Loading...
HomeMy WebLinkAboutAQ_F_1400166_20200820_CMPL_Fac-Ltr M 10— I�In0 46 RECEIVED Sealed Air AUG 21 202D Division of Quality Asheville Regional Office 2001 INTERNATIONAL BOULEVARD/HUDSON,NORTH CAROLINA 28638/(828)728-6610/FAL(8 - August 20,2020 Brendan Davey,Regional Supervisor North Carolina Division of Environmental Management Asheville Regional Office 2090 U.S.Highway 70 Swannanoa,North Carolina 28778 Dear Mr.Davey, As required by our air permit,I have enclosed two hard copies of the thermal oxidizer performance test that was conducted on August 11,2020 by Civil&Environmental Consultants. I will be happy to answer any questions that you might have. S' e C:' 4 Vincent White Site Mgr. }-'��� a I I r AIR EMISSION TESTING FOR VOLATILE ORGANIC COMPOUNDS DETERMINATION SEALED AIR CORPORATION7RECEIVED 2001 INTERNATIONAL BLVD. HUDSON, NORTH CAROLINA 286381 2020 ` ;ir Clu-�.lity AIR PERMIT NO. 07550R09 =n , FACILITY ID NO. 1400166 EMISSION SOURCE ID NO. OX-3 REGENERATIVE THERMAL OXIDIZER I REPORT PREPARED BY: CIVIL & ENVIRONMENTAL CONSULTANTS, INC. CHARLOTTE, NORTH CAROLINA l CEC Project No. 191.725.0001 Test Date August 11, 2020 AUGUST 18, 2020 I i l_ 3701 Arco Corporate Drive, Suite 400 I Charlotte, NC 28273 I p: 980-237-0373 f: 980-237-0372 I www.cecinc.com i [ ' REPORT CERTIFICATE This report, testing details, and approach have been developed under the supervision (including review)of the persons named below. Results contained in this report relate only to the sources tested I and the parameters included in the test program. i Civil &Environmental Consultants, Inc. (CEC) operates as an accredited air emission testing body (AETB) under a quality management system in conformance with ASTM D7036-04 (Reapproved 2011)and ISO/IEC 17025:2017"Standard Practice for Competence of Air Emission Testing Bodies". CEC has been issued accreditation certificate numbers 3913.01 and 3913.02 the American Association for Laboratory Accreditation(A21,A). Date 8/18/2020 Signature W. Quentin Best, QSTI Senior Project Manager Civil&Environmental Consultants, hic. Date 8/18/2020 Signature Paul R. Jenkins, QSTI Senior Project Manager Civil&Environmental Consultants, Inc. i l i Civil & Environmental Consultants, Inc. r TABLE OF CONTENTS r- Page 1.0 INTRODUCTION..............................................................................................................1 2.0 SUMMARY OF TEST RESULTS...................................................................................3 2.1 Sampling Results .................................................................................................... 3 3.0 PROCESS DESCRIPTION..............................................................................................4 4.0 SUMMARY OF THE REFERENCE TEST METHODS..............................................6 4.1 Sampling Strategy................................................................................................... 6 4.2 Sampling and Analytical Procedures...................................................................... 6 4.2.1 US EPA Method 1-Sampling Point Determination.....................................6 4.2.2 US EPA Method 2 Velocity and Volumetric Flowrate Determination.....10 4.2.3 US EPA Method 3 Molecular Weight Rate Determination.......................11 4.2.4 US EPA Method 4 Moisture Determination..............................................11 4.2.5 US EPA Method 25A Total Gaseous Organics Determination.................12 5.0 QUALITY ASSURANCE I QUALITY CONTROL AND UNCERTAINTY............14 I 6.0 APPENDICES..................................................................................................................16 TABLES Table 1 -List of Project Participants...............................................................................................2 Table 2-Emission Results for RTO Control Device at the........................................................... 3 Table 3 -Method 1 Measurements for RTO Inlet and Outlet Locations....................................... 7 Table 4-Propane Calibration Gases............................................................................................ 13 Table 5 -QA/QC Results, US EPA Method 25A& Method 4.................................................... 14 FIGURES Figure 1 -Process Air Flow Schematic............................................................................................ 5 Figure 2-Location of Sampling Port and Points............................................................................. 8 Figure 3 -Location of Sampling Port and Points............................................................................. 9 - APPENDICES Appendix A-Summary of Results and Example Calculations Appendix B-Field Data Sheets Appendix C-Instrumental Method Data Acquisition Appendix D-Equipment Calibrations and EPA Protocol Gases Appendix E-QSTI Certifications Appendix F-Production Data during the Compliance Test l_ Sealed Air Corporation Civil & Environmental Consultants, Inc. -i- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r . 1.0 INTRODUCTION r Civil & Environmental Consultants, Inc. (CEC) of Charlotte, North Carolina, was contracted by Sealed Air Corporation ("Sealed Air") to conduct emission testing on the OX-3 Regenerative Thermal Oxidizer(RTO)control device at their Caldwell County facility located in Hudson,North Carolina. The purpose of this program was to determine the total volatile organic compound (VOC) concentrations from various polyethylene foam extruders, a curing room and one fluff processing operation. The results of the sampling and documentation provided in this report will be used to determine compliance with Air Permit No. 07550R09 issued by the North Carolina Department of Environment Quality, Division of Air Quality (NC DAQ). Three 1-hour sampling runs were conducted on Tuesday, August 11, 2020. United States Environmental Protection Agency (US EPA) Methods 1, 2, 3, 4 and 25A were used for the determination of total VOC concentrations and emission rates at the inlet and outlet locations of the RTO control device unit. The sampling and analytical procedures used were those established by the US EPA in standard reference test methods and appropriate analytical procedures. The test runs were conducted during the normal material processing operations. A list of project participants and their responsibilities can be found in Table 1. i Sealed Air Corporation Civil & Environmental Consultants, Inc. -1- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 it Table j—List of Project Participants Sealed Air Corporation Hudson,North Carolina Participant Title Affiliation Contact Telephone:980.237.0373 � W.Quentin Best,QS n Senior Project Manager CEC,Inc. Facsimile: .980.237.0372 best cecinc.corn Paul R.Jenkins,QSTI Senior Project Manager CEC,Inc. Bryan L. Starnes,QSTI Project Manager I CEC,Inc. Eugene"Rusty"Caton Assistant Project CEC,Inc. Manager Vincent White Site Manager Sealed Air Telephone: 828-726-2038 Corporation vince.white@sealedair.com Bobby J.Moretz Maintenance S Sealed Air Telephone: 828-726-2033 Supervisor Corporation b.j.moretz@sealedair.com The process operators at the referenced facility, along with Mr. Bobby Moretz of Sealed Air Corporation were responsible for the collection of the process operations data presented in Appendix F. Messrs. Bryan Starnes, Quentin Best, Paul Jenkins and Rusty Caton of CEC were responsible for the sampling. This report contains the results of the emission tests conducted during the test program. Copies of reference method field data sheets,instrumental analysis data,example calculations and equipment calibration records are included as appendices to this report. i i 1_ I i . i Sealed Air Corporation Civil & Environmental Consultants, Inc. -2- OX-3 RTO VOC Emission Testing L CEC Project 191-725.0001 -August 18,2020 :i 2.0 SUMMARY OF TEST RESULTS This section presents a summary of the sampling results. Detailed sampling results and example calculations for the test program can be found in Appendix A. Field data sheet documentation is presented in Appendix B. Appendix C contains the instrumental analyzer method data acquisition. Appendix D presents copies of the reference method equipment calibration records. Appendix E contains copies of the A2LA Accreditation and Qualified Stack Test Individual (QSTI) certifications for CEC. Appendix F contains documentation of the production during the test program. 2.1 SAMPLING RESULTS The summary of the VOC emission rates are presented in Table 2 below. The concentrations presented in Table 2 were calculated based upon stack conditions measured during the test period. The calculations were conducted in accordance with the appropriate test methods. =Table 2 emission Results.for RTO Confrol Device at the Sealed Air Corporati,,onHudson,uNC Facility Units Run 1 Run 2 Run 3 Average Date 08.11.2020 08.11.2020 08.11.2020 Sampling Times 0825-0925 0947-1047 1103-1203 Inlet TGO as propane parts per million 1,016 1,113 1,208 1,112 dry Inlet TGO loading as pounds per hour 82.8 90.5 96.6 90.0 carbon dry Outlet TGO as parts per million 10.0 10.8 11.5 10.8 propane dry Outlet TGO emission pounds per hour 0.9 1.0 1.1 1.0 rates as carbon dry Destruction Percent 98.9% 98.9% 98.9% 98.9% Efficiency, FX-1: 64.09 FX-1: 64.09 FX-1: 64.09 FX-1: 64.09 Process Rates pounds per hour FX-2: 64.26 FX-2: 63.09 FX-2: 61.01 FX-2: 62.79 FX-4: 77.69 FX-47 77.69 FX-4: 77.69 FX-4:77.69 TGO is the abbreviation for total gaseous organics. Sealed Air Corporation Civil & Environmental Consultants, Inc. -3- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r 3.0 PROCESS DESCRIPTION The Sealed Air Corporation facility in Hudson,North Carolina manufactures coated products from four polyethylene foam extruders (EXT-1, EXT-2, EXT-3 and EXT-4), one curing room(ES-CR) and one fluff processing operation(ES-FP). Emissions from the extrusion processes are ducted to the RTO control device before releasing to the atmosphere. The RTO is fired with supplemental natural gas-fired burner at a maximum heat input of 5.4 million Btu per hour. The coating application section of the facility has a permanent total enclosure to ensure that the emissions from the processes are captured and vented to the RTO. Figure 1 details the airflow schematic for the process. Sealed Air Corporation Civil & Environmental Consultants,Inc. -4- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 RTO Control Device System Atmosphere t Exhaust Stack <—Sampling Location t ID Fan t OX-3 -RTO t Inlet Ductwork <—Sampling Location t Extrusion Process Figure 1 -Process Air Flow Schematic L. Sealed Air Corporation Civil & Environmental Consultants,Inc. -5- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r' 4.0 SUMMARY OF THE REFERENCE TEST METHODS This section describes the sampling strategy, sampling and analytical methods, and quality assurance/quality control procedures that were implemented during this project. 4.1 SAMPLING STRATEGY The US EPA methods that were utilized in this sampling program were: • Method 1 for the location of sampling ports and points, and determination of cyclonic flow; • Method 2 for velocity / volumetric flow rate determination and assignment of molecular weight; • Method 4 for the determination of moisture in the stack gas; and • Method 25A for the determination of volatile organic compounds (VOC). These test methods are available in the Code of Federal Regulations Volume 40, Part 60, US EPA's web site www.el2a.gov/ttn/emc/,or by request from CEC. 4.2 SAMPLING AND ANALYTICAL PROCEDURES A sampling and analysis synopsis for these methods is discussed briefly in the following subsections. 4.2.1 US EPA Method 1-Sampling Point Determination For this test program,US EPA Method 1 was used to determine the sampling port and traverse points for the RTO Inlet and Outlet sampling locations. The duct diameters upstream and downstream from the sampling ports were determined prior to sampling. The number of traverse points were chosen with respect to sampling port location. The duct inside diameter(ID) and the up and down stream distances at the sampling location are listed in Table 3 below. The number of sampling points for each RTO location was 16 traverse points. Sealed Air Corporation Civil & Environmental Consultants, Inc. -6- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18, 2020 r' Ir After determining the number of sampling points, a Type "S" Pilot tube (0.84 coefficient) such as r the one defined in US EPA Method 2 was used to determine if cyclonic flow conditions existed at the sampling location. CEC leveled and zeroed a manometer and connected a Type "S"pilot tube and leak-checked the system. The Pitot tube was positioned at each traverse point, in succession, so that the planes of the face openings of the Pilot tube were perpendicular to the stack cross- sectional plane. This position was referred to as "0' reference point." The differential pressure (Ap)reading at each traverse point was recorded. If a zero reading was obtained,the angle of flow was recorded as 0°. If the pilot reading was not zero,the Pilot tube was rotated until a null reading was obtained. The value of the rotation angle was determined to the nearest degree using a digital angle fmder. After this technique was applied at each traverse point, the average of the absolute value of the angles was determined. Both sampling locations were determined to be less than 200 and in compliance with US EPA Method 1, Section 11.4.2 for cyclonic flow based on a flow check conducted on setup day before conducting the first sampling run. A copy of this data may be found in Appendix B and the rotational angle is listed in Table 3. Table 3—Method I Measurements for RTO Inlet and Outlet Locations Sealed Air Corporation Hudson,North Carolina Stack Upstream Downstream Total Number of Cyclonic Flow, Test Location Dimensions(inches) (inches) (inches) Sampling Points Degrees RTO Inlet net 39.75" 41" 130" 16 <5 RTO Outlet Stack 32"x 56" 72" 90" 16 <5 i Sealed Air Corporation Civil & Environmental Consultants, Inc. -7- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 RTO Inlet Duct Sampling Ports and Points 39.75" SECTION K—K K 41 FLOW — C l K Not to Scale I Figure 2—Location of Sampling Port and Points i Sealed Air Corporation Civil & Environmental Consultants, Inc. -8- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 Method 1 RTO Outlet Stack Sampling Ports and Points 72 A B C D SECTION K- K 0 0 0 0 A B C D K 901, K 32" - I I Not to Scale Figure 3 —Location of Sampling Port and Points Sealed Air Corporation Civil & Environmental Consultants, Inc. -9- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r 4.2.2 US EPA Method 2 Velocity and Volumetric Flowrate Determination Method 2 is used for determining the average gas velocity in a stack from measurements of gas density and the average velocity head with a Type "S"Pitot tube. This method is applicable for quantifying gas flows which meet the criteria of Method 1. In principle, measurements of velocity head and temperature are performed at the traverse points specified by Method 1. A properly scaled differential pressure gauge was selected for the range of Ap values encountered during the traverse. During this project,the sampling locations met the criteria detailed in Method 1. Based on knowledge of the process,the dry molecular weight of the gas stream was assigned a value in accordance with US EPA Method 2 Section 8.6, which states, "For processes emitting essentially air, an analysis needs not be conducted; use a dry molecular weight of 29.0." Moisture determination was performed by Method 4. The principal components of the gas velocity measurement system were sequentially: • A calibrated stainless steel Type"S"Pitot tube and Type K thermocouple; • Leak-free interface tubing between Pitot tube and differential pressure gauge; • A 0— 10.0 inch water inclined manometer; and • An NIST traceable pyrometer. The apparatus was set-up according to manufacturer and reference method recommendations. Pre- test and post-test leak checks were conducted using procedures outlined in Method 2, Section 8.0. i Velocity head and temperature measurements were performed at regular intervals during each test run at the traverse points specified by Method 1. The atmospheric and static pressures of the sources were also determined for the velocity head readings. The volumetric flow rate calculations used were those specified in Method 2, Section 12. t Sealed Air Corporation Civil & Environmental Consultants, Inc. -10- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r r 4.2.3 US EPA Method 3 Molecular Weight Rate Determination Method 3 is applicable for determining carbon dioxide and oxygen concentrations and dry molecular r weight of a sample from a gas stream of a fossil-fuel combustion process. This method may also be applicable to other processes where it has been determined that compounds other than carbon dioxide, oxygen, carbon monoxide, and nitrogen are not present in concentrations sufficient to affect the results. Based on knowledge of the processes and that RTO is an electric/natural gas unit, the dry molecular weight of the gas streams were assigned a value in accordance with US EPA Method 2 Section 8.6 which states "For processes emitting essentially air, an analysis needs not be conducted; use a dry molecular weight of29.0." 