Loading...
HomeMy WebLinkAboutSW6200101_PN 69552 CIVIL AFFAIRS TEMF - REPORT JAN2020_1/20/2020     67250:$7(50$1$*(0(173(50,7   'HVLJQ%XLOG 62)&LYLO$IIDLUV7(0) )RUW%UDJJ1RUWK&DUROLQD  5(3257     -DQXDU\ &RQWUDFW:305 31 0 +3URMHFW         :LOPLQJWRQ'LVWULFW  Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - i - TABLE OF CONTENTS SECTION PAGE GENERAL INFORMATION ................................................................................................................ 1 METHODOLOGY ............................................................................................................................ 1 EXISTING CONDITIONS .................................................................................................................. 2 PROPOSED CONDITIONS ............................................................................................................... 3 STORMWATER MANAGEMENT ........................................................................................................ 5 NCDEQ MINIMUM DESIGN CRITERIA FOR BIORETENTION CELLS. ................................................... 7 NCDEQ MINIMUM DESIGN CRITERIA FOR W ET PONDS ................................................................... 9 OUTLET PROTECTION ................................................................................................................. 12 WATER QUALITY ......................................................................................................................... 13 SEDIMENTATION AND EROSION CONTROL .................................................................................... 13 TABLES Table 1 RAINFALL DATA. ....................................................................................................... 2 Table 2 BIORETENTION AREAS PRE-DEVELOPED RUNOFF ....................................................... 4 Table 3 BIORETENTION AREAS POST-DEVELOPED RUNOFF ..................................................... 4 Table 4 95TH PERCENTILE AND 1” FIRST FLUSH BIORETENTION VOLUMES ................................ 6 Table 5 PROVIDED BIORETENTION STORAGE VOLUME ............................................................ 6 Table 6 BIORETENTION SURFACE VOLUME AND AREAS ........................................................... 6 Table 7 WET POND VOLUME REQUIREMENTS ......................................................................... 9 FIGURES Figure 1 NCDEQ SUMMARY OF STORMWATER CALCULATIONS.………………..……………………….…1 Figure 2 BIORETENTION BASIN. ……………………………………………………………………………….7 Figure 3 WET POND CROSS-SECTION VIEW..……………………………………………………………….10 Figure 4 WET POND OUTLET STRUCTURE SECTION. ………………………………………………...…….11 Figure 5 WET POND OUTLET STRUCTURE……………………………...…………………………………….7 APPENDIX Appendix A USGS PROJECT LOCATION MAP ............................................................................ a.1 Appendix B PRE-DEVELOPMENT MAP ....................................................................................... a.2 Appendix C POST-DEVELOPMENT MAP ..................................................................................... a.3 Appendix D EISA 438 CALCULATIONS ...................................................................................... a.4 Appendix E STORMWATER CALCULATIONS…………………………………………….... ................ a.5 Appendix F NRCS CUMBERLAND COUNTY SOIL SURVEY MAP ................................................... a.6 Appendix G SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING REPORT ................. a.7 Appendix H BIORETENTION CELL SUPPLEMENT ......................................................................... a.8 Appendix I WET POND BASIN CALCULATIONS .......................................................................... a.9 Appendix J OUTLET PROTECTION CALCULATIONS ................................................................... a.10 Appendix K TEMPORARY SEDIMENTATION BASIN CALCULATIONS ............................................. a.11 Appendix L TEMPORARY DIVERSION CALCULATIONS ............................................................... a.12 Appendix M ENERGY DISSIPATOR CALCULATIONS.................................................................... a.13 Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 1 of 12 GENERAL INFORMATION The project is located within the Fort Bragg Army Installation. The site is part of the development of Patriot Point, and is located within or near multiple projects either developed or to be developed. The site is currently primarily undeveloped and covered with native vegetation. Limited abandoned access roads, both dirt and asphalt, are within the site construction limits. The site is bound on the north by developed facilities and to the south by Leadership Drive. The eastern boundary of the site is undeveloped. The western boundary is also developed by a newly constructed facility. The project consists of one (1) new Tactical Equipment Maintenance Facility (TEMF) totaling approximately 58,200 SF and associated organizational storage buildings, hazardous material storage buildings and all site work including access drives and concrete hardstand for motor pool storage. Privately owned vehicle (POV) parking is not included in the project. The total disturbed site area within the limits of construction is approximately 24.1 acres. Total site drainage area is approximately 22.3 acres. The site prior to construction is undeveloped, consisting of a combination of open area and sparse vegetation. Vegetation consists primarily of brush, with a limited number of deciduous trees 8 to 12 inches in diameter. Limited asphalt pavement is required to be removed. No existing structures are on- site. The topography slopes generally towards the west, with an elevation range of approximately 15 feet. A large swale crosses the site from east to west conveying existing runoff from adjacent developed sites. Drainage currently flows to an existing 36” headwall, discharging ultimately to an existing storm water storage basin. The soils consists primarily silty sands in the upper 3 to 4 feet with clayey sands and sandy clays beneath. All drainage areas for the project are in the watershed of Bones Creek, Stream Index 18-31-24-2, Classification C: Aquatic Life, Secondary Recreation, Freshwater, in the Cape Fear River Basin. METHODOLOGY Per the North Carolina Department of Environmental Quality (NCDEQ), the approved methods used in stormwater calculations are as shown in Figure 1. Figure 1 - Ref: NCDEQ Stormwater BMP Manual All methodology used to determine both peak flow and storm event volumes follows the guidelines set by the Corp of Engineers Wilmington District and NCDEQ. As the project is a federal project which exceeds 5,000 square feet of footprint, Section 438 of the Energy Independence and Security Act or 2007 (EISA 438) mandates the use of site planning, design, Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 2 of 12 construction, and maintenance strategies for the property to maintain or restore, to the maximum extent technically feasible, the pre-development hydrology of the property. EXISTING CONDITIONS The existing site where the TEMF and associated supporting infrastructure is to be constructed is approximately 29.7 acres within the construction limits. The site, prior to construction, is primarily undeveloped, consisting of a combination of open area, limited vegetation, and wooded. The wooded and vegetated areas consists primarily of deciduous trees 8 to 12 inches in diameter. The topography slopes generally towards the west to an existing 36” headwall, with an elevation range of approximately 15 feet. The stormwater runoff ultimately discharges west of the African Lion Boulevard. The soils consists primarily silty sands in the upper 3 to 4 feet with clayey sands and sandy clays beneath. Due to the sandy nature of the existing soils, most first flush drainage permeates into the ground. For purposed of drainage calculations, the existing site is considered wooded in fair to poor condition (curve number of 66). There are no existing structures on-site, but limited asphalt and dirt service roads are present. An existing drainage swale runs east to west across the site conveying stormwater from developed sites to the east. This runoff will be captured and will bypass the TEMF site via reinforced concrete piping. A Subsurface Exploration Report has been performed by Froehling & Robertson , dated April 12, 2019. This report is included in Appendix G. To calculate storm data, 24hr rainfall data to use for design was provided for by Fort Bragg. The rainfall data used are given in Table 1. For stormwater design, the 10yr event will be used. For temporary erosion control measures during construction, the 2yr event will be used. TABLE 1 RAINFALL DATA STORM EVENT 24HR RAINFALL DATA (IN) 1YR 3.03 2YR 3.67 5YR 4.71 10YR 5.55 25YR 6.74 50YR 7.72 100YR 8.75 WinTR55 Small Watershed Hydrology software, developed for the USDA, was utilized to calculate the peak runoff for both pre-development and post-development runoff. This software has been used in the past for other projects located at Fort Bragg and for NCDEQ, and is an approved method for stormwater calculations. The composite runoff curve number calculations for each area were entered into WinTR55 and the results are shown in the appendix and on the plan drawings. Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 3 of 12 PROPOSED CONDITIONS To better control runoff at the source, and to better calculate stormwater runoff for drainage structures, the developed site is separated into three separate sub-basins. Temporary diversion ditches will be constructed at the onset of construction to divert the onsite water to sediment basins located on the west and south portions of the site in areas where the stormwater basins will ultimately be located. Each of these basins will receive runoff from less than 10 acres. Three stormwater treatment basins shall be constructed to control the post-development stormwater quality and quantity. These three basins consist of one bioretention basin (Bioretention Basin) and two wet pond basins (Wet Pond #1 and Wet Pond #2). The bioretention basin is located to the north west of the site. The Bioretention Basin will receive all of the TEMF rooftop runoff, all rooftop runoff from the Organizational Storage structures A, B, & C, and some hardstand runoff. Wet Pond #1 is located along the western edge of the concrete hardstand. This basin will receive all hardstand (CN of 98) within the vicinity of the basin. To the south of the site, Wet Pond #2, is a large wet pond that will receive a large majority of the concrete hardstand parking (CN of 98). All wet ponds shall have a forebay that will receive the stormwater. The forebay shall be a minimum of 15% of the main basin volume. Sheet flowing the concrete parking hardstand to the wet ponds proved to be the only solution in getting storm water to the ponds. Long piping runs made storm water piping impossible due to less than 0.5% slopes and little to no cover over the pipes. Due to the site sheet flowing towards the south, a concrete channel shall be provided to capture the storm water and route it to the wet pond forebay. Concrete energy dissipation baffles on concrete mats shall be provided to reduce the velocity of the storm water. Rip rap shall be provided at the toe-of-slope of the mats to prevent erosion and any scour that may occur. The wet pond forebay shall have a 30-inch minimum depth with a minimum 12-inch for sediment storage. The main pool depth shall have a 3-foot minimum and 8-foot maximum depth. It shall also have a minimum 12-inch for sediment storage. Storm water runoff from the north will be diverted to the northwestern sediment basin (Temporary Sediment Basin #1). Storm water runoff from the southwestern sector of the site shall drain to the sediment basin along the western edge of the site (Temporary Sediment Basin #2). Storm water runoff from the eastern half of the site shall be diverted to the sediment basin located at the south (Temporary Sediment Basin #3). We will be using the existing service road that runs north to south as a natural diversion dike. Clean water flow from each of the sediment basins will either be routed to the existing outfall pipe which runs west the site or will drained to existing swales. Both will maintain the existing point of discharge. Post construction, each of these sediment basins will be converted to either a bioretention area or wet ponds. The post-developed composite weighted CN calculations for each subbasin used in WinTR-55 as well as post-developed peak flows are shown in the appendix for the pipe networks, in Tables 2 and 3, and on the plan drawings. In general, the existing area is poorly grassed/brush area, which exhibits high rates of runoff. The proposed conditions include a large majority of concrete hardstand and any landscaping areas shall be in the form of sod. The contractor is required to establish 100% groundcover within 1 year of construction. For design of all storm water structures, AutoDesk Civil3D 2017 was utilized. The contributing drainage areas for each structure and basin varies, but since the post-development surface is all hardstand, the minimum time of concentration (Tc) shall be 8 minutes. This results in a “worst case” scenario for the stormwater system, and ensures an adequate design for the 10yr storm event. Pipe sizes were calculated using the software, with minimum pipe sizes directed by UFC 3-201-01 Civil Engineering. The results of the stormwater structure designs are included in the appendices including HGL calculations. Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 4 of 12 TABLE 2 PRE-DEVELOPED COMPOSITE RUNOFF CURVE NUMBER CALCULATIONS AND PEAK FLOW DRAINAGE AREA AREA (AC) WEIGHTED CN Q1 (CFS) Q10 (CFS) Q25 (CFS) Bioretention Area (Basin #1) 5.6 69 5.11 19.14 26.89 Wet Pond #1 (Basin #2) 4.2 69 3.83 14.35 20.16 Wet Pond #2 (Basin #3) 12.5 69 9.65 36.97 51.84 TABLE 3 POST-DEVELOPED COMPOSITE RUNOFF CURVE NUMBER CALCULATIONS AND PEAK FLOW DRAINAGE AREA AREA (AC) WEIGHTED CN Q1 (CFS) Q10 (CFS) Q25 (CFS) Bioretention Area (Basin #1) 5.6 98 14.36 32.42 40.96 Wet Pond #1 (Basin #2) 4.2 92 13.07 26.54 32.84 Wet Pond #2 (Basin #3) 12.5 93 40.19 80.16 98.78 Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 5 of 12 STORMWATER MANAGEMENT As the project is a Federal facility over 5,000 square feet, the stormwater requirements of EISA Section 438 (Title 42, US Code, Section 17094) must be met. In accordance with the Department of Defense memo dated January 19, 2010 entitled DoD Implementation of Storm Water Requirements under Section 438 of the Energy Independence and Security Act (EISA) the designer of record shall implement the procedures for complying with EISA 438 as outlined in the EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act. The EPA Guidance manual prescribes two options to comply with the EISA 438 mandate. Option 1 is to retain and infiltrate the 95th percentile storm event onsite. Option 2 allows site-specific hydrologic analysis to determine the types of stormwater practices necessary to preserve predevelopment runoff conditions. Option 2 is provided for situations where pre-development conditions can be maintained by retaining less than the 95th percentile storm event, or where site-specific parameters dictate a prescriptive methodology be used or Option 1 is not protective enough, for example at the headwater of an impaired stream. For this project, Option 1 was selected for the Bioretention basin (Basin #1). Option 2 was selected for both Wet Pond #1 and Wet Pond #2. To be in compliance with EISA 438, based upon Option 1 of the EPA Technical Guidance document, the total volume of runoff from the 95th percentile storm event must be captured and infiltrated on-site. The method to determine this volume is based upon guidance from the EPA document. To be in compliance with EISA 438, based upon Option 2 of the EPA Technical Guidance document, a site specific hydrologic analysis is used to preserve pre-development runoff conditions. The 95th percentile storm event for the project area is equivalent to 1.8” of rainfall, as provided by the Fort Bragg Installation Design Guide. Criteria used for determination of total stormwater runoff to capture and infiltrate, the following criteria was used: Hydrologic Soil Group B, average Maximum Infiltration Rate of 15 inches per hour or as determined by the percolation testing, Minimum Infiltration Rate of 0.1 inches per hour, a Decay Factor or 2 per hour and Pervious Depression Storage of 0.2 inches. To provide for this storage, a total of three storm water basins (one infiltration area, and two wet ponds) have been designed to help infiltrate and capture the runoff closest to the source. BIORETENTION BASIN The bioretention area consisting of a volume of ponding storage, a section of engineered fill to promote infiltration and sediment removal, and 8-inch perforated pipe encased in crushed stone (see Figure 2). All drainage for the construction portion of the site is routed to an infiltration area. The bioretention areas are designed to infiltrate the 95th percentile storm event as close as practical to the origin of the drainage. All drainage enters the bioretention areas via surface flow, or via stormwater collection pipes with the outlet at the top of the pond area, allowing for sediment to be removed via infiltration. The storage required for the area and the amount of storage provided for infiltration is shown on the plans. Storage is provided in the above ground ponding (maximum 18”) and engineered fill media. The bioretention basin design meets the Minimum Design Criteria (MDC) required for NCDEQ C-2 Bioretention Cell, revised January 19, 2018. To determine the storage volume to meet EISA 438, the Army LID Planning and Cost Tool was compared against what was calculated via the Direct Determination method. The database determines the volume required to be stored and infiltrated onside in order to meet EISA 438. The Army LID Planning and Cost Tool was developed to MILCON standards for projects within the jurisdiction of the Army. As such, the volumes determined using the Army LID Planning and Cost Tool are used for the design of the bioretention basins. Although the database was used to determine volume required, it was not used to design the bioretention areas. See below for the design of the bioretention area. The Army LID Planning and Cost Tool looks as the pre-developed and post-developed areas to calculate the storage volume requirements. WinTR-55 was utilized to calculate pre and post developed composite runoff curve numbers and peak flows for the areas draining to each bioretention area. Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 6 of 12 The pre-developed and post-development composite weighted CN and peak flows for the bioretention area can be found in the appendix. A map of the pre & post development drainage areas can be found in Appendix B & C. In addition, the volume required for the first flush, or 1” rainfall event, as required by NCDEQ was calculated. This would equate to the minimum required volume to store to meet NCDEQ requirements. This volume is required to be stored in a ponding volume. For EISA 438, the volume required was calculated via the Army LID Planning and Cost Tool. DRAINAGE AREA VOLUME REQUIRED EISA 438 (CF) VOLUME REQUIRED NCDEQ (CF) PONDING VOLUME PROVIDED (CF) Bioretention Area (Basin #1) 17,212 9,761 26,276 BIORETENTION AREA PONDING DEPTH PROVIDED (IN) PONDING VOLUME (CF) STORAGE VOLUME IN SOIL (CF) Bioretention Area (Basin #1) 18 26,276 4,805 For all storm events greater than the 95th percentile event, and for other events where the infiltration areas cannot sufficiently handle the storm event, excess runoff is bypassed directly to the outfall area. As the engineered media with water, when the level reaches the bottom of the perforated pipe, drainage enters the pipe and is carried to either the next infiltration area, or to the outfall. In addition, if there is excess ponding due to either the saturation of the engineered fill or a large storm event, water is collected through the grate in the riser structure. This prevents flooding in areas surrounding the bioretention basins as the top of the grate is set at an elevation below the surrounding grade. Although the design of the bioretention areas are not completely compatible with the Bioretention Cell Supplement form provided by NCDEQ, this form has been completed for the drainage areas and included in the appendix. INFILTRATION AREA SURFACE AREA REQUIRED (SF) NCDEQ SURFACE AREA PROVIDED (SF) Bioretention Area (Basin #1) 15,900 16,015 Figure 2 - Bioretention Basin Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 7 of 12 Seasonal high water table (SHWT) depths was determined in conjunction with the geotechnical report. SHWT depths were found to be a minimum of 12’ below grade. As the 95th percentile storm event is being captured and infiltrated on-site and all excess storm drainage is routed to outlet structures with appropriate energy dissipation, this meets LEED 6.1 Stormwater Design Quantity Control requirements. The existing site has less than 50% impervious surface, and the bioretention/infiltration of the 95th percentile storm meets the quantity control requirements. For any underdrains installed within the bioretention area, cleanouts are provided in addition to the riser pipes to facilitate cleanout. It is the user’s desire to utilize sod in lieu of vegetation to facilitate maintenance reduce the risk of floating debris from entering into and clogging the system. No water supply wells are within 100’ of the project site. No surface waters are within 30’ of the project site. No Class SA waters are within 50’ of the project site. NCDEQ Minimum Design Criteria for Bioretention Cells The Minimum Design Criteria (MDC) for bioretention cells for NCDEQ is as described below. These criteria are taken from the NCDEQ Stormwater Design Manual Section C-2. Bioretention Cell Revised 1-10-2018. MDC 1: Separation from the SHWT The lowest point of all bioretention cells are a minimum of 2 feet above the SHWT. Depths to the SHWT are greater than 120” below the surface. MDC 2: Maximum Ponding Depth for Design Volume Ponding depths for the bioretention areas is 18”. MDC 3: Peak Attenuation Volume Each bioretention area is designed to store the required volume to meet EISA 438, which is greater than the first flush volume. At volumes above this storm event, primary outlet structure is placed (18 inches above planting surface). This additional ponding volume would not necessarily be considered to store the peak attenuation volume, however it acts as a measure of safety for the areas and is a maximum of 30” above the planting surface to the emergency spillway. The emergency spillway is designed for the bioretention basin to handle the entire flow from the 100-year storm event in case of failure of the primary outfall and storage within each basin. MDC 4: Underdrain Infiltration testing was done in conjunction with design at each bioretention basin. As the Ksat values attained are less than 2” per hour, underdrains are installed in both basins. At least one underdrain pipe per 1,000 square feet of area is provided, spaced at no greater than 10’. The underdrain pipes are sized to handle the infiltration rate of the engineered soil for the times that the internal water storage zone has reached capacity. Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 8 of 12 MDC 5: Media Depth The bioretention area is a grassed cell without trees and shrubs. The engineered soil media depth in the bioretention area is 30” and include underdrains. MDC 6: Media Mix The planting media consists of 85% sands (by volume), 10% fines (by volume) and 5% organics (by volume). MDC 7: Media P-Index The P-Index for the soil media is 10. MDC 8: No Mechanical Compaction The soil media will not be mechanically compacted. MDC 9: Maintenance of Media An in-lieu of O&M agreement with Fort Bragg DPW has been signed and provided for the bioretention areas. MDC 10: Planting Plan In accordance with the plans and specifications, the grassed cells shall achieve 100 percent cover during the 1 year establishment period. Plants chosen for the cells are in accordance with the Fort Bragg Installation Design Guide. MDC 11: Mulch The bioretention basin will be sodded. Hardwood mulch is not desired or allowed by the user due to maintenance issues. Hardwood mulch tends to float in ponding situations and can clog the overflow structures. MDC 12: Clean-Out Pipes Clean-out pipes are provided in the bioretention area. The cleanouts are PVC pipes with glued clean-out fittings with screw type caps that extend at least 2 feet above the surface of the bed. No flexible pipe is allowed. WET POND The wet ponds shall capture the 10-year design storm and release the runoff slowly over a period of two to five days through an outlet structure. The wet ponds have a forebay that is no less than 15% of main pond volume. The forebay acts as a water quality unit to capture TSS and sediment. The forebay is easier to maintain than the rest of the larger main pond. The design volume requirements for the wet pond is mandated by EISA 438, Option 2. But, the wet pond layout design follows the NCDEQ Wet Pond, C-3, of the North Carolina Department of Environmental Quality. Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 9 of 12 The pre-developed and post-development composite weighted CN and peak flows for each wet pond area can be found in the appendix. A map of the pre & post development drainage areas can be found in Appendix B & C. TABLE 7 WET POND VOLUME REQUIREMENTS INFILTRATION AREA MIN VOLUME REQUIRED (CF) NCDEQ DESIGN VOLUME PROVIDED (CF) MIN FOREBAY VOLUME REQUIRED (CF) Wet Pond #1 (Basin #2) 28,756 35,310 5,297 Wet Pond #2 (Basin #3) 89,090 110,281 16,542 The wet pond design volumes are designed for the 10-year storm event. For any larger storm events, an emergency spillway is provided to prevent flooding in the surrounding areas. Refer to Figures 3, 4 & 5 below. Figure 3 – Wet Pond Cross-Section View Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 10 of 12 Figure 4 – Wet Pond Outlet Structure Section Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 11 of 12 Figure 5 – Wet Pond Outlet Structure MDC 1: Main Pool Surface Area and Volume The design volumes for the wet ponds are calculated using EISA 438, Option 2 which is more stringent than the NCDEQ Hydraulic Retention Time (HRT) Method. All other design criteria and layout of the wet ponds use the design criteria of NCDEQ Stormwater Design Manual, section C-3, Wet Pond. MDC 2: Main Pool Depth The average depth of the wet ponds shall be no less than 3-feet below the permanent pool elevation. MDC 3: Sediment Storage A minimum of 6-inches of depth is provide for the storage of sediment in both the forebay and main pond. MDC 4: Location of Inlets and Outlets Due to the layout of the project site, the pond shapes are long and narrow which naturally maximize the flow path between the inlet and outlet. This is a favorable layout as per the NCDEQ design criteria. MDC 5: Forebay The forebays are designed to capture a minimum of 15% of the main pond volume. The storm water flowing over the structure into the main pond, shall have the velocity reduced using a mat of rip rap. MDC 6: Vegetated Shelf A vegetated shelf of sod is provided adjacent to the wet ponds. MDC 7: Drawdown Time The design volume shall draw down to permanent pool levels between two and five days. MDC 8: Protection of the Receiving Stream Overflow from Basin #2 exists the pond via a storm water pipe that ties into the existing system. Erosion control measures are currently in place at the downstream outlet for this system. Basin #3 will overflow into an existing grassed swale. Outlet protection in the form of rip rap shall be provided to reduce velocity. The grassed swale will provide further water quality prior to the run off entering into the existing storm water piping system. MDC 9: Fountains Fountains are not provided as part of this project scope. MDC 10: Trash Rack A trash rack shall be provided on the outlet structure of both Basin #2 and Basin #3. MDC 11: Vegetation Sodding shall be provided in all disturbed areas adjacent to the pond and shall extend into the pond to provide additional stability for the side slope. Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page 12 of 12 OUTLET PROTECTION All excess stormwater from basins, as well as stormwater routed around the project site, shall have rip rap outlet protection. Basin #1 and Basin #2 will connect directly to the 36” storm conveyance piping running from the east to the west of the site. Outlet protection will be provided in accordance with guidance from Chapter 8.06 Design of Riprap Outlet Protection of the North Carolina Division of Environmental Quality Erosion and Sediment Control Planning and Design Manual for all pipes and headwalls within the project. Calculations for the outlet protection are shown in the appendix. WATER QUALITY To ensure the removal of Total Suspended Solids (TSS), all runoff is directed to the bioretention basin infiltration area via storm collection pipes and sheet flow or sheet flow to a concrete swale for the wet ponds. This includes runoff from all parking areas and roof drainage structures. This makes certain that the storm events up to the 95Th percentile event (and first flush for larger events) will have the runoff filtered through a minimum the vegetative strip and a minimum of 24” of engineered soil. Additionally, in bioretention areas that do not have landscape rock, an 8” rock filter strip is included as recommended by NCDEQ for pretreatment at bioretention basins. In addition, a non-woven geotextile fabric is placed above both the gravel section of the bioretention basin and the perforated collection pipe to keep sediment and other fines from infiltrating the storage area. It is generally accepted that bioretention basins of this type will remove between 80-90% of TSS along with the removal of heavy metals. This design has previously been used on projects at Fort Bragg and has been approved by NCDEQ for TSS removal requirements. This method will also meet LEED 6.2 Stormwater Quality Control requirements. The wet ponds will utilize forebays to meet water quality criteria as per NCDEQ. EROSION AND SEDIMENTATION CONTROL Separate erosion and sedimentation control during construction plans have been developed for submittal to NCDEQ for permit requirements. The permit, CUMBE-2019-068, has not yet been submitted. Calculations used for sizing skimmer sedimentation basins are included with this report. Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.1 - APPENDIX A USGS PROJECT LOCATION MAP NC Surface Water Classification Copyright:© 2013 National Geographic Society, i-cubed Surface Water Classifications River Basins CPF 5/22/2019, 2:43:00 PM 0 0.65 1.30.33 mi 0 1 20.5 km 1:36,112 NCDENR Div. Water Resources NCDENR - Division of Water Resources | Copyright:© 2013 National Geographic Society, i-cubed | Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.2 - APPENDIX B PRE-DEVELOPMENT MAP ELEV.=246.5' BH-3 ELEV.=247.4' BH-4 ELEV.=245.5' BH-2 ELEV.=247.6' BH-5 ELEV.=247.6' BH-8 ELEV.=239.5' BH-16 ELEV.=250.5' BH-6 ELEV.=247.3' BH-13 ELEV.=246.6' BH-1 ELEV.=244.6' BH-2 ELEV.=244.8' BH-1 ELEV.=237.1' BH-14 ELEV.=243.8' BH-7 ELEV.=242.8' BH-12 ELEV.=244.0' BH-17 ELEV.=241.5' BH-1524" RCP18" RCPASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT WV CONC CONC CONC CONC (102") WALL BRICK TOP=246.58' TMH WV WV FH WV MARKER GAS PAD CONC CHILLERHOT BOX HOT BOX MARKER GAS FH WV TOP=250.25' TMH HOT BOX CHILLERCHILLERBOX HOT CONC BOL BOL BOL BOL BOL (96" HIGH) 12" BLOCK WALL BOL (2) CONCGATEBOL (2) WV FH FH WV WM U/G STEAM LINES (2) O/H STEAM LINES (2) GV O/H STEAM LINES (2) BOX HOT ASPHALTBOLBOL BOLBOL BOL BOL BOL BOL TOP=251.19' TMH BOL 247.53' TOP= TMH 15" RCPDRIVE ROCK ELEV.=249.9' BH-10 ELEV.=246.2 BH-11 TPED TPED CONC CONC CONC CONC ASPHALT15" RCPELEV.=250.6 BH-9 224 225225 225 226226226S P HH 227227 227227 228228 228228 INV.=229.24' 42" RCP 229229 229229P 230230 230230 RAP RIP 15" RCP15" RCP INV.=230.37'INV.=228.44' INV.=231.70' INV.=230.88' INV.=232.92' INV.=225.70' (E) INV.=225.68' (W) INV.=232.30' (N) INV.=232.70' (E) INV.=230.36' (S) INV.=233.91' (E) INV.=230.34' (N) INV.=231.40' (SE) INV.=231.35' (NW) INV.=232.26' (S) INV.=231.89' (NW) INV.