY.1 Q 0 / sr:9 / Mw�B4 `\ • • • . ..: _. - / a ? . • •• << ?. \ 19 �. MW • FORMER GAM ELE ERN - - 1/ o 1 Q . .. ' 7RON ell ........../ ... ... p.. 1 2' G CODA S,PR . • / .. ... ... ... ... o 1 �/ _ �3 �. W.B6- I \ eR$ sr°ar oM,. AW T` / Q I MPE-1 I mw .a. -^, ,o K - MW-26S . .. I )`o / � 'MW Bt UUICO/NC COMPRESSOR j U O MW-125B H oxr ... _.. /1 t / \, o' B '/ • FUEL• • _- - `•2S z r • r_ �\q�A} ` - .. lN"R746 ... .. o / 1.1 O OIL TANK - ' .._._._ FS, I �'. Q°,� SVE Q S \ ,,\.. O/L TANK • ` N z : O . • .ma's G` ... ... °w` t ... 1, ... BR/CK B R iN :. ' ... ... • ' _ - _ U U - / .. `� *67 - \max z a Z _ 1.j.. o _ O o z ... .. MW-101S��� :' - .. .. - .. - ` �...� .Bar2-sr°Rr / \ - = La P ¢ - oy .�./ ,, \ \ / INLET • CK 6U/LD/NC 'IU - -w .. .. MW-101B® 1C°,.. : ` •.: . - --- - .a.� VV _ry�'7sFuti mw-10480H .. ... .. 'ssea ,� U, a rre rF N ¢ ,,,.•. a",T,/ \'. v : i / ?� - ._- ° SHOP SIGN - I /: J Z . ce LIJ 't ' _ �\ ' • oyr0 �. • , STOPEr INTER ... ... _ J .. a • ' FFE Y55. 1 `-t o i • z ',,../ - ` `11 \�{.S'SCR` ...._`t - - l, i \ •_ .. .. \ ....%. :_ `'sue, - `.-� I .::1 !11 r� `� .. .. .. .. .. .. SITE CONTROL N0. t ` -.,,L. .. .. Q .•. FORMER WRENN PROPERTY /' •: - .- _ O+e .§ •• + - �„� -'�' •.• ::1/2 REBAR /W YELLOW PLASTIC CAP. i - • ... .. ... ... \W„ GRAVEL .\ .. •o \ '!1/ r .. ' .. .. .. .. `� O .. ... . . ° .q5\ ., C t 11 .. ^yti r—r—r —.r— _ _•_ •_T—r._r _ —.—. _.._,_r .. ELEV.= 754.84 (NAVD8833.72'., \I _ . -• d • - l-� i. • rc ...- HAL/FAX ROAD SR. 1521 - ��r I .. sue_ • • • • • • ..�� \ os' _. c.s=ws._ cas ws cns `�- 50 / ... "-^ ...�..o �. .. .. ( `J5g l t �5 / w ° Y_cI.S _AS $ I R-W / i ..\ a' `� 41 1 ( .. _ ws __ ----OAS---- - - .754 .. 1 \45MPH • .. ... : .. ..\, .. .`4: e_ _ .. 'B AMEy o.. .M/1 •. /./1 1 r: ', .' VCITYDIRECTION .. .. ... .. °"" ..--.w„ _ _ . 755 e- - 754 _ 753 6 "PA . . A +` . .. .. . ..• V 5362 - 'RCP °"' - .. `. `.`;t. \ • \ e , o INV=753.41 I' „Ls 15"RCP 2 .. .\ • `� r. .MW4. .. • • • • • • 8� `.Mw-1'+2s SITE C• ONTROL NO.•2 ABBREVIATIONg LEGEND NOTES ' \ .. .. : '1-.'GRAVEL 1/2�` REBAR'/W YELLOW PLASTIC CAP I .. ` - E •-EASTING. '. - . .. — -- — -PROPERTY LINE : . ... 1. SUBJECT PROPERTY 15 LOCATED IN - .. � \ .. ,.. �. N=:970,699.82. :y g .� .. . • -•• .. ELEV. ELEVATION FENCE LINE UNINCORPORATED.PERSON COUNTY, NORTH _ •:\1 _ - E_-2 6 986.82 _ FFE • FINISHED FLOOR ELEVATION • ••• CAROUNA. - °"• \ - \ '. ` - \ E EV 8 - I " - INV INVERT • EXISTING CONTOUR - ... ... .. \ o*_ ...OVERHEAD:POWER • •• .. 7sD \` J \ L o,01 I MPE MULTI-PHASE EXTRACTION E 2; THE ADDRESS OF THE SUBJECT'PROPERTY IS - -'°� :I .. \ H MILES PER HOUR •— UNDERGROUND1800.VIRGILINA ROAD, ROXBORO,.NORTH \l: _ws 74 AVD 8 1 l •. _ •_ r ° I .1 /" .- MW MONITORING WELL': GAS LINE. CAROLINA. ... - .. ^ • . . "_ _. ` _ .. ..N .NORTHING.. .. .WATER.LINE .. ... ... .. .. .. ..s .., .: ! - '• • _ - N.C. •:'NORTH'CAROLINA _ THE FIELD SURVEY WAS COMPLETED ON JUNE: . •... ... .. " :• ` .', .. .. .. .. .. PW PRIVATE"WELL .. .. .. / .. / �i/ Id 13, 2015. .. .. ( - _ -R• IGHT OF WAY - o .. -- ... .. 1 REINFORCED'CONCRETE:PIPE .. ...MI .. .' .'ELECTRIC WRAY METER.. • E .. ° STATEAD STORMINLET NORTH CAROLINASTATECOORDINATE .. .- .. ... i - ..°rx S. ,-•- .'!./; - SOIVAPOR EXTRACTION - RID,- 2011) _ ¢ .. .. 1 I - I y _ '� STREET SIGM ) .. .... : L OUMPSTER\- .._. - . _ • .. - - .. ... .. - - oZo- TELEPHONE PEDESTAL. .. . • 3\' - -�... CRa vEt. ' r' " ' - Pm . CONTOUR INTERVAL SHOWN IS PONE FOOT..•• SVE . � ' �r DETAIL.INDICATOR e WATER METER . . _ _ ELEVATIONS ARE'TIED TO THE NAVD88 DATUM. - - - °`" .- J ` • • DETAIL NUMBER • v WATER VALVE 6 -:• :: :: .. . -. ... \ ' THE BOUNDARY OF.THE TWOTRACTS SHOWN I \\r. -�'�/ !, - ..:Yf FIRE HYDRANT TAKENFROM RECORD MAPSAND" EVIDENCE 'p . F I tJ I' 6. S ��\ • /. / • c GAS METER FOUND•DURING THE SURVEY. THE 80 BOUNDARY 0- a . r - + / °'+• - I :•LINE LOCATIONS ARE APPROXIMATE. THIS IS • 5 - - NOT A BOU THESE TWO SEPTIC TANK :` .� .. .. S1 _ / �I .. ... .. _ .. .. ... GAS VALVE .. - .. SITES,. . .. N • - 0 0 • - �; - . J \ URFIGIAL MONITORING WELL • •• W w I �.. • \ `'-� Fl SHEETOUTSHEET SHOWN I 1 RST CALLED ON FIRST ON .... ... . . - - ---- ------- .. ��. ... ... .- -- SECTION_ --------- -- .� CONCRETE ELLfi %' ;' ° SEC INDICATOR GRAVEL ® WLL.. . ... ... - .. .... o _ ((/ . SECTION NUMBER•,y --- .. I y. • e : ' �. ..: .. £ .. .. .. .. ... DRAWING N0. .. •• ..v • - ro .- . ... . .. FIRST SHEET'CUT ON. - FIRST SHEET SHOWN ON .. 0 20 40 ".i: :: ... :: ... :: .. ... .. ..I .-. . .. .. ... .. - .. ... .. ' -- ... .. .. ... .. ' . .. ... .. .. SCALE... .. E SHEET 2.::OF..'g:: IN FE'T '' ... .. - ... ... .. .. ... o cs \snc s zo+s a¢azae - ,• t , • ,-- - , -, t,,, . -• • ir „4 3 ik,,, -1. PW-13891 CY. . _..., , G , - ; - PW-13890 ... ,. 0. G .. , ... 4. '. , , •Y 0$ ',„"..,0"'•'.7 * ` .0-- ',• .'" ; 1•', .' , .0 ... ,...., ,• :". . • - , , • .0,... - 4 S B209 I T . . f .. . ., , MW-B13 Ili ir,. it:• ' t.. ..,., * nal110 MVV-101S ' L : Property M VV-B9 ' ' M VV-B10 - -,,,MW-101B mw-i 02S „ x .„, ..k \MW-B8 M VV-B 4 GMH Electronic A C S BS mw-loos 4,. , MW-B5 .'- - Property - 4 B 0271 9 . 10"208 . .• ..7,,-,--- ,' 10,,, it . -,- - — . SB218.,. vivy/Bi . 47 ,..• ih, $ ' A ..,. s2 ex -P. ' '''SB PVV-9857 MW-104B -.-- SB206 -11 Ifs ' s' -- .... , il, 14 Toi , 4 - --o-tit-ti • " SB205 -1t. . -' SB204 6,‘.4 , ' SB214 - S bI21cf,.. . e .., - \ SB2.02 SB203 SB201 , ... SB20 MW105 ,... . ..rto 1 -107B•' 1,-, MW-1006S ,C° 0 0- - S. PW20111 . p. ' SB211 ,-44, -• 5 ' ' ...''' • ' „ . , PW10553fr V , , PyW11104 SB212Ai ,,Atigre - , '$' • =r °'''''. —' •."' ' .0; 0,,,, • '0, * •,,1"1:i • . —• ' „„ ,. .0•-/,,,, ,,, ,...• .1.0 0 -,* k °,,..m• • i '' co 0# ..,. • .00 * . . Si 3B:1 5 '•,.'''MW Ilt at ow 23' 4 -1k tall% 11 -I ti 'Ot,r ' ; • - ..1.*,'‘.444P r.• ; „. , , • ... „f„ . .,. , _ --,A,A 4 . .0, 1, , 1 , , . 4.. ), ' , .,,r ...".1t, , . , 400,000$!‘ , -04''',4, ,,,,V,,,,,, , *..,, • 2 . , . • 1,, ..,,. i , Att. ill°4 - ,''' I ' T3 . . . „.. 1.. '-., ' -, ,,i ,i. -'; , „:,-,..-.....".,4„,?,,f;,'„,.. ,',..!„.:..4.... ' , -, ?,- - g icsi . , ,t • A '.' * ' . i.,.:"! :: ,, . ',.),,, T. tit• 4, '„ ,!,, ' ~,.'''-:.,..;‘ °''''T..° :*".''' ",,,x4„*.. '' 1-°'" ' . „ „"k• L'" 1- It' I ';0•,,- =0 , -•-• 4 *10',."*. .•,,s.: '4"*...,'`'.••"' , --4,.. ;" ' • ig, .„„,,. k. *044).... r 'pr,,,,, A., ',, ., 't,* c..'''' ' PW-11267, A, ' 41, 1 W gall 4 1#0 r ' '-'1' ,.