4.2.4 US EPA Method 4 Moisture Determination Method 4 involves the determination of stack gas moisture. The moisture content is used to correct the emission concentration or mass emission rate to a dry basis. The moisture content at the RTO Inlet Duct was calculated by using the Approximation Method Section 12.2 of Method 4. Wet bulb/dry bulb thermometers and partial pressure, vapor and saturated vapor pressure equations were used to determine the flue gas moisture content. This technique uses the wet bulb/dry Bulb equation using pre and post measurements for each sample run. The moisture content of the RTO Outlet sampling location was determined using the Method 4 constant rate sampling procedure. The reference method involved the withdrawal of gaseous and particulate pollutants from the emission source at a constant rate using a Method 5 sampling system. The moisture laden gaseous components were bubbled through a measured volume of deionized water and silica gel to volumetrically determine the moisture content of the emission source. Moisture collection was traversed during the sampling run per US EPA Method 1. Components used in the sampling train were maintained and calibrated according to the procedures outlined in Method 5.The principal components of the sampling system were sequentially: • A stainless steel sample probe; Sealed Air Corporation Civil & Environmental Consultants, Inc. -11- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 i • An impinger train consisting of four sequential impingers. The first two impingers containing 100 ml each of deionized water followed by an empty impinger and a final impinger containing 300 grams of silica gel; and F • A metering system capable of maintaining a constant sampling rate and accurately determining the sample volume according to specifications in Air Pollution Control Office Publication No. APTD-0581 "Construction Details of Isokinetic Source Sampling Equipment". The gas sample was extracted through the four-impinger train with a vacuum pump and was maintained below 68 degrees Fahrenheit ff) in an ice/water bath. The volume of gas sampled was measured with a calibrated dry gas meter. The volume of moisture collected was measured gravimetrically at the end of each run with an analytical balance with a tolerance of 0.1 gram (g). The collected condensate measurements were recorded on the Method 4 field data sheet. Calculations were performed according to Section 12 of Method 4. The dry gas meter and thermocouple calibration forms are contained in Appendix D. 4.2.5 US EPA Method 25A Total Gaseous Organics Determination Total gaseous organics concentrations at the RTO inlet and outlet sampling locations were determined according to US EPA Method 25A. Method 25A applies to the measurement of total gaseous organic concentration of vapors consisting primarily of alkanes, alkees, and/or arenes (aromatic hydrocarbons). The concentration is expressed in terms of propane (or other appropriate organic calibration gas) or in terms of carbon. Testing for gaseous organics was performed using a VIG Industries Model 20/2 at the inlet location and a California Analytical Instruments Model 300 HFID at the outlet of the RTO control device. Gaseous pollutants were withdrawn at a constant rate from the inlet and outlet locations of the RTO control device and analyzed by each flame ionization analyzer (FIA). The principal components of the sampling system were sequentially: • A stainless steel sample probe; • A heated filter and calibration assembly; L . Sealed Air Corporation Civil & Environmental Consultants, Inc. -12- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r • A heated sample line; • FIA analyzer; • Calibration gases; and • A data acquisition system that continuously logged one-second concentrations. Prior to the test series,the probe, filter assembly and heated sample lines were heated above 250°F to prevent condensation. After temperatures were stabilized, the hydrocarbon analyzers were ignited using hydrogen/helium for fuel and hydrocarbon free air. Calibration procedures commenced with the introduction of zero and high-level calibration gas into the sampling system. The necessary adjustments were made and the responses for low-level and mid-level gases were recorded. The predicted values for the calibration gases and the actual responses were recorded on the field data sheet and by the data acquisition system. High-level and zero gas concentrations were introduced into the measurement system and the response time was recorded on the field data sheet. Sampling was initiated immediately following instrument calibration. At the conclusion of the first hour, the zero and mid-level calibration gases were reintroduced and their respective responses recorded on the field data sheet. Table 4—Propane Calibration Gases Sealed Air Cor oration Hudson,North Carolina RTO Test Location Inlet Duct Outlet Stack Gas Range 0 to 3000 pprn 0 to 300 ppm Gas Propane Protocol Gases Zero Air 0 0 Low scale 845 85.0 Mid-scale 1484 150.0 High-scale 2599 259.1 E The zero and calibration drift checks were performed immediately following completion of the test run(approximately one hour)and at the conclusion of the test program. The data collected during the test program was archived on a data acquisition system and is attached to this test report as Appendix C. i . E Sealed Air Corporation Civil & Environmental Consultants, Inc. -13- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r r 5.0 QUALITY ASSURANCE /QUALITY CONTROL AND UNCERTAINTY CEC has established quality assurance and quality control (QA/QC) guidelines for providing quality sampling and analytical data from source tests. These QA/QC procedures were implemented to ensure the acceptability and reliability of the data generated. In summary, an appropriate degree of data quality was maintained throughout this project. Leak checks for the Method 4 train and Pilot tube QA were met. Quality control procedures for Method 25A included the use of EPA Protocol calibration gases. Copies of the gas certifications for the calibration gases used are located in Appendix D. The QA criteria for Method 25A includes calibration error less than or equal to five (5) percent and calibration drift of less than or equal to three (3)percent. The quality control summaries for US EPA Method 25A are presented in Table 5. Table 5 QA/QC Results,US EPA Method 25A&Method 4 Sealed Air Corporation Hudson,North Carolina Method 25A Method Criteria Run 1 Run 2 Run 3 Pass/Fail RTO Inlet Duct Drift Calibration Drift-Zero +3 % 0.30 0.37 0.37 Pass Calibration Drift-Midscale +3 % 0.33 0.30 0.20 Pass RTO Outlet Stack Drift Calibration Drift-Zero +3 % 0.0 0.02 -0.01 Pass i Calibration Drift-Midscale +3 % -2.18 1.16 -1.35 Pass RTO Outlet Stack Method 4 Method Criteria Run 1 Run 2 Run 3 Pass/Fail Train Leak Check <0.020 <0.002 <0.002 <0.002 Pass Field data and final laboratory results were entered into CEC's air quality data system by a staff professional, and reviewed by a project manager for verification of data. After QC review by the project manager, a senior professional verified the final report for completeness and reasonableness of data. The report was returned to the staff professional for review and preparation of the final draft. The report requires the signature of the project manager and a senior project Sealed Air Corporation Civil & Environmental Consultants, Inc. -14- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 manager before release to the client. Data and final reports are archived in a secured area for a r minimum period of seven years. CEC's field and laboratory test equipment has been maintained and calibrated in accordance with quality assurance procedures established by the US EPA in the QA handbook. Equipment calibrations including pre-test and post-test calibration data are presented in Appendix D. Both qualitative and quantitative factors contribute to field measurement uncertainty and should be taken into consideration when interpreting the results presented in this test report. There are several factors that can affect qualitative and quantitative measurements. Qualitative uncertainty factors include,but are not limited to,unknown chemical interferences, sample matrix interactions, environmental conditions, sample handling and instrument operation and maintenance. To reduce the impact of these qualitative uncertainty factors, CEC has developed a set of Standard Operating Procedures (SOPS) in accordance with our corporate quality assurance guidelines and ASTM D 7036-04 and ISO/IEC 17025:2017. Quantitative uncertainty factors known to directly affect uncertainty include the accuracy of calibration standards as well as the precision and accuracy of instrument measurements and the test methods utilized. To reduce the impact of these quantitative uncertainty factors, CEC utilizes testing and analytical methodology that has been approved by EPA or the American Society for Testing and Materials (ASTM) where applicable. In addition, CEC personnel perform routine instrument and equipment calibrations according to manufacturer's guidelines and/or test method specifications. The limitations of the various methods, instruments, equipment, and materials utilized during this project have been reasonably considered to be in accordance with the proj ect data quality objective, but the ultimate impact of the cumulative uncertainty of this project is not fully identified within l_ the results of this test report. Sealed Air Corporation Civil & Environmental Consultants, Inc. -15- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 I 6.0 APPENDICES r This section contains detailed supportive documentation that encompasses the relevant aspects of the emission test program.Its contents serve as the foundation for the test report.The emission test report presents a summary of the information gathered during the sampling activities. The information contained in the appendices is necessary to facilitate the review of the emission test report and determine whether proper procedures were used to accomplish the test plan objectives. Defensible data and the subsequent pollutant concentrations and emission rates are the primary objectives of any emission test program. To this end,the test results, example calculations, field data sheets, sample recovery, laboratory results, chain-of-custody documentation, and equipment calibrations have been provided to support these objectives. l Sealed Air Corporation Civil & Environmental Consultants, Inc. -16- OX-3 RTO VOC Emission Testing CEC Project 191-725.0001 -August 18,2020 r I of 117 i APPENDIX A SUMMARY OF RESULTS AND EXAMPLE CALCULATIONS i 1 . i Civil & Environmental Consultants, Inc. 2 of 117 Run I Run 2 Min 3 Average Inlet Gas Volume Flow, Dry Std. Cond. CFM 14,531 14,481 14,251 14,421 Actual Gas Volume Flow, CFM 16,335 16,372 16,109 16,272 TGO,ppm as propane(wet) 988.8 1081.4 1172.8 1081.0 TGO Conc., ppm as carbon(dry) 3048.4 3340.1 3623.0 3337.2 TGO Loading Rate, Ibs/hr as carbon 82.84 90.46 96.56 89.95 Outlet Gas Volmne Flow, Dry Std, Cond. CFM 16,988 17,089 16,797 16,958 Actual Gas Volume Flow, CFM 25,552 26,227 25,475 25751,22 TGO,ppm as propane(wet) 9.6 10.5 11.1 10.4 TGO Cone.,ppm as carbon(dry) 29.88 32.54 34.42 32.28 TGO Emission Rate, lbs/hr as carbon 0.95 1.04 1.08 1.02 DRG 98.9% 98.9% 98.9% 98.9% 1 . f. 3 of 117 Sealed Air Hudson,NC 999 CEC Project No. 191-725 Task 0001 - - - RTO-OX3 Inlet SUMMARY OF RESULTS EPA METHOD 25A Determination of'l'otal Gaseous Organics-Flame Ionization Analyzer Run Number 1 2 3 Average Sample Identification 191725-01 191725-02 191725-03 ---- r Date: 08/11/2020 08/11/2020 08/11/2020 6 Net Tinle of Test,minutes 60.0 60.0 60.0 ---- Sample Time,24-hourclock 0825-0925 0947-1047 1103-1203 ---- Py„ Barometric Pressure, in.Hg 28.73 28.73 28.73 28.73 1 Pc Static Pressure,in.H2O -2.60 -2.50 -2.50 -2.53 I Ps Stack Pressure,Absolute, in.Hg 28.54 28,55 28.55 28.54 WB Wet Bulb Temp„Deg. OF 76.0 78.0 78.0 77.3 DB Dry Bulb Temp.,Deg.OF 91.0 94.0 93.5 92.8 %S,r Vapor Press.of Water at Saturation,in.Hg 3.17 3.39 3.39 3,32 Btysr Moisture Content of Gas Stream 0.027 0.029 0.029 0.028 Pntw Percent Moisture in Stack 2.69 2.87 2.89 2.82 Mrnz Mole Fraction of Dry Gas 0.973 0.971 0.971 0.972 Ma Mole.Wt.Stack Gas,Dry Basis,lb/lb mole 29.0 29.0 29.0 29.0 MS Mole,Wt.Stack Gas,Wet Basis,lb/lb mole 28.70 28.68 28.68 28.69 Cp Pitot Tube Coefficient 0.84 0.84 0.84 0.84 UPS Avg. Sqrt.Delta P,in.F120 0.536 0.536 0.528 0,534 'rs Avg. Stack Temp.,Deg,F 90.9 93.2 93.0 92.4 Vs Avg. Stack Velocity,ft/sec 31.6 31.7 31.2 31.5 A Area Stack, ft 8.62 8.62 8.62 8.62 Qso Gas Volume Flow,Dry Sid.Could.CFM 14,531 14,481 14,251 14,421 Qq Actual Gas Volume Flow,CFM 16,335 16,372 16,109 16,272 Qs, Gas Volume Flow,Wet Std.Cond.,CFM 14,932 14,909 14,675 14,839 C l Civil&Environmental Consultants,Inc. r 4 of 117 �- Sealed Air Hudson,NC RTO-OS3 Intel CEC Project No. 191-725 Task 0001 Summary of Results EPA Method 25A Determination of Total VOC Concentrations and Emission Rates Ron Number 1 2 3 Average Sample Identification 191725-01 191725-02 191725-03 Date, 08/11/2020 08/11/2020 08/11/2020 - - e Net Time of Test,mimdes 60 60 60 Sample Time,24-hour clock 0825-0925 0947-1047 1103-1203 Total Gaseous Organic(TGO)Concentrations and Emission Rates I M�yc Mole Weight of Carbon,g/mole 12.011 12.011 12.011 12.011 m„ TOO,plan as propane(wet) 988.8 1,081.4 1,172.8 1,081.0 C,,,Ijn, TGO,plan as propane(dry) 1,016.1 1,113.4 1,207.7 1,112.4 Cn TOO Cone.,plan as carbon(wet) 2,966.4 3,244.2 3,518.4 3,243.0 Cd TOO Conc.,plan as carbon(dry) 3,048.4 3,340.1 3,623.0 3,337.2 C,n, TOO Cone.,mg/dsem as carbon 1,522.0 1,667.7 1,809.0 1,666.3 C, TOO Cone.,gr/dsefas carbon 0.665 0.729 0.791 0.729 CAW TOO Loading Rate,Ibs/hr as carbon 82.8 90.5 96.6 90.0 i �__, Civil&Enmronme wl ConHAWnu Inc. 5 of 117 — Sealed-Air-Hudson,NC CEC Project No. 191-725 Task 0001 RTO-OX3 Inlet Summary of Results EPA Method 25A Determination of Total VOC Concentrations and Emission Rates Example Calculations Run I Stack Pressure, Absolute, in. Hg Ps=Pbu+(P9/ 13.6)= 28.539 f Wet Bulb/Dry Bulb Calculations: i Vapor Pressure of Water at Saturation, in. Hg S P=(100/PS) * 10(6.6912.(3144/(WB+390.86))) 3.173 13.2=(P.nQ/ 100) 0.027 Percent Moisture in Stack Pmv2=(Sp-(0.0011 * Ps* (DB -WB) *(1 -(WB -32)/ 1571)))) 2.688 f Mole Fraction of Dry Gas l MFD2=( I00 -Pm,2)/ 100 0.973 Mole. Wt. Stack Gas, Dry Basis, lb/lb mole Md is assigned a value per EPA Method 2, Section 8.6= 29.0 Mole. Wt. Stack Gas, Wet Basis, lb/lb mole Ms=Md * 0 -B,,,$)+ 18.0 *B,,= 28.704 l Avg. Stack Velocity,ft/sec Vs=Kp * Cp * (AP,,,,II)l/2 *((Ts+460)/(Ps * M,))1/2 31.6 Gas Volume Flow, D1y Std. Cond, CFM QSD=(60 sechnin * (I-B,vs) * Vs * A* ((Tsm*Ps)/M(Ab) Pstd)) 14,531 Actual Gas Volume Flow, CFM QA=Vs * A*60 sec/min= 16,335 Gas Volume Flow, Wet Std. Cond., CFM QSW=QsD* [1/(1-B�vs)]= 14,932 l Civil&EnNronmencal Consul[xnu,Inc. 6 of 117 I Sealed Air Hudson, NC CEC Project No. 191-725 Task 0001 RTO-OX3 Inlet Summary of Results EPA Method 25A Determination of Total VOC Concentrations and Emission Rates Example Calculations Run I Total Gaseous Organic(TGO) Concentrations and Emission Rates TGO,ppnr as propane (dry) C,n(d,)= urn / (1 -BWs)= 1,016.1 TOO Cone.,plan as carbon (wet) Cc='Cmeas * 3 = 2,966.4 TOO Cone., ppm as carbon(dry) i Cd= Ccorrected / (1 -Bays)= 3,048.4 TGO Cone., Ing/dscm as carbon CON=Cd * M,,.,/24.055 = 1,522.0 TOO Cone., gr/dscf as carbon Con=CON * (0.015432358 grain/ 1 mg)* (lcm/35.314666721 eft)= 0.665 TOO Loading Rate, lbs/br as carbon CAW=60 min/lu•/7000 grain/lb * CAN * Qsd= 82.8 Standard Conditions 68 Deg. P, 29.92 in.Hg Pstd=29.92 in. Hg Tstd=528 OR l i ;igY,-g �i�hti" yYf lj L Civil$,Environmen[al Consultants,Inc. 7 of 117 Sealed Air Hudson,NC CEC Project No:191-725 Tas1f0001 RTO-OX3 Outlet SUMMARY OF RESULTS ti EPA METHOD 25A Determination of Total Gaseous Organics-Flame Ionization Analyzer r Run Number 1 2 3 Average 1 Sample Identification 191725-04 191725-05 191725-06 ---- Date: 08/11/2020 09/11/2020 08/11/2020 ---- 0 Net Time of Test,minutes 60.0 60,0 60.0 ---- Sample Time,2441our clock 0825-0925 0947-1047 1103-1203 ---- Pr„ Barometric Pressure,in.Hg 28,73 28.73 28.73 28.73 Pa Static Pressure,in.H2O -0,12 -0.13 -0.13 -0.13 Ps Stack Pressure,Absolute,in.Hg 28.72 28.72 28.72 28.72 V, Actual Meter Volume Sampled,cu.ft. 46.094 46.449 46.656 46,400 DH Avg.Delta H, in,H2O 1.80 1.80 1.80 L90 11 Ts, Avg.Gas Meter Temp.,Deg.F 69.9 71.5 72.4 71.3 V.,(,,,Volume Sampled at Stand. Cond.,cu.ft. 44.003 44,209 44.330 44.181 We Volume of Water Collected in Impingers,g 34.9 31.0 31.6 32.5 V,,,s,„a Vol.of Water Vapor in Silica Get at Sid.Cond,SCF 1.65 1.46 1.49 1.53 Bws, Moisture Content of Gas Stream 0.036 0.032 0.033 0.034 Psiv, Calculated Percent Moisture in Stack 3.6 3.2 3.3 3.4 ll Pnsvis Saturated Percent Moisture in Stack 100.0 100.0 100.0 100.0 PesviR Reported Percent Moisture in Stack 3.6 3.2 3.3 3.4 Mrn, Mole Fraction of Dry Gas 0,964 0.968 0.967 0.966 Md Mole.Wt.Stack Gas,Dry Basis,lb/lb mole 29.0 29.0 29.0 29.0 l MS Mole.Wt.Stack Gas,Wet Basis,lb/lb mole 28.60 28.65 28.64 28.63 Cp Pilot Tube Coefficient 0.84 0.84 0.84 0.84 DPS Avg. Sqrt.Delta P, in.H2O 0.504 0.511 0.500 0.505 'rs Avg. Stack Temp.,Deg.F 274.9 292.9 283.7 283.8 ` Vs Avg. Stack Velocity,ft/see 34.2 351 34.1 34.5 t A Area Stack, ft' 12.44 12.44 12.44 12.44 Qso Gas Volume Flow,Dry Std.Cond.CFM 16,988 17,089 16,797 16,958 Q,r Actual Gas Volume Flow,CFM 25,552 26,227 25,475 25,751 Qs, Gas Volume Flow,Wet Std.Cond,CFM 17,623 17,654 17,362 17,546 Mb f! Meter Box Number 300.241 300.241 300.241 --- Dti a DH@ of Meter Box @ 0.75 SCFM L811 1.811 1.811 --- Y Meter Calibration Factor 0.9932 0.9932 0.9932 --- 111 Y'. Alt.Mthd 5 Posttest Calibration(ALT-009),Yy, 0.9932 0.9870 0.9835 0.9879 %% Alt.Mlhd 5 Posttest Calibration(ALT-009),% 0.00% 0.62% 0.98% 0.53% Civil a enyi ronmenwl Conselwnu,Inc. 8 of 117 I r._ Scaled Ali,Hudson,NC RTO.OR3 Outlet CEC Project No,191-725 Task 0001 Summary of Results r EPA Method 25A Determination of Total VOC Concentrations and Emission Rates Run Number 1 2 3 Average r Sanple Identification 191725-04 191725-05 191725-06 Date: 08/11/2020 09/11/2020 08/11/2020 B Net Time of Test,minutes 60 60 60 Sample Time,24-hour clock 0825.0925 0947-1047 1103-1203 Total Gaseous Organic(TGO)Concentrations and Emission Rates , r MWc Mole Weight of Carbon,gfmole 12.011 12.011 12,011 12.011 m„ TGO,ppm as propane(wet) 9.6 10.5 11.1 10.4 ,- Cm,) TGO,ppm as propane(dry) 10.0 10.8 11.5 10.8 C, TGO Comic.,ppm as carbon(wet) 28.8 31.5 33.3 31.2 Cd TGO Cone.,ppm as carbon(dry) 29.9 32.5 34.4 32.3 Ca,,, TGO Cone.,mg/dscm as carbon 14.9 16.2 17.2 16.1 Cs TGO Cone,gr/dscfas carbon 0.0065 0.0071 0.0075 0,0070 CAW TGO Emission Rate,lbs/hr as carbon 0.95 1.04 1.08 1,02 I i 1/21 Chil a Environmeneal Consul,ann,Inc 9 of 117 - - _ Sealed Air Hudson;NC - CEC Project No. 191-725 Task 0001 RTO-OX3 Outlet Summary of Results EPA Method 25A Determination of Total VOC Concentrations and Emission Rates Example Calculations Run 1 Stack Pressure, Absolute, in. I-Ig Ps=Pbnr+(Pg/ 13,6)= 28.721 r Volume Sampled at Stand. Cond.,cu.ft. Vn1(std)_ (V m * Y *(Pbnt+AH/ 13.6) *Tnid)/(Pstd * (Tni+460 )= 44.003 Method 4 Calculations: Vol. of Water Vapor in grams at Std. Cond, SCF Vwsg(std)= 0.04715 * We= 1.65 I Moisture Content of Gas Stream (((I Bwsl — MVC(std)+Vm&ld))/( Vrn(sld)+VIVC(std)+Vesg(std))= 0.036 I Percent Moisture in Stack PMV I = l00 *//\VwC(std)+V,ng(std))/(V.(std)+VwC(std)+Vtvsg(std))= 3.6 Saturated Stack Moisture using Stack Temperature ff):Note if %Svp> 100%= 100% Pmvis=%S'=(100/Ps)* 10(6.6921-(31441(T+390.86))) 100.0 Reported Stack Moisture according to Method 4 Section 12.L7 In saturated or moisture laden gas streams,the lower Bws(PMV 1 or PMV IS)is considered correct 3.6 Mole Fraction of Dry Gas MFDI = 0 00 -PMV) / 100= 0.964 Mole. Wt. Stack Gas,Dry Basis, lb/lb mole Md is assigned a value per EPA Method 2, Section 8.6= 29.0 Mole. Wt. Stack Gas, Wet Basis, lb/lb mole Ms=Md* (1 -B,,,$)+ 18.0 *B,vs= 28.603 Avg. Stack Velocity,ft/sec Vs=Kp * Cp * (APavg)1/2 * ((Ts+460)/(Ps * Ms))1/2 34.2 Gas Volume Flow, Dry Sid. Cond. CFM QsD=(60 seehnin *(I-B.. Vs * A * (MId*Ps)/(L(nbs) *Pvd)) 16,988 Actual Gas Volume Plow, CFM QA=Vs *A *60 sec/min= 25,552 Gas Volume Flow, Wet Sid. Cond., CFM Qsw=Q8D* [1/(1-Bws)] = 17,623 Alternative Method 5 Posttest Calibration(ALT-009) Criteria:(Yf 0.05) Yqa=(0/Vm) * ((0.319*Tni)/(AHQ*(Pb+(AHn g/l3.6)))*(29/Md))At/Z * (AHn,g)Aln= 0,9932 Civil 4 Environmental Consultants,Inc. �( 10 of 117 Sealed Air Hudson,NC CEC Project No. 191-725 Task 0001 RTO-OX3 Outlet Summary of Results EPA Method 25A Determination of Total VOC Concentrations and Emission Rates Example Calculations Ran 1 Total Gaseous Organic(TGO)Concentrations and Emission Rates TOO, ppm as propane(dry) Cmtd,yl— nin / (I - Bws)= 10.0 TOO Cone.,ppm as carbon(wet) Cc—'Cmeas * 3 = 28.8 TOO Cone., ppm as carbon(dry) Cd= Ccorrected / (I - Bws)= 29.9 TOO Cone., mg/dscm as carbon CON=Cd* M,,,/24.055 = 14.9 TOO Cone., gr/dsef as carbon Can=CON * (0.015432358 grain/ 1 Ing)*(1cm I35.314666721 cft)= 0.0065 TOO Emission Rate, Ibs/hr as carbon CAW=60 min/hr/7000 grain/lb * CAN* Qsd= 0.95 Standard Conditions 68 Deg. F, 29.02 in. Hg Pstd=29.92 in. Hg Tstd=528°R i i p" >, :r Civil&Environmental Consdono.Inc. 11 of 117 r. APPENDIX B FIELD DATA SHEETS r L . t. I Civil & Environmental Consultants, Inc. r Ftetd Data Sheet-EPA Methods 2 and 4 17 of 117 II Client: _ Sealed Air Corporation - - Run Number: t City/State: Hudson,NC Date: 8/11 /20 Sampling Location: RTO Operators: sm-4noG I LEAKCHECKS y' Bar.Press.,In.Hg 5./4.73 Static Press.,In.H2O "�• 12- Pre-Test Pilot <0.1 a A"e!