Loading...
HomeMy WebLinkAbout20210212_Response_sediment_calculations A & H WNE 41,01 SAND COMPANY, �LIC SEMMEN u ` ION & E6 OMN CONTROL CALCULAMNS RE�EI\jeD FEB 12 V11 LAND FRo RAM MINING •e�sir•:;I. Prepared By: n n Y � .;'r•j�ar�,'R m ENGINEERING - SURVEYING ,? CORPORATE LICENSE:C-17774.,,t�4°;C+,•..,.;r.''.V�a;q:n' 101 W. MAIN ST., SUITE 202 GARNER, NC 27529 PHONE(919) 779-4854 FAX(91 9)779-4056 FCtS�evq,e y 9, 20 Z1 A&H Mine 401 Sand Company Doc Brown Road Raeford, NC Sedimentation & Erosion Control Calculations TABLE OF CONTENTS Drainage Area Map 1.0 Drainage Area 1 2.0 Runoff Volume Drainage Area 2 3.0 Runoff Volume Sedimentation Basin 1 Design Outlet Pipe Design Outlet Stabilization Design Diversion Ditches to Sediment Basin 1 Design Drainage Area 3 4.0 Runoff Volume Sedimentation Basin 2 Design Outlet Pipe Design Outlet Stabilization Design Diversion Ditch to Sediment Basin 2 Design Drainage Area 4 5.0 Runoff Volume Sedimentation Basin 3 Design Outlet Pipe Design Outlet Stabilization Design Diversion Ditches to Sediment Basin 3 Design ?� , I - Wf j 7 1� I s� JL Is L or rk No r -r '71�' - '1■.. I.Lr — I — - s' — I •. I .. .. I I I i ' 1}• RR fir. � ',i I .: •„ . • I• I .. • tea.- - �� 11 1 , 01.031 le, Ir rr s -r +•�• 1•. b J 1. I , v I l T _ L� 6 — _-- s _._..,—_.. 4 J Z 1 g I pit v ? N r a �N NNnoT 18g3409 Sy: Feet \ \ a z rn 65:7348 VW o z x \/\ RZ 3 $li Wo n \/\/\/\/\/\/\/ DESIGNED:SMM G G y�s�7\ \, DRAVM% SMM r g/\/\ APPROVED:CRP / I PROJECT _ _ < 2,28./,29SO; FEEC z 52.509 Cr6S a z ul 9 1 J 11 W Y D 1 06 y V) DRAINAGE AREA 1 90 S Fe ¢ z 21.654 ACRES es _ DRAINAGE AREA 2 t " a i 52.509 ACRES DRAINAGE AREA 3 - 26.838 ACRES DRAINAGE AREA 4 193,212 Sq. Feet 15.491 ACRES 4.4355 Acres `-� DRAINAGE AREA 5 5 4.436 ACRES s A i s A I uuc• DATO 05-28-2020 SHEET NO.: i 1 _ Y00 0 RUO 500 fi00 SCALE: I"=zoo' r - , to ��i• � 1 ., -..r IN IN y IN IN 5I ININ IN 91 91 IN IN IN I , IN IN ll IN IV f rIn IN IN '•} 11 1 IN IN IN .. y_ IN IN mm IN n - f IN _ u •J kA IN J 4 r IN,IN 2 IN PIN a • : �IN • .� �' � ti: IN ' IN r: Nl IN IN IN IN IN I IN IN -2. IT IN _ J IN- NNN. IN I IN IN IN IN NN _ IN .V +�. _ ' 11 -NN r _ 3 i' IN 9 , 5 7 •' , I IN I IN IN '. f ` , •; . - ' IN IN IN IN I I IN IN 1 v ; Nor' i - - f ' ••.I F. 5. I IN �7�•.� =' .' er• 1 INr. ' Tit-55, 25-Year Storm 401 Sand Mine Hoke County, NC Drainage Area 1 Runoff Volume Q=(P-le)2/((P-la)+S) Q= accumulated runoff(in.) P= accumulated rainfall (potential maximum runoff) (in.) 1a intital abstraction including surface storage, interception and infiltration prior to runoff S= potential maximum soil retention (in.) Infiltratation for TR-55 la 0.2S CN for TR-55 CN=1000/(10+S) CN= Curve Number Soil Type CN= from Runoff Curve Numbers P= in. A= acres S= 2.99 in. Ia 0.60 in. la/P= 0.09 Q= 3.94 in. For Time of Concentration, Tc T,=(0.007(nL)o.e/PZ.5So.4 T,= Time of Concentration n= Manning's"n" L= Flow length, ft. P25= 25-year, 24-hour rainfall, (in.) S= Ground slope, (ft/ft) T 0.26 Hours Peak Discharge QP Q AQFP Qp Peak Discharge(cfs) Qu Unit Peak Discharge for Type II Rainfall (csm/in) A= 0.034 Drainage Area, (sq. mile) Q= 3.937 Runoff Depth (in) FP Pond and swamp adjustment factor QP 96.57 cfs Mi 16 Vil 6■1 - - j.•yl 1 Mill ^m Mill A. Ill IaN •I a -i i L llr Lm-MME r airVrLti '��� - �- sr willI li 5 rp by ■ r` li.■ - - -r`- � T - e I`- - J � _ rIIN yy �c 1 ti'. . • ZR. 1 - ■ - - 1 r'� • ■ 11 ' . 1 .rr�,, •�� Irlla- IN 1 T�• or S, rJ r• tirWo �• 1� a r •T� � s �, r J . ill I :N { Ell _,4. L{1. r Jr •Z• i ' �•i 14+ .,Ir is ' f _ r_ 90. 16. ' . ,-_y -_ y.r- —■, fir�. �� — •may • - ' Fi i i. III, Ell m . Mill al I NI T - J■ -■TR. ■� t _ IN LIN •�' a r L 'LJAIII 7JJ~ I 5 = TP-55, 25-Year Storm 401 Sand Mine Hoke County, NC Drainage Area 2 Runoff Volume Q=(p-la)2/((p-la)+S) Q= accumulated runoff(in.) P= accumulated rainfall (potential maximum runoff) (in.) la intital abstraction Including surface storage, interception and infiltration prior to runoff S= potential maximum soil retention (in.) Infiltratation for TR-55 ]a US CN for TR-55 CN=1000/(10+S) CN= Curve Number Soil Type CN= from Runoff Curve Numbers P= in. A= acres S= 2.99 in. la 0.60 in. la/P= 0.09 Q= 3.94 in. For Time of Concentration,Tc Te(0.007(nL)o.e/P2a.5So.4 T,= Time of Concentration n= Manning's"n" L= Flow length, ft. P25= 25-year, 24-hour rainfall, (in.) S= Ground slope, (fUft) T�= 0.36 Hours Peak Discharge QP Q�AQFP QP Peak Discharge (cfs) Q.