*:.;r .7i:0410e.,.' ' t 4 t•-•*:„'''.: ‘,/'' ,,'"',s,-0' 404.,,,i 1,,,, :=' 44:.,,,,,,'„,t*•-,..,40 '..,,,,• 0,, (.D - f.1 Ali' *if, • Eii',,,''' ---,,A•r'.'tt 0- .0a. •-• k• •••••• •.,0 ,‘, 1- 1 .0., n .40;{ 4**.". ••,., 04 * ,0'' 11,-..:' il',..' -e.:•::;* ''''" --;• " -'I,-* ',',, :', ',.: • ,..,,,,if, ,%.t., ,,...'•,. :::',. . ,,,-,,,c . „-L-4,,,,,,,''.4 , _ ;*!'t'l i it,itp Itti : p,iti: ,.... .-,4iii. Tio, -. ., .4- - ,,,-. %, - - *1444 • *- •" t* ' 4. fir: , .4..org, ,,,,,,, t , 0 i 4 41„.': ? '.4 V ft'''''OP* 'Ak,e,*'•°•,* ''''''4.1'.14°—;*, - AC 'fr 4, ,,,,, ' t.,,, , . ',,. •:, .,•4 ; '4" 't /f .4sittip 11 :i. ' 16, '''' Legend r.--pt, , .„ ,.. 1.,.,.. t,-- .=--•.-. .,,,, .,,4' , -..., --'1//q,""''`' t.. '''4 -4,41.,, If, , . . `,2 ''. 14,11,4' 4-4.!.'7 ' --* • - .t. ,wf,4 - , , ,„ - , , ,ii. . ,(-....i. -:„ , , -„is. , . 40440 , k . • ' 4 E,'';0".,'. ' ,, ' 'F''''''t •,/ ' ' , . 0. ', 2 ' , ' ' t .*jt:, w**0. a, ' ' '''•**••• -.' ' * • "*.*'4, ''*•. ;94r;%. l'i' •.* '• . " Cross-Section '''' ,'. t.,""41444, • Soil Boring 1 tub, - • , rs''''' . al '-'''.*Vit:' '''''' '' '411.IT' 11.''''''!"-4-4't '' .4' st‘A ' ' .. , -„'-'*7 ....*'. - ' - „:. - t,,;,-* ;,;„,„ ;, ...''''.*-- ''''' ' ;4 ,'*,• -,,,,,.t, ,„...., - ' ,.. 44'1"-- -i474 i 1'4' . 14164*. 4T'l -, '''',. = '" - ' ° ' V ' * V' '',.•t'„. , i',',"..',4' .,,AVztvk, . 4-4„, --m, _ ,.. ' '._.t. N 0 75 150 300 Cross-Section Location Map Feet I Figure GMH Electronics Superfund Site . A 1 1 I I NAD83 Stateplane North Carolina, Feet Roxboro, Person County, North Carolina 2-5 J --1 / o c .t, --- / K 10 I* 1 /01,4-, \ OA 680 !? K_..........N * 690 , ♦ 0 h 4* lit ^. ' t R 1 / ,, 441 (AN . 7 ZA ivr.. 4 *--------: * Its ' .,,,, _.,.... /- N. . ♦ (--------- Th -- /? \...... , ,...4ki 1 6`°. . , )n aga I1 ....--r,/. ,0. : ?' „1,, Property 720 •,* { - ( E=leetronies • . ,. „2."-N ,.,,. _0. e Property dig,,ij/ (___.g '' 700 ------.....„,..,...,..., o / ri/ / o s i \s„ 6,0 < ..........„,..N\\\---- I [ .1‘ O N o.J 65 (r ----- -../ x C LT,O *-/, m Li, O KI? ' 4 a_ i U a -1-690 O 0 i 9 680 : w �F:i Le end • Drainage intermittent I I. - stream headwaters �a'�" io •I •I '"'� — USGS 10' Contour y k trr ? 1; 1 N 0 150 300 600 Site Topography and Drainage Patterns Figure Ftf1 1 I 1 I GMH Electronics Superfund Site A Feet 2-6 NAD83 Stateplane North Carolina,Feet Roxboro, Person County, North Carolina E(7) A 91 le r- O 9!! - ___-- .❖:: - o ♦ Overburden/Saprolite ■� ___......• ft... ? _ ••ii•• a. — Fractured Bedrock •��� 0 O ® •••♦ ••iii • ••iii o ••iii` 0 ••• N •• ••• 0 .� W o :•:�:• a •••••• N 00 :� :� O — 0 • ... CO iiii 11 ( 111111 IIIIIIIII II1I II iiii ii 1 1 II 1 1 Legend: 0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 Distance (ft) IIIIAsphalVConcrete _" - ■ Clay _ r .,,.,,. --Approximate Contact num 11 Screened Interval Clayey Sand/Sandy Clay .. .-. -• = Surface Casing ^ "^- Ill Approximate location, .. "". Clayey Silt/Silty Clay not structural attitude, of significant fractures i -7 = - 'I Granite/Rock V Water Level Elevation ..,_.., . .,, A. r 'Surface elevations were not i ,. Gravol/Fill surveyed at all borings,a " r default elevation of 749 ft msl was used when elevation was N l Not Logged unknown. IIISaprolite �--� -- BLACK &VEATCH Generalized Geologic Cross-Section A-A' Figure Building a world of difference. GMH Electronics Superfund Site 2-6 Roxboro, Person County, North Carolina r E(7) B B 5 1 O 3v D� 1 h VII- �p �O Qj �g Off` h �, �t` 00 ,AN • _ .. ---- .. .���. �.„ALA ��� •• •� � Overburden/Saprolite •••• • po �� �. ._ � y .......... =mom _ CD Fractured Bedrock 4±IIMININMINIMO VI — CO 1111011111111111=Mi ♦�. 0 U' •••• rn Ili — ............... •♦�♦ = � ������� o mous Q o ® N- 0 j 0 � to ter. o W CO 0 - (0 t° o 0 N 0 N In 0 Tr N O — O O co N iiii IIII1IIII IIII1IIII IIII1IIIIIIIII IIIIIIIII III 0 100 200 300 400 500 600 700 800 900 1,000 Legend: Distance (ft) Asphalt/Concrete "� ■ — ti.. Clay ""' — Approximate Contact 11 Fl,_ Clayey Sand/Sandy Clay • Screened Interval - ..�. ti. MI Surface Casing - Approximate location, ..... IIIClayey Silt/Silty Clay i _ not structural attitude, g .„ ? E. of significant fractures I `_ 'l Granite/Rock V Water Level Elevation _,_ „-„, I Surface elevations were not III surveyed at all borings,a Gravol/Fill default elevation of 749 ft msl y I was used when elevation was T N Not Logged unknown. Saprolite BLACK &VEATCH Generalized Geologic Cross-Section B-B' Figure IV, Building a world of difference: GMH Electronics Superfund Site 2-7 Roxboro, Person County, North Carolina E(6) B GMH Property B' North South PW14771 PW11267 800- I' PW10941 PW10939 `' PS-099 PS-100 - - PW14769 PS-094 I PS-105 PS-093 750 PS-098 PS-102 PS-106 PS-107 \ \ I PS-101 I PS-096 Land surface I , DCE 1,000, DCE 690, TCA 270 - TCA DCE0.99 ;° nd nd DCE40, Casing nd \/ / �..(ft _ \TCA 3.7 700- DCE 1,600, I 1 TCA 400 / I DCE0.98�' DCE 4. nd Ni nd a/TCA24, DCE1.0 1�DCE 16,' DCE 630, ��d co i nd nd ndX i DCE 1,000, `TCA3%.,_____ 2' TCA 59 DCE 9.5, ` X TCA 290 Q 650- DCE 750,; TCA 1.2 - a) DCE 1,200, 4 TCA 70 m - nd \ DCE 110 '�� o TCA 330 DCE 1.6 \ TCA 11 { DCE 0.95 i TCA nd 600 DCE 1,300, nd ��DCE 9.4, m TCA310 DCE` DCE100, '� TCA 10 TCA 1.2 - TCA 72 - °' \ DCE 8.9, 550 EXPLANATION Open TCA.w a CY Cyclohexane borehole DCE 1,1 Dichloroethylene - TCA 1,1 Tricholorethane 500- nd Not detected - DCE 18, Fractures �`A 3.7 _Total 450 Note:All concentrations are in depth - micrograms per liter. Higher concentrations - shown in red. 400 Figure source(USGS,2013). VERTICAL EXAGGERATION x 4 0 500 1,000 FEET DATUM IS NAVD 88 I 0 100 200 METERS Figure 2-11: Depths and Orientations of Borehole Fractures and Select Solvent Concentrations from Passive Diffusion-Bag Sampling (October 2011) GMH Electronics Superfund Site Roxboro Person County, North Carolina E(7)E j. 0 0 sue` D 0 �T-ND f o ND 10 10 ND o C Electronics 0 i® ° - Property SB206 .0 3.2 V20 .= D 2010 No Legend • N 4.1 30 30 Soil Samples .x4 N- li Septic Tank located 82.3 'NS 40 189/15 • Detection of at least one Solvent COC inside breezeway. z/ 50 0 • Not Detected -Solvent COC • TW 5 so Groundwater Sample 4 Exceedance of at least one Solvent COC SB205 x 70 4 Detection of at least one Solvent COC . 