�dn.H2O Meter Box No. 300.291 a AH @ 1.9/1 Y=p 9 32. Agency: NCDENR Post-Test Pilot<0.1 @/8W/ Gin.H2O Sample Box No. 1 Probe No.M y-Qu� Observer: Pre-Test<17. moi@ in.Hg. I Probe Temp.Setting: 150 Start Time:di=r End Time: D 0.25 24-Hr Post-TesttO,-002-1-b-7—In.Hg, r t Drryy Gas Orifice Dry Gas Pump Imp. Pilot Stack Clock Meter Setting: Meter o Vacuum Temp Sampling Reading Temp Time A H " Temperature F Inches Point A P In Cubic Feet in,H2O Inlet Outlet Hg oP H2O 4F 0 &'! oo t, 9' Go 1 t9 .9 -17/ 5 Sa.7 R 2 0.'3V J-I/? la Sy 63 G9 Ss 3 o.z l Ls3 20 862.29 4SU 1 0.2 2 25 g �, /3/ 0 2 n 2S �2a 30 Oka- f5 3 9 2-7 Z'rt _ 357y la O 4 D.Z$• it 7 40 77• 4- '7 N 1 • 19 9'd 45 g%1. 1/ 2 d 2.350 $S,f'30 3 D 2 S55 g89. ly 4 0e2r7 2tbo 60 191.994 1 0, XV 285� a 2 1 O. 16' V j 3 0-;0 3 4 0, 2 319 I N6. I,$ 69. v o,ASfo 27 ,�8 �. Comments: Anal sls of Moisture Recover se e M if Itn in er Absorbing Solution Knockout Imp. DI Water DI Water Empty Silica Gel i Description of Reagent %Spent 1 Final Volume, Initial Volume, Net Condensed Volume, Total Moisture Collected, Balance ID Wt. 200 Wt.(500 ) Wt. 1,000 Date , mU0.d5 'P 1 OQ17, 0 n 202nJ Audited by: 1y/� (Personnel) Date:$/ [t_L / --1� Z Z4141 Completeness " Legibility `•`Acnrtncy Audited by: kw(Town Lender) Dated/1?, 26�� specificaamn� Consultants, Rensonableness v Civil Environmentalnc. s,In . 18 of 117 Plelel Datrr Sheet-EPA Methods 2 and 4 Client: Sealed Air C r oration Run Number: �•' City/Slate: Hodson NC Date: 8/4 0 Sampling Location: _ RTC 40Nek Operators: LEAK CHECKS Bar.Press.,In.Hg 2 e8.r7'`j_Static Press.,In..H20 ^ O, 13 Pre-Test Pilot <0.1 Q d. 3.S In.Hz0 Meter Box No. 300.4N1 /6 AH n /.Sfl Y= 0(A93Y Agency: NCDENR Post-Test Pilot<0.1 a/00 �.2In.HzO Sample Box No. 2 Probe No. My'060 Observer: Pre-Testae.oay @ I_I In.Hg. Probe Temp.Setting: P�P Start Time: 69y17 End Time: /49 Y7 24—Hr Post-Test <V VIZI rQ 7 In.Hg. Dryy Gas Orifice Dry Ges Pump Imp. Pilot Stack Clock Meter Selling Meter Vacuum Temp Sampling Reading Temp I Time A H- Temperature OF Inches Point A P In. Cubic Feet In IbO Inlet Outlet Hg E H20 °P f93. oo I.$ 7t 6 �/ 1 0 2 338 5 817.3S Z 2 40.19 3 V 2 10 D .03 I q 5.,5 ' 3 0 3 So 15 1y S 4 dj 0y 20 a8. 'lS '71 Y 1 0. 21 2TI 25 :l. b0 '71 1 2 0.2 9, A9Z 30 72 s 7 3 0. ,31 ..6 35 a 10.s 4 0.2 S'� Asc 40 4.1q.2r7 72. f7 I V-Al 45 00.9. 10 71 2 0.22 2-79 55 s' Ws y41 0 4 0.2 '7A GO I O 7 2 0 91 3 o..z to il 7 4 0.252 3 0 1 b y f,$ 7 .SO o.262S2 92.941 Comments: I Anal sls o Moisture Recover �t /VJ Im in er Absorbing Solution Knockout Imp. DI Water DI Water Empty Silica Gel Description of Reagent %Spent Final Volume, Initial Volume, Net Condensed Volume, Total Moisture Collected, Balance ID Wt:(200 ) Wt. 500 Wt.(1,0001 ) Date GDO. 05 y00. q. l 0 . o m e u 20Zd / of / cr u u Audited by: /7 (Personnel) Date: ,li,24P Completeness / Legibility ✓ %rcurney 1 rrr f+7m e� Audited by: W 6 Tnnm Leader D;ReP Sld20 specifications Reasonableness 61vil&Environmental L., Y:_( ) 1 Consultants,Inc. Field Doto Sheet-EPA Methods 2 and 4 19 of 117 Client: Scaled Air Corporation - Run Number: City/State: IIudson:'NC Date: 8/N/20 (I Sampling Location: RTO tit tf lea' Operators: pia/� I LEAK CHECKS Bar.Press.,In.Fig Aq-7.3 Static Press.,In.H2O ^ 0.13 Pre-TestPitot <0.1 @ ,iln.H2O Meter Box No. 300. 2yl 14 AH a l 811 Y= 0.44 32 Agency: NCDENR Post-Test Pilot<0.1 @es-4asln.H2O I Sample Box No. Probe No. '4 Observer: Pre-Test.a V.ep0$(n3_13 In.Hg. Probe Temp. Setting: 1s0 Start Time:.//03 End Time: /203 24—Hr Post-Test<e•002@ 7 In.Hg. 'i Di ¢as Orifice Dry Gas Pump Imp. Pilot Stack Clock Meter Setting Meter o Vacuum Temp Sampling Reading Temp Temperature Inches Point A P In: Time A H F Cubic Peet In.H20 Inlet. Outlet Hg oP H20 of 5 3. rr 2 0. .'R 28$ to q IT 79 72, q 1 3 d, X"t IRR, 15 S).Gb 2 SO 4 4.,2 2-96 20 SS S6 .1 1 .R I 187 25 fo, " 7.7 2 o.23 219 1 30 U 3r 3G 71 3 O. Z/ 2 Q 1 I 35 67,2 .3 y SZ 4 O.ZS It' 40 73 1 as p 73 tj3y 2 a, ?0 2q0 50 3 o. 2q a 717 55 99;. 77 073 ' 4 0. 21 A4 2 60 9t66 6510 1 0. 2y A71 2 o. '174 3 0.2 .281 1 4 0. f 1911 Comments: Ana! sis o Molstnre Recover to M Im in er Absorbing Solution Knockout Imp. DI Water DI Water Empty Silica Gel Description of Reagent %Spent Final Volume, Initial Volume, Net Condensed Volume, Total Moisture Collected, Balance ID Wt. 200 Wt. 500 t Wt.(1,000 Date van. os'7 2oto,p q ,9 0. � , zoao Audited by:—AL(Personnel) Date:�2Completenm / Legibility/Accurncy/� Audited by; 1 (Team Lender) Date: 1' .9'i Specifications Rensmmbieness L Civil&Environmental Consultants,Inc. 20 of 117 ® I ® M4 Weights PROJECT: j�l I LL� PROJECT NO.: SOURCE: (Dr Ae�,,�1E 7'�' TEST DATE: COLLECTED BY: CONDENSATION TRAIN 9 IMPINGER NO. INITIAL VOL.,mlig FINAL VOL.,mllg NET GAIN,ml/g I,S 3l,7 070� 2 G' v,� 601o, 7 a 3 G ,`) &13. 5' Q 4 r �13 9oS. TOTAL CONDENSATION TRAIN 2 IMPINGER NO. INITIAL VOL.,mlig FINAL VOL.,mllg NET GAIN,mt/g 2 3 (oOf.� 607, �. 4 TOTAL 3 CONDENSATION TRAIN 3 ` IMPINGER NO. INITIAL VOL.,mllg FINAL VOL.,mllg NET GAIN,mlIg 1 731. 75- . . 2-0. 1 2 69a. 4 z .y 3 61 .� �e1q,3 ,8 4 / 913, 8.3 TOTAL i Balance ID Wt.(200g) Wt.(500g) Wt.(1000g) Date DD 0. 1/9 .1 004 V 99 !i d,o iT L- � oe� ivfLoz� 21 of 117 I r APPENDIX C INSTRUMENTAL METHOD DATA ACQUISITION i , Civil & Environmental Consultants,Inc. 22 of 117 r , Run averages not corrected for bias per Method 25A Operator: Bryan Starnes Plant Name: Sealed Air Corporation i ' Location: RTO Inlet Outlet Run ppm ppm 1 988.8 9.6 2 1081.4 10.5 r - 3 1172.8 11.1 'f ii c � 2301117 EPA Method 25A Determination of Gaseous Organic Concentrations as Carbon Using Flatne Ionization Analyzer Procedure Client Sealed Air Corporation / City/State Hudson,NC E Sampling Location im 6WI.4 41( Instrument 64 AJ,1 3vp HF.z U gAta t l Run Date 8 /Jl !20 Operators 61J Observer Agency NCDENR Instrument Readiness: Oven Temperature: 20Z °C Fuel Pressure: 3, psi Sample Line Temperature: 266 OF Air Pressure: _psi Sample Back Pressu e: Ile psi Calibration Factor: pse gy 6n✓.w 7tr.�t+�c 3•LI OF System Calibration Error Check D 3v0 Cylinder Cylinder Predicted System Allowable Spec. Span:_ppm Pressure Value Value Value Difference Difference (psi) (ppm) (ppm) (pint) (ppm) (ppm) Zero 5'r 0 0, 0,Y0 9,00 ±3%of Span High Range ISUv Z59, 759,5 0•VP /2,94 ±5%of Gas Value Mid Range 1100 ISU,0 1 t .0,) iSl,1 life .5'0 15%of Gas Value Low Range 3s0 $S D 9S Z 91. 1.30 ,2,S ±5%of Gas Value E Han- S istea:and Dri t Data Run Time Initial System Final System Drift Calibration Spec. (24 Hour Clock) Response Response Difference Drift (r°Of (ppm) (ppm) (ppm) (percent) Span) Zero Midscale Zero Midscale Zero Midscale Zero Midscale ±3% 1st Run 090—091Jr 0,YISL 13 j5jj 0,1 1.0 0,30 0,33 ±3% 2nd Run o — D SL 1.5 15'2. o 0, 0,3' 0.39 ±3% 3rdRun 1103i• 0,V If, 1,5 151 0.1 3 0.20 ±3% 4th Run ±3% 5th Run ±3% 61hRun ±3% 1 5 stem Response Time so feu 0.1re Jr)A0 ro raq $i )er) s') Juf Zero 0 3 0,93 045 Avg. 0.934 minutes Upscale 0,D o,X3 0. S Avg..0 3 minutes Must be a step change of at least 95%. Comments: Y p Audited by:J•,�i .(Personnel) Dole: L1 .2 l d Completeness ✓ Legibility `f Accuracy !/ /�� /�,f�,;/ Civil&Environmental i Audaed by:_('ream Leader) Date: I I specifications ✓ Reasmmldeness--Z C°s,sullnnts,file. I� 1 24 of 117 EPA Method 25A Determination of Gaseocts Organic Concentrations as Carbon Using Flame Ionization Analyzer Procedure Client Sealed Air Corporation City/State Hudson,NC Sampling Location (BTU :170k/ _kk Instrument VY6 1001J. w l/.rnt j_I(Al,nn<l 2 JWS3�3/J r Run Date 8. /J!/20 Operators 60 Observer Agency NCDENR Instrument Readiness: G0 Oven Temperature: 299 °fe F Fuel Pressure: 40 psi Sample Line Temperature: 26O OF Air Pressure: 6'o psi Sample Back Pressure: _psi Calibration Factor: 101 X gsi- &V r S utem Calibration Error Check 0--30DO Cylinder (Cylinder Predicted System Allowable Spec. Spat): ppm Pressure Value Value Value Difference Difference (psi) (ppm) (ppm) (Ppm) (ppnr) (ppm) Zero 5370 0 �,� 0,91) 0, ±3%of Span is ± High Range 1y00 aS99 aSsz,B �- G 20 129,75 5%of Gas Value Mid Range NOD )Vyv 11way I 5%of Gas Value Low Range 3570 S 830, Sb2.P -2.2 NZ.V ±5%of Gas Value i Hour/ S stem and DH 1 Data Spec. ' Run Time Initial System Final System Drift .Calibration (%Of (24 Hour Clock) Response Response Difference Drift Span) (ppm) (ppm) (ppm) (percent) Zero Midscale Zero Midscale Zero Midscale Zero Midscale +3% 1st Run D87.S- 0 bS 0.9 I OS QB 19 S D,O -65, 0,00 2,/K ±3% 2ndRun 09Y}— lUy 0'8 19 tt/1( /157 1491.4 O ll.9 0,02. 1, I ±3% 3rdRun 0 - 1203 0,g lWy.1 0,5 Vim -al - - o. -U,0 -i.3s +3% 4th Run CStJ ±3% l 5th Run ±3% 6t11 Run ±3"/0 i System Response Time sa'Sev 5,1im" 5'5'Jee SG Jeq S'S'sev rdSCeJ Zero 0, 1. 0.91 0,91 Avg. 0,920 minutes Upscale 0,93 0,92. 0.93 Avg. 0,9 2 minutes Must be a step change of at least 95%. Comments: L, J Aerated by;,IdZC1J—(Personael) Date. / A Completen°ss Legibility Accuracy—&--� /�r:1 Civil&Environmental Auditedby;_(Team Leader) Date: I / Speciricaliom 4,� Reasonableness VX Cwnsultnuts,Inv. 4� 14- A 0 SIA, 25 of 117 juf� 10,111 6 Wi�<Ar�lCr�a!N�tI�I�LNNIn� T✓d�" �i20< !f� /U Z✓Cr D� ,," CDNNL � D NhN/�/Z4� rn�,N./)w ✓Alit urv� -J^ no frynvn/G 'hV UN< /Y/r11N/y /\1 .�S1e/� Yh lff /� VN//C� V7.<uuw, �G .S r%+yt tAA1nHAc (Yl mu; /YJ/�tH7�CJ prjm14 llr 1, ad In tib, .� R)Y ? 09,00 70`j4d -10 ��Vv �J✓orJnn iw- era 0"44 rry fy/f��w (� aob.:� offog R2 wn! 26,lr ff n P(�M 1 g( ^)44 tnntt o- Iopv4ffw pmlmr c (0• 3UOd $pAn� 1 �n7OHf�c� y„n1L 0�- IOOo ffm palMe (0'7�SPnn) 0$-I5' - All jr.11, 41h Jpo14 260O - q.�z, llllc�f, s,..,.�ie lrh•U', I Qun en de,l b 092-5, Poll l 76, IIOPm µl yAj ,A)IAJ Mb JUIP 0,/1&f Syte (� 0933 7 o93' j SM.ka r°U z p o9Y7> all s r), 29,,< au IDSS��DS �� Apr), S�+✓l�A ��nn 3 0 I103 -7 nil so, kyle Tr*.r.rPn✓� �,Iwptw4 4 260°r-rvaG2��•'-�L.S Snv„�/e /jhef 1 fu,� 3 �, Jd o 12o3 I ✓ Pod 12 3 16,1 ,p�ov Pvlpnne L"� 3ri/ Mje�cej /ilo Jyj,xc ,,, ee& m ii 121q �/ I r, 26 of 117 Calibration Error Test, Run 1 STRATA version 3.2 Operator: Bryan Starnes Plant Name: Sealed Air Corporation F' Location: RTO Reference Cylinder Numbers Zero Low-range Mid-range High-range Outlet DT0005900 DT0005847 SX53236 DT0003635 r Inlet DT0005900 ES0049272 SX46300 SX40668 Date/Time 08-11-2020 07:38:48 PASSED Analyte Outlet Inlet Units ppm ppm i-. Zero Ref Cyl 0.0 0.0 Zero Avg 0.4 0.8 Zero Error% 0.0% 0.0% Low Ref Cyl 85.0 845.0 Low Avg 86.3 842.8 Low Error% 0.1% 0.0% Mid Ref Cyl 150.0 1484.0 Mid Avg 151.1 1464.8 Mid Error% 0.1% 0.2% High Ref Cyl 259.1 2599.0 f - High Avg 259.5 2552.8 High Error% 0.0% 0.5% Calibration Error Test End r L L f i L _ L . Il_, L L Page 1 Test Run 1 STRATA Version 3.2 27 of117 Outlet Inlet ppm ppm Begin calculating run averages 08-11-2020 08:26:02 18.5 924.5 08-11-2020 08:27:02 2.6 932.1 08-11-2020 08:28:02 2.3 943.0 08-11-2020 08:29:02 6.0 945.9 08-11-2020 08:30:02 35.6 947.3 r 08-11-2020 08:31:02 3.3 941.2 08-11-2020 08:32:02 2.4 941.8 08-11-2020 08:33:02 2.3 951.4 08-11-2020 08:34:02 3.6 948.5 r 08-11-2020 08:35:02 26.4 951.3 p 08-11-2020 08:36:02 3.0 943.7 fl 08-11-2020 08:37:02 2.4 946.7 08-11-2020 08:38:02 3.5 961.6 08-11-2020 08:39:02 25.9 972.8 r 08-11-2020 08:40:02 17.1 985.2 08-11-2020 08:41:02 2.9 993.4 08-11-2020 08:42:02 2.8 1007.7 08-11-2020 08:43:02 2.9 1008.3 08-11-2020 08:44:02 26.9 1001.0 I 08-11-2020 08:45:02 3.9 1014.1 08-11-2020 08:46:02 2.8 1011.2 08-11-2020 08:47:02 2.9 999.8 08-11-2020 08:48:02 12.9 977.8 08-11-2020 OB:49:02 33.0 989.6 08-11-2020 08:50:02 3.1 986.6 08-11-2020 08:51:02 2.6 996.4 08-11-2020 08:52:02 2.5 989.3 08-11-2020 08:53:02 22.5 996.6 I 08-11-2020 08:54:02 8.5 1001.7 08-11-2020 08:55:02 2.9 1002.2 08-11-2020 08:56:02 2.6 1016.4 08-11-2020 08:57:02 7.1 987.8 08-11-2020 08:58:02 35.9 983.7 08-11-2020 08:59:03 3.7 986.7 08-11-2020 09:00:03 2.8 1004.9 08-11-2020 09:01:03 2.6 1006.3 08-11-2020 09:02:03 4.1 1017.5 08-11-2020 09:03:03 27.0 1006.1 08-11-2020 09:04:03 3.5 1013.0 08-11-2020 09:05:03 2.9 1015.6 08-11-2020 09:06:03 4.5 1024.6 08-11-2020 09:07;03 38.2 1019.1 08-11-2020 09:08:03 6.7 1009.9 08-11-2020 09:09:03 2.9 1003.7 08-11-2020 09:10:03 2.7 1009.6 08-11-2020 09:11:03 2.9 1014.8 08-11-2020 09:12:03 30.3 1002.0 08-11-2020 09:13:03 3.7 994.6 08-11-2020 09:14:03 2.9 1000.5 08-11-2020 09:15:03 2.9 985.3 08-11-2020 09:16:03 13.8 986.7 08-11-2020 09:17:03 30.5 983.5 08-11-2020 09:18;03 3.1 995.3 OB-11-2020 09:19:03 2.7 992.1 08-11-2020 09:20:03 2.5 991.0 08-11-2020 09:21:03 27.3 1006.0 08-11-2020 09:22:03 5.3 1007.4 08-11-2020 09:23:03 3.1 1005.2 08-11-2020 09:24:03 2.8 1025.6 08-11-2020 09:25:03 9.7 1021.3 Run Averages Outlet Inlet ppm ppm 08-11-2020 09:25:03 9.6 9B8.8 Operator: Bryan Starnes Plant Name: Sealed Air Corporation Location: RTO Test Run 1 End Page 1 ppm propanewetconcentrations ! 8:25:03 8:26:08 8:27:13 - 8:28:18 8:29:23 8:30:28 8:31:33 8:32:38 '.. 8:33:43 8:34:48 8:35:53 8:36:58 8:38:03 8:39:08 j 8:40:13 !. 8:41:18 8:42:23 !. 8:43:28 8:44:33 •. 8:45:38 0 8:46:43 n8:47:48 O O 8:48:53 m 8:49:58 .a 3 8:52:08 8:53:13 O A 8:54:18 tD m 8:55:23 fD c 8:56:28 8:57:33 VD 8:58:39 v 8:59:44 3 3 9:00:49 N 9:01:54 9:02:59 9:04:04 9:05:09 9:06:14 ! 9:07:19 9:08:24 9:09:29 9:10:34 9:11:39 9:12:44 9:13:49 9:14:54 9:15:59 ! 9:17:04 !. 9:18:09 9:19:14 9:20,19 9:21:24 9:22:29 .._� 9:23:34 9:24:39 LLlio 9Z J 1 ppm propane wet concentrations H F+ N N W 0 0 0 0 0 0 0 825:03 8:26:08 8:27:13 8:28:18 8:29:23 8:30:28 8:31:33 8:32:38 8:33:43 8:34:48 8:3553 8.36:58 8:38:03 839:08 8:40:13 I 8:41:18 8:42:23 8:43:28 8:44:33 I 8:45:38 8:46:43 0 8:47:48 (7 8:48:53 8:49:58 8:51:03 <p 85208 01 8:53:13 _ I o 8:54:18 (nD ,`00» 8:55:23 3 8:56:28 N 8:57:33 rh 8:58:39 M 8:59:44 I 9:00:49 9:01:54 9;02:59 9:04:04 9:05:09 9:06:14 9:07:19 '.. t 9:08:24 9:09:29 9:10,34 9:11,39 9:12:44 9:13:49 9:14:54 9:11:59 9:17:04 9:18:09 9:19:14 1 9:20:19 9:21:24 9:22:29 l 9:23:34 9:24:39. JLLl 10 6Z Final System Bias Check, Run 1 STRATA Version 3.2 30 of 117 Operator: Bryan Starnes Plant Name: Sealed Air. Corporation Location: RTO Reference Cylinder Numbers Zero Span Outlet DT0005900 SX53236 Inlet DT0005900 SX46300 Date/Time 08-11-2020 09:35:93 PASSED Analyte Outlet Inlet units ppm ppm Zero Ref Cyl 0.0 0.0 Zero Cal 0.4 0.8 Zero Avg 1.3 0.8 Zero Bias% 0.1% 0.0% Zero Drift% 0.1% 0.0% Span Ref Cyl 150.0 1484.0 Span Cal 151.1 1464.8 Span Avg 152.1 1399.5 Span Bias% 0.1% 0.7% Span Drift% 0.1% -0.6% Ini Zero Avg 0.5 0.1 Ini Span Avg 151.5 1459.8 Run Avg 9.6 988.8 i.. Co 019 0.5 Cm 151.8 1429.7 Correct Avg 8.6 1026.3 System Bias Check End r ' i i L i_. L. L Page 1 Test Run 2 STRATA Version 3.2 31 of 117 I Outlet Inlet t ppm ppm Begin calculating run averages 08-11-2020 09:48:03 2.8 1029.9 08-11-2020 09:49:03 28.2 1039,9 08-11-2020 09:50:03 4.5 1042.9 08-11-2020 09:51:03 3.1 1049.7 08-11-2020 09:52:03 2.9 1045.0 08-11-2020 09:53:03 10.5 1048.4 08-11-2020 09:54:03 37.9 1056.1 08-11-2020 09:55:03 3.7 1072.4 08-11-2020 09:56:03 3.1 1083.7 r 08-11-2020 09:57:03 2.9 1072.4 1 08-11-2020 09:58:03 15.1 1066.1 1! 08-11-2020 09:59:03 17.9 108115 08-11-2020 10:00:03 3.5 1064.4 08-11-2020 10:01:03 3.1 1058,2 08-11-2020 10:02:03 6.3 106019 08-11-2020 10:03:03 38.4 1058.0 08-11-2020 10:04:03 4.3 1047.5 08-11-2020 10:05:03 3.3 1053.3 08-11-2020 10:06:03 3.2 1048.1 08-11-2020 10:07:03 4.1 1052.3 08-11-2020 10:OB:03 30.1 1051.2 08-11-2020 10:09:03 3.9 1065.5 O8-I1-2020 10:10:03 3.3 1063.7 08-11-2020 10:11:03 4.1 1082.2 I 08-11-2020 10:12:03 36.5 1096.8 08-11-2020 10:13:03 9.5 1116.3 08-11-2020 10:14:03 3.5 1104.0 08-11-2020 10:15:03 3.3 1101.3 08-11-2020 10:16:03 3.3 1105.1 08-11-2020 10:17:03 29.9 1101.1 08-11-2020 10:18:03 4.6 1107.4 08-11-2020 10:19;03 3.5 1095.0 08-11-2020 10:20:03 3.4 1097.5 08-11-2020 10:21:03 13.5 1094.8 08-11-2020 10:22:03 34.5 1101.1 08-11-2020 10:23:03 3.7 1095.6 08-11-2020 10:24:03 3.2 1086.9 08-11-2020 10:25:03 3.0 1085.2 08-11-2020 10:26:03 28.7 1090.7 08-11-2020 10:27:03 6.3 1084.8 08-11-2020 10:28:03 3.4 1080.2 08-11-2020 10:29:03 3.1 1072.9 08-11-2020 10:30:03 7.4 1074.2 08-11-2020 10:31:03 36.5 1067.2 08-11-2020 10:32:03 3.9 1061.2 08-11-2020 10:33:03 3.1 1070.1 08-11-2020 10:34:03 3.0 IOB3.6 08-11-2020 10:35:03 4.4 1OB4.9 08-11-2020 10:36:03 30.4 1092.4 08-11-2020 10:37:03 3.9 1109.9 08-11-2020 10:38:03 3.3 110410 08-11-2020 10:39:03 4.6 1100.0 08-11-2020 10:40:03 40.0 1107.4 08-11-2020 10:41:03 5.3 1106.8 OB-11-2020 10:42:03 3.4 1124.9 08-11-2020 10:43:03 3.1 1114.2 08-11-2020 10:44:03 3.3 1124.2 I 08-11-2020 10:45:03 30.4 1123.4 08-11-2020 10:46:03 4.3 111919 08-11-2020 10:47:03 3.2 1107.9 Run Averages Outlet Inlet ppm ppm 08-11-2020 10:47:03 10.5 1081.4 Operator: Bryan Starnes Plant Name: Sealed Air Corporation Location: RTO I Test Run 2 End II 1 i Page 1 I ppm propane wet concentrations 9:47:04 9:48:09 I. 9:49:14 9:50:19 9:51:24 9:52:29 9:53:34 �. 9:54:39 -� 9:55:44 9:56:49 ! 9:57:54 j 9:58:59 10:00:04 i 10:01:09 7 10:02:14 10:03:19 10:04:24 10:05:29 li - I I 10:06:34 ' 10:07:39 O 10:08:44 n I o 10:09:49 O 10:10:54 ! j m 10:11:59 .a 10:13:04 10:14:09 v I 3 10:15:14 10:16:19 i m 1 10:17:24 ! —� < 10:18:29 m 10:19:34 ! rt � I 10:20:39 j j , v 10:21:44 I 3 3 10:22:49 N , 10:23:54 j 10:24:59 'i 10:26:04 10:27:09 ii 1028c14 10:29:19 I ' 10:30:24 10:31:29 j 10:32:34 ! I 10:33:39 j 10:34:44 10:35:49 10:36:54 10:37:59 10:39:04 10:40:09 -� 10:41:14 10:42:19 { 10:4324 .._. 10:44:29 10:45:34 10:46:39 J LIGI0N 1 j ppm propane wet concentrations rl N N W O O O O O O O 9:47:04 - I 9148:09 9:49:14 9:50:19 9:51:24 'I 9:52:29 j 9:53:34 9:54:39 9:55:44 9:56:49 9:57:54 9 " 9 I j 10:00:04 I 10:01:09 10:02:14 10:03:19 10:04:24 j 10:05:29 10:06:34 10:07:39 O 100844 j 10:09:49 " I 101054 10:1159 10:13:N O 10:14:09 y p 10:1514 i 3 * 10:16:19 �p 10:17:24 10:18:29 �! � 10.19.34 10:20:39 10:21:44 C 10:22:49 10:23:54 N 1024:59 10:26:04 I :I 10:27:09 10:28:14 10:29:19 { I 10:30:24 10.31.29 10:32:34 r 10:33:39 ! 