=®Unit Peak Discharge for Type II Rainfall (csm/in) A= 0.082 Drainage Area, (sq. mile) Q= 3.937 Runoff Depth (in) FP Pond and swamp adjustment factor QP 209.96 cfs Sedimentation Basin Sizing 401 Sand Mine Hoke County, NC Sedimentation Basin No. 1 Drainage Area 52.509 Acres Drainage Area Check Okay Disturbed Area 52.509 Acres Discharge. 306.53 ft3/s Including flow from Drainage Area 1 Minimum Volume Reqd' 94,516 ft3 Minimum Surface Area Reqd' 99,623 ft' Length 500 ft Min. Basin Front Width 200 ft Min. Basin Back Width 200 it Depth 5 it Side Slopes 2.5 :1, fUft Length/Width Check Okay Okay Bottom Length 475 ft Bottom Front Width 175 ft Bottom Back Width 175 ft Top Surface Area 100,000 ftZ Bottom Surface Area 83,125 ftZ Total Volume 456,771 ft3 Surface Area Check Okay Volume Check Okay Basin Dewatering Dewater Time 4 days Flow 57,096 ft3/d, split between the two skimmers Skimmer Size 8 in Orifice Size 5.502 in Spillway Spillway calculations are not applicable, the riser is the only discharge Flow Reqd' 305.87 ft3/s Spillway Width ft Side Slope Ratio :1 ft/ft Depth Oft, assumed depth, 0.5 it maximum Velocity #DIV/01 ft/s, less than 2 ft/s ideal for peak flow, Q25 Capacity 0.00 ft3/s, with a weir coefficient of 3.0 for a broad-crested weir Riser and Barrel Number of Risers 2 each with individual outlets Flow 153.27 cfs Diameter 51 in, 15" min. for CMP Driving Head 2.6'ft Weir Capacity 177.80 cis Capacity Check Okay Buoyancy Check 5,460 pounds Anchor Collar Size, Square 9 ft, square, 6 inches thick Gravity Flow for Pipes 401 Sand Mine Hoke County, NC Discharge pipes from SB 1 One discharge pipe for each riser Using Manning's Equation.. Q = (1.491n)ARv3Su2 Where... Q = the flow in cubic feet per second (ft3ts)or cfs n =the Manning's roughness coefficient, and n=0.013 is used per regulations S = Slope (fVft) R= Hydraulic radius (ft) A= Cross sectional area of flow (ft2) Use Appendix 16.A in Civil Engineering Reference Manual to find values for A and R D= 54:Pipe Diameter, in inches 4.5 Pipe Diameter, in feet So... A= 15.91 ft2 R = 1.125ft S = 0.006&ftfft Q = 159 cfs 71369 gpm For an inlet control situation only, with respect to the culvert orifice D= 4.50 Pipe Diameter, in Feet Cd= 0.60 Coefficient of discharge, dimensionless A= 15.91 ft2,Cross-sectional area of flow at orifice entrance g= 32.20 Acceleration of gravity(ft/s2) h= 2.50 ft, Driving head, measured from the centroid of the orifice area to the water surface Q= 768.38 cfs, Discharge For culverts with outlet control situation (NOT APPLICABLE) L= ft, culvert length d.= ft, TW= 2.25 ft, tailwater, in relation to pipe diameter With culvert flowing full, the minimum headwater, HW is HW= ®ft H = -2.25 ft, Total head g = 32.20 Acceleration of gravity(fUs2) ka= Entrance Loss coefficient n = 0.013 Mannings coefficient Q = #NUMI cfs, total capacity with outlet control To determine velocity V=the velocity of the flow in feet per second (fUs)or fps n =the Manning's roughness coefficient, and n=0.013 is used per regulations S = Slope(fUft) R = Hydraulic radius (ft) So... S = 0.0065 fUft R= 1.125ft V= 10.00 ft/s To determine velocity, flowing at Q25 Q25= 153.27 ft'/s, from discharge calculations per riser 0 = 2(cos1(1-(y/(D/2)) Q =(1.49/n)(DZ/8(0-sin0)(D(0-sin0)/40)2J' y= depth of flow in pipe, It 0 =the angle of the edges of the surface across the pipe, radians n = Mannings coefficient, typically 0.013 y= ft n= 0= 4.37 radians Q26= 153.27 f?/s, as calculated for pipe flow Cross-sectional Area of the flow A=((D2/8)(6-sin0)) R=(D2(e-sin0)/(D8/2)) A=cross-sectional area of the flow at the depth of flow, ft2 R= hydraulic radius of the flow in the pipe, ft A25= 13.46 fe 5 = 0.0065 ft/ft R25= 1.37 ft V25= 11.39 ft/s N Ill;IIII 1 44 111,11 tl # •1 � i�11111�� 1��'I 'Yi 11111i1 Ir1MM1 � .a i �I'IIi;Il1i111� �•lf;f3�1�' 1 1 [ I�}11f1111111t111 •.,1+.11;1�i1 . ■. :1 1 1 i111111111SNrl11 11i'�1i11!i}' I 1{III IIEI111Hill ti.f i�Udl,l� I tISlllflll ILK a.lrf'I�"ll'3;I1' 1 ill IIllll lII 1 a � I r • � r�� � � lilnllll .<#�s'iiilb' .1n1 r.►�!! "-;�. 1 i �[■� {f u 1 In ",fj IF II j3 1l I ����� �■ � � � 1 11 1',',•',�ilri111!I1/11� • In�l�111 II lhi! �� �� �1 ,,�II;III/,1i11's •,. ;IIII l it • !! i t t n1 Ill 1 1�11 I I ■'■ It Irl �� .Lini1111;1511, ,.•VIIIII Inn,u Ql�nulf��lil�11 1.,},n� .1 null • , '1"11111n1��11`ll"ll'11�11 "� �� E� ��1� M :!,►'11'.l{ll;d!il .� . . lllglllll i lu 11 uu1 1[ # , � ;,�l1•�i:ml;�ril 1111n1 nll 1� 111 111 ll InIA , 11�1j�1� �}l� � ■� :� #/` 11'��,1111 d illl Illl{1111l1 l `C; ` • �.uii: Ini1 Illltlunlu 3I3 �lll Illlll�l;lill�l 111` / .