80 Soil and Groundwater Sample I o 90 0 Solvent COC exceedance in groundwater, t �,, 1 :B204 100 7-7 d• etection in soil Solvent COC exceedance in groundwater, 0 11° 1 n• ot detected in soil SB202 t_ 120 Solvent COC not detected in soil E. 4 TW 3 ' 0 SB214/ o• r groundwater �\ 4 \ 1 :B203 TW214 SB216 130 I crl Solvent HCP in Bedrock A uifer(pg/L)140 ' q (N9 ) X, i - t _ _ (dashed where inferred) \�I �� SB215/ SB107/ ___ 150 ��'� o 1,4-Dioxane plume in Bedrock Aquifer(pg/L) SB201 TW215 MW-107B . E - E' 3,338/31 ' (dashed where inferred) 1� • SB105/ 77 �' ! �' �/ SB213/ MW-105S � � Gravel Pit(Approximate) -- Septic Line (Approximate) To �p TW2�,3-r E' • SB106/ P ( PP ) N. \ SB200 C D Apparent Groundwater SB217 MW 106S Flow Direction - Bedrock Wells pp . i `., C' *TW-7 a .rt Y --- Estimated Unidentified a ---i Solvent Source Area ct t ,__---- SB212 era E. `" :: Cross-Sections 4SB1/-@ d ' r w.. N ,�.. PW1 f TW211 "' x C 1 " �T, ,' N ,4 1.77 -Soil concentration measured in 2012 (ug/kg), 6 o ,y at approximate depth indicated on boring. N ,�1`` ���o 0�le 189/ - Groundwater solvent/1,4-dioxane concentration N. 81 �� o PW10553 '� 15 measured in 2012/2013 (ug/L). o: o 0 s• Q `t n o'Lo 10 1 r. Concentration measured above screeninglevel. x o- 5��� 1x 239 y Lithology Index Tin o �: N _ 10 ° n 0 190 20� ,21 co ND-Not Detected �- 20 1 Oill a ,'_ N 225 290 N .. ® ;0 �- o Clay NS Not Sampled �30 20 19 s ' D _ D 1,a1s Ns Clayey Silt V -Approximate groundwater level. �- 40 _ = 8 Granite = ^_ , k Outer scale elevation (feet above mean sea level) 50 : -I �4 - Li Gravel ~ " No RecoveryBoring scale-feel below land surface w o-- 60 Not Logged o U o t Organic so r � - s, �i _ Sandy Clay 90 I •• Sandy Silt NOTES: 0, g• o , , , , . � Saprolite pg/kg-micrograms per kilogram N -110 s I pg/L-micrograms per liter 0 o k I Li Silt "-Shallow samples were collected at TW-3,TW-5,and g—l2o �l n Silty Clay TW-7 in 2008 and are shown for additional approximation. 0) - C - C' Their locations are approximate..� �: > C Silty Sand No solvent COCs identified in soil. N o 20 40 80 Solvent Release Area Conceptual Details RIF , I i Feet t I GMH Electronics Superfund Site Figure /v Roxboro, Person County, North Carolina 2-20 NAD83 Stateplane North Carolina,Feet _ E(7)— M W-B 13 �,vo° ��h �.0 s °a ND 4� It i 0 0g "'� 5 UN d 1 - MIMI 1°�ND 442 10' 100 1a 792 I, S B 101/ (. E+5 11 2.38 E+6 zo 2r � . MW-101S MW-B9 .,; - 4.43E+320 2s1E+6 .,.� 4.58 E+3 7.09 E+5 s „: 30 30 e Legend *t*=y -40 137.058(Feb 2008)I 1=U40" " - - Soil Sample k 50 • Exceedance of at least one Petroleum COC ` .«�. k"` " ' +. -' vie -8 i � " • Not Detected - Petroleum COC .� - - 5° - P - - Groundwater Sample ! ., -70 i - ' - _§ - Exceedance of at least one petroleum COC 80 - 4 Not Sampled i - ., -90 - Soil and Groundwater Sample Property - '� y *-*.. "� `' �- Petroleum COC exceedance in - r 100 * soil and groundwater + I ` „ �10 Petroleum COC detection in - b soil and groundwater I 120 Petroleum COC exceedance in groundwater, SB 102/ A ♦ not detected in soil E MW-102S i a-130 1 -E Petroleum HCP in Surficial Aquifer(pg/L) ® . 140 (dashed where inferred) # _ 2 ' f '41 1 , SB207 MW-B8 Apparent Groundwater t 1 t _ _ _- _ '150 — B - 6 - c a; # --- �.` \ `_ Flow Direction - Surficial Wells �� "MW-B4 Former Tank Area Q _ SB208/ 11 ,., i B' j * __ Estimated Residual �� ) TW208;' MW-B5_ e — i---] Petroleum Source Area r SB219 t! A' f r E t IL1� 61 t' s_. °°�_ �'__-- 56104/ Cross-Sections o� ,cS ob MW-104B .�.. PW10939 ��oy5 5�ti 50ti ��ti B2�18 MW=B 1 ..- - 1.77 -Soil concentration measured in 2012 (ug/kg), g °� ° �y ��B �_/ Lithology Index at approximate depth indicated on boring. ,, 0 �__-__ _ -<' 4,320 Groundwater petroleum concentration measured ,\ . ''MW-63 9 _ in 2012/2013 (ug/L). n 1.77 ,. .;,` ).. ' AsphaWConcrete 3 NEN ND -Concentration measured above screening level. n - ND 0 ND ° ...,.... 1.23 E+3 10 ��.46 E+^ Clay — ND- Not Detected C° °1111 ND ..... .. Clayey Sand ........ 1.58 E+6 V -Approximate groundwater level. o ®NNE ' i ' - ,,,. 1 Clayey Silt w - .� SB206 Granite Outer scale-elevation (feet above mean sea level) _ III zo • Boring scale-feel below land surface CO '0 ❑ No Recovery in- a:1.81 E+6 w Mil i Electronics ❑ N• ot Logged ® 400,0t Property a . :• ::: , c 11 U °° SB205 El N " '_ • 11 Sandy Silt a ., m Saprolite NOTES: tst4r _2841 s pg/kg-micrograms per kilogram ZS 14 32o)_ SB204 pg/L-micrograms per Liter • srry Clay *-MW-B3 and MW-B4 were not sampled in 2012/2013, A-A' '"' `1 but had COC exceedances in 2008. MW-B3 was unable g _ ,0 Silty Sand to be located in 2012. It's location is approximate. N 0 20 40 80 Petroleum Release Area Conceptual Details ldr , A 1 I Feet I I GMH Electronics Superfund Site Figure Roxboro, Person County, North Carolina 2-21 NAD83 Stateplane North Carolina,Feet ;, ,ist i ,' x ` 1/ .. .42""'.e� :4V ten + ; ,�, x x�e 1�1, ems' Y ;:' n ' , i`� ,r,;.r e. d '4 >', r '�n PV1/13949" *, 1�\***,3t-. � i°? a,.$'S , „ FwW67• d _ "'�Fk1�`.fi. 7 Se Fps "f= �,. '�'. C+ M. M 1 -..N. ,g ,,, ~.xr i;„ ,}. ;r.`4. .t t .:_f rc � " 'tT��fs,:'�F Ar' k ! ;, . y.; . l'- ,' �,� ¢ � � :, ;,. ' '°,d „„ a� �, � '. � � ' .�'�r'� k.��. �^�, +{r°r � ;, � i��' �L� r t :'' �q � � _k ' ` 4 ��,. r PV. { 447,: a _. 5, "iSa`i .`Ant^. -gyp i t.=7' .. R 1 if i ", ' " 't ,w • > " .*.R: 1• F .4 "°`', ' >Ma'�,.'k ki a ' as�ii:,, Afw x,t"3'. Y 3 yA Y M1: fibs". `4lir 'Y „ .,.,t F S t \NO" �i _ \0 4,. ,,, °' . 4:0 ,y„ ': '''''', .x€ . ! '. +"�Y.,, iV.• l t �;t� , j..4 d.. r "' M4.. k".y� . ' + >b3A`" ,.• �' y,t,; . 4 ,,p.. MR$ . "� v"J' .15. Y1R } t* ..td1, .{N� AK°' 3.,,' d, g. 'aye'. k a ,t , ," >s.a. �t Ale'; ,"ti t: *t •, ti.' .� 3,.....,Z.yl:V.,,. ::0 i j� Y't ' ..k `f } a "" i. ,�',L. b'y�YEa' PW1038 r.�' t "' f f- K' Y.F' �W a } ? u� .n 1 ' 'Y `=h,'S� c4,' ,AIRY' - '`?M a ln' "v"ea.. r -, - .ems. ," ., .� ._" r ::` ;.., ,, •..t, . !' ' "' 1,.q y, z,'t4x„ `i .". #<s t A+c `g n r ,dam «, a ten. .. � � �,,. R '.ii., a."-, I .:h .. k . z, ` tf. .,, Ott. �, v. , zx �t ,rt' ` PtW, 13890i, ::,,,,„, a ;:t12:*':,.:'!,:1-1 • • ;.. fie., �.r �, :� '* , �, 4 ++Lk h. ,.'tS.N. tt" 4' y} ... ";'ry ` b d R' ,(a s `G >a r, ;� ., .p,,,, +v a :nry�* 4' _ty fix, ,,h !»r , t. 44, s .> t>F '' E i n a w r� ? Y�' _ 11� ,fit`4. vp B1 a • Legend F MW, � ' '� t°� "� 1 ,,,� � `.�t � � i��:�� a, >�t �� � :� �.t.F t 'MW- 1�t ��-i � PW1'51t7�T '� :s��� `�,It �� t �.