10:34:44 10:35:49 10:36:54 10:37:59 10:39:04 10:40:09 10:41:14 10:42:19 10:43:24 10:44:29 10:45:34 10:46:39 I L MO cc r 34 of 117 Final System Bias Check, Run 2 STRATA Version 3.2 Operator: Bryan Starnes Plant Name: Sealed Air Corporation r- Location: RTO Reference Cylinder Numbers Zero Span Outlet DT0005900 SX53236 Inlet DT0005900 SX46300 Date/'Time 08-11-2020 10:54:50 PASSED Analyte Outlet Inlet Units ppm ppm Zero Ref Cyl 0.0 0.0 Zero Cal 0.4 0.8 Zero Avg 1.5 1.5 Zero Bias% 0.1% 0.0% Zero Drift% 0.0% 0.0% Span Ref Cyl 150.0 1484.0 Span Cal 151.1 1464.8 Span Avg 152.0 1499.6 Span Bias% 0.1% 0.3% Span Drift% 0.0% 1.0% Ini Zero Avg 1.3 0.8 Ini Span Avg 152.1 1399.5 Run Avg 10.5 1081.4 Co 1.4 1.2 Cm 152.1 1449.6 Correct Avg 9.1 1106.8 System Bias Check End L . l �L i , L_ Page 1 I Test Run 3 STRATA Version 3.2 35 of 117 Outlet Inlet ppm ppm Begin calculating run averages 08-11-2020 11:04:31 5.7 1192.7 08-11-2020 11:05:31 4.0 1179.4 06-11-2020 11:06:31 3.7 1182.7 08-11-2020 11:07:31 12.4 1164.1 08-11-2020 11:08:31 35.6 1169.5 08-11-2020 11:09:31 3.9 1174.0 08-11-2020 11:10:31 3.4 1178.4 08-11-2020 11:11:31 3.3 1189.5 OB-11-2020 11:12:31 32.5 1180.6 08-11-2020 11:13:31 7.9 1174.7 08-11-2020 11:14:31 4.9 1180.8 08-11-2020 11:15:31 4.6 1184.6 OB-11-2020 11:16:31 6.6 1199.1 OB-11-2020 11:17:31 39.0 1192.2 08-11-2020 11:18:31 5.1 1178.7 08-11-2020 11:19:31 4.1 1173.1 08-11-2020 11:20:31 3.8 1180.0 08-11-2020 11:21:31 4.9 1167.6 08-11-2020 11:22:31 31.8 1170.9 08-11-2020 11:23:31 4.3 1184.3 08-11-2020 11:24:31 3.8 1179.0 08-11-2020 11:25:31 4.8 1198.8 08-11-2020 11:26:31 43.6 1204.9 08-11-2020 11:27:31 5.7 1202.3 08-11-2020 11:28:31 3.8 1206.8 08-11-2020 11:29:31 3.5 1202.1 08-11-2020 11:30:31 3.6 1207.6 08-11-2020 11:31:31 32.4 1215.8 08-11-2020 11:32:31 4.7 1203.2 08-11-2020 11:33:32 3.6 1209.3 08-11-2020 11:34:31 3.5 1208.B 08-11-2020 11:35:31 13.8 1199.1 08-11-2020 11:36:31 31.3 1178.1 08-11-2020 11:37:31 3.9 1192.6 08-11-2020 11:38:31 3.5 1185.9 08-11-2020 11:39:31 3.3 1179.3 08-11-2020 11:40:31 33.4 1155.6 08-11-2020 11:41:31 5.0 1136.4 08-11-2020 11:42:31 3.4 1147.9 08-11-2020 11:43:31 3.0 1151.3 08-11-2020 11:44:31 8.2 1153.4 OB-11-2020 11:45:31 38.1 1135.0 08-11-2020 11:46:31 3.7 1127.6 08-11-2020 11:47:31 3.0 1146.0 08-11-2020 11:48:31 2.9 1144.6 08-11-2020 11:49:31 13.9 1136.9 08-11-2020 11:50:31 20.6 1153.6 08-11-2020 11:51:31 3.5 1194.6 08-11-2020 11:52:31 3.0 1186.1 00-11-2020 11:53:31 4.9 1146.2 08-11-2020 11:54:31 36.8 1129.1 08-11-2020 11:55:31 4.0 1124.6 08-11-2020 11:56:31 3.1 1157.B 08-11-2020 11:57:31 2.9 1160.2 08-11-2020 11:58:31 3.7 1163.9 08-11-2020 11:59:31 32.4 1165.4 08-11-2020 12:00:31 3.7 1143.5 08-11-2020 12:01:31 3.1 1145.0 08-11-2020 12:02:31 3.5 1143.2 OB-11-2020 12:03:31 36.1 1147.5 Run Averages Outlet Inlet ppm ppm I 08-11-2020 12:03:31 11.1 1172.8 Operator: Bryan Starnes Plant Name: Sealed Air Corporation Location: RTC Test Run 3 End I Page 1 ` ppm propane wet concentrations o 0 0 0 0 0 o o 11:03:32 11:04:37 11:05:42 11:06:47 I 11:07:52 '-1 11:08:57 i I 11:10:02 ! � 11:11:07 I i 11:12:12 j 11:13:17 11:14:22 11:15:27 11:16:32 ' 11t17:37 I I 11:18:42 i 11:19:47 11:20:52 ( i 11:21:57 I 11:23:02 11:24:07 0 11:25:12 _ n O 11:26:17 ! 0 11:27:22 j m 11:28:27 .a -0 11:29:32 — I 11:30:37 11:31:42 i i ff �t 11:32:47 ! ffl 11:33:52 —I o 11:34:57 n 11:36:02 11:37:07 v 11:38:12 3 11:39:17 w 11:40:22 11:41:27 j 11:42:32 li 11:43:37 11:44:42 11:45:47 11:46:52 !i 11:47:57 11:49:02 11:50:07 11:51:12 11:52:17 11:53:22 j 11:54:27 I ; I. 11:55:32 ! 11:56:37 11:57:42 11:58:47 11:59:52 12:00:57 12:02:02 12:03:07 N. LLL10 9£ ppm propane wet concentrations 0 0 0 11:03:32 11:04:37 11:05:42 11:06:47 11:07:52 11:08:57 11:10:02 11:11:07 11:12:12 11:13:17 11:14:22 11:15:27 11:16:32 11:17:37 1 11:18:42 j 11:19:47 11'20'52 11 :017 1 11;2 23 2 11:24:07 11:25:12 11:26:17 11:27:22 11:28:27 11:29:32 0 113037 0 11 1�42 11:3 3247 11:33:52 11:34:57 11:36:02 11:37:07 11:18:12 1139:17 11:40:22 11:41:27 11:42:32ii 11:43:37 11:44:42 11:45:47 11:46:52 11:47:57 11:49:02 11:50:07 11:51:12 11:52:17 11:53:22 11:54:27 11:55:32 11:56:37 11,57,42 11:58:47 11:59:52 12:00:57 12:02:02 12:03:07 LL ;0 ze r- Final System Bias Check, Run 3 STRATA Version 3.2 38 of 117 Operator: Bryan Starnes Plant Name: Sealed Air Corporation Location: RTC r Reference Cylinder Numbers Zero Span Outlet DT0005900 SX53236 Inlet DT0005900 SX46300 Date/Time 08-11-2020 12:14:42 PASSED Analyte Outlet Inlet Units ppm ppm Zero Ref Cyl 0.0 0.0 Zero Cal 0.4 0.8 Zero Avg 1.5 0.5 Zero Bias% 0.1% 0.0% Zero Drift% 0.0% 0.0% Span Ref Cyl 150.0 1484.0 Span Cal 151.1 1464.8 Span Avg 151.7 1424.3 Span Bias% 0.1% 0.4% Span Drift% 0.0% -0.B% Ini Zero Avg 1.5 1.5 Ini Span Avg 152.0 1499.6 Run Avg 11.1 1172.8 Co 1.5 1.0 Cm 151.E 1462.0 Correct Avg 9.6 1190.2 i System Bias Check End i i l 1 , L . ��L__, Page 1 r- 39 of 117 r r r f APPENDIX D EQUIPMENT CALIBRATIONS AND EPA PROTOCOL GASES L. '.. Civil & Environmental Consultants, Inc. t� f40 of 117 i QUALITY ASSURANCE AND EQUIPMENT CALIBRATION PROCEDURES General. Field or laboratory test equipment purchased or fabricated by Civil and Environmental Consultants, Inc. (CEC) is assigned a unique, permanent identification number. New items for which calibration is required are calibrated before initial field use. Equipment whose calibration status may change with use or with time is inspected in the field before testing begins, and again upon return from field use. When an item of equipment is found to be out of calibration, it is adjusted and recalibrated or retired from service. CEC's equipment is periodically recalibrated, regardless of the outcome of these regular inspections. Calibrations are conducted in accordance with United States Environmental Protection Agency (US EPA) specifications. CEC follows the calibration procedures outlined in EPA Reference Methods found in the Code of Federal Regulations (Volume 40, Part 60) and those recommended in the Quality Assurance Handbook .for Ail- Pollution Measurement Systems: Volume III (EPA/600/R-941038c). When the Reference Methods do not detail procedures, CEC uses methods such as those prescribed by the American Society for Testing and Materials (ASTM). Data obtained during calibrations are recorded on standardized forms, which are verified for completeness and accuracy by the Quality Assurance Manager. Data reduction and subsequent calculations are performed using CEC's Air Quality Data System. Calibration calculations are performgd by an environmental scientist, independently audited by the Projeot Manager, and reviewed by the Quality Assurance Manger for verification of data. Copies of calibration data are included in the test or project report. Inspection and Maintenance. An effective preventative program is necessary to ensure equipment performance quality prior to, during, and following the source test. Equipment returning from the field is inspected before it is returned to storage. During ` the course of these inspections, items are cleaned, repaired, reconditioned, and recalibrated when necessary. Equipment that is transported to the field for a test project is inspected again prior to being packed. GEC performs these quality assurance checks prior to departure for the project site to detect equipment problems, which may occur during periods of storage. CEC transports adequate back-up equipment to the project site so as to minimize delays in the test schedule. Calibration. Source sampling equipment that requires calibration includes nozzles, pilot tubes, thermometers, flow meters, dry gas meters, and barometers. The following sections briefly describe the calibration procedures followed by CEC. Nozzles. Probe nozzles are uniquely and permanently identified at the time of purchase or fabrication; with the exception for glass nozzles. (Glass nozzles are not uniquely identified due to their fragile status.) Nozzles are calibrated before initial field use and L. prior to the source test. The inside diameter of the nozzle is measured to the nearest 0.001 inch precision micrometer. Three measurements are made using different I_ 41 of 117 1 diameters. If the difference between the high and the low measurements do not exceed 0,004 inch, the average of the three measurements is used. If the difference exceeds this amount, or when the nozzle becomes-nicked, dented, or corroded, the nozzle is reshaped, sharpened, and recalibrated. Regardless of usage, nozzles are inspected on a yearly basis. Pitot Tubes. CEC Type S Pitot tubes have been constructed and calibrated using those recommendations in accordance with EPA Reference Method 2, Section 10.1. CEC Type S Pitot tubes Cp coefficients have been determined according to Method 2, Section 10.1. CEC standard Pitot tubos have been assigned a Cpcoefficient of 0.99 according to I Calibration Procedure 2. Pitot tubes are visually inspected prior to field use. If the inspection indicates damage, the calibration is rechecked. Regardless of usage, CEC Pitot tubes are inspected and recalibrated on a yearly basis. DrV Gas Meter and Orifice. Console metering systems receive a full calibration at the time of purchase and annually, thereafter. Post-test calibrations are performed after the source test. Approved Alternative Method 5 Post-Test Calibration (ALT-009) may be used to determine a post-test calibration on the console metering systems instead of 1 reference post-test method. If the calibration factor, y (gamma), deviates by more than five percent per the reference post-test method, the meter is recalibrated and the meter coefficient (initial or recalibrated) that yields the lowest sample volume for the test runs is used. Standard practice at CEC is to recalibrate the dry gas meter when the y is found to be outside the range of y±3%. Barometer. Field barometers are compared to a reference mercury barorneter and are deemed acceptable when they agree to within ± 0.1 Inches Hg. This barometric pressure is corrected for pressure and temperature. Prior to and following the sampling program, the field barometer is verified against the referenced barometer. Thermometers. New thermometers, pyrometers and thermocouples purchased or fabricated by CEC are calibrated using the procedures described by US EPA Test Protocol. Calibration tolerance limits are as follow: Impinger Temperature Gauge ± 1°C or 2°F Dry Gas Meter Temperature Gauge ± YC or 5.4°F Stack Thermocouples ± 1.5% of absolute temperature Thermometers and thermocouples are inspected and calibrated prior to and following the field test. Regardless. of usage, CEC thermometers and thermocouples are inspected and recalibrated an a yearly basis. Laboratory Equipment. CEC, Inc. has a written quality assurance document that t covers calibration and maintenance of laboratory equipment. This includes calibration of t the analytical balance against Class S weights. Calibration of thermometers, barometers, and wet test meters are traceable to NIS T. A copy of our quality assurance document may be obtained by written request. t PRE-TEST / POST-TEST CALIBRATION DATA FORM 42 of 117 Client '?�n te, Af✓ (.w�o✓e't 0 _ City/State k.15� G Pre-test Date ns ,)5 zn Calibrator � Post-test Date jr , 2 Calibrator 6tf Reference Thermometer ��l�, ReferenceBaromete iR/ .7z96sv Pre-test Post-test Temp., ° Ref.Temp., jTemp., Ref.Temp., F ° F Inspection of Inspection 10 Ome D B# 0 Ome a B # D0. 0 0 4,SOmega ANB# 0, 0 /<x,9 3.0 Gme aDl B ©. pG 92 3,G 8 , Posltive t eak Check Poistive Leak Check D Gas Meter#300.392[A] Yes r..!No @ ❑Yes❑No @ r7 d Gas Meter#300.321 B] 8Z 5,2 Yes❑No @ es D No @ , Dry Gas Meter 9300.035[C] 1.)Yes D No @ ❑Yes n No @ '- Dry Gas Meter#300.388 [D] ;:Yes[I No @ In Yes D No @ �d Dry Gas Meter#300.310[E] Yes E No @ • ,0 1 D Gas Meter#300.046[F] U Yes U No @ Yes U No @ Dry Gas Meter#300-390(G] ❑Yes^No @ U Yes C]No @ 7/1-0 Dry Gas Meter#300.241 [H] V ff3 g es U No @ S; 2 es D No @ Dry Gas Meter#300.214[I] n Yes❑No.@ U Yes r]No @ Dry Gas Meter#300.067[J] ❑Yes❑No @ D Yes 11 No @ Dry Gas Meter#300.200[K] _Yes 0 No @ -_� U Yes U No @ Umbilical Adaptor# A #300. qq1k gy.qZ _ $2.9 Umbilical Adaptor# #300. $S.0 85,2 - 91.9 `) Umbilical Adaptor# #300. 85.0 S, )- Umbilical Adaptor# #300. S.D S y g2, Umbilical Adaptor# 9300. Umbilical Adaptor# #300. Visual Inspection Visual Inspection Probe#200. ❑Yes❑No @ U Yes U No @ Probe#200. U Yes U No @ U Yes U No @ Probe#200, ❑Yes I I No @ ❑Yes U No @ Probe#200. U Yes U No @ D Yes 0 No @ Probe#200. ❑Yes U No @ CI Yes o No @ Probe#200. D Yes D No @ U Yes 11 No @ Probe#200, ❑Yeses 13 No @ ❑Yes D No @ Probe#200. ❑Yes U No @ U Yes❑No @ Pilot #200. --709 8 S o S 6 l 20 5,2 g$SS'q -Yes 1-1 No @ , 7 Yess❑❑No o @ Pilot #200 2 sUeNo @ @Pilot #200. -!; $2,2 13.0 f es❑No@@ g2.1 93,1 I_ maim Barometer# G z 2 ,3 z9.3 7 213 _ Barometer# Barometer# Were safety checks performed during the pre-site reviews? I Yes[_!No .i� L Civil&Adt. o.1.n. I Were post-test calibrations withi the EPA Quality Assurance a iteria? Yes c,No co�sulteus,luc. I t METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES _ 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. :.....- =.�.--- 2) Record barometric pressure before and after calibration procedure. ry At+'1��:�I7'hrdt Grl75ftv'GBE,d�'�'t3&gSAI�&VT:LSI I81G. 3) Run at tested vEmuum(from Orrice Calibration Report),for a period of time necessary to achleve a minimum total volume of 5 cubic feet. 4) Record readings in outlined boxes below,other columns are automatically calculated. INITIAL FINAL AVG(Pb„) DATE: 3131/2020 METERSERIA-#: 12834598 BAROMETRIC PRESSURE(I- 29.ta 29.t3 29d3 IF YVARIATION EXCEEDS 2.00%, METER PART#:300.321S CRITICAL ORIFICE SET SERIAL'#: 1374 ORIFICE SHOULD BE RECALIBRATED K' TESTED TEMPERATURES-F ELAPSEO FACTOR VACUUM DGM READINGS IFT° 3 AMBIENT DGM INLET DGM CUTLET DGM TIME(MIN) DGM AH (1) (2) (3) Y ORIFICE# RUN# fAVGj (in Hg) MITIAL FINAL NET IVmj INITIAL FINAL INITIAL FBJA AVG g (in HBO Vm(STD) VQ(STD) Y VARIATION(%) dH #48 t 0.8138 t5 49.603 60.397 10.794 70 68 69 68 69 68.5 10.00 3.50 10.5935 10.3002 0.9723 1-8212 SS 2 0.3133 15 60.397 71,139 10.742 70 69 70 69 70 69.5 10A0 3.60 10.622E 10.3002 0.9788 1.8178 3 a.8136 15 ]i.139 St.848 10.703 70 70 71 ]0 71 70.5 10A0 360 10A707 10,3002 D.9837 1.81" AVG= 0.9783 1.13 SS 3 0.67fl4 16 92.518 108.31 3 5936 70 73 ]4 8 74 73.5 10.00 2.3a 8.55111 56 0 SA852 0.9968 1.7418 AVG= 0,9909 0.15 962 SS 2 6.5 3 O.6U65 165 1125282 133656 8673 7D 76 77 76 77 76S 10.00 i60 77.7738 7.6615 06881 1.7441 AVG= 0.9573 4= 1.7752 02 3 OA269 i8S t44.720 150.418 5.36 b9 78 8 70 7E 78 10.00 D66 6� SM84 0.9903 t7G85 AVG 0.9914 0.20 55 a 0282 19.5 056 75P 3 158. 7 16t /6 319 78 .00 0.42 3636 3.6512 0.9993 1.6954 a.2382 19S AVG= 0.9993 1.00 USING THE CRITICAL ORMCES AS CALIBRATION STANDARDS: The following equade rsam used to calcdale the standard volumes of air passed through the DGM,V.[stdj,antl the oigW aEa94 orifice,VQ(Nd),and the DGM calibration factor.Y.These equations are automatically calculated in the spreadsheetabove. AVERAGE DRY GAS METER CALIBRATION FACTOR Y= AVERAGEAH,,= 1.755 (1) V.(aid)= Kr Vor Pm,+(AH113,6) =Net volume of gas sample passed through DGM,corrected to standard conditions w Tin K,=17.64`RAn.Hg(English).0.3868°Ktmm HID(Metdc) p Tin=Absolute DGM avg.temperature('R-Engllsh,°K-Metric) AH'= /0.750\2 AH(V.(std)\ PCB Y\VQ(std)/7 l V. I V (2) VQ(std)= IC --' T„m =Volume of gas sample passed through the critical orifice,corrected to standard conditions Tom=Absolute ambient temperature CR-English,°K-Metric) IC= AVaragakfaatorfmm CrN=IONoe Calibration (3) Y= V.,(stdj =DGM calibration factor V.(sfd) 202C B300.321 a-)dV Meterbox Temp Cal. 300321 B-06/2112019 Barometric Pressure 29.32 Stack Probe Fitter Fait Aux DGM Outlet Temperature Stack Probe Filter Exit Aux DGM Outlet %Error %Error %Error %Error %Error %Error 0 1 1 1 1 1 1 1 1 1 0.22% 0.22% 0.22% 0.22% 0.22% 0.22116 50 49 50 50 49 49 49 -0.20% 0.00% 0.00% -0.20% -0.20% -0.20% 75 74 75 74 74 1 74 1 74 1 -0.19% 0.00% -0.19% -0.19% -0.19% -0.19% 100 99 1 99 1 99 1 99 99 99 -0.18% -0.18% -0.18% -V a% -0.18% -0.18% 200 201 201 201 200 201 0.15% 0.15% 0.15% 0.00% 0.15% 500 501 501 501 500 0.10% 0.10% 0.10% 0.00% 1000 1008 0.55% 1500 1510 0.51% 1900 1910 0.42% Criteria Ambient Temperature 85 degrees F ±1.5°R(460+Ts) Negative Leak Check @ 20 inches vacuum 0.000 cubic feet/min Positve Leak Check @ 6.9 inches water-5/28/19 No movement-good A A O V METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. ' 2) Record barometric pressure before and after calibration procedure. 3 3) Run attested vacuum(from orifice Calibration Report),for a period of time Inc, necessary to achieve a minimum total Volume of 5 cubic feet. 4) Record readings in outlined boxes below,other columns are automatically calculated. INITIAL FINAL AVG(Fe.r) DATE:02I1313020 METER SERIALff: 6839396 BARDMETRICPRESSURE(m Hg): 29.12 29.13 29.125 IFYVARIATIONEXCEED52.01ra, METER PART iF: 300,310E CRRLCALORIFICESETSERIALC: 1374 ORIFICE SHOULD BE RECALIBRATED K' � � TEMPERATURES OF ELAPSED [V'ICTOR VACWM DGM READING$(FT') 9 AMBIENT PGMINLET OGMOUTLET DGM TIME(MIN) DGM AH (1) (2) (3} Y ORtFICEri RUNG (in Hg) INITIAL FINAL xE?! ) INITIAL FINAL INITIAL FINAL AVG B (in H.0) V.(STD) V.,(STb) Y VARIATION(%) dHM SS 3 0.8138 455 24G420 248.851211 48851 0423 7G 73 47 ]4 73S a.00 3.50 8.1879 8.2388 1.000 18995 AVG= 1.0G67 -0.21 55 3 O6]o4 t60 53 28180G 6.96] ]0 73 73 73 73 73.0 8.00 235 6.7593 6.7870 t0041 1.78lS AVG= 1.0053 .0.35 r55 3 0.6069 19.0 294960 301272 8.312 79 73 73 73 3 730 800 2.00 6.1185 6.1384 1.0032 18+23 AVG= 1.0047 .0.42 1.13800 SS 3 0.4269 210 332.8�85 33B43 5518 ]1 72 72 72 3 72.9 10.00 I0".90o 53441 5.3972 10099 7 6831 AVG= 1.0109 0.20 393 SS 3P0.2882 220 35 364 355.92] 5. 3 71 72 73 72 73 72.5 t 0.40 53758 54655 1.0167 1.-637] AVG= 1,0198 0.78 USING THE CRITICAL ORIFICES AS CALIBRATION STANDARDS: The following equations are used to calculate the standard valGmeS ofellf passed through the DGM,V.(std),and the Critical oriace, 7.0G89 V=(std),and the DGM calibration factor,Y.These equations 60 aueampaUcally calculated In the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR,Y= AVERAGE AH,o= 1.751 (1) V.(Std)= Kf V. Peu+(bH/13.8) =Net volume of gas sample passed through DGM,capplated to standard conditions T. W,=17.64°R/n.Fig(English),0.3858°Klmm He(Mems) O Tm=Absolute DGM ave.temperature(°R-Em Ish.-K-Mctric) eH,M.= I/0956\pa AHy/V std)\p P 0 \V�r(std)/ \ V. / (2) V.,late)= K' T,me =Volume of gas sample passed through the critical orifice,corrected to standard conditions T,,,,v=Absolute ambient temperature(OR-English,OK-Metric) K'= Average K factor from Critical Carlos,Callemulon (3) Y= VO,(ato) =DGM calibration factor' Vm(std) 2020 300.310 E xfsx Meterbox Temp,Cal. 300.310 F,0 211 312 02 0 Barometric Pressure 29.13 Stack Probe Filter Exit Aux DGM Out Tem erature Stack Probe Filter Exit Aux 11 DGM outlet %Error %Error %Error %Error %Error %Error 0 0 0 0 0 0 0 0.00% 0.00% 0.00% Mo% 0.00% 0.00% 50 49 49 49 49 49 44 020% 0.20% -0.20% -0.20% -0.20% -0.20% 75 74 74 1 74 1 74 1 74 1 74 -0.19% -0.19% -0,19% -0.19% -0.19% -0.19% 100 100 100 100 100 100 100 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 200 201 201 202 202 202 0.150/0 0.15% 0.30% 0.30% 0.30% 500 504 503 503 504 0.42% 0.31% 0.31% 0.42% 1000 1015 1.03% 1500 1520 1.02% 1900 1924 1 02% Criteria ±1.5-R(460+Ts) On February 13,2020 performed negative leak check at 25"vacuum 0.000 cfm for one minute period. Positive leak check @ 6.4 inches of water. No movement upwards-good. A m O J METHOD 5 DRY GAS METER CALIBRATION USING CRITICAL ORIFICES 1) Select three critical orifices to calibrate the dry gas meter which bracket the expected operating range. 2) Record barometric pressure before and after calibration procedure. -� 3) Run attested vacuum(from Orifice Calibration Report),for a period of fime necessary to achieve a minimum total volume of 5 cubic feet. 4) Record readings in outlined boxes below,other columns are alltOMaUcafy Calculated- !.JOIN&2riviLorrime13CLI'CbcipoVC4rris,Inc. INITIAL FINAL AVG W-) DATE: OVIZ1220 METERSERJALIP 7811SO5 BAROMETRIC PRESSURE(in Hg): 2942 29.13 29.125 IFYVAFt ATIONEXCEE052A8%, METER PART&:300.241H CRITIOALORIFIOESETSERIALA: 1374 ORIFICE SHOULD BE RECALIBRATED K. TEGTED TEMPERATURES°F ELAPSED FACTOR VACUUM OGM READINGS(FT'} 9 AMBIENT OGMINLET DGM OUTLET DGM TIME{MIN) OGMAH (1j (2) (3) Y ORIFICEY RUNR (AVG) (in Hg) INITIAL FINAL NET(Vm) INITIAL FMAL INITIAL FINAL AVG 8 Iin Hz0) Vm(ST') V„(STD) Y VARIATION(%) d}1p LE SS 3 0.8738 77S 35 206 363.M2 8541 TO 7i 75 75 7i TSA BAo 350 82793 82388 0.9951 17934 AVG= 0.9936 0.96 s 74 74 4 SS 3 0. 7704 195 325MG 332.603 7.077 70 74 75 74 75 74S 8.00 5 6.8468 6.7870 0.9913 1.7 68 AVG= 0.9908 4.24 1 Uses ME SS 3 O.G069 Me395.929 402.3 6.482 l� 74 74 74 T4 0.0 8.00 2.00 6.2038 61334 019895 1.3498 AVG= 0.9914 -0.18 55 3 0.426 2tS 4 22742 438.356 5,614 71 73 T4 73 4 T3.5 P .00 0.98 6.4229 5.3972 0.9353 1.8TI9 AVG= 0.9936 0.01 9. 