�ii1�►'ll►.'Ill! I!1!llll11111111111 IIII! 1 1 1 I l 1ii1(111111 I ► ►�l� I� 11 !itillr;1111111111 Illll IlIE1111 IP21�All 1!illlllitlllll�ll11111N11U nU� ■ t j Ii}11 �� 1 !11 i i ••►;i%t/,(;IIf1IIII.ll Il 11i 1111111111 IIII iIIINIIi'.:1 tt # t 1 I II �:1■mot/I)i11./lllfllill lilfill{11111111111 1{I_i11+1i11 * � 1 1 l�l ll 111i11111[ �1I ill 111 I ` 'l1I�It11II1111111111111111111 .rlllil l3}! 1 an �tIN� 1 1 1 l i 11 i 1 Ill" Il' 'P. G■*at■I.t11;1 �, llllllllli tllllillllll .I1e1111 i on t1111 ii I II rllA�■►/ /' f ''1 ''iit1 1;IS11}l IIII{ el11ji11lll;lnnl?I 1 la 11131 f � :�,•'i IIII114'41mlr . l■S!A ; i;I1�111111�111111111Ifill1ilHIP -_. jt�111U1��!I 1 II III • .•....,ill.d111f►1Wrioi Ind, long lillli ilnliil�ll�il��rilliti I l ,,;►+i�lll!i ll -�/i/1 ■t/1 IA 1 ill Ilu1111111113111 11/111;■il#Illl1.1. 1 1 I1111�IIIIIII ili/>t ■■■111t1111 ! a r!i�'i/'.It�l, !II li■%■■■■ tl �IM�1�11 llllll)P111AII Ei ji � � ,,,ti' ' y ��1`i f l' lit• �/ w t 111111111111#11 ME■/■■■■ 1 111 1111li !I■■//■■■■ f1 a =••'!'tt{:!II�j1i3f� r��� i•.II 1i1 �Iil■ ■ 11 t11�11�llllllllli �1111fllllt 3�1i11lI.In, 1 1131111f,11111111I1111111111n!! •+ II IiL.+In1..,II�I.,ll�l�ll�lillfi1111� II l.IIINII►!.tll tt! 'L ��!•� II 11111111�1iltlAlllllllllllllllllll IIf�!•�■■■ 11._ '•'''I''' v 1 ••�;i�'itf!'�11!'•ll!''!nlll ++ l E1E11 1 {l{ ■■■■A 1■�11�II�ll,i1111 11 I ;�,.. ,!! ■/ 111 ll[IIIlllitll1131If111111111t1lllllllllil� . s i. 1� ���- � III I IIII I]� ■ l� 1l f1 11111111 Illllrll ,++IIII ,� 4 I Illll11111 lllllllllirlllllllllllllltil� ��'�'•■�'t�il�''�11� � I1��11! 1 li i�;llfll �� ■ tl��lll�lllFl.1!:'11}1i111�1' 1'�I 1r11 IIII II IS i1111111I!IIII Illl a .�.�1/_'fl/�i,/�E�i' Ill ,�, 1�l� 1 I II ■■ t1 �1 �I;I!.�rell��l,�I•' ����u�I J I }11!!;iiU111►I/= �—* i ii I l�»ll 11111��� ■■ 1 1l,itlll.li��li.l 1 lK•', ' it ,rilllllkl�lllll1111t1,lfllll,�l _ ,{ 1��1�11[�IUi1f111111�� � �' .#IIII U_.., ..#pli ',a►: 1,llllllll{IIlIII1SIt1II!!!:iallllll!;;iiiifitlr%tr��■i����>I�1��1 1 } If! A 111 ill IIII II! art■ `� 1 1I11111illllllhl'!':a111U!:Gi1111iilnllliY■ l I n�l� 1 1#lln III�� ■ .il11l AiP'%i111+ t!=ill!Ill! !il l,lllll!!;;il I111111111111111111111I111111l1 ■�� � 'r""r �I►i •A1115111i1!!1 I�Ilti I UII1111HI1111111 Il 1 t 11l r 11lnNl�lll11� ■/1 111''''� ■rttf►. i!:>-/llrl{� =..:Il ?11111i1t:lll:il�� ;Iifll Illtllllllll ■�1 I I III 1 ! ■ St/SitU.sUlr,1✓'+�►Illll;flll►.Illill'.It! Illti 111l1111111111 II II ■ ■ i 11 lllllllllllllll 1•� ,. y ► ► i . stilllll illlllll#111111111;1�1111 Il ! it I IIII�1 ► Allll!Ifll,lllll.11.11.�. IIIIIIIilll111111111l11111I1l1111111111�11�11� ISBN III1 n IIII 111 ��11 lkll II 1 III ' r�`.' 1II13!1111.1}!1{►.111/1..►. IIII!II • l IIIItE1t111111111111t1A1111 1 IIIltllllll!11 ■ ■■tt 1 III 11 11i I I �/�/�,r■� . i r ► IIIII Ills il11IfI1 1111111111111111111111 11[l1111!II ■ ■■■t�1� 1 ` II If I!I 41 II IIII I { /' . Illtl,111 III131s"::/1.#1.l1.. , If[lll Ilillllll IIII Illlllllli)I Illll131 Iowa mill t I i 11 I 1 AIII 1 j /��r• �l[/',Ill!1�!'--:'"I' !!+IIIiI�/lt,l{111 f111111!1 Ilfllllllllli4111 3 f 1 li�II 1 l ■■■ no� 111� wt■ � 1�1 1 i1N•' ISIr � 1.h�::ii1 1i1111!dlRtllli11il11llllllllllfllll;Il • IIll11{1111111]l1� 111111111 1 I 1 {RI■ t I1 [ •. itlUr~ III �•,lilll�ill!1 1U;111;1lI'U1111i111111111111111I I{ • Illllli1111111i1111llllllllllglIlllllllll.•l•■ ■■■■■11111111 I ; � il'i1 . �'":i►�7<1.111►.itl!11I�'.i1111IIIIl11111111111111111lIIIl;;ll i[ltlunlln;un}}u, I unl /�I■��="�t■i�'ti1 , I � 11����1111i � c'�'•�iDli'►.:ui °iiilnnlll11111Innn11nnn1llnuulln ullllllllllnlll{tl1 13 I l i ' ■ _..�.+; � �jil11jl,dl - ■ ' lIII1 Ili IEII1111111`1#1111 Illli!{ln I11111 HIM �111111" Ilir ■■ I►. II,. �. ��• •,�i�rw■tiw«7�.,..:S:.i..........., ,....::...,..:::•:II?I llllllllllllll • il�'� t lI'�111 _ {l1 it 1 Il IIII 1 I I 1 I i vi �•j ill 11k) i'll,11p��It ���ie �li� lil 1 ll ilEll I;I --p-i I-flll ii1111{{1'I n I! ` �r•� 'U11 l+,�lllWifloy 1 f1 11 11 1!1 ! 