Loading...
HomeMy WebLinkAbout20091168 Ver 1_More Info Received_20100122S&ME January 22, 2010 North Carolina Division of Water Quality Wetlands and Stormwater Branch 401 Oversight/Express Permitting Unit 1650 Mail Service Center Raleigh, North Carolina 27699-1650 Attention: Ms. Annette Lucas Reference: Request for More Information Submittal Pilot Lions Park Franklin County, North Carolina S&ME Project No. 1051-09-072 Dear Ms. Lucas: oq- i?LOS ?AN a ZG?? ?;usTO?at? %EVIM S&ME, Inc. (S&ME) wishes to submit an updated Pre-Construction Notification and information pertaining to the permit application for the above-referenced project requested by your office in the letter dated December 23, 2009. Please find attached the stormwater plans showing diffuse flow submitted by Site Solutions. Also attached are site drawings and two bound copies of the complete stormwater and erosion control calculations. If we can provide additional information or answer questions you may have, please feel free to contact Jason Volker with S&ME at 919-880-3137. Sincerely, S&ME ason Volker, L.S.S. Environmental Scientist Attachments: Stormwater & Erosion Control Calculations Drainage Area Maps DA-1, DA-2 Construction Drawings S&ME, INC. / 3201 Spring Forest Road / Raleigh, NC 27616 / p 919.872.2660 f 919.876.3958 / www.smeinc.com of w n r?9 o? qG Office Use Only: Corps action ID no. JAN 2 2 010 DWQ project no. yV ,meow - Form Version 1.3 Mm tif?x(] Bc0 rrM0 12DAWA Pre-Construction Notification (PCN Form A. Applicant Information 1. Processing 1a. Type(s) of approval sought from the Corps: ®Section 404 Permit El Section 10 Permit 1b. Specify Nationwide Permit (NWP) number: 42 or General Permit (GP) number: 1c. Has the NWP or GP number been verified by the Corps? ® Yes ? No 1d. Type(s) of approval sought from the DWQ (check all that apply): ? 401 Water Quality Certification - Regular ? Non-404 Jurisdictional General Permit ? 401 Water Quality Certification - Express ® Riparian Buffer Authorization 1e. Is this notification solely for the record because written approval is not required? For the record only for DWQ 401 Certification: ? Yes ® No For the record only for Corps Permit: ? Yes ® No 1f. Is payment into a mitigation bank or in-lieu fee program proposed for mitigation of impacts? If so, attach the acceptance letter from mitigation bank or in-lieu fee program. ? Yes ® No 1 g. Is the project located in any of NC's twenty coastal counties. If yes, answer 1 h below. ? Yes No. 1h. Is the project located within a NC DCM Area of Environmental Concern (AEC)? ? Yes ® No 2. Project Information 2a. Name of project: Pilot Lions Park 2b. County: Franklin 2c. Nearest municipality / town: Zebulon 2d. Subdivision name: NA 2e. NCDOT only, T.I.P. or state project no: NA 3. Owner Information 3a. Name(s) on Recorded Deed: Pilot Lions Club of Franklin Co., Inc. 3b. Deed Book and Page No. 2007/25 3c. Responsible Party (for LLC if applicable): 3d. Street address: 50 Pilot Bypass Rd. 3e. City, state, zip: Zebulon, NC, 27597 3f. Telephone no.: 919-404-2333 3g. Fax no.: NA 3h. Email address: NA , Page 1 of 11 PCN Form - Version 1.3 December 10, 2008 Version 4. Applicant Information (if different from owner) 4a. Applicant is: ? Agent ® Other, specify: Franklin County Planning and Inspections 4b. Name: Scott Hammerbacher 4c. Business name (if applicable): 4d. Street address: 215 East Nash Street 4e. City, state, zip: Louisburg, North Carolina 27549 4f. Telephone no.: 919-496-2909 4g. Fax no.: NA 4h. Email address: NA 5. Agent/Consultant Information (if applicable) 5a. Name: Jason Volker 5b. Business name (if applicable): S&ME, Inc. 5c. Street address: 3201 Spring Forest Road 5d. City, state, zip: Raleigh, NC 27616 5e. Telephone no.: 919-880-3137 5f. Fax no.: 919-876-3958 5g. Email address: jvolker@smeinc.com Page 2 of 11 PCN Form - Version 1.3 December 10, 2008 Version B. Project Information and Prior Project History 1. Property Identification 1a. Property identification no. (tax PIN or parcel ID): PIN: 2716-69-8114 1 b. Site coordinates (in decimal degrees): Latitude: 35.88854 Longitude: - 78.26770 (DD.DDDDDD) (-DD.DDDDDD) 1 c. Property size: 18.38 acres 2. Surface Waters 2a. Name of nearest body of water (stream, river, etc.) to proposed project: UT to Moccasin Creek 2b. Water Quality Classification of nearest receiving water: QNSW 2c. River basin: Tar-Pamlico 3. Project Description 3a. Describe the existing conditions on the site and the general land use in the vicinity of the project at the time of this application: The site is currently Pilot Lions Park and consists mostly of mowed grass. Located on-site are two small structures one , 5,000-square foot partially constructed building, a rodeo arena with bleachers, a temporary sediment pond, a gravel path and drainage ditches. The site generally drains from the east to the west toward a wetland and unnamed tributary on the western portion of the site. The site vicinity is comprised of woodland, farmland, residential property, civic and commercial buildings. 3b. List the total estimated acreage of all existing wetlands on the property: 0.3 acres 3c. List the total estimated linear feet of all existing streams (intermittent and perennial) on the property: 100 feet. 3d. Explain the purpose of the proposed project: The purpose of the project is to construct a sports complex that will include 1,644 square feet or 0.038 acres of wetland impact. 3e. Describe the overall project in detail, including the type of equipment to be used: The Franklin County Parks and Recreation Department is planning to construct a sports complex that will include two baseball fields and a soccer field. An asphalt pedestrian trail will encircle the fields, with a boardwalk within the outer portion (zone 2) of the riparian buffer located on the western portion of the site. The facility will also include a picnic shelter, playground, and a restroom/concession building that will be connected to a septic system. A small section of sidewalk will be located between the baseball fields. A paved parking lot with approximately 180 parking spaces for personal vehicles is also planned. Typical industrial grading and construction equipment will be used on-site. 4. Jurisdictional Determinations 4a. Have jurisdictional wetland or stream determinations by the Corps or State been requested or obtained for this property / project (including all prior phases) in the past? Comments: Mr. James Lastinger w/USACE issued a JD. Mr. ®Yes ? No ? Unknown Martin Richmond w/DWQ made a stream and isolated wetland determination on-site. 4b. If the Corps made the jurisdictional determination, what type of determination was made? ? Preliminary ®Final 4c. If yes, who delineated the jurisdictional areas? Agency/Consultant Company: S&ME, Inc. Name (if known): Jason Volker Other: 4d. If yes, list the dates of the Corps jurisdictional determinations or State determinations and attach documentation . Corps JD dated November 6, 2009. Stream and isolated wetland determination letter dated June 8 2009 Documents , . are attached. Page 3 of 11 PCN Form - Version 1.3 December 10, 2008 Version 5. Project History 5a. Have permits or certifications been requested or obtained for ® Yes ? No ? unknown this project (including all prior phases) in the past? 5b. If yes, explain in detail according to "help file" instructions. A Stormwater Management Plan was reviewed by DWQ. A Sediment and Erosion Control Plan was reviewed by DLR. 6. Future Project Plans 6a. Is this a phased project? ®Yes ? No 6b. If yes, explain. The project has two phases. Site work (grading, storm sewer) for the entire project will be done in phase one. Phase one consists of constructing two baseball fields, trail, portion of a parking lot, picnic shelter, and playground. Phase two consists of adding lighting and irrigation to the soccer field and the smaller baseball field, graveling 92 spaces in the parking lot, adding a 1,000 square-foot restroom building, a small section of sidewalk between the baseball fields, and installing a septic system. The phase two plans are also shown on the attached site plan. Page 4 of 11 PCN Form - Version 1.3 December 10, 2008 Version C. Proposed Impacts Inventory 1. Impacts Summary 1 a. Which sections were completed below for your project (check all that apply): ® Wetlands ? Streams - tributaries ® Buffers ? Open Waters ? Pond Construction 2. Wetland Impacts If there are wetland impacts proposed on the site, then complete this question for each wetland area impacted. 2a. 2b. 2c. 2d. 2e. 2f. Wetland impact Type of jurisdiction number - Type of impact Type of wetland Forested (Corps - 404, 10 Area of impact Permanent (P) or (if known) DWQ - non-404, other) (acres) Temporary T W1 ®P ? T Fill ® Yes ? No ® Corps ? DWQ 0.038 W2 ? P ? T ? Yes ? Corps ? No ? DWQ W3 ? P ? T ? Yes ? Corps ? No ? DWQ W4 ? P ? T ? Yes ? Corps ? No ? DWQ W5 ? P ? T ? Yes ? Corps ? No ? DWQ W6 ? P ? T ? Yes ? Corps ? No ? DWQ 2g. Total wetland impacts 0.038 2h. Comments: 3. Stream Impacts If there are perennial or intermittent stream impacts (including temporary impacts) proposed on the site, then complete this question for all stream sites impacted. 3a. 3b. 3c. 3d. 3e. 3f. 3g. Stream impact Type of impact Stream name Perennial Type of jurisdiction Average Impact number - PER or (Corps - 404, 10 stream length Permanent (P) or intermittent DWQ - non-404, width (linear Temporary (T) (I NT)? other) (feet) feet) S1 ? P ? T ? PER ? Corps ? INT ? DWQ S2 ? P ? T ? PER ? Corps ? INT ? DWQ S3 ? P ? T ? PER ? Corps ? INT ? DWQ S4 ? P ? T ? PER ? Corps ? INT ? DWQ S5 ? P ? T ? PER ? Corps ? INT ? DWQ S6 ? P ? T ? PER ? Corps ? INT ? DWQ 3h. Total stream and tributary impacts 3i. Comments: Page 5 of 11 PCN Form - Version 1.3 December 10, 2008 Version 4. Open Water Impacts If there are proposed impacts to lakes, ponds, estuaries, tributaries, sounds, the Atlantic Ocean, or any other open water of the U.S. then individually list all open water impacts below. 4a. Open water impact number- Permanent (P) or Temporary T 4b. Name of waterbody (if applicable) 4c. Type of impact 4d. Waterbody type 4e. Area of impact (acres) 01 ?P?T 02 ?P?T 03 ?P?T 04 ?P?T 4f. Total open water impacts 4g. Comments: 5. Pond or Lake Construction If and or lake construction proposed, then complete the chart below. 5a. Pond ID number 5b. Proposed use or purpose f d 5c. Wetland Impacts (acres) 5d. Stream Impacts (feet) 5e. Upland (acres) o pon Flooded Filled Excavated Flooded Filled Excavated Flooded P1 P2 5f. Total 5g. Comments: 5h. Is a dam high hazard permit required? El Yes El No If yes, permit ID no: 5i. Expected pond surface area (acres): 5j. Size of pond watershed (acres): 5k. Method of construction: 6. Buffer Impacts (for DWQ) If project will impact a protected riparian buffer, then complete the chart below. If yes, then individually list all buffer impacts below. If an impacts require mitigation, then you MUST fill out Section D of this form. 6a. Project is in which protected basin? ® Neuse ? Catawba ? Tar-Pamlico ? Other: ? Randleman 6b. Buffer impact number- Permanent (P) or Temporary T 6c. Reason for impact 6d. Stream name 6e. Buffer mitigation required? 6f. Zone 1 impact (square feet) 6g. Zone 2 impact (square feet) B1 ®P ? T UT to Moccasin Creek es 0 1836 E B2 ? P ? T B3 ?P?T ?Yes ? No 6h. Total buffer impacts 0 1836 6i C . omments: Page 6 of 11 PCN Form - Version 1.3 December 10, 2008 Version D. Impact Justification and Mitigation 1. Avoidance and Minimization 1a. Specifically describe measures taken to avoid or minimize the proposed impacts in designing project. The site geometry was designed to minimize environmental impacts. The County's preferred plans for a facility suitable for high school teams were down-sized from construction of adult-sized baseball fields and soccer fields to junior-sized fields. In addition the side line corners in left field of field No. 1 have been chamfered. The pedestrian trail surrounding the fields, which is necessary to accommodate traffic flow, was reduced in width to eight feet instead of ten feet. Original plans were modified to relocated the trail outside of Zone 1 of the riparian buffer completely. To minimize the impact to Zone 2, an elevated boardwalk, which was designed to span Zone 2 and a stormwater swale, was abondoned in favor of routing the trail up- gradient and around the swale. 