Loading...
HomeMy WebLinkAboutDEQp00020813Supporting information Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking Water Contaminants in the Cape Fear River Watershed of North Carolina Supporting information includes analytical method description, 6 tables, and 5 figures. Mei Sun',z, ", Elisa Arevaloz, Mark Strynar3, Andrew Lindstrom3, Michael Richardson4, Ben Kearns4, Adam Picketts, Chris Smith6, and Detlef R.U. Knappe2 Department of Civil and Environmental Engineering University of North Carolina at Charlotte Charlotte, North Carolina 28223, USA z Department of Civil, Construction, and Environmental Engineering North Carolina State University Raleigh, North Carolina 27695, USA 3 National Exposure Research Laboratory U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711, USA 4 Cape Fear Public Utility Authority Wilmington, North Carolina 28403, USA I Town of Pittsboro Pittsboro, North Carolina 27312, USA 6 Fayetteville Public Works Commission Fayetteville, North Carolina 28301, USA 'Corresponding Author Email: msun8@uncc.edu; Phone: 704-687-1723 Page 1 of 12 Analytical standards: PFASs studied in this research are listed in Table Sl. For legacy PFASs, native and isotopically labeled standards were purchased from Wellington Laboratories (Guelph, Ontario, Canada). Native PFPrOPrA was purchased from Thermo Fisher Scientific (Waltham, MA). No analytical standards were available for other PFECAs. PFAS quantification: PFAS concentrations in samples from DWTPs and adsorption tests were determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) using a large - volume (0.9 mL) direct injection method. An Agilent 1100 Series LC pump and PE Sciex API 3000 LC-MS/MS system equipped with a 4.6 mm x 50 mm HPLC column (Kinetex C18 5µm 100A, Phenomenex Inc.) was used for PFAS analysis. The eluent gradient is shown in Table S4 in SI. All samples, calibration standards, and quality control samples were spiked with isotopically labeled internal standards, filtered through 0.45-µm glass microfiber syringe filters, and analyzed in duplicate. The MS transitions for PFAS analytes and internal standards are shown in Table S5 in SI. The quantitation limit (QL) was 25 ng/L for PFOS and perfluorodecanoic acid, and 10 ng/L for other legacy PFASs and PFPrOPrA. The QL was defined as the first point of the standard curve, for which the regression equation yielded a calculated value within ±30% error. For PFECAs without analytical standards, chromatographic peak areas are reported. PFAS concentrations along the treatment train of DWTP C were analyzed using a Waters Acquity ultra performance liquid chromatograph interfaced with a Waters Quattro Premier XE triple quadrupole mass spectrometer (Waters, Milford, MA, USA) after solid phase extraction. Method details are described elsewhere.' The QL for all PFASs with analytical standards was 0.2 ng/L, and peak areas were recorded for PFECAs without standards. Page 2 of 12 Table S1. Perfluoroalkyl substances (PFASs) detected in the Cape Fear River (CFR) watershed Page 3 of 12 O ' : Molecular ► p► ►• ► '► (including all weight carbons1 and S) Perfluorocarboxylic acids (PFCAs) Perfluorobutanoic acid (PFBA) 214.0 C07a 375-22-4 3 4 Perfluoropentanoic acid (PFPeA) 264.0 GHFA 2706-90-3 4 5 Perfluorohexanoic acid (PFHxA) 314.1 QHF1102 307-24-4 5 6 Perfluoroheptanoic acid (PFHpA) 364.1 C7HF1301 375-85-9 6 7 Perfluorooctanoic acid (PFOA) 414.1 GHF1502 335-67-1 7 8 Perfluorononanoic acid (PFNA) 464.1 C9HF1702 375-95-1 8 9 Perfluorodecanoic acid (PFDA) 5141 C1oHF190z 335-76-2 9 10 Perfluorosulfonic acids (PFSAs) Perfluorobutane sulfonic acid (PFBS) 300.1 C4HF9SO33 375-73-5 4 5 Perfluorohexane sulfonic acid (PFHxS) 400.1 