1 1 S6d1mentation & Erosion Control Calculations Diversion Swale Calculations 401 Sand Mine Hoke County, NC Diversion Ditch 1-1 Slope of Ditch = H/L H =The difference in elevation along the ditch, in feet Where: L=The length of the ditch, in feet So therefore... H = MM ft If... L= it Slope= 0,02 Solving for depth Ditch Bottom Width 201ft Ditch Side Slope 24.1 ratio, H:V Manning's"n" 0.018, Depth 0.75 ft Discharge 76.63 cfs Area 16.23 fe Wp 23.37 it H. Radius 0,69 ft z,aq 6.36 z,vg 12.72 Velocity 4.72 ft/s If velocity of flow is greater than 2 ft/s, matting is required Shear Stress: T=yds T= Shear stress in pounds/ft2(psf) Where y= unit weight of water, 62.4 Ib/fP (pcf) d =flow depth in ft s= slope of ditch, ft/ft d = 0.75 Therefore, if: S = 0.02 T= 1,00 psf Use curled wood matting S2dimentation & Erosion Control Calculations Diversion Swale Calculations 401 Sand Mine Hoke County, NC Diversion Ditch 1-2 Slope of Ditch = H/L H =The difference in elevation along the ditch, in feet Where: L= The length of the ditch, in feet So therefore... H = ft If... L= ft Slope = 0.03 Solving for depth Ditch Bottom Width ft Ditch Side Slope :1 ratio, H:V Manning's"n" Depth ft Discharge 38.32 cfs Area 9.23 ft2 WP 21.98 ft H. Radius 0.42 ft zMCI 2.59 zavy 5.18 Velocity 4.15 ft/s If velocity of flow is greater than 2 ft/s, matting is required Shear Stress: T=yds T= Shear stress in pounds/ft2 (psf) Where y= unit weight of water, 62.4 Ib/fO (pcf) d= flow depth in ft s= slope of ditch, ft/ft d = 0.44 Therefore, if: s= 0.03 T= 0.88 psf Use curled wood matting Sedimentation & Erosion Control Calculations Diversion Swale Calculations 401 Sand Mine Hoke County, NC Diversion Ditch 1-3 Slope of Ditch = H/L H =The difference in elevation along the ditch, in feet Where: L=The length of the ditch, in feet So therefore... H = it If... L= ft Slope= 0.03 Solving for depth Ditch Bottom Width 20 ft Ditch Side Slope 2 :1 ratio, H:V Manning's"n" 0.018 Depth 0.46 ft Discharge 38.32 cfs Area 9.62 fe WP 22.06 ft H. Radius 0.44 ft zreq 2.77 zeva 5.53 Velocity 3.98 ft/s If velocity of flow is greater than 2 ft/s, matting is required Shear Stress: T=yds T=Shear stress in pounds/ft? (psf) Where y=unit weight of water, 62.4 Ib/ft3(pcf) d =flow depth in ft s=slope of ditch, fl/ft d = 0.46 Therefore, if: S= 0.03 T= 0.80 psf Use curled wood matting - 1 L F. +' y r IN 1• ti I1 n■:�� ; magi r 1_' r •u Him 1 1 1 r!J 1 .� ti- N. 1,NoNNMr �, . laxw I IN '14 .n1•.�:�i - J - ti-v Ti" 1 i M_ _ '•i } •a - � � 7J li - NN IN i io• , � s r 16 - 7, r F.w- INN .+& ti •r 1 d ' , i - •_�_e- r. r LEI I - L 1. r a' ' r . 11 NN a 1 � �7 11: , _ -IN L . ,♦NNm �T _ •R •� TES-55, 25-Year Storm 401 Sand Mine Hoke County, NC Drainage Area 3 Runoff Volume Q=(P-la)Z/((P-la){S) Q= accumulated runoff(in.) P= accumulated rainfall (potential maximum runoff) (in.) la intital abstraction including surface storage, interception and infiltration prior to runoff S= potential maximum soil retention (in.) Infiltratation for TR-55 la 0.2S CN for TR-55 CN=1000/(10+S) CN= Curve Number Soil Type CN= from Runoff Curve Numbers P= in. A= acres S= 2.99 in. la 0.60 in. IjP= 0.09 Q= 3.94 In. For Time of Concentration, Tc T,=(0.007(nL)o.e/P2.5Sa.4 T,= Time of Concentration n= Manning's"n" L= Flow length, ft. P25= 25-year, 24-hour rainfall, (in.) S==Ground slope, (ft/ft) T 0.31 Hours Peak Discharge QPQ�AQFP 1 QP Peak Discharge (cfs) Qu=' 675 Unit Peak Discharge for Type II Rainfall (csm/in) A= 0.041 Drainage Area, (sq. mile) Q= 3 937 Runoff Depth (in) FPi 1.00 Pond and swamp adjustment factor QP 108.96 cfs Sedimentation Basin Sizing 401 Sand Mine Hoke County, NC Sedimentation Basin No. 2 Drainage Area 26.838 Acres Drainage Area Check Okay Disturbed Area 26.838 Acres Discharge 108.96 ft3/s Minimum Volume Reqd' 48,308 fe Minimum Surface Area Reqd' 35,411 ft2 Length ft Min. Basin Front Width ft Min. Basin Back Width0:1, fuft ft Depth ft Side Slopes Length/Width Check Okay Okay Bottom Length 340 ft Bottom Front Width 100 ft Bottom Back Width 60 ft Top Surface Area 36,000 ft2 Bottom Surface Area 27,200 ft2 Total Volume 125,890 ft' Surface Area Check Okay Volume Check Okay Basin Dewatering Dewater Time ®days Flow 31,473 ft3/d Skimmer Size ®in Orifice Size 4.085 in Spillway Flow Reqd' 108.59 fe/s Spillway Width ft Side Slope Ratio :1 Wit Depth Oft, assumed depth, 0.5 ft maximum Velocity 1.95 ft/s, less than 2 ft/s ideal for peak flow, Q25 Capacity 116,67 ft3/s,with a weir coefficient of 3.0 for a broad-crested weir Riser and Barrel Flow 108.96 cis Diameter in, 15" min. for CMP Driving Head ft, to bottom elevation of spillway Weir Capacity 119.96 cfs Capacity Check Okay Buoyancy Check 4368 pounds Anchor Collar Size,Square 8 ft, square, 6 inches thick Gravity Flow for Pipes 401 Sand Mine Hoke County, NC Discharge pipe from SB 2 Using Manning's Equation.. Q = (1.49/n)ARy3S'n Where... Q =the flow in cubic feet per second (ft3/s)or cis n =the Manning's roughness coefficient, and n=0.013 is used per regulations S =Slope(ft/ft) R = Hydraulic radius (ft) A= Cross sectional area of flow(ftZ) Use Appendix 16.A in Civil Engineering Reference Manual to find values for A and R D= r+ " Pipe Diameter, in inches 4.5 Pipe Diameter, in feet So... A= 15.91 ft' R= 1.125 ft S = 0.005 ft/ft Q = 139 cfs 62595 gpm For an inlet control situation only,with respect to the culvert orifice D= 4.50 Pipe Diameter, in Feet Cd= 0.60 Coefficient of discharge, dimensionless A= 15.91 ft2,Cross-sectional area of flow at orifice entrance g= 32.20 Acceleration of gravity(ft/S2) h= 2.50 ft, Driving head, measured from the centroid of the orifice area to the water surface Q= 768.38 cfs, Discharge For culverts with outlet control situation (NOT APPLICABLE) L= it, culvert length d.= mit, TW= 2.25 it, tailwater, in relation to pipe diameter With culvert flowing full, the minimum headwater, HW is HW= ft H = -2.25 ft,Total head g = 32.20 Acceleration of gravity (fVs2) ke= ®Entrance Loss coefficient n = 0.013 Mannings coefficient Q = #NUMI cis, total capacity with outlet control To determine velocity V=the velocity of the flow in feet per second (ft/s)or fps n = the Manning's roughness coefficient, and n=0.013 is used per regulations S = Slope (ft/ft) R= Hydraulic radius (ft) So... S = 0.005 ft/ft R = 1.125 it V= 8.77 ft/s To determine velocity, flowing at Q25 Q25= 108.96 Os, from discharge calculations 0 = 2(cos 1(1-(y/(D/2)) Q=(1.49/n)(D2/8(0-sin0)(D(0-sine)/40)213 y=depth of flow in pipe, it 0=the angle of the edges of the surface across the pipe, radians n = Mannings coefficient, typically 0.013 y= ft n= 0= 3.82 radians Q25= 108.96 ft3/s, as calculated for pipe flow s Cross-sectional Area of the flow A=((D2/8)(0-sin0)) R=(D2(0-sing)/(DO/2)) A=cross-sectional area of the flow at the depth of flow, ft2 R= hydraulic radius of the flow in the pipe,ft A25= 11.24 W S= 0.005 ft/ft Res= 1.31 ft V25= 9.70 ft/s J !Ifillloil IIII II 1 1 i IIIfIIifliCAl� ii i t l i 1+ I I illlll IfifE 'll i' 'j `�II�IIIl1111111�� �,jrlif{11�1 A I I I I Iq IIUAII •.dill+ildi • i. :1 ! 14l lilll{1 iilAil �i;!ll;l)'I{' 1h 11,11�IIt�Y?I� .��._:. . ,,;.. + ll I ■ ill 1 Ill!{IIII .111.1J1!1l1' llli -= "' ` 1f I ti!!ii1 f� ■ iM lil`IIII il! 151).l!1''11 ,Iii(l�E! If °ii�rJi� ii�lll'11 ii!lllLl:11' • 1 � 11 , -Vlnllll 111 !lil I Ii1 1 �� Al�lA �i e.Qidll►.f�f17 ► • Il i ��I�I1111� �� t� r , � r .1 illllll llltl ll#A1� I�f ..d.ti. ILi1l111 • 'I I 1 Ili Arr tiiAi It I ! ��� . ►i►,,►�Il'lll�![1!il II llllll� !1 ill�llllllil`lrr iififll ill lull � �� �� � ;�►,/illalll;S!!d •i','� iIIIIllllll 1 Ijl Il4i il1I111{ 1 IA!liilii�ilii �� i= Il '!I lIt d /!19 1[Iflllli ll 1 rl{l�111 Ill Illllll� un ill 115111••l'{�ill�llll, luit�llumlulullni 1 I it II Illllll ll � lil ��i !!'ill! - Il/rlllll[llifllllllEl{1fl lii►{1►. � rE i![1fl'uulnlululntlnun ' ''Dil 111 11111fliIl1111 I11i lllllllllU(! f II i li I Uri,a;Alfiltl!P 11111111lIl1AlAliAtill�IIlIIUI!:i, ■ ■ ' ��� I it � �i ( I �:�ii.iul>!nllil�ii:11 ififnuillnlllill nl':iunl ■ " ul 1 lu ..'.■, sn��f:,lualllnlun°111iii1iiA° ',+ii;iiili':iiil� ' ��� �ff�A [ 1 1 i i l�� �� ,11 I /!A■�A�;/�/,•i�/ 1: 1111111{Illl!!!I llf 1 . >,� ,� ■i1 1I!'II tllllllillllIl"1 111111 tNO ;~''i11�I> �■l�i:��19{ IItill III lilllllllllIIII ji�illlllil� t II i� ,•.r..tlll elfi:ir 11111..tll II)l.i ■■ iiAf ll t 111fIIIIIIIIIIlllllll �. , r tl' 1 ''i +i+ill Ill�.i G �leta>r■ �•!n!1 IL+!IIII■■�■ HIM lllEll■ ■■■un■I�ffff 1 :.'r jl [' Al I II lillll Il! 1. 111 El�llllil ilfllll 1 on ago s_a++� , l�l_tl�!•■■�/ii 1+1 '>>�-i�c i11{[ 1l�' 1��■■■�i"� ■ II1O111Allltlp ►Itli',11h::ill►Atli tlltlAllll 1 III 1{III!I II h■noiii■■ i it On tt '{ji i 1 IIIII ■■■ i"; ill # IIIIII It I /11115l:ii�111t;1111'1j I Illlll!llllllllllll Il Ill 1 II�B f#� + .•=ii;i .IIIIII` +Illlllil�llll�llll�■■.�ii;��� "IIAI�AlI1lEllllll llillli iris ■■NEii■i J Ij {Ilf�l� _ _a_.d., 1111Alllll311111 11111[lilIltlt!IIIh■■■r is. l ! i■ " All#rl Il 1 II+�U,i+dflf V,N t IIi!litlllllllll i 11i1 illtllllllilllf{}!11■ � oss:'fQ:�i�s>rl!�'tl!�II i!All 1; it 1111� ■■■i 1■ ■" ff 11111111 IIIIII 1 y d�ap>' C.a I 1 �� �� i■ fi�AAIAA"!! 1!;"I lit I Ir I•"uYi IIE�Illlil IIIIIIIlllUlrllllllllllltlf� !' . f1 � I!1■ ■■ "" 11;1_.�ti!111,11y,1.` �'�� •�' #ti!IIII Illl I Illllllli I111 IIIN ► �!A/!�t[I/t�ii/rAll/' Ili Il� i�it�i I11 ! in Hill IIIE;iAIIAlIli,l .'v►��' i llt!',,;; III, dt=""�• �.f�oil l lliiiill f1111� f Illliilllll tlllAl1I1111_. Ililll�lllll 11l�� ! III 11_,.+ ..Ir11�1_..