=232.65' (S) INV.=232.40' (N) INV.=233.20' (S) INV.=233.08' (N) INV.=233.57' (N) INV.=232.10' (W) INV.=231.95' (E) INV.=229.39' (N) INV.=229.10' (SW) 24" RCP RCP 36" 24" RCPTOP=233.29' TOP=238.89' TOP=240.20' TOP=237.40' TOP=236.32' TOP=236.85' TOP=236.45' TOP=236.81' TOP=242.93' TOP=243.10' FES RAP RIP RAP RIP RAP RIP RAP RIP CONC HW CONC HW OFF-SITE OFF-SITE OFF-SITE RAP RIP RAP RIP RAP RIP 6" CPP231 23123 1 231232 232 2 32 232233 233 233233 233 23336" RCP 36" RCP 36" RCP S 234234 234234234234234234 234 P 235235 235 235 235235235235235235236236236 236236 236 236 2362362362362 3 6236P 237237237 237237237 237237 237237 2 3 7 237237 237237 237 23723723723723724" RCPS 24" RCP 238238238238238238238238 238 238 2382382 3 8 238238 238 238238 238 238238238 23823823823823842" RCP36" RCPS GATE 72" CHLK GRAVEL GRAVEL72" CHLK72" CHLK72" CHLK72" CHLK72" CHLK72" CHLK2 3 9 239239239239239239239239 239 239 239 2392392392392392392 3 9 2 3 9 239 239 239 2392392392 3 9 239239239239239239 GATE BOL BOL (10)GATE 18" RCP 239.872402402402402402402402402 4 0 240 240 240 240240240240 240240240240240240240240240240240240240 240 240 240 240240240 240240240240S 15" RCPHHHH RCP 18" 241241 2412 4 1 2412 4 1 2 4 1 241 241 241 241 241241241 241241241241241241241241241241241241 241 241 241 241241241241241241 241 241 241241241241 241241241241241241241241241241241241241 2412412412412 41 241 241241241241241241241241241241241 241 241241241241P P CONC DITCH CONC DITCH CONC DITCH CONC DITCH2422422422422422 4 2242 242 242 242242 242 242 242 2422422422422422422422422422422422 4 2 242242 242 242 242 242 242242242242242242242242242242 242 242 242242242242 242242242242242242242242242 242242 242242242242242242242242242242242242242 242242 24218" RCP15" RCP S15" RCP 243243243243243243243243243243 243 243 2 4 3 2 43 243 243 243243243243243243243243243243243243243243243 243243 243 2 43 243 243 243 243 243243243243243243243243243 243 2 43243243 243243243243 243243243243243243243243243243243243 243243243243 243243243243243243243243 243243S ASPHALTHH P244244244 244 244244 244 244 244 244244244244244244244244244244244244244244244 244244244 244 244 244 244 244 244244244244244 244244244 244 2 4 4244244244244244244 244244244244244244244244244244244244244 244244244244 244244244244 244 244 244 244244244244 24424415" RCP6" CPP6" CPPINV.=240.72' INV.=240.57'INV.=237.81' INV.=237.98' PES PES PES PESPESPES 15 " RCP 15" RCPP 6" PVC6" PVC245245 245245245245245245 245245245245245245245 245 245 2 4 5 245 245 24 5 245 245 245245245245245245245245245245 245245245245245245245 245245 245245245 245245245245245245245245245 245245245245245 245245245245 245245245245245 ASPHALT ASPHALT ASPHALTASPHALTASPHALTASPHALTASPHALTASPHALTT 15" RCP 24624624624624 6246246246246246246246246246246246246246246246246246246246246 246 246 246246246246246246246246 246246246 246246 246 246246246246246246246246 24624624615" RCP S 15" CPP T 14103 246.77 14098 246.77 14102 246.83 14099 246.84 S 2472472472472 4 7 2 4 7 247247247247247247247247 24 72472 47 247 247247247247247247247 247247 247247247 247247247247247247247 247 247247247247247247247 247 247247 247 247 247247 14101 247.07 14100 247.09 HH S 8" PVC W W P T18" RCPCPP 18" 15" CPPS 248 248 248 248248248248248248248248248 248248248248248 24824824824824814097 248.20 14096 248.43 T 249 249249 249249249 249 249249249249249 249249 18" RCP 14095 249.21 S S 14094 249.89250250250250 250 250250250 250250250250250250 14092 250.03 14093 250.06 T W 251 251251251251251251 251251 T P 14420 251.92 25214419 252.13 RCP18" S 14418 253.21 14415 253.75 14417 253.77 14416 254.00 CONC SW MOUNTAIN VIPER DRIVEMOUNTAIN VIPER DRIVEMOUNTAIN VIPER DRIVE INV.=214.81' FH WV WV GV FH WV FH WVWV WV WV PIV WV WMV WV WV WV WV WV WV PIVWV WV WVWV WV FH WMV TOP=247.09' TEL HH WV WV PIV WMV WV FH WV WV WV WV FH PIV WV WV WV WV WV FH CB TOP=224.25' INV.=217.90' (SE) 2 4 " RCPDI DI DI DI DI 28"x44" RCP 28"x44" RCP TOP=226.11'INV.=214.82' TOP=224.30' INV.=217.59' (NW) DI 24" RCPINV.=217.59' (S)24" RCPLVL B DUCT BANK EMPTY COMM LVL B DUCT BANK EMPTY COMM DUCT BANK LVL B EMPTY COMM DUCT BANK LVL B EMPTY COMM DUCT BANK LVL B EMPTY COMMDUCT BANK LVL B EMPTY COMM DUCT BANK LVL B EMPTY COMM DUCT BANK LVL C EMPTY COMM DUCT BANK LVL B EMPTY COMM LVL B DUCT BANK EMPTY COMM FH WV UKN UKN RAP RIP BLDG WD CONCCONCCONCCONCCONCCONC FITNESS AREA PILE DEBRIS FENCE (ABANDONED)FENCE (ABANDONED)PILE DEBRIS PILE DEBRIS PP GUY PP PP GUY GRAVEL GAZEBO TRAINING AREA 95TH COUNTER IED (APPROXIMATE LOCATION, NO ACCESS) UNDER STORAGE CONTAINER POSSIBLE DI PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS PINE WOODS GRAVEL 8" PVC UKN UKN 15" RCPFES FES INV.=244.05' FES INV.=244.13' DRAIN TRENCH DRAIN TRENCH DRAIN TRENCH INV.=246.44' DIRECTION ONLY DRAIN TRENCH 6" PP 6" PP INV.=246.58' DIRECTION ONLY INV.=244.14' FES INV.=239.77' FES 238.85' INV.= 238.40' INV.= WW HW WW 24" RCPWW HW WW FES INV.=241.14' WW WW HW INV.=242.44' FES INV.=242.98' TOP=246.51' INV.=236.96' (E) INV.=236.96' (W) INV.=240.28' TOP=247.73' BOX JUNCTION TOP=246.93' INV.=239.59' TOP=242.56' INV.=235.94' (E) INV.=235.66' (W) TOP=252.44' INV.=242.99' (SW) OFF-SITE TOP=250.31' DI15" RCP INV.=242.11' (W) TOP=250.06' DI INV.=240.17' (E) 15" RCP INV.=240.11' (W) TOP=250.14' DI INV.=237.89' (E) INV.=237.76' (W) 18" RCP TOP=249.36' INV.=236.82' (W) INV.=236.94' (E) 18" RCP TOP=246.49' DI INV.=235.86' (E) INV.=235.83' (W)24" RCP TOP=246.45' DI INV.=234.05' (E) INV.=233.52' (W) 24" RCP TOP=246.41' DI INV.=231.99' (E) INV.=231.68' (W) 24" RCP TOP=249.33' INV.=242.14' (NE) INV.=242.08' (SW) TOP=247.15' INV.=241.33' (NE) INV.=241.26' (S) INV.=240.57' (S) OUTFALL STRUCTURE INV.=240.09' (SW) INV.=244.23' (NE) INV.=244.22' (S) INV.=244.24' (E) 8" PVC ONLY DIRECTION DI INV.=244.49' (N) INV.=244.36' (E) DI TOP=246.62' TOP=246.78' ONLY DIRECTION INV.=244.54' (S) INV.=244.58' (E) DI TOP=246.80' 8" PVC ONLY DIRECTION 8" PVC ONLY DIRECTION INV.=244.45' (E) INV.=244.38' (N) DI TOP=246.78' INV.=244.42' (S) STRUCTURE OUTFALL FES INV.=240.89' INV.=240.01' (NW) INV.=241.15' (SE)END NOT FOUNDINV.=237.95' (W) INV.=240.11' (N) INV.=238.05' (E) 243.93' INV.= UKN UKN UKN U.S. ARMY CORPS OF ENGINEERSSCAT_CG750.dgnANSI DCHECKED BY:DRAWN BY:ISSUE DATE:SHEET ID FILENAME:B C D E F G 2 3 4 5 6 7 8 9 10 DESIGNED BY:1 A MARKSIZE:SUBMITTED BY:DATECONTRACT NO.:®of Engineers US Army Corps CATEGORY CODEDESCRIPTIONP:\Projects\017101\03 CAD_BIM\_Sheets\05_Civil\SCAT_CG750.dgn04-SEP-201908:12 XXX-XX-XXR. BOSTONW912PM-19-C-000869 DARLINGTON AVENUEWILMINGTON DISTRICTWILMINGTON, NORTH CAROLINAFORT BRAGG, NORTH CAROLINASPECIAL OPERATIONS FORCES (SOF)FY 18 / PN 69552CIVIL AFFAIRS TEMFAUGUST 2019VOLUME 1 ISSUED FOR CONSTRUCTION TO THE NORTH OF THE PROJECT. CONTROL FROM DEVELOPMENT FROM STORM WATER QUANTITY RUNOFF INCLUDES OVERFLOW SITE VIA STORM WATER PIPE. WILL BYPASS THE PROJECT OFFSITE RUNOFF THAT TO THE EAST OF THE PROJECT. CONTROL FROM DEVELOPMENT FROM STORM WATER QUANTITY RUNOFF INCLUDES OVERFLOW SITE VIA STORM WATER PIPE. WILL BYPASS THE PROJECT OFFSITE RUNOFF THAT TO THE EAST OF THE PROJECT. CONTROL FROM DEVELOPMENT FROM STORM WATER QUANTITY RUNOFF INCLUDES OVERFLOW SITE VIA STORM WATER PIPE. WILL BYPASS THE PROJECT OFFSITE RUNOFF THAT DRAINAGE AREA = 23.4 Ac TOTAL APPROXIMATE LANE TO THE EAST. NORTH BOUND BY CHAOS NEW DAWN DRIVE TO THE DRIVE TO THE SOUTH TO NORTH, MOUNTAIN VIPER THE PARKING LOT TO THE DRAINAGE AREA INCLUDES SITE VIA STORM WATER PIPE. WILL BYPASS THE PROJECT OFFSITE RUN-OFF THAT PRE-DEVELOPMENT Q100= 133.3 Q25 = 86.1 Q10 = 59.9 Q2 = 23.6 Q1 = 13.4 PEAK FLOW (CFS) TOC = 15 MIN WEIGHTED CN: 66 HYDROLOGIC SOIL GROUP B DRAINAGE AREA = 22.9 Ac CG750S.HAGGARDS.CURRYM.MAYERN GEOGRAPHIC COORDINATE DATA HORIZONTAL DATUM: NORTH CAROLINA STATE PLANE, NAD83. VERTICAL DATUM: NAVD88. UNITS OF MEASURE: U.S. SURVEY FEET. COORDINATES SHOWN IN FORMAT OF EASTING, NORTHING AND ELEVATION. GRAPHIC SCALE: 1"=80'-0" 240'160'80'040'80'PRE DEVELOPED HYDROLOGYPRE DEVELOPED HYDROLOGY Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.3 - APPENDIX C POST-DEVELOPMENT MAP ELEV.=244.6' BH-2 ELEV.=244.8' BH-1 ELEV.=244.0' BH-1724" RCP18" RCPASPHALT ASPHALT ASPHALT ASPHALT ASPHALT ASPHALT WV CONC CONC CONC CONC (102") WALL BRICK TOP=246.58' TMH WV WV FH WV MARKER GAS PAD CONC CHILLERHOT BOX HOT BOX MARKER GAS FH WV TOP=250.25' TMH HOT BOX CHILLERCHILLERBOX HOT CONC BOL BOL BOL BOL BOL (96" HIGH) 12" BLOCK WALL BOL (2) CONC GATEBOL (2) WV FH FH WV WM U/G STEAM LINES (2) O/H STEAM LINES (2) GV O/H STEAM LINES (2) BOX HOT BOLBOL BOLBOL BOL BOL BOL BOL TOP=251.19' TMH BOL 247.53' TOP= TMH 15" RCPTPED TPED CONC CONC CONC CONC 15" RCP224 S 225225 225 226226226S P HH 227227 227227 228228 228228 INV.=229.24' 42" RCP 229229 229229P 230230 230230 RAP RIP 15" RCP15" RCP INV.=230.37'INV.=228.44' INV.=231.70' INV.=230.88' INV.=234.99' (N) INV.=234.93' (S) INV.=225.70' (E) INV.=225.68' (W) INV.=237.44' (S) INV.=237.70' (W) INV.=237.84' (N) INV.=239.17' (E) INV.=232.30' (N) INV.=232.70' (E) INV.=235.53' (N) INV.=235.38' (S) INV.=235.77' (S) INV.=235.85' (NW) INV.=230.36' (S) INV.=233.91' (E) INV.=230.34' (N) INV.=236.52' (N) INV.=236.50' (SE) INV.=231.40' (SE) INV.=231.35' (NW) INV.=233.52' (S) INV.=233.79' (NW) INV.=232.26' (S) INV.=231.89' (NW) INV.=232.65' (S) INV.=232.40' (N) INV.=233.20' (S) INV.=233.08' (N) INV.=233.57' (N) INV.=232.10' (W) INV.=231.95' (E) INV.=229.39' (N) INV.=229.10' (SW) 24" RCP 24" RCPTOP=240.38' TOP=233.29' TOP=243.04' TOP=225.88' TOP OF PIPE=220.29' (S) TOP=238.89' TOP=240.84' TOP=240.94' TOP=240.20' TOP=241.68' TOP=237.40' TOP=236.43' TOP=236.32' TOP=236.85' TOP=236.45' TOP=236.81' TOP=242.93' TOP=243.10' FES RAP RIP CONC HW OFF-SITE OFF-SITE OFF-SITE OFF-SITE OFF-SITE OFF-SITE OFF-SITE 6" CPP10" PVC (0D)231 231 23 1231232 23223 2 232233 233 233233 233 23336" RCP 36" RCP 36" RCP S 234234 234234234234234234 234 P 235235 235 235 235235235235235235236236236 236236 236 236 23623623623623 6 236P OFF-SITE 237237237 237237237 237237 237237 2 37 237237 237237 237 23723723723723724" RCPS 24" RCP 238238238238238238238238 238 238 2382382 3 8 238238 23 8 238238 23823823823 8 23823823823823836" RCPS 72" CHLK72" CHLK72" CHLK72" CHLK72" CHLK72" CHLK2 3 9 239239239239239239239239 239 239 239 239239239239239239 2 3 9 2 3 9 239 239 239 2392392392 3 9 239239239239239239 GATE BOL BOL (10)GATE 18" RCP 239.87 2 40 240240240240240 2402402 4 0 240 240 240 240240240240 240240240240240240240240240240240240240 240 240 240 240240240 240240240240S HHHH RCP 18" 24124 1 241241 2412 4 1 2 4 1 241 241 241 241 241241241 241241241241241241241241241241241241 241 241 241 241241241241241241 241 241 241241241241 241241241241241241241241241241241241241 241241241241241 241 241241241241241241241241241241241 2 4 1 241241241241P P CONC DITCH242242242242242242 242 242 24 2 2422 4 2 242 242 242 2422422422422422422422422422422422 4 2 242242 242 242 242 242 242242242242242242242242242242 242 242 24224224224 2 2422422422422422422422422 4 2 242242 242242242242242242242242242242242242242 242242 242 243243243243243243243243243243 243 24 3 2 4 3 24 3 243 243 243243243243243243243243243243243243243243243 24324 3 243 243 243 243 243 243 2432432 43243243243 243243243 243 24 3243243 243243243243 24324324324324324324324324324324 3243 243243243243 243243243243243243243243 243243S HH P244244244 244 24424 4 2 44 24 4 244 244244244244244244244244244244244244244244244 244244244 244 24 4 244 244 244 244244244244244 244244244 244 244244244 244244244244 244244244244244244244244244244244244244 244244244244 244244244244 244 244 244 244244244244 24424415" RCP6" CPP6" CPPINV.=240.72' INV.=240.57'INV.=237.81' INV.=237.98' PES PES PES PESPESPES 1 5 " RCP 15" RCPP 6" PVC6" PVC245245 245245245245245245 2452452452452452452 4 5 245 245 2 4 5 245 24 5 2 4 5 245 245 245245245245245245245245245245 245245245245245245245 245245 245245245 245245245245245245245245245 245245245245245 245245245245 245245245245245 T 24624624624624 6246246246246246246246246246246246246246246246246246246246246 246 246 246246246246246246246246 246246246 246246 24 6 24624624 6246246246246246 24624624615" CPP T 2472472472472 4 7 2 4 7 247247247247247247247247 24 7 247247 247 2472472472472472472 4 7 247247 24724724 7 247247247247247247247 247 247247247247247247247 247 247247 247 247 247247 HH S 8" PVC W W P T18" RCPCPP 18 " 15" CPPS 24 8 24 8 2 4 8 248248248248248248248248248 248248248248248 248248248248248T 249 249249 249249249 249249 249249249249 249249 18" RCP S S 250250 25025 0 250 250250250 250250250250250250 T W 251 2512512512512512 5 1 251251 T P 252RCP18" S CONC SW MOUNTAIN VIPER DRIVEMOUNTAIN VIPER DRIVEMOUNTAIN VIPER DRIVE INV.=214.81' FH WV WV GV FH WV FH WVWV WV WV PIV WV WMV WV WV WV WV WV WV PIVWV WV WV WV WV FH WMV TOP=247.09' TEL HH WV WV PIV WMV WV FH WV WV WV WV FH PIV WV WV WV WV WV FH TOP=247.23' INV.=241.32' (S)OFF-SITE OFF-SITE CB TOP=224.25' INV.=217.90' (SE) 2 4 " RCPTOP=241.84' INV.=234.08' (N) INV.=234.08' (S) TOP=237.00' INV.=233.89' (W) INV.=232.06' (N) INV.=232.05' (S) TOP=242.31' INV.=230.10' (W) INV.=230.04' (N) INV.=229.83' (S) TOP=238.12' INV.=231.01' (N) INV.=230.88' (E) AND DEBRIS) FULL OF WATER (NO INFO - TOP=237.44' DI DI DI DI DI 28"x44" RCP 28"x44" RCP TOP=226.11'INV.=214.82' TOP=238.28' INV.=228.36' (N) INV.=228.32' (E) TOP=244.48' INV.=231.44' (W) INV.=231.51' (E) TOP=241.33' INV.=227.83' (W) INV.=228.18' (E) INV.=227.77' (S)TOP=246.27' INV.=238.38' (N) INV.=235.32' (W) TOP=224.30' INV.=217.59' (NW) DI 24" RCPINV.=217.59' (S) TOP=224.98'24" RCPINV.=213.87' (N) (STRUCTURE FULL OF WATER) LVL B DUCT BANK EMPTY COMM LVL B DUCT BANK EMPTY COMM DUCT BANK LVL B EMPTY COMM DUCT BANK LVL B EMPTY COMM DUCT BANK LVL B EMPTY COMMDUCT BANK LVL B EMPTY COMM DUCT BANK LVL B EMPTY COMM DUCT BANK LVL C EMPTY COMM DUCT BANK LVL B EMPTY COMM LVL B DUCT BANK EMPTY COMM FH WV UKN UKN RAP RIP BLDG WD CONCCONCCONCCONCCONCCONC FITNESS AREA (APPROXIMATE LOCATION, NO ACCESS) UNDER STORAGE CONTAINER POSSIBLE DI 8" PVC UKN UKN 15" RCPFES FES INV.=244.05' FES INV.=244.13' DRAIN TRENCH DRAIN TRENCH DRAIN TRENCH INV.=246.44' DIRECTION ONLY DRAIN TRENCH 6" PP 6" PP INV.=246.58' DIRECTION ONLY INV.=244.14' FES INV.=239.77' FES 24" RCPWW HW WW FES INV.=241.14' TOP=246.51' INV.=236.96' (E) INV.=236.96' (W) INV.=240.28' TOP=247.73' BOX JUNCTION TOP=252.44' INV.=242.99' (SW) OFF-SITE TOP=250.31' DI15" RCP INV.=242.11' (W) TOP=250.06' DI INV.=240.17' (E) 15" RCP INV.=240.11' (W) TOP=250.14' DI INV.=237.89' (E) INV.=237.76' (W) 18" RCP TOP=249.36' INV.=236.82' (W) INV.=236.94' (E) 18" RCP TOP=246.49' DI INV.=235.86' (E) INV.=235.83' (W)24" RCP TOP=246.45' DI INV.=234.05' (E) INV.=233.52' (W) 24" RCP TOP=246.41' DI INV.=231.99' (E) INV.=231.68' (W) 24" RCP TOP=249.33' INV.=242.14' (NE) INV.=242.08' (SW) TOP=247.15' INV.=241.33' (NE) INV.=241.26' (S) INV.=240.57' (S) OUTFALL STRUCTURE INV.=240.09' (SW) INV.=244.23' (NE) INV.=244.22' (S) INV.=244.24' (E) 8" PVC ONLY DIRECTION DI INV.=244.49' (N) INV.=244.36' (E) DI TOP=246.62' TOP=246.78' ONLY DIRECTION INV.=244.54' (S) INV.=244.58' (E) DI TOP=246.80' 8" PVC ONLY DIRECTION 8" PVC ONLY DIRECTION INV.=244.45' (E) INV.=244.38' (N) DI TOP=246.78' INV.=244.42' (S) STRUCTURE OUTFALL FES INV.=240.89' INV.=240.01' (NW) INV.=241.15' (SE)END NOT FOUNDINV.=237.95' (W) INV.=240.11' (N) INV.=238.05' (E) 243.93' INV.= UKN UKN UKN U.S. ARMY CORPS OF ENGINEERSSCAT_CG751.dgnANSI DCHECKED BY:DRAWN BY:ISSUE DATE:SHEET ID FILENAME:B C D E F G 2 3 4 5 6 7 8 9 10 DESIGNED BY:1 A MARKSIZE:SUBMITTED BY:DATECONTRACT NO.:®of Engineers US Army Corps CATEGORY CODEDESCRIPTIONP:\Projects\017101\03 CAD_BIM\_Sheets\05_Civil\SCAT_CG751.dgn04-SEP-201914:34 XXX-XX-XXR. BOSTONW912PM-19-C-000869 DARLINGTON AVENUEWILMINGTON DISTRICTWILMINGTON, NORTH CAROLINAFORT BRAGG, NORTH CAROLINASPECIAL OPERATIONS FORCES (SOF)FY 18 / PN 69552CIVIL AFFAIRS TEMFAUGUST 2019VOLUME 1 ISSUED FOR CONSTRUCTION STORM WATER TREATMENT BASIN DEADLINE PARKING STORM WATER TREATMENT BASINFF EL 247.00 CIVIL AFFAIRS TEMF FF EL 247.00 CIVIL AFFAIRS TEMF FF EL 246.25 ORG STORAGE "B" FF EL 247.00 ORG STORAGE "C"FF EL 247.00ORG STORAGE "D"TREATMENT BASIN STORM WATER HAZ STORAGE FF EL 244.75 POL STORAGE FF EL 245.75ORG STORAGE "A"FF EL 246.25BIO RETENTION BASINGI-4 GI-5 SDMH-4 SDMH-5 SDMH-3 SDMH-2SDMH-1 GI-1 GI-2 GI-6 HW-4 CO COCO CO COCO CO SDMH-8 SDMH-9 RD RD RDRDRD RD RD RD RD RD RD RD RD RD RDRDRDRD DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DSDSDSDSDSDS DS DS DS DSDSDSDSDSDSDSDS 18"24" 15"15"15"15"18" SDMH-6 SDMH-12 RDRD SDMH-7 CB-8 AD-1 AD-2 AD-4 AD-5 AD-6 AD-8 HW-5 HW-6 HW-7 HW-8 36"36"36" 36" 6" 6"10"6" 6"12"6"12"10" 6" 12"15"15"36"36"3 6 " HW-3 SDMH-11 CB-1 CB-2 CB-5 CB-6 CB-7 24" 24" 18" 18"24"36" CO CO CO CO COCO CO CO CO CO CO RD AD-3 AD-7 CB-3 CB-4 24" 30" SDMH-10 30" SDMH-13 SDMH-14 SDMH-16 SDMH-15 10" RD12"12"10"6" RD 12"10"10"RD RD 6"6"12"6"10" RD RD 12"15"6"6"10" 10" 12" CO CO CO CO CO CO RD RD RD RD RD CO CO CO CO CO CO CORDRDRDRDRDRDRDRD6"6"6"6"6"6"6"12"12"12"12"10" RD RDRDRDRDRD 6"6"6"10"12"10"10"12"12"12"12"15"RDRDRD RD RD RD RD RD RD RD RD RD 6"10"10"10"10"6"6"6"12"12"12"RDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRD6"6"10"10"12"12"15"15"15"15"15"15"15"15"RDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDRDCO CO CO 6"6"10"10"12"12"15"15"15"15"15"15"15"15"15"18"18"18"SDMH-17 SDMH-18 SDMH-22 SDMH-21 SDMH-20 SDMH-23 SDMH-24 SDMH-25 SDMH-19 CO CO HW-1 CO CO COCO CO CO CO CO CO 1 2" + CO CO GI-318"24"24"8" PERF.8" PERF.30" 24" HW-9 233.5233.5 233.5 234.5 235 235235235235235 235 235236.5236.5238238238240240240240240240240240240240240240 240 240 240240240240240 24"243242 2428" PERF.8" PERF.8" PERF.8" PERF.8" PERF.8" PERF.8" PERF.243 243 243243 243 243 243 24 3 243 243243243 243 245 244 244244 24 4 244 244 245 245 245245245245 245245245 245 24 5 245 246 246246 246 246 2 4 6 246 246 246 246 246246246246246246 247 247 247248250249250POST-DEVELOPMENT BASIN #2BASIN #1BASIN #3 Q100 = 130.0 Q25 = 98.8 Q10 = 80.2 Q2 = 50.4 Q1 = 40.2 PEAK FLOW (CFS) TOC = 8 MIN WEIGHTED CN: 93 DRAINAGE AREA = 12.6 STORMWATER BASIN #3 Q100 = 43.4 Q25 = 32.8 Q10 = 26.5 Q2 = 16.5 Q1 = 13.1 PEAK FLOW (CFS) TOC = 8 MIN WEIGHTED CN: 92 DRAINAGE AREA = 4.2 STORMWATER BASIN #2 Q100 = 53.9 Q25 = 40.5 Q10 = 32.4 Q2 = 19.7 Q1 = 15.3 PEAK FLOW (CFS) TOC = 8 MIN WEIGHTED CN: 90 DRAINAGE AREA = 5.6 STORMWATER BASIN #1 HYDROLOGIC SOIL GROUP B TOTAL DRAINAGE AREA = 22.4 Ac CG751S.HAGGARDS.CURRYM.MAYERN GEOGRAPHIC COORDINATE DATA HORIZONTAL DATUM: NORTH CAROLINA STATE PLANE, NAD83. VERTICAL DATUM: NAVD88. UNITS OF MEASURE: U.S. SURVEY FEET. COORDINATES SHOWN IN FORMAT OF EASTING, NORTHING AND ELEVATION. GRAPHIC SCALE: 1"=80'-0" 240'160'80'040'80'POST DEVELOPED HYDROLOGY Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.4 - APPENDIX D EISA 438 CALCULATIONS Army LID Planning and Cost Tool Report Date 5/21/2019 Army Installation Fort Bragg Master Planner Project name Ft Bragg Civil Affairs TEMF Ba Project description Civil Affairs TEMF Basin #1 Project limit of disturbance (ac) 5.6 95% rainfall depth (in)1.8 Soil type Sandy-Loam Hydrologic Soil Group (HSG) B Pre-project curve number (CN) 66 Post-project curve number (CN)91 User Name Scurry PROJECT INFO SITE INFO AND EISA VOLUME REQUIREMENT Pre-project runoff volume (cf)2034 Post-project runoff volume (cf) 20138 LID PLANNING SUMMARY Bioretention: 22300 Swale: Permeable Pavement: Rainwater Harvesting: Green Roof: Infiltration Practice: Veg. Filter Strip (Slope >2%, Short Grass): 0.00 Veg. Filter Strip (Slope >2%, Tall Grass):0.00 Veg. Filter Strip (Slope <2%, Short Grass):0.00 Veg. Filter Strip (Slope <2%, Tall Grass): 0.00 Reforestation (Trees - Short Grass): 0.00 Reforestation (Trees - Shrubs and Tall Grass):0.00 Structural BMP Non-structural BMP Surface area (ac) Surface area (sf) Runoff volume retained (cf) 18106 0 0 0 0 0 Total retention volume provided by BMPs (cf):18106 EISA Section 438 retention volume requirement (cf) 18105 LID COST SUMMARY Project complies with EISA Section 438. Army Command IMCOM Army LID Planning and Cost Tool Report Date 5/21/2019 Army Installation Fort Bragg Master Planner Project name Ft Bragg Civil Affairs TEMF Ba Project description Civil Affairs TEMF Basin #2 Project limit of disturbance (ac) 4.2 95% rainfall depth (in)1.8 Soil type Sandy-Loam Hydrologic Soil Group (HSG) B Pre-project curve number (CN) 66 Post-project curve number (CN)92 User Name Scurry PROJECT INFO SITE INFO AND EISA VOLUME REQUIREMENT Pre-project runoff volume (cf)1525 Post-project runoff volume (cf) 16153 LID PLANNING SUMMARY Bioretention: 18250 Swale: Permeable Pavement: Rainwater Harvesting: Green Roof: Infiltration Practice: Veg. Filter Strip (Slope >2%, Short Grass): 0.00 Veg. Filter Strip (Slope >2%, Tall Grass):0.00 Veg. Filter Strip (Slope <2%, Short Grass):0.00 Veg. Filter Strip (Slope <2%, Tall Grass): 0.00 Reforestation (Trees - Short Grass): 0.00 Reforestation (Trees - Shrubs and Tall Grass):0.00 Structural BMP Non-structural BMP Surface area (ac) Surface area (sf) Runoff volume retained (cf) 14817 0 0 0 0 0 Total retention volume provided by BMPs (cf):14817 EISA Section 438 retention volume requirement (cf) 14628 LID COST SUMMARY Project complies with EISA Section 438. Army Command IMCOM Army LID Planning and Cost Tool Report Date 10/7/2019 Army Installation Fort Bragg Master Planner Project name Ft Bragg TEMF Wet Pond #2 Project description Ft Bragg Civil Affairs TEMF Wet Pond #2 Project limit of disturbance (ac) 12.5 95% rainfall depth (in)1.8 Soil type Sandy-Loam Hydrologic Soil Group (HSG) B Pre-project curve number (CN) 69 Post-project curve number (CN)93 User Name Stephen Curry PROJECT INFO SITE INFO AND EISA VOLUME REQUIREMENT Pre-project runoff volume (cf)6836 Post-project runoff volume (cf) 51393 LID PLANNING SUMMARY Bioretention: 55000 Swale: Permeable Pavement: Rainwater Harvesting: Green Roof: Infiltration Practice: Veg. Filter Strip (Slope >2%, Short Grass): 0.00 Veg. Filter Strip (Slope >2%, Tall Grass):0.00 Veg. Filter Strip (Slope <2%, Short Grass):0.00 Veg. Filter Strip (Slope <2%, Tall Grass): 0.00 Reforestation (Trees - Short Grass): 0.00 Reforestation (Trees - Shrubs and Tall Grass):0.00 Structural BMP Non-structural BMP Surface area (ac) Surface area (sf) Runoff volume retained (cf) 44655 0 0 0 0 0 Total retention volume provided by BMPs (cf):44655 EISA Section 438 retention volume requirement (cf) 44557 LID COST SUMMARY Project complies with EISA Section 438. Army Command IMCOM Ft Bragg Civil Affairs Stormwater Pond Volume Comparison October-2019 Bioretention Pond #1 Bioretentin Storage Requirements 15,900 16,378 16,701 Wet Pond #1 Volume Main Pool VMP 28,756 37,893 38,241 Volume of Forebay VFB 4,313 5,684 6,330 Design Volume DV 11,805 21,429 30,501 Wet Pond #2 Volume Main Pool VMP 89,090 111,165 116,538 Volume of Forebay VFB 13,364 16,675 18,930 Design Volume DV 36,572 65,830 74,633 NCDEQ Requirements (cf)EISA Option #2 Requirements (cf) Pre vs Post Development (10-yr)Provided in Design (cf) NCDEQ Requirements (cf) EISA Option #1 Requirements (cf) Provided in Design (cf) NCDEQ Requirements (cf)EISA Option #2 Requirements (cf) Pre vs Post Development (10-yr)Provided in Design (cf) Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.5 - APPENDIX E STORMWATER CALCULATIONS WinTR-55 Current Data Description --- Identification Data --- User: SCurry Date: 5/30/2019 Project: Ft Bragg CA TEMF_PreDev Units: English SubTitle: Pre-Development Areal Units: Acres State: North Carolina County: Cumberland NOAA-B Filename: P:\Projects\017101\02 Design\Civil\Storm Water Design\PreDevelopment Files\PreDevelopment_CA_TR5 --- Sub-Area Data --- Name Description Reach Area(ac) RCN Tc ------------------------------------------------------------------------------ PreDevelop Outlet 22.9 66 .242 Total area: 22.90 (ac) --- Storm Data -- Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 5/30/2019 8:16:02 AM SCurry Ft Bragg CA TEMF_PreDev Pre-Development Cumberland NOAA-B County, North Carolina Storm Data Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 5/30/2019 8:16:02 AM SCurry Ft Bragg CA TEMF_PreDev Pre-Development Cumberland NOAA-B County, North Carolina Watershed Peak Table Sub-Area Peak Flow by Rainfall Return Period or Reach 2-Yr 10-Yr 25-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) ---------------------------------------------------------------------------------- SUBAREAS PreDevelop 23.56 59.89 86.10 133.27 13.39 REACHES OUTLET 23.56 59.89 86.10 133.27 13.39 WinTR-55, Version 1.00.10 Page 1 5/30/2019 8:16:02 AM SCurry Ft Bragg CA TEMF_PreDev Pre-Development Cumberland NOAA-B County, North Carolina Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 2-Yr 10-Yr 25-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (hr) (hr) (hr) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS PreDevelop 23.56 59.89 86.10 133.27 13.39 12.06 12.05 12.04 12.04 12.07 REACHES OUTLET 23.56 59.89 86.10 133.27 13.39 WinTR-55, Version 1.00.10 Page 1 5/30/2019 8:16:02 AM SCurry Ft Bragg CA TEMF_PreDev Pre-Development Cumberland NOAA-B County, North Carolina Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- PreDevelop 22.90 0.242 66 Outlet Total Area: 22.90 (ac) WinTR-55, Version 1.00.10 Page 1 5/30/2019 8:16:02 AM SCurry Ft Bragg CA TEMF_PreDev Pre-Development Cumberland NOAA-B County, North Carolina Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- PreDevelop SHEET 30 0.0133 0.400 0.150 SHALLOW 524 0.0240 0.050 0.058 CHANNEL 1430 0.0560 0.050 31.70 15.00 11.683 0.034 Time of Concentration .242 ======== WinTR-55, Version 1.00.10 Page 1 5/30/2019 8:16:02 AM SCurry Ft Bragg CA TEMF_PreDev Pre-Development Cumberland NOAA-B County, North Carolina Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- PreDevelopWoods (poor) B 22.9 66 Total Area / Weighted Curve Number 22.9 66 ==== == WinTR-55, Version 1.00.10 Page 1 5/30/2019 8:16:03 AM WinTR-55 Current Data Description --- Identification Data --- User: SCurry Date: 6/19/2019 Project: Ft Bragg CA TEMF_PostDev Units: English SubTitle: Post-Development Basin Qp Areal Units: Acres State: North Carolina County: Cumberland NOAA-B Filename: P:\Projects\017101\02 Design\Civil\Storm Water Design\PostDevelopment Files\PostDevelopment_CA_TR55_Basin Peak Flows.w55 --- Sub-Area Data --- Name Description Reach Area(ac) RCN Tc ------------------------------------------------------------------------------ Basin #1 Outlet 5.3 90 0.133 Basin #2 Outlet 4.2 92 0.133 Basin #3 Outlet 12.5 93 0.133 Total area: 22 (ac) --- Storm Data -- Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 6/19/2019 6:08:05 PM SCurry Ft Bragg CA TEMF_PostDev Post-Development Basin Qp Cumberland NOAA-B County, North Carolina Storm Data Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 6/19/2019 6:08:05 PM SCurry Ft Bragg CA TEMF_PostDev Post-Development Basin Qp Cumberland NOAA-B County, North Carolina Watershed Peak Table Sub-Area Peak Flow by Rainfall Return Period or Reach 2-Yr 10-Yr 25-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) ---------------------------------------------------------------------------------- SUBAREAS Basin #1 19.70 32.44 40.46 53.87 15.33 Basin #2 16.50 26.54 32.84 43.38 13.07 Basin #3 50.44 80.16 98.78 130.04 40.19 REACHES OUTLET 86.64 139.14 172.04 227.21 68.57 WinTR-55, Version 1.00.10 Page 1 6/19/2019 6:08:05 PM SCurry Ft Bragg CA TEMF_PostDev Post-Development Basin Qp Cumberland NOAA-B County, North Carolina Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 2-Yr 10-Yr 25-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (hr) (hr) (hr) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS Basin #1 19.70 32.44 40.46 53.87 15.33 11.95 11.95 11.95 11.95 11.96 Basin #2 16.50 26.54 32.84 43.38 13.07 11.95 11.94 11.95 11.94 11.95 Basin #3 50.44 80.16 98.78 130.04 40.19 11.95 11.95 11.95 11.94 11.95 REACHES OUTLET 86.64 139.14 172.04 227.21 68.57 WinTR-55, Version 1.00.10 Page 1 6/19/2019 6:08:05 PM SCurry Ft Bragg CA TEMF_PostDev Post-Development Basin Qp Cumberland NOAA-B County, North Carolina Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- Basin #1 5.30 0.133 90 Outlet Basin #2 4.20 0.133 92 Outlet Basin #3 12.50 0.133 93 Outlet Total Area: 22 (ac) WinTR-55, Version 1.00.10 Page 1 6/19/2019 6:08:05 PM SCurry Ft Bragg CA TEMF_PostDev Post-Development Basin Qp Cumberland NOAA-B County, North Carolina Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- Basin #1 User-provided 0.133 Time of Concentration 0.133 ======== Basin #2 User-provided 0.133 Time of Concentration 0.133 ======== Basin #3 User-provided 0.133 Time of Concentration 0.133 ======== WinTR-55, Version 1.00.10 Page 1 6/19/2019 6:08:05 PM SCurry Ft Bragg CA TEMF_PostDev Post-Development Basin Qp Cumberland NOAA-B County, North Carolina Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- Basin #1 Open space; grass cover 50% to 75% (fair) B 1.4 69 Paved parking lots, roofs, driveways B 3.9 98 Total Area / Weighted Curve Number 5.3 90 === == Basin #2 Open space; grass cover 50% to 75% (fair) B .82 69 Paved parking lots, roofs, driveways B 3.38 98 Total Area / Weighted Curve Number 4.2 92 === == Basin #3 Open space; grass cover 50% to 75% (fair) B 2 69 Paved parking lots, roofs, driveways B 10.5 98 Total Area / Weighted Curve Number 12.5 93 ==== == WinTR-55, Version 1.00.10 Page 1 6/19/2019 6:08:05 PM Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.6 - APPENDIX F NRCS CUMBERLAND COUNTY SOIL SURVEY MAP United States Department of Agriculture A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Cumberland County, North Carolina SOF CIvil Affairs BN Natural Resources Conservation Service October 3, 2016 Preface Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/ nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http:// offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means 2 for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. 3 Contents Preface....................................................................................................................2 How Soil Surveys Are Made..................................................................................5 Soil Map..................................................................................................................7 Soil Map................................................................................................................8 Legend..................................................................................................................9 Map Unit Legend................................................................................................10 Map Unit Descriptions........................................................................................10 Cumberland County, North Carolina...............................................................12 FaB—Faceville loamy sand, 2 to 6 percent slopes.....................................12 GoA—Goldsboro loamy sand, 0 to 2 percent slopes, Southern Coastal Plain......................................................................................................13 NoA—Norfolk loamy sand, 0 to 2 percent slopes........................................14 VaD—Vaucluse loamy sand, 8 to 15 percent slopes..................................15 WaB—Wagram loamy sand, 0 to 6 percent slopes.....................................16 References............................................................................................................19 Glossary................................................................................................................21 4 How Soil Surveys Are Made Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the 5 individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil- landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. Custom Soil Resource Report 6 Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. 