1b. Specifically describe measures taken to avoid or minimize the proposed impacts through construction techniques. The temporary sediment basin has been located to minimize disturbance to the wetland. The wetland will be protected by silt fence. All disturbed wetland areas will be re-vegetated as indicated on the erosion control plan. 2. Compensatory Mitigation for Impacts to Waters of the U.S. or Waters of the State 2a. Does the project require Compensatory Mitigation for impacts to Waters of the U.S. or Waters of the State? ? Yes ® No 2b. If yes, mitigation is required by (check all that apply): ? DWQ ? Corps 2c. If yes, which mitigation option will be used for this project. ? Mitigation bank ? Payment to in-lieu fee program ? Permittee Responsible Mitigation 3. Complete if Using a Mitigation Bank 3a. Name of Mitigation Bank: 3b. Credits Purchased (attach receipt and letter) Type Quantity 3c. Comments: 4. Complete if Making a Payment to In-lieu Fee Program 4a. Approval letter from in-lieu fee program is attached. ? Yes 4b. Stream mitigation requested: linear feet 4c. If using stream mitigation, stream temperature: ? warm ? cool ?cold 4d. Buffer mitigation requested (DWQ only): square feet 4e. Riparian wetland mitigation requested: acres 4f. Non-riparian wetland mitigation requested: acres 4g. Coastal (tidal) wetland mitigation requested: acres 4h. Comments: 5. Complete if Using a Permittee Responsible Mitigation Plan 5a. If using a permittee responsible mitigation plan, provide a description of the proposed mitigation plan. Page 7 of 11 PCN Form -Version 1.3 December 10, 2008 Version 6. Buffer Mitigation (State Regulated Riparian Buffer Rules) - required by DWQ 6a. Will the project result in an impact within a protected riparian buffer that requires buffer mitigation? ? Yes ® No 6b. If yes, then identify the square feet of impact to each zone of the riparian buffer that requires mitigation. Calculate the amount of mitigation required. Zone 6c. Reason for impact 6d. Total impact (square feet) Multiplier 6e. Required mitigation (square feet) Zone 1 3 (2 for Catawba) Zone 2 1.5 6f. Total buffer mitigation required: 6g. If buffer mitigation is required, discuss what type of mitigation is proposed (e.g., payment to private mitigation bank, permittee responsible riparian buffer restoration, payment into an approved in-lieu fee fund). 6h. Comments: Page 8 of 11 PCN Form - Version 1.3 December 10, 2008 Version E. Stormwater Management and Diffuse Flow Plan (required by DWQ) 1. Diffuse Flow Plan 1 a. Does the project include or is it adjacent to protected riparian buffers identified ® Yes ? No within one of the NC Riparian Buffer Protection Rules? 1 b. If yes, then is a diffuse flow plan included? If no, explain why. Comments: No. This project falls under a low-density condition with an overall BUA of 11.7%. Areas with higher BUAs are being treated by a grass Swale that is 175 ? Yes ® No feet in length. The use of vegetative conveyances are being used to the maximum extent practicable. 2. Stormwater Management Plan 2a. What is the overall percent imperviousness of this project? 11.7% 2b. Does this project require a Stormwater Management Plan? ® Yes ? No 2c. If this project DOES NOT require a Stormwater Management Plan, explain why: 2d. If this project DOES require a Stormwater Management Plan, then provide a brief, narrative description of the plan: The Drainage Area Maps and Stormwater control calculations are attached. The proposed grass swales are designed as "Conveyances Swales not Seeking Pollutant Credit". Offsite flow bypasses the project via "Clean Water" grasses swales that will be lined for extra sediment control. The storm conveyances calculations use the rational method and a storm design frequency of ten years. ? Certified Local Government 2e. Who will be responsible for the review of the Stormwater Management Plan? ® DWQ Stormwater Program ? DWQ 401 Unit 3. Certified Local Government Stormwater Review 3a. In which local government's jurisdiction is this project? ? Phase II 3b. Which of the following locally-implemented stormwater management programs ? NSW apply (check all that apply): ? USMP ? Water Supply Watershed ? Other: 3c. Has the approved Stormwater Management Plan with proof of approval been ? Yes ? No attached? 4. DWQ Stormwater Program Review ? Coastal counties 4a. Which of the following state-implemented stormwater management programs apply ? HOW ? ORW (check all that apply): ® Session Law 2006-246 ? Other: 4b. Has the approved Stormwater Management Plan with proof of approval been attached? ? Yes ® No 5. DWQ 401 Unit Stormwater Review 5a. Does the Stormwater Management Plan meet the appropriate requirements? ®Yes El No Page 9 of 11 PCN Form - Version 1.3 December 10, 2008 Version 5b. Have all of the 401 Unit submittal requirements been met? ® Yes ? No F. Supplementary Information 1. Environmental Documentation (DWQ Requirement) 1 a. Does the project involve an expenditure of public (federal/state/local) funds or the ® Yes ? No use of public (federal/state) land? 1 b. If you answered "yes" to the above, does the project require preparation of an environmental document pursuant to the requirements of the National or State ? Yes ® No (North Carolina) Environmental Policy Act (NEPA/SEPA)? 1 c. If you answered "yes" to the above, has the document review been finalized by the State Clearing House? (If so, attach a copy of the NEPA or SEPA final approval letter.) ? Yes ? No Comments: 2. Violations (DWQ Requirement) 2a. Is the site in violation of DWQ Wetland Rules (15A NCAC 2H .0500), Isolated Wetland Rules (15A NCAC 2H .1300), DWQ Surface Water or Wetland Standards, ? Yes ® No or Riparian Buffer Rules (15A NCAC 2B .0200)? 2b. Is this an after-the-fact permit application? ? Yes ® No 2c. If you answered "yes" to one or both of the above questions, provide an explanation of the violation(s): 3. Cumulative Impacts (DWQ Requirement) 3a. Will this project (based on past and reasonably anticipated future impacts) result in d i i ? Yes M' No a t d onal development, which could impact nearby downstream water quality? 3b. If you answered "yes" to the above, submit a qualitative or quantitative cumulative impact analysis in accordance with the most recent DWQ policy. If you answered "no," provide a short narrative description. It is not anticipated that the proposed facility will attract future development to an extent that downstream water quality will be impacted. 4. Sewage Disposal (DWQ Requirement) 4a. Clearly detail the ultimate treatment methods and disposition (non-discharge or discharge) of wastewater generated from the proposed project, or available capacity of the subject facility. The proposed restroom/concession building will be centrally located on-site and connected to a septic system. Page 10 of 11 PCN Form - Version 1.3 December 10, 2008 Version 5. Endangered Species and Designated Critical Habitat (Corps Requirement) 5a. Will this project occur in or near an area with federally protected species or ? Yes ® No habitat? 5b. Have you checked with the USFWS concerning Endangered Species Act ® Yes ? No impacts? ® Raleigh 5c. If yes, indicate the USFWS Field Office you have contacted. ? Asheville 5d. What data sources did you use to determine whether your site would impact Endangered Species or Designated Critical Habitat? Letter correspondence with USFWS, the USFWS website: http://www.fws.gov/raleigh, Natural Heritage Program's on-line database, GIS data of Elemental Occurances for the project area downloaded from the North Carolina Center for Geographic Information and Analysis website, NC OneMap. 6. Essential Fish Habitat (Corps Requirement) 6a. Will this project occur in or near an area designated as essential fish habitat? ? Yes ® No 6b. What data sources did you use to determine whether your site would impact Essential Fish Habitat? Letter correspondance with USFWS, the USFWS website: http://www.fws.gov/raleigh, Natural Heritage Program's on-line database, GIS data of Elemental Occurances for the project area downloaded from the North Carolina Center for Geographic Information and Analysis website, NC OneMap. 7. Historic or Prehistoric Cultural Resources (Corps Requirement) 7a. Will this project occur in or near an area that the state, federal or tribal governments have designated as having historic or cultural preservation ? Yes ® No status (e.g., National Historic Trust designation or properties significant in North Carolina history and archaeology)? 7b. What data sources did you use to determine whether your site would impact historic or archeological resources? Letter correspondence with State Historic Preservation Office. 8. Flood Zone Designation (Corps Requirement) 8a. Will this project occur in a FEMA-designated 100-year floodplain? ? Yes ® No 8b. If yes, explain how project meets FEMA requirements: 8c. What source(s) did you use to make the floodplain determination? FIRM map panel 2717 Mr. Jason Volker ?J 1/22/10 Applicant/Agent's Printed Name /'--Applicant/Agent's Signature Date (Agent's signature is valid only if an authorization letter from the applicant is provided.) Page 11 of 11 PCN Form -Version 1.3 December 10, 2008 Version 1 1 1 1 1 1 1 F 1 1 'p g - I I to % Storm Water & Erosion Control Calculations For: Pilot Lions Park Project #3043A Zebulon, North Carolina January 13, 2010 T E 2 3 2 0 W. Morehead Street Charlotte, NC 28208 Landscape Architecture Site Planning Civil Engineering www.sitesolutionspa.com Telephone-704-521-9880 Facsimile-704-521-8955 IIIIIIIIII/7j, ?0'• are 5S! ° SEAI 026926 P ie, .? ? '•o.o°oo' ? 1???ia NI 1 1 1 1 1 Pilot Lions Park Project #3043A Storm Water Calculations TABLE OF CONTENTS I ......................SITE NARRATIVE II ....................EXISTING SITE DATA Location Map USGS Map Soils Map Hydrologic Soil Data III ...................EROSION CONTROL CALCULATIONS Sediment Basin Rip-Rap Aprons Ditch Liners IV ...................STORM DRAINAGE CALCULATIONS NOAA Storm Data Haestad Storm Tabulations Time of Concentration Calcs. Storm Schedule StormCad Output Data Swale Flow Calculations Grass Swale Supplement Form Culvert Calculations V ......................NEUSE RIVER NUTRIENT CALCULATIONS Total Nitrogen and Total Phosphorus Loading Calculations VI ........................COMPOSITE DRAINAGE AREA MAP i 1. SITE NARRATIVE Pilot Lions Park - Detailed Project Narrative .The proposed project is located northwest of the intersection of SR 1745 Clyde Pearce Road and SR 1744 Pilot Bypass Road near Zebulon, NC. This project includes the construction of two (2) ' new baseball fields, a picnic shelter, playground, and a new parking facility. The parking facility will connect to the existing parking lot at the adjacent Pilot Lions Club. The property is an existing open un-maintained lawn/field containing a small area of wetlands on the northern most ' section of the property. The existing ground surface primarily slopes to the center of the property (to a draw) at around 3%, with contours ranging from 322.0 to 350.0 ft. ' This project drains to Non-SA or Non-ORW Waters and will adhere to the requirements set forth in the recent revisions to the NC General Statues (15A NCAC 2 H .1000). The receiving stream ' name is Moccasin Creek and is classified as a "C" Aquatic Life, and "NSW" nutrient sensitive waters. Based on the fact that this project is defined as low density, the drainage area is compiled into a single area (per #9 on the "Stormwater Management Permit Application Form"). ' This project falls under a low-density condition, because the overall Built Upon Area (BUA) is 11.70%, which is less than the maximum of 24%. There are some areas that have a higher BUA than the overall BUA for this property, however they are being treated by a grass swale that is 1 175 feet in length. Per the conversation between Mike Randell (NCDWQ) and Tristan Teasley (Site Solutions) on 5-4-09, if the areas of high densities are treated in a grass swale (using NCDWQ guidelines) and the swale has a minimum length of 100 feet to the discharge point, the ' project will still qualify as a low-density project. Since this project falls under the low-density classification, there is no requirement for detention or water quality for this site. The use of vegetative conveyances have been used to the maximum extent practicable. ' Because this project is in Franklin County (within the Neuse River Basin), it must meet the nutrient removal requirements per NC Rules 15A NCAC 2B .0235. This rule states that the ' required post-development nitrogen load must be reduced to 3.61b/ac/yr. The state provided spreadsheet shows the post developed nitrogen loading level at 2.23 lb/ac/yr which is under the 3.61b/ac/yr requirement, therefore no BMP's will be needed for nutrient removal. The proposed ' swales are designed on the requirements for "Conveyance Swales not Seeking Pollutant Credit". The offsite flow (that was originally going thru our project) will now bypass around our project via "Clean Water" grassed swales, which will be lined for extra sediment control. The storm conveyance calculations use the rational method and a storm design frequency of 10-years. r 1 1 1 1 1 1 I I . EXISTING SITE DATA Location Map USGS Map Soils Map Hydrologic Soil Data ♦- z TOPO! map printed on 09/15/09 from "North Carolina.tpo" and "Untitled.toa" 78116.000' W WGS8476°15.000' W Cmr c ?' 1 F N .. Czm ?. '`+..? -AV S'me Rid a ? ? -ter ? Carn ? ) t yr } r., f ?