65 112.8900000 I S 3 02882 i =23.00 44311 420.049 5.678 71 73 73 73 73 73.0 15.00 DA4 5.4824 54655 0 9969 1 8000 AVG= 9.3961 0.30 USING THE CR)TICAL ORIFICES AS CALIBRATION STANDARDS: The fallowing equation are used to calculate the slan0ard volumes of air passed through the DGM,Vm(std),and the cdtical 0.9992 --Tine,V=fold),and the DGM calibaGon acfw.Y.These equations are autonaticaty calculated in the spreadsheet above. AVERAGE DRY GAS METER CALIBRATION FACTOR,Y= AVERAGEAFy = 1.e11 (1) V,=(std)= K] V. Pn„+(AH113.6) =Net volume of gas sample passed through DGM,corrected to standard conditions a T. rG=17.64°Rfin.HE(English),0.3858°K/nm HE(Metric) v 0 Tm=Absolute DGM avg.trmpeaWre(°R-English,°K-MeMc) dH 0.756``pp2 dH g(V P CVc(�f l-. (2) Vr ($to)= IV T,-e =Volume of gas sample passed through the critical orifice,corrected to standard conditions Ty,, Absolute amblenthmperature(°R-Engllsh.°K-Metric) R'= Avemge K'facrwfron Cd6cal Odgce Cal3rzlion (3) Y= V=(strl) = DGM calibration factor V.(std) 2020 300241 H 115x F boxTem Cal. 300.24111-1011012019 Barometric Pressure29.56 Stack Probe Filter Exit Aux DGM Out am erat= Stack Probe Flter Exit Aux �DGM Outlet %Error %Error %Error %Error %Error %Error 0 1 1 1 1 1 2 0.22% 0.22% 0.22% 0.22% 0.22% 0.43% 50 49 49 50 50 50 50 -0.20% -0.20% 0.00% 0.00% 0.00% 0.00% 75 74 75 75 75 75 75 -0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 100 99 101 100 100 100 100 -0.18% 0.18% 0.00% 0.00% 0.00% 0.00% 200 292 202 202 202 202 0.30% 0.30% 0.30% 0.21% 0.30% 500 501 502 502 502 0.10% 0.21% 0.21% 0.21% 1000 1009 0.62% 1500 1509 0.46% 1900 1 1908 0.34% - Criteria Ambient Temperature 70.7 degrees F ±1.5°R(460+Ts) Positive Leak Check @ 7.0 inches of water No movement-good On February 13,2020 performed negative leak check at 25.5'vacuum 0.000 cfm for one minute period. Positive leek check @ 5.0 inches of water. No movement upwards-good. m 0 HYPE"S" FITO'A TUBE CAILIB FORM[ Dates: 09117-18119 Specifications: A)Pitot tube assembly must be level. WB9.32 07/05/19 Calibrator: BLS B.)If pitot tube is damaged explain under comments section. 09/17/19 C.)Z=A Sing(<0.125)andW=ASinq(<0.03125) 09/18/19 Picot Tubes Attached to Probes L D.Length ale a20 bi° b2° Y. 00 A,in. Z,in. W,in. PA,in.I PB,in. Dt,in. Pass/Nail Cal.Date 200.021 2' 1.0 0.0 -L -1.0 -1.0 1.0 0.946 -0.017 0.017 0.473 0.473 0.380 Pass 09/17/19 200.063 2' 1.0 1.0 -1.0 0.0 1.0 0.0 0.924 0.016 0.000 0.462 0.462 0.383 Pass 09/17/19 200.064 2' -1.0 1.0 -1.0 0.0 1.0 -1.0 0.930 0.016 -0.016 0.465 0.465 0.380 Pass 09/17/19 200.076 3' 0.0 0.0 -1.0 0.0 0.0 0.0 0.892 0.000 0.000 0.446 0.446 0.376 Pass 09/17/19 200.077 3' 1.0 1.0 -2.0 -1.0 -1.0 1.0 0.925 -0.016 0.016 0.463 0.463 0.380 Pass 09/17/19 200.300 3' 0.0 -1.0 u 0.0 0.0 -1.0 0.935 0.000 -0.016 0.468 0.468 0380 Pass 09/17/19 200.301 3' -1.0 -1.0 -1.0 0.0 -1.0 0.0 0.901 -0.016 0.000 0.451 0.451 0.382 Pass 09/17/19 200302 3' 1.0 1.0 -2.0 0.0 -1.0 1.0 0.927 -0.016 0,016 0.464 0.464 0373 Pass 09/17/19 200.303 3' -1.0 -1.0 2.0 1.0 1.0 0.0 0.870 0.015 0.000 0.435 0.435 0.374 Pass 09/17/19 200.105 5' 1.0 1.0 -1.0 0.0 1.0 0.0 0.932 0.016 0.000 0.466 0.466 0381 Pass 09/17/19 200.118 5' 1.0 1.0 -1.0 0.0 0.0 1.0 0.882 0.000 0.015 0.441 0.441 0.377 Pass 09/17/19 200.119 5' 0.0 -1.0 I 0.0 0.0 2.0 1.0 1.003 0.035 0.018 0.502 0.502 0.376 Pass 09/17/19 200.120 5' 1.0 1.0 -1.0 0.0 0.0 1.0 0.932 0.000 0.016 0.466 0.466 0.344 Pass 09/17/19 200.121 5' 0.0 0.0 -2.0 -1.0 -1.0 0.0 0.933 -0.016 0.000 0.467 0.467 0393 Pass 09/17/19 T13 T 0.0 2.0 1.0 1.0 -1.0 1.0 1.010 -0.018 0.018 0.505 0.505 0.376 Pass 09/18/19 200.093 T 1.0 1.0 -1.0 1.0 0.0 0.0 0.933 0.000 0.000 0.467 0.467 0.389 Pass 09/18/19 200.094 7' 1.0 1.0 -1.0 0.0 -1.0 1.0 0.931 -0.016 0.016 0.466 0.466 0.386 Pass 09/18/19 200.1127' 1.0 1.0 -1.0 -1.0 1.0 0.0 0.939 -0.016 0.000 0.470 0.470 0.392 Pass 09/18/19 200.310 7' 1.0 1.0 -1.0 1.0 0.0 -1.0 0.920 0.000 0.016 0.460 0.460 0.385 Pass 09/18/19 200.045 8' 0.0 -1.0 -2.0 -1.0 1.0 0.0 1.006 -0.018 0.000 0.503 0.503 0.375 Pass 09/18/19 200.108 8' 1.0 0.0 -1.0 0.0 -1.0 0.0 0.988 -0.017 0.000 0.494 0.494 0.375 Pass 09/18/19 200.109 8' 1.0 1.0 -1.0 -1.0 -1.0 lA 0926 -0.016 0.016 0.463 0.463 0.380 Pass 09/18/19 200.705 8' 1.0 1.0 -1.0 0.0 1.0 0.0 0.865 -0.015 0.000 0.433 0,433 0.382 Pass 09/18/19 200.709 8' -1.0 1 0.0 -1.0 0.0 0.0 0.0 0.963 0.000 0.000 0.482 0.482 0.377 Pass 09/18/19 200.01410, LO 1.0 2.0 1.0 0.0 0.0 0.934 0.000 0.000 1 0.467 0.467 0.385 Pass 07/05/19 Comments:Probes 200.075 and 200.118 were fitted with new pitot assemblies. The other pitot tubes required only minor maintenance&reconditioning. A e) O V TYPE "S"FITO'Y TUBE CALIBRATION FORM Dates: 02/19/2020 1 ISpecificatioas: A.)Pitot tube assembly must be level. I IBP 29.65 for 02/19/2020 Calibrator. IBLS ID.)If pitot tube is damaged explain under comments section. JDP 29.88 for 03/092020 C.)Z=A Sin g(<0.125)and W=A Sin q(<0.03125) D.)a<10°and b<5° Pitot Tubas Attached to Probes Y.D.Length a10 a20 I b10 b2° I Y. 0° A,in. Z,in. W,in. PA,in. PB,in.I Dt,in. Pass/Fail I Cal.Date 200.05011' 1.0 2.0 -2.0 -2.0 -1.0 0.0 0.928 -0,016 0.00000 0.464 0.464 0.383 Pass 03/09/2020 200.05111' 1.0 1.0 1.0 1.0 1.0 1.0 0.936 0.016 0.01634 0.468 0.468 0.384 Pass 02/29/2020 200.05211' 1.0 1.0 -1.0 1.0 0.0 -1.0 0.942 0.000 -0.01644 0.471 0.471 1 0.384 Pass 02/29/2020 200.053 ill 0.0 1.0 0.0 2.0 1.0 -1.0 0.965 0.017 -0.01684 0.483 0.483 0375 Pass 02/29/2020 Comments:Pitot tubes required only minor maintenance&reconditioning. v, 0 0 V TYPF"S"PIT®T TUBE CALIBRATION FORM Date: 09/12&17119 Specifications: Calibrator: BLS A.)Pitot tube assembly must be level. BP-29.49 09/12/19 B.)If pitnt tube is damaged explain under comments section. BP-29.32 09/17/19 C.)Z=A Sin g(<0.125)and W=A Sin q(<0.03125) D.)a<100 and b<5° Individual Pitot Tubes I.D.Length al° a2° bl° b2O y° o° A,in. Z,in. W,in. PA,in. PB,in. IDt,in. Pass/F Cal.Date 200.304 3' 1.0 0.0 -1.0 -1.0 -1.0 1.0 0.938 -0.016 0.016 0.469 0.469 0.381 Pass 09/12/19 200.305 3' -1.0 0.0 -1.0 -1.0 1.0 0.0 0.937 0.D16 0.000 0.469 0.469 0.383 Pass 09/12/19 200.706 3' 1.0 -1.0 -2.0 0.0 1.0 -1.0 0.830 0.014 -0.014 0.415 D.415 0.382 Pass 09/12/19 200.708 3' 0.0 0.0 -1.0 0.0 -2.0 1.0 0.838 -0.029 0.015 0.419 0.419 0384 Pass 09/12/19 200.7015' 1.0 1.0 -1.0 0.0 -2.0 1.0 1 0.956 -0.033 0.017 0.479 0.479 0.381 Pass 09/12/19 200.7216' 0.0 1.0 0.0 0.0 0.0 0.0 0.849 0.000 0.000 0.425 D.425 0.377 Pass 09/17/19 CLT-T-7-1/p-825 -1.0 1.0 0.0 1.0 -1.0 1.0 0.948 -0.017 0.017 0.474 0.474 0.389 Pass 09/17/19 200.255i T 1.0 1.0 -I.0 -1.0 0.0 1.0 0.864 0.000 0.015 0.432 0.432 0.384 Pass 09/17/19 200,712 8' 1.0 I n -1.0 1.0 1.0 1.0 0.934 -0.016 0.016 0.467 0.467 0.395 Pass 09/17/19 CLT.T.10.1 1.0 1.0 -1.0 -1.D 0.0 1.0 0.862 0.000 0.015 0.431 0.431 0.392 Pass 09/17/19 CLT.T.102 1.0 -1.0 -1.0 -1.0 0.0 1.0 0.946 0.000 0.015 D.423 0.423 0.385 Pass 09/17/19 CLT.T.10.3lnconel 1.0 0.0 0.0 1.0 -1.0 1.0 .0.940 -0.016 0,016 0.470 0.470 0.388 Pass 09/17/19 200.70712' 2.0 1.0 -3.0 1.0 1.0 1.0 0.838 0.015 0.015 0.419 0.419 0.383 Pass 09/17/19 200.992 2.0 2.0 0.0 1.0 -1.0 0.0 0.943 -0.016 0.000 0.472 0.472 0.375 Pass 09/12/19 200.998 1.0 0.0 -1.0 -1.0 -1.0 0.0 0.926 -0.016 0.000 0.463 0.463 0.383 Pass 09/12/19 200.801 Micro Type S 1.0 1.0 -1.0 -1.0 -1.0 -1.0 0.475 -0.008 -0.008 0.238 0238 0.189 Pass 09/12 19 0 J G�°lGS O�°�pj ywti �wti �1G2 ° 5 o� ep ¢,A �gw °��t o�GS ��� ��� ���k 41 4O 0' �� ro°{ roGt , '�� p� .t44� 5tib�`•u 5'�a 5�'�. aY `pl 40 ,�.¢1 Standard Pitots S ti6 9 0 q 0 G G 200.001,160-18 8 12.83 8.57 0.116 0.315 2.70 4.04 0.039 6.0 8.0 0.039 BLS 10/04/19 200.992A 8 13.02 8.57 0.119 0.315 2.70 4.10 0.039 BLS 10/04/19 200.312 8 12.15 8.55 0.119 0.311 2.66 3.78 M39 BLS 10/04/19 200.313 8 12.38 8.55 0.120 0.311 2.66 3.85 0.039 BLS 10/04/19 200.026 8 12.84 8.59 0.119 0.313 2.69 4.02 0.039 BLS 10/04/19 200,993 8 13.11 8.60 0.119 0.309 2.66 4.05 0.039 BLS 10/04/19 200.994 8 12.70 8.65 0.126 0.311 2.69 3.95 0.039 BLS 10/04/19 Micro Standard Pitot Tubes 100 12 8 12.82 9.66 0.030 0.117 1.13 . 1.50 <0.014 BLS 10/04/19 100 17 8 12.71 9.58 0.036 0.118 1.13 1.50 <0.014 BLS 10/04/19 BP 29.39 v, N O J Probe and Pitot StaciC Temperatanre hermocou le A� nnaaaH Calibrations �m6�a Dal¢: 09/1sM9 ReferanceThermometen 101707131 R¢reren¢¢Thermometer. 1 81 7 0 71 31 Reference Thermometer: 18t707137 Barometric Pressure, Omega NlST Calibrator Serial No.: 17000tfi3 Omega NIST Calibalor Serial No.: 17000169 Omega NlST Calibrator Serial No.: 77000769� In.Hg' 29.60 Temp. � eferenc eferenc Percent Asset Cal. Tam Percent Passdd Temp. eTemp. Percent passed Temp. eTemp. Passed Numher B One Difference Two Difference Thrce D'rfF¢rene¢ PROBES 200.021 2 BLS 75.6 752 -0.7% Yes 752.6 156.9 0.7% Yes 355 3 5.9 61.2 0.6% Yes 20p.063 2 B[5 75.7 752 -O.t% Yes 758.1 158.7 0.0% Yes 3fi3 36 0.4% Yes 200.064 2 B[B 74.6 75.2 0.1% Yes 1592 1584 -02% Yes 328 330.0 0.3% Yes 200.076 3 BLS 75.2 0.1% Yes 759.1 t57.8 A2% Yes 3fi3 3655 74.5 8.0 0.1% 0.3% Yes z00,077 3 aLt 74.9 75.0 0.0% Yes t57.5 156.7 -0.1°/ Yes 367 36 Yes 200.300 3 BLS 75.2 0.0% Yes 155.1 158.0 OS% Yes 367 363.3 -0.4% Yes 751 Z00.3D1 3 BLS 369 36 75.0 75.2 0.0% Yes 159.5 158.5 -0.2% Yes 3fi6 -8 OA% Yes zpD.302 3 BLS 75.0 74.8 O.p% Yes t56.4 158.5 0.3% Yes 368 0 02% Yes 20D.3p3 3 BLS 75.1 74.6 -0.1% Yes 155.E 158,5 0.4% Yes 364 368.0 0.5% Yes z0an05 5 BLS 74.9 75.0 0.0% Yes 158.0 159.9 0.3°h Yes 368 369.0 01% Yes 200118 5 8L5 752 75.0 0.0% Yes 159,1 161.7 0.4% Yes 374 374.t 0.0% Yes 20p.119 5 BLS ]4.9 75.2 0.7% Yes 158.0 160.8 0.5% Yes 368 370.9 0.3% Yes 2p0.120 5 BIS 751 74.6 -0.7% Yes 7611 162.1 02% Ves 364 362,4 -02% Yes 20c,121 5 HLS 75.3 75.3 0.0% Yes 160.5 161.4 0.1% Yes 365 365.0 0.0% Yes 200.093 7 Brs 753 75.9 0.1% Yes 1583 757.2 -02% Yes 367 371.Z 0.5% Yes 200.094 7 BIS 74.9 74.8 0.0% Ya5 164.0 't 62.t -0.3% Yes 3fi3 362.7 •0.1% Yes 200112 7 BLS 74.7 74.9 0.0% Yes t63.7 162.6 -02% Yes 362 363.0 0.1% Yes 2t%1310 7 BL9 74.9 75.2 0.1% Yas 158.0 156.3 -0.3% Yes 370 377.3 02% Yes TL' 7 BLS 74,2 74.3 0.0% Yes t60.2 162.0 03% Yes 368 388.0 280.045 8 8L5 74.4 74.8 0.7% Yes 159.0 t60.8 0.3% Yes 3fi6 366.7 0.0% Yas 2p0.10B 8 BLB 74.9 74.8 0.0°h yes 162.2 161.0 -02% Yes 3fi5 36Z6 -03% Yes,20n.ip9 8 Bt5 74.9 74.1 -0.7% Yes 161.7 t60.3 -02% Yes 382 382.0 0.0% Yes 200.705 8 8L5 75.1 74.6 -01% Yes 160.9 760.7 0.0% Yes 371 375.5 05% Yes 200.709 8 BLS 75,1 74.8 -0.1% Yes 1612 181.4 0.0% Yes 3Tt 377.0 0.0% Yes Pitots 09/04179 BP 29.38 09/11(19 BP 29.61 09/79/19 BP 29.6v 200.304 3 BL5 83A 83.1 -0.7% Yes 75t.8 151.3 •D.t% Yes 386 375.E 0.9% Y¢s 200305 3 ets 83.0 62.9 0.0% Yes 1520 151.5 -0.1% Yes 367 370.4 0.4% Yes 200.]p6 3 BLS 83.7 2Z2DW00.0..]]7O201a4 37 eBlIS5 8831..24 8831..43 00..00% S %% YYYYeeesss 171755580168..2.25E 17115558006Z..8765 --00D0...1.122%%%% YYYYeeeessss 333565349 3336667852...50 100....714/%%o YYYeaesss Yes GLT.T].1 7 eLs 60.a &2.7 0.1% Yes 168.4 186.8 -0.3% Yes 362 367.5 0.7% Yes 200.769 s1n BLS 83.2 83.5 0.f% Yes 161.7 7612 -0.1% Yes 376 7 Yes 2pD2551 BLS 80.3 80.7 0.7% Yes 162.6 161.8 -02% Yes 354 360.1 0.7% Yes 7 CtT.T.1o.i 10 BLS 75.3 75.2 0.0% Yes 155.9 156.5 0.1 0 343.0 0.4% Yes $6 CLT.T.10,2 10 BLS 80.3 80.7 0.1% Yes 766.8 166.4 -DA% Yes 362 365.5 0.7% Yes CLT.TID.3 10 BIS 80.4 80.7 0.1% Yes 168.4 166.8 -0.3°/a Yes; 362 387.5 0.7% Yes 200.982 2 BLS 842 83.1 -02% Yes 151.8 1515 0.0% Yes 3fi6 372.2 0.5% Yes w Jill 0 Ref.Tem i.O .P+460 Umbilical adaptors Temperature Calibration alaek&white Calibrated BY• BLS I)am: 09/04/19 Reference Thermometer: I81707131 OmegaNIS1'CaUbmtor Serial No.: 170001G9 Barometric Fressare,ln.Hg: 2938 Model C1,3512A Asset Id Reference Percent Reference Percem passed P.eatBadr Reference Percent passed Ambient I C� Passed Ice Bath Ice Barb Difference Heat Ballt Difference Nmnber ,:Id Ambient Difference 300.030 A 30.1 80.2 0.0% Yrs SI3 50.7 •0.1% Yes 152.8 152.0 -0.1% Yes 300318 B 80.1 80.2 0.0% Yes 51.9 50.9 -0.2% Yes 152.2 152.0 0.0% Yes 300.355 C 80.1 30.2 0.0% Yes 503 49S -OS% Xes 152.3 151.7 -0.1^/e Yes 300.032 D 80.1 80.2 0.0% Ycs 49.7 49.8 -0.2% Yes 15D.7 151.0 0.0% Yes 300.043 E 80.3 802 0.0% Ycs 43.8 48.0 -01% Yes 151.0 150.9 0.0% Yes 300.3I9 F 80.2 80.2 0.0% Ycs 48.0 as.2 0.0% Ycs 150.G 350.8 0.0% Ycs 300317 G 30.4 801 0.0% Xes 48.8 48S -0.1% Ycs 151.8 151.5 0.0% Yes 300.042 PI 80.3 SOZ 0.0% Yes 49.4 483 -0.2% Yes 151.0 SSY.S 0.1% Xes 3003d5 I 80.5 80.2 -0.1% Ycs 43.2 48.0 0.0% Yes I52.3 151.7 -0.1% Yes 300.044 J 50.5 902 -O.I% Yes 49.8 482. -03% Yes 151.1 151.3 0.0% Ycs 300.031 K 80.5 80.2 -0.1% Yes 503 49.1 -0.2% Xes 151.7 -- 300.21G L 30.5 30.2 -0.1% 1 Yes 502 50.5 0.1% Yes 151.4 151.1 0.0% Xe5 300.320 M 80.4 80.2 0.0% Yes SOA 50.5 0.0% Yes 151.0 151.1 1 0.0% Yes 300.346 N 80.5 80.2 -E-I-/77 Yes SLZ 50.7 -0.1% Yes 151.4 150.6 1 -0.1% 1 Yes 300.295 O 80.6 80.2 -O.I% yes 50.3 50.7 DA% yes 151.6 150.9 -0.1% Yes Tempemtme Diffoo=e Calmdation: (Rd Temp.Deg.F+460)-(Test Temp.Deg,F+460) X 100=e1.5% Ref.Temp.Deg.F+460 A O J Page 1 of 1 yilet Bulb, Dry Bulb and Loflfli o Temperature Annual Calibrations Date: 09I05l19 Reference Thermometer: 1H1707toI Reference Thermometer. 181707131 Reference Thermometer. 1 81 7 0 71 31 Barometric Pressure, Omega NIST Calibrator Serial No.: 17000169 Omega NISI Calibrator Serial No.: 170001ss Omega NIST Calibrator serial No.: 17000159l In.Hg: 29.20 RZE renoe a erence a erence Asset Cal. Temp. Percent Temp. Percent passed Tem Tem Percent Passed Number By One Temp. Difference Passed Two Temp. Difference E Three Difference Thermocouple Wands Wb/Dh 100.042 BLS 45.7 44,4 -0.3% Yes 79.8 80.7 0.2% Yes 160..7 156.9 .1 Yes 1 wb100.044 BLS 44.6 44A 0.6% Yes 80.0 80,7 0.1°/ Yes 1 - Yes 100.045 BLS 44.8 44.0 -0.2°k Yes 80.3 80.7 0.1% Yes 157.3 156.3.7 -DA A%% Yes 100.060 BLS 44.1 44.0 0.0% Yes 80.3 H0.7 0,1°/ is 159.1 158.0 •0.2°/ Yes wh100.061 BLS 45.1 44d -0.1% Yes 80,0 80.7 0.1% Yes 159.6 159.3 -0.2% Yes wb 100.059 BLS 44.7 45.1 OA% Yes 80.7 80.7 0.0% Yes 161.2 159.8 -0.2% Yes Lollipops 150739815 BLS 46.2 46.0 0.0% Yes 81.5 80.7 -0.1% Yes 462.0 161.2 -0.1% Yes 50655 2. 16 •0.1% Yes 5 Yes UM 8 Yes 1625 3 4 .6 Yes 81.5 -01% Yes 163.5 162.3 -0.2% Yes1175532 LS 4 Ref.Tem .De a.F+460 cn 0 0 J t i Method 5 Filter Exit and CPM Exit Therrncoupie Annual CaftrationS Pate: 09/04/19 Reference Thermometer: 181707131 Reference Themmometec 181707131I Reference Thermometer. _ _ 181707131 Barometric Pressure, Omega NISI Calibrator Sedal No.: 17000169� Omega NISI CalbratOr Serlal NO.: 17000169 `Omega NIST Calibrator Seriat No.: - 17000t69I In.H9 29.38 e rence atemp. � eterePce Asset Cal. Temp. Percent Temp. Tem Percent Passed Temp. Tam Percent Passetl Number By One Temp. piNerence Passed TWO P Difference Three Difference Wands CPM Exit 100.104 BLS 46.6 48.3 -0.1% Yes 802 80.7 0.1% Yes 152.7 151.E -0.1% Yes D0.106 BLS 48.9 48.5 OB% Yes 80.3 B0.7 0.1% Yes 159.4 151.7 0.0% Yes 100.108 BLS 49.5 492 -0.1% Yes 84.6 83.8 -0.1% Yes 163.0 162.3 -0.1% Yes 100.109 BLS 53.3 52.7 -0.1°k Yes 82.7 84.0 D2% Yes 160.0 960.5 0.1% Yes 100.110 BLS 49.6 50.7 0.2% Yes 829 83.8 02°/v Yes 159.6 159.8 0.0% Yes 100.112 BLS 49.5 SOS 0.3% Yes 83.2 83.8 0.1°l Yes 160.2 159.6 •0.1% Yes 100.119 BLS 48.9 48.7 0.0% Yes SA3 80.7 0.1% Ves 152.3 151.7 •0.1% Yes 100,120 BLS 53.5 528 -O.tl Yes 82.9 83.8 0.2°/v Yes 160.6 160.5 0.0% Yes 100.124 BLS 48.2 48.2 0.0%. Yes 80% 80.7 0.1% Yes 152.0 152.0 0.0% Yes 100.125 BLS 53.3 52.3 -02% Yes 829 83.8 0.2% Yes 158.7 159,9 02%v Yes MS Exit Glass 10D.089 BLS 48.4 48.3 0.0% Yes 83.7 83.8 0.0% Yes 162.6 162.1 -0.1% Yes G1 BLS 48.0 48.7 0.1% Yes 84.4 83.8 -0.1/ Yes 163.2 162.1 -0.2% Yes G2 eLS 48.5 48.0 -0.1% Yes 84.5 83.8 -0.1% Yes 161.9 162.1 0.0% Yes G3 BLS 48.4 A7.6 -02% Yes 84.5 83.8 -0.1% Yes 163.0 162.8 0,0% Yes G5 BLS 48.7 d8.3 -0.1°lo Yes 8d.8 83.8 -0.2% Yes 163.5 161.9 -0.3% Yes G6 BLS 49.0 48.7 -0.1% Yes 84.9 83.8 -0.2% Yes 164.D 162.3 .0. Yes G7 BLS 49.0 48.5 -0.1°/ Yes 84.5 83.8 -0.1% Yes t62.5 161.7 0.1% Yes G13 BLS 50.6 49.9 -0.3% Yes 83.5 83.6 D.D% Yes 161.8 1626 0.1% Yes G14 BLS 48.7 49.1 0.1% Yes 83.4 83.8 0.1% Yes 163.4 162.3 -0.2% Yes G15 BLS 48.1 49.4 0.3% Yes 84.3 83.8 -0.1°/ Yes 162.E 162.3 0.0% Yes G18 BLS 49.8 48.2 -0.3% Yes 84.4 83.8 -0.1°/, Yes 161.5 162.3 0.1°/, Yes M5 Exit SS SDi BLS 49.3 50.3 0.2% Yes 83.3 83.8 0.1% Yes 961.9 160.9 •02°/, Ves S02 BLS 49.1 49.8 0.1% Yes 82.5 83.6 0.3% Yes i61.4 t61.0 -0.1% Yes S03 BLS 49.0 50.1 0.2% Yes 83.2 82.9 -0.9% Yes 161.8 161.0 •OA% Yes SO4 BLS 49.4 50.1 0.1°/, Yes 82.9 83.8 0.2% Yes 16L7 161.0 -Dd% Yes 505 BLS 49.1 50.1 0.2°/ Yes 84.6 83.8 •0.1% Yes 161.fi 161.2 -0.t% Yes SOS BLS 50.0 51.0 0.2% Yes 84.4 83.3 -02% Ye5 161.7 1605 -02% Yes 507 BLS 49.4 51S 0.5% Yes 82.9 83.9 0.2% Yes 16D.9 180d -O.t% Yes S08 BLS 52.2 52.1 0.0% Yes 82.8 84.0 0.2% Yes t60.3 159.8 -0.1% Yes S09 BLS 49.3 50.3 0.2% Yes 83.2 83.8 0.1% Yes 161.6 iS1.0 -0.1% Yes 510 BLS 524 52.3 0.0% Yas 82.8 81.8 -0.Z% Yes 159.4 159.9 0.1% Yes 100.065 BLS 43.4 44.5 02°/v Yes 80-5 80.7 0.0% Yes 165.1 164.1 -0.2% Yes 0 o_ Ref.Temp.Deg.F+460 V Detached Measurement ThermOcou 2les Date: 09/19/19 Reference Thermometer. 7 81 7071 31 Reference Thermomebar: 1 81 7 071 31 Reference Thermometer. 181707i31 BaromeMc Pressure, Omega NIST Calibrator Serial Ne.: 17000169� Omega NIST Calibrator Serial No.: 17000169 Omega NISI Calibrator Serial No.: 17000169 In.Hg: 29.50 rene erence :lp.0 me e emp- Asset Cal. Temp. Pement Temp. Temp. Percent paced Number By One Temp.. pifference Passed Two Temp. Dff ence Passed Three TernF. Difference Thermocouples for Pitot Extensions Number 100.007 BLS 74.7 75.2 0.1% Yes 156.7 156.5 0.0% Yes 369 369A 0.0% es 700.046 BLS 75.4 75.2 D.0% Yes 159.3 158.0 -0.2% Yes 363 367.0 0.5°1c Yes 100.047 BLS 75.7 75.2 -0.1% Yes 158.3 158.0 0.0% Yes 364 368.0 0.5% Yes 100.071 BLs 75.4 75,2 0.0% Yes Yes 169.3 169.5 0.0% Yes 364 361A -0.3% i00.073 BLS 75.2 75.3 D.D% Yes 161.5 161.0 -O.i% Yes 364 3nI3 0.6% Yes Yes 100.074 BLS 74.8 75.2 0.1% Yes 158A 158.1 0.0% Yes 334 33 6.2 0.3% 100.075 BLS 75.5 75.2 -0.1% Yes 1585 158.1 -0.1% Yes 360 363.5 OA% Yes 700.076 BLS 76.0 76.1 0.0% Yes 161.1 111000000..000778792 eBLLSS 75.0 74,6 -0d% es 11659s..78 1158..5 •D0.1%% Yes s 330 3366..0 00.75%% YYYees . Yes 169.3 Yes 3 36 .1 A es 10. Y 159.0 02% Yes il -0.2% Yes 100.061 B 0.0% Yes 157.2 -0 Yes 3 351.5 0.4/ Yes B 74.8 -0.1% Yes 158.3 -0.1% Yes 3 368.3 0.5% Yes 7 4 15-5 Callbration performed on 10l08/19 Barometer Pressure 29.37. Ref.Temp.Deg-F+460 V O V Detached Measurement Thermocou Ip es Date: 09105l19 Reference Thermometer. 191707131 Reference Thermometer. 181707W1 Reference Thermometer. _ 181707131 earometric Pressbre, Omega NlST Calibrator Serial Nb.: 170001s9i Omega NlST Calibrator Serial No.: 17000169 Omega NlST Calibrator Serial No.: 17000969� ln.Hg: 29.20 e erence � Temp. Temp, Percent Asset Cal. Temp. Percent Temp- Percent Passed p, Passed Number BY One 7ernP' Difference Passed T.� Temp. Difference Three Difference Thermocouples for Pitot Extensions Number FW 201 BLS 43.5 43.3 0.0% Yes Bi.t 80.7 A.1% Yes 165.5 16 . 