7 8 Custom Soil Resource Report Soil Map 388293038829903883050388311038831703883230388329038833503883410388293038829903883050388311038831703883230388329038833503883410679140 679200 679260 679320 679380 679440 679500 679140 679200 679260 679320 679380 679440 679500 35° 4' 39'' N 79° 2' 7'' W35° 4' 39'' N79° 1' 51'' W35° 4' 23'' N 79° 2' 7'' W35° 4' 23'' N 79° 1' 51'' WN Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 17N WGS84 0 100 200 400 600 Feet 0 35 70 140 210 Meters Map Scale: 1:2,520 if printed on A portrait (8.5" x 11") sheet. Warning: Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Cumberland County, North Carolina Survey Area Data: Version 16, Sep 29, 2015 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Feb 14, 2011—Mar 3, 2011 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Custom Soil Resource Report 9 Map Unit Legend Cumberland County, North Carolina (NC051) Map Unit Symbol Map Unit Name Acres in AOI Percent of AOI FaB Faceville loamy sand, 2 to 6 percent slopes 16.2 49.2% GoA Goldsboro loamy sand, 0 to 2 percent slopes, Southern Coastal Plain 2.2 6.6% NoA Norfolk loamy sand, 0 to 2 percent slopes 0.9 2.8% VaD Vaucluse loamy sand, 8 to 15 percent slopes 0.7 2.1% WaB Wagram loamy sand, 0 to 6 percent slopes 12.9 39.2% Totals for Area of Interest 32.8 100.0% Map Unit Descriptions The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially Custom Soil Resource Report 10 where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha- Beta association, 0 to 2 percent slopes, is an example. An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. Custom Soil Resource Report 11 Cumberland County, North Carolina FaB—Faceville loamy sand, 2 to 6 percent slopes Map Unit Setting National map unit symbol: w70c Elevation: 80 to 330 feet Mean annual precipitation: 38 to 55 inches Mean annual air temperature: 59 to 70 degrees F Frost-free period: 210 to 265 days Farmland classification: All areas are prime farmland Map Unit Composition Faceville and similar soils: 80 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Faceville Setting Landform: Broad interstream divides on marine terraces, ridges on marine terraces Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Clayey marine deposits Typical profile Ap - 0 to 7 inches: loamy sand E - 7 to 17 inches: loamy sand Bt - 17 to 80 inches: clay Properties and qualities Slope: 2 to 6 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Moderate (about 7.8 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Hydric soil rating: No Custom Soil Resource Report 12 GoA—Goldsboro loamy sand, 0 to 2 percent slopes, Southern Coastal Plain Map Unit Setting National map unit symbol: 2v750 Elevation: 110 to 300 feet Mean annual precipitation: 40 to 55 inches Mean annual air temperature: 59 to 70 degrees F Frost-free period: 200 to 280 days Farmland classification: All areas are prime farmland Map Unit Composition Goldsboro and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Goldsboro Setting Landform: Flats on marine terraces, broad interstream divides on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Loamy marine deposits Typical profile Ap - 0 to 9 inches: loamy sand E - 9 to 12 inches: loamy sand Bt - 12 to 62 inches: sandy clay loam Btg - 62 to 80 inches: sandy clay loam Properties and qualities Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Moderately well drained Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 24 to 36 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Moderate (about 8.1 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B Hydric soil rating: No Custom Soil Resource Report 13 Minor Components Norfolk Percent of map unit: 8 percent Landform: Broad interstream divides on marine terraces, flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex, linear Across-slope shape: Convex, linear Hydric soil rating: No Lynchburg Percent of map unit: 7 percent Landform: Flats on marine terraces, broad interstream divides on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No NoA—Norfolk loamy sand, 0 to 2 percent slopes Map Unit Setting National map unit symbol: w71h Elevation: 80 to 330 feet Mean annual precipitation: 38 to 55 inches Mean annual air temperature: 59 to 70 degrees F Frost-free period: 210 to 265 days Farmland classification: All areas are prime farmland Map Unit Composition Norfolk and similar soils: 85 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Norfolk Setting Landform: Broad interstream divides on marine terraces, flats on marine terraces Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy marine deposits Typical profile Ap - 0 to 9 inches: loamy sand E - 9 to 14 inches: loamy sand Bt - 14 to 70 inches: sandy clay loam C - 70 to 100 inches: sandy clay loam Custom Soil Resource Report 14 Properties and qualities Slope: 0 to 2 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 40 to 72 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Moderate (about 7.6 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 1 Hydrologic Soil Group: A Hydric soil rating: No Minor Components Rains, undrained Percent of map unit: 5 percent Landform: Flats on marine terraces, carolina bays on marine terraces, broad interstream divides on marine terraces Landform position (two-dimensional): Summit Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes VaD—Vaucluse loamy sand, 8 to 15 percent slopes Map Unit Setting National map unit symbol: w72d Elevation: 80 to 660 feet Mean annual precipitation: 38 to 55 inches Mean annual air temperature: 59 to 70 degrees F Frost-free period: 210 to 265 days Farmland classification: Not prime farmland Map Unit Composition Vaucluse and similar soils: 80 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Vaucluse Setting Landform: Low hills Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Crest Custom Soil Resource Report 15 Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy and sandy marine deposits Typical profile Ap - 0 to 6 inches: loamy sand E - 6 to 15 inches: loamy sand Bt - 15 to 29 inches: sandy clay loam Btx - 29 to 58 inches: sandy clay loam BC - 58 to 80 inches: sandy loam Properties and qualities Slope: 8 to 15 percent Depth to restrictive feature: 15 to 35 inches to fragipan Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.57 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Very low (about 2.7 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: C Ecological site: Loamy Backslope Woodland - PROVISIONAL (F137XY006GA) Hydric soil rating: No Minor Components Bibb, undrained Percent of map unit: 3 percent Landform: Flood plains Landform position (two-dimensional): Toeslope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes Johnston, undrained Percent of map unit: 2 percent Landform: Flood plains Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes WaB—Wagram loamy sand, 0 to 6 percent slopes Map Unit Setting National map unit symbol: w72m Custom Soil Resource Report 16 Elevation: 80 to 330 feet Mean annual precipitation: 38 to 55 inches Mean annual air temperature: 59 to 70 degrees F Frost-free period: 210 to 265 days Farmland classification: Farmland of statewide importance Map Unit Composition Wagram and similar soils: 90 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit. Description of Wagram Setting Landform: Broad interstream divides on marine terraces, ridges on marine terraces Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Crest Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy marine deposits Typical profile Ap - 0 to 8 inches: loamy sand E - 8 to 24 inches: loamy sand Bt - 24 to 75 inches: sandy clay loam BC - 75 to 83 inches: sandy loam Properties and qualities Slope: 0 to 6 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.57 to 1.98 in/hr) Depth to water table: About 60 to 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Moderate (about 6.7 inches) Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Hydric soil rating: No Minor Components Bibb, undrained Percent of map unit: 3 percent Landform: Flood plains Landform position (two-dimensional): Toeslope Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes Johnston, undrained Percent of map unit: 2 percent Custom Soil Resource Report 17 Landform: Flood plains Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: Yes Custom Soil Resource Report 18 References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/soils/?cid=nrcs142p2_054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/ portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084 19 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http:// www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf Custom Soil Resource Report 20 Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.7 - APPENDIX G SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING REPORT HQ:   3015 DUMBARTON ROAD    RICHMOND, VA   23228    USA     T 804.264.2701      F 804.264.1202     www.fandr.com  VIRGINIA • NORTH CAROLINA • SOUTH CAROLINA • MARYLAND • DISTRICT OF COLUMBIA   A Minority‐Owned Business        Report of Subsurface Exploration and  Geotechnical Engineering Evaluation      Large TEMF – SOF Civil Affairs BN Complex  FY‐17 / PN 69552  Fort Bragg, North Carolina  F&R Project No. 66X‐0030            Prepared For:  ACC Construction Company, Inc.  635‐A NW Frontage Road  Augusta, GA  30907            Prepared By:  Froehling & Robertson, Inc.  310 Hubert Street  Raleigh, North Carolina 27603        April 12, 2019    TABLE OF CONTENTS              PAGE 1.0 PURPOSE AND SCOPE OF SERVICES ................................................................................. 1  1.1  PURPOSE OF STUDY ................................................................................................................... 1  1.2  SCOPE OF SERVICES.................................................................................................................... 1  2.0 PROJECT INFORMATION ....................................................................................................... 1  2.1  SITE LOCATION AND DESCRIPTION ................................................................................................ 1  2.2  PROPOSED CONSTRUCTION ......................................................................................................... 2  3.0 EXPLORATION PROCEDURES ............................................................................................. 3  3.1  FIELD EXPLORATION ................................................................................................................... 3  3.2  LABORATORY TESTING ................................................................................................................ 4  3.3  SHWT DETERMINATIONS & INFILTRATION TESTING ................................................................. 4  4.0  SUBSURFACE CONDITIONS ................................................................................................ 5  4.1  REGIONAL GEOLOGY .................................................................................................................. 5  4.2  SOIL CONDITIONS ...................................................................................................................... 5  4.2.1  Surficial Materials ............................................................................................................. 6  4.2.2  Possible Fill Soils ................................................................................................................ 6  4.2.3  Native Soils ......................................................................................................................... 7  4.3  SOIL MOISTURE AND GROUNDWATER CONDITIONS ......................................................................... 8  5.0  GEOTECHNICAL ENGINEERING DESIGN RECOMMENDATIONS ............................. 9  5.1  GENERAL DEVELOPMENT CONSIDERATION ..................................................................................... 9  5.2  BUILDING FOUNDATIONS .......................................................................................................... 11  5.3  SLAB‐ON‐GRADE FLOORS ......................................................................................................... 12  5.4  RETAINING WALLS ................................................................................................................... 13  5.5  PAVEMENTS ........................................................................................................................... 1 5  5.5.1  GENERAL DESIGN CONSIDERATIONS ........................................................................................... 15  5.7.2  FLEXIBLE ASPHALT PAVEMENT ................................................................................................... 16  5.7.3  RIGID CONCRETE PAVEMENT ..................................................................................................... 16  5.6  CUT AND FILL SLOPES ............................................................................................................... 17  6.0  GEOTECHNICAL CONSTRUCTION RECOMMENDATIONS ........................................ 18  6.1  SITE PREPARATION .................................................................................................................. 18  6.2  STRUCTURAL FILL PLACEMENT AND COMPACTION ......................................................................... 20  6.3  FOUNDATION CONSTRUCTION ................................................................................................... 21  6.4  FLOOR SLAB CONSTRUCTION ..................................................................................................... 22  6.5  PAVEMENT CONSTRUCTION ...................................................................................................... 23  6.6  SLOPE CONSTRUCTION ............................................................................................................. 23  6.7  TEMPORARY EXCAVATIONS ....................................................................................................... 24  7.0 CONTINUATION OF SERVICES ....................................................................................... 24  8.0 LIMITATIONS .......................................................................................................................... 25   APPENDIX I  SITE VICINITY MAP, FIGURE 1      BORING LOCATION PLAN, FIGURE 2    SUBSURFACE PROFILES, FIGURES 3 to 5    APPENDIX II KEY TO SOIL CLASSIFICATION CHART    BORING LOGS    APPENDIX III LABORATORY TESTING RESULTS    APPENDIX IV SHWT DETERMINATION & INFILTRATION TESTING    APPENDIX V CALCULATIONS     APPENDIX VI USACE “Preliminary Subsurface Exploration and Geotechnical Engineering  Report” dated November 2, 2016    APPENDIX VII GBA DOCUMENT “IMPORTANT INFORMATION ABOUT YOUR  GEOTECHNICAL REPORT” ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  1  April 12, 2019  1.0  PURPOSE AND SCOPE OF SERVICES  1.1  PURPOSE OF STUDY  The purpose of the subsurface exploration and geotechnical engineering evaluation was to  explore the subsurface conditions in the building, pavement and stormwater pond areas by  performing a series of soil test borings and provide geotechnical engineering recommendations  that can be used during the design and construction phases of the project.  1.2  SCOPE OF SERVICES  F&R’s scope of services included the following:   Review  of  the  U.S.  Army  Corps  of  Engineers  (USACE)  report  titled  “Preliminary  Subsurface Exploration and Geotechnical Engineering Report” dated November 2, 2016;    Completion of 17 supplemental soil test borings to depths ranging from 5 to 55 feet  below the existing ground surface;   Preparation of typed Boring Logs and development of Subsurface Profiles;   Performing laboratory testing on representative soil samples;   Performing seasonal high water table (SHWT) determinations and infiltration testing;   Performing  a  geotechnical  engineering  evaluation  of  the  subsurface  conditions  with  regard to their suitability for the proposed construction; and,   Preparation of this geotechnical report by professional engineers.   2.0  PROJECT INFORMATION  2.1  SITE LOCATION AND DESCRIPTION  The project site is located on the north side of Mountain Viper Drive at a point approximately  600 feet east of its intersection with Ammo Pointe Boulevard (see Figure No. 1 in Appendix I).   The project site covers an area of approximately 22 acres and consists primarily of undeveloped  wooded land, and is bordered by paved roads and recently developed property on all sides of  the site. A paved road crosses the site in a north‐south direction on the east side of the project.  Topographically,  the  ground  surface  slopes  generally  downhill  toward  a  central  drainage  feature that traverses the site in an east‐west direction. Drainage of the property along this  ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF 2 April 12, 2019  drainage feature flows toward the western side of the property from most areas of the site  including discharge from 4 to 6 foot deep ditches along the eastern boundary of the project. At  the lower western side of the site, it appeared that discharge from the east‐west drainage  feature flows into a concrete box inlet that carries site runoff to offsite areas. Existing site  grades vary from about elevations (EL) 244 to 248 along the higher perimeter north, south and  eastern borders of the property to lower elevations of EL 235 to 240 along the major drainage  features that traverse the site.  No groundwater was observed in the major drainage features at  the time of our recent exploration. However, water was observed in several of the drainage  features during a subsequent site reconnaissance that was performed within 1 to 2 days of  rainfall across the area.   2.2  PROPOSED CONSTRUCTION  The  project  will  include  the  construction  of  an  approximately  58,200  square  feet  Tactical  Equipment Maintenance Facility (TEMF) and four 7,350 square feet each organizational storage  buildings (A, B, C and D). The TEMF building will be a two‐story steel frame structure. Structural  information related to the proposed buildings were not available at the time of this report  preparation.  However,  based  on  our  recent  communication  with  Mason  &  Hanger,  it  is  anticipated that column loads will range from approximately 30 to 90 kips.  The maximum slab‐ on‐grade live load is 250 psf. No retaining wall construction is proposed for the project with the  exception of elevator pit walls for the elevator construction inside the building.   Preliminary grading plans furnished to F&R for the project indicate that the TEMF building,  which will be located at the northern end of the project, will have a finished floor elevation of  247.25. Grading for the TEMF building will require maximum fill depths of 4 feet to establish the  floor slab subgrade.  No earth cuts will be required. Grading for the storage buildings that are  located to the north and west of the TEMF building will require approximately 2 to 10 feet of fill  placement for the western storage building and 2 to 3 feet or less of cut for the two northern  storage buildings.     ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  3  April 12, 2019  The majority of the 22 acre tract of property outside the proposed building limits will be graded  as a paved parking lot with a capacity for 735 parking spaces. Grading for the parking lot will  primarily require fill placement with fill depths typically on the order of 2 to 6 feet; however, fill  depths will increase to 7 to 10 feet to finish grade the lower elevation swale feature at the  central western portion of the site.  We understand the pavement for the parking lot will be of  concrete  construction.  Two  storm  water  treatment  basins  will  be constructed along the  western  border  of  the  site  and  a  third  basin  is  planned  along  the  southern  margin  of  the  project.    3.0  EXPLORATION PROCEDURES  3.1  FIELD EXPLORATION  The  subsurface  conditions  explored  by  F&R  during  this  phase  of the  project  consisted  of  performing a total of 17 soil test borings (C‐1 to C‐17) to depths ranging from 5 to 55 feet (see  Figure 2 in Appendix I).  The locations of the nine preliminary test borings (B‐1 to B‐9) performed  by F&R in 2016 for the USACE are also presented in Figure 2.  The associated USACE preliminary  geotechnical report is included in Appendix VI.   The test borings were established in the field by F&R using a Trimble GPS unit with reported sub  meter accuracy.  Ground surface elevations at the boring locations were interpolated from the  furnished preliminary grading plan.  Given the method of determination, the boring locations  and ground surface elevations should only be considered approximate.   The test borings were advanced by a track mounted drill rig using 2‐1/4” inside diameter (I.D.)  hollow stem augers drilling for borehole stabilization.  Representative soil samples were obtained  using a standard two‐inch outside diameter (O.D.) split barrel sampler in general accordance with  ASTM D 1586, Penetration Test and Split‐Barrel Sampling of Soils (Standard Penetration Test).   The  number  of  blows  required  to  drive  the  split  barrel  sampler three  consecutive  6‐inch  increments  with  an  automatic  hammer  is  recorded  and  the  blows  of the last two 6‐inch  increments are added to obtain the Standard Penetration Test (SPT) N‐values representing the  penetration  resistance  of  the  soil.  Standard  Penetration  Tests were  performed  almost  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  4  April 12, 2019  continuously to a depth of 10 feet and at a nominal interval of no greater than 5 feet thereafter.    A representative portion of soil was obtained from each SPT sample, sealed in an eight‐ounce glass  jar, labeled and transported to our laboratory for final classification and analysis by a geotechnical  engineer.  The soil samples were classified in general accordance with the Unified Soil Classification  System (USCS), using visual‐manual identification procedures (ASTM D 2488).  A Boring Log for each  test boring is presented in Appendix II.   Water level measurements were attempted at each boring at the termination of drilling and  again  after  a  stabilization  period  of  approximately  24  hours.  Additionally,  temporary  observation wells were installed in borings C‐1, C‐2, C‐4 to C‐9, C‐11 and C‐17 at completion of  drilling to aid in obtaining stabilized groundwater readings.  The observation wells consisted of  1‐inch diameter hand‐slotted PVC pipe inserted into the borehole.  3.2  LABORATORY TESTING  Representative soil samples were subjected to geotechnical index testing consisting of Natural  Moisture  Content,  Atterberg  Limits  and  Sieve  Analysis.    Additionally,  moisture‐density  relationship testing (Proctor Test) and CBR tests were performed on bulk soil samples obtained  from borings C‐12 and C‐15.  The purpose of the geotechnical laboratory testing was to aid in  our  classification  of  the  samples  and  development  of  engineering recommendations.  The  completed laboratory testing results are presented in Appendix III.  3.3  SHWT DETERMINATIONS & INFILTRATION TESTING   Seasonal high water table (SHWT) determinations and infiltration testing were performed at  two locations at each of the three stormwater ponds. The infiltration testing was performed  using  a  compact  constant‐head  permeameter  to  determine  the  saturated  hydraulic  conductivity (KSAT).  F&R retained Three Oaks Engineering to perform the SHWT determinations  and infiltration testing, and a report of this work is included in Appendix IV.  The work was  conducted by a NC Licensed Soil Scientist.  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  5  April 12, 2019  4.0   SUBSURFACE CONDITIONS  4.1  REGIONAL GEOLOGY   The referenced site is located within the Coastal Plain Province of North Carolina.  The Coastal  Plain Province is a broad flat plain with widely spaced low rolling hills where the near surface soils  have their origin from the deposition of sediments several million years ago during the period that  the ocean receded from this area to its present location along the Atlantic Coast.  It is noted that  the Coastal Plain soils vary in thickness from only a few feet along the western border (one to two  counties west of the site) to over ten thousand feet in some areas along the coast.  Our test  borings were terminated in Coastal Plain soils.  According to the Geologic Map of North Carolina (1985), the site is located within an area mapped  as Cretaceous period deposits and is comprised of sedimentary deposits that appear to be located  within the Middendorf Formation.  The Middendorf   Formation is also described as sandy deposits  that vary in color from gray to pale gray with an orange cast with discontinuous bedding with cross  bedding common.  4.2  SOIL CONDITIONS  The  subsurface conditions  discussed  in  this  section  and those  shown  on  the  attached  F&R  Boring Logs in Appendix II represent an estimate of the subsurface conditions based on an  interpretation of the boring data using normally‐accepted, geotechnical engineering judgments.  Although individual soil test borings are representative of the subsurface conditions at the  boring  locations  on  the  dates  shown,  they  are  not  necessarily  indicative  of  subsurface  conditions at other locations or at other times. Subsurface Profiles have been prepared from  the boring data to graphically illustrate the subsurface conditions encountered at the site. The  Subsurface Profiles are presented as Figure Nos. 3 to 5 in Appendix I. Strata breaks designated  on the boring logs and subsurface profiles represent approximate boundaries between soil  types. The transition from one soil type to another may be gradual or occur between soil  samples.  This  section  of  the  report  provides  a  general  discussion  of  subsurface  conditions  encountered  in  F&R’s  borings  within  areas  of  proposed  construction.  More  detailed  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  6  April 12, 2019  descriptions of the subsurface conditions at the individual boring locations are presented on  the  boring  logs.    It  is  also  noted  that  the  preliminary  test  boring  data  presented  in  the  geotechnical report prepared by the USACE is included in Appendix VI.  4.2.1  Surficial Materials  The test borings typically encountered a layer of Surficial Organic Soil from the ground surface to  depths ranging from approximately 0.2 to 0.7 feet. In some of the borings, roots extended to depths  ranging from 2 to 6 feet. Surficial organic soils were not encountered in borings C‐10 and C‐13. The  Surficial  Organic  Soils  generally  consisted  of  dark‐colored  soil  material  containing  roots,  fibrous  matter, and/or other organic components, and is generally unsuitable for engineering purposes.  F&R  has  not  performed  any  laboratory  testing  to  determine  the  organic  content  or  other  horticultural properties of the observed Surficial Organic Soil materials. Therefore, the term Surficial  Organic  Soil  is  not  intended  to  indicate  suitability  for  landscaping  and/or  other  purposes.  The  Surficial Organic Soil depths provided in this report are based on driller observations and should be  considered  approximate.  We  note  that  the  transition  from  Surficial  Organic  Soil  to  underlying  materials may be gradual, and therefore the observation and measurement of the Surficial Organic  Soil depths is subjective. Actual Surficial Organic Soil depths should be expected to vary.    4.2.2  Possible Fill Soils  Material that F&R believes may be fill (referred to as “possible fill” on the attached boring log)  was encountered in boring C‐16 to a depth of 2 feet. The possible fill soils exhibited a Standard  Penetration Test (SPT) N‐value of 15 blows per foot (bpf) and consisted of medium dense silty  sand (USCS – SM soil) with trace fine to coarse gravel. SPT N‐values of 9 bpf or greater are  generally indicative of these type fill soils being well compacted. In general, it appears that the fill  was well‐compacted; however, the presence of gravel in the fill may have amplified the SPT N‐ value.  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  7  April 12, 2019  4.2.3  Native Soils  The test borings typically encountered silty or clayey sand (USCS ‐ SM and SC soils) and low to  moderate plasticity fine sandy clay and silt (CL and ML soils) below the surficial organic soils and  extending  to  the  termination  depths  of  5  to  55  feet  in  the  borings. Borings B‐5 and C‐3  encountered fine sands with varying minor amounts of silt and clay (SP soils) to depths of 2 to  3.5 and 37 to 47 feet, respectively. A layer of highly plastic clay soil with varying amounts of fine  sand (CH soils) was encountered in boring C‐6 from a depth of 22 feet to the termination depth  25 feet of the boring.    Very loose soils with SPT N‐value of 4 bpf or less were encountered in about half of the recent  borings in the upper 2 to 3.5 feet of the soil profile.  Below depths of 2 to 3.5 feet, the SPT N‐ values of the sandy soils typically increased to 6 to 10 bpf to depths of 5 to 6 feet and then to  generally 12 to 25 bpf or higher below these levels. A deeper layer of loose to very loose sandy  soils exhibiting SPT values of 3 to 8 bpf was encountered in boring C‐3 from a depth of 37 to 55  feet. A majority of the cohesionless (sandy) soils had relative densities ranging from loose to  dense with SPT N‐values ranging from 5 to 42 blows per foot (bpf).  The cohesive (clayey) soils  had consistencies ranging from firm to stiff with SPT N‐values ranging from 7 to 14 bpf.   In addition, a petroleum odor was noted in boring C‐16 from a depth of 2 to 5 feet.  The subsurface conditions encountered in F&R’s preliminary borings performed for USACE in  2016  were  generally  very  similar  to  the  conditions  encountered in  our  recent  borings  as  described above. That is, very loose to loose sandy soils exhibiting SPT values of 2 to 8 bpf were  typically encountered in the upper 2 to 4 feet of the soil profile and were underlain by higher  consistency soils throughout the remaining 10 to 20 foot depths of these borings.   ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  8  April 12, 2019  4.3  SOIL MOISTURE AND GROUNDWATER CONDITIONS  The sampled soils were generally observed to be moist to wet or saturated (considered to be 5 to  6 percent or greater above the estimated optimum moisture content) from the ground surface to  depths of 2 to 6 feet, and then again below depths of approximately 8.5 to 13 feet and extending  to termination depth of the borings.  The shallow relatively wet soil conditions appear to be  primarily related to infiltration into the sandy soils from runoff and/or from development of  perched water that may occur during periods of wet weather. The underlying wet soils may also  be somewhat related to trapped or perched water in the overburden, but are also related to the  presence of the underlying groundwater table.   Groundwater level readings were recorded in the borings upon completion of drilling. After a 24  hour stabilization period following completion of drilling operations, groundwater level readings  were again recorded in the borings. Also, temporary piezometers were installed in 10 of our  recently drilled borings (C‐1, C‐2, C‐4 to C‐9, C‐11 and C‐17) to facilitate obtaining stabilized  groundwater levels. Stabilized groundwater was recorded in seven of our recently deeper drilled  borings (C‐1 to C‐6 and C‐11) at depths ranging from approximately 14 to 22 feet. It is noted that  F&R’s previously performed borings (B‐1 to B‐9) were backfilled after completion of drilling and  thus  no  stabilized  groundwater  levels  were  recorded  in  these  borings.  However,  upon  completion of drilling, groundwater was observed in B‐5 and B‐9 at depths of 5 and 6 feet,  respectively, just before backfilling of the borings.  It appears that the water levels in these  borings may reflect shallow perched conditions due to infiltration of surface runoff into the more  permeable sandy soils above depths of 5 to 6 feet at these locations.  This  would  not  be  considered unexpected, especially at B‐5 which was drilled at the lower end of the east‐west  running drainage feature where most of the site runoff is directed.  Based on the observed groundwater readings, it does not appear that the static water table will  be encountered during mass grading of the site or foundation construction given the relatively  shallow planned cut depths.  However, wet soils conditions were noted in most of the borings  within depths of 2 to 3 feet of the ground surface and as such, could be encountered during  construction.  In addition, due to the presence of relatively impermeable shallow clayey sands  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  9  April 12, 2019  and underlying clayey soils, perched water conditions should also be anticipated during periods  of inclement weather and during seasonally wet periods.   It  should  be  noted  that  soil  moisture  and  groundwater  elevations  vary  depending  upon  seasonal factors such as precipitation and temperature.  