-.,? / ?1 r i r + x r r _ 1 I ! ?j?' ? ffJJ"" n i r 77* ITE i } : _ } j; r : G r ?? ?? Gent ' >? i. .f FAT 33R 'i ri ' ? ? P m Cam ` 1 l ? ?, i } c T C 71- -4.1- 1 Wit ' 9-v Imo £EEl 0 530 t000 PdETERS Printed from TOPO! @2001 National Geographic Holdings (,w .topo.com) O O O N LO o In M D 7 t 35* 53' 26" 15* Soil Map-Franklin County, North Carolina 0 m m 7 35° 53'26" 771 2 / C'f V - h Il ' ? ? r ' 4fA T M „ i 2,, J µ 746500 746550 746600 746650 _r 746700 746750 746800 2 Map Scale: 1:2,250 N printed on A size (8.5" x 11') sheet 70 ' N 0 20 Meters A 40 80 120 Feet 0 50 100 200 300 ' USDA Natural Resources Web Soil Survey Conservation Service National Cooperative Soil Survey m 9/14/2009 Page 1 of 3 35° 53'10" Soil Map-Franklin County, North Carolina MAP LEGEND MAP INFORMATION Area of Interest (AOI) W Very Stony Spot Map Scale: 1:2,260 if printed on A size (8.5" ¦ 11") sheet Area of Interest (AOI) } Wet SPof The soil surveys that comprise your A01 were mapped at 1:24,000. Solis Soil Map Units . Other Please rely on the bar scale on each map sheet for accurate map Spacial Line Pastures measurements. special Point Features Gully Source of Map: Natural Resources Conservation Service c; Blowout Short Steep Slope Web Soil Survey URL: http:/twebsoilsurvey.nres.usda.gov ® Borrow Pit Coordinate System: UTM Zone 17N NAD83 X clay spot - Other This product is generated from the USDA-NRCS certified data as of Political Features the version date(s) listed below. Closed Depression Cities X Gravel Pit Soil Survey Area: Franklin County, North Carolina Water Features Survey Area Data: Version 9, Dec 31, 2007 Gravelly Spot oceans Date(s) aerial images were photographed: 6/17/2006 Landfill Streams and Canals The orthophoto or other base map on which the soil lines were Lava Flow Transportation compiled and digitized probably differs from the background Marsh or swamp +++ Rails imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. R Mine or Quarry Interstate Highways ® Miscellaneous Water .N US Routes ® Perennial Water Major Roads v Rock Outcrop iv Local Roads + Saline Spot . , Sandy Spot -as- Severely Eroded Spot C Sinkhole 3> Slide or slip y Sodic Spot a Spoil Area 4 Stony Spot USDA Natural Resources Web Soil Survey 9/14!2009 Conservation Service National Cooperative Soil Survey Page 2 of 3 Soil Map-Franklin County, North Carolina t Map Unit Legend 1 Franklin County North Carolina (NC069) , Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI ApB Appling loamy sand, 2 to 6 percent 2.7 14.3% slopes DuA Duplin sandy loam, 0 to 3 percent 8.4 45.3% slopes VnB Varina loamy sand, 2 to 6 percent 7.5 40.4% slopes Totals for Area of Interest 18.6 100.0% I a" USDA Natural Resources Web Soil Survey 9/14/2009 Conservation Service National Cooperative Soil Survey Page 3 of 3 Hydrologic Soil Group-Franklin County, North Carolina 0 Zo i IS 0 Map Scale: 12,250 if printed on A size (8.5"x 11") sheet 0 N Meters A 20 40 80 120 Feet 0 50 100 200 300 ' USDA Natural Resources Web Soil Survey Conservation Service National Cooperative Soil Survey n 35° 53' 26" 0 m 35° 53' 10" 746800 9/14/2009 Page 1 of 4 O c 0 ca U L 0 0 z c 7 0 U c Y c as 7 0 0 0 U U O O L 00 n O O) C a N E O 6 > a) 0 .O. N -O to 3 ) 7 U . cm Z co 4)'0 0 c o 7 N O .c c m E y N O. cc U) w 7 !G t: m O 0 - U N Z r CL M 0 O ` U 2 f? w a O y 0 x E m c M U m co z I- 'n m 3 w N a' o a z L o N cLi E v, Q N O CL m E O 3 Z U- Z Q o O z ? M N L 3 m c N Q L Vl y U) CL C ul O O 7 N 7? cam N LL o N c o u0i 3 o oN « 3 o o U of o E? m o Ea Z o C .p, f06 y t? '? c c .Y ai n N m O y N CL Q of N =) o; 3 a« E Q = fa Co z? E ,V1 4) LL rA (D 0) L N C ,N o - ° o co N y m :E l -- . 0 c ? y co - cu ca E w ? O ff N c >` 7 • N T C U O N a U j U) y a o ¢ O O O L C c- -0 a? 2 7u E _y) m 6- = o y N a5 nca S2 :L- U U) . O w N 7 O C U) v O` n N Z a 7 >? a3 in L 0 7 .? d CL m cm o a o o a -Z y ao,m o 0E E a E in?c ? ?? c°v? o u E o N _ a N O > m 20 N m Z W 4 ti m I C ca o c a U 3 t w V Y C = O C = m 9 O N Q N to m N H N o 0 J m o fn o 0 0 0 ca ca N r o a cn Q C Q a m m U U O z U O U) o a i ? ? ? F?. Q ' U. A ; m 41 L 0 {p I N ? N y 1 rn v o 0 0 0 N N ? N O) cc a 0 Z 7 U m 'o E 7 > cj) = N o y U) n a o U R c 0 z m ?N 3 O C U) ++ O H 7 to O zU D ?I? I Hydrologic Soil Group-Franklin County, North Carolina Hydrologic Soil Group 1 1 1 Hydrologic Soil Group..-Summary by Map Unit- Franklin County, North Carolina Map unit symbol Map unit name Rating Acres in AOI Percent of AOI ApB Appling loamy sand, 2 to 6 percent slopes B 2.7 14.3% DuA Duplin sandy loam, 0 to 3 percent slopes C 8.4 45.3% VnB Varina loamy sand, 2 to 6 percent slopes C 7.5 40.4% Totals for Area of Interest 18.6 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. 1 1 1 1 Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or VD), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. USDA Natural Resources ? Conservation Service Web Soil Survey National Cooperative Soil Survey 9/14/2009 Page 3 of 4 1 1 J I Hydrologic Soil Group-Franklin County, North Carolina Rating Options Aggregation Method Dominant Condition Component Percent Cutoff., None Specified Tie-break Rule: Lower ' USDA i? Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 9/14/2009 Page 4 of 4 0 Fj 1 1 1 1 1 ' III. EROSION CONTROL CALCULATIONS Sediment Basin ' Rip-Rap Apron's Ditch Liner's i _ _- 11 LI 11 1 1 1 1 1 1 1 1 TEMPORARY SEDIMENT BASIN PRE PROJECT NAME: Pilot Coons Park BY: Tristan Teasiey , COUNTY: Franklin DATE: 9/9/2009 PROJECT NUMBER: 3043 REV: THE SEDIMENT BASI N IS DESIGNED IN ACCORDANCE WITH THE N .C. SEDI MENT AND EROSION CONTROL MANUAL, SECTION 6.61 AND SECTION 8.07. DRAINAGE AREA= i1:00'ac. DENUDEDAREA- 11 Mac. PEAK FLOW: Qz = C1I2A WHERE: Iz=:., $,12 in/hr (2yr) Qz = 32.20 cis ho= . , 7,Q7 : In/hr (10yr) I25 7 94 . in/hr (25yr) Qio = Cc11oA A= 0 OQ ': '; ac. Woods C= 0.25 Qio = 44.47 cfs A 0 00 ;.: ac. Grass C= 0.30 A= 10.40 ` ac. BARE SOIL C= 0.55 Q25 = CCI10A A=:- 11.0,00 .......... ac. offsite C= 0.55 .. Q25 = 49.94 cfs A= 060 , !. ac. Buildg/pavt C= 0.95 A= 11.00 ac. TOTAL DRAINAGE AREA Cc= 0.57 COMPOSITE C BASIN STAGE/ STORAGE: DWG. SCALE: 1 (NOTE: MAX. FILL HEIGHT = 15') ELEV. PLANIMETER READING AREA s AVG. AREA s VOL c ACCUM. VOL cf. ?26 4514 ©? 4510 0 0 0 327 12686'00 12686 8598 8598 8598 328 2== 00 .:: 25233 18960 18960 27558 329 21W.: ? 44312 34773 34773 62330 33Q 68834,00 68834 56573 56573 118903 1331 96754.00 96754 82794 82794 201697 REQUIRED BASIN VOL. (1800xDA) = 19,800 cf. DETERMINE ELEV. OF SEDIMENT STORAGE ELEV. VOLUME (cf BASED ON REQUIRED BASIN VOLUME: 327 8598 X 19800 X= 327.59 328 27557.5 Z= 1.59 REQUIRED SURFACE AREA (435xQlo) = 19,345 Sq.Ft. DETERMINE ELEV. OF SEDIMENT STORAGE: ELEV. AREA (so BASED ON REQUIRED SURFACE AREA: 327 12686 X 19345 X= 327.53 328 25233 Z= 1.53 Z= 1.59 DESIGN ELEVATION OF SEDIMENT STORAGE : USE ... . RISER DESIGN: DETERMINE HEA D ON RISER FOR VARIOUS SIZE PIPES Hr=[Qp / Cw x 3.14 x (D/1 2)12'3 WHERE: Qp= 44.47 cfs Cw= 3.3> WEIR COEFF. RISER DIA. HEAD (Hr) D= PIPE DIA. (in.) 15 in. 2.28 ft. 18 in. 2.01 ft. 24 in. 1.66 ft. 30 in. 1.43 ft. 36 in. 1.27 ft. 42 in. 1.15 ft. 48 in. 1.05 ft. 54 in. 0.97 ft. NOTE: MAX. HEAD ALLOWED 60 in. 0.90 ft. USE 54 ; in. RISER, Hr= 0.97 ft. Qr= 44.47 cfs 1 RISER(S) TEMPORARY SEDIMENT BASIN PRE Q = Cd x A x (2GHb) Ds ....................... ....................... WHERE: Cd X59 A= PIPE AREA (sf.) Hb= "Z" + " Hr"-DIA./2 BARREL DIA. HEAD (Hb) DISCHARGE 15 in. 3.34 ft. 10.62 cfs 18 in. 3.22 ft. 15.01 cfs 24 in. 2.97 ft. 25.63 cfs 30 in. 2.72 ft. 38.32 cfs 36 in. 2.47 ft. 52.58 cfs 42 in. 2.22 ft. 67.85 cfs 48 in. 1.97 ft. 83.48 cfs USE 36 in. BARREL, Qb= 5258 cfs 1. BARREL(S) ANTISEEP COLLAR: COLLAR SIZE = BARREL DIA. + 1.5 + 1.5' 6 ft. ANTIFLOTATION BLOCK: BASIN DEWATERING: VOL. OF DISPLACED WATER= RISER HEIGHT x RISER AREA = Z x 3.14 x (D/2)2 WHERE: Z= 3.00 ft. = 47.71 cf. D= 4.50 ft. WEIGHT OF DISPLACED WATER= VOL x 62.4 lb/cf 2977 lb. WEIGHT OF CONCRETE REQUIRED = 1.1 x 2977 = 3275 lb. REQ'D THICKNESS OF CONC. BLOCK = WT / (LENGTH)(VVIDTH)(150 Ib/cf - 62.4lb/cf) BLOCK SIZE THICKNESS 5.00 ft. sq. 1.50 ft. 5.50 ft. sq. 1.24 ft. 6.00 ft. sq. 1.04 ft. 6.50 ft. sq. 0.88 ft. 7.00 ft. sq. 0.76 ft. ................... USE ::.: > ft. SQUARE BLOCK, 12 in. THICK .................. ................... Q=cA(2gH)A1 /2 Skimmer Size= " Amount of Skimmers= Constant head= 4 " Coefficient= :::::.............. QD= 0.2425 cfs Z elevation= 329.00 Drawdown time= 71.40 Hrs Drawdown per hour= 0.04 feet 1 1 1 1 1 1 1 1 1 1 1 TEMPORARY SEDIMENT BASIN PRE PROJECT NAME: Pllot .. PaY3c BY. Tristan Teasley' COUNTY: ?rtRlEn DATE: 9/9/2009 PROJECT NUMBER: 3043;:., REV: . EMERGENCY SPILLWAY: DESIGN FLOW: Qe=Quo-Qp Qio= CcIjoA WHERE: Cc 0.57 COMPOSITE C Q10= . 44.47 cfs Im 707 `in/hr(10YRSTORM) A= 11.00 ac. Qp= FLOW THRU THE PRINCIPLE STUCTURE RISER CAPACITY= 44.47 cfs BARREL CAP.= 52.58 cfs RISER CONTROLS Qp= 44.47 cfs FLOW TO BE DISCHARGED BY EMERGENCY SPILLWAY Qe= 0.00 cfs SPILLWAY NOT REQUIRED TEMPORARY SEDIMENT BASIN PRE SUMMARY RISER DIA. (IN.) BARREL DIA.(IN.) BARREL SLOPE(%) D (in.) S (ft.) Y M) H (ft.) Z (ft.) L (ft.) STORAGE RECD(cf.) 54 36 E3;5f> 12 6.50 4.97 3.97 3.00 N1A 19800 TEMPORARY SEDIMENT BASIN Post ............... . PROJECT NAME: . ;Plot 16bs Park . .: . BY: ;TrFStar1 FeaStey ,;. ;. . COUNTY: %ranMin ' . . DATE s/9l20W PROJECT NUMBER: 3043 .. .. . REV THE SEDIMENT BAS IN IS DESIGNED IN ACCORDANCE WITH THE N .C. SEDI MENT AND EROSION CONTROL MANUAL, SECTION 6.61 AND SECTION 8.07. DRAINAGE AREA= 11 43 ac. DENUDED AREA- 11.43 ac. PEAK FLOW: 02 = Cc12A WHERE: 12= 5.12 in/hr (2yr) Q2 = 33.42 cfs ho : 7.07 In/hr (10yr) 125 7.94 in/hr (25yr) Qio= CcltoA A >"0.00 ac. Woods C= 0.25 Qio= 46.14 cfs A=:.. 0.00 ac. Grass C= 0.30 A= 1D,83 ...' -ac. BARE SOIL C= 0.55 Q25 = CchoA A= 0.00 ac. offsite C= 0.55 Q25 = 51.82 cfs A= ' 0.60 ac. Buildg/pavt C= 0.95 A= 11.43 ac. TOTAL DRAINAGE AREA Cc= 0.57 COMPOSITE C BASIN STAGE/ STORAGE: DWG. SCALE: V= 1; (NOTE: MAX FILL HEIGHT= 15') ELEV. PLANIMETER READING AREA s AVG. AREA s VOL c ACCUM. VOL cf. 326 522900:> ; < 5229 0 0 0 323: t7688ifl0::'r:= . 17698 11464 11464 11464 19332 18515 18515 29979 328' 21A23>i)0;., 21023 20178 20178 50156 33Q. 22771(10 22771 21897 21897 72053 ............ . . 24575 23673 23673 95726 REQUIRED BASIN VOL. (1800xDA) = DETERMINE ELEV. OF SEDIMENT STORAGE BASED ON REQUIRED BASIN VOLUME: REQUIRED SURFACE AREA (435xQio) = DETERMINE ELEV. OF SEDIMENT STORAGE: BASED ON REQUIRED SURFACE AREA: 20,574 cf. ELEV. VOLUME (cf) 327 11463.5 X 20574 328 29978.5 20,072 Sq.Ft. ELEV. AREA (sf) 328 19332 X 20072 329 21023 X= 327.49 Z= 1.49 X= 328.44 Z= 2.44 Z= 2.44 .............................. ............................. ......................... DESIGN ELEVATION OF SEDIMENT STORAGE: USE Z=:3;Q0 :::::::::<:?:;: RISER DESIGN: DETERMINE HEAD ON RISER FOR VARIOUS SIZE PIPES Hr=[Qp / Cw x 3.14 x (D/1 2)]' WHERE: Qp= 46.14 cfs Cw=,__ 1.3 WEIR COEFF. ..................... .................... RISER DIA. .... HEAD (Hr) D= PIPE DIA. (in.) 15 in. 2.33 ft. 18 in. 2.06 ft. 24 in. 1.70 ft. 30 in. 1.47 ft. 36 in. 1.30 ft. 42 in. 1.17 ft. 48 in. 1.07 ft. 54 in. 0.99 ft. NOTE: MAX. HEAD ALLOWED 60 in. 0.93 ft. USE 54" in. RISER, Hr= 0.99 ft. Qr= 46.14 cfs 1 RISER(S) ' TEMPORARY SEDIMENT BASIN Post PROJECT NAME: COUNTY: Pibt Lions Pack Franklin BY: Tristan Teas Eeq :: DATE: 9/9/2009 PROJECT NUMBER: 3043. REV: _.. ;! BARREL DESIGN: DETERMINE THE REQUIRED BARREL SIZE Q = Cd x A x (2GHb) 05 WHERE: Cd 0 59 ' A= PIPE AREA (sf.) Hb= "Z'+ "Hr"-DIA.12 BARREL DIA. HEAD (Hb) DISCHARGE ' 15 in. 3.37 ft. 10.66 cis 18 in. 3.24 ft. 15.07 cis 24 in. 2.99 ft. 25.73 cfs 30 in. 2.74 ft. 38.49 cfs 36 in. 2.49 ft. 52.84 cis 42 in. 2.24 ft. 68.22 cfs 48 in. 1.99 ft. .............. 83.99 cis ' USE 36 in. BARREL, 1 BARREL(S) Qb= 52.84 cis ANTISEEP COLLAR: COLLAR SIZE = BARREL DIA. + 1.5'+ 1.5' = 6 ft. ANTIFLOTATION BLOCK: VOL. OF DISPLACED WATER= RISER HEIGHT x RI SER AREA = Z x 3.14 x (D/2)2 WHERE: Z= 3.00 ft. = 47.71 cf. D= 4.50 ft. WEIGHT OF DISPLACED WATER= VOL x 62.4 Ib/cf 2977 lb. WEIGHT OF CONCRETE REQUIRED = 1.1 x 2977 = 3275 lb. REQ'D THICKNESS OF CONC. BLOCK= WTI (LENGTH)(WIDTH)(150 Ib/cf - 62.4lb/cf) BLOCK SIZE THICKNESS 5.00 ft. sq. 1.50 ft. ' 5.50 ft. sq. 1.24 ft. 6.00 ft. sq. 1.04 ft. 6.50 ft. sq. 0.88 ft. 7.00 ft. sq. 0.76 ft. USEtz0_''.SQUARE BLOCK, 12 in. THICK BASIN DEWATERING: Q=cA(2gH)^1/2 ' Skimmer Size= 4,0" Amount of Skimmers= 1.' Constant head= 4 " Coefficient= Or ' Qo= 0.2425 cfs Z elevation= 329.00 Drawdown time= 57.45 Hrs ' Drawdown per hour= 0.05 feet 1 TEMPORARY SEDIMENT BASIN Post PROJECT NAME: ;Pilot Dons Park BY Tnsta13 TeasEey COUNTY: Franklin DATE 004009 PROJECT NUMBER: 3043 REV i EMERGENCY SPILLWAY: DESIGN FLOW: Qe=010-Qp Q10= Cc110A WHERE: Cc= 0.57 COMPOSITE C 010= 46.14 cfs 170= 7.07 h1hr (10 YR STORM) A= 11.43 ac. Qp= FLOW THRU THE PRINCIPLE STUCTURE RISER CAPACITY= 46.14 cfs BARREL CAP.= 52.84 cfs RISER CONTROLS Qp= 46.14 . cfs FLOW TO BE DISCHARGED BY EMERGENCY SPILLWAY Qe= 0.00 cfs SPILLWAY NOT REQUIRED TEMPORARY SEDIMENT BASIN Post SUMMARY RISER DIA. (IN.) BARREL DIAJIN.) BARREL SLOPE (%) D (in.) S (ft.) Y (ft,) H (ft.) Z (ft.) L (ft.) STORAGE REQ'D (cf.) 54 36 t1+ru0 12 6.50 4.99 3.99 3.00 NSA 20574 1 1 1 1 1 11 1 1 RIP RAP OUTLET PROTECTION PROJECT NAME: Pilot Lions BY: TMT PROJECT NUMBER: 3043 DATE: 8-Sep-09 REV: 1/12/10 DESIGN OF RIP RAP OUTLET PROTECTION IN ACCORDANCE WITH THE N.C. SEDIMENT & EROSION CONTROL MANUAL. ASSUME TAILWATER DEPTH < 0.5 Do RIP RAP GRADATION PER NCDOT SPECIFICATIONS RIP RAP MINIMUM MIDRANGE MAXIMUM CLASS (IN) (IN) (IN) A 2 4 6 B 5 8 12 1 5 10 17 2 9 14 23 EW # 2 USE CLASS B RIP RAP DISCHARGE (Q)= 4.59 cfs d5o= 8 in. PIPE DIA. (Do)= 1.50 ft. dmAx= 12 in. FROM FIGURE 8.06A LENGTH (La)= 10.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 1.50 + 10.0 = 11.50 ft. APRON THICKNESS= 18.0 in. d5o= 0:50 ft. = 6.00 in Velocity= 4.42 ft/sec. MIN. HEIGHT OF RIP RA P @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 12 in SIDE SLOPE OF RIP RAP APRON (M)= 3" H:1V FES # 7 USE CLASS B RIP RAP DISCHARGE (Q)= 14.79 cfs d5o= 8 in. PIPE DIA. (Do)= 2.00 ft. dmAx= 12 in. FROM FIGURE 8.06A LENGTH (La)= 13.0 ft. APRON THICKNESS= 1.5 x dmAx WIDTH W=Do + La= 2.00 + 13.0 = 15.00 ft. APRON THICKNESS= 18.0 in. d50= 0.50.. ft. = 6.00 in Velocity= 5.78 ft/sec. MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 16 in SIDE SLOPE OF RIP RAP APRON (M)= 3 HAV FES# 13 USE CLASS B RIP RAP DISCHARGE (Q)= 2.34 cfs d5o= 8 in. PIPE DIA. (Do)= 1.25 ft. dMax= 12 in. FROM FIGURE 8.06A LENGTH (La)= 10.0 ft. APRON THICKNESS= 1.5 x dM„x WIDTH W=Do + La= 1.25 + 10.0 = 11.25 ft. APRON THICKNESS= 18.0 in. d5o= 0:50 ft. = 6.00 in Velocity= 4.91 ft/sec, - MIN. HEIGHT OF RIP RAP @ PIPE OPENING (H) = 2/3 x PIPE DIA.