0.1% es FW 202 BLS 43.8 43.5 -0.7% Yes 812 80.6 -0.1% Yes 167.9 768.4 0. Yes A.2% yes 170.5 168.8 -0.3% Yes FW 203 BLS 44.6 44.0 A.7% Yes 82.0 80.8 169.5 168.0 FW 204 BLS 43.8 43.3 -0.1°lo Yes 81.8 80.7 -0.2% Yes FW 205 BLS 44.6 43.5 -02% Yes 82.0 80.6 A.3% Yes 167.8 767.1 -0.1% Yes FW 206 BLS 44.7 43.8 -02% Yes 81.6 80.0 -0.3% Yes 168.9 167.7 -0.2% Yes FW 215 BLS 44.3 43.7 -0.2% Yes 80.7 80.0 -0.1% Yes 167.1 166.8 0.0% Yes FW 216 BLS 44.0 43.1 -0.2% Yes 81.9 802 -0.3% Yes 166.4 166.9 0.1% Yes Ref.Temp.De ,F+460 m 0 J C59 of 117 SUPERIOR SCALE, INC. 2118 CAROLINA PLACE DRIVE FORT MILL,SC 29708 Phone: 803-548-3320 Far,: 803-548-2910 Email: info@superiorscales.com e1Q OGHT SET VERIFICATION CERTIFICATE CLIENT: CIVIL&ENVIRONMENTAL DEPARTMENT: LAB I: DESCRIPTION: STAINLESS STEEL WEIGHT ID1t: 22931 VERIFICATION DATA Serial Number Noiinal Value Reading on Balance 22932 200g 199.9g 300g 299.9g 500g 499.8g — I VERIFICATION DATE: JANUARY 7,2020 VERIFICATION DUE DATE: JANUARY 2021 ( TEST STANDARD(S) INFORMATION: Standard(s) Used ID Expiration Date CLASS 1 KIT SSCL1-3 4/25/2020 I t COMMENTS: READINGS OF WEIGHT(S)TAKEN ON BALANCE(S) LISTED AFTER BALANCE(S)WITH NIST TRACEABLE WEIGHT ET(S)NOTED. t TECHNICIAN: CUSTOMER: I l r' 60 of 117 SUPERIOR SCALE, INC. 2118 CAROLINA PLACE DRIVE FORT MILL, SC 29708 Phone: 803-548-3320 Fax: 803-548-2910 Email: info@superlorscales.com WEIGHT SET VERIFICATION CERTEFICATE CLIENT: CIVIL&ENVIRONMENTAL DEPARTMENT: LAB DESCRIPTION: STAINLESS STEEL WEIGHT ID11: 35766 VERIFICATION DATA Serial Number Nominal Value Reading on Balance 35766 200E 200g 300g 300.1g 500g 500.1g 1000g 1000.1g VERIFICATION DATE,:, ,IANUARY 7, 2020. VERIFICATION DUE DATE: JANUARY 2021 TE5T STANDARD(S) INFORMATION: Sta.ndard(s) Used ID Expiration Date CLASS 1 KIT SSCL1-3 4/25/2020 COMMENTS: READINGS OF WEIGHT(S)TAKEN ON BALANCE(S) LISTED AFTER BALANCE(S) WITH NISTTRACEABLE WEIGHT SET(S) NOTED. TECHNICIAN: CUSTOMER: i I i 61 of 117 SUPERIOR SCALE, INC. 1 CERTIFICATION OF SCALE CALIBRATION Issue/Revision: 10/08/10 Rev. 3 Customer Name: ( Page of _ Customer Address: Today's Date: /�7=U✓V city : ; J>✓ State: Zip: Next Due Date: /-, 2.1 1 Test Location: (3G) Onsite ( ) Superior Scale,Inc. Mfg: \c A oc t0: Service Technician: J? c Model: AY 1 O 1 Customer ID#: Capacity: rs-U o,I k - l Serial Number: '1-1 U i Routine Calibration: New Equipment: ❑ Repair/Recalibration: ❑ 1 Instructions: Report all readings before and after corrections are made. Readings are to betaken at low, middle and high portions of the wonting range of the scale. Record+or—deviation and adjusted reading below. Standards used are traceable to NISI. Equipment tolerances are Handbook 44 Table 6, unless otherwise noted. WEIGHT AS FOIIND DEVIATION AS LEFT APPLIED Before Adjustment) (+ OR-) (After Adjustment Q� Comments: C �1r NIST Traceability #'s/Serial�nNu,1 �.}ber S S b� - 7 Technician Signature: Ly License#: Report reproduction except in frill requires written consent from Superior Scale, Inc. i 211€3 Carolina Place Dr. o Fort Mill, SC 29905 o Phone (503) 548-3320 o Fax (803) 548-2910 l r 62 of 117 SUPERIOR SCALE,INC. CERTIFICATION OF SCALE CALIBRATION r Issue/Revision: 10/08/10 Rev. 3 r Customer Name: L Page of Customer Address: Today's Date: /-`/-,)C) City : State: Zip: Next Due Date: /--a 0-k 1 Test Location: Onsite ( ) Superior Scale, Inc. Mfg: A Service Technician: Iq Model: - Customer ID#: Capacity: 2 o`r , Serial Number: ( 1 - � 4.3 Routine Calibration: C New Equipment: ❑ Repair/Recalibration: ❑ Instructions: Report all readings before and after corrections are made. Readings are to be taken at low,middle and high portions of the working range of the scale. Record+or-deviation and adjusted reading below. Standards used are traceable to NIST. Equipment tolerances are Handbook 44 Table 6, unless otherwise noted. WEIGHT AS FOUND DEVIATION AS LEFT APPLIED (Before Adjustment) (+ OR-) After Adiustment) U C� . u �`b0v i `tit P l �,ticuc,. I Comments: 0 NIST Traceability#'s/Seria Number �5CVL� i Technician Signature: License#: 16X 1!36ps"'d o Report reproduction except in full requires written consent from Superior Scale,Inc. 2118 Carolina Place Dr. e Fort Mill,SC 29708 o Phone (803) 548-3320 o Fax (803) 548-2910 08588 �cr�prbvB®rr�6��� awc�� I Intluslnal StrcngMIVelghing Solulions� Name G r C- P.O. Box 766 2118 CAROLiNA PLACE Address FORT MILL, SC 29708 DATE (803) 548-3320 Authorized By GA a t� A CU 1u J')3 0 SERVICE Ct REPAIR IU SERVICE AGREEMENT U PECK-UP 0 DELIVER SEE PARTS AND LABOR qTY. PART NO. NAME-ITEM UNIT TOTAL'; P.O. No. . EQUIPM MAKE MODEL NO. SERIAL NO. 1 NATURE OF SERVICE Cc u- • -(J FOR OFFICE USE ONLY ,+ —��q EXPENSES Hotel D t',`ho Meals Trip 1 Trip 2 Mileage: Miles 0 Mile 11 Labor Mrs.Reg.Time for Men ® /Hr. Mrs. T.&H. for Men @ /Hr. Mrs.D.T. .. for Men ,. @ /Hr. Programming Mrs.Reg.Time for Men /Hr. Mrs. 'T.&H. for Men @ /Hr. Mrs.D.T. for Men a Mr. 'Completed Incomplete TOTAL - Pads,Labor,Programming and Expenses �? The undersigne Mechanic hereby acknowledges that the service specified has been performed. -'v `B License No. �-4-z-� 'A` y/ h V i. Mechanic License No. bate Signed By�;r� a.: n Print Name�G:k� -lfrjh+}\5 Service Work& Parts NET CASH Upon Comple ion of Work WORK ORDER L Standard Terms and Conditions on Reverse Side r 64 of 117 Ir. _ Calibration complies with i80/iEC� ¢�-iurrlrt 17025,025, 6�NSUNCSL Z540P 1 y and 9001 -.:'r ACCREDITED cert. No.: 6530-9943421 r.., p_2,aFun TraceahieO Certificate of Calibration for Digital Barometer Manufactured for and distributed by:Thomas Scientific Box 99,99 High Hill Road,Swedeboro,NJ,o8085-0099,U.S.A. Instrument Identification: S/N: 181729650 Manufacturer: Control Company Model: 1189RO3, StandardslEquipreent: Due Date NIST Traceable Reference Descr)otlon Serial Number D4540001 22 Oct 2019 1000432773 r - Digital Barometer 4000-9285406 1 05 Mar 2019 ' Digital Thermometer . 30070752 15478 44654/2H3737 02 Nov 2019 Chilled Mirror Hygrometer . . . Climate Chamber W613.0046 Certificate informatlon: Cal Date:09 Nov 2018 Ca!Due Date:09 Nov 2020 Technician:57 Procedure:CAL-31 Test Conditions: 54.36-ARH 23.2eC 1021mBar Calibration Data: (New Instrument) ¢U TUR Max Unit(sj Nominal As Pound In 7oi Nominal As Left In Tol Min 0.74 >4.1 %RH N.A. N.A. 50.51 5o Y 48 54 � 24.61 24.5 Y 24.21 25.01 0.05 >4:1 °C N.A. N.A. 802 $10 0.62 >4:1 ' 805.8tl BOB Y mblhPa N.A. N.A. 910.10 910 Y 906 914 0.62 >4:1 mblhPa N.A. N.A. >4c1 - mh/hPa N.A. N.A. 1095.76 1016 Y 1012 1020 O.G2 This certificate indicates Traceability to standards provided by(NIST)National Institute of Standards and Technology andlor a National Standards Laboratory. A Tesl Uncertainty Ratio of al least 4:1 is maintained unless otherwise slated and Is calculated using the expanded measurement uncedalnty.Uncertainty evaluation Includes the tnsw actor k- to test A T Is calculated in accordance with the ISO'tame'Guid 10 me Expression of Uncertainty in Measurement{GnM].The uncedalnty repmsenis en expanded uncedalnty using a coverage factor k=2 to approximate ale a a�nlylto the Item calibroletleThlslcn tolerance eM1 Acme shall dflih be are except In fair,its failing without iwitlen approvelnof Control Campaits with no iny 6y the uncedefnly of the meaeuremeni.The results contained herein not temnII l=Slendud's Reading;As Lefl=lnstrumems ading'In Tol-I Toler n Left IRomanal(Roepizmc Range; ngeTole;n Expanded Measurement Uncertainty;TUR=Test Uncertainly Rago•, Accuracy=S(Msx-Min)12,Min=As Left Nominal(Rounded) 1 Nirguezmanager Note; Maintaining Accuracy: uld maintain its In our opinien once calibrated your DigemltBa shock,and contamina0onaccuracy.There is no oxectway to determine haw long calibration still be maintained,Digital Barometer change little,if any at rometer she elf,but can be affected by aging.temp Recalibratlon: For factory calibration and re-certilieallon traceable to National Institute of alandards and Technology contact Control Company. CONTROL COMPANY 12554 Galveston RD Suite B230 Webster TX USA 77598 Phone 281 4112-1714 fax 281 482-9448 sales@control3.001n v4VW.Contro13;com Accredited merican As..claq-n for Laboratory Control Company is en�Conhol Company is iS0 g001 0 8oQua�y Conged by by (NV OIL.Certificate No.CERTO100S2000AQHOD-RVA.Certificate No.1750,0 . International Laboratory Accreditation Cooperation(ILAC)-Mullllateral Recognition Arrangement{MRA). �.____.—,....a.a f—rl bademrek of Control Company Q 2017 Control Company calibration complies witill iS©/iEC 65 and 9001 9 M[ `17025, �Uzi�i/iu C3i= 754o=`�, Cart Mo.: 4321=9920463 AG CPLDITED gra��ai�i�® CGttifiCate ofCalibration for Lollipop Thermom®ter Menufachged for and distributed by:Thomas Sdigilific Box 99,99 High Hill Road,Stvedeboro,NJ,08055.0099,U.S.A. Instrument identifications SIN: 1p1707131 Manufacturer: Control Company r Model: 1235D23, tit a Reference IiI merit: _ _ .. �atandardsf�q P Due Data Serial Number ' � Descriotlon Temperature Calibration Bath 93139 AV129 05 Jan 2019 1000419631 Thermtstor Module A73332 - Temperature Calibration Seth - 26 Jan 2019 68102060.1 5202 Temperature Probe 12 Jan 2019 68102023 - - 5267 - .. . . .. 1 . . - i Temperature Probe . .. . - Certificate Information: Cal Date: 01 Nov 2018 Cal Due Date:01 Nov 2020 Technician:104 Procedure:CAL-03 53°C 1010mBar Test Conditions: 62.02%RH 23. dU .. . TUR Calibration Data: (New Instrument) -Y _ Min Mau I - in Tot Nominal As Leit In ToI 1 0.065 >4:1 I! Units) Nominal As Found 0.4 -1 N.A. 0.00 101 0.058 >4.1 'C N.A. y 99 q 0p•00 1 tl0.0 °C N.A. N.A.Traceability to standards provided by(MIST)National Institute of Standards and Technology andlor a Nation at This certificate indicates T N.A. Standards Laboratory uncertainty evaluation includes the inshumentundar test of the measurement.The results contained herein ATsst Uncadainty Ratio of al leas14:1i%maintained unless alhemise staled and is Ora using the expanded measaainly arosent m, And is lmale a 9511 confidence level,in tolerance conditions are based on test results failing within specified al at with no ompalvn by the ancadelnry entl la caiculeladinaccvrdatleasth the lSO'Guide to the Expression ai Uncadainty in Ming within specified limits with noainy represents an expanded uncertainty usinge coverage factor = relateonlyto the%c item nfidac.gbaied.This categoda shall not be reproduced except In full,vAlhoutwdgen approval at controlComp any. Accuimacy53lMax•Mgn Reading! Lail Nomnai(ftouded)inToleronce Max=As L, mtna(Rcundad)anceRTolamnexpanded MeasurementUncertainry;TUR=Test Uncetlalnty Ratio. Non, �'`^"^' � ✓ Auanl�ud�rXwl V.enage, Nical RodRe'-,Quality Manager Maintaining Accuracy: 5any of allohul can haleffvcled by aging.iemperaluroetef shock,aind coxtamloation.uracy.There is no exact way to determine how long calibration will be maintained.Lollipop Thermamalarchange tittle, n can brated Recal•Ibration: contact control company. For rectory calibrdon end re-cadlfloagoA traceable to National Institute of Standards and Technology \\\ 1 Control3AOm CONTROL COMPANY 12554 Galveston RD Suite B230 Webster T)t USA 17698 Phone 281482-1714 Fan 201482-9448 sales@conteol3.com vdww• aboragary 1760.01. ation r L Control Company la[so 90012008 Quality Cedlgad by DNV GL,Cadlgcelo No.CERT-01805-2000-AQ•ROU•RvA. l Control Company is an ISOAP n"n0'nal Labotellolry Accrodllallon ion Laboratory Covpelrelony(ILAC)'Mulllliat nreAReco9nili o Ar engemen�Mr�)Accreditation,Certificate No, B 2077 control Company Traceabler7 is a registered hademafx of Control Company io% r 66 of 117. . ... .. _Acc.0 erve. C.a9ob.r.a-ta®. Ce.a°tofa.ca.te Certificate 41:1281099 l �aomrSsfiun nttrea5tntlan#ar,�ea This laboratory Is accredited in accordance with the recognized International Standard I50/IEC 17025:2005.This accreditation demonstrates technical competence fora defined scope and the operation of a laboratory quality management system(as outlined by the Joint 150-ILAC-I4F Communique dotedJanuary 2009).Accreditation held with Perry-Johnson Laboratory Accredition,Inc.-accreditation p59050. Calibration of measuring and test equipment by Accuserve meets the requirements of 150/IEC 17025:2005,ANS1/NCSI Z540.1-1994 and ANSI/NCSIZ540.3-2005 sub- clause 5.3 When a calibration measurement is not included on the organizations 17025 Scope of Accreditation,that measurement result is Indicated with an asterisk(•) r and also referenced In the"Calibration)Notes"as not accredited,When specked by contract the requirements ofAMS 2750 and IOCFR21 are also covered. This calibration is traceable to the International System of Units(SI),through the National Institute of Standards and Technology(NIST),or a Notional Measurement Institute. Uncertainties of laboratory standards are maintained at a 95%confidence level(k=2).Expanded uncertainties were calculated per EA-4102 M:2013(Evaluation of the Uncertainty of Measurement In Calibration).The uncertainty of measurement associated with the measurement result reported on this certificate is available from the organization upon request and was accountedfor in making the decision of compliance or non compliance with the relevant specification identified on this certificate. r calibration and test results relate only to the item identified on this certificate.This document certifies that the unit conformed to applicable specifications upon successful completion of the calibration.Any number of factors may cause the calibration item to drift out of calibration before the calibration Interval has expired. NOTE 1:This report shall not be reproduced,except In full,without the written approval cfAccuserve. NOTE 2: The recording of fake,fictitious orfroudulent statements or entries on this document may violate Federal Statutes,Including but not limited to Title 18,Chapter 47 of the United States Code,andmay he punishable as a felony. ACCUSERVE,INC. CIVILAND ENVIRONMENTAL CONSULTANTS 16415 NORTHCROSS DR.,SUITE A 3701 ARCO CORPORATE DRIVE MUNTERSVILLE,NC 28078 CHARLOTTE,NC 28273 704-535-0100 y _._ LD__ ---'---17000169 _____ Purchase Order_-------.--__-------------------_—".--- Manufacturer:_-- OIvtEG�._.....__._.-- _. -------.-_.._._. CystomerRegui)_ement`_----------".—,----.—.---------_---.,----- Model Number: CL3512A_. ..._------... —_-._...____..._._.__.__ Te011?•1RN .._.__..__.....—_..7_4_F l43 _---------------...,._._..._---- Serial Number:,,,__..17000169 _._.... _.._..._......__... ._ Performed By_"_,",_...___.M�CHAEL GRIEEIT.N.__�_...__...._._____.___.__..___. Cal Date: 3(11/20,20 ..... __.____.--.._. Cal, Interval 12 MONTyS __.__---_.._ ».------ Cal.Owe Dater �11 2021,____ Calibration Michael Griffith �,/ �' •// QA Manager Unit found In tolerance(meets manufacturer's specifications). 67 of 117 Certificate 1F:1281099 i FIRM,.' 1.,.-.__Temperature(Tl) Measure,Type K ,300 -304 -296 - -299 -299 dog. F ?___Temperature (T1) Measure,Type K _27�___.-_.=252 r?7A _. r277. -277 deg. F 3 Tempature(Ti)Measure,Type K -202 -206. -198_ -201 -201 deg. F er 4 __ _Temperature(Ti) Measure,Type K _ -101 -105 97- . 101. .. -101 deg. F Temperature,(T1) Measure,TVp.@ K 132.0. .. 130,0 134,0 .. 132,2 132.2 deg. F Temperature (T1) Measure,Type K 962 _ 959 965. 961 961 _ deg. F 7_ Temp erature(Tl).Measwe,,TypeK 1584 1580 1$88_ ._. .. 1583 ___,_,_1583 _ _ deg. F 8 _ Temperature (T1)Measure,Type K 586 584 _ 588 585 585 deg.C 9__.__Temyerature (TS) Measure,TVpeJ :?92 .. -296 .28$.. . 2.92 ,-292 deg. F M Temperature (T1)Measure TVpe J -21z __215 207 -211 211 deg. F 11- Temperature(T1),Measure Type 1 -103 -107 -97 ,,-103. -103 deg. F 12 _Temperature.(Tl)Measure Type) 132_D 130,0 _ ,.. . 134.0 . 131_8__...... 131.8 _ deg. F 13 ._Temperature(Ti) Measure,TVpeJ. 962 959 _ _ _965 _ ..,,_ 960 960 deg. F 14_ Temperature(Tl) Measure,Type J 1584 1580 1588. 1583 1583 deg. F 15___Temperature (Tl) Measure,Type J 495 _.._493 497 494 . ___ 494 deg.C 1 16 Temperature(T1) Measure,Type T 278 -282 ..T4 _ _. 277 -277 deg, F 17 _Temperature(Tl) Measure,Type T -202 .-206 -198_ . _202 -202 deg. F 18 Temperature(Tl) Measure, .FVpe T _ _101_,-_-,SOS, 97 ,__. _ _ -101 ,. „_. .-101 deg. F 19 Temperature(Tl) Measure,Type T 7 0. .5.p. 9 0 7.2 .7.2 .. deg. F 20_.Temperature(Tl) Measure,Type T, 338 336 340_ ,. .. 338 ,,. 338 deg, F 21 Tem_pe_rature,(TS) Measure,TYPE!T.. 586__.___, 583„ 589 ._ _ 585 -__ 585 deg. F 22__ Temperature(Tl) Measure,Type T .100.0 L= 99_0 101.0 99.9 9 .... _ _ deg. C I 23_,_ Temperature(T1) Measure,Type E 306 310 302 305 ^ �305 deg, F 24_ Temperature_M)Measure,Type E „-220- _ _ -224 ;216,_, .,, .-220 ^__220 _ _ deg. F 25 Terr�eratuCe(TS) Measure,Type E -105 _ AQ-9 101, -105__�_�-105_, deg. F 26 Tem ep rature(Tl).Measure,Type E __ 115.0 113,0. 117.0^ _ 115.1 115.1 „ deg. F 27 _ Temperature(Ti).Measure,TypeE 878, 875. - . . 877 „877 deg. F 28 Te mgerature(T1) Measure Type E 1450 ,1447 1454 14.50, 1450 _ deg. F 29_ Temperature(T1) Measure,Type E _. 390. ,389 391 390 390 deg. C 30 Temperature(T1)5nurce Type K 300_00,__,e30_6.00 294. 0 300.82 _-300,82 deg, F "' - 2,00 278.54 -278.54 , deg. F 31 Temperature(Ti)Source,TVpe K „27&00 -284.00 27 �___- 32,_Temperature(T1).Spurce,TVpe.K . 202;00 _. _ _ -208400 _ 196.00 .-20250 202.50_ deg. F 33_Temper4ure(71) Source,TVpe K. -101.00 __ _-107A0 9500 -10115 ,_�__101.15 deg. F 34 Temperature(71) Source,TVpe.K 132_00 _ - 128.00 136.OD __ 13186 13186 deg. F 35 Ter,�r perature (11)Source,Type K 962 00 _957 00 967,00 983.46 963 46 deg. F 36 Temperature (Tl)Source TVpe K 158400 ., 1578,00 159000,.. 1584,82 1584.82 deg. F 37 Temperature (T1)_Source,TypeK 58600 58300 58900. 587.25_._____ 58725 deg.0 411 38 _Temperature (T1)Source,TVpeJ _292;00 -298;00 _ .286,gg ___.... =2292.63___292.63 deg. F 39 Temperature(T1)Source Type 1 -21100_ -217 00 205 00 211.25 ------21125 deg. F 40 Temperature (T1)Source Type) 10300 -109.00 9500, . 10318 10318_ _ deg. F 41 Terciperature(T1)Source,TVpe.J 18200, . 12800 13600 - 13204 132.04 deg. F 42 Temperature (T1)Source,Type 1 .962.00., ,. . .957,.00. _ 967.00 963,59 �. 963.59. . _ deg. F 43 Temperature lTlj Sou rce,Type J. _ _158400_�_._1578,00 1590.00 _ _ 1584_63_ 15846,3 deg. F 44 _Temperature(T1) Source,Type J 495.00 _ ,492 0.0 498.00„ ,.. 495 43 . . 495 43 ,,. deg. C 45 __Temperature(T1)Source,Type T. _278.g0284,00 272,OD „ _278,50 . 278,50. deg. F 46 Temperature(TS.)Source,Type T 202 00 _ -208 00.. 196 00, 202 32 W2 32 deg. F 47 _Temperature(T1)Source,Type T 10100 .__=107 00 95 00 -101.g0 10140_ deg. F 48 Temperature(T1)Source,Type T 7A0 ., 3,00 11.00 7.02 _ 7.02 _ _ _ deg. F 49 Temperature(Tl)Source,TVpe T 338A0 334.00 34200 337;95, .337 95. _ deg. F 50 Temperature(T_1)Source,_TypeT .5860D _�_581.00 59100 ., .58683 . .58683. deg, F 51 Temperature M)Source,Type T 10000_ 98.00 10200_ „ 10050 100,50 _ deg. 0 52,, Temperature (T1)Source,TVpe E -220,00. -46-00 214,00 -221 00. 22100 deg. F 53 Temperature (TI)Source,Type E . . 105 00 .11L00 _ 99 00_ 105 80 105,80 deg. F 54 Temperature(Tl) Source,.TVpe E 115 OD __11100 11900, 11455 11458 deg. F 55__Temperature (T1)Source,Type E ,878 00 873 90 - 88D 0� 20 878,20 deg. F 56 em Tperature (Tl),Source,Type E, 1450,00-___1445,00 1455.00. 144912 1449.12 deg. F 51 Temperature (T1) Source,Type E 390.00 388.00 392.00 -__ ._ 390.26 390.26 deg.C r .. 68 of 117 Acc userrve Ca: HbrOon Ce rt9fi Cate Certificate 11:1281099 58 _Temperature (T2) Measure,Type K -300 -304 296 ..-300 -300 deg. F 59 Teperature (T21 Measure.Type K -278 _- _282 :2Z4_-_.____-- '278---- -278 deg. F m 60.,--Temperature (T2)Measure,Type K -202 -206 -198. 202 -202, deg. F 61 Temperature(T2)Measure,Type K -101 .-105 -97, ., 101 -101 deg, F 62 _Temperature(T2)Measure,Type_K 1320 130.0 134,0 131,8 ,__131,8 deg. F 63,._ Temperature(T2)Measure,Type K 962. 959 965____--_,__-,.___,„,960 960 deg, F 64___Temperature(T2) Measure,Type K 1584__._.__1580. 1588 _,_,_____.-_._1583_ 1583, deg. F 65 _-_Temperature (T2)Measure,Type K _ _ 586, _ -584 588 _.___-. 