As previously indicated, perched or  trapped water could develop at shallow depths in the soil profile during periods of inclement  weather and during seasonally wet periods. As such, soil moisture and groundwater conditions  at other times of the year may vary or be different from those observed at the time of this  exploration and described in this report.  5.0   GEOTECHNICAL ENGINEERING DESIGN RECOMMENDATIONS  5.1  GENERAL DEVELOPMENT CONSIDERATION  The geotechnical engineering recommendations contained in this section of the report are based  upon the results of the 17 recent and nine previous soil test borings performed by F&R, our review  of the preliminary geotechnical report provided by the USACE, the laboratory testing results, the  limited  information  provided  regarding  the  proposed  development,  and  our  familiarity  with  geotechnical engineering practices in this area.  It is our opinion that the subsurface conditions  encountered at the project site are suitable for the proposed construction from a geotechnical  engineering  perspective  provided  the  recommendations  presented in  this  report  are  followed  throughout the design and construction phases of this project.  As building design progresses, F&R  requests  an  opportunity  to  review  project  plans  and  specifications to confirm that the  recommendations presented in this report have been properly interpreted and implemented, and  to determine if additional geotechnical recommendations are warranted.   The presence of very loose soils in the upper 2 to 4 feet of the soil profile and wet soil conditions  that extend to depths of 2 to 8.5 feet will require conventional ground improvement and repair  activities to create stable subgrades and bearing grades. Although some of the very loose soils will  be removed during site stripping activities, very loose/wet and unstable soils will likely be present  following stripping and may require undercutting and/or other repair activities (e.g., manipulation,  ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF 10 April 12, 2019  drying and re‐compaction) in order to establish stable subgrades that are suitable to support the  proposed building and pavements.   Depending on the time of year of construction and prevalent weather conditions, standing water  could be present in the deeper drainage features across the site. In these areas, drainage of the  water would be required prior to backfilling operations. Also, depending on the stability of the  exposed subgrades in the swale features, the best approach to repairing these areas of the parking  lot may be to spread 1.5 to 2.5 feet of clean sand (less than 10 to 15 percent fines) over the  exposed soils in order to stabilize the in‐place soils instead of attempting to undercut soft, wet  near surface soils in the swale areas. Subsequent to stabilizing the exposed subgrade, backfilling  the areas to finished grade levels may be accomplished. It appears that most of the major swale  features are located in the areas to be paved and will typically require 3 to 5 feet of fill to reach  finished grade levels.   It is expected that some of the cut soils from mass grading operations and some of the excavated  soils  from  utility  trenches  will  be  wet  and  require  drying  in  order  to  be  successfully  used  as  compacted structural fill and backfill.  The on‐site soils also contain significant fines (silt and clay  size particles) to render them moisture sensitive.  Due to the moisture sensitivity of the on‐site  soils, it is typically recommended that earthwork operations be performed during the seasonally  drier months (typically May to October) when weather conditions are more conducive to moisture  conditioning of earth fill (i.e., drying of wet soil, or wetting of dry soil) and achieving proper  compaction of structural fill. If earthwork is performed during the seasonally wet months, it may  be difficult to properly compact structural fill and additional subgrade undercutting and repair will  likely be required.    Subsequent to approved subgrade repairs and bringing below‐grade areas to finished grade levels  with adequately compacted structural fill, the site should be suitable for support of the proposed  structure  on  conventional  shallow  spread  foundations  that  are  sized for a net allowable soil  bearing capacity of 2,500 psf.  ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF 11 April 12, 2019  5.2  BUILDING FOUNDATIONS  The project site is suitable to support the proposed structure on conventional shallow spread  foundations  provided  the  site  preparation,  subgrade  repair  and fill  placement  recommendations presented in this report are followed.  For foundations bearing on medium dense/stiff native soils or properly compacted structural fill  overlying approved native materials, F&R recommends the use of a net allowable soil bearing  pressure of 2,500 pounds per square foot (psf) for the design of  foundations.    Spread  foundations should bear directly upon approved structural fill or native soils and should be  embedded at least 24 inches below adjacent exterior grades for bearing capacity and frost  protection considerations.  Wall foundations should have a minimum width of at least 2 feet  and column foundations should have a minimum width of at least 3 feet.  Final foundation sizes  should be determined by the project structural engineer based on actual design loads, building  code requirements and other structural considerations.   For foundations designed and constructed in accordance with the recommendations provided  in this report, we have estimated that maximum total settlements will be on the order of 0.75  inches to 1 inch for column loads in the 80 to 90 kip range.  Maximum differential settlements  should be on the order of ½‐inch.  We anticipate that such settlements will be structurally  acceptable to building; however, this should be verified by the Project Structural Engineer.  The borings generally encountered loose to dense sandy soils underlain by firm to stiff clayey  soils in the upper 20 feet of the soil profile which were in turn underlain by typically medium  dense to loose sands to boring termination.  In accordance with procedures outlined in the  2018 NC Building Code (IBC 2015) for determining seismic Site Class, a weighted average of the  soil conditions in the upper 100 feet was performed using SPT N‐values with the reasonable  assumption that medium dense to dense soils are present below the maximum 55 foot depth  explored.  Based on this evaluation of the SPT N‐values, the soil profile indicates a seismic Site  Class “D” is applicable to the project.    ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  12  April 12, 2019  F&R was informed by Mason & Hangar that the project is Risk Category II.  F&R recommends  the following site coefficients and acceleration parameters:   Ss = 0.21  (per UFC 3‐301‐01)   S1 = 0.10  (per UFC 3‐301‐01)   Fa = 1.6  (per IBC 2015 & ASCE 7‐10)   Fv = 2.4  (per IBC 2015 & ASCE 7‐10)   SMS = 0.336  (per IBC 2015 & ASCE 7‐10)   SM1 = 0.240  (per IBC 2015 & ASCE 7‐10)   SDS =  0.224  (per IBC 2015 & ASCE 7‐10)   SD1 = 0.160  (per IBC 2015 & ASCE 7‐10)   Seismic Design Category = C (SD1 condition governs per IBC 2015)  Although F&R has not performed a formal liquefaction evaluation, it is F&R’s opinion that there  does not appear to be a significant potential for liquefaction of the soils that underlie the site  above depths 35 to 40 feet due to the generally medium dense to dense consistency of these  materials, relatively high fines content observed in the soil samples and the plasticity of the  finer grained soils encountered at the site.  Also, the potential for liquefaction of the lower  consistency sands encountered below depths of 37 feet in boring C‐3 also appears relatively  remote due to the deep groundwater table (19 to 20 feet or more below existing grades)  encountered across the site. In addition, based on the available boring data, the 10 to 20 feet  thick layer of medium dense to dense overburden soils would limit the likelihood of the more  damaging effects from liquefaction of the loose sands encountered between depths of 37 and  55 feet.  5.3  SLAB‐ON‐GRADE FLOORS  Ground floors may be designed as a slab‐on‐grade. We recommend that a modulus of subgrade  reaction (k) of 150 pounds per cubic inch (pci) be used for slab design.  The subgrade soils for  support of floor slabs should be prepared as outlined in subsequent sections of this report.  The  floor slab should be supported on at least 4 inches of NCDOT #57 to provide a uniformly well‐ compacted material immediately beneath the slab.  The floor slab should be underlain by a  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  13  April 12, 2019  vapor retarder to reduce the potential for floor slab dampness.  Vapor retarder construction  should be performed in accordance with applicable ACI guidelines.  Floor slab design and construction should incorporate isolation joints around columns, utility  penetrations,  and  along  bearing  walls  to  allow  for  differential  movement  to  occur  without  damage to the floor.  Final slab design should be determined by the project structural engineer  based on actual design loads, building code requirements and other structural considerations.  5.4  RETAINING WALLS  We understand there are no retaining walls associated with the building construction except for  elevator pit walls for the elevators to be constructed in the TEMF building. The elevator pit  walls  are  anticipated  to  conventional  cast‐in‐place  concrete  walls  that  are  laterally  loaded.   Conventional, cast‐in‐place concrete retaining walls should be designed to resist applied earth  pressures.  Laterally loaded walls that are restrained from movement, such as the pit walls, or  walls that are braced on the top and bottom by structural framing, should be designed based  on at‐rest lateral earth pressures.  If the on‐site sandy soils or low plasticity sandy clays are  used to backfill the walls, the walls should be designed using an at‐rest coefficient (ko) of 0.60.   Assuming a moist backfill unit weight of 115 pounds per cubic foot (pcf), F&R recommends that  an at‐rest earth pressure equivalent fluid weight (EFW) of 70 pcf be used in design.  No highly  plastic silt or clay soils should be used as backfill for retaining walls.  Exterior cast in‐place walls, which will be designed to be able to rotate slightly at the top of the  wall, should be designed based on active lateral earth pressure conditions.  Assuming the walls  will be backfilled with on‐site sands or low plasticity sandy clays, the walls should be designed  using an active coefficient (ka) of 0.40.  Assuming a moist backfill unit weight of 115 pounds per  cubic foot (pcf), F&R recommends that an active earth pressure equivalent fluid weight (EFW)  of 45 pcf be used in design.    For sliding resistance along the base of the foundation, a friction factor (tan δ) of 0.35 should be  utilized.  For cases where passive earth pressure resisting forces are present, a passive earth  pressure coefficient (kp) of 1.5 can be used in design where foundation faces bear directly  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  14  April 12, 2019  against undisturbed stiff native/residual soils or well compacted structural fill; this coefficient  incorporates a factor of safety of 2.0 to limit the amount of movement to mobilize the passive  resistance.  Assuming an in‐situ density of approximately 100 pcf for native undisturbed soils,  the passive earth pressure EFW would be 150 pcf.  It is recommended that the upper 2 feet of  soil not be considered as contributing to the passive resistance due to possible disturbances  during construction (e.g., installation of utilities, re‐grading, etc.).   Lateral earth pressures arising from surcharge loading, foundations in the backfill zone, and  earthquake loading should be added to the above soil earth pressures to determine the total  lateral earth pressure, which the walls must resist.  In addition, transient loads imposed on the  walls by construction equipment during backfilling should be taken into account during design.  Compaction of backfill behind the walls should be on the order of 92 percent of the Modified  Proctor maximum dry density in structural areas.  In non‐structural areas, backfill compaction  can be reduced to 90 percent.  Excessive compaction may cause damage to the walls.  Walls  should  be  adequately  braced  during  compaction  of  the  wall  backfill.    Heavy  compaction  equipment should not be allowed within 10 feet of the walls.  Although groundwater is not expected above the base of the walls, F&R recommends that  laterally loaded walls be provided with a drainage system to maintain the wall backfill in a  drained condition at all times such that the walls are not subject to hydrostatic pressures.  We  recommend that a one‐foot wide zone of free‐draining NCDOT #57 washed stone be  constructed  adjacent  to  the  back  of  the  walls  and  extend  down  to  a  foundation  drain  (perforated drain pipe).  A geotextile filter fabric (Mirafi 180N or equivalent) should be placed  between the washed stone drainage layer and the remaining backfill material.  The foundation  drain should be positively graded to allow drainage of any water that may collect in the wall  backfill. It is assumed that the collection drain will be designed for gravity discharge of collected  seepage in the backfill. It is recommended that the fabric encased washed stone extend to  within approximately 12 inches of the ground surface and covered with more impermeable silty  clayey soils in order to help prevent surface runoff or infiltration from rainfall being directed  into the wall drain backfill.   Alternatively, a geo‐composite drainage material such as Miradrain  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  15  April 12, 2019  6000 may be installed against the wall and connected to an appropriately designed footing  drain to suitably outlet collected water.  The foundation drain should be positively graded to  allow drainage of any water that may collect in the wall backfill.  5.5  PAVEMENTS  5.5.1  GENERAL DESIGN CONSIDERATIONS  A  paved  parking  lot  with  approximately  735  parking  spaces  is  proposed  south  of  the  TEMF  building and is proposed to be of concrete construction. Although no flexible pavements were  indicated in the RFP for this project, at your request we are providing flexible pavement design  parameters assuming that the same traffic information furnished for the rigid pavement design is  applicable to flexible pavements.   The project RFP indicates that the rigid pavements should be designed to support one 10‐kip  forklift per day, 10 heavy tactical vehicles (HEMTT A4 M984A4 Wrecker with 25 Ton trailer) per  day, 20 medium tactical vehicles (one 22‐kip tandem axle and one 8‐kip single axle) per day, 500  two 5‐kip axles passes per day, one fire apparatus (one 23‐kip tandem axle and one 54‐kip single  axle) per week, one front‐loading refuse truck (one 46‐kip tandem axle and one 20‐kip single  axle) per week and two tractor‐trailers (two 36‐kip tandem axle and one 8‐kip single axle) per  week.    The pavement subgrade materials are anticipated to consist of silty/clayey sand (USCS –SM/SC)  or low to moderate plasticity sandy silty clay soils (CL soils). Even though not anticipated, if highly  plastic clays are encountered at the pavement subgrade level, they should be replaced with  approved lower plasticity soils or granular materials.    As part of our exploration, F&R obtained two bulk samples of the near surface soils from borings  C‐12 and C‐15, and subjected them to proctor and California Bearing Ratio (CBR) testing (ASTM  D‐1883) to assist us in evaluating soil subgrade strength. The laboratory testing indicated an  average  soaked  CBR  values  of  10.9  and  33.5  at  the  0.2”  penetration  reading  for  a  samples  compacted to 96.9 percent Standard Proctor maximum (ASTM D‐698) near optimum moisture  content. Typical CBR values for soils similar to those encountered at the site would be expected  ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF 16 April 12, 2019  to be in the range of generally 4 to 15. The laboratory results are located in Appendix III.  Based  on the results of the CBR testing and some expected variation of near surface soils across the  site, a CBR value of 10 was used for design purposes, which correlates to a modulus of subgrade  reaction (k‐values) of 200 pci.  5.7.2  FLEXIBLE ASPHALT PAVEMENT   F&R performed a flexible asphalt pavement design using the NCDOT Pavement Design Procedure  based  on  a  design  life  of  25  years.  We  used  previously  presented traffic volume for rigid  pavements for flexible pavements analysis. As such, the traffic volume for flexible pavements is  equal to approximately 1,588 daily 18‐kip equivalent single axle loads (ESAL).  Based on the  above subgrade parameters and traffic volume, we recommend the following flexible pavement  section over a prepared subgrade:  Traffic  NCDOT Asphalt  Concrete  Surface,  Type SF9.5B or C  NCDOT Asphalt  Concrete  Intermediate   Course, Type I 19.0  B  NCDOT  Pavement Base  Course, Type  B25.0B  NCDOT   ABC Stone  Base Course  Thickness     Total  Thicknes s  ‐ As provided in  the RFP    1.5”  4”  4”  8”  11”    5.7.3  RIGID CONCRETE PAVEMENT  F&R  performed  a  rigid  asphalt  pavement  design  using  the  USACE  PCASE computer model  (Version 2.09.02) based on a design life of 25 years.  The previously presented traffic volume for  rigid pavement is equal to approximately 1,588 daily 18‐kip equivalent single axle loads (ESAL).   Based  on  the  above  subgrade  parameters  and  traffic  volume  it  is  recommended  that  the  concrete pavement section be at least 6 inches thick  and be underlain by at least 6 inches of well  compacted NCDOT ABC stone.   Concrete  pavements  should  be  constructed  of  air‐entrained  concrete  with  a  28‐day  design  compressive  strength  of  at  least  4,500  psi  and  a  flexural  strength  of  at  least  650  psi.    The  contractor  should  submit  a  concrete  mix  design  to  the  designer  for  approval  prior  to  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  17  April 12, 2019  construction.  All concrete pavements should be designed and constructed in accordance with  UFC 3‐250‐01, ACI 330R‐08 and ACI 250.12R, as applicable, including requirements for jointing  and curing.    5.6  CUT AND FILL SLOPES  Although it appears that there will likely be no significant slope construction on this project,  should modifications in design result in construction of slopes, F&R recommends designing  permanent project slopes on a grade of 3H:1V or flatter. The tops of slopes should normally be  located a minimum of 10 feet from structural limits. If steeper slopes are planned, F&R should  be contacted during early grading plan development to perform slope stability analyses prior to  finalizing the grading plans. It is F&R’s opinion that 3H:1V slopes will be stable from a slope  stability standpoint, for slope heights not exceeding 10 to 15 feet, provided the fill slopes are  constructed of properly compacted and tested structural fill and that the slopes are constructed  on subgrades approved by F&R. However, seepage and surface runoff may cause the slopes to  slough and erode resulting in shallow surface failures. The slopes should be vegetated as soon  as possible to minimize surface sloughing and erosion. A swale or shallow ditch should be  constructed near the tops of slopes to prevent surface water from flowing onto the slopes. We  recommend  that  all  cut  and  fill  slopes  be  observed  by  a  geotechnical  engineer  or  his  representative during construction. Additional slope drainage and protection measures may be  required  in  certain  areas  depending  upon  conditions  observed  at the time of slope  construction.  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  18  April 12, 2019  6.0   GEOTECHNICAL CONSTRUCTION RECOMMENDATIONS  6.1  SITE PREPARATION  Initial site preparation should include stripping of vegetation, surficial organic soils and other  deleterious materials from within the proposed development area.  If any existing utility lines  are located within the proposed development areas that are below planned finished grades and  are  to  be  abandoned  (e.g.,  stormwater  lines,  water  lines,  telephone,  etc.),  they  should  be  removed.  The resulting excavations should be backfilled with controlled structural fill placed in  accordance with the recommendations presented in other sections of this report.  Open pipes  or  conduits,  if  left  in‐place,  adjacent  to  the  construction  area  should  be  bulk‐headed  and  grouted as they might serve as conduits for subsurface erosion.    Following stripping, we recommend that all areas at or below final subgrade be evaluated by  the geotechnical engineer and/or proofrolled at his direction.  Proofrolling should be performed  with a loaded tandem axle dump truck, scraper, or other similar heavy construction equipment  to confirm the stability of the subgrade soils and detect the presence of soft or unstable areas.   The  proofrolling  operations  should  be  observed  by  a  geotechnical  engineer  or  his  representative.  If proofrolling reveals unstable conditions, the method of repair should be as  directed by the project geotechnical engineer.  Methods of repair may include, but are not  necessarily limited to drying and re‐compaction; undercutting and replacement with suitable  structural fill; use of geo‐textiles and/or geo‐grids with select fill or other methods deemed  appropriate by the project geotechnical engineer.  As previously indicated, very loose soils were  encountered in the upper 2 to 4 feet of the soil profile at several boring locations.  As such,  some repair activities of the near‐surface soils should be expected.    As previously discussed, depending on the time of year of construction and prevalent weather  conditions, some water could be present in the several drainage features across the site.  The  water in the drainage features will need to be removed prior to backfilling operations. It is  expected that the exposed soils may be unstable after the surface water is removed and as  such, stabilization of the exposed subgrade would be required prior to fill placement. One  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  19  April 12, 2019  option to consider instead of attempting to undercut significant depths of soft wet soils in the  deeper  swale  features  of  the  parking  lot  would  be  to  stabilize the  existing  subgrade  by  placement an initial 1.5 to 2.5 foot thick lift of clean sand (less than 10 % to 15% fines) over the  exposed subgrade. The purpose of the less moisture sensitive initial clean sand lift is to stabilize  subgrade  conditions  so  that  the  overlying  soil  type  fill  can  be  adequately  compacted  and  stabilized.  In building areas that may extend into swale features (south end of west storage  building),  soft  wet  subgrade  materials  would  need  to  be  undercut  before  stabilizing  the  subgrade with clean sand due to settlement considerations.  Depending on the stability of the subgrade at the undercut level, installation of a geotextile or  geogrid (Tensar BX 1100 or approved equivalent) over the subgrade may be recommended to  limit undercutting and improve efforts to stabilize the subgrade. Densification of the clean sand  fill should be accomplished from the surface of the sand lift with a 5 to 10 ton roller as directed  by the geotechnical engineer. The sand fill should be compacted to at least 92 percent of the  Modified Proctor maximum dry density (ASTM D‐1557).  Subsequent to stabilization of the  initial lift of sand, any approved soil type fill may be used to bring the area to finished grade  levels.  The in‐situ soils are moisture sensitive and can become unstable during normal construction  traffic and grading activities when wet.  During earthwork and construction activities, surface  water runoff should be drained away from the construction areas in order to prevent water  from  ponding  on  or  saturating  the  exposed  soils  within  excavations  or  on  subgrades.   Otherwise,  weakening  of  subgrades  could  occur,  which  may  result  in  unstable  subgrade  conditions and necessitate additional undercutting.  If possible, it would be better to perform  any required earth grading activities during the seasonally dryer months.    ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  20  April 12, 2019  6.2  STRUCTURAL FILL PLACEMENT AND COMPACTION  The borings predominantly encountered clayey/silty sands and low to moderately plastic sandy  clays.  These  granular  and  lower‐plasticity  soil  types  are  generally  considered  fair  to  good  materials for use as structural earth fill.  If soils are required to be imported to the site to  achieve  subgrade  levels,  F&R  recommends  that  a  qualified  geotechnical  engineer  or  engineering technician working under the direction of the geotechnical engineer approve the  suitability of the imported soils prior to their delivery to the site.  Except for the clean sand  previously referenced, imported structural fill should consist of low plasticity soil (LL<35, PI<20),  have a maximum dry density of at least 100 pcf, and be free or organic and other deleterious  materials.   Structural earth fill should be placed in loose lifts not exceeding 8 inches when large self‐ propelled  compaction  equipment  is  being  utilized  and  in  lifts  not  exceeding  4  inches  for  small/light compaction equipment (e.g., walk behind Rammax roller).  Structural fill should be  compacted to at least 92 percent of the Modified Proctor (ASTM D‐1557) maximum dry density.   Utility trench backfill in load bearing areas should be compacted to at least 92 percent of the  Modified Proctor (ASTM D‐1557) maximum dry density.  The top 12 inches of all structural fill  and backfill in building, pavement and other load bearing structure areas should be compacted  to at least 95 percent of the Modified Proctor maximum dry density.  Fill and backfill materials  placed in non‐load bearing areas (e.g., non‐vehicular grassed areas) areas should be compacted  to at least 85 percent of the Modified Proctor maximum dry density.  The on‐site soils have sufficient silt/clay content to render them moisture sensitive. The on‐site  soils will become unstable (i.e., pump and rut) during normal construction activities when in the  presence of excess moisture. Soils with a moisture content greater than three percent above  the  optimum  moisture  content  are  generally  considered  to  have  excessive  moisture.  It  is  expected that some of the cut soils from mass grading operations and some of the excavated  soils from utility trenches will be wet and require drying in order to be successfully used as  compacted structural fill and backfill.  During earthwork and construction activities, surface‐ water runoff must be drained away from construction areas to prevent water from ponding on  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  21  April 12, 2019  or saturating the soils within excavations or on subgrades.  It is recommended that earthwork  be performed during the summer and early fall months (typically May to October) when the  weather conditions are more conducive to moisture conditioning of fill materials.  Monitoring of all site preparation activities including stripping, subgrade repairs and density  testing on each lift of fill/backfill to verify that adequate compaction is being achieved should  be  performed  by  a  qualified  soils  technician  working  under  the direct  supervision  of  the  geotechnical engineer. At least one in‐place density test (compaction test) should be performed  at subgrade and at each layer of structural fill in load bearing building and pavement areas for  every 2,500 ft2 or less, but in no case fewer than three tests.  For trench backfill, perform at  least one in‐place density test (compaction test) at subgrade and at each layer of backfill for  every 100 linear feet or less of trench, but in no case fewer than 2 tests.  In non‐load bearing,  non‐structural areas, perform one in‐place density test (compaction test) per every 5,000 ft2 of  fill/backfill per lift.  6.3  FOUNDATION CONSTRUCTION  We recommend that the footing excavations be observed by a qualified geotechnical engineer  or his representative prior to placement of reinforcing steel and concrete.  The purpose of the  observation would be to determine that the foundations bear in suitable native soils at the  proper  embedment  depths,  and  that  unsuitable  soft  or  loose  materials  are  undercut  and  backfilled  with  approved  structural  fill  material.    Hand  auguring  and  Dynamic  Cone  Penetrometer (DCP) testing should be performed at the direction of the project geotechnical  engineer  to  verify  the  consistency  of  the  bearing  soils  and  underlying  support  soils.    It  is  recommended that a smooth bladed backhoe bucket be used to remove the final 6 to 12 inches  of soils above the foundation bearing grade in order to prevent disturbing soils below the  bearing grade and/or prevent gouging narrow grooves in the  bearing grade as may occur with  a toothed‐end bucket.    It is possible that unsuitable soils will be encountered at the foundation bearing grade in some  areas of the building and undercutting may be recommended by the geotechnical engineer.  If  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  22  April 12, 2019  undercutting  is  performed,  the  undercut  excavations  should  be  backfilled  with  materials  approved by the project geotechnical engineer.  Some undercuts may be recommended to be  backfilled with NCDOT No. 57 washed stone up to the planned bearing grade.  The washed  stone thickness should not exceed 2 feet before the surface of the washed stone is densified  with a heavy vibratory plate compactor to the satisfaction of the geotechnical engineer or his  representative.    Exposure to the environment may weaken the soils at the footing bearing level if excavations  remain  open  for  long  periods  of  time.    The  foundation  bearing  surface  should  be  level  or  suitably benched and free of loose soil, ponded water and debris.  If the bearing soils are  softened by surface water intrusion or exposure, the softened soils must be removed from the  foundation excavation immediately prior to placement of concrete.  Foundation excavations  must be maintained in a drained/de‐watered condition throughout the foundation construction  process.  If the foundation excavations must remain open overnight, or if rainfall becomes  imminent while the bearing soils are exposed, we recommend that a 2 to 4 inch thick “mud  mat” of lean concrete (1,500 psi) be placed on the bearing soils before placing the reinforcing  steel.    In  addition,  F&R  stresses  the  need  for  positive  perimeter  surface  drainage  around  building areas to direct all runoff water away from buildings and foundation.  6.4  FLOOR SLAB CONSTRUCTION  The subgrade soils for support of floor slabs should be prepared as outlined in sections 6.1 and  6.2 of this report.  Utility and other construction excavations performed in the prepared floor  slab subgrade should be backfilled with properly compacted structural fill to aid in providing  uniform slab support.  Prior to base course placement, the subgrade should be evaluated by the  project engineer and soft, wet or otherwise unsuitable subgrade soils should be removed. To  reduce  the  risks  of  unsightly  slab  cracking,  F&R  recommends  that  concrete  quality  control  testing be performed during concrete placement, control joints (as designed by the structural  engineer) be cut into the slab as soon as possible after the concrete placement, and the slab be  cured as appropriate for the prevailing weather conditions.  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  23  April 12, 2019  6.5  PAVEMENT CONSTRUCTION  Proofrolling of the pavement subgrades, and placement of ABC base course and asphalt surface  courses, should be observed, tested, and approved by the project geotechnical engineer. All  base course stone beneath flexible and rigid pavement should be compacted to at least 100  percent of the Modified Proctor maximum dry density (ASTM D‐1557).  