Loading...
HomeMy WebLinkAbout19970722 Ver 1_Report_19980115• , North Carolina Division of Water C,luality Water duality Section Environmental Sciences Branch MEMORANDUM To: Steve Tedder Steve Mauney Mike Mickey Dennis Ramsey Don Safrit Coleen Sullins Greg Thorpe January 13, 1998 ~ ~ ~~ ;~ ~' V Through: Jimmie Overton From: Jay Saube Subject: 1997 Upper Deep River Study Report ^'Y d _., ~ ~ ~~ ^;- , - ;,, ~ - ~ IUt~ The purpose of this memorandum is to provide you with an opportunity to comment on the draft report of the 1997 Upper Deep River Study. This study was performed in 1997 to supplement earlier data collected in 1992 and 1993 in anticipation of the proposed impoundment of these waters to form Randleman Lake. Field collections were performed by staff of the Winston-Salem Regional Office. Please return your comments by February 1, 1998. Please call me or Kurt Trumbower at 919-733-6510 if you have any questions or need additional information. Thank you in advance for your prompt review of this important document. ., ;._ ~~ M~ INTERNAL REVIEW DRAFT DO NOT QUOTE OR RELEASE North Carolina Division of Water Quality Water Quality Section Environmental Sciences Branch January 1998 WATER QUALITY MONITORING DATA FOR WATERS IN THE UPPER DEEP RIVER AREA MAY 5, 1997 - SEPTEMBER 3, 1997 This document has been approved by ______________________ Steve W. Tedder Chief, Water Quality Section Date ---------------------- Table of Contents List of Figures ................................................................................................... List of Tables ..................................................................................................... Executive Summary ....................................................................................... ~ Introduction ..................................................................................................... 3 Fecal and Total Coliform Bacteria ............................................................... 8 Metals ................................................................................................................. ~ Z Field Parameters .............................................................................................. 1 `~ Pesticides and Organics ................................................................................... ~ `~ Nutrients, Chlorophyll and Algal Growth Potential Test Results....... ~~ Total Recoverable Phenolics (Phenols) ...................................................... ~ `~ Turbidity, Ambient Monitoring Data and Additional Information... 3- ~ References ......................................................................................................... y ~- List of Figures Figure 1 Map of Upper Deep River Monitoring Locations and the Proposed Randleman Lake ............................................................ 5 Figure 2 Upper Deep River--Flow vs Fecal Coliform Graph .................. ~ ~ Figure 3 Upper Deep River--Flow vs Total Coliform Graph .................. ~ ~ Figure 4 Upper Deep River--Flow vs Copper Graph ................................ . ~ 3 Figure 5 Upper Deep River--Flow vs Iron Graph ..................................... . ~ 5 Figure 6 Upper Deep River Mean and Median Nutrient Concentrations ...................................................................................1 ~ Figure 7 Upper Deep River--Flow vs Total Phosphorus Graph ............ ..13 Figure 8 Upper Deep River Mean Phenols Values ..................................... 2 `~ Figure 9 Upper Deep River--Flow vs Phenols Graph .............................. ..15 List of Tables Table 1 Sampling Stations and Parametric Coverage ................................ y Table 2 Values Greater thanWater Quality Standards or Criteria.......... ~ Table 3 Summary of Data That Exceeds Water Quality Standards or Action Levels as Presently Classified ..................... 7 Table 4 1997 Bacteria Standards Sampling Results -Fecal Coliform...... ~ Table 5 Fecal Coliform Bacteria Frequency Distribution ........................... Q Table 6 1997 Bacteria Standards Sampling Results -Total Coliform...... ~ Table 7 High Point Eastside WWTP Self-Monitoring and Annual Pollutant Analyses Monitoring Data -Copper and Zinc ............. ~ ~- Table 8 Pesticides and Organics Unident.~ied Peaks and Compounds... i~ Table 9 Pesticides and Organics Results ......................................................... ~ ~ Table 10 1997 Algal Growth Potential Test Results .......................................}~1 Table 11 NC Division Of Water Quality Ambient Monitoring Data........ .~~ Table 12 Upper Deep River Miscellaneous Water Quality Data ................ .~$ Table 13 Upper Deep River Nutrient and Chlorophyll Data .......................3 ~ Table 14 Upper Deep River Metals Data ........................................................... 3 ~ Table 15 Upper Deep River Physical Data ....................................................... . 3 z Appendices Appendix A Example of Pesticides and Organics Evaluated by the N.C. Division of Water Quality Appendix B Pesticides and Organics Evaluated in the Annual Pollutant Analysis Monitoring Executive Summary The Piedmont Triad Regional Water Authority (PTRWA) was formed by local governments surrounding the proposed Randleman Lake in 1986 to purchase water supply storage. Because of the potential construction of Randleman Lake, water quality of the upper Deep River area became of particular interest to the public. The Division of Water Quality (formerly, the Division of Environmental Management) performed a water quality monitoring study from July 28, 1992 to October 7, 1993. The results of this sampling effort were reported in Water Quality Moniforing Data For Waters in the Upper Deep River Area July 28, 1992 -October 7, 1993 (DEVi 1994). Because of the continuing interest in the water quality of this area, additional water quality sampling was performed in 1997. This summary discusses the data collected in 1997 and compares this data with earlier data collected from 1992 to 1993. Five monthly sampling events were conducted at nine different locations from May to September of 1997. Additionally, during the month of August, five fecal coliform collections were conducted for the purpose of determining compliance with the fecal coliform water quality standard. Summary tables are provided for all data that equal or exceed water quality standards as presently classified. Summary tables are also provided for all chemical data collected in 1997. No values greater than water quality standards for pH or dissolved oxygen were found during sampling performed in 1997. This was in contrast to the previous study, when dissolved oxygen values lower than the water quality standard of 4.0 mg/L were observed at RL2 and RL4. Fecal coliform concentrations exceeding the state standard of 200/100 ml were found at many stations during the 1997 sampling. The fecal coliform water quality standard (geometric mean value of 200/100 ml) was exceeded at five of nine locations. One additional location had more than 20% of fecal coliform bacteria