�,� " � � '`' . ., � t Groundwater Sample 31 -.. � � .s � * ! MW-B10�' .,.":/ I ° '� t 4 Sampled Well ' '",to � � �� a &� t �. ' �i01c i t 9 Well Not Sampled , ,k iG� a _, MW-102S . Pro ert i t 4` �,,, r � _:Property l �- p _ . Surface Water Sample t ,, ,� .3'i z� MW 100S -� BMW B8 �' ��',. PW14769� ♦ a , • ' MW fig, i ■ Surface Water Sam le 4 n " xt, �" ' t ,'TW208 / "� P.W10939 } i t p ✓"` - ¢ fit: "= ' : ,0 +. t, a ,"t a t 1 •I �� MW'B1 <I r � ;„ , - '' „''‘,44:3:3 ,.•-'-'";24 " ''2 '''''':'3" '''' S• � " / Total Petroleum-related VOC/SVOC � � PW9857 MW B3** ' --4414 1 I I (pg ) MW-104B. VV, �" - - COCs Isoconcentration Contour /L -1,000-Q �' (dashed where inferred) <� . . ,�" ```' Electronics '4 r> li• ,.; Property Total Solvent-related VOC COCs " ' '° �„ e : z1"a ��° �� Isoconcentration Contour(N9/L) r � (dashed where inferred) TW215 MW 107B , k� Total Solvent-related " / � I a MW 106S r E R 14 � TW213 Mw 105S „ — — Isoconcentration Contour /L I PW147�71 (N9 ) n. � PW11104 ^,�` t" .r �. '� PW20111 (dashedinferred) � , t ,TVV2-11 � $ where *P,W6683 r v. s w � t Estimated Residual $ ♦ a_ PW10553 — —, z a � ; 1---1 Petroleum Source Area Estimated Unidentified o �. ,,., s �y'as. PW111267 - 3iCi .` � f.f. ,a r 0_ ) , ; ' . "C" kr •,/ x' Mk Solvent Source Area :k.,, QaP.W9192 . 1 °;„, ;> ,.1 ; 1PW10941 ; ieau, NOTES: r k ,� rai4. 4, 4t, ,a• , ' • ,,i Result Units-micrograms per liter(Ng/L) 9 \ �` F . A,m : � Active private well. N ,� '" F� k t�i. ** MW-B3 was unable to be located in 2012, r x • It's location is approximate. HCP High Concentration Plume LCP Low Concentration Plume aqf r m . _ MW-108B° 1 . s ""�'` �;k.. �� " w� i 9 "w' ,,, Plume Contour Area Designation ` F � " " �,. "� � 1,000 HCP +aaz. ` ' PW12166 a ,` M' tir �.> ' 3 1,4-Dioxane Plume N 0 75 150 30o Summary of Inferred Contaminant Surficial Aquifer 11, ., Al Feet I I GMH Electronics SuperfundAreas -Site Aqu Figure Roxboro, Person Count North Carolina 3-1 NAD83 Stateplane North Carolina,Feet County, 7,y4,,,::: ,,,,,,,..':4:,,,,.-''''4,,,.;1:.*,,,.:;*„., '44 n +'" ' '' a f' i s _ , , k s - ti,. e ' :, j' % '` M�` a '4:11t.,,;',1:::::1 �, t � x sla"" ;..1,4 �+ + t • PW108 'xv ai. r" . t",zek: • •' ' � " 4 , `• B':ks S. A. „ ' , spry;71, • er ,,. , s' « , t_ • ` 4., , ;fie A�. k': ' 1► a ' x • ~ `, ax: ^ s ,,t :; „yam n exr r. ' �''�,.,' �"w' ' #V�' ,, 11: ,�. '�i'.:R "'x W'i_ i. e;ls k :.,. ' of :"< .a+ ,•i. �' ., WO y t r '1 -# t '� `;,% '' '>. ,. : f,A k , 'r w' • SW147511, a :' � � < PW9289 , �4 5 � " s ''„ ':� ^�+,�` :s", ki.,<. ^» , i '' '' +" :""*' ?s ,r."••alb. , ,{t, t�., ��` , t�'y a-::a a` "` *•. Q �� ,'. ,q, `,f ` ,, Or,, j i'. . c 1 'yIt '�' ;:" ' „L ,, -',"-A'' ; ., .;. s., Sit' r+ .-' }, w»�`� »rr: ,. ,' "fk T, a ' .,, + �„`. 1 ds,w, Tik.�`,, �'� r /4 'yt: a ♦ � .,two ks} ',,,y.', .-s d,. ;,'; ,a, ' t; ��� .s sa � s m .. • . . ,, PW11097. ^ ` e", . X ,, + .. . PW977�4'*t a `t '�"i 4 fix" " 41 ,k; a '*'" :�', y*,� ,k ' :' .` ;', , '�i' °'- _'' y��y y� `' 1 A*.. e .s , ' a" .;. ,', rw ':0p�y r cpp ^y,' e y ,. ~ PW13947 t+ e .w ♦ ► A� ! *� s,. ,,� sWi 3. '' w ♦ f'' ' 1 u, "., :x:.' ' ^s„fie' r t* : `" '' `t."`,� yrs;,> .,t" i'; y{^,� s„ ;�4. > '" ,� * /...`",:t ;i y, ,'k i $ - ~,Rh,1* ;tr° .s..' 3:` . ,;. ,3t . 5 `'M1 ,x } ..,n a ♦ I tp'rr'*` i1Ff -:� - t t. r" ' ,`� «i a `'2 r + y t., '' + ' ,'` " `d w .µ .� MW-103B I. F ,. r ` _*, z, , j { s >I"'� , Yr :,,:`�.. x'" ,i, ?„. / JfiM1 # peF .a "' x;� .�P. + ,,ire' a.rt „i" �«sj^+nme • Jt. ,�• �' f.. PW13949 it. z + . 3l;� # 's ..S�✓ , / t �}r 'St"°#F 'fi*5ia`i 3 4' • k .3.Y it "'•.. :. ,f ,�. t' I .3 14 ..,.a'` ,ate u '; a `,o ,�II : 'wr u. .:.. i y ■ ;""li...".•,.; '-,4.i. ',- :....,..,:,,,:nr-.-4.01,• ,- m s k , *,, ,„;' ,1�"k..��' - ,a c r� xs 04 ,z ;o- ''� s's. ♦ .f, � ,`r+,^' !k asz� ��r>'z4';# ,�, �"*�i' : �,'ru'[ 3��c.r^A� 3` :.�.,N a,' „ ��, � .. •t,. .. .-; :' I...a ei° ,,, ,':t K� i ..k - „.two,,, "".:• ." ,Via:; S 1„ `: t ' -/, ' m`'. tt ;., " ,.,, ;�. �PW10388 ` , wI '..a.; ,',, 3a „ „ tt .� . / ! ,� ` ;, . Legend ,. a g S ' e' „ b`max, , h I + ss µa"' >, '`d,y,,"+D: r", �4i 4- 'p-w a:$ '4 '' a, `. y,r *w`t I� 'T ♦ Ir ^s� ' 'dt£� su ,, ,� s €, ft" s a « ;"+� FW13891, /1 ': • ' ' ; iaa x {/ .. / Groundwater Sample E a r,S i'm -...., „r` ,:r' ' ' t .''. '¢ PW1<0828' „:.- ; �. � =� ' Pw:1389p ;A: Sampled Well `_ .6; a :. �' ,t� ,. 2s "r°8 .:,,lit. j,..` s,, .+ �' p Y B � �. ' •� k ,. ,; z Mw,B13 � � Its itif4 I s 9 Well Not Sampled �.r., , ,.,, ,: R', . ', , d- , q: . :a � u- a.iProperty ;- r * MW-101 S' � PW�16177 . I/ / � ~ . ,� '.� : . . -,� :� '.a. .. ;? 1. ,�� ~s Surface Water Sample . + "s r, MW,B10 I �.."a, 1 • a • � . ` "--a, „,•,,� M .4 �, ,, nnw-Bs . ♦" o� / ;. ;..� '�'� • Surface Water Sample ' �' , 1" ~, �� :< r,. fI ♦ I ♦ ,: * "� . 1.^ pie- ,° - p t z " MW 102S� MW B8 ♦ PW14769 I I ., :?.. � , I Mw-'1 oos~g `� � H t°� , ♦/ .r ° Total Petroleum-related VOC/ SVOC za� MW-65 Mw;Ba o ♦ ;. " _ _ COCs Isoconcentration Contour /L g �,, r° ++ I i MW 104E��+ I xa gyp, ' , ', TW208 ~s 9 PW10939t z PW9857 ♦ .: (dashed where inferred) a Y' : e ' t�. �' MW 63 I ,¢' d+ j, ♦ ♦ i ♦ Eel Electronics ,,, {• ,t ♦ ♦ r, Total Solvent-related VOC COCs - Isoconcentration Contour /L `' tt auk y ' .. e l y ,''TVI24•x / ✓✓ ♦ /'♦ Property a" (1�9 ) x, 3' ' » ',! ♦ Q:*- r., I ♦ '<* /I ♦ � (dashed where inferred) ,� ry '" i M rwzi5, Mwao7B MW 106S "I 4t z. , r .►, i ! ., , ki: ' " Total` Solvent-related i �pwsss3 PWd1104 rwz,s .,,,� ,Mw�o�ss 'Pwzo111 • — — COC 1,4-Dioxane s t °` TW211 A Isoconcentration Contour(pg/L) :�'� � � �� �, ��+ 1. zooms ' ' Pw,1���3 "-.4 , '' (dashed where inferred) n 4 ,, ,,t ., `,+ \NPoOY PW9192 x k PW1.1267 ,/ /fi '`P 1� ; w ° _ ���(rjA�. �' �' � ! P W10�41s «i NOTES: at .p vt,s Result Units-micro rams per liter !L ,, , t n.' ' ! k+ I ✓ ♦ , ; a * Active private well. b ' i .: o ♦ HCP High Concentration Plume os : `. , �' _ ;`�}' ♦^o/ k LCP Low Concentration Plume `, -,. ✓ af` > ��: MW-1086Ii .1 ILk t� �' .'. ' d pW,1,2166 t t Plume Contour Area Designation y�4,00.... ,, � ,. ,. ±9 .^. , , 1,000 HCP .* ; *- ',!, f F # .. t "s* ?,. J°-1r, .,y .J.+ `,•'-' E'"�., .. i'rt';"t^�` i j. } 2�� tI " � ° *�:., 'PW12058- PW16,4061 }- .' LCP �� '_ *� "` k. a 100 LCP ': 4 ♦ ,, , '. ;5 - 30 1,4-Dioxane Plume - ;tg, , , ;,, A. 3 1,4-Dioxane Plume N 0 125 250 500 Summary of Inferred Contaminant Areas - Bedrock Aquifer Ft", . I 1 Feet 1 l GMH Electronics Superfund Site Figure A Roxboro, Person Count North Carolina 3-2 NAD83 Stateplane North Carolina,FeetCounty, 014 E.