We emphasize that  good base course drainage is essential for successful pavement performance.  The ABC stone  should be maintained in a drained condition at all times.  Water build‐up in the base course  could result in premature pavement failures.  Proper drainage may be aided by grading the site  such that surface water is directed away from pavements and construction of swales adjacent  to pavements.  All pavements should be graded such that surface water is directed towards the  outer limits of the paved area or to catch basins located such that surface water does not  remain on the pavement.    Flexible  asphalt  pavements,  concrete  pavements,  and  bases  should  be  constructed  in  accordance with the guidelines of the NCDOT Standard Specifications for Roads and Structures  as well as applicable military and ACI standards.  6.6  SLOPE CONSTRUCTION  Fill slopes should be prepared as outlined in sections 6.1 and 6.2 of this report.  Fill slopes  should be over built at least 1‐foot and then cut back to assure the slope face is well compacted  material.  The slopes should be vegetated as soon as possible to minimize surface sloughing and  erosion.  However, seepage and surface runoff may cause the slopes to slough and erode  resulting in shallow surface failures.  A swale or shallow ditch should be constructed near the  top of slopes to prevent surface water from flowing onto the slopes.  We recommend that all  cut  and  fill  slopes  be  observed  by  a  geotechnical  engineer  or  his  representative  during  construction.  Additional slope drainage and protection/stabilization measures may be required  in certain areas depending upon conditions observed at the time of slope construction.      ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  24  April 12, 2019  6.7  TEMPORARY EXCAVATIONS  Mass excavations and other excavations required for construction of this project should be  performed in accordance with the United States Department of Labor, Occupational Safety and  Health  Administration  (OSHA)  guidelines  (29  CFR  1926,  Subpart  P,  Excavations),  or  other  applicable  jurisdictional  codes for  permissible  temporary  side‐slope  ratios  and/or  shoring  requirements. The OSHA guidelines require daily inspections of excavations, adjacent areas and  protective systems by a “competent person” for evidence of situations that could result in cave‐ ins, indications of failure of a protective system, or other hazardous conditions. All excavated  soils, equipment, building supplies, etc., should be placed away from the edges of excavations  at a distance equaling or exceeding the depth of the excavation. F&R cautions that the actual  excavation slopes will need to be evaluated frequently each day by the “competent person”  and  flatter  slopes  or  the  use  of  shoring  may  be  required  to  maintain  a  safe  excavation  depending upon excavation‐specific circumstances. The contractor is responsible for providing  the “competent person” and all aspects of site excavation safety. F&R can evaluate specific  excavation  slope  situations  if  we  are  informed  and  requested  by the owner, designer or  contractor’s “competent person”.  7.0  CONTINUATION  OF SERVICES  As previously discussed, the Geotechnical Engineer of Record should be retained to monitor and  test earthwork activities, and subgrade preparations for foundations, floor slabs and pavements.  It  should be noted that the actual soil conditions at the various subgrade levels and footing bearing  grades will vary across this site and thus the presence of the Geotechnical Engineer and/or his  representative  during  construction  will  serve  to  validate  the  subsurface  conditions  and  recommendations presented in this report.       We recommend that F&R be employed to monitor the earthwork and foundation construction,  and to report that the recommendations contained in this report are completed in a satisfactory  manner.  Our continued involvement on the project will aid in the proper implementation of the  recommendations discussed herein.  The following is a recommended scope of services:  ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  25  April 12, 2019   Review of project plans and construction specifications to verify that the recommendations  presented in this report have been properly interpreted and implemented;   Observe  the  earthwork  process  to  document  that  subsurface  conditions  encountered  during construction are consistent with the conditions anticipated in this report;   Observe subgrade preparation including any proofrolling operations, undercutting of soft  unsuitable soils, installation of stabilization geotextile and fill placement;    Observe the densification and compaction of any structural fill and backfill, and perform  laboratory and field compaction testing of the fill;   Observe all foundation excavations, washed stone backfill and footing bearing grades for  compliance with the recommended design soil bearing capacity.  8.0  LIMITATIONS  This report has been prepared for the exclusive use of ACC Construction and/or their agents, for  specific application to the referenced project in accordance with  generally‐accepted  soil  and  foundation engineering practices. No other warranty, express or implied, is made. Our evaluations  and recommendations are based on design information furnished to us; the data obtained from  the previously‐described, subsurface exploration program, and generally‐accepted geotechnical  engineering practice. The evaluations and recommendations do not reflect variations in subsurface  conditions, which could exist intermediate of the boring locations or in unexplored areas of the  site.  Should  such  variations  become  apparent  during  construction, it will be necessary to re‐ evaluate our recommendations based upon our on‐site observations of the conditions.  There are important limitations to this and all geotechnical studies. Some of these limitations are  discussed in the information prepared by GBA, which is included in Appendix VII. We ask that you  please review this information.  Regardless of the thoroughness of a subsurface exploration, there is the possibility that conditions  between borings will differ from those at the boring locations,  that  conditions  are  not  as  anticipated by the designers, or that the construction process has altered the soil conditions.   Therefore,  experienced  geotechnical  engineers  should  evaluate  earthwork,  pavement,  and  foundation  construction  to  verify  that  the  conditions  anticipated in design actually exist.   ACC Construction    F&R Project No. 66X‐0030  Proposed SOF Large TEMF  26  April 12, 2019  Otherwise, we assume no responsibility for construction compliance with the design concepts,  specifications, or recommendations.  In the event that changes are made in the design or location or the proposed structures, the  recommendations presented in the report shall not be considered valid unless the changes are  reviewed by our firm and conclusions of this report modified and/or verified in writing.  If this  report is copied or transmitted to a third party, it must be copied or transmitted in its entirety,  including text, attachments, and enclosures.  Interpretations based on only a part of this report  may not be valid.    ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF  April 12, 2019  APPENDIX I  FIGURES  CLIENT:  ACC ConstructionPROJECT:  SOF Large TEMFLOCATION:  Fort Bragg, Cumberland County, North CarolinaF&R PROJECT No:  66X‐0030DRAWN BY:  T.T. WalkerDATE:  April 2019SCALE: Not to scaleFIGURENo.:SITE VICINITY MAP1CHECKED BY: R. Sanders, P.E.FROEHLING & ROBERTSON, INC.310 Hubert StreetRaleigh, North Carolina 27603‐2302|USAT 919.828.3441 | F 919.828.5751www.fandr.comEngineering Stability Since 1881Project SiteMountain Viper Drive CLIENT:  ACC ConstructionPROJECT:  SOF Large TEMFLOCATION:  Fort Bragg, Cumberland County, North CarolinaF&R PROJECT No:  66X‐0030DRAWN BY:  T.T. WalkerDATE:  April 2019SCALE: Not to scaleFIGURENo.:BORING LOCATION MAP2CHECKED BY: R. Sanders, P.E.FROEHLING & ROBERTSON, INC.310 Hubert StreetRaleigh, North Carolina 27603‐2302|USAT 919.828.3441 | F 919.828.5751www.fandr.comEngineering Stability Since 1881Approximate F&R Boring Location (2019)C-1C-6C-9C-8C-2C-12C-14C-16C-13C-7C-17C-3C-4C-5C-10C-11C-15Approximate F&R Boring Location (2016)Approximate Percolation Test Location (2016) 1901952002052102152202252302352402452504911242034127C‐191530252029C‐101489161810C‐114892516141119C‐2491010823111729198553C‐33910222327721C‐44891623181219C‐5111117243916137C‐6576121211C‐7287151916C‐881321353516C‐9SUBSURFACE PROFILEProfile Name: Figure No. 3Plot Based on ElevationElevation (feet)City/State: Fayetteville, NCProject: Large TEMFClient: ACC Construction CompanyFroehling & Robertson, Inc.Project No: 66X‐0030RELEV_LANDSCAPE_8.5X11  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/2/19 2302322342362382402422442462485713C‐12998C‐1341321C‐149410C‐151578C‐16266C‐17SUBSURFACE PROFILEProfile Name: Figure No. 4Plot Based on ElevationElevation (feet)City/State: Fayetteville, NCProject: Large TEMFClient: ACC Construction CompanyFroehling & Robertson, Inc.Project No: 66X‐0030RELEV_LANDSCAPE_8.5X11  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/2/19 22422622823023223423623824024224424624825025515271211B‐145613182511B‐2678814B‐34883537B‐422489B‐521081611B‐659134217B‐72772129B‐82693917B‐9SUBSURFACE PROFILEProfile Name: Figure No. 5Plot Based on ElevationElevation (feet)City/State: Fort Bragg, NCProject: SOF Civil AffairsClient: USACOEFroehling & Robertson, Inc.Project No: 66U‐0198RELEV_LANDSCAPE_8.5X11  66U‐0198 BORINGS.GPJ  F&R.GDT  4/12/19 ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF  April 12, 2019  APPENDIX II  BORING LOGS  KEY TO SOIL CLASSIFICATION Correlation of Penetration Resistance with Relative Density and Consistency Sands and Gravels Silts and Clays No. of Relative No. of Relative Blows, N Density Blows, N Density 0 - 4 Very loo se 0 - 2 Very soft 5 - 10 Loose 3 - 4 Soft 11 - 30 Medium dense 5 - 8 Firm 31 - 50 Dense 9 - 15 Stiff Over 50 Very dense 16 - 30 Very stiff 31 - 50 Hard Over 50 Very hard Particle Size Identification (Unified Classification System) Boulders: Diameter exceeds 8 inches Cobbles: 3 to 8 inches diameter Gravel: Coarse - 3/4 to 3 inches diameter Fine - 4.76 mm to 3/4 inch diameter Sand: Coarse - 2.0 mm to 4.76 mm diameter Medium - 0.42 mm to 2.0 mm diameter Fine - 0.074 mm to 0.42 mm diameter Silt and Clay: Less than 0.07 mm (particles cannot be seen with naked eye) Modifiers The modifiers provide our estimate of the amount of silt, clay or sand size particles in the soil sample. Approximate Content Modifiers Field Moisture Description ≤ 5%: Trace Saturated: Usually liquid; very wet, usually from below the groundwater table 5% to 12%: Slightly silty, slightly clayey, slightly sandy Wet: Semisolid; requires drying to attain optimum moisture 12% to 30%: Silty, clayey, sandy Moist: Solid; at or near optimum moisture 30% to 50%: Very silty, very clayey, very sandy Dry: Requires additional water to attain optimum moisture 1.5 3.5 5.0 8.0 10.0 15.0 20.0 25.0 1‐2‐2 3‐4‐5 3‐4‐7 5‐10‐14 8‐9‐11 11‐16‐18 4‐5‐7 2‐3‐4 GROUNDWATER DATA: 0 Hr: Dry inside PVC 24 Hrs: 22.2' inside PVC 0.5 2.0 6.0 8.0 12.0 17.0 22.0 25.0 0.0 2.0 3.5 6.5 8.5 13.5 18.5 23.5 4 9 11 24 20 34 12 7 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose, Tan, Wet, Very Silty Fine SAND (SM) Loose to Medium Dense, Orange‐Brown, Wet, Silty Clayey Fine to Medium SAND (SC) Medium Dense, Brown‐Red, Moist, Slightly Clayey Silty Fine to Medium SAND (SM) Medium Dense, Gray‐Brown‐Pink, Wet, Silty Clayey Fine to Medium SAND (SC) Dense, Gray‐Brown, Wet, Silty Fine to Coarse SAND (SM) Medium Dense, Brown‐Gray, Wet, Silty Clayey Fine to Medium SAND (SC) Firm, Brown, Wet, Fine to Medium Sandy Silty CLAY (CL) Boring Terminated at 25 feet. 245.0 243.5 239.5 237.5 233.5 228.5 223.5 220.5 Elevation: 245.5 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 25.0' Date Drilled: 3/11/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐1  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 20.0 25.0 1‐2‐2 2‐3‐5 4‐3‐6 8‐10‐15 8‐6‐10 5‐6‐8 5‐6‐5 2‐7‐12 GROUNDWATER DATA: 0 Hr: 22.0 inside PVC 24 Hrs: 19.4' inside PVC 0.7 2.0 6.0 8.0 12.0 17.0 25.0 0.0 2.0 3.5 6.5 8.5 13.5 18.5 23.5 4 8 9 25 16 14 11 19 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose, Tan, Wet, Silty Fine SAND (SM) with Trace Roots Loose, Brown, Wet, Silty Clayey Fine to Medium SAND (SC) with Trace Roots Medium Dense, Brown‐Orange, Moist, Very Silty Fine SAND (SM) Medium Dense, Gray‐Brown, Wet, Clayey Fine to Medium SAND (SC) Stiff, Brown, Wet, Fine to Medium Sandy CLAY (CL) Medium Dense, Brown, Moist to Wet, Silty Fine SAND (SM) with Trace Fine Gravel (23.5'‐25.0') Wet from 23.5'‐25.0' Boring Terminated at 25 feet. 243.8 242.5 238.5 236.5 232.5 227.5 219.5 Elevation: 244.5 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 25.0' Date Drilled: 3/11/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐2  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 20.0 25.0 2‐2‐2 2‐4‐5 3‐4‐6 3‐4‐6 4‐4‐4 11‐9‐14 2‐4‐7 8‐12‐5 9‐12‐17 GROUNDWATER DATA: 0 Hr: 21.5', Caved at 22.0' 24 Hrs: 20.5', Caved at 21.4' 0.5 2.0 6.0 17.0 22.0 0.0 2.0 3.5 6.5 8.5 13.5 18.5 23.5 28.5 4 9 10 10 8 23 11 17 29 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose, Gray, Wet, Silty Fine SAND (SM) Loose, Orange‐Brown, Moist, Silty Clayey Fine to Medium SAND (SC) Loose to Medium Dense, Brown, Moist, Slightly Clayey Silty Fine to Medium SAND (SM) Noted Trace Roots at 8.5'‐10.0' Medium Dense, Brown, Wet, Silty Clayey Fine to Medium SAND (SC) Medium Dense, Gray‐Brown, Wet, Silty Fine to Medium SAND (SM) 245.5 244.0 240.0 229.0 224.0 Elevation: 246 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 55.0' Date Drilled: 3/13/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐3  (1 of 2) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 30.0 35.0 40.0 45.0 50.0 55.0 3‐8‐11 5‐4‐4 3‐2‐3 1‐2‐3 WOH‐1‐2 37.0 47.0 55.0 33.5 38.5 43.5 48.5 53.5 19 8 5 5 3 Loose, Gray‐Brown, Saturated, Fine to Medium SAND (SP) with Trace Silt Very Loose to Loose, Brown to Gray, Wet, Silty Fine to Coarse SAND (SM) with Fine to Coarse Gravel Boring Terminated at 55 feet. 209.0 199.0 191.0 Elevation: 246 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 55.0' Date Drilled: 3/13/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐3  (2 of 2) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 20.0 25.0 1‐1‐2 3‐4‐5 4‐4‐6 7‐10‐12 10‐11‐12 6‐12‐15 3‐3‐4 7‐9‐12 GROUNDWATER DATA: 0 Hr: 21.0' inside PVC 24 Hrs: 21.1' inside PVC 0.5 2.0 8.0 17.0 22.0 25.0 0.0 2.0 3.5 6.5 8.5 13.5 18.5 23.5 3 9 10 22 23 27 7 21 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose, Tan‐Gray, Wet, Silty Fine SAND (SM) with Trace Roots Loose to Medium Dense, Brown, Moist, Clayey Silty Fine to Medium SAND (SM) Noted Trace Fine Gravel at 6.5'‐8.0' Medium Dense, Brown, Moist, Slightly Clayey Silty Fine to Medium SAND (SM) with Trace Fine Gravel (8.5'‐10.0') Firm, Pink‐Orange, Wet, Fine Sandy Clayey SILT (ML) Medium Dense, Tan, Wet, Fine to Medium SAND (SM) with Trace Silt and Fine Gravel Boring Terminated at 25 feet. 246.5 245.0 239.0 230.0 225.0 222.0 Elevation: 247 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 25.0' Date Drilled: 3/11/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐4  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 20.0 25.0 1‐2‐2 2‐3‐5 3‐4‐5 4‐7‐9 8‐15‐8 8‐8‐10 3‐6‐6 5‐9‐10 GROUNDWATER DATA: 0 Hr: 19.6' inside PVC 24 Hrs: 20.0' inside PVC 0.3 2.0 6.0 17.0 22.0 25.0 0.0 2.0 3.5 6.5 8.5 13.5 18.5 23.5 4 8 9 16 23 18 12 19 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose, Gray, Wet, Silty Fine SAND (SM) with Trace Roots Loose, Orange‐Brown, Wet, Silty Clayey Fine to Medium SAND (SC) with Trace Roots Medium Dense, Red‐Brown to Gray‐Brown, Moist to Wet, Clayey Silty Fine to Medium SAND (SM) Wet from 13.5'‐15.0' Stiff, Brown‐Pink, Wet, Fine Sandy CLAY (CL) Medium Dense, Brown, Wet, Silty Fine to Coarse SAND (SM) with Trace Fine Gravel Boring Terminated at 25 feet. 246.7 245.0 241.0 230.0 225.0 222.0 Elevation: 247 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 25.0' Date Drilled: 3/11/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐5  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 20.0 25.0 2‐4‐7 3‐4‐7 5‐6‐11 10‐12‐12 16‐21‐18 5‐7‐9 5‐6‐7 2‐3‐4 GROUNDWATER DATA: 0 Hr: 23.0' inside PVC 24 Hrs: 21.5' inside PVC 0.4 2.0 6.0 12.0 17.0 22.0 25.0 0.0 2.0 3.5 6.5 8.5 13.5 18.5 23.5 11 11 17 24 39 16 13 7 SURFICIAL ORGANIC SOILS NATIVE SOILS: Medium Dense, Tan, Moist, Very Silty Fine SAND (SM) Medium Dense, Orange‐Brown, Wet, Silty Clayey Fine to Medium SAND (SC) Medium Dense, Orange‐Brown, Moist, Slightly Clayey Silty Fine to Medium SAND (SM) Noted Quartz Fragments from 8.5'‐10.0' Medium Dense, Brown‐Gray, Wet, Silty Clayey Fine to Medium SAND (SC) Stiff, Brown, Wet, Fine to Medium Sandy CLAY (CL) Firm, Brown, Wet, Fine Sandy CLAY (CH) Boring Terminated at 25 feet. 246.1 244.5 240.5 234.5 229.5 224.5 221.5 Elevation: 246.5 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 25.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐6  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 1‐2‐3 2‐3‐4 3‐2‐4 3‐6‐6 5‐5‐7 8‐5‐6 GROUNDWATER DATA: 0 Hr: Dry inside PVC 24 Hrs: Dry inside PVC 0.5 2.0 3.5 15.0 0.0 2.0 3.5 6.5 8.5 13.5 5 7 6 12 12 11 SURFICIAL ORGANIC SOILS NATIVE SOILS: Loose, Tan, Moist, Silty Fine SAND (SM) with Trace Roots Loose, Orange, Wet, Silty Clayey Fine to Medium SAND (SC) with Trace Roots Loose to Medium Dense, Brown, Moist to Wet, Clayey Silty Fine to Medium SAND (SM) with Trace Fine Gravel (8.5'‐10.0') Wet from 8.5'‐10.0' Boring Terminated at 15 feet. 242.5 241.0 239.5 228.0 Elevation: 243 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 15.0' Date Drilled: 3/11/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐7  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 1‐1‐1 2‐4‐4 2‐3‐4 3‐7‐8 5‐8‐11 8‐7‐9 GROUNDWATER DATA: 0 Hr: Dry inside PVC 24 Hrs: Dry inside PVC 0.7 2.0 6.0 8.0 12.0 15.0 0.0 2.0 3.5 6.5 8.5 13.5 2 8 7 15 19 16 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose, Tan‐Gray, Wet, Very Silty Fine SAND (SM) Loose, Brown‐Orange, Moist, Silty Clayey Fine to Medium SAND (SC) with Trace Roots Medium Dense, Brown, Moist, Slightly Clayey Silty Fine to Medium SAND (SM) with Trace Roots Medium Dense, Gray‐Brown‐Orange, Wet, Silty Clayey Fine to Medium SAND (SC) Medium Dense, Brown‐Gray, Wet, Clayey Silty Fine to Medium SAND (SM) Boring Terminated at 15 feet. 246.3 245.0 241.0 239.0 235.0 232.0 Elevation: 247 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 15.0' Date Drilled: 3/11/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐8  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 3‐4‐4 3‐6‐7 4‐7‐14 14‐16‐19 9‐17‐18 5‐6‐10 GROUNDWATER DATA: 0 Hr: Dry inside PVC 24 Hrs: Dry inside PVC 0.2 2.0 8.0 15.0 0.0 2.0 3.5 6.5 8.5 13.5 8 13 21 35 35 16 SURFICIAL ORGANIC SOILS NATIVE SOILS: Loose, Gray, Moist, Very Silty Fine SAND (SM) Medium Dense to Dense, Brown‐Orange to Red‐Brown, Wet to Moist, Clayey Silty Fine to Medium SAND (SM) Moist from 6'‐8' Medium Dense to Dense, Red‐Brown to Brown, Moist, Very Silty Fine to Medium SAND (SM) Boring Terminated at 15 feet. 248.8 247.0 241.0 234.0 Elevation: 249 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 15.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐9  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 2‐5‐4 4‐6‐9 6‐12‐18 12‐13‐12 7‐11‐9 11‐16‐13 GROUNDWATER DATA: 0 Hr: Dry, Caved at 12.8' 24 Hrs: Dry, Caved at 11.3' 3.5 6.0 12.0 15.0 0.0 2.0 3.5 6.5 8.5 13.5 9 15 30 25 20 29 NATIVE SOILS: Loose to Medium Dense, Orange‐Brown, Wet, Silty Clayey Fine to Medium SAND (SC) Medium Dense, Orange‐Brown, Moist, Clayey Silty Fine SAND (SM) Medium Dense, Orange‐Brown, Moist, Very Silty Fine SAND (SM) Medium Dense, Pink‐Brown, Moist, Silty Fine to Medium SAND (SM) Boring Terminated at 15 feet. 245.5 243.0 237.0 234.0 Elevation: 249 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 15.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐10  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 8.0 10.0 15.0 2‐6‐8 2‐4‐4 3‐4‐5 4‐7‐9 10‐11‐7 3‐4‐6 GROUNDWATER DATA: 0 Hr: Dry inside PVC 24 Hrs: 14.0' inside PVC 0.4 2.0 3.5 12.0 15.0 0.0 2.0 3.5 6.5 8.5 13.5 14 8 9 16 18 10 SURFICIAL ORGANIC SOILS NATIVE SOILS: Medium Dense, Tan, Moist, Very Silty Fine SAND (SM) Loose, Orange‐Brown, Wet, Silty Clayey Fine to Medium SAND (SC) Loose to Medium Dense, Brown to Pink‐Gray, Moist to Wet, Clayey Silty Fine to Medium SAND (SM) Wet from 8.5'‐12.0' Loose, Brown, Wet, Clayey Very Silty Fine SAND (SM) Boring Terminated at 15 feet. 245.1 243.5 242.0 233.5 230.5 Elevation: 245.5 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 15.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐11  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 1‐2‐3 1‐3‐4 2‐5‐8 GROUNDWATER DATA: 0 Hr: Dry, Caved at 3.5' 24 Hrs: Dry, Caved at 3.0' 0.5 2.0 5.0 0.0 2.0 3.5 5 7 13 SURFICIAL ORGANIC SOILS NATIVE SOILS: Loose, Tan, Moist, Silty Fine to Medium SAND (SM) with Trace Roots and Fine Gravel Loose to Medium Dense, Orange‐Brown to Tan‐Brown, Moist to Wet, Silty Clayey Fine to Medium SAND (SC) Moist from 2'‐3.5' Boring Terminated at 5 feet. 242.0 240.5 237.5 Elevation: 242.5 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 5.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐12  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 3‐5‐4 4‐4‐5 2‐4‐4 GROUNDWATER DATA: 0 Hr: Dry, Caved at 3.0' 24 Hrs: Dry, Caved at 2.9' 2.0 5.0 0.0 2.0 3.5 9 9 8 NATIVE SOILS: Loose, Dark Gray, Moist, Very Silty Fine SAND (SM) with Trace Roots Loose, Brown, Wet, Silty Clayey Fine to Medium SAND (SC) Boring Terminated at 5 feet. 245.0 242.0 Elevation: 247 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 5.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐13  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 1‐2‐2 3‐6‐7 6‐9‐12 GROUNDWATER DATA: 0 Hr: Dry, Caved at 3.0' 24 Hrs: Dry, Caved at 2.9' 0.3 2.0 5.0 0.0 2.0 3.5 4 13 21 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose, Tan, Moist, Silty Fine to Medium SAND (SM) Medium Dense, Brown, Wet, Silty Clayey Fine to Coarse SAND (SC) Boring Terminated at 5 feet. 236.2 234.5 231.5 Elevation: 236.5 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 5.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐14  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 1‐4‐5 2‐1‐3 4‐4‐6 GROUNDWATER DATA: 0 Hr: Dry, Caved at 3.0' 24 Hrs: Dry, Caved at 2.8' 0.4 2.0 3.5 5.0 0.0 2.0 3.5 9 4 10 SURFICIAL ORGANIC SOILS NATIVE SOILS: Loose, Dark Gray and Gray, Moist, Very Silty Fine SAND (SM) Very Loose, Gray, Wet, Clayey Silty Fine to Medium SAND (SM) with Trace Roots Loose, Brown‐Gray, Wet, Silty Clayey Fine to Medium SAND (SC) Boring Terminated at 5 feet. 240.6 239.0 237.5 236.0 Elevation: 241 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 5.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐15  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 9‐6‐9 2‐3‐4 2‐4‐4 GROUNDWATER DATA: 0 Hr: Dry, Caved at 3.0' 24 Hrs: Dry, Caved at 2.9' 0.1 0.8 2.0 5.0 0.0 2.0 3.5 15 7 8 SURFICIAL ORGANIC SOILS POSSIBLE FILL: Medium Dense, Tan‐Gray, Moist, Silty Fine SAND (SM) POSSIBLE FILL: Medium Dense, Gray, Moist, Silty Fine to Coarse SAND (SM) with Trace Roots and Fine to Coarse Gravel NATIVE SOILS: Loose, Brown, Wet, Silty Clayey Fine to Medium SAND (SC) with Trace Fine Gravel Noted Petroleum Odor form 2.0'‐5.0' Boring Terminated at 5 feet. 239.9 239.2 238.0 235.0 Elevation: 240 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 5.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐16  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 1.5 3.5 5.0 1‐1‐1 3‐2‐4 2‐2‐4 GROUNDWATER DATA: 0 Hr: Dry inside PVC 24 Hrs: Dry inside PVC 0.5 5.0 0.0 2.0 3.5 2 6 6 SURFICIAL ORGANIC SOILS NATIVE SOILS: Very Loose to Loose, Brown, Wet, Silty Clayey Fine to Medium SAND (SC) Boring Terminated at 5 feet. 243.5 239.0 Elevation: 244 ±Drilling Method: 2.25" ID HSA Hammer Type: Automatic Froehling & Robertson, Inc. City/State: Fayetteville, NC Project: Large TEMF Total Depth: 5.0' Date Drilled: 3/12/19 Remarks* Sample BlowsElevationDescription of Materials (Classification) Boring Location: See Boring Location Plan BORING LOG Boring: C‐17  (1 of 1) Driller: F&R Renza SampleDepth(feet)Depth R N‐Value(blows/ft) *Number of blows required for a 140 lb hammer dropping 30" to drive 2" O.D., 1.375" I.D. sampler a total of 18 inches in three 6" increments. The sum of the second and third increments of penetration is termed the standard penetration resistance, N‐Value. Client: ACC Construction Company Project No: 66X‐0030 BORING_LOG  66X‐0030 BORING LOGS.GPJ  F&R.GDT  4/12/19 ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF  April 12, 2019  APPENDIX III  LABORATORY RESULTS  0 10 20 30 40 50 60 0 20406080100 PI 14 NP 23 21 36 PLLL Classification % Natural Water Content 15.7 9.8 18.2 16.8 23.9 ATTERBERG LIMITS 33 NP 48 48 70 19 NP 25 27 34                     Liquid LimitPlasticity IndexFinesBoring No. Depth CH ML MH CLAYEY SAND (SC) SILTY SAND (SM) CLAYEY SAND (SC) CLAYEY SAND (SC) SILTY SAND (SM) 40.5 26.0 38.2 43.7 41.1 CL‐ML CL Sheet: 1 of 1 C‐12 (Bag) C‐15 (Bag) C‐3 C‐5 C‐9 1.0' ‐ 3.0' 1.0' ‐ 3.0' 2' ‐ 3.5' 3.5' ‐ 5' 2' ‐ 3.5' Client: ACC City/State: Fort Bragg, NC Project: Large TEMF Project No: 66X‐0030 R Froehling & Robertson, Inc.ATTERBERG_LIMITS_USCS  66X‐0030 LAB TESTING.GPJ  F&R.GDT  4/12/19 85 90 95 100 105 110 115 120 125 130 0 5 10 15 20 25 30 35 0 5 10 C-12 C-15 0.0 0.0 C-12 C-15 15.7 9.8 5.5 lb Hammer, 12" Drop 5.5 lb Hammer, 12" Drop 1.0' - 3.0' 1.0' - 3.0' 40.5 26.0 12.0 8.6 33 NP 19 NP 14 NP 120.4 126.9 D-698 A D-698 A 59.5 74.0 Brown, CLAYEY SAND (SC) Gray, SILTY SAND (SM) ASTM MOISTURE-DENSITYRELATIONSHIP Client: ACC City/State: Fort Bragg, NC Project: Large TEMF Project No: 66X-0030 R PROCTOR CURVE 66X-0030 LAB TESTING.GPJ F&R.GDT 4/10/19Bag: C-12 Bag: C-15 Sample Depth (ft)Classification PLSample Sample Notes % GRAVEL (+ #4) Sample Location Natural Moisture (%) Max Dry Density (pcf) Optimum Moisture (%) LL PI % SAND (#4 - #200) % FINES (- #200) ASTM C-15 Bag: C-15 SM 26 C-15 Silty Sand (SM)126.9 8.6 Boring Number Sample Location USCS % - #200 C-12 Bag: C-12 SC 40.5 Sample Information Proctor Value (ASTM D-698) Boring Number Classification Max. Dry Density (pcf)Optimum Moisture % C-12 Clayey Sand (SC)120.4 12.0 Project Number:66X-0030 Percent Swell A B Project Location:Fort Bragg, NC C-15 -0.150 -0.110 Date Received:3/29/2019 C-12 0.020 -0.020 Project Information Natural Moisture (%) Project Name:Large TEMF C-12 15.7 Client Name:ACC C-15 9.8 Final Moisture (%)12.9 12.7 9.6 9.6 Final Density (pcf)118.0 118.3 126.6 125.8 Initial Moisture (%)12.1 12.2 9.1 9.3 Initial Density (pcf)117.3 117.4 126.4 125.2 C-15 (B) California Bearing Ratio Test Report - ASTM D-1883 0.1" Penetration 9.8 8.8 23.6 29.3 SOAKED CBR TEST RESULTS Results C-12 (A)C-12 (B)C-15 (A) Corrrected 0.2" Penetration 11.2 10.7 31.3 33.8 0 100 200 300 400 500 600 700 800 900 1000 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450 0.500Force on Piston (psi)Penetration (in) Load Penetration Curve C-12 (A) C-12 (B) C-15 (A) Corrrected C-15 (B) Project No.66X-0030 Date Tested Project Name:Large TEMF 15.7 Client:ACC USCS:SC Sample Location:Bag: C-12 10.0 Sample Description:Clayey Sand (SC) 96 Soaked Height (in):4.55 Liquid Limit:33 Max Dry Dens. (pcf):120.40 Swell (%):0.02 Plastic Limit:19 Opt. Moisture (%):12.00 Initial Final 4.54 Moist Soil + tare (g)433.70 811.20 6939.30 Dry Soil + tare (g)403.50 736.10 25.13 tare (g)154.70 155.10 4459.48 Moisture (%)12.1 12.9 129.1 117.3 97.4 -21.74 0.000 141.94 0.050 211.02 0.075 273.70 0.100 333.58 0.125 387.85 0.150 437.41 0.175 484.28 0.200 527.05 0.225 568.12 0.250 606.04 0.275 641.54 0.300 676.71 0.325 709.31 0.350 739.94 0.375 771.20 0.400 831.13 0.450 859.75 0.475 Drew CouncilTest Performed By: 16 264.3 0.405 18 284.3 0.456 Specimen C-12 (A) Information Specimen Data Hours Soaked 19 293.8 0.482 11.30 11.49 0.00 14 243.7 0.355 0.00 15 253.9 0.380 11 209.3 0.279 0.00 0.00 12 221.1 0.304 11.64 13 232.8 0.329 0.00 8 168.7 0.203 11.24 9 182.9 0.228 0.00 10 196.6 0.253 0.00 5 118.4 0.127 0.00 6 136.5 0.152 0.00 7 153.0 0.177 0.00 2 54.6 0.051 0.00 3 77.6 0.076 0.00 4 98.5 0.101 9.85 Actual Compaction (%) Specimen Test Data Soil Weight (g) 0 0.0 0.000 0.00 Load (lbs) Disp. (in) Force on Piston (psi) Penetration (in) Corrected CBR ValueRead Number Mold Volume (in3) Dry Density (pcf) Weight (g) Soil Weight + Mold (g) Height (in) Project Information 3/29/2019 Natural Moisture: Surcharge Weight (lb.): % Retained on 19.0 mm: Compacted Specimen Moisture Percentage CBR Test - Results Page 2 of 5 Project No.66X-0030 Date Tested Project Name:Large TEMF 15.7 Client:ACC USCS:SC Sample Location:Bag: C-12 10.0 Sample Description:Clayey Sand (SC) 96 Soaked Height (in):4.58 Liquid Limit:33 Max Dry Dens. (pcf):120.40 Swell (%):-0.02 Plastic Limit:19 Opt. Moisture (%):12.00 Initial Final 4.58 Moist Soil + tare (g)486.90 758.40 7072.10 Dry Soil + tare (g)450.90 690.00 25.49 tare (g)155.60 151.50 4487.70 Moisture (%)12.2 12.7 4459.5 117.4 97.5 -12.91 0.000 127.48 0.050 189.84 0.075 251.37 0.100 309.83 0.125 365.67 0.150 419.19 0.175 468.32 0.200 516.48 0.225 561.90 0.250 604.68 0.275 644.68 0.300 683.54 0.325 720.07 0.350 755.32 0.375 789.05 0.400 858.13 0.450 889.40 0.475 Drew CouncilTest Performed By: 16 267.3 0.405 18 290.3 0.456 Specimen C-12 (B) Information Hours Soaked Specimen Data 19 300.8 0.481 11.57 11.62 0.00 14 244.3 0.355 0.00 15 256.1 0.380 11 205.9 0.279 0.00 0.00 12 219.2 0.304 11.54 13 232.2 0.329 0.00 8 160.4 0.203 10.69 9 176.5 0.228 0.00 10 191.6 0.253 0.00 5 107.6 0.127 0.00 6 126.2 0.152 0.00 7 144.0 0.177 0.00 2 46.8 0.051 0.00 3 67.6 0.076 0.00 4 88.1 0.101 8.81 Actual Compaction (%) Specimen Test Data Soil Weight (g) 0 0.0 0.000 0.00 Read Number Load (lbs) Disp. (in) Force on Piston (psi) Penetration (in) Corrected CBR Value Mold Volume (in3) Dry Density (pcf) Weight (g) Soil Weight + Mold (g) Height (in) Project Information 3/29/2019 Natural Moisture: Surcharge Weight (lb.): % Retained on 19.0 mm: Compacted Specimen Moisture Percentage CBR Test - Results Page 3 of 5 Project No.66X-0030 Date Tested Project Name:Large TEMF 9.8 Client:ACC USCS:SM Sample Location:Bag: C-15 10.0 Sample Description:Silty Sand (SM) 96 Soaked Height (in):4.58 Liquid Limit:0 Max Dry Dens. (pcf):126.90 Swell (%):-0.15 Plastic Limit:0 Opt. Moisture (%):8.60 Initial Final 4.59 Moist Soil + tare (g)555.50 1071.40 8050.70 Dry Soil + tare (g)522.40 991.60 28.10 tare (g)156.60 157.00 4695.93 Moisture (%)9.1 9.6 129.8 126.4 99.6 -21.18 0.002 126.60 0.052 244.36 0.077 385.26 0.102 555.78 0.127 738.34 0.152 918.70 0.177 1091.69 0.202 1264.64 0.227 1433.61 0.252 1592.51 0.277 1745.41 0.302 1897.14 0.327 2047.24 0.352 2194.81 0.377 2339.91 0.402 2635.32 0.452 2768.84 0.477 Drew Council 18 885.5 0.456 0.00 19 930.0 0.481 0.00 Test Performed By: 14 689.5 0.355 0.00 15 738.7 0.380 0.00 16 787.0 0.405 37.89 11 537.9 0.279 0.00 12 588.9 0.304 35.53 13 639.4 0.329 0.00 8 371.0 0.203 31.25 9 428.6 0.228 0.00 10 484.9 0.253 0.00 5 192.3 0.127 0.00 6 253.2 0.152 0.00 7 313.3 0.177 0.00 2 49.3 0.051 0.00 3 88.5 0.076 0.00 4 135.5 0.102 23.58 Actual Compaction (%) Specimen Test Data Soil Weight (g) 0 0.0 0.000 0.00 Load (lbs) Disp. (in) Force on Piston (psi) Penetration (in) Corrected CBR ValueRead Number Mold Volume (in3) Dry Density (pcf) Weight (g) Soil Weight + Mold (g) Height (in) Specimen C-15 (A) Corrrected Information Compacted Specimen Moisture Percentage Project Information Hours Soaked 3/29/2019 Natural Moisture: Surcharge Weight (lb.): % Retained on 19.0 mm: Specimen Data CBR Test - Results Page 4 of 5 Project No.66X-0030 Date Tested Project Name:Large TEMF 9.8 Client:ACC USCS:SM Sample Location:Bag: C-15 10.0 Sample Description:Silty Sand (SM) 96 Soaked Height (in):4.57 Liquid Limit:0 Max Dry Dens. (pcf):126.90 Swell (%):-0.11 Plastic Limit:0 Opt. Moisture (%):8.60 Initial Final 4.58 Moist Soil + tare (g)504.60 1021.10 8026.20 Dry Soil + tare (g)474.70 945.10 27.95 tare (g)153.80 153.90 4652.84 Moisture (%)9.3 9.6 129.5 125.2 98.7 -114.41 0.001 402.61 0.051 586.09 0.076 765.10 0.101 