585^_585„ deg.C 66 Temperature (T2)Measure,Type 1 -292 -296 -288 -291 -291 deg, F 67 Temperature (T2) Measure,Type J -211 .__-215 -207 ., -41 . -211 deg. F 68-„__ er Tempature(T2),Measure.,Type 1 -103 ._ -107 97 .. 103 -103 deg. F 69--_ Temperature (T2} Measure,TYRaJ 132.0. 130.0 1340 ,.. . . 131.9.-_,__.,_ 131.9 _ deg, F 70,_Temp_erature (T2) Measure,TYPeJ -962, _ 959_ 965 960960 deg. F 71 - Temperature (T2) Measure,Type 1 1584 1580 1588 1583 ASH deg. F 72 _ Temperature (T2) Measure,Type 1 _ . .495.. . 493 - 497 494. 494 deg. C 73 .._T mperature(T2) Measure,Type T -278 -282 deg. F 74_-_Temperature (72) Measure,Type T -202---- 206 -198-.__.___..-.�___201-_-_....-._201 deg. F I 75 Temp_erature (T2)Measure,Type T -1.01 -__-105 _ -97 ._.. - ... -101 -101 deg. F 76 _7empgrature.(T2) Measure,TypeT 7.0__,-.___.S.D _ 9.0 .. 7_3 7.3 deg. F 77 Temperature(T2) Measure,Type 338 336 340 338 338 deg. F 78 Temperature (T2)Measure,TypeT 586 583 .. 589 _ .. 585- . 585 _ deg. F 79 Temperature(T2)Measure,TVpe T deg. C 80 Temperature{T2) Measure,TVpe E . . -306- ,.-310_ _-302 ,_304 _304 deg, F 81_ItMperature(T2)Measure,Type 216 - - _ _ .-219 . .. :210 - deg. F 82 _,Temperature(T2) Measure,Type E -105 -109 10.1- , -104 _104 deg. F 83 Temperature(T2)Measure,Type.E 115.0 .�113.0 _117.0 __ 115.5 115,5 deg. F 84 __Temperature(72) Measure,TVpe E 878 875 -88-- 877 877 deg. F 85._Temperature (T2)Measure,Type E . 1450 1447 1454 __ 1450_, 1450 deg. F 86 _ Temperature(T2) Measure,Type E . AN .. 389 _ _391___ 390 390. _ deg. C 87_ Temperature(T2)Source,Type K 300,00. -306.00_ 294 D��i_ 30090 _.__=300,90 deg. F -- Temperature(T2)Source,Type K . ._278.00 -284.OQ_ -U2.00 -278,50 -278,50 deg. F 89, Tem er Source,Type K -1 ature(T2)Source,Type K 202,00„ -208.00 -196.D0 _ -202150 ,. 202.50 _- deg. F 90 ..,,Temperature(T2) 01;00 -107.00 -95,00 -101,20 --101,20 deg. F 91 __Temperature(T2)Source,Type K 132,00 __ 128,00 136,00 131.96 _ _131.96 deg. F 92___Temperature(T2]Source,Type K 9..... .957.00 967_00 963.46- _._ 963.46 deg, F 93-__T.emperature(T2)Source,Type K 1584,00 1578.00 1590,00 1584.82, 1584.82 deg. F 94 _ Temperature (T2)Source,Type K 586.00 583.00 589,00 _ 587,30 587.30 deg, C 95-_,7emp,erature(T2)Source,Type J -292,00 -298.00 7286,00 r292,60, -292.60 deg. F 96 _ Temperature(T.2)-Source,TVP.e J -211,00 -217.00 205,00 - 211_30 _-211.30 deg. F 97__Temperature(T2i Source,Type 1 -103.00 -109,00 95 00 -103.06 -103:06 deg. F 98 .Temperature(T2)Source,Type 1 m 132.00- 128,00. 136,00 132,06 ._ 132.06, deg. F 99 Temperature(T2)Source,TVpe) 962.00 957.00, 967,00, . . _. 963.63 _ 963.63 deg. F 100 Temperature(T2)Source,Type 1 1584 DO____, 1578.00, 1590,�00___-,__.__-, 1584.70- 1584.70 deg. F _ 101_Temperature(T2)Source,Type J 495.00 .T__ 492.00 498.00 495 38 495138 deg. C 10_2Temperature(T2)Source,TVPpT -278;00 -284.00, _ -272.00 _. _._ _-278.5_2_.. -278;52 deg. F 103Temperature(T2)Source,Type T -202A0 -208.00 _ 196 00_-__._ _.=202.4Q_ _-__202.40 deg. F 104 Temperature(T2)Source,Type T r101;0�___-107.00 95..00. . -101.50. _ -101.50, deg. F i- 105 _Temperature(T4Source,TVpe T .7,.00 .- 3A0 11 00, 7,95 7 65 deg. F 106 Temperature (T2}Source,TypeT 338,00 334,00. 342.00 ____-__ 337 97 ___._337.97 deg. F 107 _Temperature f72)Spurce,TypeT _ 586,00 581_00 591.00 - _ __586.86�,---, 586_86 deg.F 108, Temperature (T2)Source,TVpe T 100.00. _ 98.00 102.00 100.52 _ _ 100.52 deg.C � - 103 Temperature (T2)Sourc@,Type E -220,00 -226.00 214.00-_-._�„__-,-22100 „___221.00 deg, F 110 Temperature (T2)Source,Type E -105.00- .-- -111,00. 99.00 - 105.57 -105.57- deg, F 111 Temperature (T2)Source,Type E .11500--_.-__,111.0o 119.00 deg. F L 112 Temperature (T2)Source,TVpe E 878,00__-_873_00., 880,00 878.30 878,30 deg. F 113 Temperature (T2)Source,,Type E 1450.001445.00. 1455.00 _ 1449 22_--__ 1449,22, _ deg. F 114 ,_Temperature (T2)Source,Type E 390.o0 388.00 392:4Q 39032 ,._390 32, deg. C 69 of 117 Certificate 9:1281099 Is_ FLUKE 5500A _CALIBRATOR__-_,_-.__,-..�,____.,__AIDD001-__.,_,_______4/22[2019.__^ 4f22(2020 _,__. Jf S 33K5-4-545-1 TEMPER ATURECALIBRATOR/THERMOMETEf N/A 2[28/2008 I 1 t I t 9 1 70 of 117 4W OBAI" CERTIFICATE OF ANALYSIS CALIBRATION r 'rASES LLC c �n >�Aat AIR Customer: Roberts Oxygen Referencet 012219CL-2 CGA: 590 Certificatlon Date: 01/25/2019 Customer PO#: 642714 Expiration Date: 01/25/2023 Cylinder#: DT0005900 Pressure, pslg: 2000 Components Certified Concentration Analytical Accuracy Oxygen 20,9% ±2% Nitrogen Balance H2O <2.0 ppm THC <0.1 ppm CO2 < 1,0 ppm CO <0,5 ppm NOx <0.1 ppm S02 <0.1 ppm Instrument/Model Serial Number Last Date Calibrated Analytical Method Micro GC/Inffcon 170612 1/25/2019 Thermal Conductivity Mecco/W aterboy LP2 14469 1/2/2019 Electrolytic Gow-Mac/23-500 K35606 1/25/2019 Flame Ionization Detector Rosemount/NGA 2000 3005333138 1/25/2019 Non-Dispersive Infrared CAI/Goo Y09003 1/25/2019 Chemiluminescence Horibaf VIA-510 MAID39C8 1/25/2019 Non-Dispersive Infrared These mixtures were prepared gravimetrically using a high load high sensitivity electronic scale.Prior to filling the scale is verified far accuracy throughout the target mass range against applicable NIST traceable weights, i . This report states accurately the results of the Investigation made upon the material submitted to the analytical laboratory.Every effort has been made to determine objectively the information requested.However,in connection with this report,Global Calibration Gases LLC shall have no liability in excess of the established charge for this service. G LO BAU" U Produced by: ALIBRATION Global Calibration Gases I.I.C. 1090 Commerce Blvd N. GASES LLC Sarasota,Horde 34243 USA ""--- VY..ersmtacc,R. PGVP Vendor ID.:N22019 -- Principal Analyst: t{� � — -- Principal Reviewer: p.0 L _ Date: 01/25/2019 Date: 01/25/ 01 0 is i _ >.� .„. Global Calibration Gases 71 of 117 +� Sarasota, Fl- K�LOBALI\ EPA Protocol i } CALIBRATION I - GASES LLC Gas Mixture Customer: Roberts Oxygen Reference#: 070716DH-2 CGA: 590 Certification Date: 07/1412016 r Customer PO#: 545604 Expiration Date: 07/14/2024 4 Cylinder#: EB0049262 Pressure, psig: 2000 jr Method: This standard was analyzed according to EPA Traceability Protocol for Assay and Certification of Gaseous Caiibrdrion Slandaws, Procedure Gi 1 (May 2012). Analyzed Cylinder- Components Certified Concentration Expanded Uncertainty Assay Dates Propane 26.1 ppm 0,6% 07/14/16 Air Balance - Reference Standard- Type/SRM Sample Cylinder fl Concentration Propane/GMIS GCG-474699BY 48.83ppm Propane/SRM CAL018130 48.83ppm 1 Instrument- Instrument/Model Serial Number Last Date Calibrated Analytical Method Gow-Mac/23-500 K35606 7/14/2016 Flame ionization Detector These mixtures were prepared gravimetdoally using a high load high sensitivity electronic scale.Prior to filling the scale Is verified for accuracy throughout the target mass range against applicable NIST traceable weights.We certify that the weights are calibrated to ASTM 5617-97 Class 1 tolerances. This report slates accurately the results of the investigation made upon the material submitted to the analytical laboratory.Every effort has been made to determine objectively the Information +� requested. However,In connection with this report,Global Calibration Gases LLC shall have no liability in excess of the established charge for this service.No correction required for Interfering gases. The calibration results published in this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology(NISI)and through NIST to the International System of Units(SI).The expanded uncertainties,If Included on this certificate,use a coverage factor of W to approximate the 95% confidence level of the measurement,unless otherwise noted.If uncertainties are not included on this certificate,they are available upon request.This calibration certificate applies only to the Item described and shall not be reproduced other than In full,wlthouhvriften approval from the calibration facility,Calibration certificates without signatures are nolvalid.This calibration meets the requirements of ISO/IEC 17025:2005. Do not use this standard when cylinder pressure is below 150 psig, I y m Produced by: GLosALr Global Calibration Gases LLC. CALIBRATION W90 Commerce Blvd N. GA$ES LLC Sarasota,Florida 34243 USA ^^ PGVP Vendor to.:N-222016 Principal Analyst: / s/.��i �/cL,— Principal Reviewer: ILYL` Date: 07/1412016 Date: 07/1 l20 6 r r7 ROBERTS OXYGEN COMPANY, INC. 17011 Railroad St.Gaithersburg MD 20877 www.robertsoxygen,co ni (301) 948-8100 PGVP#T12015 CERTIFICATE OF ANALYSIS - EPA PROTOCOL GAS MIXTURE PRODUCT: PROPANE-AIR FIRST ASSAY DATE: 03/10/2015 r PART NUMBER: R0120005014 SECOND ASSAY DATRt N/A CYLINDER SERIAL NUMBER: DT0005847 CERTIFICATION DATE: 03/10/2015 LOT NUMBER: 01001050515 EXPIRATIONDATM 03/11/2023 r . Propane B5 85.0 PPM 0.9 PPM ABS G2 Air Balance Balance PROPANE GMIS 62009Y 511ppm OA43% 01 10/2017 kj0-;SINS'CJ{UIY9W1,1v10bbtt,'L,s1( "rY `..:`S$RGll::1VUMBIIR"'.'`; ^L.;:�„� PlT.141ULT_ I=POINT C- IABRtITION `- - 7fNAI;Ya[GAG1N13TH�11 it<i1c GOW-MAC SBO Z157612 03 04 2015 GC-FID All gravimetrlc fill stations used in this processwere verified foraccuracy prior tb fill using ASTM Class 1 NISTtraceable weights. Fill process utilizes high load high accuracy scales. These protocols were produced according to EPA 600/R-12/531-The EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards(Published-May,2012). All protocol mixtures were produced using either method GI and/or method G2 as stated above. i - This document certifies that the product supplied by the Roberts Oxygen Company was produced according to the standard operating procedures ofthe specialty gas deparmtent **Do net use this product when cylinder pressure is below 100 psig" t_ I PRIMARYANALYST 0 TE Q/A REVIEW DATE L- Produced By: OXYGEN Roberts Oxygen Company,Inc. 17011 Railroad Street Gaithersburg,MD 20677 (301)948.0100 PGVP:T12015 i L. 73 of 117 1700 Scepter Rd .4ti6A HESO N Waverly,TN 37186 'S :-- ask. . .The Gas Professionals" 931-296-3357 Certificate of Analysis - EPA Protocol Mixtures Customer: Roberts Oxygen Co Customer POM 581936 Part# G2677339 4100 Chesapeake Dr. Charlotte, NC 28216 Protocol: Reference M Lot#: 4 Cylinder Number: SX63236 G1 710060-4 9307625400 I DO NOT USET�IS CYLINDER WHEN THE.. Cylinder Pressure: 1900 psig PRESSURE BALLS BELOW:9o0 PSIG, Last Analysis Date: 5/19/2017 Expiration Date: 5/19/2025 REPLICATE RESPONSES Date: 5/19/2017 Component: Propane 150.0 149.9 Certified Conc: 150.0 ppm +/- 0.6 ppm ABS 150.2 BALANCE GAS: Air REFERENCE STANDARDS: Component: Propane I Reference Standard: PRM Cylinder#: 5604720 - Concentration: 250.0 ppm+1-0.5 ppm(abs) Exp Date: 11126/2020 SRM M VSL PRIMARY NISTSam le# VSL PRIMARY CERTIFICATION INSTRUMENTS Component: Propane Make/Model: Horiba FIA-610 Serial Number: 2LNDTHVT Measurement Principle: PID Last Calibration: 5/212017 Notes: The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure G1 and/or G2.US EPA Vendor ID Number:D62017,PGVP Partlelpatlon Date:01101/17,PGVP Renewal Date:01/01/18 The expanded uncertainty listed for each component was calculated at coverage factor of k-2 and at a level of confidence of 95%. Analyst: UX.- ),0A, "1jt;t.;y.; Date: 5/22/2017 t Roman Khidekel ITI 74 of 117 1700 Scepter Rd MATHESON Waverly,TN 37185 Il �� ask...The Gas Professionals— 931-296.3357 Certificate of Analysis - EPA Protocol Mixtures Customer: Roberts Oxygen Cc Customer PO#: 581936 Part# G2677340 4100 Chesapeake Dr. Charlotte, NC 28216 Protocol: Reference M Lot#: r Cylinder Number: DT0003635 G1 710060-5 9307626401 DO.NOT,USE THIS CYLINDER WHEN THE Cylinder Pressure: 1900 psig PRESSURE FALts 13�LOW 160 PSIG Last Analysis Date: 5/19/2017 Expiration Date: 6/1 912 0 2 5 REPLICATE RESPONSES Date: 5/19/2017 r Component: Propane 259.0 258.9 Certified Cone: 259.1 ppm +/- 0.6 ppm ABS 259.5 I, BALANCE GAS: Air REFERENCE STANDARDS: Component: Propane Reference Standard: PRM Cylinder 6604720 Concentration: 260.0 ppm+/-0.5 ppm(abs) Exp Date: 11/26/2020 SRM M VSL PRIMARY NIST Sample# VSL PRIMARY CERTIFICATION INSTRUMENTS Component: Propane - Make/Model: HoribaFIA--610 Serial Number: 21.NDTHVT - Measurement Principle: FID Last Calibration: 6/212017 Notes: I:. . The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012, using procedure Gl and/orG2.U.S EPA Vendor ID Number:D62017,PGVP Participation Date:01/01/17,PGVP Renewal Date:D3/Oi/18 The expanded uncertainty listed for each component was calculated at a coverage factor of k=2 and at a level of confidence of 95%. L_ j Analyst: y Date: 5/22/2017 'i Roman Khidekel t Global Calibration Gases 75 of 117 /�iLC76ALi Sarasota, FL` (CALIBRATION EPA Protocol ,,..,-GASESuLLC (gas Mixture 11 1 Customer, Roberts Oxygen ' Reference#: 031215SY-1 CGA: 590 Certification Date; 03/23/2015 Customer PO#: 492902 Expirationpate: 03/23/2023 Cylinder#: EB0049272 Pressure, psig: 2000 . Method. This standard was analyzed according to EPA Traceability Protocol for'Assay and Certification of Gaseous Calibration Standards,Procedure G1 (May 2012). Analyzed Cylinder- Components Certified Concentration Expanded Uncertainty Assay Pates Propane 845ppm 0.6% 03/23/2015 Air Balance Reference Standard- Type/SRM Sample Cylinder# Concentration Propane/GMIS EB0019166 306.7ppm Propane/SRM XF002169B 2467ppm I Instrument- Instrument/Model Serial Number Last Date Calibrated Analytical Method Micro GC/MTI M200 170612 3/23)2015 , Thermal Conductivity V These mbdures were prepared gravlmetdcally using a high load high sensitivity electronic scale.Prior to filling thescale is verified for accuracy throughout the targetmass range against I applicable NIST traceable weights. Wa certify that the weights are calibrated toASTME617-97 Class l tolerances, This calibration i!referenced byserlal#7210^1,Certificate#14000306 and NIST Insf#8221272103-06. YI This report states accurately the results of the Invest1gation made upon the material submitted to the analyfleal laboratory. Every effort has been made to determine obiadively the Information requested. However,In connection with this report,Global Calibration Gages LLC shall have no liability In excess of the established charge for this service.'Analytical methodology does not a require correction for analytbal Interference, !i The calibration results published In this certificate were obtained using equipment and standards capable of producing results that are traceable to National Institute of Standards and Technology(NIST)and through NIST to the International System of Units(81).The expanded urronalinfles.It Included on this certificate,use a coverage factor of 02 to approximate the 95116 confidence level of the measurement,unless olherwbe noted.If uncertainties are not included on thisartificate,they are available upon request.This calibration certificate applies only to the, item described and shall not be reproduced other than In full,without written approval tram the calibration facility.Calibration certificates without signatures are not valid,This celibiatlori rhea(&; the requirements of ISOPEC 17025.2005. 'Do not use this standard when cylinder pressure is below 150 psig. I rGASUSLLC Produced by:Global Calibration Gases LLC. ATION 1090 Commerce Blvd N. Sarasota,Florida 34243 USA I ^•-^' PGVP Vendor ID.:N22015 ` Principal Analyst: —��r��M—._ Principal Reviewer: Date: 03/23/2015 :Date: 0312312015 i � L r 76 of 117 1700 Scepter Rd MATHESON Waverly,TN 37185 ask. . .The Gas Professionals- 931-296-3357 Certificate of Analysis - EPA Protocol Mixtures Customer: Roberts Oxygen Cc Customer POff: 643367 Part# G2673466 17011 Railroad St. Gaithersburg, MID 20877 Protocol: Reference#: Lot#: Cylinder Number: SX46300 G2 741728-1 9308635360 DO NOT USE Til4lS.'0YQNDFR' WHEN TILIE�. Cylinder Pressure: 1900 psig (§r9EL'QW!"!0-0.P,S,IG Last Analysis Date: 1111/2019 LL A�MRll' Expiration Date: 1111/2027 REPLICATE RESPONSES Date: 1/11/2019 Component: Propane 1486 1482 Certified Conc: 1484 ppm 4 ppm ABS 1482 BALANCE GAS: Air REFERENCE STANDARDS: Component: Propane Reference Standard: SRM Cylinder#: FF55645 Concentration: 496.7 ppm+1-2,0 ppm(abs) Exp Date: 8/1212024 SRM#., 1669b NISI Sample# 81-J-15 CERTIFICATION INSTRUMENTS Component: Propane Make/Model: HoribaFIA-510 Serial Number- 2LNDTHVT Measurement Principle: FID Last Calibration: 1111/2019 I L Notes: L The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012,using procedure G1 and/or G2.U.S EPA Vendor ID Number:D62019,PGVP Participation Date:01/01/19,PGVP Renewal Date:01/01/20 The expanded uncertainty listed for each component was calculated at a coverage factor of k=2 and at a level of confidence of 95%. Analyst: Date: 1/14/2019 Roman Khidekel 77 of 117 ® MATHESON 1650 Enterprise Parkway Twinsburg,OH 44087 ask.._The Gas Professionals'" 215-648-4000 Certificate of Analysis--EPA Protocol Mixtures Customer: ROBERTS OXYGEN CO Protocol: Reference# Lot# I Cylinder Number: SX-40668 G1 710060 109 96 38557 Cylinder piessure: 2e00 prig M aw I QQsw4sG1J tiIS �1 DER WHEN`THE-,. Last Analysis date: 5/18/2017 � PR S��J (al�Lr,S���01N100 PSIG Expiration Date: 5/18/2025 REPLICATE RESPONSES Date: . 5/18/2017 Date: Component : Propane 2598 PPM Certified Conc; 2699 PPM t 6 PPM 2600 PPM 2600 PPM I BALANCE GAS: Air REFERENCE STANDARDS Component: PROPANE . SRM M PRM-P2500 Sample#; 3222920.03 a Cylinder#: 6604728 II Concentration: 2500 PPM CERTIFICATION INSTRUMENTS Component: Propane . Make/Model: Varian 3800 GC Serial Number: LR-92489 Measurement Principle: TCD, FID Last Calibration: 5/18/2017 Notes: G2677342 l The certification was performed according to EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards May 2012,using procedure G1 and/or G2. U.S EPA Vendor ID Number: D42017, PGVP Participation Date:01101117, PGVP Renewal [ Date:01/01/18.The expanded uncertainly listed for each component was calculated at a coverage factor of k=2 and at a level of fl confidence of 95%. I Analyst " " ` Date 5/1812017 i 1 f" 78 of 117 APPENDIX E AMA ACCREDITATIONS AND QSTI CERTIFICATIONS L 'L . Civil & Environmental Consultants,Inc. 1 -= American Association for Laboratory Accreditation ,r^'._.,. SfACR7ESIWC+ACAIEDIi%U710N WUNOL a�.... a � a S Accredited Air Emission . Testing .Body A21-A has accredited CIVIL AND ENVIRONMENTAL CONSULTANT'S, INC (CEC) In recognition of the successful completion of the joint A21-A and Stack Testing Accreditation Council (STAG) evaluation process,this laboratory is accredited to perform testing activities in compliance with ASTM D7036:2004-Standard Practice for Competence of Air Emission Testing Bodies. f Presented this 4}n day of September 2019. j Vice President,Accreditation Services For the Accreditation Council 1 Certificate Number3913.01 Valid to November30,2021 i This accreditation program is not included under the A2LAITA.0 11futual RecognitionArr¢ngement. V y 0of11 7 � 8 JOHN BEL EDWARS CHUCK CARR BROWN, PH.D. GOVERNOR SECRiTARY I *tate 4f ` .out titan r DEPARTMENT OF ENVIRONMENTAL QUALITY ENVIRONMENTAL SERVICES Read Receipt Requested Al No. 2i7698 Activity No. ACC20200001 LELAP Lab Ill#05096 Accreditation Year FY 2021 Renewal due FY 2023 Mr, Paul Jenkins Civil & Environmental Consultants Inc 3701 Arco Corporate Dr Ste 400 Charlotte,North Carolina 28273 Re: Annual Scope of Accreditation I Dear Mr. Jenkins: The Louisiana Department of Environmental Quality's laboratory accreditation program, in accordance with Louisiana Administrative Code, Title 33, Part 1, Subpart 3, Laboratory Accreditation, accredits this laboratory for Fiscal Year 2021. This accreditation does not constitute an endorsement of the suitability of the listed methods for any specific purpose. Accreditation of the environmental laboratory does not imply that a product, process, system, or person is approved by LELAP. The laboratory is accredited f'or the methods as identified on the application for accreditation; if the methods are partially identified on the application for accreditation, the laboratory is accredited for the versions listed on the current application or referenced in the laboratory standard operating procedure. Louisiana Environmental Laboratory Accreditation Program (LELAP) accreditation is granted for those methodsianalytes for which "STATE" is indicated as the type of accreditation. Accreditation is dependent on the laboratory's successful ongoing compliance with regulations as outlined in the Louisiana Administrative Code,Title 33,Part I, Subpart 3, Laboratory Accreditation, The accreditation certificate is the:property of the State of Louisiana. Should your accreditation be suspended or revoked, your laboratory must return the certificate of accreditation to the department and delete any electronic copies until your accreditation status is restored. LAC 33:I.5313.A requires that the laboratory report include all relevant information. Therefore, the certificate number shall be placed in the upper right comer of all laboratory reports. If the test report includes results of any test for which the laboratory is not accredited, the unaccredited results must be clearly identified as such. Post Office Box 4313®Baton Rouge,Louisiana 70821-4313•Phone 225-219-3181 .Fax 225-219-3309 wvm.deq.louisiana.