C6HF13SO3 355-46-4 6 7 Perfluorooctane sulfonic acid (PFOS) 500.1 GHF603 1763-234 8 9 Perfluoroalkyl ether carboxylic acids with one ether group (mono -ether PFECAs) Perfluoro-2-methoxyacetic acid (PFMOAA) 180.0 QHF503 674-13-5 2 4 Perfluoro-3-methoxypropanoic acid (PFMOPrA) 230.0 GHF703 377-73-1 3 5 Perfluoro-4-methoxybutanoic acid (PFMOBA) 280.0 OHFA 863090-89-5 4 6 Perfluoro-2-propoxypropanoic acid (PFPrOPrA) 330.1 GHF1103 13252-13-6 5 7 Perfluoroalkyl ether carboxylic acids with multiple ether group (multi -ether PFECAs) Perfluoro(3,5-dioxahexanoic) acid (PF02HxA) 246.0 GHF704 39492-88-1 3 6 Perfluoro(3,5,7-trioxaoctanoic) acid (PF030A) 312.0 GHF905 39492-89-2 4 8 Perfluoro(3,5,7,9-tetraoxadecanoic) acid (PF04DA) 378.1 C6HF1106 39492-90-5 5 10 Page 3 of 12 Table S2. Operational conditions of DWTP C on sampling day (August 18, 2014) Parameter ValLie Raw water ozone dose 3.1 m Raw water total organic carbon concentration 6.0 m /L Aluminum sulfate coagulant dose 43 m Coagulation pH 5.70 Settled water ozone dose 1.3 m /L Settled water total organic carbon concentration 1.90 m Empty bed contact time in biological activated carbon filters 9.4 minutes for granular activated carbon layer 2.3 minutes for sand layer Medium pressure UV dose 25 mJ/cm2 Free chlorine dose 1.26 m /L as Ch Free chlorine contact time 17.2 hours Table S3. Water quality characteristics of surface water used in adsorption tests Table S4. LC gradient method for PFAS analysis Time (min) Mobile Phase A'O' (v/v) Mobile Phase B°o Flow Rate (ml/min) 1 ' 1• a 1 - IMM 1• 1 1 1 '1 1 • 1 � 1 •1 1' Mobile phase A: 2 mM ammonium acetate in ultrapure water with 5% methanol Mobile phase B: 2 mM ammonium acetate in acetonitrile with 5% ultrapure water Page 4 of 12 Table S5. MS transitions for PFAS Analysis Page 5 of 12 Legacy PFASs CompoundMS/MS PFBA Transition 212.8 -� 168.8 Internal standard 13C4-PFBA PFPeA 262.9 218.8 13C2- PFHxA PFHxA 313.6 268.8 13C2- PFHxA PFHpA 362.9 - > 318.8 13C4- PFOA PFOA 413.0 368.8 13C4- PFOA PFNA 463.0 418.8 13C4- PFOA PFDA 513.1--),68.8 13C2-PFDA PFBS 299.1-98.8 1802-PFHxS PFHxS 399.1---).98.8 1802-PFHxS PFOS 498.9-98.8 13C4-PFOS PFECAs PFMOAA 180.0-85.0 N/A PFMOPrA 229.1- > 184.9 N/A PFMOBA 279.0 - > 234.8 N/A PFPrOPrA 329.0 284.7 13C2- PFHxA PFO2HxA 245.1--> 85.0 N/A PFO3OA 311. -* 84.9 N/A PFO4DA 377.1--4 85.0 N/A Internal standards Perfluoro-n-[1,2,3,4-13C4]butanoic acid (13C4-PFBA) 217.0 -� 172 Not applicable Perfluoro-n-[1,2-13C2]hexanoic acid (13C2-PFHxA) 315.1--).269.8 Perfluoro-n-[1,2,3,4-13C2]octanoic acid (13C4-PFOA) 417.0 - 372.0 Perfluoro-n-[1,2-13C2]decanoic acid (13C2-PFDA) 515.1 - 469.8 Sodium perfluoro-l- hexane[102]sulfonate (1802-PFHxS) 403.1--> 83.8 Sodium perfluoro-l-[1,2,3,4-13C4]octane sulfonate (13C4-PFOS) 502.9 -+ 79.9 Page 5 of 12 Table S6. Maximum, minimum, mean and median concentrations (nA) of PFASs at three drinking water intakes, max min median mean max min median mean max 104 min median <10 12 mean—, 22 PFBA 99 <10 26 33 38 <10 12 12 PFPeA 191 14 44 62 38 <10 19 19 116 <10 30 36 PFHxA 318 <10 48 78 42 <10 <10 11 24 <10 <10 QO PFHpA 324 <10 39 67 85 <10 <10 11 24 <10 <10 <10 PFOA 137 <10 34 46 32 <10 <10 <10 ' 17 <10 <10 <10 PFNA 38 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 QO PFDA 35 Q5 <25 <25 0-5 <25 Q5 Q5 Q5 Q5 Q5 Q5 PFBS 80 <10 <10 <10 11 <10 <10 <10 <10 <10 <10 <10 PFHxS 193 <10 10 14 14 <10 <10 <10 14 <10 <10 <10 PFOS 346 Q5 29 44 43 <25 Q5 Q5 40 Q5 Q5 Q5 PFPrOPrA <10 <10 <10 <10 10 <10 <10 <10 4560 55 304 631 PFOA+PFOS 447 0 64 90 59 0 0 9 55 <10 <10 <10 E PFASs** 1502 18 212 355 189 0 47 62 4696 55 345 710 * Concentrations less than quantitation limits were considered as zero to calculate means and Z