936.76 0.126 1096.98 0.151 1253.93 0.176 1405.23 0.201 1549.90 0.226 1697.96 0.251 1841.73 0.276 1974.91 0.301 2077.65 0.326 2100.43 0.351 2052.97 0.376 1952.51 0.401 1860.30 0.451 1856.11 0.476 Drew Council Specimen C-15 (B) Information Hours Soaked 19 656.8 0.481 25.26 14 738.3 0.355 0.00 15 722.5 0.380 0.00 12 696.4 11 652.0 0.279 0.00 0.304 36.65 13 730.7 Test Performed By: 16 689.0 0.405 29.96 18 658.2 0.456 0.00 0.330 0.00 8 506.5 0.203 33.77 9 554.8 0.228 0.00 10 604.1 0.253 0.00 5 350.4 0.127 0.00 6 403.8 0.152 0.00 7 456.1 0.177 0.00 2 172.3 0.051 0.00 3 233.5 0.076 0.00 4 293.2 0.101 29.32 Actual Compaction (%) Specimen Test Data Soil Weight (g) 0 0.0 0.000 0.00 Load (lbs) Disp. (in) Force on Piston (psi) Penetration (in) Corrected CBR ValueRead Number Mold Volume (in3) Dry Density (pcf) Weight (g) Soil Weight + Mold (g) Height (in) Project Information Specimen Data 3/29/2019 Natural Moisture: Surcharge Weight (lb.): % Retained on 19.0 mm: Compacted Specimen Moisture Percentage CBR Test - Results Page 5 of 5 ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF  April 12, 2019  APENDIX IV  SHWT DETERMINATION &  INFILTRATION TESTING  SEASONAL HIGH WATER TABLE DETERMINATION AND HYDRAULIC CONDUCTIVITY TESTING Large TEMF Project Site Cumberland County, North Carolina Three Oaks Job # 19-702 Prepared For: Froehling & Robertson, Inc. 310 Hubert Street Raleigh, NC 27603 Prepared By: 324 Blackwell Street, Suite 1200 Durham, NC 27701 (919) 732-1300 March 27, 2019 Evan Morgan Large TEMF SHWT and KSAT Testing March 27, 2019 Three Oaks Job #19-702 1 INTRODUCTION Froehling & Robertson, Inc. (F&R) is investigating the construction of stormwater control measures (SCM) within the Large TEMF project site located on Fort Bragg in Cumberland County, NC. The SCMs are being considered to collect and treat runoff from impervious surfaces. As part of the application process, a soils investigation detailing soil type and depth to the seasonal high water table (SHWT) and saturated hydraulic conductivity (KSAT) testing is required. Three Oaks Engineering (Three Oaks) has been retained to perform the soils investigation. INVESTIGATION METHODOLOGY The field investigation was performed on March 7th and 20th, 2019, by Evan T. Morgan, LSS and John C. Roberts, LSS. The study area is a pine stand mixed with smaller hardwood species. Soil borings were advanced via a hand auger at two locations determined by the client within each proposed SCM. Observations of the landscape (slope, drainage patterns, etc.) as well as soil properties (depth, texture, structure, seasonal wetness, restrictive horizons, etc.) were recorded. Soil borings and profiles were described per the USDA-NRCS, Field Book for Describing and Sampling Soils, version 3.0. Soil color was determined with a Munsell Soil Color Chart. The Web Soil Survey was referenced prior to the field investigation to get an overview of the possible soil series located at the SCM locations. The Faceville and Wagram soil series are mapped at the SCM location. Information for the soil series is listed in Table 1. Table 1. Map Unit Symbol, Soil Series, and Taxonomic Classification Map Unit Symbol Soil Series Taxonomic Class FaB Faceville Fine, kaolinitic, thermic Typic Kandiudults WaB Wagram Loamy, kaolinitic, thermic Arenic Kandiudults Soil borings B5 and B6 were conducted approximately 1-foot above the v-ditch that crosses the proposed basin footprint. The tests were conducted here as the proposed basin footprint includes an existing paved road and constructed slopes. The infiltration rate was determined by measuring the saturated hydraulic conductivity (KSAT) rate of the soil with a compact constant-head permeameter (Amoozemeter). KSAT test values were generated using the published calculations and formulas found in the meter ’s User’s Manual. The Glover solution was chosen as the most appropriate method for calculating KSAT rates. The Glover solution is recommended when the distance between the bottom of the auger hole and any impermeable layer(s) is greater than two times the head (H), or constant water level in the hole. The Glover solution is given by: KSAT = AQ Where: A= {sinh-1(H/r)-[(r/H)2+1] 1/2+r/H} / (2πH2) And: Q is the steady-state rate of water flow from the Amoozemeter into the auger hole. To solve for A: H is the head in the hole (i.e. total water depth) and r is the radius of the hole. Values for H and r can be found on the attached KSAT data sheets. Large TEMF SHWT and KSAT Testing March 27, 2019 Three Oaks Job #19-702 2 RESULTS Soil Series and SHWT Determinations A soil series determination was attempted by comparing the soil boring profile descriptions to the NRCS Official Series Description (OSD) and the results listed in Table 2. All soil borings were representative of the Faceville soil series. Soil characteristics indicative of a SHWT (redox concentrations and depletions) were observed at all six boring locations and the depths shown in Table 2. Full soil profile descriptions are attached. Table 2. Soil Series Determination, and SHWT Depth Soil Boring Soil Series Determination SHWT (in. below surface) B1 Faceville 82 B2 Faceville >136 B3 Faceville 73 B4 Faceville 70 B5 Faceville 72 B6 Faceville 40 Hydraulic Conductivity Measurements KSAT tests were completed in the most limiting soil horizon within two feet of the SHWT and the results are listed in Table 3 below. It should be noted that KSAT values only represent the infiltration rate within the tested soil horizon and cannot be applied to other soil horizons with differing soil properties (texture, structure, consistence, mineralogy, etc.). Table 3: Hydraulic conductivity tests results parameters Test # Soil Boring # Horizon/ Texture Test Depth (in) Measured KSAT (in/hr) 1 B1 BC1 / C 76 0.0114 2 B2 C / SL 110 0.4533 3 B3 Bt / C 56 0.0483 4 B4 Bt2 / C 62 0.1074 5 B5 BC1 / SCL 65 0.1791 6 B6 BC1 / C 36 0.0231 CONCLUSIONS The findings presented herein represent Three Oaks’ professional opinion based on our soil investigation. Soil characteristics indicative of a SHWT was observed at all six boring locations. KSAT tests were conducted at each boring location in the most limiting soil horizon that occurs within 2-feet of the SHWT. Due to the inherent variability of soils to change over short distances the soil profile description presented in this report may not be representative of the entire soil system of the SCM footprint. This report is provided to assist in the application for the SCMs by providing the soil information. The permitting agency must issue the final permit. Any concurrence with the findings in this report would be made at that time. Three Oaks Engineering Job #: 19-702 Large TEMF Date:3/20/2019 Weather Condition:Sunny, 50 Test #:K1 Location:B1 Horizon:BC1 cm in Depth(inches):76.0 Target Water Level:15.2 6.00 cm in Beginning Water Level:15.2 6.00 Hole Depth:193.0 76.0 Ending Water Level:15.2 6.00 Reference:+10.2 4.0 Head:-15.2 6.0 CHT Tube(s) setting:=188.0 74.0 Hole diameter (d):5.0 cm Hole radius (r):2.5 cm x coefficient A:0.001136 1-ON 2-ON Note: Changed to 1-On at 2:51pm Initial Reservoir Reading (cm)33.46 Coversion Factor (C.F.):105.0 Formula Used: x s>=2H {sinh^-1(H/r)-[(r/H)^2+1]^1/2+r/H}/(2πH^2) s<2H {3ln(H/r)/[πH(3H+2s)]} Date/Time Logger Reservoir Change in Chamber Clock Q K K Reading (m)Reading (cm)Water Level (cm)C.F.Time (min)(min)(hr)(cm3/hr)(cm/hr)(in/hr) 03/20/19 11:46:17AM 0.3346 33.46 0.0 105.0 0.0 0.5 03/20/19 12:01:17PM 0.3337 33.37 0.1 105.0 15.0 15.00 0.250 38.5 0.04373 0.0172 03/20/19 12:16:17PM 0.3341 33.41 0.0 105.0 30.0 15.00 0.250 -15.6 -0.01767 -0.0070 03/20/19 12:31:17PM 0.3318 33.18 0.2 105.0 45.0 15.00 0.250 94.4 0.10725 0.0422 03/20/19 12:46:17PM 0.3299 32.99 0.2 105.0 60.0 15.00 0.250 81.8 0.09293 0.0366 03/20/19 01:01:17PM 0.3304 33.04 -0.1 105.0 75.0 15.00 0.250 -22.2 -0.02524 -0.0099 03/20/19 01:16:17PM 0.3277 32.76 0.3 105.0 90.0 15.00 0.250 115.5 0.13126 0.0517 03/20/19 01:31:17PM 0.3261 32.61 0.2 105.0 105.0 15.00 0.250 65.3 0.07416 0.0292 03/20/19 01:46:17PM 0.3274 32.74 -0.1 105.0 120.0 15.00 0.250 -53.5 -0.06080 -0.0239 03/20/19 02:01:17PM 0.3254 32.54 0.2 105.0 135.0 15.00 0.250 81.9 0.09309 0.0366 03/20/19 02:16:17PM 0.3264 32.64 -0.1 105.0 150.0 15.00 0.250 -40.9 -0.04648 -0.0183 03/20/19 02:31:17PM 0.3248 32.47 0.2 105.0 165.0 15.00 0.250 68.8 0.07814 0.0308 03/20/19 02:46:17PM 0.3237 32.36 0.1 105.0 180.0 15.00 0.250 46.7 0.05312 0.0209 03/20/19 03:01:17PM 0.3223 32.23 0.1 105.0 195.0 15.00 0.250 55.9 0.06354 0.0250 03/20/19 03:16:17PM 0.3212 32.12 0.1 20.0 210.0 15.00 0.250 8.8 0.01004 0.0040 03/20/19 03:31:17PM 0.3175 31.75 0.4 20.0 225.0 15.00 0.250 29.9 0.03399 0.0134 03/20/19 03:46:17PM 0.3128 31.28 0.5 20.0 240.0 15.00 0.250 37.6 0.04270 0.0168 Last 3 Average 0.0114 Saturated Hydraulic Conductivity Testing SET UP Valve Setting: Elapsed Time -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200 250 300In/HourTime (min) In/Hour vs. Time Three Oaks Engineering Job #: 19-702 Large TEMF Date:3/20/2019 Weather Condition:Sunny, 50 Test #:K2 Location:B2 Horizon:C cm in Depth(inches):110.0 Target Water Level:15.2 6.00 cm in Beginning Water Level:15.2 6.00 Hole Depth:279.4 110.0 Ending Water Level:15.2 6.00 Reference:+10.2 4.0 Head:-15.2 6.0 CHT Tube(s) setting:=274.3 108.0 Hole diameter (d):5.0 cm Hole radius (r):2.5 cm x coefficient A:0.001136 1-ON 2-ON Initial Reservoir Reading (cm)26.84 Coversion Factor (C.F.):105.0 Formula Used: x s>=2H {sinh^-1(H/r)-[(r/H)^2+1]^1/2+r/H}/(2πH^2) s<2H {3ln(H/r)/[πH(3H+2s)]} Date/Time Logger Reservoir Change in Chamber Clock Q K K Reading (m)Reading (cm)Water Level (cm)C.F.Time (min)(min)(hr)(cm3/hr)(cm/hr)(in/hr) 03/20/19 11:31:40AM 0.2684 26.84 0.0 105.0 0.0 03/20/19 11:46:40AM 0.2384 23.84 3.0 105.0 15.0 15.00 0.250 1259.4 1.43094 0.5634 03/20/19 12:01:40PM 0.2051 20.52 3.3 105.0 30.0 15.00 0.250 1396.7 1.58691 0.6248 03/20/19 12:16:40PM 0.1759 17.59 2.9 105.0 45.0 15.00 0.250 1230.1 1.39771 0.5503 03/20/19 12:31:40PM 0.1479 14.79 2.8 105.0 60.0 15.00 0.250 1174.5 1.33452 0.5254 03/20/19 12:46:40PM 0.1213 12.14 2.7 105.0 75.0 15.00 0.250 1115.4 1.26730 0.4989 03/20/19 01:01:40PM 0.0963 9.63 2.5 105.0 90.0 15.00 0.250 1050.7 1.19379 0.4700 03/20/19 01:16:40PM 0.0755 7.55 2.1 105.0 105.0 15.00 0.250 873.7 0.99271 0.3908 Last 3 Average 0.4533 Saturated Hydraulic Conductivity Testing SET UP Valve Setting: Elapsed Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 20 40 60 80 100 120In/HourTime (min) In/Hour vs. Time Three Oaks Engineering Job #: 19-702 Large TEMF Date:3/20/2019 Weather Condition:Sunny, 50 Test #:K3 Location:B3 Horizon:Bt cm in Depth(inches):56.0 Target Water Level:15.2 6.00 cm in Beginning Water Level:15.2 6.00 Hole Depth:142.2 56.0 Ending Water Level:15.2 6.00 Reference:+10.2 4.0 Head:-15.2 6.0 CHT Tube(s) setting:=137.2 54.0 Hole diameter (d):5.0 cm Hole radius (r):2.5 cm x coefficient A:0.001136 1-ON 2-ON Initial Reservoir Reading (cm)36.51 Coversion Factor (C.F.):105.0 Formula Used: x s>=2H {sinh^-1(H/r)-[(r/H)^2+1]^1/2+r/H}/(2πH^2) s<2H {3ln(H/r)/[πH(3H+2s)]} Date/Time Logger Reservoir Change in Chamber Clock Q K K Reading (m)Reading (cm)Water Level (cm)C.F.Time (min)(min)(hr)(cm3/hr)(cm/hr)(in/hr) 03/20/19 01:30:00PM 0.3651 36.51 0.0 105.0 0.0 03/20/19 01:31:40PM 0.3600 36.00 0.5 105.0 1.0 1.00 0.017 3217.8 3.65617 1.4394 03/20/19 01:46:40PM 0.3602 36.02 0.0 105.0 16.0 15.00 0.250 -6.7 -0.00759 -0.0030 03/20/19 02:01:40PM 0.3584 35.84 0.2 105.0 31.0 15.00 0.250 74.5 0.08467 0.0333 03/20/19 02:16:40PM 0.3555 35.55 0.3 105.0 45.0 14.00 0.233 130.1 0.14786 0.0582 03/20/19 02:31:40PM 0.3571 35.71 -0.2 105.0 61.0 16.00 0.267 -65.4 -0.07427 -0.0292 03/20/19 02:46:40PM 0.3576 35.76 -0.1 105.0 76.0 15.00 0.250 -21.2 -0.02407 -0.0095 03/20/19 03:01:40PM 0.3538 35.38 0.4 105.0 91.0 15.00 0.250 162.2 0.18427 0.0725 03/20/19 03:16:40PM 0.3549 35.49 -0.1 105.0 106.0 15.00 0.250 -45.2 -0.05132 -0.0202 03/20/19 03:31:40PM 0.3544 35.44 0.0 105.0 121.0 15.00 0.250 20.3 0.02303 0.0091 03/20/19 03:46:40PM 0.3461 34.61 0.8 105.0 136.0 15.00 0.250 349.0 0.39657 0.1561 Last 3 Average 0.0483 Saturated Hydraulic Conductivity Testing SET UP Valve Setting: Elapsed Time -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 20 40 60 80 100 120 140 160In/HourTime (min) In/Hour vs. Time Three Oaks Engineering Job #: 19-702 Large TEMF Date:3/20/2019 Weather Condition:Sunny, 50 Test #:K4 Location:B4 Horizon:Bt2 cm in Depth(inches):62.0 Target Water Level:15.2 6.00 cm in Beginning Water Level:15.2 6.00 Hole Depth:157.5 62.0 Ending Water Level:15.2 6.00 Reference:+10.2 4.0 Head:-15.2 6.0 CHT Tube(s) setting:=152.4 60.0 Hole diameter (d):5.0 cm Hole radius (r):2.5 cm x coefficient A:0.001136 1-ON 2-ON Initial Reservoir Reading (cm)33.6 Coversion Factor (C.F.):105.0 Formula Used: x s>=2H {sinh^-1(H/r)-[(r/H)^2+1]^1/2+r/H}/(2πH^2) s<2H {3ln(H/r)/[πH(3H+2s)]} Date/Time Logger Reservoir Change in Chamber Clock Q K K Reading (m)Reading (cm)Water Level (cm)C.F.Time (min)(min)(hr)(cm3/hr)(cm/hr)(in/hr) 03/20/19 01:31:20PM 0.3360 33.6 0.0 105.0 0.0 0.5 03/20/19 01:46:20PM 0.3314 33.14 0.5 105.0 15.0 15.00 0.250 193.4 0.21975 0.0865 03/20/19 02:01:20PM 0.3240 32.41 0.7 105.0 30.0 15.00 0.250 308.1 0.35008 0.1378 03/20/19 02:16:20PM 0.3228 32.28 0.1 105.0 45.0 15.00 0.250 53.2 0.06042 0.0238 03/20/19 02:31:20PM 0.3187 31.87 0.4 105.0 60.0 15.00 0.250 171.1 0.19436 0.0765 03/20/19 02:46:20PM 0.3139 31.40 0.5 105.0 75.0 15.00 0.250 200.0 0.22728 0.0895 03/20/19 03:01:20PM 0.3081 30.81 0.6 105.0 90.0 15.00 0.250 245.4 0.27879 0.1098 03/20/19 03:16:20PM 0.3018 30.18 0.6 105.0 105.0 15.00 0.250 263.9 0.29984 0.1180 03/20/19 03:31:20PM 0.2957 29.57 0.6 105.0 120.0 15.00 0.250 256.3 0.29122 0.1147 03/20/19 03:46:20PM 0.2909 29.10 0.5 105.0 135.0 15.00 0.250 200.0 0.22728 0.0895 Last 3 Average 0.1074 Saturated Hydraulic Conductivity Testing SET UP Valve Setting: Elapsed Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0 20 40 60 80 100 120 140 160In/HourTime (min) In/Hour vs. Time Three Oaks Engineering Job #: 19-702 Large TEMF Date:3/20/2019 Weather Condition:Sunny, 50 Test #:K5 Location:B5 Horizon:BC1 cm in Depth(inches):65.0 Target Water Level:15.2 6.00 cm in Beginning Water Level:15.2 6.00 Hole Depth:165.1 65.0 Ending Water Level:15.2 6.00 Reference:+10.2 4.0 Head:-15.2 6.0 CHT Tube(s) setting:=160.0 63.0 Hole diameter (d):5.0 cm Hole radius (r):2.5 cm x coefficient A:0.001136 1-ON 2-ON Initial Reservoir Reading (cm)33.17 Coversion Factor (C.F.):105.0 Formula Used: x s>=2H {sinh^-1(H/r)-[(r/H)^2+1]^1/2+r/H}/(2πH^2) s<2H {3ln(H/r)/[πH(3H+2s)]} Date/Time Logger Reservoir Change in Chamber Clock Q K K Reading (m)Reading (cm)Water Level (cm)C.F.Time (min)(min)(hr)(cm3/hr)(cm/hr)(in/hr) 03/20/19 01:32:45PM 0.3317 33.17 0.0 105.0 0.0 0.5 03/20/19 01:47:45PM 0.3274 32.74 0.4 105.0 15.0 15.00 0.250 181.5 0.20627 0.0812 03/20/19 02:02:45PM 0.3159 31.59 1.1 105.0 30.0 15.00 0.250 480.9 0.54637 0.2151 03/20/19 02:17:45PM 0.3072 30.72 0.9 105.0 45.0 15.00 0.250 365.2 0.41498 0.1634 03/20/19 02:32:45PM 0.3009 30.09 0.6 105.0 60.0 15.00 0.250 267.0 0.30333 0.1194 03/20/19 02:47:45PM 0.2948 29.48 0.6 105.0 75.0 15.00 0.250 253.2 0.28765 0.1132 03/20/19 03:02:45PM 0.2870 28.70 0.8 105.0 90.0 15.00 0.250 328.8 0.37362 0.1471 03/20/19 03:17:45PM 0.2768 27.68 1.0 105.0 105.0 15.00 0.250 427.3 0.48554 0.1912 03/20/19 03:32:45PM 0.2720 27.21 0.5 105.0 120.0 15.00 0.250 201.1 0.22844 0.0899 03/20/19 03:47:45PM 0.2613 26.13 1.1 105.0 135.0 15.00 0.250 452.8 0.51447 0.2025 03/20/19 04:02:45PM 0.2482 24.83 1.3 105.0 150.0 15.00 0.250 547.0 0.62153 0.2447 Last 3 Average 0.1791 Saturated Hydraulic Conductivity Testing SET UP Valve Setting: Elapsed Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0 20 40 60 80 100 120 140 160In/HourTime (min) In/Hour vs. Time Three Oaks Engineering Job #: 19-702 Large TEMF Date:3/20/2019 Weather Condition:Sunny, 50 Test #:K6 Location:B6 Horizon:BC1 cm in Depth(inches):36.0 Target Water Level:15.2 6.00 cm in Beginning Water Level:15.2 6.00 Hole Depth:91.4 36.0 Ending Water Level:15.2 6.00 Reference:+10.2 4.0 Head:-15.2 6.0 CHT Tube(s) setting:=86.4 34.0 Hole diameter (d):5.0 cm Hole radius (r):2.5 cm x coefficient A:0.001136 1-ON 2-ON Initial Reservoir Reading (cm)33.64 Coversion Factor (C.F.):105.0 Formula Used: x s>=2H {sinh^-1(H/r)-[(r/H)^2+1]^1/2+r/H}/(2πH^2) s<2H {3ln(H/r)/[πH(3H+2s)]} Date/Time Logger Reservoir Change in Chamber Clock Q K K Reading (m)Reading (cm)Water Level (cm)C.F.Time (min)(min)(hr)(cm3/hr)(cm/hr)(in/hr) 03/20/19 01:05:21PM 0.3364 33.64 0.0 105.0 0.0 0.5 03/20/19 01:20:21PM 0.3342 33.42 0.2 105.0 15.0 15.00 0.250 94.5 0.10736 0.0423 03/20/19 01:35:21PM 0.3346 33.46 0.0 105.0 30.0 15.00 0.250 -18.2 -0.02070 -0.0081 03/20/19 01:50:21PM 0.3329 33.28 0.2 105.0 45.0 15.00 0.250 73.2 0.08318 0.0327 03/20/19 02:05:21PM 0.3356 33.56 -0.3 105.0 60.0 15.00 0.250 -114.8 -0.13046 -0.0514 03/20/19 02:20:21PM 0.3329 33.29 0.3 105.0 75.0 15.00 0.250 111.9 0.12713 0.0501 03/20/19 02:35:21PM 0.3321 33.21 0.1 105.0 90.0 15.00 0.250 32.6 0.03709 0.0146 03/20/19 02:50:21PM 0.3310 33.09 0.1 105.0 105.0 15.00 0.250 50.2 0.05701 0.0224 03/20/19 03:05:21PM 0.3322 33.22 -0.1 105.0 120.0 15.00 0.250 -53.0 -0.06019 -0.0237 03/20/19 03:20:21PM 0.3312 33.11 0.1 105.0 135.0 15.00 0.250 44.6 0.05063 0.0199 03/20/19 03:35:21PM 0.3295 32.94 0.2 105.0 150.0 15.00 0.250 71.5 0.08119 0.0320 03/20/19 03:50:21PM 0.3285 32.85 0.1 105.0 165.0 15.00 0.250 38.7 0.04395 0.0173 Last 3 Average 0.0231 Saturated Hydraulic Conductivity Testing SET UP Valve Setting: Elapsed Time -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0 50 100 150 200In/HourTime (min) In/Hour vs. Time ACC Construction  F&R Project No. 66X‐0030  Proposed SOF Large TEMF  April 12, 2019  APPENDIX V  CALCULATIONS  Page 1Page 2FROEHLING & ROBERTSON, Inc. Date 4/12/2019FROEHLING & ROBERTSON, Inc. Date 4/12/2019SETTLEMENT ANALYSIS OF SHALLOW FOUNDATIONS SETTLEMENT ANALYSIS OF SHALLOW FOUNDATIONSSchmertmann MethodSchmertmann MethodProject: Large TEMFProject: Large TEMFF&R Project Number: 66X-0030 F&R Project Number: 66X-0030Boring C-3Input ResultsColumn Load90,000lbs Footing Size6.0 ftSoil Typeqc/NBearing Pressure2,500psfPo 250 psfCL 3Depth (ft) IzFooting Depth2ftPo0.125 tsfSM 42.0 0.1125pcfP 2,250 psfSC 45.0 0.689737time from load 1yearsP 1.125 tsfSP 514.0 0GWT20.5ftGP 5GW 5Depth to Soil LayerDegrees RadiansTop (ft)Bottom (ft)ZSPT-N SOIL qc/N qc (tsf)IzIz Z / 2.5qc11.12 0.19410Top Angle2.0 12.0 10.012 SC4 48 0.536462 0.0447052 4.38 0.07649 Bottom Angle12.0 14.0 2.030 SM4 120 0.0766370.0005109ok (tsf) 0.0452161c10.94Total Settlement 0.058 ft7.0c21.20Total Settlement 0.7 inches13.0Influence Diagram0.02.04.06.08.010.012.014.016.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8DepthIzInfluence DiagramTheoreticalCalculated Page 1Page 2FROEHLING & ROBERTSON, Inc. Date 4/12/2019FROEHLING & ROBERTSON, Inc. Date 4/12/2019SETTLEMENT ANALYSIS OF SHALLOW FOUNDATIONS SETTLEMENT ANALYSIS OF SHALLOW FOUNDATIONSSchmertmann MethodSchmertmann MethodProject: Large TEMFProject: Large TEMFF&R Project Number: 66X-0030 F&R Project Number: 66X-0030Boring C-7Input ResultsColumn Load90,000lbs Footing Size6.0 ftSoil Typeqc/NBearing Pressure2,500psfPo 250 psfCL 3Depth (ft) IzFooting Depth2ftPo0.125 tsfSM 42.0 0.1125pcfP 2,250 psfSM/SC 45.0 0.689737time from load 1yearsP 1.125 tsfSP 514.0 0GP 5GW 5Depth to Soil LayerDegrees RadiansTop (ft)Bottom (ft)ZSPT-N SOIL qc/N qc (tsf)IzIz Z / 2.5qc11.12 0.19410Top Angle2.0 6.0 4.08 SM/SC4 32 0.493158 0.0246579 4.38 0.07649 Bottom Angle6.0 14.0 8.015 SM4 60 0.306550.0163493ok (tsf) 0.04100724.0c10.94Total Settlement 0.052 ft10.0c21.20Total Settlement 0.6 inchesInfluence Diagram0.02.04.06.08.010.012.014.016.00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8DepthIzInfluence DiagramTheoreticalSeries2 Project Name: Large TEMF F&R Project No.: 66X-0030 Design CBR:10 Design Period (years):25 Current Traffic 500 *18 kip ESAL Factor for Light Trucks:0.2500 % of Light Trucks:0 18 kip ESAL Factor for Heavy Trucks:5.0000 % of Heavy Trucks:63.24 18 kip ESAL Factor for Cars:0.015 Lane Distribution Factor 1 Assumed Annual Growth Rate:0.0% Assumed Growth Factor:25.00 ** Terminal Serviceability:2.5 *18-kip (80kN) equivalent single axle load applications **Assumed Growth Factor is calculated using the following formula: ((1+g)^n-1)/g; Where: g = growth factor; n = design period Log Wt18(80kN) = 9.36*log(SN+1) - 0.20 + (Gt/(0.40+(1094/(SN+1)5.19))) + log (1/R) + 0.372 * (SSV-3.0) Where: W t18(80kN) = number of 18 kip (80kN) single axle load applications during design life SN = required structural number Gt = log ((4.2-pt)/2.7)= -0.200914843 Pt = terminal serviceability Regional factor ( R ) =0.5 (for Cumberland County) SSV = Soil Support Value = 5.32 * log (CBR) - 1.49 Soil Support Value (SSV): 3.830 Vehicle Current 20 Year Design Traffic EASL Design Type Traffic Growth (D)Factor EASL (A) (B) Factor (C)(B * C * 365)(E) (D*E) Passenger Cars 500 25.00 4562555 0.015 68438 Light Trucks 0 25.00 0 0.2500 0 Heavy Trucks 316.2 25.00 2885360 5.0000 14426798 Cumulative EASLs 14495236 Traffic in Design Lane (Wt18(80kN)) = Cumulative ESALs Wt18(80kN) =14495236 Assume: A = Log(Wt18(80kN)) B = 9.36*log(SN+1) - 0.20 C = (Gt/(0.40+(1094/(SN+1)5.19) D = log (1/R) + 0.372 * (SSV-3.0) SN = Structural Number Flexible Pavement Design Equation : A = B+C+D Substituting the design parameters in the above equation: A B C D B+C+D Required SN 7.16123 6.94569 -0.38686 0.60979 7.16862 4.8 Verification: Since A<B+C+D; a Structural number of 4.8 is safe; Layer Equivalent Layer Type Layer Co-efficient Thickness SN (in) Asphalt Pavement Surface Course, Type SF 9.5B or C 0.44 1.5 0.66 Asphalt Pavement Intermediate Course, Type I19.0B 0.44 4.0 1.76 Asphalt Pavement Base Course, Type B25.0B 0.30 4.0 1.20 Aggregate Base Course (ABC stone) 0.14 8.0 1.12 Total equivalent structural number 4.74 Since the design structural number is greater than the required, structural number, the above layer thickness is safe DESIGN PAVEMENT SECTION FLEXIBLE PAVEMENT DESIGN CALCULATIONS (per NCDOT {AASHTO} Pavement Design Procedure) DESIGN PARAMETERS FLEXIBLE PAVEMENT DESIGN EQUATION CALCULATION OF 18-kip EASL FOR ASSUMED TRAFFIC VOLUME CALCULATION OF STRUCTURAL NUMBER NAME OF THE STREET: Main Parking Lot. Adjusted % heavy trucks & ESAL until ESAL matched the PCASE calculation of 14,493,312 ESAL for 25 yr design life Pavement Thickness ReportU.S. Army Corps of EngineersPCASE Version 2.09.02Date : 4/12/2019Design Name : LARGE TEMFDesign Type : RoadsPavement Type : RigidRoad Type : Parking AreaTerrain Type : RollingAnalysis Type : KDepth of Frost (in) : 6Wander Width (in) : 33.35% Load Transfer : 25Effective K (pci) : 260Reduced Sub Effective K (pci) : 37Joint Spacing : 10 to 15 ftDowel Spacing : 12.00 inDowel Length : 16.00 inDowel Diameter: .75 inLayer InformationLayer Type Material Type Frost CodeFlexural Strength (psi)% SteelAnalysisNon frost Design Thickness (in)Reduced Subgrade Strength (in)Limited Subgrade Penetration (in)K Strength (pci)PCC N/A NFS 650 0 Compute 6 9 6 0Base Unbound Crushed Stone NFS 0 0 Manual 6 6 6 0Natural Subgrade Cohesionless Fill F3/F4 0 0 Manual 0 0 0 200Traffic InformationPattern Name : LARGE TEMFVehicles Weight (lb)Passes per Life SpanEquivalent PassesCMP 60 FORKLIFT 10000 9125 1M983 HEMTT W/XM860A1 TRAILER150000 91250 91250P-23 CRASH TRUCK (FIRE TRUCK)77000 1300 394TRUCK, 3 AXLE 30000 182500 1TRUCK, 3 AXLE 66000 1300 291TRUCK, 5 AXLE 80000 2600 7TRUCK, SMALL PICKUP OR SUV10000 4562500 1Equivalent Single Axle Loads 14493312 Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.8 - APPENDIX H NCDEQ BIORETENTION CELL SUPPLEMENT FORMS QuantityInfiltration SystemBioretention Cell 1Wet Pond 2Stormwater WetlandPermeable PavementSand FilterRainwater HarvestingGreen RoofLevel Spreader-Filter StripDisconnected Impervious SurfaceTreatment SwaleDry PondApplicant:Name and Title:Organization:Street address:City, State, Zip:Phone number(s):Email:DesignerCertification Statement:Signature of DesignerDateEmail:Bldg 3-1333 Butner RdFort Bragg, NC 28310(910) 396-2301Company:Contact:Mailing Address:City, State, Zip:Project Name:AddressCity / TownFort Bragg DPWLee WardSOF Civil AffairsFayettevilleFort BraggSUPPLEMENT-EZ FORM COVER PAGESealviolations as well as a report being made to my professional board. - that the information provided in the form is, to the best of my knowledge - that the engineering plans, specifications, operation and maintenancethe information provided here.I am aware that there are significant penalties for submitting falseinformation including the possibility of fines and imprisonment for knowing and belief, true, accurate, and complete; andagreements and other supporting information are consistent with I certify, under penalty of law: that this Supplement-EZ form and all supportinginformation were prepared under my direction or supervision; Designer information for this project:Location(s)Please indicate the types, quantities and locations of SCMs that will be used on this project:mike.mayer@masonandhanger.comPhone number(s):Mike Mayer, Civil EngineerMason & Hanger300 W Vine St Suite 1300Lexington, KY 40507859-280-3557lee.p.ward.civ@mail.milBioretention PondWet Pond #1 & Wet Pond #2Cover Page18:00 AM 10/4/2019 Ft Bragg Civil Affairs Stormwater Pond Volume Comparison October-2019 Bioretention Pond #1 9,761 17,212 26,276 NCDEQ Requirements (cf)EISA Requirements (cf) 1.8" 95th Percentile Provided in Design (cf) Army LID Planning and Cost Tool Report Date 7/18/2019 Army Installation Fort Bragg Master Planner Project name Ft Bragg Civil Affairs TEMF Ba Project description Civil Affairs TEMF Basin #1 Project limit of disturbance (ac) 5.6 95% rainfall depth (in)1.8 Soil type Sandy-Loam Hydrologic Soil Group (HSG) B Pre-project curve number (CN) 72 Post-project curve number (CN)92 User Name Scurry PROJECT INFO SITE INFO AND EISA VOLUME REQUIREMENT Pre-project runoff volume (cf)4325 Post-project runoff volume (cf) 21538 LID PLANNING SUMMARY Bioretention: 32352 Swale: Permeable Pavement: Rainwater Harvesting: Green Roof: Infiltration Practice: Veg. Filter Strip (Slope >2%, Short Grass): 0.00 Veg. Filter Strip (Slope >2%, Tall Grass):0.00 Veg. Filter Strip (Slope <2%, Short Grass):0.00 Veg. Filter Strip (Slope <2%, Tall Grass): 0.00 Reforestation (Trees - Short Grass): 0.00 Reforestation (Trees - Shrubs and Tall Grass):0.00 Structural BMP Non-structural BMP Surface area (ac) Surface area (sf) Runoff volume retained (cf) 26267 0 0 0 0 0 Total retention volume provided by BMPs (cf):26267 EISA Section 438 retention volume requirement (cf) 17212 LID COST SUMMARY Project complies with EISA Section 438. Army Command IMCOM Discrete SCS Curve Number Method (NCDEQ Stormwater BMP Manual 3.3.2) Location:Bioretention Basin #1 - Civil Affairs TEMF Date: 6/19/2019 Soil Group:B Predevelopment BUA Developed BUA Area 0 acres Area 3.4 acres Area 0 sf Area 148,104 sf CN* 69 CN* 98 S 4.49 S 0.20 ia 0.90 in ia 0.04 in P 1 in P 1 in Q 0.00 in Q 0.79 in V 0 cf V 9,761 cf Predevelopment Open Area Developed Open Area Area 5.6 acres Area 2.2 acres Area 243,936 sf Area 95,832 sf CN* 69 CN* 69 S 4.49 S 4.49 ia 0.90 in ia 0.90 in P 1 in P 1 in Q 0.00 in Q 0.00 in V 0 cf V 0 cf Area 5.6 acres Area 5.6 acres Total 0 cf Total 9,761 cf Storage Required 9,761 cf Surface Area 15,900 sf Riser 12 in Storage Provided 15,900 cf Note: Runnoff depth for CN <= 70 set to 0.00 for 1.0" rainfall event based upon TR55 Urban Hydrology for Small Watersheds Table 2-1 * Composite CN calculated using Army LID Planning and Cost Tool Developed by USACE Baltimore District and USACE ERDC BIORETENTION CELL1Drainage area number1Total coastal wetlands area (sq ft) sf - Parking / driveway (sq ft)90254 sfTotal surface water area (sq ft) sf - Sidewalk (sq ft)1850 sfTotal drainage area (sq ft)243936 sf - Roof (sq ft)56000 sfBUA associated with existing development (sq ft) sf - Roadway (sq ft) sfProposed new BUA (sq ft)148104 sf - Other, please specify in the comment box below (sq ft) sfPercent BUA of drainage area61%Total BUA (sq ft)148104 sfDesign rainfall depth (in)1.0 inMinimum volume required (cu ft)9761 cfDesign volume of SCM (cu ft)26267 cf#1 Is the SCM sized to treat the SW from all surfaces at build-out?Yes#7 If applicable, with the SCM be cleaned out after construction?Yes#2 Is the SCM located on or near contaminated soils?No#8 Does the mainetenance access comply with General MDC (8)?Yes#3 What are the side slopes of the SCM (H:V)?3:1#9 Does the drainage easement comply with General MDC (9)?Yes#3 Does the SCM have retaining walls, gabion walls or other engineered side slopes? No#10 If the SCM is on a single family lot, does the plat comply with General MDC (10)?Yes#4 Are the inlets, outlets, and receiving stream protected from erosion (10-year storm)?Yes#11 Is there an O&M Agreement that complies with General MDC (11)?Yes#5 Is there a a bypass for flows in excess of the design flow?Yes#12 Is there an O&M Plan that complies with General MDC (12)?Yes#6 What is the method for dewatering the SCM for maintenance?Other#13 Was the SCM designed by an NC licensed professional?Yes#1 SHWT elevation (fmsl)230.00 ft #6 Percentage of medium to coarse washed sand by volume 85%#1 Bottom of the bioretention cell (fmsl)234.33 ft #6 Percentage of fines (silt and clay) by volume10%#1 Distance from bottom to SHWT (feet)4.33 ft #6 Percentage of organic matter by volume 5%#2 Surface area of the bioretention cell (square feet)16015 sf#6 Type of organic materialEngineered Fill#2 Design volume of the bioretention cell (cubic feet)26267 cf#7 Phosphorus Index (P-Index) of media (unitless) 10#2 Ponding depth of the design storm (inches)12 in#8 Will compaction be avoided during construction?Yes#3 Is the bioretention cell used for peak attenuation?Yes#9 Will cell be maintained to a one inch/hour standard?Yes#3 Depth of peak attenuation over planting surface (in)18 in #10 Describe the planting plan:#3 Height of peak attenuation outlet above the planting surface (in)18 in#4 Infiltration rate of the in situ soil (inch/hour).1 in/hr#4 Diameter of the underdrain pipes (if applicable)8 in#4 Does the design include Internal Water Storage (IWS)?Yes #11 Depth of mulch, if applicable (inches) in#4 if so, elevation of the top of the IWS (fmsl)236.50 ft #11 Type of mulch, if applicablena#4 Elevation of the planting surface (fmsl)238.00 ft #12 How many clean out pipes are being installed?11#5 Will the cell contain trees and shrubs?No#12 Briefly describe the pretreatment that will be used:#5 Media depth (inches)30 inTHE DRAINAGE AREABIORETENTION CELL MDC FROM 02H .1052Beehive grated catch basins are provided as first-line overflow at the top of the peak attenuation volume. Maximum depth of storage of cell to emergency overflow is 2.5-ft. Emergency overflow weir designed for 100yr storm event. Project based entirely within Fort Bragg (US Gov't property). No easements required. User requires no hardwood mulch due to maintenance issues.Break down of BUA in the drainage area (both new and existing):COMPLIANCE WITH THE APPLICABLE STORMWATER PROGRAMStormwater program(s) that apply (please specify):EISA 438, ARMY LID, FORT BRAGG IDGGENERAL MDC FROM 02H .1050ADDITIONAL INFORMATIONPlease use this space to provide any additional information about this bioretention cell that you think is relevant to the review:Contractor to provide landscape establishment to achieve 100% coverage throughout site in 12 months. Sod is desired by the user for cell. User requires no hardwood mulch within cell.Minimum 3' sod strip. All outlet headwalls to cell have rip-rap outlet protection per NCDEQ requirements.SOF Civil Affairs Bioretention BasinsBioretention18:29 AM 10/3/2019 Ft Bragg Civil Affairs - Bioretention Basin #1 Stormwater Pond Riser Summary October-2019 Bioretention Basin #1 1 0.59 239.64 28,971 2 2.43 239.88 33,439 5 5.49 240.33 42,417 10 12.46 240.63 48,531 25 26.79 240.82 52,410 50 36.98 240.93 54,754 100 42.88 Spillway Overflow ***Storage Volume at Peak Attenuation 239.50-ft = 26,267 cf*** Storm Return Interval (yr) Peak Flow (Qp) w/ Inlet Control Maximum Elevation (ft) w/ Inlet Control Maximum Storage (ft) w/ Inlet Control Pond Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019 Wednesday, 10 / 2 / 2019 Pond No. 1 - Bioretention Basin #1 Pond Data Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 238.00 ft Stage / Storage Table Stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 238.00 16,015 0 0 1.00 239.00 17,817 16,906 16,906 2.00 240.00 19,644 18,721 35,628 3.00 241.00 21,496 20,561 56,188 Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in)= 24.00 6.00 0.00 0.00 Span (in)= 24.00 36.00 0.00 0.00 No. Barrels = 1 1 0 0 Invert El. (ft)= 238.01 239.50 0.00 0.00 Length (ft)= 50.00 0.00 0.00 0.00 Slope (%)= 1.