+►, I"'� I I 1 rM IIII ti IIII Illft �■■■ ifl rlllilllllililtllil11111!!:i�l{III...i+tllilrrl�i/��% �� 1fill 11lI10IIIllIp.;;Rlllp!.ht1111lIIHllI � M " Ililllli IIII �■ [fill{1!!:Nit111UIIA1111lllllllllllllllllti 1t 1 II 1I ills■ �/{i111�...1 �ll{ ,.tll.lt/ill.lt� lli�] , te111i11I11111Elllll 111111111111111111111!I III l i ittil It tI11� ■ Ili a 011E[llllll ��illll�ilE�f111i11�11!i�• lull AA ll Ill!!1 ■ �i■li �IIIlllillllltll lt•� ■fQ�. .. I f r r ►/1/i . ctllllll Illllllllll!lIIlllfi111111111111 l l i I1 l i 111 I r .1Ni!?II1L,11 ll J1.11._. lllll11111i11}III11AA111111111111lIliJlllill� 1■�AD� AI 11 (1llfllll # !1 1 l I1 l �!Sil■■�� r , y+r 1 lli[tlEflll II III11AlIt1il l 111111l1111 11 AI■■■ f..t1.11.{L.. III! Iilllltllltlll1(I111111I111111 1}IHIM!I AVA�AA l iiliii it 116�ll�ilili Ifi1i11 f %AI�1�•■1' a 11111I1IIP!Ill,!�l!'/►_"%r�"11 Illlllill it111 1 I11 IIII ■■■�ii■ii 1 lEllll I��',r� II115 Ill!P !.,,tii�lw.,,1"ll!11t�11111 IIIltlllli Nlllf Illllllii IIII II } Hill AA 1� !I Ili lii .� +� .,{fl51!�s'i�l►.+IIII'.ells;illiiti►ill11111111111111A111 • Illlll�lllil!!!II IIlia 11 `IIII I! 1 IM■�■■ ON fI111 Al ll A 111�' * ,�fl .*:,�111ECit1!i{U'1p:AlI!ilfAllllllllltllllllllllll lllllt llllilllA Ail�All111i�1illllii ■■.9 mov#f - •. Intl lem. ►• r I�' Idlllll 111AI,IlItllillllllllHill • IAlllitllllllllillllllllllrllllll 1 i1111I111�■■ rii■■" fA If 1 A' li;i1 . .�*.,,,r,1R1.{At.,tll.li AN { III Elllk11111illlilllr II t I IIII! ■ i ■f�f1A I �= 11��j �II� tll)1:i'Rllllp 1,����'11I11 illllliiiAllllltilll 1111111111�11 � III fill 1A I l !I I C�JIM! III � .IlfiI l II�� ��i':!*■ ifitfl.Alllli� I I �� ! IIIIII Ill Illll Ill 1 �rr II i6 1 I ii�SON ,l '�0 � ������ I,�U,�,,.,�y,. If. Ilr � ��' 1Cni .:.It IIIIillllll I ^! ii1H 1.1E 4 AAI tT I II IIII j ` -'{jv-•�11 r'�t ll �.,+tl�l�! _ I 111{i!il-� f �lll 111 IA It dill ii!I If i li�ii�'lllil �� �]v�11..1111111.�. +•- 'I ( IIII it i l ��i ! Illl 11 - � 11.• � �' ������l1�lAl��i i.._,,. Los��lA�J1111lllialliiigtl� ll�r 1 , Ili i ' i � Sedimentation & Erosion Control Calculations Diversion Swale Calculations 401 Sand Mine Hoke County, NC Diversion Ditch to Basin 2 Slope of Ditch= H/L Where: H =The difference in elevation along the ditch, in feet L=The length of the ditch, in feet So therefore... If... H = V�Ift L= ft Slope= 0.01 Solving for depth Ditch Bottom Width ft Ditch Side Slope :1 ratio, H:V Manning's"n" Depth ft Discharge 108.96 cfs Area 17.95 ft2 W p 23.71 ft H. Radius 0.76 ft z,aq 14.91 ze 9 14.91 Velocity 6.07 ft/s If velocity of flow is greater than 2 ft/s, matting is required Shear Stress: T=yds Where T= Shear stress in pounds/fe(psf) y= unit weight of water, 62.4 lb/ft? (pcf) d =flow depth in ft s= slope of ditch, ft/ft Therefore, if: d = 0.83 s= 0.01 T= 0.40 psf Use curled wood matting _ �— _ � �� ■ — _ '_ I- I I III �'— --1 _ '■I —_'_u� Ir -41 ' r■� f I _ _ _ r_ I • V � • '■ _ µ 'S —� _ J I.T _ . —r�l I I Y-?�' ---� r. _' __ _ -' -I■ M '�I + _i * +-_ III ■ -T � I' I _ I [Ir_' _ dj r��� '�I � � -- � ail _• —' — —I' � •.•■ — __1 �—���� ■ III _ � �_. 1_ J � — IL _ 111• ■� L . _ � __J7•-•0 I� - - . III'~ _ _ I __ - ' I_It'm ICJ I -C _ " ■ I rI I _ i INN IN TR-55, 25-Year Storm 401 Sand Mine Hoke County, NC Drainage Area 4 Runoff Volume Q=(P-la)2/((P-le)+S) Q= accumulated runoff(in.) P= accumulated rainfall (potential maximum runoff) (in.) la intital abstraction including surface storage, interception and infiltration prior to runoff S= potential maximum soil retention (in.) Infiltratation for TR-55 la 0.2S CN for TR-55 CN=1000/(10+S) CN= Curve Number Soil Type CN= from Runoff Curve Numbers P= in. A= acres S= 2.99 in. le 0.60 in. IeIP= 0.09 Q= 3.94 In. For Time of Concentration,Tc Tc=(0.007(nQ0.8/Pz.6SOA T,= Time of Concentration n= Manning's"n" L= Flow length, ft. P26= 25-year, 24-hour rainfall, (in.) S= Ground slope, (ft/ft) T,= 0.28 Hours Peak Discharge QP Q�AQFP QP Peak Discharge (cfs) Q.