concentrations greater than 400/100 ml which also exceeded the current water quality standard. Notably, all 1997 fecal coliform bacteria samples (10 observations) were greater than 200/100 ml at Muddy Creek at SR 1936 (RL8). Elevated fecal coliform bacteria concentrations were found at most locations under both low and high flow conditions. Metals concentrations greater than action levels for copper, zinc, and iron were found during the 1997 Upper Deep River study. Of the 45 observations collected for copper, 15 observations were greater than the 7µg/L action level. T~vo of these observations were upstream and 13 observations were found downstream of the High Point Eastside WWTP. The maximum observed copper concentration was 13 µg/L. Of the 45 observations collected for zinc, 14 observations were greater than the 50 µg/L action level. The maximum observed concentration for zinc was 110 µg/L. Self-monitoring data for metals at the High Point Eastside WWTP indicated elevated copper and zinc values in the effluent during the study period, however toxicity tests performed in July, 1997 indicated no toxicity. Total recoverable phenolics (phenols) above laboratory detection levels were found at all stations in the Upper Deep River study area in 1997. There is no numerical water quality standard for phenols for these Class C waters (only a narrative standard for protection of fish tainting). While the waters in this area are not currently classified for water supply, 36 of 45 phenols samples were greater than the state standard of 1.0 µg/L to protect water supplies from taste and odor problems due to chlorinated phenols. However, according to the water quality standards, phenols may be given different limits if they are demonstrated not to cause taste and odor problems and not to be detrimental to other best uses. The maximum observed concentration for phenols was 52 µg/L. Phenol observations greater than 20 µg/L were frequently observed. During the 1997 study, five samples from six different locations were collected for pesticides and organics analyses (tota130 samples). Laboratory analysis of these samples indicated many identified, tentatively identified and unidentified peaks and compounds (610 unidentified peaks). None of the reported laboratory concentrations for organics and pesticides appear to be in excess of the current water quality standards for Class C waters. While it is difficult to accurately summarize all of these results here, in general more organics and pesticides appear to be present in both Richland Creek and the Deep River below the influence of the High Point Eastside WWTP and further downstream in the drainage area. For example, Richland Creek below the High Point Eastside WWTP discharge (5 samples) had 202 unidentified peaks and identified compounds. Richland Creek above the High Point Eastside WWTP discharge (5 samples) had 79 unidentified peaks and identified compounds. In the previous water quality study of the Upper Deep River, violations of the state water quality standards for Lindane and Dieldrin were found. No violations were found in the 1997 sampling for these pararr~eters. As in the previous study, the highest number of unidentified peaks were found at RL4 which is located just downstream of the High Point Eastside WWTP. Elevated concentrations of nitrogen and phosphorus (nutrient levels) were found in the study area in 1997. All nutrient parameters were generally found in higher amounts at stations downstream of the High Point Eastside WWTP indicating that the WWTP is a significant contributing source of nutrients to the Upper Deep River area. Algal growth potential tests (AGPT) performed on six samples collected in 1997 demonstrated that all six sites had elevated AGPT values indicating eutrophication concern for potentially impounded waters. Introduction The Piedmont Triad Regional Water Authority (PTRWA) was formed by local governments surrounding the proposed Randleman Lake in 1986 to purchase water supply storage. Concerns about the present water quality in the Upper Deep River area warranted an earlier investigation of the Deep River and its tributaries by the Division of Water Quality (formerly, Division of Environmental Management). This investigation was performed from July 28, 1992 to October 7, 1993. A report was then produced documenting water quality conditions and entitled Wafer Quality Monitoring Data For Waters in the Upper Deep River Area July 28, 1992 - October 7, 1993 (DEM 1994). To supplement the data previously collected, additional water quality sampling was performed in 1997. Water quality sampling stations and parametric coverage are presented in Table 1. A map of monitoring locations and the proposed Randleman Lake is presented in Figure 1. Water quality samples were collected in accordance with Sfandard Operating Procedures Manual Physical and Chemical Monitoring. (DEM, 1996). All water quality samples were analyzed by the Division of Water Quality's Chemistry Laboratory. The following discussion summarizes results of the data collected in 1997 with some comparisons to previous monitoring efforts. Table 2 presents a summary of parameters that are greater than water qualit~r standards as presently classified. Table 3 presents the individual concentrations for water quality observations that are greater than standards as presently classified. Although the 1992-93 previous sampling effort was performed over a longer period of time, similar (low) flow conditions were present in the May to September time periods of both studies. Flow conditions were evaluated at a United States Geological Survey Station located at RL6. TABLE 1 SAMPLING STATIONS AND PA,FtAMEI'RIC COVERAGE DEEP RIVER AND TTS TRIBUTARIES MAY-SEPTEMBER 1997 (STOREY STATION NUMBERS) tati n # ounty RL1 (CPF091A) Guilford RL2 (CPF091D) Guilford RL3 ,(CPF092) Guilford RL4 (CPF093) Guilford RLS (CPF094) Guilford RL6 (CPF097J) Randolph RL7 (CPF097K) Randolph RL8 (CPF097M) Randolph RL9 (CPF098) Randolph Location Deep River at SR 1113 upstream of High Point Landfill and Seaboard Chemical Deep River at I-85 downstream of High Point Landfill and Seaboard Chemical Richland Creek at SR 1154 upstream of High Point Eastside WWTP Richland Creek at SR 1145 (02099484) downstream of High Point Eastside WWTP Deep River at SR 1129 Deep River at SR 1921 (02099500) Deep River at SR 1936 Muddy Creek at SR 1936 :Deep River at Hwy 220 Bypass pq~C COVERAGE Field measu re. Bact• Me tals Nutrients Asi?T* hS.