= 10 in SIDE SLOPE OF RIP RAP APRON (M)= 3 HAV Page 1 of 2 SUMMARY vF RESULTS RIP RAP APRON SCHFni11 F FES/ EW D IN RIP RAP CLASS W (IN) L FT H (IN M 2 18.0 B 11.50 10.00 12.00 3 7 18.0 B 15.00 13.00 16.00 3 13 18.0 B 11725 10.00 10.00 3 3 0 Outlet W a Do + La 40 ?i pipe 'i diameter (Do) T t a La $0 a- i It f water 0.5DO 7E} frr ?i I 50 g 50 _a 4 4 r? ;, ) tT fll? ?Il,h. tz' 3 1, t° 1 k ,5 r 3 .a -4- 20 a a ?,, . 4- i ' ...m.-- A-JII 10 t it?? 3 - c? 0 {} 2 s i! i{ t I lil f ?1 ii?l I tl t o ?' t o is t ? h 1 r f v ? ? ' ? (. ?t t "> t C' S 1 ?If s I FL SIR _r, 717 3 5 10 20 50 100 200 500 1000 Discharge (ft3/sec) Curves may not be extrapolated. Figure M6a Design of outlet protection protection from a round pipe flowing toll, minimum tailwater condition (7w < D.$ diameter). Page 2 of 2 1 1 1 1 1 1 1 ,NotthAmericaq.Green-ECMDSVersion 4.3 9/10/2009 11:1TAM.COMPUTEDDY: TMT PROJECT NAMEPBot Lions Park ;PROJECT NO.: 3043 FROM STAT)ONLRE, C. : Swale #1A 0 STATION/REACH: Swale WA rDRA4NAGEAREA: 0,56Aa E$10N FREQUENLY; 10Yr. .. HYDRAUUC RESULTS Discharge Peak Flow IVS75(n-0055) ekicdy [fps) Area (sgft) Hydrauk Nomml ds Periodll_uzl Radus It Depth ft 23 120 1.59 1.45 0.30 0.44 S-0.0170 1 ,Widlh?o200ft UNER RESULTS Not to Scale Reach Matting Type StabilityAnalysis Vegetation Characteristics Permissible Calmialed SafetyFad. Remarks Staple Pattern Phase Class Type Density Shear Stress (Aso Shear Stress (pso Straight S75 Umegetaled 1.55 046 3.35 STA9LE Staple D Backlo Input Scra, NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: Pilot Lions Park PROJECT NO.: 3043 COMPUTED BY: TMT DATE: 9/10/2009 FROM STATION/REACH: Swale #lA TO STATION/REACH: Swale #lA DRAINAGE AREA: 0.56 Ac. DESIGN FREQUENCY: 10 Yr. ***************************************************************************** INPUT PARAMETERS ***************************************************************************** Channel Discharge Peak Flow Period Channel-Slope Channel.Bottom Width Left Side Slope Right Side Slope 2.3 cfs (.07 mA3/s) 12 hours 0.017 ft/ft (0.017 m/m) 2.0 ft (.61 m) 3:1 3:1 Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 ***************************************************************************** CALCULATIONS ***************************************************************************** Initial Depth Estimate = 0.16 * (2.3 /(0.017A0.5))A0.375 = 0.47 ft (.14 m) Final Channel Depth (after 7 iterations) _ .44 ft (0.13 m) Flow Area = (2.0 * 0.4)+(0.5 *0.44A2 * (3.0+3.0)) = 1.4 sq. ft (0.1 mA2) Wet Per. =2.0 +(0.4*(((3.0A2)+1)A.5 +((3.0A2)+1)A.5)) = 4.8 ft (1.5 m) Hydraulic Radius = (1.4 / 4.8) = 0.3 ft (0.1 m) Channel Velocity =(1.486/0.055)*(0.3A0.667)*(0.017A.5) = 1.6 fps (0.5 m/s) Channel Effective Manning's Roughness = 0.05 5 Calculated Shear (Td) = 62.4 * 0.44 * 0.017 = 0.46 psf (22.2 Pa) Safety Factor = (Tp/Td) _ (1.55 /0.46) = 3.35 11 1 1 1 1 1 1 1 1 1 1 1 1 1 rNRoOh JAECmT erNcAan MGE:r. LP-4o-tECMDSVwsion4,3 9/10/209 Lions Park 11:12 AM COMPUTEDBY; TMT ,PROJECT NO.: 3043 FROMSTATIONMEACH: Swale #1B TOSTATION/REACH: Sw4le#1B DRAINAGE AREA, N/A ESIGNFREQUENCY: _10Yr, HYDRAULIC RESULTS Discharge Mrelocity bsJ Area (sq.It) Hydraulic 575 fn-110.42) efs Radom f1 1.84 5.54 0.63 1.07 S - 0.0050 JI Bottom 1 o width - 2.001t 3.0 1 LINER RESULTS Not to Scale Reach Matting Type Stability Analyse Vegetation Characteristics Peroissble Cakulaled Safety Fact. Remarks Staple Pattern Phase Class Type Density Shear Stress Ipsl) Shear Suess fps1) Straight S75 Umegetated 1.55 a33 4.66 STABLE Staple D Back to Irput Scree 11 NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS PROJECT NAME: Pilot Lions Park PROJECT NO.: 3043 COMPUTED BY: TMT DATE: 9/10/2009 FROM STATION/REACH: Swale #1B TO STATION/REACH: Swale #1B DRAINAGE AREA: N/A DESIGN FREQUENCY: 10 Yr. ***************************************************************************** INPUT PARAMETERS ***************************************************************************** Channel Discharge Peak Flow Period Channel Slope Channel Bottom Width Left Side Slope Right Side Slope 10.2 cfs (.29 mA3/s) 12 hours 0.005 ft/ft (0.005 m/m) 2.0 ft (.61 m) 3.1 3.1 Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 ***************************************************************************** CALCULATIONS ***************************************************************************** Initial Depth Estimate = 0.16 * (10.2 /(0.005A0.5))A0.375 Final Channel Depth (after 7 iterations) Flow Area = (2.0 * 1.1)+(0.5 *1.07A2 * (3.0+3.0)) Net Per. =2.0 +(1.1*(((3 OA 2) +,)A.5 +((3 OA 2) +,)A.5)) Hydraulic Radius = (5.5 / 8.7) Channel Velocity =(1.486/0.042)*(0.6A0.667)*(0.005A.5) Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 1.07 * 0.005 Safety Factor = (Tp/Td) = (1.55 /0.33) 1.03 ft (.31 m) 1.07 ft (0.33 m) 5.5 sq.ft (0.5 m"2) 8.7 ft (2.7 m) 0.6 ft (0.2 m) 1.8 fps (0.6 m/s) = 0.042 = 0.33 psf (15.9 Pa) = 4.66 L- 1 1 1 1 1 1 1 1 North American Green - ECMDS Version 4.3 PROJECT, NAME: PW Lions Park VFR M STATIDN/REACH; Swab #1C Tq STATI01 HYDRAUUC F T Discharge Peak Flow Vebap(fpaJ Area (sq.flj cfs Period rs 25.4 12.0 3.23 7.67 LINER RESULTS .9/1012009 11:13AM COMPUTED BY; TMT OJECT NO.: 3043 VREACH: Swale #1C I RAINAGEAREA. NIA ESIGN.FREQUENCY;. 10Yr Hydtaufic Normalt S75(n-0.0361 R Q76 1 1It D 3 f 0.7.32 S -0.0090 1 •V Kth-ZOO It 3D1 Not to Scale Reach Matting Type StatHBy Analyses Vegetation Chmaderiatics Pmrrissible Cal?vlated Safety Fades Ramada: Staple Pattern Phase Class Type Dens4y Shear Sri= (A Shear Stress (PrR Shaight S75 Unvegetated 1.55 0.74 209 STABLE Staple D Back to Input Sane F [NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 [NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: Pilot Lions Park COMPUTED BY: TMT FROM STATION/REACH: Swale #1C DRAINAGE AREA: N/A PROJECT NO.: 3043 DATE: 9/10/2009 TO STATION/REACH: Swale #1C DESIGN FREQUENCY: 10 Yr. ***************************************************************************** INPUT PARAMETERS ***************************************************************************** Channel Discharge Peak Flow Period Channel Slope Channel Bottom Width Left Side Slope Right Side Slope 25.4 cfs (.72 m-3/s) 12 hours 0.009 ft/ft (0.009 m/m) 2.0 ft (.G1 m) 3:1 3:1 Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 ***************************************************************************** CALCULATIONS Initial Depth Estimate = 0.16 * (25.4 /(0.009A0.5))A0.375 Final Channel Depth (after 7 iterations) Flow Area = (2.0 * 1.3)+(0.5 *1.32A2 * (3.0+3.0)) Wet Per. =2.0 +(1.3*(((3.0A2)+1)A.5 +((3 OA 2)+l)A.5)) Hydraulic Radius = (7.9 / 10.4) Channel Velocity =(1.486/0.036)*(0.8A0.667)*(0.009A.5) Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 1.32 * 0.009 Safety Factor = (Tp/Td) = (1.55 /0.74) 11 = 1.30 ft (.40 m) 1.32 ft (0.40 m) 7.9 sq.ft (0.7 m"2) 10.4 ft (3.2 m). 0.8 ft (0.2 m) 3.2 fps (1.0 m/s) 1 iI 1 0 = 0.036 ' = 0.74 psf (35.5 Pa) = 2.09 1 1 1 1 HYDRAULIC RESULTS - Discharge Peek Fbw elo* (fps Area (s,Il) Hydaidc Normal [cfe] Period(hrs] Radusfftl DeothlRl 9.3 120 283 3.29 048 0.77 LINER RESULTS S75 [n-01 1 S - 00230 1 1Vldtht-0011 1 Not to Scale Reach Matting Type t&'Ry Analysis Vegetation Characteristics Permissible Calculated Safety Facto Remarks Staple Patton Phase Class Type Density Shear Stress ;t!Q Shear Stress (pso Straight S75 Umegetated 1.55 1.10 1.41 STABLE Staple D .,BecYr to Input ?: ?_?„? 1 NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 \TORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. JSER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ?ROJECT NAME: Pilot Lions Park PROJECT NO.: 3043 ?OMPUTED BY: TMT DATE: 9/10/2009 ' FROM STATION/REACH: Swale #2 TO STATION/REACH: Swale #2 DRAINAGE AREA: 5.30 Ac. DESIGN FREQUENCY: 10 Yr. ' INPUT PARAMETERS ?hannel Discharge : 9.3 cfs (.26 mA3/s) ?eak Flow Period : 12 hours ?hannel Slope : 0.023 ft/ft (0.023 m/m) , "-hannel Bottom Width : 2.0 ft (.61 m) ,eft Side Slope : 3:1 tight Side Slope : 3:1 ' -"hannel Lining : S75 Staple D ?ermi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 ' CALCULATIONS ' Cnitial Depth Estimate = 0.16 * (9.3 /(0.023A0.5))A0.375 = 0.75 ft (.23 m) Final Channel Depth (after 6 iterations) = .77 ft (0.23 m) ' ?low Area = (2.0 * 0.8)+(0.5 *0.77A2 * (3.0+3.0)) = 3.3 sq.ft (0.3 MA 2) Vet Per. =2.0 +(0.8*(((3.0A2)+1)A.5 +((3.OA2)+1)A.5)) = 6.8 ft (2.1 m) iydraulic Radius = (3.3 / 6.8) = 0.5 ft (0.1 m) ' ?hannel Velocity =(1.486/0.049)*(0.5A0.667)*(0.023A.5) = 2.8 fps (0.9 m/s) ?hannel Effective Manning's Roughness = 0.049 ' -alculated Shear (Td) = 62.4 * 0.77 * 0.023 = 1.10 psf (52.6 Pa) Safety Factor = (Tp/Td) = (1.55 /1.10) = 1.41 1 l North AmericanGteen•ECMDSVersion4.3 _ 1nB/2010. 04MPM. MPUTEDBY; TMT 957jECTNAME__.P1gtUomPatk OJECTN0.:304?A_ FBDMSTATION1flEAgi: $.wab.p3 TO STATION/REACH Swale at3_ DRAINAGEAREA; N/p DESIGNPREQUENLY; TO Yea HYDRAULIC RESULTS Discharge Peak Fbw Velo*,lps Area(sq.0( Hydraulic Normal S75 (nom cfs Period s R ft D th 0 9.0 120 249 7.62 0.47 0.52 S -0.0230 Bottom 1 'Width -13.00 R 1 LINER RESULTS Not to Scale Reach Mattirg Type Stability Analysis Vegetation Charoclernlics Permissbe Calculated Safety Fads Remarks Staple Pattern Phase Dens Type Density Shear Stress (psfl Shear Strout f -n Straight S75 Unvegetated 1.55 0.75 206 STABLE Staple D Back lol?,$dec NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS , ***************************************************************************** PROJECT NAME: Pilot Lions Park PROJECT NO.: 3043A COMPUTED BY: TMT DATE: 1/18/2010 FROM STATION/REACH: Swale #3 TO STATION/REACH: Swale #3 DRAINAGE AREA: N/A DESIGN FREQUENCY: 10 Year ' ***************************************************************************** INPUT PARAMETERS ' ***************************************************************************** Channel Discharge 19.0 cfs (.54 mA3/s) Peak Flow Period 12 hours ' Channel Slope 0.023 ft/ft (0.023 m/m) Channel Bottom Width 13.0 ft (3.96 m) Left Side Slope 3:1 Right Side Slope 3:1 ' Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) ' Phase = 0 CALCULATIONS Initial Depth Estimate = 0.16 * (19.0 /(0.023A0.5))A0.375 = 0.98 ft (.30 m) ' Final Channel Depth (after 9 iterations) _ .52 ft (0.16 m) Flow Area = (13.0 * 0.5)+(0.5 *0.52A2 * (3.0+3.0)) = 7.6 sq.ft (0.7 mA2) Wet Per. =13.0 + (0. 5* (((3 . 0A2) +1) A . 5 +((3 . 0A2) +1) . 5) ) = 16.3 ft (5.0 m) ' Hydraulic Radius = (7.6 / 16.3) = 0.5 ft (0.1 m) Channel Velocity =(1.486/0.054)*(0.5A0.667)*(0.023A.5) = 2.5 fps (0.8 m/s) Channel Effective Manning's Roughness = 0.054 , Calculated Shear (Td) = 62.4 * 0.52 * 0.023 = 0.75 psf (36.0 Pa) Safety Factor = (Tp/Td) = (1.55 /0.75) = 2.06 n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 onhAmedcanGreen -ENDS Version 4.3 ... 1/18/2110...4;35PMCOMPUTEDBY; TMT OJECTNAME:..Plot Lions _Park PROJECT NO.:3043A _- FROMSTATION/HEACH; Svtale#34 TO STATION/REACH; Swale #3A RAINAGEAREAc N/A DESIGN FREQUENCY: 10Yeat WDRAULIC RESULTS D'achmge Peck Flow eba'ty (Fps Area (syft) Hyd4h Normal S75(n-0.052) cls Period s Radu ft) Depth ft h9.0 120 1.97 9.66 0.57 0.65 S . 0.0100 Bottom 1 Width?13.00ft1 LINER RESULTS Not to Scale Reach Mattfrg Type tabiity Analysis Vegetation Characteristics Permissible Cabulaled Safely Factor Remarks Staple Pattern Phase Class Type Densely Shear Stress (pd) Shear Stress (psQ Straight S75 Urwegetated 1.55 0.40 3.84 STABLE Staple D Back to lrquFSaee NORTH AMERICAN GREEN EROSION CONTROL MATERIALS DESIGN SOFTWARE VERSION 4.3 NORTH AMERICAN GREEN CHANNEL PROTECTION - ENGLISH/S.I. USER SPECIFIED CHANNEL LINING BACK-UP COMPUTATIONS ***************************************************************************** PROJECT NAME: Pilot Lions Park COMPUTED BY: TMT FROM STATION/REACH: Swale #3A DRAINAGE AREA: N/A PROJECT NO.: 3043A DATE: 1/18/2010 TO STATION/REACH: Swale #3A DESIGN FREQUENCY: 10 Year ***************************************************************************** INPUT PARAMETERS ***************************************************************************** Channel Discharge Peak Flow Period Channel Slope Channel Bottom Width Left Side Slope Right Side Slope 19.0 cfs (.54 MA3/s) 12 hours 0.01 ft/ft (0.01 m/m) 13.0 ft (3.96 m) 3:1 3:1 Channel Lining : S75 Staple D Permi. Shear(Tp) :1.55 psf (74.2 Pa) Phase = 0 ***************************************************************************** CALCULATIONS ***************************************************************************** Initial Depth Estimate = 0.16 * (19.0 /(0.010A0.5))A0.375 Final Channel Depth (after 9 iterations) Flow Area = (13.0 * 0.6)+(0.5 *0.65"2 * (3.0+3.0)) Wet Per. =13.0 +(0.6* (((3.OA2)+1)".5 +((3.OA2)+1) A.5) ) Hydraulic Radius = (9.7 / 17.1) Channel Velocity =(1.486/0.052)*(0.6A0.667)*(0.010A.5) Channel Effective Manning's Roughness Calculated Shear (Td) = 62.4 * 0.65 * 0.010 Safety Factor = (Tp/Td) = (1.55 /0.40) 11 1.14 ft (.35 m) _ .65 ft (0.20 m) 9.7 sq.ft (0.9 MA2) 17.1 ft (5.2 m) 0.6 ft (0.2 m) 2.0 fps (0.6 m/s) = 0.052 = 0.40 psf (19.3 Pa) = 3.84 7L r STORM DRAINAGE CALCULATIONS IV ' . NOAH Storm Data ? Haestad Storm Tabulation Composite C-Values 1 Time of Concentration Calculations Storm Schedule ? StormCad Output Data ' Swale Flow Calculations Grass Swale Supplement Form ' Culvert Calculations 0 1 1 1 1 1/b/Lulu Precipitation Frequency Data server POINT PRECIPITATION FREQUENCY ESTIMATES FROM NOAA ATLAS 14 k North Carolina 35.8883 N 781675 W 298 feet from "Precipitation-Frequency Atlas ofthe United States" NOAA Atlas 14, Volume 2, Version 3 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley ' NOAA, National Weather Service, Silver Spring, Maryland, 2004 Extracted: Wed Jan 6 2010 Confidence Limits' Seasonality Location` Maps C Other Info GIS data Maps Docs Return to State map 1 1 1 1 1 n Precipitation Frequency Estimates (inches) ?