=®Unit Peak Discharge for Type II Rainfall (csmlin) A= 0.024 Drainage Area, (sq. mile) Q= 3.937 Runoff Depth (in) FP Pond and swamp adjustment factor QP 66.70 cfs Sedimentation Basin Sizing 401 Sand Mine Hoke County, NC Sedimentation Basin No. 3 Drainage Area 15.49 Acres Drainage Area Check Okay Disturbed Area 15.49 Acres Discharge 66.70 ft3/s Minimum Volume Reqd' 27,882 ft' Minimum Surface Area Reqd' 21,678 f? Length ft Min. Basin Front Width ft Min. Basin Back Width0:1, ft Depth ft Side Slopes ft/ft Length/Width Check Okay Okay Bottom Length 200 ft Bottom Front Width 80 ft Bottom Back Width 80 ft Top Surface Area 22,000 ft? Bottom Surface Area 16,000 f? Total Volume 75,467 ft3 Surface Area Check Okay Volume Check Okay Basin Dewatering Dewater Time ®days Flow 18,867 fP/d Skimmer Size in Orifice Size 3.163 in Spillway Flow Reqd' 66.48 ft3ls Spillway Width ft Side Slope Ratio :1 ft/ft Depth ft, assumed depth, 0.5 ft maximum Velocity 1.86 ft/s, less than 2 ft/s ideal for peak flow, Q2s Capacity 74.25 ft3/s,with a weir coefficient of 3.0 for a broad-crested weir Riser and Barrel Flow 66.70 cfs Diameter in, 15" min. for CMP Driving Head ft, to bottom elevation of spillway Weir Capacity 69.26 cis Capacity Check Okay Buoyancy Check 3451 pounds Anchor Collar Size, Square 7 ft, square, 6 inches thick Gravity Flow for Pipes 401 Sand Mine Hoke County, NC Discharge pipe from SB 3 Using Manning's Equation.. Q = (1.49/n)AR13S11 Where... Q=the flow in cubic feet per second (ft3/s) or cfs n =the Manning's roughness coefficient, and n=0.013 is used per regulations S = Slope(ft/ft) R= Hydraulic radius (ft) A= Cross sectional area of flow (ft?) Use Appendix 16.A in Civil Engineering Reference Manual to find values for A and R D= 42 Pipe Diameter, in inches 3.5 Pipe Diameter, in feet So... A= 9.62 ftZ R = 0.875 ft S = 0.005 ft/ft Q = 71 cfs 32025 gpm For an inlet control situation only, with respect to the culvert orifice D= 3.50 Pipe Diameter, in Feet Cd= 0.60 Coefficient of discharge, dimensionless A= 9.62 f?,Cross-sectional area of flow at orifice entrance g= 32.20 Acceleration of gravity (ft/sZ) h= ft, Driving head, measured from the centroid of the orifice area to the water surface Q= 371.86 cfs, Discharge For culverts with outlet control situation (NOT APPLICABLE) L= ft, culvert length dc= mit, TW= 1.75 ft, tailwater, in relation to pipe diameter With culvert flowing full, the minimum headwater, HW is HW = ft H = -1.75 ft,Total head g = 32.20 Acceleration of gravity(ft/sZ) ke= Entrance Loss coefficient n = 0.013 Mannings coefficient Q= #NUM! cfs, total capacity with outlet control To determine velocity V = the velocity of the flow in feet per second (ft/s) or fps n = the Manning's roughness coefficient, and n=0.013 is used per regulations S = Slope (ft/ft) R = Hydraulic radius (ft) So... S = 0.005 ft/ft R = 0.875 ft V= 7.41 ft/s To determine velocity,flowing at Q25 Q25= 66.70 ft'/s, from discharge calculations 0 =2(cos 1(1-(y/(D/2)) Q=(1.49/n)(D2/8(0-sin0)(D(0-sin0)/40)2/3 y= depth of flow in pipe, ft 0 =the angle of the edges of the surface across the pipe, radians n = Mannings coefficient, typically 0.013 y= ft n= 0= 4.27 radians Q25= 66.70 ft3/s, as calculated for pipe flow l ; Cross-sectional Area of the flow A=((D218)(0-sin6)) R=(D2(0-sin0)1(D012)) A=cross-sectional area of the flow at the depth of flow,ft2 R =hydraulic radius of the flow in the pipe,ft A25= 7.92 ft2 S = 0.005 ftlft R25= 1.06 ft V25= 8.43 ft/s r !• III 3113111: i �I� IItI f I3AI s#If f II I i1 '. ii It lllt#1 a il�� ■- 1 [ [ 1FII13IIlllrfilll -.It,.tr,l�,l! • : #• + :i II IIIIIIlllilifll !1;!}lit�!li! �f�1111111lII#!fl 1�.!�fAttl}Iit� Yk:•�i��.t::�a:�.•__.:�:...r�a�-�u� 1 ! • 1 1�R{ I`l!iljt�II � � 1 � If���i11IIfl II,tI.iI ll l llllll�tl`ri1{1a! 1/1l�>r'rlI ■ ■ fill 1Nl►�l1A/►,UI''lI4 1 I1I'.!!1I �1 1111:1'111 +I �II '!•' If�IIIi � r!1 1}I�i�! (1 I # � Ili �� .t!At.1111:15ifi 1,•Vll�llll] � Ill Il!ll�l[lill I�IIILI 1 � ■ � �' +i111111 J I11 lf11 I IlIli111�1111111111111111111I #� :il'fl:r[ll,t�',1 .. . . Illllli111 1 fll it I lt1,i11111111I1`l j{ "Nil it r : ulllnill f ll!lU IIIIIIIlIi`I 1��[11���111I ��� r'r 1'llll` 111f 1lllflll tlll 1 l��111 III 111111111i � I 10 Oi1��4111: IJlfl�illllllflllllltNl IIII 11 ! I ■ 551", } Ir 11/1/llllllllllll1 till �i� l! 1 # , I I If11111Ir1 f I11 l I l (m 1ill �� oor l.11l'�� I!t(11t[I11111l1[I11111pIU1111 it If I t � #� 'f/illlll' filllllil#il[il[1111111111111111.11 ■• l l�I �i ul l i►�I AY I11,511�► u�iiiiiiiiiiiiiiiiltl I1n� ii��ii , 1 !! II f .i/,t{�I,Ilil�l���Ill! , r#�■ l �! I��� II 1 131I n 11�111 Ill 1 ■ �' P.I �11iLil[1I11EII31111111I1I1111 .rilfli 131f ■� # iilt�111111r,#►fli. Illl !1 ■ ■� ;# 1 1 1 I I I�1� j'I I11fll IIII ��■�■ IIIII(% 15 11111111I1 111111[I1111 ,•111ti1llll��(lii! WallMaur, in �1�� iili liiillilliii Iirnll;fll!►;�..�r! + ���1� l111�1I111111 tIIIhIfllt/lllltfl!::rlllih�l .•.r..,ll�all/ �■ � � l 1� !11 . ,.•,. r. .+■�*# #### flll 111 liltl111111111111 Il�ll�.•+li llsil.l.3 Il I El�ll II �■ _ .�.+_t p.+1111It■f► Lildlll.lU..alll, 1 ! lZ111 Illill I III ■ ■4##1 ■■■ l � �;�� +'_„i+t'[if�l I L,/!I■i#■■ 11� I !I 1lI 1. I 111 IllltllllIlllllll IAC.