~_ P t/ r Other Parms RL 1 x .c x x x x x RL2 x x x X x x RL3 x x x x x x x RL4 x x x x x x x x RLS x x x x x x x x RL6 X X x X x X x RL7 X X x X X X X X RL8 X X X X X~ " x x x RL9 x x x x' x x x Field measure. =Dissolved Oxygen, Temperature, ; pH, Conductivity Bact. Metals =Fecal and =Cadmium, Total Coliforrns•Bacteria Copper, ,Nickel, Lead, Zinc,' Iron, Chromium, ~ Aluminum, , Beryllium, Barium, Arsenic, Manganese,: Mercury Nutrients =NH3 as N, TKN, N02 ± N03, P: Total as P, P04 as P *AGPT =Alga1 Gro wth Potential Test (one sampling event) Chl a =Chlorophy ll a Pest/Org Other Parms =Pesticides =Alkalinity, and Organics Chloride, Hardness, Phenols, Sulfate, Solid s, Turbidity High Point Landfill and Seaboard Chemical -- ~3 ~ 5Q'11 cn m h ~ ~ 1`0 j \ High Point ~ Eastside WW'I'P RL3 Richland Cr ha (02099484) RL4 Muddy FIGURE 1 UPPER DEEP RIVER MONITORING LOCATIONS v AND THE PROPOSED o RANDLEMAN LAKE ~ N l Nc s2 \R rs~ ~~ ~ ~~ Bab B~a~ch 0 1 mile ~~ Dam site RANDLEMAN TABLE 2 UPPER DEEP RNER VALUES GAEATER THAN WATER QUALITY STANDARDS OR CWTFAIA 1997 DATA FREQUENCY OF OBSEAVATIONS GREATER THAN STANDARD OR CRITERIA VALUES AS PRESENTLY CLASSIFIED FECAL COUFORM BACTERIA NOT INCLUDED) STATION IRON AL' CU AL' ZN (AL' TURBIDITY RL1 1/5 20%) - - RL2 4/5 80% 1/5 20%) 1/5 20% - RL3 1/5 20% 1/5 20%) 2/5 40% - RL4 - 3/5 60% 2/5 40% - RL5 3/5 60% 3/5 60%) 2/5 40% 1/5 20% RL6 2/5 40% 3/5 60%) 2/5 (40%) - RL7 1/5 20% 1/5 20% 2/5 40% - RL8 3/5 60%1 1/5 20%) 1/5 (20%1 - RL9 2/5 40% 2/5 40%) 2/5 40% - 1992-1993 DATA• FriEOUENCY OF OBSERVATIONS GREATER THAN STANDARD OR CRITERIA VALUES AS PRESENTLY CLASSIFIED (FECAL COUFORM BACTERIA NOT INCLUDED) STATION IRON AL' CD CU (AL' ZN AL') D.O. UNDANE DIE.DRIN RL1 4/14 29°6) - ~ - - - 1/14 7%) - RL2 5/14 36°6) - X1/14 (7°~) - 2/14 14%) - - RL3 1 /14 7%) 1 /14 (7°61 ~ - - ~ - - - RL4 1/14 7%) - X 10/14 71%) 1114 (7°6) - 7/14 50% 1/14 7%) RL5 4/14 29°'°) - 5/14 (36`/°) - - 6/14 43% - RL6 4/14 29% - 5/14 36',6) - - - - RL7 3/13 (23%) - 4/14 (29°6) - - - - RL8 6/14 43%) - 1/14 (7%) 1/14 (7°'°) 1/14 7% - - RL9 4/14 29%) - 5/14 (36°6) - 4/14 (29%) - AL' ARE ACTION LEVELS AS DEFINED IN 15 NCAC 29 .0211 (b)(4) 1997 DATA FECALCOUFORM BACTEFJA SUMMARY OF STATION LOCATIONS 4"JITH VALUES GREATER THAN WATER CUAUTY STANDARDS AS PRESENTLY CLASSIFIED STATION GECNIETF~C MEAN >200/100 ML MORE THAN 20% >400/Ml RL1 RL2 RL3 X X RL4 RL5 X X RL6 X RL7 X X RL8 X X RL9 X X 1992-1993 DATA FECALCOUFORM BACTERIA SUMMARY OF STATION LOCATIONS WITH VALUES GREATER THAN WATER QUALITY STANDARDS AS PRESENTLY CLASSIFIED STATION GEOMETRIC MEAN >200/100 M MORE THAN 20% >400/ML RL1 RL2 RL3 RL4 RL5 RL6 RL7 Rle X X RL9 X X TABLE 3 SUMMARY OF 1997 UPPER DEEP RNER DATA THAT EQUALS OR EXCEEDS WATER OUALRY STANDARDS OR ACTION LEVELS AS PRESENTLY CIASSlFIED STATION ft DATE THE RCN QJ 2N TUPBIDf1Y UGiI UG/L UG/L NRJ ACTION LEVEL.1000 UG/l ACTION LEVEL.? UGiL ACTION LEVEL.50 UG/L STD.50 NTU RLt 970505 910 1900 RL1 970802 935 RL1 970903 905 RL2 970505 1015 2700 RL2 970802 1020 RL2 970708 920 1300 RL2 970808 925 1500 9.9 RL2 970903 945 1100 81 RL3 970802 955 RL3 970708 900 RL3 970801 1015 RL3 970808 900 71 RL3 970812 1025 RL3 970818 1020 RL3 970825 1025 RL3 970903 925 1200 7.2 77 RL4 970708 935 7.7 RL4 970801 1035 RL4 970808 940 7.3 82 RL4 970812 1045 RL4 970903 1000 10 97 RL5 970505 1100 1800 RL5 970708 955 12 RL5 970801 1045 RLS 970808 1000 1100 7.9 110 RL5 970812 1050 RLS 970825 1105 Rl5 970903 1020 2700 13 96 50 RLB 970505 1120 1400 9.7 RLB 970802 1125 RLS 97oeo1 loss RLB 970808 1020 1900 5.8 81 RLB 970812 1100 RLB 970903 1040 10 _ 88 . RL7 970505 1255 1800 RL7 970801 1135 RL7 970808 1125 79 RL7 970825 1125 RL7 970903 1220 8.9 88 RL8 970505 1235 1500 RL8 970802 1245 7.3 RL8 970708 1150 RLB 970801 1130 RLB 970808 1110 1600 RLB 970812 1115 RLB 970818 1115 RLB 970525 1130 RL8 970903 1200 2500 85 RL9 970505 1145 1800 9.1 RL9 970802 1150 RL9 970708 1050 RL9 970801 1110 RL9 97oeos 1o4s sa RL9 970812 1125 RL9 970825 1140 RL9 970903 1105 1400 9.4 74 s/1/97 5/6/97 5/11/97 5/16/97 5/21/97 5/26/97 5/31/97 6/5/97 6/10/97 6/15/97 6/20/97 6/25/97 6/30/97 7/5/97 7/10/97 7/15/97 ~ 7/20/97 7/2/97 7/30/97 8/x/97 8/9/97 8/14/97 8/19/97 8/24/97 8/29/97 9/3/97 9/8/97 9/13/97 9/18/97 9/23/97 9/28/97 Flow (cfs) •-• ra w a o S S S S ~ a v 0 0 ~ -~ 0 n y ~../ C I N 1 i r-. CD 't3 _~ <~ CD -~ TT' ~ "~ =1 O V r `~ O n O .... O ~, J g g ~ o 0 0 0 0 0 0 (ads 80'1) (Iw00i/#) tuiolrlo~ t~oZ Fecal and Total coliform Bacteria As was observed in the previous study, fecal coliform values above the water quality standard of 200/100 ml (geometric mean) were found at many locations during the sampling period. This standard is, however, based on at least 5 samples in a 30 day period. For the purpose of determining if the standard of 200/100 ml was exceeded, five sampling events for fecal coliform bacteria were performed in a 30 day period from August 1, 1997 to August 27, 1997. The fecal coliform standard, which is a geometric mean, was exceeded at stations RL3 (708/100 ml), RL5 (381/100 ml), RL7 (252/100 ml), RL8 (2,158/100 ml), and RL9 (655/100 ml). Stations RL3, RL5, RL6, RL7, RL8, and RL9 also had violations of more than 20% of all samples examined greater than 400/100 ml. Fecal coliform bacteria results from these sampling events are summarized in Table 4. Table 4 1997 Upper Deep River Area Standards Sampling in August Fecal coliform Bacteria Location* 8/1/97 8/6/97 8/12/97 8/18/97 8/25/97 ~o Mean RL1 26 17 26 80 30 31 RL2 26 350 30 23 80 55 ~L 240 1,300 1,100 2,400 220 708** RL4 300 230 300 170 70 190 IRS. 500 800 500 80 500 381** IRS- 500 800 300 30 80 196 RL7 500 140 170 170 500 252** ~L$ 2,200 5,000 1,700 500 5,CC0 2,158** RL9 300 2,400 900 110 1,700 655'* *underlined stations exceeded WQ standard of more than 20% of all samples examined greater than 400/100 ml **values greater than standard of a geometric mean of 200/100m1 As was also observed in the previous study, the highest fecal coliform bacteria concentrations were found in Muddy Creek. All fecal coliform bacteria samples collected during the 1997 sampling study were above the 200/100 ml standard at RL8, located in Muddy Creek. The high fecal coliform bacteria values found at RL8 are also reflected in a frequency distribution table of fecal coliform bacteria values, presented in Table 5. Table 5 Fecal coliform Bacteria 1997 Frequency Distribution #obs. #obs. 200-499m1 500-999m1 #obs. Maximum i n #obs• r 1 ml 1 ml >1000/100m1 Value (,#/100mi1 RLl 10 2 0 0 300 RL2 10 4 0 0 5100 RL3 10 3 2 4 5000 RL4 10 5 0 0 300 RL5 10 0 5 1 2000 RL6 10 3 3 1 3000 RL7 10 0 2 0 500 RL8 10 1 1 8 >9900 RL9 _ 10 2 2 4 4100 A graph of flow versus fecal coliform is presented in Figure 2. Data at stations both upstream and downstream of the High Point Eastside WWTP were graphed as well as data at a station in Muddy Creek and in the mainstem of the Deep River. Elevated fecal coliform bacteria levels were seen both in periods after rainfall and during prolonged dry periods. Total coliform bacteria results from August 1997 bacteria sampling runs are summarized in Table 6. Table 6 Total coliform Bacteria August 1997 Upper Deep River Area Location 8/1/97 8/6/97 8/12/97 8/18/97 8/25197 Geo. Mean RL1 110 300 500 240 140 223 RL2 1,600 5,000 500 130 5,000 1,211 RL3 3,000 9,000 3,000 5,000 3,000 4,139 RL4 300 3,000 500 900 1,100 851 RL5 3,000 >16,000* 900 1,700 3,000 2,942 RL6 500 9,000 500 500 500 891 RL7 1,100 3,000 3,000 500 900 1,348 RL8 5,000 9,000 5,000 3,000 9,000 5,711 RL9 700 3,000 900 2,400 9,000 2,100 *16,000 used for geometric mean calculation Although no water quality standards are applicable for total coliform bacteria, elevated concentrations for this parameter were found at all stations, especially at RL8, located in Muddy Creek. A graph of flow versus