¢ov r 81 of 117 Mr. Paul Jenkins Civil & Environmental Consultants Inc Page 2 of 2 ! We request that you examine the scope of accreditation attachment for accuracy and completeness. If you Turd that an analyte for which you expected to be accredited is not listed, please examine your records to ensure that: r I. You have met the requirements for successful participation in proficiency test studies as outlined in LAC 33:1.4711. r 2. In the case of accreditation by recognition, the requested analyte must be listed for the requested method and matrix on both the certificate issued by the Primary Accreditation Body and on the Louisiana application form. If after reviewing this information, the scope and/or certificate are inaccurate, please notify us immediately. If you have any questions, please contact your assigned assessor Mr. Joseph Kieffer, Environmental Scientist at(225)219-3362. Sincerely Cheryl Sonnier Nolan � �"` Administrator Yee Public Participation and Permit Support Services Division CSN:KHW jk L_ L. E . STATE OF LOUISIANA, aka FnvIlk rrory I DEPARTMENT OF ENVIRONMENTAL QUALITY Is hereby granting a Louisiana Environmental Laboratory Accreditation to J LELAP 1 DEm LaulslAnl Civil & Environmental Consultants Inc 9cc~ed�rationQ`�A 3701 Arco te--Dr Ste 400 Chai• 28273 Agency Interest No. 21769kO Activity No. ACC20200001 According to the Louisiana AdministrativeTiBe 33,Part I,Subpart 3,LABORATORY<A�EDITATION,the State of Louisiana formally recognizes that this laboratory is technically competenM, A u FTyses Wstged on the scope of accreditation detailed in the attachment r '" The laboratory agrees to perform all att��ses listed on this scope of accreditation accord�ttg to the Part I, Subpart 3 requirements and acknowledges that continued acereditat dependent on successful ongoing compliance the applicable requirements of Part I. Please contact the Department of Environmental Qu*,Louisiana Environmental Laboratory Aces+ on Program(LELAP)to verify the laboratory's scope of accreditation and accreditation status. Nk Accreditation by the State of Louisiana is not an ent or a guarantee of validi ate.data generated by the laboratory.Accreditation of the environmental laboratory does not imply th'at � processfstem;-or approved by LELAP. To be accredited initially and I P it maintain accreditation,the laboratoryagrees to artic� a concentration PT studies,where available,per Year for each field of testing for which it seeks accreditation or maintains. i s 'r3;d_in LAC 33:1.4711. Issued Date: Cheryl Sonnier Nolan Effective Date: July 1,2020 N Administrator Expiration Date: June 30,2021 -Public Participation and Permit Support Services Division Certificate Number:050% ��'\ 83 of 117 EBB` cl gltI F_ STATE OF LOUISIANA eo" Civil&Environmental Consultants Inc DEPARTMENT OF ENVIRONMENTAL QUALITY Al Number: 217698 Activity No,ACC20200001 Effective Date: July 1,2020 Expiration Date: June 30,2021 3701 Arco Corporate Ur Ste 400,Charlotte,North Carolina 28273 Certificate Number: 05096 Wit r- 3780-Carbon monoxide EPA Method lOB 765 State LA 1441 -Sampling EPA WE 1233 State LA 3895-Oxygen EPA 20 1250 State LA 1441 -Sampling EPA 20 1250 State LA 1441 -Sampling EPA Method 22 1262 State LA 3995-Stack gas velocity,volume flow rate EPA 2B 1272 State LA 3995-Stack gas velocity,volume flow rate EPA 213 1274 State LA 4000 - Stack gas velocity, volume flow rate EPA 2D 1274 State LA in small stacks/ducts 3995 -Stack gas velocity,volume flow rate EPA 2F 1276 State LA 3995 Stack gas velocity,volume flow rate EPA 20 1277 State LA 3995 -Stack gas velocity,volume flow rate EPA 2H 1278 State LA 1441 -Sampling EPA Method 29 1861 State LA 100060-Gaseous HCI EPA 321 2085 State LA 1441 -Sampling EPA 321 2085 State LA 100060-Gaseous HCl EPA 321 2115 State LA 1441 -Sampling EPA 321 2115 State LA 1441 -Sampling EPA 0020 10002003 State LA 3915-Particulates CEMS Performance Specification 11 10214592 State LA 1441 -Sampling CEMS Performance Specification 11 102I4592 State LA 3885-Oxides of nitrogen CEMS Performance Specification 2 10214627 State LA 1441 -Sampling CEMS Performance Specification 2 10214627 State LA 4010 -Sulfur dioxide CEMS Performance Specification 2 10214627 State LA 3755 -Carbon dioxide CEMS Performance Specification 3 10214638 State LA 3895-Oxygen CEMS Performance Specification 3 10214638 State LA 1441 -Sampling CEMS Performance Specification 3 10214638 State LA 3780.Carbon monoxide CEMS Performance Specification 4 10214649 State LA 1441 -Sampling CBMS Performance Specification 4 10214649 State LA ` 3780-Carbon monoxide CEMS Performance Specification 4A 10214650 State LA 1441 -Sampling CEMS Performance Specification 4A 10214650 State LA 1095-Mercury EPA Performance Specification 12B 10217557 State LA i - 1441 - Sampling EPA Performance Specification 12B 10217557 State LA 3974-Total Vapor Phase Mercury EPA Performance Specification 12B 10217557 State LA 100076-Traverse Points EPA Method 1 10246614 State LA 3780-Carbon monoxide EPA Method 10 10246625 State LA 1441 -Sampling EPA Method 10 10246625 State LA 1441 -Sampling EPA Method 18 10246636 State LA 3796-Total Gaseous Organic Compounds EPA Method 18 10246636 State LA l 4547.Emission Rate Correction Factors EPA Method 19 10246647 State LA 100780-Emission rate, lb/MM Btu EPA Method I9 10246647 State LA 100779-Heat input,MMBtuliu EPA Method 19 10246647 State LA 1441 -Sampling EPA Method 19 10246647 State LA ` 100076-Traverse Points EPA Method IA 10246658 State LA 3995-Stack gas velocity,volume flaw rate EPA Method 2 10246669 State LA 1441 -Sampling EPA Method 23 10246705 State LA L, 100077 - Gaseous Nonmethane Organic EPA Method 25 10246738 State LA Emissions 1441 - Sampling EPA Method 25 10246738 State LA 100170 - Gaseous Organic Compound EPA Method 25A 10246749 State LA Clients and Customers are urged to verify the laboratory's current certification status with the Louisiana Environmontal laboratory Accreditation Program. Da 7 nPA 84 of 117 Emissions 1441 -Sampling EPA Method 25A 10246749 State LA 3796-Total Gaseous Organic Compounds EPA Method 25A 10246749 State LA 4065-Volatile Organic Compounds EPA Method 25A 10246749 State LA 3755-Carbon dioxide EPA Method 3A 10247684 State LA 3895-Oxygen EPA Method 3A 10247684 State LA 1441 -Sampling EPA Method 3A 10247684 State LA 1441 -Sampling EPA TO.13A 10248405 State LA 1441 -Sampling EPA TO-15 10248803 State LA 5160- 1,1,1-Trichloroethane EPA 320 10274552 State LA 3755-Carbon dioxide EPA 320 10274552 State LA 3780-Carbon monoxide EPA 320 10274552 State LA 1635-Cyanide EPA 320 10274552 State LA I 3803 -Extractive FTIR Specifications EPA 320 10274552 State LA 4815-Formaldehyde EPA 320 10274552 State LA 1773 -Hydrogen Cyanide EPA 32D 10274552 State LA 3963 -Organic and Inorganic Emissions by EPA 320 10274552 State LA I FTIR 3885-Oxides of nitrogen EPA 320 10274552 State LA 1441 -Sampling EPA 320 10274552 State LA I 100494-Total Hydrocarbons EPA 320 10274552 State LA 4065-Volatile Organic Compounds EPA 320 10274552 State LA 1441 -Sampling EPA TO-14A,Rev.2 10312002 State LA 3915-Particulates EPA17 10402707 State LA 1441 -Sampling EPA 17 10402707 State LA 3950-Particulates<10 ran EPA 201 10402809 State LA 1441 -Sampling EPA201 10402809 State LA I 3805 -Fine particulates<2.5 tun EPA 201A 10402901 State LA 100665-Particulate Matter between 15 and EPA 201A 10402901 State LA 10 um 3915 -Particulates EPA201A 10402901 State LA 3950-Particulates<10 tort EPA 201 A 10402901 State LA 1441 -Sampling EPA 201A 10402901 State LA 4467-Condensible Particulate Matter EPA 202 10403006 State LA 100798 - Extractable Condensable EPA202 10403006 State LA Particulate Matter 3805-Fine particulates<2.5 um EPA 202 10403006 State LA 100799 - Non-extractable Condensable EPA 202 10403006 State LA Particulate Matter 3915-Particulates EPA 202 10403066 state LA 1441 -Sampling EPA 202 10403006 state LA 1540-Bromide EPA 26 10403108 State LA 1541 -Bromine EPA 26 10403108 State LA 1515-Chloride EPA 26 10403108 State LA 1580-Chlorine EPA 26 10403108 State LA 1730-Fluoride EPA 26 10403108 State LA 1770 - Hydrochloric acid (Hydrogen EPA 26 10403108 State LA chloride(gas only)) 1 1768-Hydrogen Bromide(HBr) EPA 26 10403108 State LA 1775 - Hydrogen fluoride (Hydrofluoric EPA 26 10403108 State LA acid) 3835-Hydrogen halides and halogens EPA 26 10403108 State LA 1540-Bromide EPA Method 26A 10403200 State LA 1541 -Bromine EPA Method 26A 10403200 State LA 1575-Chloride EPA Method 26A 10403200 State LA E Civil&Environmental Consultants Inc A]Number: 217698 Il Activity No,ACC202000DI Effective Date: July 1,2020 Certificate Number: 05096 Expiration Date: June 30,2021 Clients and Customers are urged to verify the laboratory's current certification status Mlh the Louisiana Environmental Laboratory Accreditation Program. Paso 7 of d r 85 of 117 1580-Chlorine EPA Method 26A 10403200 State LA _ 1730-Fluoride EPA Method 26A 10403200 State LA 1768 - Hydrobromic Acid (Hydrogen EPA Method 26A 10403200 State LA Bromide) 1770 - Hydrochloric acid (Hydrogen EPA Method 26A 10403200 State LA r chloride(gas only)) 1768-Hydrogen Bromide(HBr) EPA Method 26A 10403200 State LA 1775 - Hydrogen fluoride (Hydrofluoric EPA Method 26A 10403200 State LA acid) 3835-Hydrogen halides and halogens EPA Method 26A 10403200 State LA 1441 -Sampling EPA Method 26A 10403200 State LA 1441 -Sampling EPA Method 29(CVAA) 10403302 State LA 1441 -Sampling EPA Method 29(lCP-MS) 10403700 State LA 3995 -Stack gas velocity,volume flow rate EPA Method 2B 10403733 State LA 4000- Stack gas velocity, volume flow rate EPA Method 2A 10403744 State LA in small stacks/ducts 4043 - Field Validation of Pollutant EPA 301 10403777 State LA Measurement Methods 1095-Mercury EPA 30B 10404203 State LA 1441 -Sampling EPA 30B 10404203 State LA 3974-Total Vapor Phase Mercury EPA 30B 10404203 State LA 3850-Moisture content EPA Method 4 10404258 State LA 3915 -Particulates EPA 5 10404305 State LA 1441 -Sampling EPA 5 10404305 State LA 3915-Particulates EPA 5B 10404509 State LA 1441 -Sampling EPA 5B 10404509 State LA 3915-Particulates EPA Method 5D 10404601 State LA 3925-Particulates from fabric filters EPA Method 5D 10404601 State LA 1441 -Sampling EPA Method 5D 10404601 State LA 1441 -Sampling EPA 5E 10404703 State LA 3870-Non-sulfate particulates EPA 5F 10404805 State LA _ 3915-Particulates EPA 5F 10404805 State LA 1441 -Sampling EPA 5F 10404805 State LA 3915-Particulates EPA 51 10405104 State LA 1941 -Sampling EPA 51 10405104 State LA ` 1441 -Sampling EPA 6 10405206 State LA 4010-Sulfur dioxide EPA 6 10405206 State LA 1441 -Sampling EPA Method 6C 10405411 State LA L 4010-Sul0[r dioxide EPA Method 6C 10405411 State LA 3885-Oxides of nitrogen EPA Method 7E 10405911 State LA 1441 -Sampling EPA Method 7E 10405911 State LA 3880-Opacity EPA Method 9 10406403 State LA 1441 -Sampling NCAS198.01 60031358 State LA NONE NONE NONE NONE NONE Civil&Environmental Consultants Inc At Number: 217698 Activity No.ACC20200001 Effective Date: July I,2020 Certificate Number: 05096 Expiration Date: June 30,2021 �-' Clients and Customers are urged to verify the laboratory's curreat certification status with the Louisiana Environmental Laboratory Accreditation Program, Paar 3.fA 86 of 117 NONE NONE NONE 'NONH NONE NONE NONE NONE 'NONE NONE i t 1 l Civil&Environmental Consultants Inc Al Number: 217698 Activity No.ACC20200001 Effective Date: July 1,2020 Certificate Number: 05096 Expiration Date: June 30,2021 Clients and Customers are urged to verify the laboratory's current certification status with the Louisiana Environmental Laboratory Accreditation Program. Nun A of �/.obi°:♦`ss e`/e �/e 4�/ �ii �/o♦`/e `/e�`/e `/®se/�;®®��/m♦`/sue® ®`/ e�!o�B .®�/©;♦i r�It s � P C,, s �•�di �♦�/.._,✓+,�®�4._-.tea �/©tea.tea .�® ..�i.�a.�® �a�a �♦�a®tea�/��i" C C C 'a • - • . • l (• a � • " • • � +!,`� ♦,ter. . . C�� e�®B eBB. eBie B,. C♦ Coe, Bd�; � . r � ,�r, i11 e ;r ♦��/v CIS �B Be _ _ e n • _ - - - %Be + 7w : ow- ®� �.���+�o�®�,+�,®� ♦�®�, .�--� ®�- � . ®fie dcs �/ :�®.ems C�`%°�!/• l�o% `• /'1 � ;/ee / /'s1 � !.off:\�•� ■ C.,, ®® CcM°� s s ♦ ♦ ♦ ♦ ♦ ® ♦ `�oJ1 o. ��..1-.®l-.♦�--,she♦�../--�A/--�♦�.s/�®�-. /-° /-` �` /-` �` �` �` �-` �-. • /. am •jam/• r/ 1 .�� Maim" _ I R • IL I . . . Vic. °i•�%����®�`®�`®���i®�i��®�/`%®�`'�`®fie®��/��®��®��®�`®��®��®�+®.� +°i �'��of���'�i�ei� '� e�r r�i,��r�`®� '�;i��i �s'�®o�j�s ej/o®o��► i`>P;®�ti�. s�`/i �el� �. . • C.,� \ , �, - � •'�• �. o ,. �`Is, %�s �'� `�: r' • � �►�9 r,��� -,� : � <<.�� .ems.. o�� � � � � . � ,� � � - . . . . C� fir. � ���a .,� � � e • �e C���� ��� •� �� C�� - - _ ,�,� . � . . �� C`�'� � . . . _ r ..��. ``! .��� tC:1 rlq . ®®.�s�.�--._`l-.��-.e�--. �.��-.off.®�.®�.�.®�--.ice•®�o�i�s/�b�.�ice"` e� �/���fe�♦/�♦♦/ee /ea /ia /e ♦ /es /` e /e ♦ /ie ♦ e ee ee f .e inks ®r ; C Cse�� n n • �� r Cre,� C /ice �♦���♦s♦�♦�♦�♦�e�♦�♦�®+♦•�w♦���®�®���®�®\� C�;;ate/;�i; ��;��®/ e•®� `�;�`®/ �o/,-.''!,�'�°7;'�i�/ `o;'�er� o®/ �i�`®e�`� .�®o�`/v ®® a®y�'�®? r r . - CCU,; .���. .per•. G� ,•u�®��®-`r'`® �® �® °® °� e® %v°® i�® �® s`®ems®✓e® :® �® �® `®tee® `® �� fi'�.�^oh'';+���•s e O�0 s����`���e�e���`�� ������.t,�Cosa 1,.+�/e `ism>/owe®ie e, /o ♦ /e o /.`. ♦ s /. ♦ /e ♦ /e ♦ /e ♦ /® s /i a Je ., /i ♦ /e s, /s ® tie, ,i +• r � �s� � +sd� .//. � <<�� C��� �.� ] ./ . �� soi r �+� ,,�� . C° �C.}� �'. /,��� . . � � . , .,�d� ��� �s ♦/�/. i; � %d� �-��: �� � ' � C����� e/s.� � . - ��,� ., _ . - - - e . . r ./�i ���d . , . o . ,•o®o`JO♦m®®®®®edo®®®e®�®®®���ood.,; o.✓O ®B o®` ®®® ®®® ®®� ®®® ® ®® o®®�®�� ®� ®� �� s� ® . cz s�.. 7A MIXT C'® y ♦�s,'��o��i��r��r��e��s���o��e������i���`s��r�®® ®o s`i��s��s o�.•��s Cv r 000C r:, F, 99 of 117 r F r APPENDIX F PRODUCTION DATA DURING THE TEST PROGRAM L L_. L Civil & Environmental Consultants, Inc. i f 100 of 117 r y E*j v t .r 4 /y.... Y e,, 7 r q t X� Ok in �ff`7" I3 F< � •n` �'aY$XxF S /S yf L. 1- L_. 0 0 i i µw ' SZIOTi1W dun 1 sZLO1Qd mmt, u a r 102 of 117 tn �l.Sr 2 r I 53 F. t nn'"'•y r7f 1 �a wy - jA 1 _ s} -0 L_ I 6fyk t L l_. 103 of 117 • r r � 0 s P ,k's',`�"��+ aa �' �$'`z+ �� �f •.�a�se#,s. msra 7 � z t a uc `+•� 'ZI e P i<4E5 Y4 _ y ll i ,�k e ` 1,054 �fv 5 p ih+xk� �j da i xti s�" tl 4� Y 1r p r A S" i S 3 � O V aY y3 4� g t n � r 5 � k > ? $ rL l r `o v 0 t \ 1 v f e2 )H a 4tw loo �e Jam,®` bTLOldd OLLLL F s"efr. .91. £bZQM1W UZZObiChl per. MMUW =E i tZM j o , R � a� ,� � pro; �atl�Q✓ ;�9;.k055?�Ito55'.r � fi bRk \ J` M � I 0 8'81�Q t ar`Hl+ Y4 S Fr 6TL91atl ^.a 4AN X IBGwep w RA SMO LW _ tuau.a SUDI * �`.,3"i n: t"' s`iO55s AOSS r `o � ppryryMM OC,11 L 15E®•• ]M„ ®• r; Mal " • ��j�� f 3VJ1J-,1-fJ1I745S'. .., s. OZZOiliNF" ay�b 1! E420YJ1W , re Av rPo13031 .� fi;J. /J.„l,!ji�„ _ .A �\J••. •, 4��1 � •reGUD±p �"& I p!VI A - . SZTO7!ltd } � gym. ..•�� —�. T&Old n a'� S2'!Ol4d':: aatlu�ea -� bm � uo9alcsl . _ v 3 •v 4';fi $-ley S �5'L c��' vo 107 of 117 r f Jj r g3 C� F Yk ;k t 4 6i F i a r f � r @® Rim g � Q Y r 0 m �qNy� � LY11:4 c M JV® 6TLOlad. je® '�', ..r x''- £b20i11W 02ZOii2U1� OG� � 1�AV - dms C SZIOalW � a� xs; TZLUYd `z J . szeoiaa ,aauen uWeles z ;. _ ati s r ri - _ r 0 w 0 n f: aid. v +x a3�ersa�aax' d'} FN55igUypJ.� a 3f�II1 FD1IN15. .:® 5 vo Tin Y l Sfm aw Oavd.LW JI h BT �s d?s.... Jacuma MMaw z.' Mr F2LOld of - SUOlad �CWea >r -kG £ � V •..�? a Y'i i prat �K .may, 4 ✓�� � y $ i A r `o 0 L✓Y q .T t t111R! w.. W8031 6ILOAd r u .P�sns7dio.?. ,.i 3WL1 tiJlIMS _ i J. p � . ,aau eQ � do75 AV y52 c3 s R317ran �t 2 s £� SiT0b1W- ` suolod ,aaWeQ a3""r�s 3M UWQI�L u � a G r `o f X AUW t is � '� "34NLLFp11h15 - ,.# � 4 �Sfo- '.£4Z01LLW .� do$ � SSOtill^1 } a rzcod S2Lolaa... aadweQ - - DM uo�e7os1 moss AMS " 112 of 117 it i r� it Yjj Y�M1 a m tt X � r y' L. Y L, yJ Y a ro 1 1D q�Y w w� t F •C y %�rY»�� � "4 h���f 1 Ns �E M fmL.vtb'n L. L. L_ 113 of W r i 1-0 r S l i V Yff � �F � K 6 IC` ♦ i bbJ. AL 3 �{ l l 114 of 117 r ' sh � q r�F a Y g 1� 7 FFFFF S 33I€ ft i u s ss n li� .ie sk L. L. 115 of 117 r 3 Af a 5 r � ry } w SiiFr a s J l aA S �yb 3J � 1rn i 1 d V fp+ x w i 1 �® f `d' 6 Y Y V z 4 ti O a } A u a d I` it � I .Y�'�.. 1 pt �1$±Mf• � .. y MyryiV gwti: d«53�d',i4a;i+.EO^ 'i'.`eS j 116 of 117 r vt File Message Fil1- De Name : FX1000200810124900.DAD Sam ingI 1440:60.0 Decks Type : FX7900 Sled Time glnterval :00AOOeeo TimeNo. ; None 148 Sled Time :2O20100f1012AB-,00.000 Time Correction None Slop Time :2020/0911172:48:00.000 Starting Condition :Auto TdggerTime :2 02010 0111 12A8.00.090 Diejdfng Condition :Auto Trigger No. : 1409 Most Ch. : 2 Damego Chock :Not Damaged Moth Ch. : 0 Staded by :II Key In 1 End Ch. : 0 Stopped by :IRunning) Printed Group : GROUP 1 -Printed Range : 2 02 010 8110 12:49:00.000-2020MI1112:48:00.000 comment Rc I I ' I ..................... ! i i .. ------ „i o i I i wo I i L . i 1 , i ! Win 1890 &1020.00 uniQ0.n0 d1104A0 ant Oe:00 alit 12M ' nmosnmmeMmhad L.. i.. 117 of 117 r . to File Message Fite Name : 000064 200011 124900.DAD Data Count : 1440 Device Type : FXID0(I Sampling Interval :60.000 sac Sedal No. : SM09148 Sl2NTime : 202010W1112:49:00.000 Time Correction : Nona Stop Time : 202010BA212A11:00.000 Sterling Condition :Auto T49ger Tlme : 2020100M212A8:00.000 Dividing Condition : Auto Trigger No. : 1439 Meas Ch. : 2 Damega Check : Not Damaged Moth Ch. : 6 Sladad by :]Key In] Fxl Ch. :0 Stopped by :1 Running I Printed Group :GROUP 1 Printed Range : 20 2 0108/11 1 2:49.00.000-2020M811212:48A0.000 Comment mro i I � i 1 r 1 � I I I 1 1 ct000 ....................i..... _... ......,--------------......................................................................................._... U n .........._. i . ...................:..........._._.._._.....-i.._.:_.._....:_....._.._ _......_ .............: -----------------------..._._.. 91111a00 IiIII 1lt00 91120100 911204W W1108.00 M21200 AeaoLla TintlMm hml `1 I I