�■iir!■ # �.�,��: .31,++ r-',1' 41�"t I�` 31..E■l#•f1� �� flflli!!!1 �tl 1 I t 11111� �r11111111i I III/■mammon■# �.. .iG �. �u I�M�1 : il�lli��;i>;��i!rl��`���� !/>♦■■ ■■ � f ! I[tl I ,tt�1/111S�:ii+11��;1 Iltt}I +Ira i3fi1 i•i+r+iililltflilll!ill r�ita+r■■•t■rwrrlili G Illllll31111111 ll II s•■1■■r■ 11 -o!"+:l`t..E.11llc iltrt,t► II1I1 i1'tlf 11l1!lflll li��iiktirntl!�ll!l I/■■■ ■A ��e #r��l�� llllr 1 Nllllll/71r.'4lll I1i�1111,lIll _ yt!.,0f i1!_'11_'"11.''1 11 !1 ll it III/■■ ■ ■# ## #1 lillllll IIII:{��itllt�:tlr Il! ►ti•:;+1'� Illltl till 11l1{1{{111p111111111IIIIIIlIIN11. ■�+tPlf�'aQd�+rs��. •�sl ��I I If l Il�ll I�111/ ■�111 111 ; IfAA�rr�lAlAl[i f ilrll,l;lil#rl' v lll� 111 1 11111 Illl IIlMllllllllllll IIII , ",:CC; 1!4r#1Ir �111 1!.1A 1 rflllill Itttllll l � li 1 tt� 1 - 7IlI IIII l lull � �-- fl �� I��I�� I r�lr,.•11LIIIID. .._ 1t1r!!iitllitt_/.�■� ■� �# ��IIII �Ilill���■■� �## [Il[I[Iflllll11311 Illlil[llll! _. CC � 11�11�IIlhI l i �' ,I1111'11! + .� ..I111/1.'.•.r>• (I 1 1111111111lIIlIIIlI111[1�!:��plliu!;iittl4/Gi/■ 1�� M #� ��1! 1 1 i Irll 111 III I[1t 11111 ■■■ r! lullIIII!llllllllf..ii111U..mlllllfl1111 ■ �R � #11 l II 1rI1� lllllll HIIC ■ .ifl�l��lll+ii111i h:.dl!I11! I',1! 1t1t111!!,i3itllllt IIIIIIIIIIII(1111{lllllll + 1!! 1 3111I11 I ■�# ��, 111"'il' Illi �1`i�111i111i11Q 'llh < Il11lllltl lllllfll[tl[liilp I I� � �� � � ll �1��Illh !I i I � ■ ■■ #►Ark►�i1n���. �.a;lii:rfn�u:rua I■ IIIIIIIIIr ■i# 1 ■■'/:if#1,t11Hf,Y'• lilU:t1I#1111i11!l1► - Illll I Ill! Il IIII ■� i ii 1111f1111ih11 l/� ,.- t• ► � 1�1►i . p11110 IIIlf11111111111�111111!11 ! ( II I��I�ilfl��Il�l r 11.tlll ritril.11.!!. [ill ■■■■# 1! i �./.I##f.w. Q , 111111111111i1ill�ll�fl��■■ !1 Ill 11 I ■ ��- r r t 1!r.;;+ 111111111 1 IIIllI1llll1111111I31f11111 1 lllllll ill !I ■■ ■m I I UII111 4 1 )) ) � 111111111111IlllllllllllllllllEfl Ilflllrl�11 ■. �# II�IIl[III I 1 �/�■ ##r � , . P;q1//1/111i1■i■f#■ ######1 IIIII 1 I /II �'S /lll.i![. _ +rall.di l�ll lI!■■■■� r�� ##111ri�l 1 I 11 r+li p • Fil+11>!iI111!i3ll:lllli!).illll[lilll Illlllil3l • • t,ntt' .f■ ii:i�ltll►.i1P.f{tU.l►t:tlllal#Illlllllllllltltllllllll Illtlllllllllllllltillllll1111111 I Illllllll/■■■ ■■■■# # �Ij ! �jll1';91 ��:��ai•anal:IIII!iII1t1H111111#IUllilllllllllltlllllll 111 IIIIIIl31!!{i111f11 I }i13!lil ■ ■ # # I #■t�il�ill'ttl['Illill111lllllllllllllltlllll11111E li flllllltllfl I II11 l�1iI Ili �I■� # ## �l��:,,++;; [� ,�,t3(� �1�#r 1�II:il1[Ilj�l!!11111311I1111111[`11111I Illlllllll 111111 111 IIIllillll�I ' r t ,• �1i111�11i11 : itllllj.Ir'ili����� ��%i���flllll111111111I1t1!{Illull#II1f1�111111111111111111 Illillll11 Ill ltill l I I ■����� ill�I�.tlluu""1� P+Il ' I€� �r' M �Iiiflllrirlllll lif I IIII I 11 1111t1111t111111 hll 111 III I 1 l I!III ■tr MO ll l ll l�t ( !i�lll i If f 1 - Lti'" �iXel31���Illj���,f, rl�,� lf fr t`t Itl+lt tql �� i���1�l�UEt��l�11��1 1 1 1! rl 1 r � V P • / Sedimentation & Erosion Control Calculations Diversion Swale Calculations 401 Sand Mine Hoke County, NC Diversion Ditch 3-1 Slope of Ditch= H/L Where: H =The difference in elevation along the ditch, in feet L=The length of the ditch, in feet So therefore... If... H = ft L= ft Slope= 0.023 Solving for depth Ditch Bottom Width ft Ditch Side Slope :1 ratio, H:V Manning's"n" Depth ft Discharge 33.35 cfs Area 6.11 ft2 WP 21.33 ft H. Radius 0.29 ft zfeq 2.65 zeV9 2.65 Velocity 5.46 ft/s If velocity of flow is greater than 2 ft/s, matting is required Shear Stress: T=yds Where T= Shear stress in pounds/ft2 (psf) y= unit weight of water, 62.4 IWO (pcf) d = flow depth in ft s= slope of ditch, ft/ft Therefore, if: d = 0.30 s= 0.02 T= 0.43 psf Use curled wood matting Sedimentation & Erosion Control Calculations Diversion Swale Calculations 401 Sand Mine Hoke County, NC Diversion Ditch 3-2 Slope of Ditch = H/L Where: H =The difference in elevation along the ditch, in feet L= The length of the ditch, in feet So therefore... If... H = - ft L= 320'ft Slope= 0.013 Solving for depth Ditch Bottom Width 101ft Ditch Side Slope 2 :1 ratio, H:V Manning's"n" 0,018 Depth 0,53 ft Discharge 33.35 cfs Area 5.90 ft2 Wp 12.38 ft H. Radius 0.48 It z,ay 3.60 Zavg 3.60 Velocity 5.65 ft/s If velocity of flow is greater than 2 ft/s, matting is required Shear Stress: T=yds Where T= Shear stress in pounds/ft?(psf) y= unit weight of water, 62.4 Iblft3 (pcf) d =flow depth in ft s=slope of ditch, ft/ft Therefore, if: d = 0.53 s = 0.01 T= 0.42 psf Use curled wood matting