total coliform is presented in Figure 3. Similar to fecal coliform, data at stations both upstream and downstream of the High Point Eastside WWTP were graphed as well as data at a station in Muddy Creek and in the mainstem of the Deep River. Also similar to fecal coliform bacteria, elevated total coliform bacteria levels were seen both in periods after rainfall and in dry periods. Metals As observed in the previous study, metals concentrations higher than action levels for copper, zinc, and iron were found in 1997. Of the 45 observations collected for copper, 15 observations were greater than the 7µg/L action level. Two of these observations were upstream and 13 observations were found downstream of the High Point Eastside WWTP. The maximum observed copper concentration was 13 µg/L. Self monitoring by the High Point Eastside WWTP for toxicity performed in July, 1997 revealed no toxicity at a 90% effluent concentration over a 7 day period. A graph of flow versus copper is presented in Figure 4. Stations in the graph were selected to represent waters downstream of the High Point Eastside WWTP. From data presented in the graph, copper concentrations appear to be greater under low flow conditions at RL4, located in Richland Creek immediately downstream of the High Point Eastside WWTP. During 1997, 45 observations were collected for zinc, 14 of these observations were greater than the 50 µg/L action level. The maximum observed concentration for zinc was 110 µg/L. Eleven of these fourteen observations greater than the action level of 50 µg/L were also found downstream of the High Point Eastside WWTP. High Point Eastside WWTP self-monitoring data available for May to August, 1997 and 1997 Annual Pollutant Analysis Monitoring (APAM) revealed elevated copper and zinc values. These data are represented in Table 7. Table 7 High Point Eastside WWTP Copper and Zinc 1997 Self-Monitoring and Annual Pollutant Analyses Monitoring Data j~~ Coocer (ue/L) zinc (11Y/I.l p~ ~oocer (ue/Ll 7.i_ nc (1},~~1 1/24/97* 8 34 :i/15/97 10.82 143 4/25/97* 6 29 7/17/97 14.81 55 5/1/9? 13.67 36 7/18/97* 11 47 5/8/97 10.28 81 7/18/97 2.15 <25 5/15/97 9.62 89 7/24/97 9.96 47 5/22/97 9.06 76 7/31/97 12.75 60 5/29/97 4.00 47 8/7/97 10.22 <25 6/5/97 7.59 69 8/21/97 10.15 <25 8/14/97 10.45 45 8/28/97 18.58 27 6/12/97 8.70 65 9/4/97 11.12 44 6/20/97 9.00 65 9/11/97 12.82 26 6/26/97 8.31 98 9/18/97 12.74 64 7/2/97 7.14 48 9/25/97 14.10 38 7/10/97 9.64 64 10/10/97* 13 35 *Annual Pollutant Analyses Monitoring (APAM) Data For comparative purposes, a review of historical N. C. Division of Water Quality ambient monitoring data for copper and zinc was performed for two Piedmont monitoring stations with large drainage areas with urban centers. Copper and zinc data from January 1993 to September 1997 at the Cape Fear River at N. C. Highway 42 near Corinth (station # B6160000) and at the Yadkin River at U. S. Highway 64 at Yadkin College, N. C. (station # Q2810000) were reviewed. At the Cape Fear River location, 10 of 54 copper observations were greater than the 7µg/L action level. Five of 53 zinc values at this Cape Fear River location were greater than the 50 µg/L action level for zinc. At the Yadkin River location, 8 of 34 copper observations were r :, Copper (µg/1) N ~ ~ ~ ~ ~ oC ~O ~t N O G1 .! G~ Q~ z~ U ~_° N d' ~ ~ ~~ ~ ~ ~' bA , 31 ^~ i of .~ ~ :L ( v, ~ -- .! ... 4J 4J Q a ~ ~ X N 4r U 3 0 LG/8Z/6 LG/£Z/G LG/8T/6 LG/£i/6 LG/8/6 LG/£/6 LG/GZ/8 LG/tZ/8 LG/GI/8 LG/til8 LG/G/8 LG/t/8 LGlO£lL LGISZIL LG/OZ/L ~ LG/SI/L p LG/OI/L LG/S/L LG/0£/9 LG/SZ/9 LG/OZ/9 LG/S I/9 LG/0I/9 LG/S/9 LG/i £/S L6/9Z/S LG/IZ/S LGJ9I/S LG/i i/S LG/9/S LG/I/S 0 12 ~ ~ ~ O O N S ~5.~0) M0~ greater than the 7µg/L action level while seven of 34 zinc values were greater than the 50 µg/L action level. Iron concentrations in Piedmont streams are frequently elevated due to naturally occurring iron in the clay soils of the area. Furthermore, elevated concentrations of iron are fairly easy to remove during the drinking water process. However, in order to help characterize current iron levels in the Upper Deep River area, forty-five stream observations for iron concentration were collected during the 1997 Upper Deep River Study. Seventeen observations were reported as greater than the action level of 1 mg/L. A graph of flow versus iron is presented in Figure 5. Stations in the graph were selected to represent all areas of the study area except Richland Creek, where the High Point Eastside WWTP discharge is located. No clear relationship between flow and iron concentrations was suggested in the graph. Field Parameters (dissolved oxygen, temperature, pH, conductivity) No violations of water quality standards for field parameters were found during sampling performed in 1997. This was in contrast to the previous study, when dissolved oxygen values lower than the water quality standard of 4.0 mg/L were found at stations RL2 and RL8. Pesticides and Organics In addition to field measurements, biochemical parameters, nutrients, and metals analysis (often collectively referred to as conventional parameters), the 1997 Upper Deep River study also included monitoring for organic compounds which included organochlorine, organophosphorus, and nitrogen pesticides, and acid herbicides. Also included in the analyses were base/neutral and acid extractable organics, volatile and semi-volatile compounds. These analysis are collectively referred to as pesticides and organics. Because there are potentially thousands of organic compounds present in the environment, the DWQ tested for the most commonly occurring compounds by using an extensive array of analytical procedures on the 30 samples collected as part of this study. Samples were analyzed for the presence of approximately 90 different pesticides using gas chromatographic (GC) techniques (Appendix A). Pesticide evaluation included GC electron capture detection for approximately 50 halogenated pesticides and 16 acid herbicides. Additionally, approximately 25 organophosphate pesticides were evaluated using GC flame photometric detection techniques. In general, all pesticides are analyzed and quantified by comparisons with laboratory prepared standards. If relatively large concentrations of unidentifiable compounds are detected, samples may be further analyzed by mass spectrometry techniques. Routinely, approximately 66 semi-volatile organic compounds (Appendix A) are analyzed by mass spectrometry and quantified by comparisons with laboratory prepared standards. These particular compounds are included in the Environmental Protection Agency's list of priority pollutants. Occasionally, during laboratory analysis of the semi-volatile samples, compounds that do not match the laboratory prepared standards may be detected. These "unmatched" compounds can then be compared to a mass spectral library of approximately 41,000 compounds. If a compound matches a library compound it is tentatively identified and its i~ Iron (µg/1) 8 S o c~ N N ~-- .