(2) -,` 4*.--:3:c,-; .. Soil boring locations Legend • No COCs Detected rn - �* i v: w Below . ,. r COCs Detected ,• • Cleanup Goals N �' &A Wrenn Property , COCs Detected Above UST Area • x � x � "" Cleanup Goals E ' 3 s N . .mom . .. M.:'` \ina • Reading Rd Negative PID i ' v\tg no sample u N • SB313 Former Petroleum Iii • : o UST Area -"SB318 • ,$. SB207 . 0 u y °n • o MW-4 SB325 coC =contaminant of concern B32' ': 1 11t, N �j� L SB317 • c12 • SB219.O Q SB327 .,.. oCiggil.4 • • ma • x, . s • SB218 _o �GMH Electronics r n „Asia SB301 • SB104 SB UST Area ~ W _ f., • SB328 . �;" A SB303 ° '- SB321 �F 0 #� ? ' m -. 2 s U a Q �. w .r ,- " u.y;, l ° I I I I I I I I 1 ` .; a<� E. 0 25 50 100 ' � ' SB2 .� Feet Nj NAD 1983 North Carolina r 9t OH mD DE WV m a" ; 9, k KY m VA " v ,. r r"* ' >` SB202 x. • ..» " , TN i 1� ����r t��11 4 l ' ' S6203 • Wit° ��♦y�a'7�j =���+����`� � SB304 •• t b �i ���+� eat ter, :-: SB201 SBIt' Sc N S8305 • 7 k SB215 GA Person County, SB308 n North Carolina r`" SB306 i 4• TM~ GMH Electronics Site • Aire � Roxboro, Person County SB310 �, d�, .�•.- Suspected Solvent ° North Carolina • 4 Source Area ti , » • o a k Figure 3-2 SB307�' u ` VOCs in Soil i. December 2008- March 2015 tVERSAR User hcoats Last modified date 6/23/2016 Path Y\EPA RAC II Lite\TO 39 GMH Electronics RD\GIS DATA\Figure 3-4 Monitoring Well Locations mxd Source 2014 ESRI sp1 ii, 1 ,,,, 1 . 1 CO I i 3 1 OW1 ,t_ ,,e,./ c g Q ii. Q 111 i 0 i 40 i I .„ _., ,,, _.....,,,,,,., I ., _ ,..„,„ _ I , , .,,,,,,.. , , ,, ,,,,,..... , ,,,H. ...,...., M9' '!' ./4:': I 4..x 3 ::, „ # ., 1► iVirag.#w O c-- 1 r o o v et 0 D to liAl a li — # 2 # < 0 xi 6 jtjl* D `� z m z m rt co m �, r"a�1 6 C� M o 0. a c m n f bi li W o _ co �' cn 5' 03xi " a) "(A w01111 z )01 . z CD CO a, ca CQ t top cm w o o . ���3i■ s _ o W CD ..) N c v n 4 lima.�� I C o �. H i o v .:. A `A Any w ell w ith the exception of an approved groundwater monitoring w ell 100'Any '° 9406: Surface water streams-intermittent and perennial,perennial w aterbodies,wetlands 100' 4 Surficial Monitoring Well Any property under separate owners hip 50' Structures-above ground 10' 9 Bedrock Monitoring Well 9405`- Structures-subsurface 15'- Any water line 10' • Injection Wells C. '�4 r ' a Rock outcrops 50' 103884 9 Private Well E. oaiTop of slope embankments or cuts two or more feet in vertical height 15' 1.-- Groundwater lowering ditches(w here bottom of ditch intersects the water table) 100' Setbacks Surface water diversions (ephemeral streams,waterways,ditches) 25' E Subsurface groundw ater lowering systems 100' GMH Electronics Site 10828 PersonCountyParcels (II) MW112B;5 157 1.38904 ce VE.(4) LL Setbacks and MW110V, E(5) Property cc a, ' CO3 Boundaries MW101S = m 4 MW101 B% 021 MW123B 0 B10 MW122B ti N A U a I 1 1 1 I 1 I 1 I W `yMW102S 0 40 80 160 Feet a 9MW100S 468 147699 NAD 1983 North Carolina 9 m B4 7('-' a SVE-1' y MPE-1 WV MD MW104B9 10939`� KY VA E 9857�9 \ / _�- TN `�1�� �+���CS 1/►� \ «tip Y 1�iy��1��,►i�rsr �`..sc "jar gi 9 15 B6 ' MW124S ri.. ,- . ..„5, 15' GA \z, person County, 109424 MW126S North Carolina 0 l t. GMH/ Roxboro Electronics Person County MW125B MW105S 9MW106S North Carolina l • 1M/4 &IM Required Setbacks MT, \ _ .COP4-1%' 6683't * VERSAR E.(3) Private Wells Legend TIRM 3 ` :t, , * Private Wells 0- 14299 ggalg 13108 . :� . n GMH Electronics Site 16839 6700,r E uJ u, 0 4 N 23 20194 ¢7"- 0 21666 . E 2 m 4 y 4b S 4 4 ' 41fl�41 41 Todd Rd 4K1 9289 0 m 4 � 4141� 414}ffi, 0 I °G4� 13949 a 14183 9405 49406 y �a S• 10388 'MN 10828 %OA w -13890 F9 N 0 14769 10939 9088 '_ 4 10942 La ' IIiiIiiii MN', 6683 A @ ° il 0 250 500 1000 > "r 4I Feet 4 NAD 1983 North Carolina a # eaggxg10941 _77 # ," 1#k4 + 4 10368„ , `', 41 VW MD 16061 KY VA o s 4t8EW ' TN M'aeraminei i l� E ,93 4 414394 19458 10740 �, aimiro' 0�•r 17, a CND SC eide 19709 GA Person County, North Carolina 4B SD &WQ3 GMH Electronics Site C WO Roxboro, Person County North Carolina Figure 3-5 r Private Well >41 Locations NM J VERSAR 8) — w Legend 4 Surficial Well 0 E Potentiometric Contour aTo Former Petroleum UST Area U MW B &} Potentiometric surface elevations g d. 730.95 relative to NAVD 88 co MW-101Q .MW-124 S Not included in 4.-, , , f potentiometric surface model .80 due to anomalously low ground water elevation�32 N MW-B10 ii . 730.22 til Z II MW 102S E 733.43 a o 9 rt 4 ,MWB5 MW-B4 MW-B8 eo b9N:732.42 MW-4 MPE-1 N732.65 SVE-1 ' a Dry *� .� M N . 731 730.99 i i iIi i i I a I W 0 25 50 100 Feet GMH Electronics NAD 1983 North Carolina zs <<"• UST Area `" , WV MD M -B6 KY VA 4" MW-1,24S E Wrenn Property TN ��,��;�{��rl�;�.� i UST Area ��� tr ii.o �i MW 126S .._�1�r�ti��,► ,����+r� 1 :11:11441111."1111114111:1111' MW 105S MW 1065 GA e,��y�/� Person County, QCJUoUtiJ 730.99 North Carolina GMH Electronics Site Roxboro, Person County North Carolina Figure 3-8 November 2015 Suspected Solvent Potentiometric Surface Map Source Area Surficial Aquifer t VERSAR • i E(8) — N Todd Rd w c Legend PW-11250 PW-11097 Moo ( CM, co `r Bedrock Well x e 3 PW-9774 S�� "D Private Well a U -97 Potentiometric Contour MW-103B i9,i Former Petroleum UST Area t 49 VI2.98 0 E � Potentiometric surface elevations 7a2-1.08 P_W'1 NV relative to NAVD 88 •0 20 a_ PW-10388 ! 7 _ E d z ,�7 4 4 MW-1106 MW-1103 76- PW-13890 718.30 a Wrenn Propertya4 0 UST Area MW-101B ' ' MW-1r.07 726.07 = MW-1PED z0 PW-10939 7r26.34 w MW-104B � 2I PW-9857 7;2 41Q > ° MW-107B aid MW-1�25B y 7 1.80 �t9`\ `� PW-14771 S U` 31175 4 a 7 2.541 PW-10553 GMH Electronics 1 i I I 1 I I I 1 4 A,�N 7 UST Area 0 125 250 500 PW-11267 1, 3 Feet a 730.34 NAD 1983 North Carolina MW-1096 WV MD 726.62 4 GWNIRKO _,--(j KY VA MW-108B ., MVO Suspected Solvent 730.05 Source Area +�iwai 7014.410. E TN 0�6Al�p�'r.n+ 101II il in. Air fillSoWiNaeskrAil*." 41151. wog. L 727 /30 SC ��!