* 5 10 15 30 60 120 10 20 30 45 60 (1-in- min min min min min min 3 hr Ej 12 hr 24 hr 4 4 day 7 day 0.43 F T1 0.68 0.86 1.18 1.49 1.74 1.85 2.22 2.61 3.16 3465 4.09 4.73 5.38 7.18 8.88 11.24 13.44 0.51 0.82 1.04 1.47 1.89 2.24 2.38 2.86 3.38 4.26 4.88 5.41 6.19 6.94 9.11 11.08 13.80 16.33 10 0.59 25 0.66 0.94 1.19 1.05 1.34 1.73 2.25 1.98 2.64 2.71 3.23 2.90 3.49 3.49 4.22 4.15 5.05 5.06 6.17 5.78 6_99 6.36 7.64 7.23 8.61 8.02 10.42 12.54 15.46 9.44 12.15 14.39 17.52 18.15 20.38 50 0.72 1.15 1.45 2.19 2.97 3.70 4.05 4.90 5.91 7.06 7.97 18.66 9.70 10.54 13.47 15.77 19.04 21.99 100 0.77 1.23 1.55 2.38 3.28 4.16 4.59 5.58 6.78 8.01 9.01 973 V 10.83 11.68 14.81 17.16 2054 .23.56 200 0.82 500 0.87 1.30 1.38 1.64 1.74 2.56 3.59 2.77 3.98 4.64 5.17 5.27 5.95 6.32 7.32 7.73 9.03 9.04 10.51 10.12 10.86 11.71 12.48 12.03 13.70 12.86 16.21 18.56 22.04 25.11 14.51 18.12 20.46 24.03 27.14 1000 0.93 1.46 1.83 2.97 4.34 5.86 6.71 8.29 10.33 11.74 13.03 ] 13.80 15.06 15.83 19.64 21.92 25.55 28.67 - i nese precipitation frequency estimates are basea on an annual maxima series. AEPis the Annual Exceedance Probability. Please refer to NOAA Atlas 14 Documentfor more information. NOTE: Formatting forces estimates near zero to appear as zero. ' "These precipitation frequency estimates are based on an annual maxima series. AEPis the Annual Exceedance Probability. lease refer to NOAAAbas 14 Document for more information. NOTE: Formatting prevents estimates nearzero to appear as zero. * Lower bound of the 90% confidence interval ' Precipitation Frequency Estimates (inches) 'Aip (14n- l 71! 15 30 60 120 3 6 12 24 48 I 4 ?I 7 I D10 2 20 F3O 445 60 dipper.nws.noaa.gov/.../buildout.perl?t... * Upper bound of the 90% confidence interval Precipitation Frequency Estimates (inches) 7(y) - 5 10 P15 E3O 6) g Ph Ehr Ph Ph 4 7 10 30 60 min nin h r day day day day day day day 0.47 0.75 0.94 1.30 1.63 1.91 2.05 [i-4 3.93 4.38 5.06 5.73 7.63 9.41 11.85 14.13 67 0.90 1.13 1.61 2.06 2.46 2.63 5.26 5.79 6.62 7.39 9.67 11.73 14.56 17.16 10 0.64 1.03 1.30 1.89 2.46 2.97 3.20 6.22 6.807.72 8.53 11.07 13.28 16.31 19.08 0.72 1.15 1.46 2.16 2.88 3.54 3.85 7.53 8.17 9.21 10.05 12.89 15.24 18.49 21.44 2550 0.79 1.251.59 2.39 3.24 4.05 4.45 5.37 8_58- 9.28 10.37 11.2414.3116.7120.09 23.15 100 0.84 1.34 1.70 2.60 3.58 4.55 5.04 6.11 7.39 8.64 9.71 10.44 11.61 12.47 15.76 18.21 21.71 24.83 200 0.90 1.42 1.80 2.803.92 5.08 5.68 6.90 8.419.76 10.94 11.68 12.91 13.76 17.28 19.74 23.34 26.51 500 0.96 1.52 1.91 3.04 4.36 5.77 6.54 8.00 9.84 11.39 12.72 13.46 14.77 15.58 19.39 21.81 25.53 28.74 1000 1.02 1.60 2.01 3.26 4.76 6.44 7.39 9.09 11.26 12.76 14.21 14.94 16.29 17.05 21.08 23.44 27.21 30.42 The upper bound of the confidence interval at90%confidence level is the value which 5% of the simulated quantile values for a aiven frAmiAnrvara eronfar thnn 5 2.87 3.41 3.15 3.72 4.60 3.84 4.55 5.46 4.63 5.53 6.65 6.45 7 .61 45 7.61 1/4 1/b/LULU Precipitation Frequency Data Server .,t POINT PRECIPITATION 44 FREQUENCY ESTIMATES 41 FROM NOAH ATLAS 14 Irv ' North Carolina 35.8883 N 78.2675 W 298 feet from "Precipitation-Frequency Atlas ofthe United States" NOAA Atlas 14, Volume 2, Version 3 G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley ' NOAH, National Weather Service, Silver Spring, Maryland, 2004 Extracted: Wed Jan 6 2010 Confidence Limits Seasonality Location Maps Other Info. GIS data Maps Docs Retum to State Map Precipitation Intensity Estimates fin/hr) 10 15 30 60 120 10 20 30 45 60 (1? - 5 min min min min min min 33 hr 6 hr 12 hr 24 hr 48 hr 4 day 7 day 5.12 4.09 3.43 2.37 1.49 0.87 0.62 0.37 0.22 0.13 0.08 0.04 0.03 0.02 0.01 0.01 0.01 0.01 75 ? 6.13 4.91 4.14 2.94 1.89 1.12 0.79 0.48 0.28 0.18 0.10 0.06 0.04 0.03 0.02 0.02 0.01 -1 1 0.01 10 7.07 5.66 4.77 3.45 2.25 1.35 0.97 0.58 0.34 0.21 0.12 0.07 0.04 0.03 0.02 0.02 0.01 0.01 F 25 7.94 6.32 5.35 3.96 2.64 1.61 1.16 0.70 0.42 0.26 0.15 0.08 0.05 0.04 0.03 0.02 0.02 0.01 50 8.65 100 9.27 6.88 7.37 5.81 4.38 2.97 6.21 4.76 3.28 1.85 1.35 0.82 0.49 0.29 2.08 1.53 0.93 0.56 0.33 0.17 0.19 0.09 0.06 0.10 0.06 0.04 0.03 0.02 0.02 0.05 0.03 0.02 0.02 0.02 0.02 200 9.86 7.81 6.57 5.12 3.59 2.32 1.72 1.05 0.64 0.38 0.21 0.11 0.07 0.05 0.03 0.03 0.02 0.02 500 10.49 8.30 6.96 5.54 3.98 2.63 1.98 1.22 0.75 0.44 0.24 0.13 0.08 0.06 0.04 0.03 0.02 0.02 1000 11.14 8.77 7.33 5.94 4.34 2.93 2.23 1.38 0.86 0.49 0.27 0.14 0.09 0.07 0.04 0.03 0.02 0.02 *These precipitation frequency estimates are based on an annual maxima series. AEPis the Annual Exceed ance Probability. Please refer to NOAAAtias 14 Document for more information. NOTE: Formatting forces estimates near zero to appear as zero. * Upper bound of the 90% confidence interval Precipitation Intensity Estimates (in/hr) 30 1-in- g day day day day day day [ hr hr hr hr [ hr day 5.60 4.48 F __1 3.75 2.59 1.63 0.96 0.68 0.41 0.24 0.14 0.08 - 0.05 0.03 0.02 0.02 0.01 0.01 0.01 ?J 6.71 5.37 4.53 3.22 2.06 1.23 0.88 0.11 0.06 0.53 0.31 0.19 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 10 7.73 6.18 5.22 3.78 2.46 1.48 1.06 0.64 0.38 0.23 0.13 0.07 0.05 0.04 0.02 0.02 0.02 0.01 25 F86786 .91 5.84 4.33 2.88 1.77 1.28 0.77 0.46 0.28 0.16 0.09 0.05 0.04 0.03 0.02 0.02 0.01 50 9.45 7.53 6.35 4.78 [i.247] F37 1.48 0.90 0_54 0.32 0.18 0.10 0.06 0.05 0.03 0.02 0.02 0.02 100 10.14 8.05 6.78 5.20 3.58 2.28 1.68 1.02 0.61 0.36 0.20 0.11 0.07 0.05 FOOT] 0.03 0.02 0.02 200 10.78 8.55 7.19 5.60 3.92 2.54 1.89 1.15 0.70 0.41 0.23 0.12 0.08 0.06 0.04 0.03 0.02 0.02 500 11.50 9.10 7.63 6.07 4.36 2.88 2.18 1.34 0.82 0.47 0.26 0.14 0.09 0.06 0.04 0.03 0.02 0.02 1000 12.23 9.63 8.06 6.52 4.76 3.22 2.46 1.52 0.93 0.53 0.30 0.16 0.10 0.07 0.04 0.03 0.03 0.02 `The upper bound of the connaence mtervat atwyo connaence ievei is me vame wmcn o-/0 of me simwareu quanme vames Ni a y m ayuumy aju y-- -These precipitation frequency estimates are based on an annual maxima series. AEPis the Annual Exceedance Probability. Please refer to NOAAAtias 14 Document for more information. NOTE: Formatting prevents estimates near zero to appear as zero. * Lower bound of the 90% confidence interval Precipitation Intensity Estimates (in/hr) UP** I I 1:0 15 30 60 120 [ 6 [12 24 7 48 ]I 7 F1O F20][30] F45 60 (1-in- s.. . I .,_ ?.. III ?... , di pper. nws. noaa.gov/.../buildout.perl?t... 1 1 1 E 1 1/4 Storm Data Group Detailed Report: User Defined IDF Table - 1 Element Details ID 15 Notes Label User Defined IDF Table - 1 Duration 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year (min) (in/hr) (in/hr) (in/hr) (in/hr) (in/hrl (fn/hr\ 5.000 5.120 6.130 7.070 7.940 8.650 9.270 10.000 4.090 4.910 5.660 6.320 6.880 7.370 15.000 3.430 4.140 4.770 5.350 5.810 6.210 30.000 2.370 2.940 3.450 3.960 4.380 4.760 60.000 1.490 1.890 2.250 2.640 2.970 3.280 Library Status Summary Synchronization Details ID 15 Label User Defined OF Table - 1 Modified Date 9/15/2009 2:06:14 PM M:\CALC U LATI O N S\Stormwater\Stor Library Source m Drainage\StormCad\NC Area IDFs.xml Library Modified Date 8/26/2009 5:30:56 PM Synchronization Status Synchronize to Library Engineering Reference Guid c59285df-cec6-4619-b823- cdf3bc4f71 a1 9.500 9.000 a., 8.500 ?. ... _ mw. 8.000 ?. -. ?. 7.500 - .,? .,? ?a..,.,.-:....?,..» .... ??,,..? 7.000 u _. _ - 6.500 - ._.- 6.000 ` 5.500 _ w.. 5.000 r t , c I .2 4.500 ?.,...,. .. .?,.....,, _ 4.000- - 3.500- . I -. 3.000 2.500"- I 2.000", i 1.500 1.000-- 6.000 6.000 12.000 18.000 24.000 30.000 36.000 42.000 48.000 54.000 60.000 Duration (rain) Bentley Systems, Inc. Haestad Methods Solution Bentley StormCAD V8 XM Edition 3-Storm Design 7-9-09.stc Center [08.09.081.00] 27 Siemon Company Drive Suite 200 W Watertown, 5/2009 CT 06795 USA +1-203-755-1666 Page 1 of 1 Composite C Values PROJECT NAME: Pilot Lions Park BY: TMT PROJECT NUMBER: 3043 DATE: 9/22/09 REV: 1/12110 Cwoods= 0,25; CIMP,= 0.95 CLewn= 0.30` CG,11= 0.55 AREA Drainage Areas (Acres) I COMPOSITE Woods Lawn Im erv. Gravel Total C SWALE<#1A' 0.00 0.31 0:25 U.UO 0.55 U.bu SWALE #1 B 0.00 4.92 0.30 0.00 5.22 0.34 S WALE #1 C 0.00 9.91 0.65 0.00 10.56 0.34 SWALE #2 0.00 4.78 0.52 0.00 5.30 0.36 SWALE #3 0.00 1.84 0.05 0.00 1.89 0.32 SWALE #3 * 0.46 TOTAL 0.00 16.53 1.22 0.00 * Note: Swale #3 using C-values from upstream. Composite C Values (Swale #3 Composite) PROJECT NAME: Pilot Lions Park BY: TMT PROJECT NUMBER: 3043 DATE: 9/8/09 REV: 1/12110 , Cwoods= 0.25 CImperv•= 0.95 Cram= 0.30 CGravel= 0,55 AREA Drainage Areas (Acres) COMPOSITE Woods Lawn Imperv. Gravel Total C wvHLt IFi u.uu 1.754 U.W) U.UU 1.89 DI3 0.00 1.05 0.40 0.00 1.45 DI `4 0.00 023 0.03 0.00 0.26 DI5 0.00 0.16 0.01 0.00 0.17 D16 0.00 0.10 0.03 0.00 0.13 DI 6A 0.00 0.21 0.06 0.00 0.27 DI8 0.00 0.18 0.06 0.00 0.24 DI9 0.00 0.10 0.02 0.00 0.12 DI 10 0.00 1.00 0.79 0.00 1.79 DI 11 " 0.00 0.46 0.51 0.00 0.97 TOTAL 0.00 5.33 1.96 0.00 7.29 0.32 0.48 0.38 0.34 0.45 0.44 0.46 0.41 0.59 0.64 0.46 Project Name: Pilot Lions Park Project No.: 3043A Sheet Title: DI-1 Calculated By: TMT Date: 8/26/2009> Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nQ "0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 14.1 0.0 0.0 14.1 min. 0.23 hr. Segment ID: B Paved or Unpaved Unpaved ` unpaved Flow length, L (ft): 121.0 Watercourse slope, s (ft/ft): 04-16 0,000 4QQQ Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.02 0.01 0.01 TC= L / (3600xV) Tc (min.)= 1.0 0.0 0.0 Total Shallow Concentrated Flow Tc = 1.0 min. 0.02 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) _ (A/Pw) Cross Sectional Area, A (ft"2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): _ (1.49`rA(2/3)'`s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min.) Total Sheet Flow Tc = 0.00 0.00 0„ 40 1.00 1.00 1.00 0.00 0.00 0.00 ao0 0.00 0.00 0.000 0.000 0.000 90.00 14 14 90.00 1490.00 /X OX0 /} 0.00 Q.40 0.0 0.0 0.0 0.0 min. 0.00 hr. = Minutes 3043 TC-Calculator 8-26-09.xl:k 13 - L 17 1 Project Name: Pilot Lions Park ' Project No.: 3043A Sheet Title: DI-10 ' Calculated By: TMT Date: 8126/2009 ' Post-developed Tc Calculation ' SHEET FLOW Segment ID: A 1 Surface description (table 3-1): Grass Manning's roughness coeff., n: 0.240 Flow length, L (total L<300') (ft): 100.0 ' 2yr 24 hour rainfall, P (in): 316 0.00 ! 0.00 Land slope, s (ft/ft): 0,014 0.000" 0 Tc= 0.007 K) ^0.8 Tc (min )= 16.6 0.0 0.0 ' P^0.5 x s^0.4 Total Sheet Flow TG = 16.6 min. ' 0.28 hr. SHALLOW CONCENTRATED FLOW Segment ID: B t Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 104.0 Watercourse slope, s (ft/ft): 0.013 ; O:QOfl 0 D00 ' Average velocity, V (ft/s) = 16.1345(s)"0.5: 1.80 0.01 0.01 TC= L / (3600xV) Tc (min.)= 1.0 0.0 0.0 ' Total Shallow Concentrated Flow Tc = 1.0 min. 0 02 hr . . CHANNEL FLOW Segment ID: Manning's Coefficient 0.00 0.00 0.00 Hydraulic Radius, R (ft) _ (A/Pw) 1.00 1.00 1.00 t Cross Sectional Area, A (ft^2) Wetted perimeter Pw ft 0.00 0 0.00 0.00 , ( ) 0 0 p.00 0.00 Channel slope, s (ft/ft) 0.000 0.000 0.000 ' Velocity, V (ft/s): = (1.49*rA(2/3)"'s^(0.5)/n 1490.00 1490.00 1490.00 Flow length, L (ft): 0.00 0,00 0.00 Tc= L / (3600xV) Tc (min.)= 0.0 0.0 0.0 Total Sheet Flow Tc = 0.0 min. 0.00 hr. : Teat<T?c:.. ........... .... ::..:: ............................... Minutes 3043_TC-Calculator 3-26-09. E# ''D=1`0`'f??8?? Project Name: Pilot Lions Park Project No.: 3043A Sheet Title: SWALE #2 Calculated By: TMT Date: 8/26/2009 Post-developed Tc Calculation SHEET FLOW Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nL) -0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW 12.6 min. 0.21 hr. Segment ID: g Paved or Unpaved Unpaved Flow length, L (ft): 533.0 Watercourse slope, s (ft/ft): 0.032 0.000 OAD0 Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.90 0.01 0.01 TC= L / (3600xV) Tc (min.)= 3.1 0.0 0.0 Total Shallow Concentrated Flow Tc = 3.1 min. 0.05 hr. CHANNEL FLOW Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) _ (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): _ (1.49*r^(2/3)'s"(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min.) Total Sheet Flow Tc = C 0.03 0.00 0.00 0.90 1.00 1.00 111.25 0.00 0.00 12.49 0.00 0.00 0.023 0.000 0.000 6.98 1490.00 1490.00 286400 0.00 0.00 0.7 0.0 0.0 0.7 min. 0.01 hr. = rt'da1'>fic path =G :3 Minutes 3043 TC-Calculator 8-26-09.x1s SWAL 1 lf°tb09 1 1 1 1 1 1 1 1 1 1 1 Project Name: Pilot Lions Park Project No.: 3043A Sheet Title: SWALE #3 Calculated By: TMT ' Date: .8/26/2009 Post-developed Tc Calculation SHEET FLOW Segment ID: A ' Surface description (table 3-1): Grass Manning's roughness coeff., n: 0.240 Flow length, L (total L<300') (ft): 160.0 ' 2yr 24 hour rainfall, P (in): 116 0.00 0.00 Land slope, s (ft/ft): Q 015 0.000 01000 I' Tc= 0.007 (nQ ^0.8 Tc (min )= 16.1 0.0. 0.0".. , ' P^0.5 x s^0.4 Total Sheet Flow Tc = 16.1 min. 0.27 hr. SHALLOW CONCENTRATED FLOW ' Segment ID. ,.g Paved or Unpaved unpaved unpaved ' Flow length, L (ft): 116.0 Watercourse slope, s (ft/ft): O;ti22 0,000 0 oOQ. Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.37 0.01 ........:...... 0.01 Tc= L / (3600xV) Tc (min.)= 0.8 0.0 0.0 Total Shallow Concentrated Flow Tc = 0.8 min ' . 0.01 hr. CHANNEL FLOW Segment ID: C I Manning's Coefficient 0.03 0.00 0 00 Hydraulic Radius, R (ft) _ (A/Pw) 0.90 1.00 1.00 Cross Sectional Area, A (ft^2) Wetted perimeter Pw (ft) 11.25 0.00 0.00 , 12.49 0.00 0.00 Channel slope, s (ft/ft) 0.152 0 "0 0>000 ' Velocity, V (ft/s): = (1.49*r^(2/3)*s"(0.5)/n 18.06 1490.00 1490.00 Flow length, L (ft): 17100 0.00 0.00 TC= L / (3600xV) Tc (min.)