-~ v1 O i i i h ~, G~ -~ C ~ ~- ~ f I 3 ~' ~ C J ~ N ~ ~ ' ..: ` ~ ~ ~ ~ z ~ G4 ~ ~, o i ~ ~ ~ ~ ~~ I ~. N ~ _ x -~- ~- I w U o ~ ~ ~ LG/8Z/G L6/£Z/6 LG/8I/6 L6/£ i/6 LG/8/6 L6/£/6 L6/6'c/8 L6/tiZ/8 L6/6i/8 L6/tii/8 L6/6/8 L6/trl8 L6/0£lL L6/SZIL L6/OZ/L ~ L6/Si/L p L6/0I/L L6/S/L L6/0£/9 L6/SZ/9 L6/0"c/9 L6/SI/9 L6/0I/9 L6/Sl9 L6/i£/S L6/9Z/S L6/IZ/S L6/9I/S L6/i i/S L6/9/S L6/i/S 0 ~r i ~ o°oo o g S o 0 (s,I~) mom concentration is estimated by comparing the compound's response to an internal standard response. Similarly, there are approximately 54 volatile compounds (Appendix A) analyzed by GC electrolytic conductivity detectors and photo ionization detectors and quantified by comparisons with laboratory prepared standards. During laboratory analysis of the volatile samples, compounds that do not match the prepared standards may be detected. These compounds can also be compared to the same 41,000 compound mass spectral library. Since there are far too many individual compound analyses conducted under the overall umbrella of the pesticides and organics procedures to individually report, only those compounds that have been quantified by comparison to laboratory standards or have had concentration estimates reported by comparison with library identifications and internal standards are reported here. Thus the majority of the compounds, those that were not found and identified in the collected samples are not specifically listed in this summary document. Where laboratory analysis has indicated the presence of a compound but the compound could not be reliably matched to the available library, the compound is listed as an unidentifiable peak. Numerous unidentified peaks were found in pesticides and organics data collected in 1997. A list of the number of unidentified peaks that were found in this sampling effort is presented in Table 8. Table 8 Upper Deep River Pesticides and Organics Unidentified Peaks and Compounds 1997 Max. # Unidentified Peaks for a Single # of Sampling Total # of 1,.S2SSt1QII ~~ FY.QIIt Events Unidentified Peaks* RLl 18 5 46 RL3 19 5 73 RL4 53 5 182 RL5 41 5 138 RL7 41 5 132 RL8 11 5 39 *Total # of unidentified peaks found does not necessarily indicate that all compounds found were different All pesticides and organics results from 1997 sampling for the Upper Deep River study are presented in Table 9. In the previous water quality study of the Upper Deep River, violations of the state water quality standards for Lindane and Dieldrin were found. No reportable concentrations were found in the 1997 sampling for these parameters. As in the previous study, most of the unidentified peaks were found at RL4 which is located just downstream of the High Point Eastside WWTI'. Annual Pollutant Analysis Monitoring by the City of High Point was performed quarterly in 1997. No pesticides and organics were reported in these tests above TABLE 9 1997 UPPER DEEP RIVER PESTICIDES/ORGANICS DATE RESULTS STATION RL1 970505 4 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970505 4 UNIDENTIFED ACID HERBICIDE PEAKS 970505 2,4-D DETECTED BELOW OUANTITATION LIMIT 9 70505 PENTACHLOROPHENOLbETECTED BELOW QUANTITATION LIMIT 970602 13 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 9 70602 5 UNIDENTIFIED ACID HERBICIDE PEAKS 970602 2,4-D - 0.13 UG/L (ESTIMATED) 970708 5 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970708 3 UNIDENTIREDACID HERBICIDE PEAKS 970806 6 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970903 6 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970903 2,4-D - 0.13 (ESTIMATED) STATION RL3 970505 CHLOPOFORM DETECTED 6ELOW OUANTITATION LIMIT 970505 6 UNIDENTIFIED CHLORINATED PEST1CIDE PEAKS 970505 4 UNIDENTIFIED ACID HERBICIDE PEAKS 970505 PENTACHLOROPHENOL - 0.02 UG/L (ESTIMATED) 970505 2 UNIDENTIF1ED OP,GANOPHOSPHATE PESTICIDE PEAKS 970602 9 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 9 70602 1 UNIDENTIFIED ACID HERBICIDE PEAK 970602 PENTACHLOROPHENOL - 0.05 UG/L (ESTIMATED) 970602 4 UNIDENTIRED ORGANOPHO:~''HATE PESTICIDE PEAKS 970708 9 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 9 70708 4 UNIDENTIFIED ACID HERBICIDE PEAKS 970708 2 UNIDENTIFED ORGANOPHOSPHATE PESTICIDE PEAKS 970806 4 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970806 PENTACHLOROPHENOL - 0.03 UG/L 970806 4 UNIDENTIFIED ACID HERBICIDE PEAKS 970806 5 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS 970903 10 UNIDENTIRED CHLORINATED PESTICIDE PEAKS 970903 2,4-D - 0.18 UG/L 970903 PENTACHLOROPHENOL - 0.02 UG/L (ESTIMATED) 970903 6 UNIDENTIFIED ACID HERBICIDE PEAKS 970903 3 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS STATION RL4 970505 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 10 UG/L (ESTIMATED) 970505 HEXADECANOIC ACID TENTATIVELY IDENTIFIED -17 U~G/L (ESTIMATED) 970505 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 6 UG/L (ESTIMATED) 970505 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 6 UG/L (ESTIMATED) 970505 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 5 UG/L (ESTIMATED) 970505 TETRAHYDRO THIOPHENE DIOXIDE TENTATIVELY IDENTIFIED - 46 UG/L (ESTIMATED) 970505 DICHLORO PROPANOL PHOSPHATE TENTATIVELY IDENTIFIED - 18 UG/L (ESTIMATED) 970505 CHLOROFORM -1.5 UG/L TABLE 9 1997 UPPER DEEP RIVER PESTICIDES/ORGANICS DATE RESULTS 970505 2-CHLOROTOLUENE -1.4 UG/L 970505 1,4-DICHLOROBENZENE TENTATIVELY IDENTIFIED - 0.27 UG/L 970505 PROPACHLOR - 0.61 UG/L (ESTIMATED) 970505 25 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970505 5 UNIDENTIFIED ACID HERBICIDE PEAKS 970505 19 UNIDENTIFIED ORGANOPHOSPHATEPESTKIDE PEAKS 970602 10 UNIDENTIFIED ORGANOPHOSPHATE PESTKIDEPEAKS 970602 METHYLENE CHLORIDE - 30 UG/L (ESTIMATED) 970602 CHLOROFORM TENTATIVELY IDENTIFIED -1.3 UG/L 970602 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND -140 UG/L (ESTIMATED) 970602 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 8 UG/L (ESTIMATED) 970602 9 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970602 PENTACHLOROPHENOL - 0.07 UG/L 970602 13 UNIDENTIFIED ACID HERBICIDE PEAKS 970708 CHLOROFORM - 6.8 UG/L (ESTIMATED) 970708 BROMODICHLOROMETNANE - 3.3 UG/L 970708 DIBROMOCHLOROMETHANE-0.99UCv'L 970708 8 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970708 3 UNIDENTIFIED ACID HERBICIDE PEAKS 970708 8 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS 970806 CHLOROFORM - 8.3 UG/L (ESTIMATED) 970806 BROMODICHLOROMETHANE - 2.3 UG/L 970806 DIBROMOCHLOROMETHANE -1.8 UG/L 970806 13 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970806 19 UNIDENTIFIED ACID HERBICIDE PEAKS 970806 11 UNIDENT1FIED ORGANOPHOSPHATEPESTKIDE PEAKS 970806 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 5 UG/L (ESTIMATED) 970806 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 28 UG/L (ESTIMATED) 970903 CHLOROFORM -13 UG/L (ESTIMATED) 970903 BROMODICHLOROMETHANE - 8.6 UG/L (ESTIMATED) 970903 DIBROMOCHLOROMETHANE - 2.0 UG/L 970903 3 UNIDENTIFIED VOLATILE ORGANIC PEAKS 970903 12 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970903 DINOSEB TENTATIVELY IDENTIFIED 970903 11 UNIDENTIREDACID HERBICIDE PEAKS 970903 4 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS 970903 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 10 UG/L (ESTIMATED) STATION RLS 970505 TETRAHYDRO THIOPHENE