► ',T, V i D GA LPerson County, North Carolina GMH Electronics Site Roxboro, Person County North Carolina ,r� Figure 3-9 November 2015 PW-1 9709 r Potentiometric Surface Map Bedrock Aquifer VERSAR ROY COOPER Governor MICHAEL S. REGAN M Waste Management MICHAEL SCOTT ENVIRONMENTAL QUALITY Director June 12, 2017 Michael Rogers UIC Program Manager Division of Water Resources 1636 Mail Service Center Raleigh, NC 27699-1636 Re: GMH Electronics Superfund Site (WQ0039016) Non-Discharge Groundwater Remediation Injection Work Plan Person County, NC Dear Mr. Rogers: The NC Superfund Section has reviewed your June 9, 2017 response to the above referenced work plan. Per our telephone discussion with Debra Watts on June 12, 2017, the work plan will be considered to substantively meet relevant state regulatory requirements if the treated water from the Multi Phase Extraction water treatment system is tested and petroleum constituents are shown to be below NC 2L standards. Records of the treated water testing results will be retained. Because the petroleum constituents in the treated water will be below the NC 2L standards the requirement for a monitoring network/compliance boundary is not necessary. A technical report summarizing the project and injection well construction records (GW-1) will be submitted upon completion of the project. Please contact me at 919-707-8335 oat beth.hartzell@ncdenr.gov if you have any questions. Sincerely, Zytia,i,rd Elizabeth A. Hartzell Cc: Corey Hendrix, EPA Debra Watts, DWR Jim Bateson, DEQ David Lown, DEQ • State of North Carolina I Environmental Quality I Waste Management 217 West Jones Street 11646 Mail Service Center I Raleigh,North Carolina 27699-1646 919 707 8200 > �s� 40 ROY COOPER Governor MICHAEL S.REGAN • Secretory Water Resources S.JAY ZIMMERMAN Environmental Quality Director June 9, 2017 Corey Hendrix U.S. EPA 61 Forsyth St. SW Atlanta, GA 30303 RE: GMH Electronics Superfund Site(WQ0039016) Non-Discharge Groundwater Remediation Injection Work Plan Person County,NC Dear Ms. Hendrix: The Underground Injection Control(UIC)Program of the Water Quality Regional Operations Section has reviewed the above referenced work plan received January 24,2017 (bound hard copy). The proposed injection project as presented in the work plan does not substantively meet relevant state regulatory requirements for the following reason(s): • Per 15A NCAC 2T.1605(a)(2)and 15A NCAC 2L .0107, a monitoring network/compliance boundary is required to be established 250 feet from the waste boundary,or 50 feet within the property boundary, whichever point is closer to the source. The proposed work plan does not meet this requirement as there is no compliance boundary/monitoring network indicated for the 2 (two) separate injection areas. Due to the site's coverage under the Comprehensive Environmental Response, Compensation, and Liability Act(CERCLA), the state's administrative permitting requirements have been waived for this project. However,please submit a technical report summarizing the project and monitoring data upon completion of the injection project along with injection well construction records(GW-1)and well abandonment records (GW-30), if applicable. Tracking number WQ0039016 has been assigned to this project. Please use this number on future correspondence. Please contact me at 919-807-6412/Michael.Rogers@a,ncdenr.gov or Debra Watts at 919-807-6338/ Debra.Watts(a)ncdenr.gov if you have any questions regarding this letter or the UIC Program. Best Regards, Michael Rogers, P.G. (NC & FL) UIC Program Manager, Hydrogeologist Division of Water Resources Water Quality Regional Operations Section l�ol hing Compares State ol Nonh Carolina I Environmental Quality i Division ol'Water Resources %V aler Quality Regional Operal :Styr Ihat,Mail Service Center Raleigh.NunhCarohna'7tvv-Ib;6 919-707-9129 Page 2 of 2 cc: Rick Bolich&Laura Robertson,Raleigh Regional Office Central Office File WQ0039016 Person County Environmental Health Department �fdf��"pJ ' s�a' 4� '. , '�'i`� ; .xy_ _ ,.F • f 4. -1,?" ;._.. ._'`r n".¢e.;e5'S; ..5-< <c.'Yzz ` _. itx s r" ...f'ial*h- Rogers, Michael From: Traylor, David <Dtraylor@versar.com> Sent: Friday, May 26, 2017 3:53 PM To: Rogers, Michael Subject: RE: GMH Electronics monitoring plan Michael, Thanks for the call yesterday regarding the compliance boundary for the GMH injection wells. I will discuss this with Corey after the holiday next week and find out how she wants to proceed. Thanks, David Traylor Senior Project Manager Environmental Services Group VERSAR Direct Line: (404)419-4066 Mobile: (828)734-9487 Email:dtraylor(a�versar.com Visit us at:www.versar.com From:Traylor, David Sent:Tuesday, May 23, 2017 2:30 PM To: 'Rogers, Michael' <michael.rogers@ncdenr.gov>; Corey Hendrix<Hendrix.Corey@epa.gov> Subject: RE: GMH Electronics monitoring plan Sure here is the number and access code: Dial-in number: 877-821-4158 Access code: 0546954 From: Rogers, Michael [mailto:michael.rogers@ncdenr.gov] Sent:Tuesday, May 23, 2017 2:29 PM To:Traylor, David <Dtraylor@versar.com>; Corey Hendrix<Hendrix.Corey@epa.gov> Subject: RE: GMH Electronics monitoring plan Can I get a call in number, I didn't see a number on the Outlook invite. From:Traylor, David [mailto:Dtraylor@versar.com] Sent: Monday, May 22, 2017 5:43 PM To: Corey Hendrix<Hendrix.Corev@epa.gov>; Rogers, Michael<michael.rogers@@ncdenr.gov> Subject: Re: GMH Electronics monitoring plan 3:00 is good for me. I can send out a call in number when I get back in the office tomorrow morning. 1 Reply message From: "Hendrix,Corey"<Hendrix.Corey@epa.gov> To: "Rogers, Michael" <michael.rogers@ncdenr.gov> Cc: "Traylor, David" <Dtraylor@versar.com> Subject: GMH Electronics monitoring plan Date: Mon, May 22, 2017 4:51 PM I am available tomorrow for a call at 3pm. Sent from my iPhone On May 22, 2017, at 4:50 PM, Rogers, Michael<michael.rogers@ncdenr.gov>wrote: Can we talk tomorrow afternoon-say at 3:00? From:Traylor, David [mailto:Dtraylor@versar.com] Sent: Friday, May 19, 2017 11:21 AM To: Rogers, Michael<michael.rogers@ncdenr.gov> Cc:Corey Hendrix(Hendrix.Corey@epa.gov)<Hendrix.Corey@epa.gov> Subject: GMH Electronics monitoring plan Michael, In response to your call yesterday,attached are electronic versions of Drawings 6 and 7 from the Final Remedial Design that show the surficial aquifer and bedrock aquifer injection points. On these figures I have indicated wells that we currently have included in the proposed monitoring program (see attached Table 4-1)with red boxes.As you can see, our current monitoring program is targeted more toward contaminated wells within or just downgradient of the treatment areas to evaluate progress of the cleanup. Part of the rationale for the proposed