PFASs. Other PFECAs were present in water samples from community C but could not be quantified and were therefore not included in PFASs Page 6 of 12 F O O FY',F OH F F PFMOAA F F F O 0 - F F F F OH F F PFMOAA F F O O � F OH F F F F PFMOPrA PFPrOPrA PF02HxA PF030A F F F F\ /F F OH F F F F -�'fF PF04DA O Figure S1. Molecular structures of PFECAs evaluated in this study Page 7 of 12 Haw River I I I r Cape Fear River watershed amurW,v A DWTP4 Deep River Flow direction N Community B DWTP North Carolina Cape Fear River IIFAS Surface water sampling site for PAC test Cape Fear river basin manufacturing -r "-- - plant Community C:� NO WIN 4M DVrFP WO on 0 NY VT NH C'11 -'e Fear River Surface water I manufacturing plant IA ILCT CO MO KY VVV CA OK NC LAZ TN NM AR MIS AL GA TX LA 100 kin Figure S2. Sampling sites in the Cape Fear River watershed, North Carolina. The scale is for the Cape Fear River watershed map. Page 8 of 12 1200 1000 800 U 200 0 Q�P�OQiPQF6 QFPe QFC PQ'�QPQQoPQQ�PQQOPQQ� QF�*5PF0�QFOPxPQO� PF 200 150 rn c p 100 c� L c CD U C 0 50 U 0 QtP QgP QeP �i�' j.QP QOP QIP FOP FQ'S `�`*' QO`' PPgS QOc QPP�O P QF QF QF P P P P QF P QPOvl P P Page 9 of 12 5000 4000 3000 C 0 = 2000 0 U C O V 1000 U • Community C • • PPP�OoPPFO QFPe QFC PP��PPPoPPP�PPPOPPP� QF��9QP55PF�PkPF�� PF Figure S3. PFAS concentration distributions in the CFR watershed at three drinking water intakes. Concentrations less than quantitation limits were considered as zero. Upper and lower edges of a box represent the 75th and 25th percentile, respectively; the middle line represents the median; upper and lower bars represent the 90th and 10th percentile, respectively; and dots represent outliers (>9011, or <10th percentile). Page 10 of 12 2.5E+07 2.0E+07 WE 5.0E+06 Community A • Mean flow e I PFASs 0 ee n 0 o e e Aq 0%e 2500 2000 1500 1000 n4LL w W 0.0E+00 ' —mn4°° — 0 6/15/13 7/30/13 9/13/13 10/28/13 12/12/13 5.E+07 4.E+07 m 3.E+07 3 O r- 2.E+07 ro v 1.E+07 0. E+00 Community B • Mean flow e 2 PFASs • e • e n e bA e e 500 e•e J 300 N 200 U- 100 100 0 6/15/13 7/30/13 9/13/13 10/28/13 12/12/13 LeRMIYA 5.E+07 -a 4.E+07 o 3.E+07 C 2.E+07 1. E+07 0.E+00 6/1/13 7/1/13 7/31/13 8/30/13 9/29/13 6000 5000 4000 c 3000 cn a LL 2000 w 1000 0 Figure S4. Total PFAS concentrations in the source water and stream flow at the three studied DWTPs. Stream flow data were acquired from US Geological Survey stream gage records Page 11 of 12 iwW a 80% 9 60% m 40% u 20% 0% -20% 0 20 40 60 80 100 120 140 time (min) +PFBA -o-PFPeA ,_ PFHxA-*EPFHpA-*-PFOA •- PFNA -<>-PFDA-a-PFBS-o-PFHxS-A-PFOS 100% c----- � 80% a, 60% a 40% E 20% 0% -20% 0 20 40 60 80 100 120 140 time (min) --*-PFBA -a-MeA PFHxA-*-PFHpA - PFOA -4p,-PFNA-Q-PFDA -.o-PFBS-0-PFHS-t-PFOS 100% 80% e / ���� � 60% 40% E v Cr 20% 0% .20% 0 20 40 60 80 100 120 140 time (min) -f-PFBA -a-PFPeA PFHxA-9E-PFHpA -*-PFOA PFNA-O--PFDA-a-PFBS PFHxS f PFOS 1W70 80% 60% 40% E W ¢ 20% 0% -20% 100% 80% 60% W 40% E v 20% 0% -20% 0 V 0 20 40 60 80 time (min) -0-PFMOPrA -WPFMOBA -0-PF02HxA -0-PFO30A 100 120 140 PFPrOPrA PF04DA iw,r. 80% Z9 60% m 40% E Ix 20% 0% -20% 20 40 60 80 100 120 140 time (min) tPFMOPrA-f-PFMOBA PFPrOPrA -O-PFO2HxA -F,}-PF030A PF04DA f 0 20 40 60 80 100 120 140 time (min) -+PFMOPrA f-PFMOBA PFPrOPrA ::-PF02HxA -0 PF030A PF04DA Figure S5. PFAS adsorption at powdered activated carbon doses of (a, b) 30 mg/L, (c, d) 60 mg/L and (e, f) 100 mg/L. Figures show average PFAS removal percentages of duplicate tests. Reference 1. Nakayama, S.; Strynar, M. J.; Helfant, L.; Egeghy, P.; Ye, X.; Lindstrom, A. B., Perfluorinated compounds in the Cape Fear drainage basin in North Carolina. Environ. Sci. Techflol. 2007, 41, (15), 5271-5276. Page 12 of 12