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff.= 0.60 0.60 0.60 0.60 Multi-Stage = n/a Yes No No Crest Len (ft)= 16.00 20.00 0.00 0.00 Crest El. (ft)= 240.50 240.50 0.00 0.00 Weir Coeff.= 3.33 3.33 3.33 3.33 Weir Type = 1 Ciplti --- --- Multi-Stage = Yes No No No Exfil.(in/hr)= 0.900 (by Contour) TW Elev. (ft)= 0.00 Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). 0.00 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 44.00 Stage (ft) 0.00 238.00 1.00 239.00 2.00 240.00 3.00 241.00 Elev (ft) Discharge (cfs) Stage / Discharge Total Q Pond Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019 Wednesday, 10 / 2 / 2019 Pond No. 1 - Bioretention Basin #1 Pond Data Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 238.00 ft Stage / Storage Table Stage (ft) Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 238.00 16,015 0 0 1.00 239.00 17,817 16,906 16,906 2.00 240.00 19,644 18,721 35,628 3.00 241.00 21,496 20,561 56,188 Culvert / Orifice Structures Weir Structures [A] [B] [C] [PrfRsr] [A] [B] [C] [D] Rise (in)= 24.00 6.00 0.00 0.00 Span (in)= 24.00 36.00 0.00 0.00 No. Barrels = 1 1 0 0 Invert El. (ft)= 238.01 239.50 0.00 0.00 Length (ft)= 50.00 0.00 0.00 0.00 Slope (%)= 1.00 0.00 0.00 n/a N-Value = .013 .013 .013 n/a Orifice Coeff.= 0.60 0.60 0.60 0.60 Multi-Stage = n/a Yes No No Crest Len (ft)= 16.00 20.00 0.00 0.00 Crest El. (ft)= 240.50 240.50 0.00 0.00 Weir Coeff.= 3.33 3.33 3.33 3.33 Weir Type = 1 Ciplti --- --- Multi-Stage = Yes No No No Exfil.(in/hr)= 0.900 (by Contour) TW Elev. (ft)= 0.00 Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s). 0 6,000 12,000 18,000 24,000 30,000 36,000 42,000 48,000 54,000 60,000 Stage (ft) 0.00 238.00 1.00 239.00 2.00 240.00 3.00 241.00 Elev (ft) Storage (cuft) Stage / Storage Storage Fort Bragg Civil Affairs TEMF Bioretention Cell #1 Underdrain Calculations 6/20/2019 Engineered Fill Permeability (K)2 in/hr Surface Area (A)22300 ft2 Maximum Ponding Depth (C H)3.25 ft Depth of media (C L)2.5 ft Flow (Qi)1.33 cfs Apply 10x Factor of Safety (Q)13.34 cfs Roughness Factor (n)0.01 Internal Slope (s)0.005 Darcy's Equation Diameter of Single Pipe (d)21.04 in Diameter Underdrain Pipes 8 in Equavalent Number Required 10 Number Underdrain Pipes Provided 12 NCDEQ Stormwater BMP Manual Common BMP Design Elements, July 2007 5.7 Underdrain Systems Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.9 - APPENDIX I WET POND BASIN CALCULATIONS QuantityInfiltration SystemBioretention Cell 1Wet Pond 2Stormwater WetlandPermeable PavementSand FilterRainwater HarvestingGreen RoofLevel Spreader-Filter StripDisconnected Impervious SurfaceTreatment SwaleDry PondApplicant:Name and Title:Organization:Street address:City, State, Zip:Phone number(s):Email:DesignerCertification Statement:Signature of DesignerDateEmail:Bldg 3-1333 Butner RdFort Bragg, NC 28310(910) 396-2301Company:Contact:Mailing Address:City, State, Zip:Project Name:AddressCity / TownFort Bragg DPWLee WardSOF Civil AffairsFayettevilleFort BraggSUPPLEMENT-EZ FORM COVER PAGESealviolations as well as a report being made to my professional board. - that the information provided in the form is, to the best of my knowledge - that the engineering plans, specifications, operation and maintenancethe information provided here.I am aware that there are significant penalties for submitting falseinformation including the possibility of fines and imprisonment for knowing and belief, true, accurate, and complete; andagreements and other supporting information are consistent with I certify, under penalty of law: that this Supplement-EZ form and all supportinginformation were prepared under my direction or supervision; Designer information for this project:Location(s)Please indicate the types, quantities and locations of SCMs that will be used on this project:mike.mayer@masonandhanger.comPhone number(s):Mike Mayer, Civil EngineerMason & Hanger300 W Vine St Suite 1300Lexington, KY 40507859-280-3557lee.p.ward.civ@mail.milBioretention PondWet Pond #1 & Wet Pond #2Cover Page18:00 AM 10/4/2019 Ft Bragg Civil Affairs Stormwater Pond Volume Comparison October-2019 Bioretention Pond #1 Bioretentin Storage Requirements 15,900 16,378 16,701 Wet Pond #1 Volume Main Pool VMP 28,756 37,893 38,241 Volume of Forebay VFB 4,313 5,684 6,330 Design Volume DV 11,805 21,429 30,501 Wet Pond #2 Volume Main Pool VMP 89,090 111,165 116,538 Volume of Forebay VFB 13,364 16,675 18,930 Design Volume DV 36,572 65,830 74,633 NCDEQ Requirements (cf)EISA Option #2 Requirements (cf) Pre vs Post Development (10-yr)Provided in Design (cf) NCDEQ Requirements (cf) EISA Option #1 Requirements (cf) Provided in Design (cf) NCDEQ Requirements (cf)EISA Option #2 Requirements (cf) Pre vs Post Development (10-yr)Provided in Design (cf) Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.12 - STORM WATER WET POND #1 (BASIN #2) CALCULATIONS WinTR-55 Current Data Description --- Identification Data --- User: SCurry Date: 10/3/2019 Project: Ft Bragg CA TEMF_Wet Pond Units: English SubTitle: Pre-Development Wet Pond #1, Qp Areal Units: Acres State: North Carolina County: Cumberland NOAA-B Filename: P:\Projects\017101\02 Design\Civil\Storm Water Design\Basin Design\Basin #2\PreDevelopment_CA_TR55_Basin#2.w55 --- Sub-Area Data --- Name Description Reach Area(ac) RCN Tc ------------------------------------------------------------------------------ Wet Pond # Outlet 4.2 69 0.133 Total area: 4.20 (ac) --- Storm Data -- Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:21:07 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Storm Data Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:21:07 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Watershed Peak Table Sub-Area Peak Flow by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond # 6.13 10.48 14.35 20.16 25.14 30.48 3.83 REACHES OUTLET 6.13 10.48 14.35 20.16 25.14 30.48 3.83 WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:21:07 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (hr) (hr) (hr) (hr) (hr) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond # 6.13 10.48 14.35 20.16 25.14 30.48 3.83 12.00 11.97 11.96 11.96 11.96 11.95 12.01 REACHES OUTLET 6.13 10.48 14.35 20.16 25.14 30.48 3.83 WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:21:07 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- Wet Pond # 4.20 0.133 69 Outlet Total Area: 4.20 (ac) WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:21:07 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- Wet Pond # User-provided 0.133 Time of Concentration 0.133 ======== WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:21:07 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- Wet Pond #Open space; grass cover 50% to 75% (fair) B 4.2 69 Total Area / Weighted Curve Number 4.2 69 === == WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:21:07 PM WinTR-55 Current Data Description --- Identification Data --- User: SCurry Date: 10/3/2019 Project: Ft Bragg CA TEMF_Wet Pond Units: English SubTitle: Post-Development Wet Pond #1, Qp Areal Units: Acres State: North Carolina County: Cumberland NOAA-B Filename: P:\Projects\017101\02 Design\Civil\Storm Water Design\Basin Design\Basin #2\PostDevelopment_CA_TR55_Basin#2.w55 --- Sub-Area Data --- Name Description Reach Area(ac) RCN Tc ------------------------------------------------------------------------------ Wet Pond 1 Outlet 4.2 92 0.133 Total area: 4.20 (ac) --- Storm Data -- Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:23:51 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Storm Data Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:23:51 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Watershed Peak Table Sub-Area Peak Flow by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond 1 16.50 22.08 26.54 32.84 37.98 43.38 13.07 REACHES OUTLET 16.50 22.08 26.54 32.84 37.98 43.38 13.07 WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:23:51 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (hr) (hr) (hr) (hr) (hr) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond 1 16.50 22.08 26.54 32.84 37.98 43.38 13.07 11.95 11.95 11.94 11.95 11.95 11.94 11.95 REACHES OUTLET 16.50 22.08 26.54 32.84 37.98 43.38 13.07 WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:23:51 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- Wet Pond 1 4.20 0.133 92 Outlet Total Area: 4.20 (ac) WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:23:51 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- Wet Pond 1 User-provided 0.133 Time of Concentration 0.133 ======== WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:23:51 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #1, Qp Cumberland NOAA-B County, North Carolina Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- Wet Pond 1Open space; grass cover 50% to 75% (fair) B .82 69 Paved parking lots, roofs, driveways B 3.38 98 Total Area / Weighted Curve Number 4.2 92 === == WinTR-55, Version 1.00.10 Page 1 10/3/2019 2:23:51 PM Ft Bragg Civil Affairs Stormwater Pond Volume Comparison October-2019 Wet Pond #1 Volume Main Pool VMP 233-240 28,756 37,893 38,241 Volume of Forebay VFB 236-240 4,313 5,684 6,330 Design Volume DV 240-241.50 11,805 21,249 30,501 Pre-Development = 35,502 cf Post-Development = 73,395 cf ∆ = 37,893 cf EISA Option #2 Requirements (cf) Pre vs Post Development (10-yr)NCDEQ Requirements (cf)Provided in Design (cf)Contour Intervals (ft) WET POND #11Drainage area numberWet Pond #1Total coastal wetlands area (sq ft) sf - Parking / driveway (sq ft)146003 sfTotal surface water area (sq ft) sf - Sidewalk (sq ft) sfTotal drainage area (sq ft)182952 sf - Roof (sq ft)1230 sfBUA associated with existing development (sq ft) sf - Roadway (sq ft) sfProposed new BUA (sq ft)147233 sf - Other, please specify in the comment box below (sq ft) sfPercent BUA of drainage area80%Total BUA (sq ft)147233 sfDesign rainfall depth (in)1.0 inMinimum volume required (cu ft)11805 cfDesign volume of SCM (cu ft)30501 cf#1 Is the SCM sized to treat the SW from all surfaces at build-out?Yes#7 If applicable, with the SCM be cleaned out after construction?Yes#2 Is the SCM located on or near contaminated soils?No#8 Does the mainetenance access comply with General MDC (8)?Yes#3 What are the side slopes of the SCM (H:V)?3:1#9 Does the drainage easement comply with General MDC (9)?Yes#3 Does the SCM have retaining walls, gabion walls or other engineered side slopes? No#10 If the SCM is on a single family lot, does the plat comply with General MDC (10)?Yes#4 Are the inlets, outlets, and receiving stream protected from erosion (10-year storm)? Yes#11 Is there an O&M Agreement that complies with General MDC (11)?Yes#5 Is there a a bypass for flows in excess of the design flow?Yes#12 Is there an O&M Plan that complies with General MDC (12)?Yes#6 What is the method for dewatering the SCM for maintenance?Other#13 Was the SCM designed by an NC licensed professional?Yes#1 Method usedHRT#6 Width of the vegetated shelf (feet)6 ft#1 Surface area of the main permanent pool (square feet)9917 sf#6 Location of vegetated shelf@ Normal Pool#1 Volume of the main permanent pool (cubic feet)38241 cf#6 Elevation of top of shelf (fmsl)240 ft#2 Average depth of the main pool (feet)6 ft #6 Elevation of bottom of shelf (fmsl)239 ft#2 Was the vegetated shelf included in the calculation of average depth? Yes #6 Slope of vegetated shelf (H:V)6:1#2 Elevation of the bottom of the permanent pool (fmsl)234 ft #7 Diameter of drawdown orifice (inches)4.0 in#2 Elevation of the top of the permanent pool (fmsl)240 ft #7 Drawdown time for the temporary pool (hours)59 hrs#2 Elevation of the top of the temporary pool (fmsl)241.50 ft #7 Does the orifice drawdown from below the top surface of the permanent pool?No#3 Depth provided for sediment storage (inches)12 in#8 Does the pond minimize impacts to the receiving channel from the 1-yr, 24-hr storm? Yes#4 Are the inlet(s) and outlet located in a manner that avoids short-circuiting?Yes #9 Are fountains proposed?No#9 If yes, is documentation provided per Wet Pond MDC (9)?No#10 Is a trash rack or other device provided to protect the outlet system? Yes#5 Volume of the forebay (cubic feet)6330#11 Are the dam and embankment planted in non-clumping turf grass?Yes#5 Is this 15-20% of the volume in the main pool?Yes#11 Species of turf that will be used on the dam and embankmentSod#5 Depth of forebay at entrance (inches)48 in#11 Describe the planting plan for the vegetated shelf:#5 Depth of forebay at exit (inches)48 in#5 Does water flow out of the forebay in a non-erosive manner?Yes#5 Clean-out depth for forebay (inches)12 in#5 Will the forebay be cleaned out when the depth is reduced to less than the above? YesGENERAL MDC FROM 02H .1050WET POND MDC FROM 02H .1053#4 Describe any measures, such as berms or baffles, that will be taken to improve the flow path:Contractor to provide landscape establishment to achieve 100% coverage throughout site in 12 months. Sod is desired by the User for embankments.ADDITIONAL INFORMATIONSOF Civil AffairsTHE DRAINAGE AREABreak down of BUA in the drainage area (both new and existing):COMPLIANCE WITH THE APPLICABLE STORMWATER PROGRAMStormwater program(s) that apply (please specify):EISA 438, ARMY LID, FORT BRAGG IDGPlease use this space to provide any additional information about this wet pond that you think is relevant to the review:Project based entirely within Fort Bragg (US Gov't property). No easements required.Wet Pond #118:51 AM 10/4/2019 Permit No.______________________ (to be provided by DWQ) I. PROJECT INFORMATION Project name Contact person Phone number Date Drainage area number II. DESIGN INFORMATION Site Characteristics Drainage area 182,952 ft2 Impervious area, post-development 147,233 ft2 % impervious 80.48 % Design rainfall depth 1.0 in Storage Volume: Non-SA Waters Minimum volume required 11,805 ft3 OK, volume provided is equal to or in excess of volume required. Storage Volume: SA Waters 1.5" runoff volume ft3 Pre-development 1-yr, 24-hr runoff ft3 Post-development 1-yr, 24-hr runoff ft3 Minimum volume required ft3 Peak Flow Calculations Is the pre/post control of the 1yr 24hr storm peak flow required? Y (Y or N) 1-yr, 24-hr rainfall depth 3.1 in Rational C, pre-development 0.20 (unitless) Rational C, post-development 93.00 (unitless) Rainfall intensity: 1-yr, 24-hr storm 2.38 in/hr OK Pre-development 1-yr, 24-hr peak flow 3.83 ft3/sec Post-development 1-yr, 24-hr peak flow 13.07 ft3/sec Pre/Post 1-yr, 24-hr peak flow control 9.24 ft3/sec Elevations Temporary pool elevation 241.50 fmsl Permanent pool elevation 240.00 fmsl SHWT elevation (approx. at the perm. pool elevation) 240.00 fmsl Top of 10ft vegetated shelf elevation 240.00 fmsl Bottom of 10ft vegetated shelf elevation 241.00 fmsl Data not needed for calculation option #1, but OK if provided. Sediment cleanout, top elevation (bottom of pond) 233.00 fmsl Sediment cleanout, bottom elevation 232.00 fmsl Data not needed for calculation option #1, but OK if provided. Sediment storage provided 1.00 ft Is there additional volume stored above the state-required temp. pool? N (Y or N) Elevation of the top of the additional volume fmsl 859.280.3581 10/4/2019 This form must be filled out, printed and submitted. WET DETENTION BASIN SUPPLEMENT Volume provided ft3 ft3 Fort Bragg Civil Affairs TEMF - Wet Pond #1 Volume provided 30,501 STORMWATER MANAGEMENT PERMIT APPLICATION FORM Stephen Curry, P.E. 401 CERTIFICATION APPLICATION FORM The Required Items Checklist (Part III) must be printed, filled out and submitted along with all of the required information. Wet Pond #1 Form SW401-Wet Detention Basin-Rev.9-4/18/12 Parts I. & II. Design Summary, Page 1 of 2 Permit No.______________________ (to be provided by DWQ) II. DESIGN INFORMATION Surface Areas Area, temporary pool 17,674 ft2 Area REQUIRED, permanent pool 183 ft2 SA/DA ratio 0.10 (unitless) Area PROVIDED, permanent pool, Aperm_pool 9,917 ft2 OK Area, bottom of 10ft vegetated shelf, Abot_shelf 8,536 ft2 Area, sediment cleanout, top elevation (bottom of pond), Abot_pond 2,513 ft2 Volumes Volume, temporary pool 30,501 ft3 OK Volume, permanent pool, Vperm_pool 38,118 ft3 Volume, forebay (sum of forebays if more than one forebay) 6,330 ft3 Forebay % of permanent pool volume 16.6% % Insufficient forebay volume. SA/DA Table Data Design TSS removal 85 % Coastal SA/DA Table Used?N (Y or N) Mountain/Piedmont SA/DA Table Used? Y (Y or N) SA/DA ratio 0.10 (unitless) Average depth (used in SA/DA table): Calculation option 1 used? (See Figure 10-2b) Y (Y or N) Volume, permanent pool, Vperm_pool 38,118 ft3 Area provided, permanent pool, Aperm_pool 9,917 ft2 Average depth calculated 3.80 ft OK Average depth used in SA/DA, dav, (Round to nearest 0.5ft)4.0 ft OK Calculation option 2 used? (See Figure 10-2b) N (Y or N) Area provided, permanent pool, Aperm_pool 9,917 ft2 Area, bottom of 10ft vegetated shelf, Abot_shelf 8,536 ft2 Area, sediment cleanout, top elevation (bottom of pond), Abot_pond 2,513 ft2 "Depth" (distance b/w bottom of 10ft shelf and top of sediment) 8.00 ft Average depth calculated ft Average depth used in SA/DA, dav, (Round to down to nearest 0.5ft)ft Drawdown Calculations Drawdown through orifice?Y (Y or N) Diameter of orifice (if circular)4.00 in Area of orifice (if-non-circular)in2 Coefficient of discharge (CD)0.60 (unitless) Driving head (Ho)241.50 ft Drawdown through weir?N (Y or N) Weir type (unitless) Coefficient of discharge (Cw)(unitless) Length of weir (L)ft Driving head (H)ft Pre-development 1-yr, 24-hr peak flow 3.83 ft3/sec Post-development 1-yr, 24-hr peak flow 13.07 ft3/sec Storage volume discharge rate (through discharge orifice or weir) 0.25 ft3/sec OK, draws down in 2-5 days. Additional Information Vegetated side slopes 3 :1 OK Vegetated shelf slope 10 :1 OK Vegetated shelf width 10.0 ft OK Length of flowpath to width ratio 3 :1 OK Length to width ratio 3.4 :1 OK Trash rack for overflow & orifice?Y (Y or N) OK Freeboard provided 1.0 ft OK Vegetated filter provided?Y (Y or N) OK Recorded drainage easement provided? N (Y or N) Insufficient. Recorded drainage easement required. Capures all runoff at ultimate build-out? Y (Y or N) OK Drain mechanism for maintenance or emergencies is:Pump Storage volume drawdown time 2.50 days Form SW401-Wet Detention Basin-Rev.9-4/18/12 Parts I. & II. Design Summary, Page 2 of 2 Project:Ft Bragg Civil Affairs TEMF - Wet Basin #2 Date:19-Jun-19 Rv=0.05 +0.9*I A Rv - Runoff Coefficient IA - Impervious fraction Dv=3630*R D*RV*A Dv - Design Volume (cf) RD - Desing Storm Depth (in) A - Drainage Area (Ac) Impervious Area (Ac)=3.38 Pervious Area (Ac)=0.82 Total Area (Ac)=4.2 IA=0.80 RD, Design Storm Depth (in)=1.0 Rv= 0.77 Dv= 11,805 NCDEQ Minimum Design Volume Project:Ft Bragg Civil Affairs TEMF - Wet Basin #2 Date:19-Jun-19 Hydraullic Retention Time (HRT) Method Dv - Design Volume (cf) From Simple Method Dv=11,805 cf VMP =28,756 cf Ft Bragg Civil Affairs - Wet Pond #1 Stormwater Pond Riser Summary October-2019 Wet Pond #1 1 0 239.77 2 0.15 240.29 5 0.32 240.76 10 0.44 241.24 25 1.67 241.57 50 5.09 241.69 100 14.02 241.98 Peak Flow (Qp) w/ Inlet Control Maximum Elevation (ft) w/ Inlet Control Storm Return Interval (yr) Wet Pond #1 Drawdown Time Ft Bragg CA TEMF Oct-19 Orifice Diameter 4 inches Discharge Rate of Orifice (cuft/s)0.25 Volume of Stormwater for Drawdown 53,023 Incremental Storage (cuft): 242 18,912 241 16,437 241.50 17,674 Total Storage (cuft)53,023 Drawdown Rate: Volume of Stormwater / Discharge Rate 212092 sec 59 hrs 2.5 days Main Pond Volume.txtWet Pond #1 Main Pond Volume Project: Ft Bragg Civil Affairs Basin Description: Wet Pond #1 Main Pond Volume Contour Contour Depth Incremental Cumulative IncrementalCumulative Elevation Area (ft) Volume Volume Volume Volume (sq. ft) Avg. End Avg. End Conic Conic (cu. ft) (cu. ft) (cu. ft) (cu. ft) 233.0 1,510.0 N/A N/A 0 N/A N/A 234.0 2,513.0 1.00 2011.50 2011.50 1990.33 1990.33 235.0 3,587.0 1.00 3050.00 5061.50 3034.12 5024.45 236.0 4,734.0 1.00 4160.50 9222.00 4147.26 9171.71 237.0 5,945.0 1.00 5339.50 14561.50 5328.02 14499.73 238.0 7,212.0 1.00 6578.50 21140.00 6568.31 21068.03 239.0 8,536.0 1.00 7874.00 29014.00 7864.71 28932.74 240.0 9,917.0 1.00 9226.50 38240.50 9217.88 38150.62Page 1 Forebay Volume.txtWet Pond #1 - Forebay Project: Ft Bragg Civil Affairs Basin Description: Wet Pond #1 - Forebay Contour Contour Depth Incremental Cumulative IncrementalCumulative Elevation Area (ft) Volume Volume Volume Volume (sq. ft) Avg. End Avg. End Conic Conic (cu. ft) (cu. ft) (cu. ft) (cu. ft) 236.0 774.0 N/A N/A 0 N/A 0 237.0 1,129.0 1 952 952 946 946 238.0 1,540.0 1 1335 2286 1329 2275 239.0 2,008.0 1 1774 4060 1769 4044 240.0 2,532.0 1 2270 6330 2265 6309Page 1 Design Volume.txtWet Pond #1 - Design Volume Project: Ft Bragg Civil Affairs Basin Description: Wet Pond #1 - Design Volume Contour Contour Depth Incremental Cumulative IncrementalCumulative Elevation Area (ft) Volume Volume Volume Volume (sq. ft) Avg. End Avg. End Conic Conic (cu. ft) (cu. ft) (cu. ft) (cu. ft) 240.0 12,449.0 N/A N/A 0 N/A N/A 241.0 16,437.0 1.00 14443.00 14443.00 14396.90 14396.90 242.0 18,912.0 1.00 17674.50 32117.50 17660.04 32056.94Page 1 Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.13 - STORM WATER WET POND #2 (BASIN #3) CALCULATIONS WinTR-55 Current Data Description --- Identification Data --- User: SCurry Date: 10/3/2019 Project: Ft Bragg CA TEMF_Wet Pond Units: English SubTitle: Pre-Development Wet Pond #2, Qp Areal Units: Acres State: North Carolina County: Cumberland NOAA-B Filename: P:\Projects\017101\02 Design\Civil\Storm Water Design\Basin Design\Basin #3\PreDevelopment_CA_TR55_Basin#3.w55 --- Sub-Area Data --- Name Description Reach Area(ac) RCN Tc ------------------------------------------------------------------------------ Wet Pond#2 Outlet 12.5 69 0.242 Total area: 12.50 (ac) --- Storm Data -- Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:32:15 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Storm Data Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:32:15 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Watershed Peak Table Sub-Area Peak Flow by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond#2 15.76 27.04 36.97 51.84 64.60 78.30 9.65 REACHES OUTLET 15.76 27.04 36.97 51.84 64.60 78.30 9.65 WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:32:15 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (hr) (hr) (hr) (hr) (hr) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond#2 15.76 27.04 36.97 51.84 64.60 78.30 9.65 12.06 12.05 12.05 12.04 12.04 12.04 12.06 REACHES OUTLET 15.76 27.04 36.97 51.84 64.60 78.30 9.65 WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:32:15 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- Wet Pond#2 12.50 0.242 69 Outlet Total Area: 12.50 (ac) WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:32:15 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- Wet Pond#2 User-provided 0.242 Time of Concentration 0.242 ======== WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:32:15 PM SCurry Ft Bragg CA TEMF_Wet Pond Pre-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- Wet Pond#2Open space; grass cover 50% to 75% (fair) B 12.5 69 Total Area / Weighted Curve Number 12.5 69 ==== == WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:32:15 PM WinTR-55 Current Data Description --- Identification Data --- User: SCurry Date: 10/3/2019 Project: Ft Bragg CA TEMF_Wet Pond Units: English SubTitle: Post-Development Wet Pond #2, Qp Areal Units: Acres State: North Carolina County: Cumberland NOAA-B Filename: P:\Projects\017101\02 Design\Civil\Storm Water Design\Basin Design\Basin #3\PostDevelopment_CA_TR55_Basin#3.w55 --- Sub-Area Data --- Name Description Reach Area(ac) RCN Tc ------------------------------------------------------------------------------ Wet Pond#3 Outlet 12.5 93 0.133 Total area: 12.50 (ac) --- Storm Data -- Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:35:44 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Storm Data Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:35:44 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Watershed Peak Table Sub-Area Peak Flow by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond#3 50.44 66.93 80.16 98.78 114.05 130.04 40.19 REACHES OUTLET 50.44 66.93 80.16 98.78 114.05 130.04 40.19 WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:35:44 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (hr) (hr) (hr) (hr) (hr) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS Wet Pond#3 50.44 66.93 80.16 98.78 114.05 130.04 40.19 11.95 11.95 11.95 11.95 11.95 11.94 11.95 REACHES OUTLET 50.44 66.93 80.16 98.78 114.05 130.04 40.19 WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:35:44 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- Wet Pond#3 12.50 0.133 93 Outlet Total Area: 12.50 (ac) WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:35:44 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- Wet Pond#3 User-provided 0.133 Time of Concentration 0.133 ======== WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:35:44 PM SCurry Ft Bragg CA TEMF_Wet Pond Post-Development Wet Pond #2, Qp Cumberland NOAA-B County, North Carolina Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- Wet Pond#3Open space; grass cover 50% to 75% (fair) B 2 69 Paved parking lots, roofs, driveways B 10.5 98 Total Area / Weighted Curve Number 12.5 93 ==== == WinTR-55, Version 1.00.10 Page 1 10/3/2019 4:35:44 PM Ft Bragg Civil Affairs Stormwater Pond Volume Comparison October-2019 Wet Pond #2 Volume Main Pool VMP 234-239 89,090 111,165 116,538 Volume of Forebay VFB 235-239 13,364 16,675 18,930 Design Volume DV 239-240.50 36,572 65,830 74,633 Pre-Development = 109,103 cf Post-Development = 220,268 cf ∆ = 111,165 cf NCDEQ Requirements (cf)EISA Option #2 Requirements (cf) Pre vs Post Development (10-yr)Provided in Design (cf)Contour Intervals (ft) WET POND #21Drainage area numberWet Pond #2Total coastal wetlands area (sq ft) sf - Parking / driveway (sq ft)453520 sfTotal surface water area (sq ft) sf - Sidewalk (sq ft) sfTotal drainage area (sq ft)544500 sf - Roof (sq ft)3860 sfBUA associated with existing development (sq ft) sf - Roadway (sq ft) sfProposed new BUA (sq ft)457380 sf - Other, please specify in the comment box below (sq ft) sfPercent BUA of drainage area84%Total BUA (sq ft)457380 sfDesign rainfall depth (in)1.0 inMinimum volume required (cu ft)36572 cfDesign volume of SCM (cu ft)74633 cf#1 Is the SCM sized to treat the SW from all surfaces at build-out?Yes#7 If applicable, with the SCM be cleaned out after construction?Yes#2 Is the SCM located on or near contaminated soils?No#8 Does the mainetenance access comply with General MDC (8)?Yes#3 What are the side slopes of the SCM (H:V)?3:1#9 Does the drainage easement comply with General MDC (9)?Yes#3 Does the SCM have retaining walls, gabion walls or other engineered side slopes? No#10 If the SCM is on a single family lot, does the plat comply with General MDC (10)?Yes#4 Are the inlets, outlets, and receiving stream protected from erosion (10-year storm)?Yes#11 Is there an O&M Agreement that complies with General MDC (11)?Yes#5 Is there a a bypass for flows in excess of the design flow?Yes#12 Is there an O&M Plan that complies with General MDC (12)?Yes#6 What is the method for dewatering the SCM for maintenance?Other#13 Was the SCM designed by an NC licensed professional?Yes#1 Method usedHRT#6 Width of the vegetated shelf (feet)6 ft#1 Surface area of the main permanent pool (square feet)38125 sf#6 Location of vegetated shelf@ Normal Pool#1 Volume of the main permanent pool (cubic feet)116538 cf#6 Elevation of top of shelf (fmsl)239 ft#2 Average depth of the main pool (feet)5 ft #6 Elevation of bottom of shelf (fmsl)238 ft#2 Was the vegetated shelf included in the calculation of average depth?Yes #6 Slope of vegetated shelf (H:V)6:1#2 Elevation of the bottom of the permanent pool (fmsl)234 ft #7 Diameter of drawdown orifice (inches)6.0 in#2 Elevation of the top of the permanent pool (fmsl)239 ft #7 Drawdown time for the temporary pool (hours)88 hrs#2 Elevation of the top of the temporary pool (fmsl)240.50 ft #7 Does the orifice drawdown from below the top surface of the permanent pool?No#3 Depth provided for sediment storage (inches)12 in#8 Does the pond minimize impacts to the receiving channel from the 1-yr, 24-hr storm?Yes#4 Are the inlet(s) and outlet located in a manner that avoids short-circuiting?Yes #9 Are fountains proposed?No#9 If yes, is documentation provided per Wet Pond MDC (9)?No#10 Is a trash rack or other device provided to protect the outlet system?Yes#5 Volume of the forebay (cubic feet)18930#11 Are the dam and embankment planted in non-clumping turf grass?Yes#5 Is this 15-20% of the volume in the main pool?Yes#11 Species of turf that will be used on the dam and embankmentSod#5 Depth of forebay at entrance (inches)48 in#11 Describe the planting plan for the vegetated shelf:#5 Depth of forebay at exit (inches)48 in#5 Does water flow out of the forebay in a non-erosive manner?Yes#5 Clean-out depth for forebay (inches)12 in#5 Will the forebay be cleaned out when the depth is reduced to less than the above?YesGENERAL MDC FROM 02H .1050WET POND MDC FROM 02H .1053#4 Describe any measures, such as berms or baffles, that will be taken to improve the flow path:Contractor to provide landscape establishment to achieve 100% coverage throughout site in 12 months. Sod is desired by the User for embankments.ADDITIONAL INFORMATIONSOF Civil AffairsTHE DRAINAGE AREABreak down of BUA in the drainage area (both new and existing):COMPLIANCE WITH THE APPLICABLE STORMWATER PROGRAMStormwater program(s) that apply (please specify):EISA 438, ARMY LID, FORT BRAGG IDGPlease use this space to provide any additional information about this wet pond that you think is relevant to the review:Project based entirely within Fort Bragg (US Gov't property). No easements required.Wet Pond #219:58 AM 10/4/2019 Permit No.______________________ (to be provided by DWQ) I. PROJECT INFORMATION Project name Contact person Phone number Date Drainage area number II. DESIGN INFORMATION Site Characteristics Drainage area 544,500 ft2 Impervious area, post-development 457,380 ft2 % impervious 84.00 % Design rainfall depth 1.0 in Storage Volume: Non-SA Waters Minimum volume required 36,572 ft3 OK, volume provided is equal to or in excess of volume required. Storage Volume: SA Waters 1.5" runoff volume ft3 Pre-development 1-yr, 24-hr runoff ft3 Post-development 1-yr, 24-hr runoff ft3 Minimum volume required ft3 Peak Flow Calculations Is the pre/post control of the 1yr 24hr storm peak flow required? Y (Y or N) 1-yr, 24-hr rainfall depth 3.1 in Rational C, pre-development 0.20 (unitless) Rational C, post-development 93.00 (unitless) Rainfall intensity: 1-yr, 24-hr storm 2.38 in/hr OK Pre-development 1-yr, 24-hr peak flow 13.40 ft3/sec Post-development 1-yr, 24-hr peak flow 40.20 ft3/sec Pre/Post 1-yr, 24-hr peak flow control 26.80 ft3/sec Elevations Temporary pool elevation 240.50 fmsl Permanent pool elevation 239.00 fmsl SHWT elevation (approx. at the perm. pool elevation) 239.00 fmsl Top of 10ft vegetated shelf elevation 239.00 fmsl Bottom of 10ft vegetated shelf elevation 238.00 fmsl Data not needed for calculation option #1, but OK if provided. Sediment cleanout, top elevation (bottom of pond) 234.00 fmsl Sediment cleanout, bottom elevation 233.00 fmsl Data not needed for calculation option #1, but OK if provided. Sediment storage provided 1.00 ft Is there additional volume stored above the state-required temp. pool? N (Y or N) Elevation of the top of the additional volume fmsl 859.280.3581 10/4/2019 This form must be filled out, printed and submitted. WET DETENTION BASIN SUPPLEMENT Volume provided ft3 ft3 Fort Bragg Civil Affairs TEMF - Wet Pond #2 Volume provided 74,633 STORMWATER MANAGEMENT PERMIT APPLICATION FORM Stephen Curry, P.E. 401 CERTIFICATION APPLICATION FORM The Required Items Checklist (Part III) must be printed, filled out and submitted along with all of the required information. Wet Pond #2 Form SW401-Wet Detention Basin-Rev.9-4/18/12 Parts I. & II. Design Summary, Page 1 of 2 Permit No.