monitoring program is that this design is for an interim remedial action targeted at treating only the areas of highest contamination.The groundwater plumes are actually much larger than these proposed treatment areas. There are several other monitoring wells(all shown on Drawings 6 and 7)we could potentially add to the monitoring program to provide perimeter coverage of the treatment areas.These wells include: Surficial Aquifer: • MW-101S (located north-northwest of the Wrenn property treatment area) • MW-102S (located north-northwest of the Wrenn property treatment area) • MW-B6 (located between the GMH property petroleum and solvent treatment areas) • MW-121S (located west of the GMH property petroleum treatment area) • MW-126S (located north of the GMH property solvent treatment area) • MW-105S (located east of the GMH property solvent treatment area) Bedrock Aquifer: • MW-101B (located north of the petroleum treatment area) • PW-10553 (located southeast of the solvent treatment area) Areas where we would not have perimeter coverage of the injection areas using existing wells would be south of the surficial aquifer GMH property solvent treatment area and in the agricultural fields. southeast of the bedrock solvent treatment area. I spoke to Corey Hendrix at EPA this morning regarding the potential need to add additional existing or new wells to the monitoring program to satisfy NC UIC program monitoring requirements. Corey would 2 need to justify the costs of s' oriipling any additional existing or new we6 wU satisfy UIC requirements,so we discussed having a call among the 3 of us to address the issue.Would you be available sometime today or early next week for a call? Thanks, David Traylor Senior Project Manager Environmental Services Group <image002.png> Direct Line: (404)419-4066 Mobile: (828)734-9487 Email: dtraylor@versar.com Visit us at:www.versar.com 3 • Rogers, Michael From: Hendrix, Corey <Hendrix.Corey@epa.gov> Sent: Monday, May 15, 2017 4:53 PM To: Rogers, Michael Cc: Hartzell, Beth; Shrestha, Shristi R; David Traylor Subject: RE: WQ009996 USEPA- GMH Electronics Superfund Site 3l d(ce Thank you Michael. As we previously discussed, the permit application package was submitted to ensure that the subsurface injection activities proposed as part of the site's remedial action satisfy the substantive provisions of NC's underground injection control regulations. Can I interpret your last emails as confirmation that you do not have any suggested changes to the subsurface injection plan as submitted? Thank you! Corey D. Hendrix, Remedial Project Manager U.S. Environmental Protection Agency Region 4 Superfund Division 61 Forsyth St. S.W., Atlanta GA 30303 phone: 404)562-8738 hendrix.corey@epa.gov From: Rogers, Michael [mailto:michael.rogers@ncdenr.gov] Sent: Monday, May 15, 2017 4:43 PM To: Hendrix, Corey<Hendrix.Corey@epa.gov> Cc: Hartzell, Beth <beth.hartzell@ncdenr.gov>; Shrestha, Shristi R<shristi.shrestha@ncdenr.gov>; David Traylor <dtraylor@versar.com> Subject: RE: WQ003906 USEPA-GMH Electronics Superfund Site One follow up note: Please submit Injection Event Records (IER), and Well Construction/Abandonment records within 30 days of the activity to Shristi. From: Rogers, Michael Sent: Monday, May 15, 2017 4:41 PM To: 'Hendrix, Corey'<Hendrix.Corey@epa.gov> Cc: Hartzell, Beth <beth.hartzell@ncdenr.gov>; Shrestha, Shristi R <shristi.shrestha@ncdenr.gov>; David Traylor <dtraylor@versar.com> Subject: RE: WQ003906 USEPA- GMH Electronics Superfund Site Since this is for a Superfund/CERCLA site and the permitting process is waived; we will defer to the EPA for oversight. From: Hendrix, Corey [mailto:Hendrix.Corey@epa.gov] Sent: Monday, May 15, 2017 4:31 PM To: Rogers, Michael<michael.rogers@ncdenr.gov> Cc: Hartzell, Beth <beth.hartzell@ncdenr.gov>; Shrestha, Shristi R <shristi.shrestha@ncdenr.gov>; David Traylor <dtraylor@versar.com> Subject: RE: WQ003906 USEPA- GMH Electronics Superfund Site Hello Mr. Rodgers- 1 • EPA submitted permit applications reL_:.1 to the GMH Electronics Superfund SitE' _. iedy in January 2017. Can you. please update me on the status of those permit reviews? We have an internal deadline that is quickly approaching. If you need anything additional from us, please do not hesitate to let me know. Thank you! Corey D. Hendrix, Remedial Project Manager U.S. Environmental Protection Agency Region 4 Superfund Division 61 Forsyth St.S.W.,Atlanta GA 30303 phone: 404)562-8738 hendrix.corey@epa.gov From: Rogers, Michael [mailto:michael.rogers@ncdenr.gov] Sent:Tuesday,January 31, 2017 2:10 PM To:Traylor, David <Dtraylor@versar.com> Cc: Hendrix, Corey<Hendrix.Corey@epa.gov> Subject: RE:WQ003906 USEPA-GMH Electronics Superfund Site Thanks. Also, FYI for any future applications you may submit,there are newer versions of the applications available on our website. A link is below. http://deq.nc.gov/about/divisions/water-resources/water-resources-permits/wastewater-branch/ground-water- protection/ground-water-applications From:Traylor, David [mailto:Dtraylor@versar.com] Sent:Tuesday,January 31, 2017 10:12 AM To: Rogers, Michael<michael.rogers@ncdenr.gov> Cc: hendrix.corey@epa.gov Subject: RE:WQ003906 USEPA-GMH Electronics Superfund Site Michael, My mailing address is David Traylor Versar, Inc. 100 Hartsfield Centre Parkway, Suite 610 Atlanta, GA 30354 Please let me know if you have any other questions or need additional information. Thanks, David Traylor Senior Project Manager Environmental Services Group VERSAR 2 • Direst Line: (404)419-4066 Mobile: (828)734-9487 Email: dtraylor@versar.com Visit us at:www.versar.com From: Rogers, Michael [mailto:michael.rogers@ncdenr.gov] Sent:Tuesday,January 31, 2017 10:09 AM To:Traylor, David <Dtraylor@versar.com> Cc: hendrix.corey@epa.gov Subject:WQ003906 USEPA-GMH Electronics Superfund Site David- We received the non-discharge permit application for the above site. Would you please provide your mailing address as the contact for this project. Thank you. Michael Rogers, P.G. (NC& FL) Underground Injection Control (UIC) Program Manager- Hydrogeologist NCDEQ- DWR Water Quality Regional Operations Section 1636 Mail Service Center Raleigh, NC 27699 Direct No. 919-807-6412 http://deq.nc.gov/about/divisions/water-resources/water-resources-permits/wastewater-branch/ground-water- protection/ground-water-applications