DIOXIDE TENTATIVELY IDENTIFIED - 10 UG/L (ESTIMATED) 970505 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 9 UG/L (ESTIMATED) 970505 CHLOROFORM DETECTED BELOW OUANTITATION LIMIT 970505 17 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970505 2,4-D - 0.1 UG/L (ESTIMATED) 970505 PENTACHLOROPHENOL - 0.01 UG/L (ESTIMATED) 970505 7 UNIDENTIFIEDACID HERBICIDE PEAKS TABLE 9 1997 UPPER DEEP RIVER PESTICIDES/ORGANICS DATE RESULTS 970505 6 UNIDENT1FlED ORGANOPHOSPHATEPESTKIDE PEAKS 970602 METHYLENE CHLORIDE TENTATIVELY IDENTIFIED - 30 UG/L 970602 1,1-DICHLOROETHANE - 0.36 UG/L 970602 CHLOROFORM - 0.36 UG/L 970602 CHLOROBENZENE -1.7 UG/L 970602 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND -140 UG/L (ESTIMATED) 970602 12 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970602 7 UNIDENTIFIEDACID HERBICIDE PEAKS 970602 PENTACHLOROPHENOL - 0.03 UG/L (ESTIMATED) 970602 7 UNIDENT1F1E0 ORGANOPHOSPHATE PESTICIDE PEAKS 970708 ~ UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970708 2 UNIDENTIFIED ACID HERBICIDE PEAKS 970708 9 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS 970708 CHLOROFORM TENTATIVELY IDENTIFIED - 3.3 UG/L 970708 BROMODICHLOROMETHANETENTATIVELY IDENTIFIED- 1.5 UG~'L 970708 DIBROMOCHLOROMETHANETFNTATIVELY IDENTIFIED - 0.50 UG~'L 970806 CHLOROFORM - 2.4 UG/L 970806 BROMODICHLOROMETHANE - 0.88 UG/L 970806 DIBROMOCHLOROMETHANETFNTATIVELY DETECTED BELOW QUANTITATION LIMIT 970806 10 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970806 19 UNIDENTIFIEDACID HERBICIDE PEAKS 970806 11 UNIDEMIFIED ORGANOPHOSPHATEPFSTICIDE PEAKS 970806 DICHLOROPROPANOL PHOSPHATE TENTATIVELY IDENTIFIED - 11 UG/L (ESTIMATEDI 970806 1 UNIDENTIFIED SEMI-VOL.~~TILE COMPOUND - 48 UG/L (ESTIMATED) 970903 CHLOROFORM TENTATIVELY IDENTIFIED - 4.5 UG/L (ESTIMATED) 970903 BROMODICHLOROMETHANETFNTATIVELY IDENTIFIED - 1.9 UG/L 970903 DIBROMOCHLOROMETHANETFNTATIVELY IDENTIFIED - 0.47 UG:'L 970903 9 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970903 11 UNIDENTIFIEDACID HERBICIDE PEAKS 970903 4 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS 970903 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 6 UG/L (ESTIMATED) STATION RL7 970505 CHLOROFORM TENTATIVELY DETECTED BELOW QUANTITATION LIMIT 970505 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 8 UG/L (ESTIMATED) 970505 16 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970505 2 UNIDENTIFIED ACID HERBICIDE PEAKS 970505 4 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS 970602 17 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970602 12 UNIDENTIFIEDACID HERBICIDE PEAKS 970602 11 UNIDENTIFIED ORGANOPHOSPHATEPFSTICIDE PEAKS 970602 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 98 UG/L (ESTIMA: ED) 970602 DICHLORO PROPANOL PHOSPHATE TENTATIVELY IDENTIFIED - 14 UG/L (ESTIMATED) 970708 3 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970708 4 UNIDENTIFIEDACID HERBICIDE PEAKS 970708 10 UNIDENT1FlED ORGANOPHOSPHATE PESTKIDEPEAKS TABLE 9 1997 UPPER DEEP RIVER PESTICIDES/ORGANICS DATE RESULTS 970708 CHLOROFORM TENTATIVELY DETECTED BELOW QUANTITATION LIMIT 970806 6 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970806 11 UNIDENTIFIED ACID HERBICIDE PEAKS 970806 8 UNIDENTIFIED ORGANOPHOSPHATE PESTICIDE PEAKS 970806 CHLOROFORM - 0.41 UG/L (ESTIMATED) 970806 1 UNIDENTIFlED SEMI-VOLATILE COMPOUND -360 UG/L (ESTIMATED) 970806 1 UNIDENTiFlEDSEMI-VOLATILE COMPOUND -14 UG/L (ESTIMATED) 970806 1 UNIDENTIFlEDSEMI-VOLATILE COMPOUND -14 UG/L (ESTIMATED) 970903 9 UNIDENTIFlED CHLORINATED PESTICIDE PEAKS 970903 7 UNIDENTIFED ACID HERBICIDE PEAKS 970903 ~6 UNIDENTIFlED ORGANOPHOSPHATE PESTICIDE PEAKS 970903 CHLOROFORM TENTATIVELY IDENTIFIED - 0.35 UG/L 970903 1 UNIDENTIFIED SEMI-VOLATILE COMPOUND - 7 UG/L (ESTIMATED) STATION RL8 970505 ATRAZINE DETECTED BELOW OUANTITATION LIMIT 970505 4 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970505 1 UNIDENTIFIED ACID HERBICIDE PEAK 970602 3 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970602 3 UNIDENTIFIED ACID HERBICIDE PEAKS 970708 2 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970708 4 UNIDENTIFlEDACID HERBICIDE PEAKS 970806 7 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970806 4 UNIDE~~TIFIED ACID HERBICIDE PEAKS 970903 8 UNIDENTIFIED CHLORINATED PESTICIDE PEAKS 970903 3 UNIDEMIFlEDACID HERBICIDE PEAKS water quality standards. A list of pesticides and organics evaluated in the annual pollutant analysis monitoring is listed in Appendix B. Nutrients, Chlorophyll a ,and Algal Growth Potential Results Nutrients (nitrogen and phosphorus) were generally found in elevated amounts throughout the study area in 1997. In order to expand the nutrient data set, 1997 observations (5 for each location) were combined with the previous 1992-93 observations (14 for each location). Mean and median nutrient concentrations for all nutrient samples collected in 1992-93 and 1997 are presented in Figure 6. This figure shows that the highest concentrations for all nutrient parameters were found at RL4, just downstream of the High Point Eastside WWTP. The lowest nutrient concentrations in 1997 were generally found in the Deep River, at stations upstream of the confluence with Richland Creek. A graph of total phosphorus versus flow is presented in Figure 7. This graph suggests a potential inverse relationship between phosphorus concentration and flow. Insufficient data were collected to attempt nutrient loading calculations. One chlorophyll a concentration was found above the state standard of 40 µg/L for lakes, reservoirs, and other slow-moving waters. This elevated chlorophyll a value was 140 µg/L at RL6 (Deep River at SR 1921) on September 3, 1997. This elevated chlorophyll a value suggests potential eutrophication concerns if these waters are impounded. Algal growth potential tests (AGPT) were collected at six locations on July 8, 1997. The AGPT provides a very good estimate of bioavailable and limiting nutrients at the time of sample collection. The objective of the AGPT is to determine the total quantity of algal biomass of a test organism supportable by the test waters under optimum physical conditions and to determine whether algal growth is limited by either phosphorus or nitrogen. The measurements are made by adding a test algae, Selenastrum eal?ricornutum, to the test water and determining algal growth at appropriate intervals. An in-lake maximum concentration of 5 mg dry weight/L (maximum standing crop) of the test algae is a level that will reasonably assure protection from nuisance algal blooms and fish kills in warm water southeastern lakes (Raschke, 1989). A concentration of 5 mg dry weight/L converts to approximately 57 µg/L of chlorophyll a. In cases where the control maximum standing crop growth rates are > 5.0 mg/L, there are sufficient quantities of biologically available growth limiting constituents to support algal growth in excess of 57 µg/L chlorophyll a. Although the waters of the upper Deep River area are not currently impounded as a lake, AGPT results indicated that all six sites had results greater than 10 mg/L and would be considered highly eutrophic. The highest AGPT value was 211 mg/L, found at RL7. Most stations were nitrogen limited which is often due to excess phosphorus inputs from wastewater treatment plants and agricultural sources. AGPT results from the previous study also indicated eutrophication concerns with the potential for significant problems from algal response to excessive nutrients. The AGPT results collected in 1997 are listed in Table 10. ~~ )~igure 6 Upper Deep River Mean and Median Nutrient Concentrations (1992-1993 and 1997 data combined) NH3 TKN 1.25 1.20 1.15 1.10 1.05 1.00 0.95 0.90 0.85 ~ 0.80 E 0.75 0.70 j 0.6.5 ,~, 0.60 Y ~ O.s``S ~JQ 0.45 0.40 0.35 0.30 0is 0.30 0.15 0.10 0.05 0.00 to.,~ ..........................:..................................._..............