______________________ (to be provided by DWQ) II. DESIGN INFORMATION Surface Areas Area, temporary pool 53,661 ft2 Area REQUIRED, permanent pool 545 ft2 SA/DA ratio 0.10 (unitless) Area PROVIDED, permanent pool, Aperm_pool 38,125 ft2 OK Area, bottom of 10ft vegetated shelf, Abot_shelf 29,282 ft2 Area, sediment cleanout, top elevation (bottom of pond), Abot_pond 12,276 ft2 Volumes Volume, temporary pool 74,633 ft3 OK Volume, permanent pool, Vperm_pool 116,538 ft3 Volume, forebay (sum of forebays if more than one forebay) 18,930 ft3 Forebay % of permanent pool volume 16.2% % Insufficient forebay volume. SA/DA Table Data Design TSS removal 85 % Coastal SA/DA Table Used?N (Y or N) Mountain/Piedmont SA/DA Table Used? Y (Y or N) SA/DA ratio 0.10 (unitless) Average depth (used in SA/DA table): Calculation option 1 used? (See Figure 10-2b) Y (Y or N) Volume, permanent pool, Vperm_pool 116,538 ft3 Area provided, permanent pool, Aperm_pool 38,125 ft2 Average depth calculated 3.10 ft OK Average depth used in SA/DA, dav, (Round to nearest 0.5ft)5.0 ft Insufficient. Check calculation. Calculation option 2 used? (See Figure 10-2b) N (Y or N) Area provided, permanent pool, Aperm_pool 38,125 ft2 Area, bottom of 10ft vegetated shelf, Abot_shelf 29,282 ft2 Area, sediment cleanout, top elevation (bottom of pond), Abot_pond 12,276 ft2 "Depth" (distance b/w bottom of 10ft shelf and top of sediment) 4.00 ft Average depth calculated ft Average depth used in SA/DA, dav, (Round to down to nearest 0.5ft)ft Drawdown Calculations Drawdown through orifice?Y (Y or N) Diameter of orifice (if circular)6.00 in Area of orifice (if-non-circular)in2 Coefficient of discharge (CD)0.60 (unitless) Driving head (Ho)239.00 ft Drawdown through weir?N (Y or N) Weir type (unitless) Coefficient of discharge (Cw)(unitless) Length of weir (L)ft Driving head (H)ft Pre-development 1-yr, 24-hr peak flow 13.40 ft3/sec Post-development 1-yr, 24-hr peak flow 40.20 ft3/sec Storage volume discharge rate (through discharge orifice or weir)ft3/sec OK, draws down in 2-5 days. Additional Information Vegetated side slopes 3 :1 OK Vegetated shelf slope 10 :1 OK Vegetated shelf width 10.0 ft OK Length of flowpath to width ratio 8 :1 OK Length to width ratio 12.0 :1 OK Trash rack for overflow & orifice?Y (Y or N) OK Freeboard provided 1.0 ft OK Vegetated filter provided?Y (Y or N) OK Recorded drainage easement provided? N (Y or N) Insufficient. Recorded drainage easement required. Capures all runoff at ultimate build-out? Y (Y or N) OK Drain mechanism for maintenance or emergencies is:Pump Storage volume drawdown time 3.70 days Form SW401-Wet Detention Basin-Rev.9-4/18/12 Parts I. & II. Design Summary, Page 2 of 2 Project:Ft Bragg Civil Affairs TEMF - Wet Basin #3 Date:19-Jun-19 Rv=0.05 +0.9*I A Rv - Runoff Coefficient IA - Impervious fraction Dv=3630*R D*RV*A Dv - Design Volume (cf) RD - Desing Storm Depth (in) A - Drainage Area (Ac) Impervious Area (Ac)=10.5 Pervious Area (Ac)=2 Total Area (Ac)=12.5 IA=0.84 RD, Design Storm Depth (in)=1.0 Rv= 0.806 Dv= 36,572 NCDEQ Minimum Design Volume Project:Ft Bragg Civil Affairs TEMF - Wet Basin #3 Date:19-Jun-19 Hydraullic Retention Time (HRT) Method Dv - Design Volume (cf) From Simple Method Dv=36,572 cf VMP =89,090 cf Ft Bragg Civil Affairs - Wet Pond #2 Stormwater Pond Riser Summary October-2019 Wet Pond #2 1 0 238.72 2 0.25 239.32 5 0.71 239.81 10 0.97 240.30 25 3.48 240.62 50 8.77 240.77 100 20.61 241.01 Storm Return Interval (yr) Peak Flow (Qp) w/ Inlet Control Maximum Elevation (ft) w/ Inlet Control Wet Pond #2 Drawdown Time Ft Bragg CA TEMF Oct-19 Orifice Diameter 6 inches Discharge Rate of Orifice (cuft/s)0.47 Volume of Stormwater for Drawdown 149,264 Incremental Storage (cuft): 239 44,625 240 50,978 240.50 53,661 Total Storage (cuft)149,264 Drawdown Rate: Volume of Stormwater / Discharge Rate 317583 sec 88 hrs 3.7 days Main Pool Volume.txtWet Pond #2 ‐ Volume of Main Pool Project: Ft Bragg Civil Affairs Basin Description: Wet Pond #2 Volume of Main Pool  Contour Contour Depth Incremental Cumulative Incremental Cumulative Elevation Area (ft) Volume Volume Volume Volume              (sq. ft)        Avg. End Avg. End Conic Conic                              (cu. ft) (cu. ft) (cu. ft) (cu. ft)  234.0 12,276.0 N/A N/A 0 N/A 0 235.0 16,443.0 1 14360 14360 14309 14309 236.0 20,666.0 1 18555 32914 18514 32823 237.0 24,946.0 1 22806 55720 22772 55596 238.0 29,282.0 1 27114 82834 27085 82681 239.0 38,125.0 1 33704 116538 33606 116287Page 1 Forebay Volume.txtWet Pond #2 ‐ Volume of Forebay Project: Ft Bragg Civil Affairs Basin Description: Wet Pond #2 Volume of Forebay  Contour Contour Depth Incremental Cumulative Incremental Cumulative Elevation Area (ft) Volume Volume Volume Volume              (sq. ft)        Avg. End Avg. End Conic Conic                              (cu. ft) (cu. ft) (cu. ft) (cu. ft)  235.0 3,106.0 N/A N/A 0 N/A 0 236.0 3,870.0 1 3488 3488 3481 3481 237.0 4,690.0 1 4280 7768 4273 7754 238.0 5,567.0 1 5129 12897 5122 12877 239.0 6,500.0 1 6034 18930 6027 18904Page 1 Design Volume.txtWet Pond #2 ‐ Design Volume Project: Ft Bragg Civil Affairs Basin Description: Wet Pond #2 Design Volume  Contour Contour Depth Incremental Cumulative Incremental Cumulative Elevation Area (ft) Volume Volume Volume Volume              (sq. ft)        Avg. End Avg. End Conic Conic                              (cu. ft) (cu. ft) (cu. ft) (cu. ft)  239.0 44,625.0 N/A N/A 0 N/A 0 240.0 50,978.0 1 47802 47802 47766 47766 241.0 56,345.0 1 53662 101463 53639 101405Page 1 Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.10 - APPENDIX J OUTLET PROTECTION CALCULATIONS PIPE DIA Tw DISCHARGEd50 Lad WIDTH AT OUTLET WIDTH AT END(in)(in) (CFS)(ft) (ft)(ft)(ft)(ft)HW-1180.110.940.50 0.50 101.504.55.5HW-330 20.00 22.426.29 0.50 181.507.510.0HW-6189.00 11.367.99 0.50 101.504.55.5HW-818 15.00 5.114.17 0.50 101.504.55.5HW-936 18.00 79.0011.20 0.50 401.759.019.0Basin 2-Flume N/AN/A 26.005.00 0.75 201.7515.020.0Basin 2-Forebay N/AN/AN/AN/A 0.75 501.5025.025.0Basin 3-Flume N/AN/A 64.207.80 0.75 201.7521.025.0Basin 3-Forebay N/AN/AN/AN/A 0.75 501.5025.025.0OUTLET PROTECTION SCHEDULEHWVELOCITY (CF+/s) User Input Data Calculated Value Reference Data Designed By:SRC Date:8/29/2019 Checked By:FMM Date: Company: Project Name:Civil Affairs TEMF Project No.:171.01 Site Location (City/Town)Fort Bragg Culvert Id.HW1 Total Drainage Area (acres) Rational Method for Flow Outlet pipe diameter, Do (in.)18 Tailwater depth (in.) 0.11 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 0.94 Velocity (ft./s) 1 Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.)0.5 0.5 Minimum apron length, La (ft.)10 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape TRAPEZOID TRAPEZOID Apron width at outlet end (ft.) 5.5 1.5 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.75 0.75 Minimum TW Maximum TW Apron Thickness(ft.)1.125 1.125 User Input Data Calculated Value Reference Data Designed By:SRC Date:6/20/2019 Checked By:FMM Date: Company: Project Name:Civil Affairs TEMF Project No.:171.01 Site Location (City/Town)Fort Bragg Culvert Id.HW3 Total Drainage Area (acres)4.68 Rational Method for Flow Outlet pipe diameter, Do (in.)30 Tailwater depth (in.) 20 Minimum/Maximum tailwater? Max TW (Fig. 8.06b) Discharge (cfs) 22.42 Velocity (ft./s) 6.29 Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.)0.5 0.5 Minimum apron length, La (ft.)18 Apron width at pipe outlet (ft.) 7.5 7.5 Apron shape TRAPEZOID Apron width at outlet end (ft.) 2.5 9.7 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.75 0.75 Minimum TW Maximum TW Apron Thickness(ft.) 1.125 1.125 User Input Data Calculated Value Reference Data Designed By:SRC Date:10/21/2019 Checked By:FMM Date: Company: Project Name:Civil Affairs TEMF Project No.:171.01 Site Location (City/Town)Fort Bragg Culvert Id.HW6 Total Drainage Area (acres) Rational Method for Flow Outlet pipe diameter, Do (in.)18 Tailwater depth (in.)9 Minimum/Maximum tailwater? Max TW (Fig. 8.06b) Discharge (cfs)11.36 Velocity (ft./s)7.99 Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.)0.5 Minimum apron length, La (ft.)10 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape TRAPEZOID TRAPEZOID Apron width at outlet end (ft.)1.5 5.5 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.)0 0.75 Minimum TW Maximum TW Apron Thickness(ft.)0 1.125 User Input Data Calculated Value Reference Data Designed By:SRC Date:8/29/2019 Checked By:FMM Date: Company: Project Name:Civil Affairs TEMF Project No.:171.01 Site Location (City/Town)Fort Bragg Culvert Id.HW8 Total Drainage Area (acres)0.9 Rational Method for Flow Outlet pipe diameter, Do (in.)18 Tailwater depth (in.) 15 Minimum/Maximum tailwater? Max TW (Fig. 8.06b) Discharge (cfs) 5.11 Velocity (ft./s) 4.17 Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.)0.5 0.5 Minimum apron length, La (ft.)10 10 Apron width at pipe outlet (ft.) 4.5 4.5 Apron shape TRAPEZOID Apron width at outlet end (ft.) 11.5 5.5 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 0.75 0.75 Minimum TW Maximum TW Apron Thickness(ft.) 1.125 1.125 User Input Data Calculated Value Reference Data Designed By:SRC Date:8/29/2019 Checked By:FMM Date: Company: Project Name:Civil Affairs TEMF Project No.:171.01 Site Location (City/Town)Fort Bragg Culvert Id.HW9 Total Drainage Area (acres)N/A Rational Method for Flow Outlet pipe diameter, Do (in.)36 Tailwater depth (in.) 18 Minimum/Maximum tailwater? Max TW (Fig. 8.06b) Discharge (cfs) 79 Velocity (ft./s) 11.2 Minimum TW Maximum TW Figure 8.06a Figure 8.06b Riprap d50, (ft.)0.75 0.75 Minimum apron length, La (ft.)40 Apron width at pipe outlet (ft.) 9 9 Apron shape TRAPEZOID Apron width at outlet end (ft.) 3 19 Minimum TW Maximum TW Max Stone Diameter, dmax (ft.) 1.125 1.125 Minimum TW Maximum TW Apron Thickness(ft.) 1.6875 1.6875 Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) Figure 8.06b: Design of outlet protection from a round pipe flowing full, maximum tailwater condition (Tw>=0.5 diameter) Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.11 - APPENDIX K TEMPORARY SEDIMENTATION BASIN CALCULATIONS WinTR-55 Current Data Description --- Identification Data --- User: SCurry Date: 8/29/2019 Project: Ft Bragg CA TEMF_SB Units: English SubTitle: Skimmer Basin Calculations Areal Units: Acres State: North Carolina County: Cumberland NOAA-B Filename: P:\Projects\017101\02 Design\Civil\Storm Water Design\Skimmer & Sediment Basins\PreDevelopment_C --- Sub-Area Data --- Name Description Reach Area(ac) RCN Tc ------------------------------------------------------------------------------ SB#1 Skimmer Basin #1 Outlet 6.7 82 0.100 SB#2 Skimmer Basin #2 Outlet 7.6 82 0.100 SB#3 Skimmber Basin #3 Outlet 5.1 82 0.100 Total area: 19.40 (ac) --- Storm Data -- Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 8/29/2019 3:45:57 PM SCurry Ft Bragg CA TEMF_SB Skimmer Basin Calculations Cumberland NOAA-B County, North Carolina Storm Data Rainfall Depth by Rainfall Return Period 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr (in) (in) (in) (in) (in) (in) (in) -------------------------------------------------------------------------------- 3.67 4.71 5.55 6.74 7.72 8.75 3.03 Storm Data Source: User-provided custom storm data Rainfall Distribution Type: Type II Dimensionless Unit Hydrograph: <standard> WinTR-55, Version 1.00.10 Page 1 8/29/2019 3:45:57 PM SCurry Ft Bragg CA TEMF_SB Skimmer Basin Calculations Cumberland NOAA-B County, North Carolina Watershed Peak Table Sub-Area Peak Flow by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) ---------------------------------------------------------------------------------- SUBAREAS SB#1 19.87 29.03 36.61 47.38 56.28 65.64 14.45 SB#2 22.55 32.94 41.54 53.76 63.86 74.48 16.39 SB#3 15.13 22.10 27.87 36.06 42.84 49.96 11.00 REACHES OUTLET 57.55 84.07 106.03 137.20 162.98 190.08 41.83 WinTR-55, Version 1.00.10 Page 1 8/29/2019 3:45:57 PM SCurry Ft Bragg CA TEMF_SB Skimmer Basin Calculations Cumberland NOAA-B County, North Carolina Hydrograph Peak/Peak Time Table Sub-Area Peak Flow and Peak Time (hr) by Rainfall Return Period or Reach 2-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1-Yr Identifier (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (cfs) (hr) (hr) (hr) (hr) (hr) (hr) (hr) ---------------------------------------------------------------------------------- SUBAREAS SB#1 19.87 29.03 36.61 47.38 56.28 65.64 14.45 11.94 11.93 11.93 11.93 11.93 11.93 11.93 SB#2 22.55 32.94 41.54 53.76 63.86 74.48 16.39 11.94 11.93 11.93 11.93 11.93 11.93 11.93 SB#3 15.13 22.10 27.87 36.06 42.84 49.96 11.00 11.94 11.93 11.93 11.93 11.93 11.93 11.93 REACHES OUTLET 57.55 84.07 106.03 137.20 162.98 190.08 41.83 WinTR-55, Version 1.00.10 Page 1 8/29/2019 3:45:57 PM SCurry Ft Bragg CA TEMF_SB Skimmer Basin Calculations Cumberland NOAA-B County, North Carolina Sub-Area Summary Table Sub-Area Drainage Time of Curve Receiving Sub-Area Identifier Area Concentration Number Reach Description (ac) (hr) -------------------------------------------------------------------------------- SB#1 6.70 0.100 82 Outlet Skimmer Basin #1 SB#2 7.60 0.100 82 Outlet Skimmer Basin #2 SB#3 5.10 0.100 82 Outlet Skimmber Basin #3 Total Area: 19.40 (ac) WinTR-55, Version 1.00.10 Page 1 8/29/2019 3:45:57 PM SCurry Ft Bragg CA TEMF_SB Skimmer Basin Calculations Cumberland NOAA-B County, North Carolina Sub-Area Time of Concentration Details Sub-Area Flow Mannings's End Wetted Travel Identifier/ Length Slope n Area Perimeter Velocity Time (ft) (ft/ft) (sq ft) (ft) (ft/sec) (hr) -------------------------------------------------------------------------------- SB#1 User-provided 0.100 Time of Concentration 0.100 ======== SB#2 User-provided 0.100 Time of Concentration 0.100 ======== SB#3 User-provided 0.100 Time of Concentration 0.100 ======== WinTR-55, Version 1.00.10 Page 1 8/29/2019 3:45:57 PM SCurry Ft Bragg CA TEMF_SB Skimmer Basin Calculations Cumberland NOAA-B County, North Carolina Sub-Area Land Use and Curve Number Details Sub-Area Hydrologic Sub-Area Curve Identifier Land Use Soil Area Number Group (ac) -------------------------------------------------------------------------------- SB#1 Dirt (w/ right-of-way) B 6.7 82 Total Area / Weighted Curve Number 6.7 82 === == SB#2 Dirt (w/ right-of-way) B 7.6 82 Total Area / Weighted Curve Number 7.6 82 === == SB#3 Dirt (w/ right-of-way) B 5.1 82 Total Area / Weighted Curve Number 5.1 82 === == WinTR-55, Version 1.00.10 Page 1 8/29/2019 3:45:57 PM Okay 6.7 Disturbed Area (Acres) 36.6 Peak Flow from 10-year Storm (cfs) 12060 Required Volume ft3 15943 Required Surface Area ft2 89.3 Suggested Width ft 178.6 Suggested Length ft 90 Trial Top Width at Spillway Invert ft 180 Trial Top Length at Spillway Invert ft 3 Trial Side Slope Ratio Z:1 2 Trial Depth ft (2 to 13 feet above grade) 78 Bottom Width ft 168 Bottom Length ft 13104 Bottom Area ft2 29256 Actual Volume ft3 Okay 16200 Actual Surface Area ft2 Okay Use Spillway Capacity Sheet to Size Primary and Emergency Spillways 4 Skimmer Size (inches) Skimmer Size 0.333 Head on Skimmer (feet) (Inches) 1.75 Orifice Size (1/4 inch increments) 1.5 2.95 Dewatering Time (days) 2 Suggest about 3 days 2.5 3 4 5 6 8 Temporary Sediment Basin 1 Spillway Capacity Spreadsheet10/22/2019By: S.CurryPipe Flow (Inlet Control)Weir Flow Orifice Flow Primary Emergency Spillway FlowTotal Spillway CapacityFullOrifice RiserRiserSpillwayFlowInlet Invert = 231.50 Co = 0.6 Crest Elev. = 237 Crest Elev. = 237Bottom Elevation 238Outlet Invert = 230.50Material = RCPPipe Diameter (ins.) = 24 Pipe Diameter (ins.) = 24Bottom Width 20Diameter (ins) = 24Ke = 0.5BoxBoxn for Pipe = 0.013L (ft) = 4 L (ft) = 4 Weir Equation Q= C L H^1.5Length (ft) = 200W (ft) = 4 W (ft) = 4Kp = 0.012432Cw= 2.8Area (sq ft) = 3.14159Cw = 3 Co = 0.6Area (sq ft) = 19.14159Elevation H Q Outlet H Q H Q H Q Q max Elevation Head QQ cfsElevation Elevation NotesCFS. V CFS.CFS.CFS. CFS.-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00235.00 3.5 23.61 7.51 2.50 23.90 -2.00 #NUM! -2.00 #NUM! #NUM! 235.00 0.00 0.00#NUM!235.00Bottom of Basin236.00 4.5 26.77 8.52 3.50 28.28 -1.00 #NUM! -1.00 #NUM! #NUM! 236.00 0.00 0.00#NUM!236.00Clean-Out Elevation237.00 5.5 29.59 9.42 4.50 32.07 0.00 0.00 0.00 0.00 0.00 237.00 0.00 0.000.00237.00Top of Riser237.50 6 30.91 9.84 5.00 33.80 0.50 23.63 0.50 65.13 23.63 237.50 0.00 0.0023.63237.50238.00 6.5 32.17 10.24 5.50 35.45 1.00 66.85 1.00 92.11 32.17238.00 0.00 0.0032.17238.00Emergency Spillway Crest238.50 7 33.39 10.63 6.00 37.03 1.50 122.81 1.50 112.81 33.39238.50 0.50 19.8053.19238.50Emergency Spillway Head239.00 7.5 34.56 11.00 6.50 38.54 2.00 189.08 2.00 130.26 34.56 239.00 1.00 56.0090.56239.00Top of Berm-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5#NUM!#NUM!-232.50#NUM!-237.00#NUM!-237.00#NUM!#NUM!0.000.000.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-231.5 #NUM! #NUM! -232.50 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00PIPE FRICTION COEFFICIENTSPIPECOEFFICIENTSMOOTH CEMENT 0.013ROUGH CEMENT 0.015CORRUGATED METAL 0.024SMOOTH STEEL 0.013RIVETED STEEL 0.016CAST IRON 0.014TGH Revised 12/13/2006Date: Checked:Pipe Flow(Outlet Control) Okay 7.6 Disturbed Area (Acres) 41.5 Peak Flow from 10-year Storm (cfs) 13680 Required Volume ft3 18077 Required Surface Area ft2 95.1 Suggested Width ft 190.1 Suggested Length ft 100 Trial Top Width at Spillway Invert ft 200 Trial Top Length at Spillway Invert ft 3 Trial Side Slope Ratio Z:1 2 Trial Depth ft (2 to 13 feet above grade) 88 Bottom Width ft 188 Bottom Length ft 16544 Bottom Area ft2 36496 Actual Volume ft3 Okay 20000 Actual Surface Area ft2 Okay Use Spillway Capacity Sheet to Size Primary and Emergency Spillways 3 Skimmer Size (inches) Skimmer Size 0.25 Head on Skimmer (feet) (Inches) 2 Orifice Size (1/4 inch increments) 1.5 2.96 Dewatering Time (days) 2 Suggest about 3 days 2.5 3 4 5 6 8 Temporary Sediment Basin 2 Spillway Capacity Spreadsheet10/22/2019By: S.CurryPipe Flow (Inlet Control)Weir Flow Orifice Flow Primary Emergency Spillway FlowTotal Spillway CapacityFullOrifice RiserRiserSpillwayFlowInlet Invert = 234.50 Co = 0.6 Crest Elev. = 237 Crest Elev. = 237Bottom Elevation 238Outlet Invert = 234.00Material = ConcretePipe Diameter (ins.) = 24 Pipe Diameter (ins.) = 24Bottom Width 30Diameter (ins) = 18Ke = 0.5BoxBoxn for Pipe = 0.013L (ft) = 4 L (ft) = 4 Weir Equation Q= C L H^1.5Length (ft) = 127W (ft) = 4 W (ft) = 4Kp = 0.018242Cw= 2.8Area (sq ft) = 1.767144Cw = 3 Co = 0.6Area (sq ft) = 19.14159Elevation H Q Outlet H Q H Q H Q Q max Elevation Head QQ cfsElevation Elevation NotesCFS. V CFS.CFS.CFS. CFS.-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00235.00 0.25 3.63 2.05 -0.25 #NUM! -2.00 #NUM! -2.00 #NUM! #NUM! 235.00 0.00 0.00#NUM!235.00Bottom of Basin236.00 1.25 8.11 4.59 0.75 7.36 -1.00 #NUM! -1.00 #NUM! #NUM!236.00 0.00 0.00#NUM!236.00Clean-Out Elevation237.00 2.25 10.88 6.16 1.75 11.25 0.00 0.00 0.00 0.00 0.00 237.00 0.00 0.000.00237.00Top of Riser237.50 2.75 12.03 6.81 2.25 12.76 0.50 23.63 0.50 65.13 12.03237.50 0.00 0.0012.03237.50238.00 3.25 13.08 7.40 2.75 14.10 1.00 66.85 1.00 92.11 13.08238.00 0.00 0.0013.08238.00Emergency Spillway Crest238.50 3.75 14.05 7.95 3.25 15.33 1.50 122.81 1.50 112.81 14.05 238.50 0.50 29.7043.75238.50Emergency Spillway Head239.00 4.25 14.96 8.46 3.75 16.47 2.00 189.08 2.00 130.26 14.96 239.00 1.00 84.0098.96239.00Top of Berm-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75#NUM!#NUM!-235.25#NUM!-237.00#NUM!-237.00#NUM!#NUM!0.000.000.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-234.75 #NUM! #NUM! -235.25 #NUM! -237.00 #NUM! -237.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00PIPE FRICTION COEFFICIENTSPIPECOEFFICIENTSMOOTH CEMENT 0.013ROUGH CEMENT 0.015CORRUGATED METAL 0.024SMOOTH STEEL 0.013RIVETED STEEL 0.016CAST IRON 0.014TGH Revised 12/13/2006Date: Checked:Pipe Flow(Outlet Control) Okay 5.1 Disturbed Area (Acres) 27.9 Peak Flow from 10-year Storm (cfs) 9180 Required Volume ft3 12153 Required Surface Area ft2 78.0 Suggested Width ft 155.9 Suggested Length ft 80 Trial Top Width at Spillway Invert ft 160 Trial Top Length at Spillway Invert ft 3 Trial Side Slope Ratio Z:1 2 Trial Depth ft (2 to 13 feet above grade) 68 Bottom Width ft 148 Bottom Length ft 10064 Bottom Area ft2 22816 Actual Volume ft3 Okay 12800 Actual Surface Area ft2 Okay Use Spillway Capacity Sheet to Size Primary and Emergency Spillways 4 Skimmer Size (inches) Skimmer Size 0.333 Head on Skimmer (feet) (Inches) 1.5 Orifice Size (1/4 inch increments) 1.5 3.06 Dewatering Time (days) 2 Suggest about 3 days 2.5 3 4 5 6 8 Temporary Sediment Basin 3 Spillway Capacity Spreadsheet10/22/2019By: S. CurryPipe Flow (Inlet Control)Weir Flow Orifice Flow Primary Emergency Spillway FlowTotal Spillway CapacityFullOrifice RiserRiserSpillwayFlowInlet Invert = 238.00 Co = 0.6 Crest Elev. = 240 Crest Elev. = 240Bottom Elevation 241Outlet Invert = 237.00Material = ConcretePipe Diameter (ins.) = 15 Pipe Diameter (ins.) = 15Bottom Width 20Diameter (ins) = 15Ke = 0.5BoxBoxn for Pipe = 0.013L (ft) = 4 L (ft) = 4 Weir Equation Q= C L H^1.5Length (ft) = 64W (ft) = 4 W (ft) = 4Kp = 0.02326Cw= 2.8Area (sq ft) = 1.227184Cw = 3 Co = 0.6Area (sq ft) = 17.22718Elevation H Q Outlet H Q H Q H Q Q max Elevation Head QQ cfsElevation Elevation NotesCFS. V CFS.CFS.CFS. CFS.-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00238.00 0.375 3.49 2.84 -0.63 #NUM! -2.00 #NUM! -2.00 #NUM! #NUM! 238.00 0.00 0.00#NUM!238.00Bottom of Basin239.00 1.375 6.68 5.44 0.38 3.62 -1.00 #NUM! -1.00 #NUM! #NUM! 239.00 0.00 0.00#NUM!239.00Clean-Out Elevation240.00 2.375 8.77 7.15 1.38 6.92 0.00 0.00 0.00 0.00 0.00 240.00 0.00 0.000.00240.00Top of Riser241.00 3.375 10.46 8.52 2.38 9.10 1.00 59.78 1.00 82.90 9.10 241.00 0.00 0.009.10241.00Emergency Spillway Crest241.50 3.875 11.21 9.13 2.88 10.01 1.50 109.82 1.50 101.53 10.01 241.50 0.50 19.8029.81241.50Emergency Spillway Head242.00 4.375 11.91 9.70 3.38 10.85 2.00 169.09 2.00 117.23 10.85 242.00 1.00 56.0066.85242.00243.00 5.375 13.20 10.76 4.38 12.35 3.00 310.63 3.00 143.58 12.35 243.00 2.00 158.39170.74243.00243.50 5.875 13.80 11.24 4.88 13.04 3.50 391.44 3.50 155.09 13.04 243.50 2.50 221.36234.40243.50244.00 6.375 14.37 11.71 5.38 13.69 4.00 478.25 4.00 165.79 13.69 244.00 3.00 290.98304.68244.00Top of Berm-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00-237.625 #NUM! #NUM! -238.63 #NUM! -240.00 #NUM! -240.00 #NUM! #NUM! 0.00 0.00 0.00#NUM!0.00PIPE FRICTION COEFFICIENTSPIPECOEFFICIENTSMOOTH CEMENT 0.013ROUGH CEMENT 0.015CORRUGATED METAL 0.024SMOOTH STEEL 0.013RIVETED STEEL 0.016CAST IRON 0.014TGH Revised 12/13/2006Date: Checked:Pipe Flow(Outlet Control) Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.14 - APPENDIX L TEMPORARY DIVERSION Ft Bragg Civil Affairs TEMFErosion & Sediment ControlTemporary Diversion CalculationsNovember 2019CHANNELBOTTOM WIDTH (FT)SIDE SLOPE (H:V)CHANNEL GRADECHANNEL LENGTHDRAINAGE AREA (AC)Q10 MAX (CFS)V10 (FT/S)DEPTH (FT)TEMPORARY LININGPermissible Shear Stress     Td (lb per SF)PERMANENT  LININGMIN WIDTH LINING (FT)MIN DEPTH LINING (IN)TD‐1 (Pre‐Initial Phase)3 3:1 0.45% 340 10.70 48.43 4.92 1.38 Synthetic Mat 0.39N/A 3 18TD‐2 (Pre‐Initial Phase)3 3:1 0.50% 506 6.30 30.5 4.17 1.14 Synthetic Mat 0.36N/A 3 18TD‐3 (Initial Phase)3 3:1 3.30% 213 0.34 1.29 3.20 0.12 Synthetic Mat 0.25N/A 3 12TD‐4 (Initial Phase)3 3:1 1.16% 690 5.50 20.84 5.50 0.73 Synthetic Mat 0.53N/A 3 12TD‐5 (Initial Phase)3 3:1 2.36% 254 6.80 25.76 7.52 0.68 Synthetic Mat 1.00N/A 3 12TD‐6 (Initial Phase)3 3:1 0.30% 514 7.00 26.52 3.58 1.15 Synthetic Mat 0.22N/A 3 18TD‐7 (Initial Phase)3 3:1 0.60% 475 7.00 26.52 3.58 1.15 Synthetic Mat 0.43N/A 3 18GL‐1 (Pre‐Initial Phase)7.5 3:1 0.50% 312 0.90 4.56 3.22 1.25 N/A0.39Sod 3 18GL‐2 (Intermediate Phase)6 3:1 0.50% 333 N/A N/A N/A N/A N/AN/ASod 3 FullStable Channel Design Method:Tractive Force ApproachNCDEQ Appendices 8Permissible Shear Stress Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-1 (Pre-Initial Phase) Trapezoidal Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 6.00 Invert Elev (ft) = 241.00 Slope (%) = 0.45 N-Value = 0.018 Calculations Compute by: Known Q Known Q (cfs) = 48.43 Highlighted Depth (ft) = 1.38 Q (cfs) = 48.43 Area (sqft) = 9.85 Velocity (ft/s) = 4.92 Wetted Perim (ft) = 11.73 Crit Depth, Yc (ft) = 1.33 Top Width (ft) = 11.28 EGL (ft) = 1.76 0 5 10 15 20 25 30 35 40 45 50 Elev (ft)Depth (ft)Section 240.00 -1.00 241.00 0.00 242.00 1.00 243.00 2.00 244.00 3.00 245.00 4.00 246.00 5.00 247.00 6.00 248.00 7.00 Reach (ft) Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-1 (Pre-Initial Phase) Hydrograph type = Rational Peak discharge (cfs) = 48.43 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 10.700 Runoff coeff. (C) = 0.75 Rainfall Inten (in/hr) = 6.034 Tc by User (min) = 12 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 34,866 (cuft); 0.800 (acft) 0 5 10 15 20 25 Q (cfs) 0.00 0.00 10.00 10.00 20.00 20.00 30.00 30.00 40.00 40.00 50.00 50.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 48.43 (cfs) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-2 (Pre-Initial Phase) Trapezoidal Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 240.00 Slope (%) = 0.40 N-Value = 0.018 Calculations Compute by: Known Q Known Q (cfs) = 30.55 Highlighted Depth (ft) = 1.14 Q (cfs) = 30.55 Area (sqft) = 7.32 Velocity (ft/s) = 4.17 Wetted Perim (ft) = 10.21 Crit Depth, Yc (ft) = 1.06 Top Width (ft) = 9.84 EGL (ft) = 1.41 0 2 4 6 8 10 12 14 16 18 20 Elev (ft)Depth (ft)Section 239.50 -0.50 240.00 0.00 240.50 0.50 241.00 1.00 241.50 1.50 242.00 2.00 242.50 2.50 243.00 3.00 Reach (ft) Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-2 (Pre-Initial Phase) Hydrograph type = Rational Peak discharge (cfs) = 30.55 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 6.300 Runoff coeff. (C) = 0.75 Rainfall Inten (in/hr) = 6.465 Tc by User (min) = 10 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 18,328 (cuft); 0.421 (acft) 0 5 10 15 20 Q (cfs) 0.00 0.00 5.00 5.00 10.00 10.00 15.00 15.00 20.00 20.00 25.00 25.00 30.00 30.00 35.00 35.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 30.55 (cfs) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-3 (Initial Phase) Trapezoidal Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 238.00 Slope (%) = 3.30 N-Value = 0.018 Calculations Compute by: Known Q Known Q (cfs) = 1.29 Highlighted Depth (ft) = 0.12 Q (cfs) = 1.290 Area (sqft) = 0.40 Velocity (ft/s) = 3.20 Wetted Perim (ft) = 3.76 Crit Depth, Yc (ft) = 0.17 Top Width (ft) = 3.72 EGL (ft) = 0.28 0 2 4 6 8 10 12 14 16 Elev (ft)Depth (ft)Section 237.50 -0.50 238.00 0.00 238.50 0.50 239.00 1.00 239.50 1.50 240.00 2.00 Reach (ft) Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-3 (Initial Phase) Hydrograph type = Rational Peak discharge (cfs) = 1.288 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 0.340 Runoff coeff. (C) = 0.5 Rainfall Inten (in/hr) = 7.577 Tc by User (min) = 6 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 464 (cuft); 0.011 (acft) 0 5 10 15 Q (cfs) 0.00 0.00 1.00 1.00 2.00 2.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 1.29 (cfs) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-4 (Initial Phase) Trapezoidal Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 237.00 Slope (%) = 1.16 N-Value = 0.018 Calculations Compute by: Known Q Known Q (cfs) = 20.84 Highlighted Depth (ft) = 0.73 Q (cfs) = 20.84 Area (sqft) = 3.79 Velocity (ft/s) = 5.50 Wetted Perim (ft) = 7.62 Crit Depth, Yc (ft) = 0.86 Top Width (ft) = 7.38 EGL (ft) = 1.20 0 2 4 6 8 10 12 14 16 Elev (ft)Depth (ft)Section 236.50 -0.50 237.00 0.00 237.50 0.50 238.00 1.00 238.50 1.50 239.00 2.00 Reach (ft) Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-4 (Initial Phase) Hydrograph type = Rational Peak discharge (cfs) = 20.84 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 5.500 Runoff coeff. (C) = 0.5 Rainfall Inten (in/hr) = 7.577 Tc by User (min) = 6 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 7,501 (cuft); 0.172 (acft) 0 5 10 15 Q (cfs) 0.00 0.00 3.00 3.00 6.00 6.00 9.00 9.00 12.00 12.00 15.00 15.00 18.00 18.00 21.00 21.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 20.84 (cfs) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-5 (Initial Phase) Trapezoidal Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 234.00 Slope (%) = 2.36 N-Value = 0.018 Calculations Compute by: Known Q Known Q (cfs) = 25.76 Highlighted Depth (ft) = 0.68 Q (cfs) = 25.76 Area (sqft) = 3.43 Velocity (ft/s) = 7.52 Wetted Perim (ft) = 7.30 Crit Depth, Yc (ft) = 0.97 Top Width (ft) = 7.08 EGL (ft) = 1.56 0 2 4 6 8 10 12 14 16 18 20 Elev (ft)Depth (ft)Section 233.50 -0.50 234.00 0.00 234.50 0.50 235.00 1.00 235.50 1.50 236.00 2.00 236.50 2.50 237.00 3.00 Reach (ft) Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-5 (Initial Phase) Hydrograph type = Rational Peak discharge (cfs) = 25.76 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 6.800 Runoff coeff. (C) = 0.5 Rainfall Inten (in/hr) = 7.577 Tc by User (min) = 6 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 9,274 (cuft); 0.213 (acft) 0 5 10 15 Q (cfs) 0.00 0.00 4.00 4.00 8.00 8.00 12.00 12.00 16.00 16.00 20.00 20.00 24.00 24.00 28.00 28.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 25.76 (cfs) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-6 (Initial Phase) Trapezoidal Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 238.00 Slope (%) = 0.30 N-Value = 0.018 Calculations Compute by: Known Q Known Q (cfs) = 26.52 Highlighted Depth (ft) = 1.15 Q (cfs) = 26.52 Area (sqft) = 7.42 Velocity (ft/s) = 3.58 Wetted Perim (ft) = 10.27 Crit Depth, Yc (ft) = 0.98 Top Width (ft) = 9.90 EGL (ft) = 1.35 0 2 4 6 8 10 12 14 16 18 20 Elev (ft)Depth (ft)Section 237.50 -0.50 238.00 0.00 238.50 0.50 239.00 1.00 239.50 1.50 240.00 2.00 240.50 2.50 241.00 3.00 Reach (ft) Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Friday, Aug 30 2019 TD-6 (Initial Phase) Hydrograph type = Rational Peak discharge (cfs) = 26.52 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 7.000 Runoff coeff. (C) = 0.5 Rainfall Inten (in/hr) = 7.577 Tc by User (min) = 6 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 9,547 (cuft); 0.219 (acft) 0 5 10 15 Q (cfs) 0.00 0.00 4.00 4.00 8.00 8.00 12.00 12.00 16.00 16.00 20.00 20.00 24.00 24.00 28.00 28.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 26.52 (cfs) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Wednesday, Sep 4 2019 TD-7 (Initial Phase) Trapezoidal Bottom Width (ft) = 3.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 238.00 Slope (%) = 0.30 N-Value = 0.018 Calculations Compute by: Known Q Known Q (cfs) = 26.52 Highlighted Depth (ft) = 1.15 Q (cfs) = 26.52 Area (sqft) = 7.42 Velocity (ft/s) = 3.58 Wetted Perim (ft) = 10.27 Crit Depth, Yc (ft) = 0.98 Top Width (ft) = 9.90 EGL (ft) = 1.35 0 2 4 6 8 10 12 14 16 18 20 Elev (ft)Depth (ft)Section 237.50 -0.50 238.00 0.00 238.50 0.50 239.00 1.00 239.50 1.50 240.00 2.00 240.50 2.50 241.00 3.00 Reach (ft) Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Wednesday, Sep 4 2019 TD-7 (Initial Phase) Hydrograph type = Rational Peak discharge (cfs) = 26.52 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 7.000 Runoff coeff. (C) = 0.5 Rainfall Inten (in/hr) = 7.577 Tc by User (min) = 6 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 9,547 (cuft); 0.219 (acft) 0 5 10 15 Q (cfs) 0.00 0.00 4.00 4.00 8.00 8.00 12.00 12.00 16.00 16.00 20.00 20.00 24.00 24.00 28.00 28.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 26.52 (cfs) Civil Affairs TEMF Fort Bragg, Cumberland County, North Carolina Mason & Hanger Page - a.15 - APPENDIX M ENERGY DISSIPATOR CALCULATIONS Concrete Swale Calculations Hydrology Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Wednesday, Jul 24 2019 Concrete Channel Q10 Hydrograph type = Rational Peak discharge (cfs) = 64.22 Storm frequency (yrs) = 10 Time interval (min) = 1 Drainage area (ac) = 9.400 Runoff coeff. (C) = 0.98 Rainfall Inten (in/hr) = 6.971 Tc by User (min) = 8 IDF Curve = Fort Bragg IDF.IDF Rec limb factor = 1.00 Hydrograph Volume = 30,825 (cuft); 0.708 (acft) 0 5 10 15 20 Q (cfs) 0.00 0.00 10.00 10.00 20.00 20.00 30.00 30.00 40.00 40.00 50.00 50.00 60.00 60.00 70.00 70.00 Q (cfs) Time (min) Runoff Hydrograph 10-yr frequency Runoff Hyd - Qp = 64.22 (cfs) Channel Report Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc. Wednesday, Jul 24 2019 Concrete Channel Rectangular Bottom Width (ft) = 6.00 Total Depth (ft) = 1.50 Invert Elev (ft) = 243.10 Slope (%) = 0.50 N-Value = 0.013 Calculations Compute by: Known Q Known Q (cfs) = 64.20 Highlighted Depth (ft) = 1.38 Q (cfs) = 64.20 Area (sqft) = 8.28 Velocity (ft/s) = 7.75 Wetted Perim (ft) = 8.76 Crit Depth, Yc (ft) = 1.50 Top Width (ft) = 6.00 EGL (ft) = 2.31 0 1 2 3 4 5 6 7 8 Elev (ft) Depth (ft)Section 242.50 -0.60 243.00 -0.10 243.50 0.40 244.00 0.90 244.50 1.40 245.00 1.90 Reach (ft)