NOTE: Per Executive Order No. 150, all e-mails sent to and from this account are subject to the North Carolina Public Records Law and may be disclosed to third parties. • , Rogers, Michael • From: Traylor, David <Dtraylor@versar.corn> Sent: Tuesday, January 31, 2017 10:12 AM To: Rogers, Michael Cc: hendrix.corey@epa.gov Subject: RE: WQ003906 USEPA-GMH Electronics Superfund Site Michael, My mailing address is David Traylor Versar, Inc. 100 Hartsfield Centre Parkway, Suite 610 Atlanta, GA 30354 Please let me know if you have any other questions or need additional information. Thanks, David Traylor Senior Project Manager Environmental Services Group r VERSAR Direct Line: (404)419-4066 Mobile: (828)734-9487 Email: dtrayloruaversar.com Visit us at:www.versar.com From: Rogers, Michael [mailto:michael.rogers@ncdenr.gov] Sent:Tuesday,January 31,2017 10:09 AM To:Traylor, David<Dtraylor@versar.com> Cc:hendrix.corey@epa.gov Subject:WQ003906 USEPA-GMH Electronics Superfund Site David- We received the non-discharge permit application for the above site. Would you please provide your mailing address as the contact for this project. Thank you. Michael Rogers, P.G. (NC& FL) Underground Injection Control (UIC) Program Manager- Hydrogeologist NCDEQ-DWR Water Quality Regional Operations Section 1. S 1636 Mail Service Center - Raleigh, NC 27699 Direct No. 919-807-6412 http://deq.nc.gov/a bout/divisions/water-resources/water-resources-perm its/wastewater-branch/ground-water- protection/ground-water-applications NOTE:Per Executive Order No. 150, all e-mails sent to and from this account are subject to the North Carolina Public Records Law and may be disclosed to third parties. i 2 VERSAR RACII Lite 0672 rr:nCOEQIn\t" Contract No. EP-S4-08-03 JI 4 2017 January 20, 2017 • • rcy Region auons Sectir' NC Division of Water Resources Attention: Michael Rogers, P:G. 1636 Mail Service Center Raleigh, NC 27699 Subject: Transmittal of Permit Applications for the GMH Electronics Superfund Site 7 Task Order 039; Contract No. EP-S4-08-03 Dear Mr. Rogers: On behalf of the U. S. Environmental Proteotion Agency (EPA) Region. 4, .Versar is submitting the enclosed documents pertaining to the GMH Electronics Superfund Site in Roxboro, NC for your review. The following documents are enclosed: • Two copies of an Application for Permit to Construct and/or Use a Well(s) for Injection • Two copies of a Non-Discharge Groundwater Remediation Permit Application • Two copies of the Final (100%) Remedial Design for the GMH Electronics Superfund Site As Ms: Corey Hendrix of EPA Region 4 has previously discussed with you, the Fund-financed remedial action at the GMH Electronics Superfund Site is exempt from obtaining state permits under Section 300.400 (e) (1) of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).and Section 121 (e) (1) of the Comprehensive Environmental;Response, Compensation, and Liability Act (CERCLA). However, EPA is required to meet the substantive provisions of permitting regulations that are applicable or relevant and appropriate requirements (ARARs). The information in the enclosed documents is being submitted for your review to ensure that the subsurface injection activities proposed as part of the site's remedial action satisfy the substantive provisions of North Carolina's underground injection control regulations, which have been identified as ARARs. If you have any questions or concerns regarding this matter, please feel free to contact me at (404) 419- 4066 or dtraylor@versar.corn, or Corey Hendrix at (404) 562-8738 or hendrix.corey@epa.gov. Very truly yours, David Traylor, P.E. Project Manager Attachments C: C. Hendrix (EPA) —without enclosures N. Testerman (NCDEQ)—without enclosures File: RACIlLite-39 Rogers, Michael From: Bolich, Rick Sent: Thursday, April 06, 2017 10:26 AM To: Shrestha, Shristi R Cc: Robertson, Laura R.; Rogers, Michael Subject: RE: WI0500955 GMH Electronics Superfund Site We have received it, but since this is for an EPA Superfund site, we do not have the authority to issue a permit. We have not reviewed it as we have been working on other things. rb From: Shrestha, Shristi R Sent: Thursday, April 06, 2017 10:18 AM To: Bolich, Rick<rick.bolich@ncdenr.gov> Cc: Robertson, Laura R. <laura.robertson@ncdenr.gov>; Rogers, Michael <michael.rogers@ncdenr.gov> Subject: WI0500955 GMH Electronics Superfund Site Good morning, I sent out a staff report request for GMH Electronics Superfund Site with permit number WI0500955 on January 31st 2017. I was wondering if it got lost . Please let me know if you have received it or not. Thank you, Shristi Shristi R. Shrestha Hydrogeologist Water Quality Regional Operations Section Animal Feeding Operations & Groundwater Protection Branch North Carolina Department of Environmental Quality 919 807-6406 office shristi.shresthancdenr.gov 512N. Salisbury Street 1636 Mail Service Center Raleigh, NC 27699 1636 .., .�Nothing Compares Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties. 1 WATER. % LITY REGIONAL OPERATE '., 4 5 SECTION APPLICATION REVIEW REQUEST FORM Date: January 31,2017 To: RRO—Rick Bolich&Laura Robertson From: Michael Rogers,WQROS—Animal Feeding Operations and Groundwater Protection Branch Telephone: 919-807-6412 Fax: (919) 807-6496 E-Mail: Michael.Rogers@ncdenr.gov A. Permit Number: WQ003906 B. Applicant: USEPA C. Facility Name: GM II Electronics Superfund Site D. Application: Permit Type: Non-Discharge Groundwater Remediation Project Type: New Permit E. Comments/Other Information: ® I would like to accompany you on a site visit. Attached, you will find all information submitted in support of the above-referenced application for your review, comment, and/or action. Within 30 calendar days, please return a completed WQROS Staff Report. When you receive this request form,please write your name and dates in the spaces below,make a copy of this sheet, and return it to the appropriate Central Office Groundwater Protection Branch contact person listed above. RO-WOROS Reviewer: Date: COMMENTS: NOTES If my schedule will allow, I would like to go on the site inspection. Note: this is a new Non-Discharge permit application. An engineer will need to review the Engineering Design and Hydraulic Control sections of the App. FORM: WQROS-ARR ver. 092614 Page 1 of 1