= 0.0 0.0 0.0 ' Total Sheet Flow Tc = 0.0 min. 0.00 hr. g> Minutes 3043_TC-Calculator 8-26-09.xls,` L' F: wftbOg Project Name: Pilot Lions Park Project No.: 3043A Sheet Title: SWALE #1 B Calculated By: TMT Date: 8/26/2009 Post-developed Tc Calculation SHEET FLOW . Segment ID: .................................... ............................................. A Surface description (table 3-1): Grass Manning's roughness coeff., n: 0.240 Flow length, L (total L<300') (ft): 100.0 2yr 24 hour rainfall, P (in): 3!.44 Land slope, s (ft/ft): 0.016 Tc= 0.007 (nQ ^0.8 Tc (min.)= 15.4 P^0.5 x s^0.4 Total Sheet Flow Tc = 15.4 min. 0.26 hr. SHALLOW CONCENTRATED FLOW ).00 0.00 .000 0.0.00 0.0 0.0 Segment ID: B ........................................ Paved or Unpaved Unpaved Unpaved Flow length, L (ft): 373.0 Watercourse slope, s (ft/ft): 0.019 ;0,000 0 000 Average velocity, V (ft/s) = 16.1345(s)^0.5: 2.21 0.01 0.01 TC= L / (3600xV) Tc (min.)= 2.8 0.0 0.0 Total Shallow Concentrated Flow Tc = 2.8 min. 0.05 hr. CHANNEL FLOW Segment ID: Manning's Coefficient 0.03 0.00 0.00 Hydraulic Radius, R (ft) = (A/Pw) 0.90 1.00 1.00 Cross Sectional Area, A (ft^2) 11-25 0.00 4.00 Wetted perimeter, Pw (ft) 12.49 0100 0.00 Channel slope, s (ft/ft) 0.005 0.000 0.000 Velocity, V (ft/s): = (1.49*rA(2/3)`s^(0.5)/n 3.28 1490.00 1490.00 Flow length, L (ft): 321,00 000 0.00 TC= L / (3600xV) Tc (min.)= 1.6 0.0 0.0 Total Sheet Flow Tc = 1.6 min. 0.03 hr. 3043 - TC-Calculator 8-26-09.xls, Project Name: ................... Pilot Lions Park ' Project No.: 3043A Sheet Title: SWALE #1 C ' Calculated By: TMT Date: 8/26/2009 ' Post-develop ed Tc Calculation SHEET FLOW 1 Segment ID: Surface description (table 3-1): Manning's roughness coeff., n: Flow length, L (total L<300') (ft): 2yr 24 hour rainfall, P (in): Land slope, s (ft/ft): Tc= 0.007 (nL) ^0.8 Tc (min.)= P^0.5 x s^0.4 Total Sheet Flow Tc = SHALLOW CONCENTRATED FLOW Segment ID: Paved or Unpaved Flow length, L (ft): Watercourse slope, s (ft/ft): Average velocity, V (ft/s) = 16.1345(s)^0.5: TC= L / (3600xV) Tc (min.)= Total Shallow Concentrated Flow Tc = CHANNEL FLOW 1 1 1 Segment ID: Manning's Coefficient Hydraulic Radius, R (ft) _ (A/Pw) Cross Sectional Area, A (ft^2) Wetted perimeter, Pw (ft) Channel slope, s (ft/ft) Velocity, V (ft/s): _ (1.49*r"(2/3)*s^(0.5)/n Flow length, L (ft): Tc= L / (3600xV) Tc (min Total Sheet Flow Tc = 0:240 100.0 3.44 0.00 0,00 0.020. 0.000 > 0 000 .'. 13.8 0.0 0.0 13.8 min. 0.23 hr. B Unpaved Unpaved 1125.0 0. M 0 OOQ ......... _ ....:.. ...:........... 2.30 0.01 0.01 8.1 0.0 0.0 8.1 min. 0.14 hr. C 0.01 0.00 0-00 0.79 1.00 1.00 1.98 0.00 0.00 2.50 0.00 0.00 0,007 0.000 0:040 8.21 1490.00 1490.00 53.00 0700 0.00 0.1 0.0 0.0 0.1 min. 0.00 hr. Minutes 3043_TC-Calculator 8-26-09.xis, Summary of Time of Concentration(s) Area No. Basin Area [Ac] Tc [Min] 10 Year Rainfall Intensity [Ins/Hr] 2 Year Rainfall Intensity [Ins/Hr] DI-1 3.19 15.1 5002 3.42 DI-10 1.19 17.5 4.71 3.25 SWALE #2 5.30 16.3 4.85 3.34 SWALE #3 2.17 16.9 4.78 3.30 SWALE #1 B 5.22 19.9 4;44 3.08 SWALE #1C 10.56 22.0 4:23 2.94 All storm items N/A 5.0 7.07 5.12' ** All other inlets not listed use a minimum of 5 min. Time of Concentration Table 3.1 Roughness Coefficients (Manning's n) for Sheet Flow Surface Description n Smooth Surfaces (concrete, asphalt, gravel, or bare soil) 0.011 Fallow (no residue) 0.05 Cultivated Soils Residue cover <=20% 0.06 Residue cover >20% 0.17 Grass Short grass prairie 0.15 Dense grasses 0.24 Bermudagrass 0.41 Range 0.13 Woods Light underbrush 0.4 Dense underbrush 0.5 (D E N X N Wl' 1 1 E ? E - - - - ? h v M o V o O o L() C) co U cao p O - rn co v Lo ?O -p C = C O E Q E Ei E LL 0 - p Q Q C 7 Y CO W O W p 0 p 0 p O p O o O o o L O LN .C N O O U O O O N 1 U O U I 0 a u O C N N N N a N O N a O CL N N O N o N N C C C C C C C C C E E N CL -0 2 a v v ° v v U v d U U U > a L v 0 a c p o Lco? Lo Lon v v L i ° LO a o 0o Oo C0 00 °o o° °o 0 0° o° o N 0 0 0 0 C5 0 0 0 0 0 0 n U O. a Ca C a.? Cl) r- N co C N C4 r-_ L( co J ) U - - - - - - - - - - - - - - - - - - yy Of Of Q d Q C O O N N N N co CO N tb to - O_ - - - - - - - - - - - - - - C O - - - - - d C a U a U a. U U ; U U U CL U a U a U a U U a af a c fr Of m U w d c4 v a U L - - - - - - - - - - - - - - - - - - - - - - - - - - - co m C. K 0 ,... LL O U? Ln O O O O O O M v Ln M to O Lo N O Un o Lf) > M M M M M M N N N N M C Cl) Cl) Cl) M M ' C M O O O O O c0 O O Cl) O oD ? f- LO V Lo O O co lT IL LL N N N N N CO N N N O C C M M M M co M M M M M co M - - - - - - - - - - - - - - - - - - - - - O E - - - - - - - - - - - - - - - - - O O 1LO 7 C) CD O a. C> C? LO O M .O ? Of LL O cli N N M O cm,, O O M N M ^ M M M ? W M M M M M M M M. M Cl) C O CC c o U LR -p m 12 0 ~ ca Lf) C? O m -7 p O M = L co Z CO U) pO Z ax) Z U ~ 25 W O D O D W W LL W N -0 C X d N - ° c ? a co O c V C N C.) Vr L[) to < ^ co O . N- F- i O n U = C O z O 3 0 O O w O C /) CO V Z co O O U m W p L L O 0 U U W Z N c Z N Y+ L L L C ? c a `p ? c C c O p t a ? m 3 . a c U t p cs o m e w C o Z U M o U - L u z O 2 a O LO N _O O N 1 U a CA O Lo O c rn .y N 0 O O_ O (D O O Ch N N N N O a) M O r N N N U- Co E 0 co Y C6 y ca o a J 0 M N O ? Q ? M 0.. ai .0 0-6 N Z Z U) U U t: N N Q 4) N U U U U U U U U U U C C C C C C C C C 9 9 co co It IV co CO v co v . 'qt U r r N N T T N T N N N C to M M M M M M M M M M • C T 0 0 T 0 T 0 T 0 T 0 0 . T 9 T q C O O O O O O O O O O co ? C ? a) .U- a) N N N .U+ ? (D ? N w CD D U U U U U U U U U U ? U U U U U U U U U U m N ? M , N co co M co N T r d: i > C y LO N M 00 NM 00 NM N O Cm M CA M N N C co C C M M co O O O Z N v C C 0 O CO V ? ? n . (n W c o 0 m o m m E O W Un M 0) C. M O N ? M > m ~ CA N N M M CA CA CA O M I- y M C`) ' M M cc ) M CO M M d Z r M ? ? aO O ? r CO ? D U U U U U U U w ? T M ? 9 00 0A CD ? N N J a i n a. M CL L d cL C 7 O M (D O O M M N M ? M T T O O M N M M M M M M N M M M M j M M N W c 7 O S O) LO (0 Lo il- Lo C CO N N M M M M M =- N CM M MM O M M M M M C M N W N e? M ?- t _ o w r " _ 0; _ N In g cg o w Cc 0 n T ? T r T T U = W N -p Q- 0 to 0 to 0 l!') 0 In 0 Ll7 0 t() 0 CO 0 1? 0 M 0 to 0 O l6 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 U t6 U CD 1- O h N M V h N 00 C mt N_ 00 In CO 0 to r' to CU J ? CA O ? (A N M ? ?j O r o CC) [i' T M CO ? M T h O r r "t O CO ? V ? L H w N L ? C T r r r r r r T r r 3m Z? O U ? r M l!') 00 CA N N c ?a a d n. a a- a cL cL a d- ? N X O O ' N T 7 Q 7 O cc U 0 O , Cn m O M , 1 O 0 N r , 1 1 1 1 1 1 1 1 1 1 1 1 1 1 U N rn O LO O C E L O O O U) O O M N N N N m 0 N N N 'Dom ca o co N E O -14 (6 M co C O m J o M 4) o a 0- c) a ai (D N 3 j Z Z U U N O OQ daLw V ' ? O N OO O N CM N 00 .- n n rn CO tp aO N Cp n oJ n N fII N ? et to ? N N O O ? to Q L > a ? ? v n ? n cg v N L O O ?rj N N N ? N ? N U ? r L o Cc rn co v C', ? n ? ?n C j n N N ? U N U ? N (? ^ U 7 0 n ? N ? 00 rn 00 n 00 n 00 n N n O lf) N IT O. 3 CO N O M O N O N O fV 0 N 0 M 0 N 0 N 00 N (L6 C Cl) M Cl) M Cl) Cl) Cl) Cl) Cl) M ?j+ J 2 N co ? co 0 M M N OD O O V) N 00 U') U c M M .-- O n n CM d? n N .- O M N O M O M 0) N a) N 0) N p M 0 M 0 N m N caC M M M M M M M M M M T J J i n M M M L? M 00 EL W M O L N i CO) c a , a N N X 0 O N N 3 d 7 0 U E L O M O Cl) O_ O N U N 0 O LO r C6 c CA m E O O O O r C?5 O O M A N N N N O N co m r N N (D U E O M Y M M 0 C C N O m J L co U 0 fa CL co U ? U N w =3 :3 Z Z ) N N 0 o Q M a L v N z U 0 0 0 0 0 0 0 0 0 0 n C LD 0 r 0 r 0 r 0 r 0 c- 0 r 0 ?- 0 r 0 r 0 r U FE W M O 0 0 0 0 0 0 0 0 0 0 7 O iq - I- u) r-- 0 r 0 00 N N N M 0 ? In O) M O 0 O LO O r IT LO O N t0 U I ( r r Ov r 0 0 0 0 C) O C7 C7 0 C 1 V N O M M Ul 0 r to y I- O M cr M ? ? 'IT v 0 0 0 0 0 0 0 0 0 0 , im Z M N C 0 U p? ^ O iO tp M ? N I? I? ? fv 1? 0 r V' N r N r r N r O M r O O O O O O N ? C Q O Lo 0 0 Lo 0 o 0 0 O [t N U) LO 0 9 M C` 9 0 1? W j N N N N N N N N N N M M M M M M M M M M C O O O O tn O 0 0 1n 0 I- ID O r Cp O O N 0 j E M CM O N N M N N M [ O)? CM CM N M M M M CM M CC,,)) C $ O? 0 0 0 LO 0 0 0 LO 0 0 -? I- l(') M W C) 0 N 0 0 (h M Q) N N M N C M ? M M M M N M M M M M M M M M M M M M M M r r M IT 0 co 0 1, co C v 2- . q? M ? O O W N CA In r l? C ? ? r (O V h M ? M O C3i Lo v- M 0 0 0 0 0 0 O 3 O LL c ?p C ca U) M a) M U) M U) M co M U) M U) M U) M U) CCo U) O C C C C C C C C C C O N M CO N M V M M r CA 0 CO r q V h M In O 00 - 0 0 0 , 0 0 , ? Q" O N ? Op N 00 ' M OO M T tf') O C r r O 0 O 0 CO 0 r r T e- O O r r rO ? r M 'IT M 00 0A LO < J co U 0 0 1 1 1 1 U N O LO r C6 C .N O 0 E 06 O M N I-T N O N M (3) _0 0 in N U E dE O U) Y (B CL cu cu C Q O J O ?f a °O N U N f6 ? j Z Z U U V- " U) ? A) N O 51 E? 0- X o 0 N r Q 7 O (B U E O U) M O M O O N 1 O O LO C N E o-, O O N M ? ?. N O N M O a) a) a) U a) E Q' O cn m cu d 0 G QC) o E J L co 0 0 It d°U L . O U N ? N co 7 .0 Z Z (n U U V- O (D Q dILC? a) O Z Q ? o ? M ? ? Cfl M O ",- 0 0 0 U U O U C M O r to ti co M CY) co m (0 p ` M M ?- 19T CD "3- O M r` r M 0 0 0 0 0 0 0 0 0 t6 C O (Q O O O r- N I? O Ln M ? LO c0 ?t w r` M "t GO 3 m i C a C) 0 0 0 M LO E o J-- LL U cu C O E u-) r` r` I` ? I'- r` r` r Lo 0 0 0 0 0 0 0 0 U t0 ? C C O O O t0 LC) Lc) r` LO U*) LO U') LO LO LC) LO C a) U C O U N U O Lo (o I- m P- g N O r` 7 rt .V N r 7 N N r r` O M M 0 0 0 0 0 0 0 N N M 19 ? oo 0.) ? U U U U U U U U U U _U X O O ? N r r C ' Q O .O U 0 co M o ? M 1 1 1 1 1 1 1 1 1 of 1 ' PROJECT NAME: PROJECT NUMBER: Ditch/Swale Flows Pilot' Lions' Park 3043 All flows and intensitys are designed for the 10 year storm event. Swale 1 A ' Area = 4 50 ac. < Length= 5 (b ft Intensity = 7.0'-rnlhf Inv. Up 34 5 Tc = S.Oirrt?a_ Inv. Down= 336.0...: .......... ::.::.:::.:.:::: Comp. C = ( 59 . Slope= 1.7% ' Q = C'I'A = 2.34 cfs Swale 3A BY: Tristan Teasley DATE: 9/22/09 REV: 1/12/09 Area = : ....::.........: 1 "33iG> . ..... Length= ........................... A Intensity = 4$ rnhr ..; Inv. Up 325.3 Tc = 16:.:3iin.::> Inv. Down= 325 0 Comp. C = 0 46 ... : Slope= 1.0% Q = C'I'A = 4.16 cfs Qt°tai = 18.95 cfs (includes 14.79 cfs from FES #7.) Swale 1B ' Area = 522 ac. Length= 25:7 ft. Intensity = 4.44 tnlhr Inv. Up 336.0 ' Tc = 19 9! min. Inv. Down= 334.7 ? Comp. C Q.34 Slope= 0.5% t Q = C*I*A = 7.88 cfs Qtotai = 10.22 cfs (includes flow from SWALE #1A.) Swale 1C ' Area = 10 ac. Length= 473 ft Intensity = 4.:n in/ h- Inv. Up 334 7 ' Tc = 22.0 miry. Inv. Down= 830 6 . . Comp. C = 0:34 Slope= . 0.9% ' Q = C*I*A = 15.19 cfs Qtotai = 25.39 cfs (includes flow from SWALE #1 B.) Swale 2 Area = 5.30 ac Length= 43fi ff. ' Intensity 4.85 in/hr Inv. Up .1335 .5 Tc = 16.3 min. Inv. Down= 3 5_S Comp. C = 0.36 Slope= 2.3% Q = C*I*A = 9 25 f . c s ' Swale 3 ' Area = Intensity = 1.89 ac. 4.78 inlhr Length= Inv. Up 112 ft. 327.5 Tc = 16.9 min. Inv. Down= 325.3 Comp. C = 0:46 Slope= 2.0% ' * * Q = C I A = 4.16 cfs 3043-swale flows with slopes and velocitys.xls Page 1 Swale Design Flow and Depth PROJECT NAME: Pilot Lions Park BY: Tristan Teasley PROJECT NUMBER : 3043 DATE: 9/1 012 0 0 9 REV: Channel # Grass Swale #1A -` Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C 0.59 1) Q= 2.34 Cfs (Q10) 1.7 Cfs (Q2) I 7.07 2) S= 0.017 fVft A 0.56 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 0.52 fe =QNp 5) R= 0.45 Hydraulic Radius =bd+Zd' / b+2d(Zz+1)'a (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 0.7 (Trapezoidal depth) Z= 3 (e/d) A= 2.87 (Cross Sectional Area) 6) 7) 8) 9) 10) U= 1.Z ue m inc train TreeDoara Using Retardance Curve D Using Retardance Curve B From Figure 8.05c VPR= 2.01 From Figure 8.05c VPR= 2.01 Mannings'n' (As read from gra ph)= 0.045 Mannings'n' (As read from graph)= 0.096 V= 2.52 fps Actual V from Manning's Equation V= 1.18 fps Actual V from Manning's Equation Qc= 7.24 cfs Actual channel capacity. Qc= 3.39 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps Check Vp>V Vp= 4.5 fps V= 2.52 fps V= 1.18 fps Check Qc>Q Qc= 7.24 cfs Check Qc>Q Qc= 3.39 cfs Q= 2.34 cfs Q= 2.34 cfs OK? YES (If Vp>V, then OK) OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) YES (If Qc>Q, then OK) Is atemp liner required? YES NOTE 1- 8.05.7 ESCPDM Isa enn'ntliner required? NO NOTE 1-8.05.7 ESCPDM 11) N/A .5 .4 .3 .2 C co C I .C m .08 .06 04 02 Average Length Curve of Vegetation (fn) Larger than 30" A 11" to 24' B 6" to 10" C 2' to 5" D Less than 2" E a C D E t .2 .4 .6 %8 1.0 2 4 6 8 10 VR, Product of Velocity and Hydraulic Radius 20 Figure 8.06c Manning's n related to velocity, hydraulic radius, and vegetal relardance. Note: From Sample Problem 8.05a multiply Vp x Hydrakrlic Radius (4.50.542.43), then enter the product of VR and extend a sUalght One up to Retardance class "D", next projects straight tine to the left to determine a trial mannings n. Rev. 12,93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for SWALE #1 A - D Curve Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.045 Channel Slope 0.01700 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 ft Discharge 2.34 ft3/s Results Normal Depth 0.40 ft Flow Area 1.27 ftz Wetted Perimeter 4.51 ft Top Width 4.38 ft Critical Depth 0.30 ft Critical Slope 0.04996 ft/ft Velocity 1.85 ft/s Velocity Head 0.05 ft Specific.Energy 0.45 ft Froude Number 0.61 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.40 ft Critical Depth 0.30 ft Channel Slope 0.01700 ft/ft Critical Slope 0.04996 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.071.00] 9/23/2009 12:43:28 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for SWALE #1A - B Curve Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.096 Channel Slope 0.01700 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 ft Discharge 2.34 ft3/s Results Normal Depth 0.58 it Flow Area 2.19 ft2 Wetted Perimeter 5.69 ft Top Width 5.50 ft Critical Depth 0.30 ft Critical Slope 0.22737 ft/ft Velocity 1.07 ft/s Velocity Head 0.02 it Specific Energy 0.60 ft Froude Number 0.30 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft ' Length 0.00 ft Number Of Steps 0 GVF Output. Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.58 ft Critical Depth 0.30 ft Channel Slope 0.01700 ft /ft Critical Slope 0.22737 ft /ft Bentley Systems, inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 91231200912:43:47 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Swale Design Flow and Depth PROJECT NAME: Pilot Lions Park BY: Tristan Teasley PROJECT NUMBER: 3043 DATE: 9/10/2009 REV: Channel # Grass Swale #1 B Estimating Mannings 'n' per ESCPDM Page 8.05.6 Step # Variable Result Description C N/A 1) Q= 10.22 cfs (Q10) 7.3 cfs (Q2) I NIA 2) S= 0.005 ft/ft A N/A 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 2.27 ft2 =Q/Vp 5) R= 0.85 Hydraulic Radius =bd+Zdz / b+2d(Z41)1n (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= `1.5 (Trapezoidal depth) Z= 3 (e/d) A= 9.75 (Cross Sectional Area) 6) 7) 8) 9) 10) Using Retardance Curve D From Figure 8.05c VPR= 3.82 Mannings'n' (As read from gra ph)= 0.039 V= 2.45 fps Actual V from Manning's Equation Qc= 23.88 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 2.45 fps Check Qc>Q Qc= 23.88 cfs Q= 10.22 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES (NOTE 1- 8.05.7 ESCPDM) Li= z (Lie pin inciuain rreeooara Using Retardance Curve B From Figure 8.05c VpR= 3.82 Mannings'n' (As read from graph)= 0.070 V= 1.34 fps Actual V from Manning's Equation Qc= 13.10 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps V= 1.34 fps Check Qc>Q Qc= 13.10 cfs Q= 10.22 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) is a enn'nt liner required? NO NOTE 1- 8.05.7 ESCPDM 11) N/A C y on c 'c c 4 . 3 Average Length of Vegetation on) Curve 2 A Longer than 3I7 11" to 24" 6" " A 8 . to 10 2" to 6" L h " C D ess t an 2 E I a . .08 06 0 04 E won. oft .02 -c .Y Al -.n I.u L 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's n re la led to velooilyhydraulic radius, and vegetal retardanos. Note: From Sample Problem 8.05a multiply Vp x tlydralullc Radlus (4.5xb.54-2A3), than enter the product of VR and extend a straight fine up to Retardance class "D", next project a straight fine loft left to determine a trial manning's n. Rev. IZ93 W k h t f SWALE #1 B D C or s ee or - urve Project Description , Friction Method Manning Formula Solve For Normal Depth Input Data ' Roughness Coefficient 0.039 Channel Slope 0.00500 ft/ft ' Left Side Slope 3.00 ft/ft (H:V) Right Side Slope Bottom Width 3.00 ft/ft (H:V) 2.00 ft ' Discharge 10.22 ft'/s Results ' Normal Depth 1.03 ft Flow Area 5.24 ftz Wetted Perimeter 8.51 ft ' Top Width 8.18 ft Critical Depth 0.67 ft ' Critical Slope 0.03039 ft/ft Velocity 1.95 ft/s Velocity Head 0.06 ft , Specific Energy 1.09 ft Froude Number 0.43 Flow Type Subcdtical ' GVF Input Data Downstream Depth 0.00 ft , Length 0.00 ft Number Of Steps 0 ' GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s ' Upstream Velocity Infinity ft is Normal Depth 1.03 ft Critical Depth 0.67 ft Channel Slope 0.00500 ft /ft Critical Slope 0.03039 ft/ft ' Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 9123/2009 12:43:33 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 ' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for SWALE #1 B - B Curve Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.070 Channel Slope 0.00500 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 ft Discharge 10.22 ft'/s Results Normal Depth 1.34 ft Flow Area 8.09 ft2 Wetted Perimeter 10.49 ft Top Width 10.06 ft Critical Depth 0.67 ft Critical Slope 0.09791 ft/ft Velocity 1.26 Ws Velocity Head 0.02 ft Specific<Energy 1.37 ft Froude Number 0.25 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft /s Upstream Velocity Infinity ft/s Normal Depth 1.34 ft Critical Depth 0.67 ft Channel Slope 0.00500 ft/ft Critical Slope 0.09791 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 9/23/200912:43:51 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Swale Design Flow and Depth PROJECT NAME: Pilot Lions Park BY: Tristan Teasley PROJECT NUMBER: 3043 DATE: 911012009 REV: Channel # Grass Swale #1 C Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C N/A 1) 0= 25.39 cis (010) 18.2 cfs (Q2) I N/A 2) S= 0.009 ft/ft A N/A 3) Vp 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 5.64 ft' =QNp 5) R= 1.00 Hydraulic Radius =bd+Zd' / b+2d(Z1+1)` (Figure 8.05b) Where b= 2 (Trapezoidal Bottom Width) df= 1.8 - (Trapezoidal depth) Z= 3 (e/d) A= 13.32 (Cross Sectional Area) 6) 7) 8) 9) 10) U= Y.J Ue in Inciuatn rreeDoara Using Retardance Curve D Using Retardance Curve B From Figure 8.05c VPR= 4.48 From Figure 8.05c VPR= 4.48 Mannings'n' (As read from gra ph)= 0.038 Mannings'n' (As read from graph)= 0.065 V= 3.75 fps Actual V from Manning's Equation V= 2.16 fps Actual V from Manning's Equation QC= 50.01 cfs Actual channel capacity. QC= 28.79 cis Actual channel capacity. Check Vp>V Vp= 4.5 fps Check Vp>V VP= 4.5 fps V= 3.75 fps V= 2.16 fps Check Qc>Q Qc= 50.01 cfs Check Qc>Q Qc= 28.79 cfs Q= 25.39 cis Q= 25.39 cfs OK? YES (If Vp>V, then OK) OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES (NOTE 1-8.05.7 ESCPDM Ise ern'ntliner required? NO (NOTE 1-8.05.7 ESCPDM 11) N/A .5 .4 .3 2 C W 01 c .1 C Co .08 .06 .04 02 Average Length Curve of vegetation pn) Larger than 30' A 11" to 24' B A 6' to 1 0- 2 C ' to 6' D Less than 2" E 9 "INN C D E .I .2 .4 .6 -.B 1.0 2 4 6 B 10 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's n ralated to velocity, hydraulic radius, and vegetal retardance. Note: From Sample Problem 8.05a multiply Vp x Hydralullc Radius (4.50.54-2.43), than enter the product of VR and extend a straight the up to Retardance class "D', next project a straight line to the left to determine a trial manning's n. Rev. 1793 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Project Description ' F i i M r on ct ethod Solve For ' Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope ' Bottom Width Discharge ' Results Normal Depth ' Flow Area Wetted Perimeter Top Width Critical Depth ' Critical Slope Velocity ' Velocity,Head Specific Energy Froude Number ' Flow Type GVF Input Data Downstream Depth Length Number Of Steps V ut G F O put Data Upstream Depth Profile Description Profile Headloss Downstream Velocity ' Upstream Velocity Normal Depth ' Critical Depth Channel Slope Critical Slope Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.071.00] ' 912312009 12:43:37 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Worksheet for SWALE #1C - D Curve Manning Formula Normal Depth 0.038 0.00900 ft/ft 3.00 ft/ft (H:V) 3.00 ft/ft (H:V) 2.00 ft 25.39 ft3/s 1.35 ft 8.13 ft2 10.51 ft 10.08 ft 1.06 ft 0.02552 ft/ft 3.12 ft/s 0.15 ft 1.50 ft 0.61 Subcritical 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.35 ft 1.06 ft 0.00900 ft/ft 0.02552 ft/ft Worksheet for SWALE #1 C - B Curve Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.065 Channel Slope 0.00900 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 ft Discharge 25.39 "s Results Normal Depth 1.70 ft Flow Area 12.13 ft2 Wetted Perimeter 12.78 ft Top Width 12.23 ft Critical Depth 1.06 ft Critical Slope 0.07468 ft/ft Velocity 2.09 ft/s Velocity Head 0.07 ft Specific Energy 1.77 ft F A N ber 0.37 rou a um Flow Type GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope Subcritical 0.00 ft 0.00 ft 0 1 1 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 1.70 ft 1.06 ft 0.00900 ft/ft 0.07468 ft/ft 1 1 1 1 1 1 1 1 Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster 108.01.071.00) 91231200912:54:37 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1-203-765-1666 Page 1 of 1 , ' Swale Design Flow and Depth PROJECT NAME: Pilot Lions Park BY: Tristan Teasley PROJECT NUMBER : 3043 DATE: 9/1012009 ' REV: Channel # Grass Swale #2 ' Step # Variable Estimating Mannings'n' Result per ESCPDM Page 8.05.6 Description C 0.36 1) Q= 9.25 cfs (Q10) 6.6 ofs (Q2) I 4.85 2) S= 0.023 ft/ft A 5.3 t 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 2.06 ftz =QNp 5) R= 0.60 Hydraulic Radius =bd+Zd2 / b+2d(Z2+1)` (Figure 8.05b) ' Where b= 2 (Trapezoidal Bottom Width) df= 1 (Trapezoidal depth) Z= 3 (e/d) A= 5 (Cross Sectional Area) ' 6) 7) 8) 1 1 1 Using Retardance Curve D U- r.a ue in inclualn rreeooaro Using Retardance Curve B From Figure 8.05c VPR= 2.70 From Figure 8.05c V,R= 2,70 Mannings 'n' (As read from graph)= 0.042 Mannings 'n' (As read from graph)= 0.085 V= 3.81 fps Actual V from Manning's Equation V= 1.90 fps Actual V from Manning's Equation Qc= 19.06 cfs Actual channel capacity. Qc= 9.48 cfs Actual channel capacity. Check Vp>V Vp= 4.5 fps Check Vp>V VP= 4.5 fps V= 3.81 fps V= 1.90 fps Check Qc>Q Qc= 19.06 cfs Check Qc>Q Qc= 9.48 cfs Q= 9.25 cfs Q= 9.25 cis OK? YES (If Vp>V, then OK) OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) YES (If Qc>Q, then OK) Is a.temp liner required? YES NOTE 1- 8.05.7 ESCPDM Is a enn'nt liner required? NO NOTE 1- 8.05.7 ESCPDM 9) 10) 11) N/A 4 . g Average Length of Vagetallon (In) Curve 2 Langer than 3a' 11" to 24" " " A a • 6 to 10 2" to 6" " C D Less than 2 E .I 9 .08 C os o S . L 04 T l e s- 02 ff l I-- - co c .C of M VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manning's nrelaled lo velocity, hydraulic radius, and vegetal reterdance. Note: From Sample Problem 8.05a multiply Vp x Hydralulic Radius (4.5xo.54-2.43), then enter to product of VR and extend a straight One up to Retardance dass "D", next projects straight fine to Me left to determine a trial manning's n. Rm 12,93 Worksheet for SWALE #2 - D Curve Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient Channel Slope Left Side Slope Right Side Slope Bottom Width Discharge Results 0.042 0.02300 ft/ft 3.00 ft/ft (H:V) 3.00 ft/ft (H:V) 2.00 ft 9.25 ft3/s Normal Depth 0.71 ft Flow Area 2.93 ft2 Wetted Perimeter 6.49 ft Top Width 6.26 ft Critical Depth 0.64 ft Critical Slope 0.03573 ft/ft Velocity 3.16 ft/s Velocity Head 0.15 ft Specific Energy 0.86 ft F A N mber 0.81 roue u Flow Type Subcritical GVF Input Data Downstream Depth Length Number Of Steps GVF Output Data Upstream Depth Profile Description Profile Headloss Downstream Velocity Upstream Velocity Normal Depth Critical Depth Channel Slope Critical Slope 0.00 ft 0.00 ft 0 0.00 ft 0.00 ft Infinity ft/s Infinity ft/s 0.71 ft 0.64 ft 0.02300 ft/ft 0.03573 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.001 91231200912:43:40 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1-203-755-1666 Page 1 of 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Worksheet for SWALE #2 - B Curve Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.085 Channel Slope 0.02300 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 2.00 it Discharge 9.25 ft3/s Results Normal Depth 0.99 ft Flow Area 4.92 ftZ Wetted Perimeter 8.26 ft Top Width 7.94 ft Critical Depth 0.64 ft Critical Slope 0.14635 ft/ft Velocity 1.88 ft/s Velocity Head 0.05 ft Specific Energy 1.05 ft Froude<Number 0.42 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.99 ft Critical Depth 0.64 it Channel Slope 0.02300 ft/ft Critical Slope 0.14635 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 9/23/200912:43:55 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Swale Design Flow and Depth PROJECT NAME: Pilot Lions Park BY: Tristan Teasley PROJECT NUMBER: 3043 DATE: 9/10/2009 REV: 1/12/2010 Channel # Grass Swale #3 Estimating Mannings'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C NIA 1) Q= 18.95 cfs (Q10) 13.6 CfS (Q2) N/A 2) S= 0.023 ft/ft A N/A 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 4.21 ft= =QNp 5) R= 1.17 Hydraulic Radius =bd+Zd' / b+2d(Z41)" (Figure 8.05b) Where b= 13 (Trapezoidal Bottom Width) df= 1.5 (Trapezoidal depth) Z= 3 (e/d) A= 26.25 (Cross Sectional Area) 6) 7) 8) 9) 10) Using Retardance Curve D From Figure 8.05c VPR= 5.25 Mannings'n' (As read from gra ph)= 0.037 V= 6.82 fps Actual V from Manning's Equation Qc= 178.99 cfs Actual channel capacity. Check Vp>V VP= 4.5 fps V= 6.82 fps Check Qc>Q Qc= 178.99 cis Q= 18.95 cfs OK? NO (If Vp>V, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES (NOTE 1- 8.05.7 ESCPDM) u= c ve rn 1ncluom rreeooaro Using Retardance Curve B From Figure 8.05c VPR= 5.25 Mannings'n' (As read from graph)= 0.061 V= 4.10 fps Actual V from Manning's Equation Qc= 107.54 cfs Actual channel capacity. Check Vp>V VP= 4.5 fps V= 4.10 fps Check Qc>Q Qc= 107.54 cis Q= 18.95 cfs OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) a penn'nt liner 11) N/A Q oD CD c 'c C rd M .J 4 1 1 1 1 111111 ' 3 Average Length Of Vegetation on) Curve . 