__..... lam ................................ Q.........._.... ....._............___...... f r4 .............................. ........................ ...... _............~_._. . .... ........... f37 ........................ ............................... ............ ............... ................._w .... ......................... ........ B.aO ............................... ............... . .................................. t.JO ................................ ............... .................................. 600 ............................... ............... ......................._._........ 7.G0 737 ................................ ~ .............._. ................................. 6J0 ..................... ...... ............. ......_............._....... 600 ;:S?'.'~,.',.^. ..a <:^i$ 3.37 `{uti '`: :.L"..-1.. ... ... za ::. :.~ .. .~:::::. :;n<?:: :::::::. .....:: ...r :: .. ),ap ................................ M1ri r::.i. ::::. ~ .. 00 v 7 im tlo iao L90 L80 LA 1.60 ^, I.fl C m Itl o I.JO 131 c I.ro 0 0.0J 6.l7 0.A 0.!0 oso 0.40 0.J0 0.'.A 0.10 0.00 z.o .............. ............... z.lo .............. iA0 .............. ............... 1.90 ............... .............. I!0 I.70 :.............. ............... 1.50 ~ 130 ............... ~ Ia0 v 1~0 ............... V ~ 110 .. ~«........«. ~ Llo .............. O ............. I.00 ............. 0.90 .. 0.60 ~ ............. 0.70 0.60 ~ ......~...... oso o,o ................ o.w ................ o:o ......:......... ... 0.10 ................ 0.00 RLt Rl3 RIJ RL6 RLS AL6 RL7 RU RLf ~'I ~ RIJ RU R(S RL6 RL7 ~ RL9 Sampling Siatioru Sampling Sations o =Median Value (mg/L) Each sampling station = 19 observations RLI R1. RU RU RIS R1.6 RL7 R1.6 RL9 Sampling Stations Total Phosphorus RLI ]u,2 RLi Rlt R1S {u,6 RL7 R1,.3 RL9 Sampling Stauans N02 + N03 [~ O :~ O .- r J ^J V ~ E--~ cD J ~ c~ ~3~ ~~ ~ ~ .--~ ., LT, i i U >_ Q 4J s~. N ~ ~ ~ _' i 0 I ~ I ~ 3 z t ~ v o °_° ti X Total Phosphorus (mg/1) ~, v, ~n M c~J N ~-- '-+ O O L6/8Z/6 LG/£Z/6 LG/8I/6 L6/£ I/6 LG/8/6 L6/£/6 L6/6Z/8 L6/tiZl8 L6/Gi/8 L6/bI/8 L6/G/8 L6/ti/8 L6/0£lL L6/SZIL c~lozlc L6/SIIL p L6/OI/L L6/S/L L6/0£/9 LG/SZ/9 LG/OZ/9 L6/SI/9 L6/Oi/9 L6/S/9 L6/i£/S L6/9Z/S L6/IZ/S L6/9i/S L6/iT/S L6/9/S L6/i/S o° °o °o °o 0 0 °o ~ t~ ~O v1 ~! c*1 N •-+ (S3~) MOB Table 10 Algal Growth Potential ResultsUpper Deep River 1997 Station RL4 AGPT MSC j]~q~ Weigl-t mg/Ll 49 Limiting Nutrient Nitrogen RL5 60 Nitrogen RL6 203 Nitrogen RL7 211 Nitrogen + Phosphorus RL8 52 Nitrogen RL9 174 Phosphorus Total Recoverable Phenolics (Phenols) Total recoverable phenolics (phenols) above laboratory detection levels were found at all stations in the Upper Deep River study area in 1997. There is no numerical water quality standard for phenols for these Class C waters (only a narrative standard for protection of fish tainting). While the waters in this area are not currently classified for water supply, 36 of 45 phenols samples were greater than the state standard of 1.0 µg/L to protect water supplies from taste and odor problems due to chlorinated phenols. However, according to the water quality standards, specific phenolic compounds may be given different limits if they are demonstrated not to cause taste and odor problems and not to be detrimental to other best uses. The maximum observed concentration for phenols was 52 µg/L. Phenol observations greater than 20 µg/L were frequently observed. A graph of mean phenols values by station for the 1997 study period is presented in Figure 8. As seen in the graph, the highest mean phenols values for the study period were generally found at the more downstream stations in the study area with the highest mean value found at RL9. A graph of flow versus phenols is presented in Figure 9. Phenols values at stations upstream and downstream of the High Point Eastside WWTP and at a site in Muddy Creek were graphed. From results plotted in Figure 8, it appears that phenols values were higher in Richland Creek upstream of the High Point Eastside WWTP in higher flow conditions. No clear flow-related trend was seen in Muddy Creek and in Richland Creek downstream of the High Point Eastside WWTP. Figure S Upper Deep River Study Mean Phenols Values 1997 (5 obs. per station) so ao J ~ ~ ~ 10 STATION ~J RL1 RL2 RL3 RL4 RL5 RL6 RL7 RL8 RL9 Phenols G.tg/1) 0 0 °v 0 0 0 0 O~ ,~ .-~ r-, O C a ~' O~ ~ O ~ •.-+ C~ •~ ~ o ~ t~ ~ . ,.y Q~ Q x N M ..a .. v `. 3 0 C L6/8Z/6 L6/£Z/6 L6/8I/6 L6/£i/6 L6/8/6 L6/£/6 L6/6Z/8 L6/tiZ/8 L6/6i/8 L6/bi/8 L6/6/8 L6/~/8 L6/0£lL L6/SZ/L L6/OZ/L m L6/SI/L p L6/Oi/L L6/S/L L6/0£/9 L6/SZ/9 L6/OZ/9 L6/SI/9 L6/OI/9 L6/S/9 L6/T£/S L6/9Z/S L6/IZ/S L6/9I/S L6/I i/S L6/9/S L6/I/S 0 M S 8 (sia) mom Turbidity, Ambient Monitoring Data and Additional Information One turbidity value was found during the 1997 sampling that was equal to the state standard of 50 NTU. This value was found at RL5 (Deep River at SR1129) on September 3, 1997. No turbidity standards violations were found during the previous study. In addition to samples collected for the 1997 Upper Deep River Study, monthly ambient monitoring was performed by the Division of Water Quality at RL4 and RL6. The Division of Water Quality's ambient monitoring program is designed to routinely sample approximately 380 stations located around the state. Monthly sampling visits are usually conducted at these stations to sample for a variety of parameters. Ambient data collected at RL4 and RL6 in 1997 are listed in Table 11. Ambient monitoring results were similar to that collected at RL4 and RL6 for the Upper Deep River Study. Fecal coliform bacteria values greater than or equal to 200/100 ml were found on 3 of 9 ambient sampling visits at RL4 and on 1 of 9 visits at RL6 in 1997. Eight of 9 copper samples collected for ambient monitoring in 1997 at RL4 were greater than or equal to the action level of 7 µg/L. At RL6, 5 of 9 ambient copper values were greater than 7µg/L. Seven of 9 zinc values collected at RL4 for ambient sampling in 1997 were above the 50 µg/L action level. At RL6, 5 of 9 zinc values collected in 1997 for ambient sampling were greater than 50 µg/L. Elevated nutrient values were found at both RL4 and RL6 during 1997 ambient sampling. To complete the reporting of all water quality parameters that were measured during the 1997 Upper Deep River Study, table 12 lists measured concentrations