2 A Longer than &0" 11" to 24" S. t 10" A B C o 2" to 5" Le th 2" D E ss- ss t- an 7 1 1 1 F-7 .08 .06 04 E . W-aaa na 1 [ .4 .6 -.e 1.0 2 4 6 8 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manrdng's nrelabd b vebdly, hydraWfc radhs, arxf vegetal retardance. Note: From Sample Problem 8.05a muBipy Vp x Hydralullo Radius (4.5x0.54=2.43), then enter the product of VR and extend a straight Ina up to Retardance class 'Er. next projecta straight Ina to the left to determine a trial manning's n. Rev. 12A3 ' Worksheet for Swale 03 - Upper Leg Project Description Friction Method Manning Formula Solve For Normal Depth ' Input Data` Roughness Coefficient 0.065 Channel Slope 0.02270 ft/ft ' Left Side Slope 5.00 ft/ft (H:V) Right Side Slope 5.00 ft/ft (H:V) ' Bottom Width Discharge 5.00 18 95 It ft'/ . s Results ' N l D th orma ep 0.85 ft Flow Area 7.93 ft2 Wetted Perimeter 13.72 ft Top Width 13.55 ft Critical Depth 0.62 ft ' Critical Slope 0.08169 ft/ft Velocity 2.39 ft/s Velocity Head 0.09 ft ' Specific Energy 0.94 ft Froude Number 0.55 Flow Type Subcritical ' GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ' GVF Output Data Upstream Depth 0.00 ft ' Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s ' Upstream Velocity Infinity ft/s Normal Depth 0.85 ft Critical Depth 0.62 ft ' Channel Slope 0.02270 ft/ft Critical Slope 0.08169 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 1118/2010 4:24:31 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 Swale Design Flow and Depth PROJECT NAME: Pilot Lions Park` BY: Tristan Teasley PROJECT NUMBER : 3043 DATE: 9/1012009 REV: -V12/2010- , Channel # Grass. Swale #3A Estimating Mannings 'n ' per ESCPDM Page 8.05.6 Step # Variable Result Description C N/A 1) Q= 18.95 cfs (Q10) _ 13.6 cfs (Q2) I N/A 2) S= 0.010 ft/ft A N/A 3) VP 4.5 fps Permissible Velocity per Table 8.05a 4) Size= 4.21 fl? =Q/Vp 5) R= 1.17 Hydraulic Radius =bd+Zd' / b+2d(Z41)` (Figure 8.05b) Where b= 13 (Trapezoidal Bottom Width) df= 1.5 (Trapezoidal depth) Z= 3 (e/d) A= 26.25 (Cross Sectional Area) 6) 7) 8) 9) 10) U= Z (tiepin including freeboard Using Retardance Curve D Using Retardance Curve B From Figure 8.05c VPR= 5.25 From Figure 8.05c VPR= 5.25 Mannings'n' (As read from gra ph)= 0.037 Mannings'n' (As read from graph)= 0.061 V= 4.53 fps - Actual V from Manning's Equation V= 2.72 fps Actual V from Manning's Equation Qc= 118.80 cfs Actual channel capacity. QC= 71.38 cfs Actual channel capacity. Check Vp>V VP= 4.5 fps Check Vp>V VP= 4.5 fps V= 4.53 fps V= 2.72 fps Check Qc>Q Qc= 118.80 cis Check Qc>Q Qc= 71.38 cfs Q= 18.95 cfs Q= 18.95 cfs OK? NO (If Vp>V, then OK) OK? YES (If Vp>V, then OK) YES (If Qc>Q, then OK) YES (If Qc>Q, then OK) Is a temp liner required? YES NOTE 1- 8.05.7 ESCPDM Is a perm'nt liner required? NO NOTE 1- 8.05.7 ESCPDM 11) N/A C to Of C c m 2 .J 4 . 3 Average Length of Vegetation On) Curve 2 A Lager loam 30' 11' to 24' ° " A B . 6 to 10 2° l0 6" L t C D 1 e ss han E . 06 04 e .02 ..c .Y .o -.o Lu t 9 6 B 10 20 VR, Product of Velocity and Hydraulic Radius Figure 8.05c Manrting's n related to vebdty, hydraulic radius, and vegetal retardance. Note: From Sample Problem a.05a multiply Vp x Hydraluitc Radius (4.50.54.2.43), then enter the product of VR and extend a straight Ina up to Retardance class "D', next protect a stralght Ina to the left to determine a Idal manning's n. Rev. 12,93 Worksheet for Swale #3A - Before Wetlands Discharge Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.065 Channel Slope 0.01000 ft/ft Left Side Slope 5.00 ft/ft (H:V) Right Side Slope 5.00 ft/ft (H:V) Bottom Width 13.00 ft Discharge 18.95 ft'/s Results Normal Depth 0.72 ft Flow Area 11.86 ft: Wetted Perimeter 20.30 ft Top Width 20.16 ft Critical Depth 0.38 ft Critical Slope 0.08872 ft/ft Velocity 1.60 ft/s Velocity Head 0.04 ft Specific Energy 0.76 ft Froude Number 0.37 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 0.72 ft Critical Depth 0.38 ft Channel Slope 0.01000 ft/ft Critical Slope 0.08872 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 1118/2010 4:24:07 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203-755-1666 Page 1 of 1 Worksheet for EW#2 Outlet - Before Wetlands Discharge Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.065 Channel Slope 0.00300 ft/ft Left Side Slope 3.00 ft/ft (H:V) Right Side Slope 3.00 ft/ft (H:V) Bottom Width 7.00 ft Discharge 4.59 ft'/s Results Normal Depth 0.64 ft Flow Area 5.70 ft2 Wetted Perimeter 11.04 ft Top Width 10.84 ft Critical Depth 0.23 ft Critical Slope 0.10472 ft/ft Velocity 0.81 ft/s Velocity Head 0.01 ft Specific Energy 0.65 ft Froude Number 0.20 Flow Type Subcritical GVF Input'Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft /s Normal Depth 0.64 ft Critical Depth 0.23 ft Channel Slope 0.00300 ft/ft Critical Slope 0.10472 ft/ft Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.01.071.00] 1Ft2/2010 5:45:29 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 V (to be provided by DWQ) A PIMA to I "A. NCDENR TORMWATER MANAGEMENT PERMIT APPLICATION FORM oF_vv a rE9 Ji?¦ {9 401 CERTIFICATION APPLICATION FORM GRASSED SWALE SUPPLEMENT ' This form must be filled out, printed and submitted. The Required Items Checklist (Part III) must also be filled out, printed and submitted along with all of the required information. I. -PROJECT INFORMATION ' Project name Pilot Lions Park Contact name Mark Breen Phone number (704) 521-9880 ' Date January 12, 2010 Drainage area number #1- Swale #3 ' IL' DESIGN INFORMATION Site Characteristics Drainage area 317,988.00 ft2 ' Impervious area 112,385.00 ft2 Percent impervious 35.3%% Design rainfall depth 1.00 inch ' Peak Flow Calculations 10-yr storm runoff depth in 10-yr storm intensity 4.78 in/hr Post-development 10-yr storm peak flow 18.95 ; ft3/sec Velocity Maximum non-erosive velocity (peak 10-year storm) 5.00 ft/sec Soil characteristics (enter "x" below) ' Sand/silt (easily erodible) x Clay mix (erosion resistant) Grass Type (enter "x" below) Bermuda x Tall fescue Bahiagrass ' Kentucky bluegrass Grass-legume mixture ' Swale type: Fill out one of the options below: Option 1: Curb Outlet Swale: Y (Y or N) Maximum velocity 5.00 OK ' Side slopes 5.00 :1 OK Swale length -112.00 ft OK Option 2: Swale Seeking Pollutant Credit ("For-Credit" Swale): N (Y or N) Maximum velocity for 10-yr storm ft/sec ' Side slopes :1 Swale length ft 1 1 Form SW401-Grassed Swale-Rev.4 Parts I and II. Project Design Summary, Page 1 of 2 Permit Number. (to be provided by DWQ) Swale Characteristics Swale Shape: Enter an Y in the appropriate cell below: Trapezoidal x Parabolic V-shaped Width of the bottom of the swale 13.00 ft Width of the top of the swale -_33,00 - ft Additional Information Is the swale sized for all runoff from ultimate build-out? Y (Y or N) OK Is the BMP located in a proposed drainage easement with a N (Y or N) Insufficient ROW location. recorded access easement to a public Right of Way (ROW)? What is the distance from the bottom of the swale to the SHWT? 0.00 ft What is the ground level elevation? fmsl What is the elevation of the bottom of the swale? fmsl What is the SHWT elevation? fmsl What is the longitudinal slope of the swale? 0.02% OK What is the depth of freeboard? 1.15 ft OK Form SW401-Grassed Swale-Rev.4 Parts I and 11. Project Design Summary, Page 2 of 2 Permit Number: (to be provided by DWQ) _ A 71 * of .`'v a rF9 7 U : r Jl. ' a NCDENR STORMWATER MANAGEMENT PERMIT APPLICATION FORM ' 401 CERTIFICATION APPLICATION FORM GRASSED SWALE SUPPLEMENT ' This form must be filled out, printed and submitted. The Required Items Checklist (Part 111) must also be filled out, printed and submitted along with all of the required information. I. PROJECT INFORMATION` - Project name Pilot Lions Park Contact name Mark Breen ' Phone number Date (704) 521-9880 January 12, 2010 Drainage area number #1 -Swale #3A ' Ill. DESIGN INFORMATION Site Characteristics Drainage area 317,988.00 ft2 ' Impervious area 112,385.00 ft 2 Percent impervious 35.3%% Design rainfall depth `1.00 inch ' Peak Flow Calculations 10-yr storm runoff depth in 10-yr storm intensity 4.78 in/hr ' Post-development 10-yr storm peak flow 18.95 ft3/sec Velocity Maximum non-erosive velocity (peak 10-year storm) 5.00 ft/sec Soil characteristics (enter "x" below) ' Sand/silt (easily erodible) x Clay mix (erosion resistant) Grass Type (enter "x" below) ' Bermuda x Tall fescue Bahiagrass ' Kentucky bluegrass Grass-legume mixture Swale type: Fill out one of the options below: ' Option 1: Curb Outlet Swale: Y (Y or N) Maximum velocity 5.00 OK ' Side slopes 5.00 :1 OK Swale length 25.00 ft t Insufficient swale length. n d j C C T D OT Option 2: Swale Seeking Pollutant Credit ("For-Credit" Swale): M i l it f 10 N (Y or N) Swale # 3 ax mum ve oc y or -yr storm ft/sec _ ' Side slopes :1 ?o ?Q$? l-c?..l S +v??l e- S Swale length ft Le A.S4 k is 137 dK 1 Form SW401-Grassed Swale-Rev.4 Parts I and II. Project Design Summary, Page 1 of 2 Permit Number. (to be provided by DWQ) Swale Characteristics Swale Shape: Enter an Y in the appropriate cell below: Trapezoidal x Parabolic V-shaped Width of the bottom of the swale 13.00 ft Width of the top of the Swale 33.00 ft Additional Information Is the swale sized for all runoff from ultimate build-out? Y (Y or N) OK Is the BMP located in a proposed drainage easement with a recorded access easement to a public Right of Way (ROW)? N (Y or N) Insufficient ROW location. What is the distance from the bottom of the swale to the SHWT? 0,00 ft What is the ground level elevation? fmsl What is the elevation of the bottom of the swale? fmsl What is the SHWT elevation? fmsl What is the longitudinal slope of the swale? 0,01 % OK What is the depth of freeboard? 1.28 ft OK Form SW401-Grassed Swale-Rev.4 Parts I and II. Project Design Summary, Page 2 of 2 Culvert Calculator Report Driveway Entrance Solve For: Headwater Elevation Culvert Summary Allowable HW Elevation Computed Headwater Elew Inlet Control HW Elev. Outlet Control HW Elev. 342.00 ft 340.46 ft 340.38 ft 340.46 ft Headwater Depth/Height Discharge Tailwater Elevation Control Type 0.77 2.34 cfs 339.00 ft Outlet Control Grades Upstream Invert Length 339.50 ft 96.00 ft Downstream Invert Constructed Slope 339.00 ft 0.005208 ft/ft Hydraulic Profile Profile Slope Type Flow Regime Velocity Downstream M2 Mild Subcritical 3.92 ft/s Depth, Downstream Normal Depth Critical Depth Critical Slope 0.61 ft 0.63 ft 0.61 ft 0.005642 ft/ft Section Section Shape Section Material Section Size Number Sections Circular Concrete 15 inch 1 Mannings Coefficient Span Rise 0.013 1.25 ft 1.25 ft Outlet Control Properties Outlet Control HW Elev. Ke 340.46 ft 0.50 Upstream Velocity Head Entrance Loss 0.22 ft 0.11 ft Inlet Control Properties Inlet Control HW Elev. 340.38 ft Inlet Type Square edge w/headwall K 0.00980 M 2.00000 C 0.03980 Y 0.67000 Flow Control Area Full HDS 5 Chart HDS 5 Scale Equation Form N/A 1.2 ft2 1 1 1 Title: Pilot Lions Park Project Engineer: tristant j:\...\storm\3043-driveway culvert 9-15-09.cvm Site Solutions Inc CulvertMaster v3.1 [03.01.010.00] 09/23/09 04:19:18cFElAntley Systems, Inc. Haestad Methods Solution Center Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 1 11 1 1 1 1 1 1 L! ? V. Neuse River Nutrient Calculations Total Nitrogen and Total Phosphorus Loading Calculations 1 1 Neuse Stormwater Rule 15A NCAC 2B .0235 Neuse River Basin: Last Modified 9/15/2009 Includes Oxford, Henderson, Rocky Mount and Tarboro as well as Franklin, Nash and Edgecome Counties Total Nitrogen and Total Phosphorus Loading Calculation Worksheet (Automated) Project Name: Pilot Lions Park (3043) Date: 911412009 By: TMT Checked By: Dlrecdons (same for pre-development and post-development tables): > Enter the acres of each type of land cover in the green boxes. The spreadsheet will calculate all of the values in light blue. > Compare total areas of development in pre- and post- tables for consistency (bottom of column (2 )), and also for con sistency with the site plans. If all of these values are not the same, there is an error that must be corrected. > Unless drainage onto the development from offsite is diverted around or through the site, offsite c atchment area draining in must be included in the acreage values and treated. Pre-development: :..:....................................:.:.:..:.:.:.:.:...... ::::t ::::::::::::::::::: 1.:.:.: .:. .. . . . . . . .:. .:. .:.::.:.:.:.::.:.:.:.:.:. .......... . ::::::::: .:.:..:..........(........ ........ .... .:..:.:.:.:.:(......... ............ ......:?......... ............... .............(....... ..... . ..... .....(?? .:.:.:.:. . : : : : : : : : : : 'y :of>€; iii:Cover.:`.:' :: :':: ireix E? .....:.......................:.:.................................. ::.:...... or'.'.'. 1 ..) .mnl .................. era e.lf:lltC` Ay....g ............... .:.:.:.:..:. ...:..:. : Cotaiii ..................... Avery e ......... ..> 8................ 1 :: .........adm.... .......................... ::::::..............:...............:...............:.......... : . : :::: TraAS 61 tgtCrin ii pet 3oi s 0.55 2.60 0.29 0.19 0.02 :Rood Iuperifus 0.55 1.95 0.00 0.11 0.00 aio.ageE1(eruieus 0.55 1.42 14.21 0.28 2.80 'aiage}erviey9" "' I CFQpIAn 0.55 4.23 0.00 1.23 0.00 aiaageeityi<iii8 0.55 2.04 0.00 0.62 0.00 Vooe?ljtyi 0.55 0.94 0.00 0.14 0.00 : :'•; 14.50 .... . 2.82 :::::::::::::::::: : : :: ` 1 r . . f ::::::........ X ... .... TnfalAKe oWOW m nt. 18 38 P 0.79 uei 01 5 ......... ... . ::.:. Post-development: '1'yp @:41 A4.. DCP........... AYCa NX W711i11$ ?kver C' $ ?oi€upap :Average AMC ::CQl?mn ......................... : ...:......... ..: :4&#8:$ :........: :.::.:..?::: : .... 2 .... ..... :of ' 41 Tra#?spirttogjpkpeirvapls 1.43 2.60 8.01 0.19 0.58 :.:.:...:.............:...:...: 1.43 1.95 0.00 0.11 0.00 14i;tag?(`ptVi6iis [ 1.43 1.42 33.00 0.28 6.51 1?i?oodeipetvfrtUS': 1.43 0.95 0.00 0.14 0.00 >Fract?vnnperv?aus} 0.12 t2t .:.. ...'.,.,? 41.01 7C.vad.ng 7 09 . ...............?e,p]> Developmegt:.,.,.. 18.38 x .. 2.23 :.:.:.:.:.:.:.:.:.:.:.:.:. 0 39 lria r ° ' . Note: The nutrient loading goals are 3.6 lb/ac/yr for TN. If the post-development nutrient loading is below these levels, then no BMP is necessary. Otherwise, the next worksheet calculates post-development TN and TP loadings after BMPs are installed. IJ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 VI, Composite Drainage Area daps E 1 0 1 u F