of miscellaneous chemical parameters for each static~:t by date, and shading is used to highlight those measurements that exceed water quality standards or criteria. Table 13 lists measured nutrient concentrations for each station. Table 14 presents measured metals concentrations for each station and shading is used to highlight those values in excess of water quality standards or action levels. Table 15 presents the results of physical measurements collected for each station during the study. „~ Table 11 Upper Deep River 1997 Ambient Monitoring Data Station Date Fecal Iron Cadmlu Chromlu Co er i Nickel Lead 21nc NH3 TKN NO2+NO31 Total P Colltor u /I u /I u /1 u /I u /1 u /I u /I m /I m /I m /I I m /I t/t0oml I RL4 01/23/97 <10 430 <2 e25 13 <10 <10 56 0.25 1 7.81 1.6 RL4 02/25/97 91 290 <2 <25 7 <10 <10 41 0.14 1.2 6.5i 1.7 RL4 03/25/97 <10 370 <2 <25 6 <10 <10 69 0.06 1 8.61 1 RL4 04/30/97 700 I <2 <25 131 <10 <10 40 2.1 3.1 0.871 1.4 RL4 05/22/97 200 2801 <2 <25 10 <10 <10 55 0.04 1.5 111 2 RL4 06/26/97 <10 4001 <8 <25 14 <10 <10 88 0.04 1.3 111 3.3 RL4 07/28/97 2400 200 <2 <25 101 <10 <10 230 0.22 1.1 171 1.8 RL4 08/27/97 45 820 <2 <25 101 <10 <10 98 0.13 1 12! 4.2 Rl4 09/29/97 180 680 <2 <25 13 <10 <10 110 0.06 1.1 121 2 RL6 01/23/97 45 790 <2 <25 6 <101 <10 30 0.19 0.6 4! 0.61 RL6 02/25/97 <10 510 <2 <25 41 <101 <10 10 0.19 0.8 1.71 0.23 RL6 03/25/97 62 910 <2 <25 6 <401 <10 67 0.05 0.5 2~ 0.22 RL6 04/29/97 3500 <2 <25 9 <10 <10 26 0.15 0.6 0.37. 0.17 Rl6 05/22/97 72 710 <2 <25 91 <101 <10 27 0.01 0.6 4.2' 0.73 RL6 06/26/97 27 3701 <2 <25 141 <101 <10 74 0.06 0.8 8.61 1.8 RL6 07/28/97 <10 5001 <2 <25 61 <101 <10 59) 0.63 1.5 6.6i 1 RL6 06/28/97 140 5601 <2 <25 8 <10 <10 73 0.051 0.9 11i 2.7 RL6 09/29/97 91 570 <2 <25 121 <101 <10 891 0.071 0.9 6.81 1.5 _ ~ ~ - S> 6Z ~ £S L 0- BZ -l OZt OOrL 00-L Otlt 9080[6 Bltl ~ L i ooos oozz o£lt toeoL6 e~tl s> s£ I s9 ~ tt 09 s'e I 9 0-t oon oosz oslt socacs e~tl S> C j LS I Ot ! BS l'9 I 6 OSt I 0008< 0009< StZlIL090L8 Bltl S> I Sr BL L 1 6f L'9 I ZE OLt OOZZ OCC SEZt SOSOLB Bltl i 1 SL I 9 9S t6 I SS C'B I Ol OLf OOtf OSl OZZI C060L8 Ely I I I 006 005 SZII SZ90L6 Lltl ~ 005 OLt OLIt 9tBOL8 Lltl ! 000£ OLl Ollt ZlBOL6 Llli I I i OOOC O-l SZ1t190BOL8 Lltl tL SC I SL 29 9S I 9'C - Otf I OOLZ 0-t SZ11190BOL8 1 Lltl I I oott oos Is£ll toeacs Lltl St Zr -[ L- t5 6'Z I f 032 I OOfZ OLt SOZI BOLOL6 Lltl 51 OS l9 B- ZL L'Z SZ OSZ I OtS OSt SOCI Z090L6 [ltl S f ! LC 9 tC S- OL E-l I OCf I 9f ISSZIISOSOLB LIFT I I I I I I 1 sz z t oL -9 ~ 9- r 6 c>E I ocsz I ooz orot Eo6oc6 91tl __._ _ ____ ` ~ I OOS 09 Slll SZBOL6 91tl ! I 005 OC SSOt BlBOL6 9ltl _ _ ~ __ I OOS OOC OOII ZlBOL6 91y 00v6 OOB OZOI 9080[6 91tl tt - 9Y I 9Z I LE Bl I -L OZL 0009E OOOf OLOI 9080[8 9ltl I I 005 OOS SSOI 1090[8 9ltl 9t ~ Z rL BC I B- t'- I - 0">L I Otr 0- OZOt 90[0[6 9ltl -t Z 85 1 8C ' -9 I B'C I • 0-L I OSL OOZ ISZ/l Z090L6 9ltl 5 S i 6C B Zf I 9C 1 OZ ODZ I OOGZI 0t9 IDLII SOSOL6 9ltl I I I LL L i 95 I t5 Sf OS SZ OZf I 00092 OS9 IOLOI C050L6 51tl ! I I I OOOf DOS ISOIIISLBOL6 l Sltl ' ' I OOLI I 09 IS-Ot BtBOL6 Sltl 1 I I 005 I OOS IDSDt ZtE0L8 I Sltl I 0009t< OOB IOOOl19O90L6 I Sltl OZ Z 65 09 t- BC I Zl G2C I OOBL I OOOL IOOOI 9090[6 1 51tl I I I OOOC I 005 IStOI tDBOL6 1 SIFT ^? 9 I ZB I -S LC t'- _ S OCf I OOB j LZ I SS6 I BOLOL6 1 Sly tI f , CS ZZ O[ I S'B L OLl I OLt Ot> ! SOIIIZOBOLB Sltl i> t> .__tr _ B ZC SZ 9t Ofl I G6- OV I OOIIISOSOL6 Sly I I i I I I "rf zz ~ 09 oot 9f I e't s I -- I oo-r olz l oootl£ofiocs -ltl ~ I I OOtI OL S-Ot 5260[61 rltl I I I I 006 OLl I SfOtI9lBOL61 -ltl I I 005 OOC I S-Ot ZlE0L6 -ltl I I I i OOOf OCZ 1 0x8 9090[6 j -ltl Of Z I lL ~ OOt 5- I 9'C £ Ott I GOOF OLZ O-8 90EOL6 -ld I I I I OOE OOE I SEOtI 1080[81 tltl '? 6 -L I SL 6C I E'Z a :se I 06f 9t I SEB fOLOL6 -ltl 6- I L9 Cf Dl j l'B Zl ufL i Oll Ol> 1 0-O1 2090[6 -ltl I S: t> f9 9Z ! St ll I Ott i OL9 Ot> IOfOI 5050[61 -ltl ~ ~ I I I S ~ 2- f fC Lt f2 Oft I ODaL j 065 I SZB fO60L61 ntl f I I I I ooo£ ozz Iszol szeocs ntl ' I i ooos oo-z lozot eteocfi ntl I i I I I OoOC OOII I szot Zte0L6 ntl I I 0008 OOfI 008 9080[6 ntl B t> I t5 B LC 9t I Zt OEl OOOSf 009 008 9080[6 ntl I ~ i OOOC 0-Z SIOI tOBOLB ntl 6 5 t9 I -t ~ t5 B'C I 9 O-t I OOSE OZL 008 90[0[6 ntl L S 1 f5 I B tC I fl I Ll OEl OOOL 0005 SSB Z090L8 ntl 5 ZS 69 I B 1 OS El I 9 OSl OOSZ OSt 0-8 SOSOCB ntl I S> ~ Bl Oll I OZ i Otl S'S I B Ohl OOIZ 9C S-8 fO60L6 Zltl I I I OOOS OB SSOI 5280[6 Zltl I ! I OCl fL OfOt 9lBOL8 Zltl I I I I OOS OE SfOI LtBOLB Zltl ' I i OOOS OSE SZ8 9080[8 Zltl S ' l> f9 B I 85 LZ I L/ OLl OOIL 09E SL8 9080[8 Zltl i I I 0091 9L SZOt IOBOLB Zltl S> i f Z9 Zl i 6L I Z'9 9 09l OZ- OlZ OZ8 BOLOLB Zltl S> I -- 9- B I l- C'- S Otl OOlS Ott OLOI L090L8 Zltl S> i t> L- L I if It Bl OZt OOOI Bt StOI SOSOL6 Zl1i I 9 E OL Ot I LL tt I 8 0-t OCL OZZ SOB f080L6 lltl I I I I 0-l OE SIOt SZBOLB lltl ! O-Z O9 StOI BlBOLB lltl j OOS 9Z OZOI Z190L8 lltl OOf Ll S-B 9080[8 lltl S> t> Br 9 Z- -l I t OZt 00091< Y9 S-Q 9080[8 tltl I I Oll 9Z OOOI tOBOLB tltl S> I t> -8 9 I Z9 9'- I E OZL 062 9E 0-B BOLOLB lltl S> I l Z- B 1 0- Z'- 9 B6 OOBC OOC SE8 ZO90L8 tltl S> I l> ES 9 I 9L O- 9l OLl 09r Bi Ol0 SOSOLB lltl 1,'QJW I llJf1 llJW 1lJW I l.^JW (l1N I/JW VJW lW ODtN 1W OOt/1 31Vy7l1S'SlJt~f~-IdI 55~JQM1 37ki71FDI,l1lNfltlNltl 1.1.gBd111 13f1083iQ~f1S 3fI0tS3dltllDl I WF:pjf10~T/101 WF3}Jf1~lC~3~ 3Nt1 3140 N NOt1bS V1VOA1fNIlOtl31VMSIl03MR73~S0Y H3AkJd330tl3dd(1 CIMOL68l Zt 31BV1 st ;e s9 -c I es tz I zt ozf I ooott oo9f soft fosocs s~tl I I I I 0006 OOLI OYII SZBOLB 61tl I I GOrZ Olt SOIL BlBOC6 Ely I I I 008 008 SZII ZtBOLB 6ltl I I OOOC 00-Z SYOI 9080[6 6ltl St tf 59 I B9 I 65 9'B I 6 OOf I OOOC 009 I SrOt 9080[6 6ltl I I I I OOL OOC Oltl IOBOLB Ely ft if 59 9r i fS Z'r I C OSL I OOtl I OOZ OSOI BOLOL6 6ltl rt t5 I 59 9- OL t'E I r 0-Z I OOBE OOt- OSII Z090C6 61tl S> [r I [r [ I ZE S'9 I lZ Ofl I OOCS OZt I Srll SOSOLB 61tl I f S ~ rE 99 B ZS 0- SZ OLl I OOOfS 0055< OOZI fOBOL6 61tl I 0006 OOOS OEII SZBOL6 Blk! OOOC OOS Slll BlBOCB Bltl i OOOS OOLt Slll ZlBOL6 6ltl ~ 0008 0005 Olll 9080[6 Bltl VJW ~ 1Jf1 VJW l/JW 12JW I'111J ( ~W l/JW lW OOl/x 1W OOUx 31d.~lhS Sl7f~fj-IdISS3t~Qfvli 30tAlhpl AllNlldXld Alpl~ifll 13f1063dQ3T13cSf16 3fI01S3tl1V101 IW'A31'10~'TY~lI Wti~f17J'TV~~ 3W11 3140 x WJI1d1S d1d0AlffdflDkl3ldMSl'103NdT13~SIW tl3Akid330tl3ddfl Q4~L561 ZL 31Bd1 TABLE 13 1997 DWO UPPER DEEP RIVER NUTRIENT AND CHLOROPHYLL DATA STATION # DATE TIME I NH3 1 TKN NO2+NO3 1TOTAL P PO4 1 CHL A MG/L MG/L MG/L MG/L MG/L I UG/l RL1 970505 910 0.05 0.3 0.29 0.08 <0.01 7 RL1 970602 935 1 <0.01 0.3 0.22 0.07 <0.01 1 11 RL1 970708 840 0.02 1 0.2 0.16 0.03 <0.01 1 <1 RL1 970806 845 0.01 0.1 0.21 0.02 <0.01 <1 RL1 970903 905 0.05 0.4 0.12 0.05 0.01 3 RL2 970505 1015 0.08 1 0.3 0.29 1 0.07 <0.01 6 RL2 970602 1020 0.03 1 0.3 0.2 0.03 <0.011 10 RL2 970708 920 0.25 0.5 0.18 0.04 0.01 1 RL2 970806 925 0.16 0.3 0.21 1 0.04 1 0.01 1 <1 RL2 970903 945 0.6 0.9 0.15 0.05 1 <0.01 I 5 I I i RL3 970505 940 0.21 1 0.4 0.56 0.05 ( <0.01! <1 RL3 970602 1 955 I 0.29 1 0.6 0.58 0.06 1 <0.01~ 1 RL3 9707p8 900 0.18 0.5 0.71 I 0.02 1 0.01 ( 2 RL3 970806 900 0.1 0.4 0.8 I 0.02 I <0.011 <1 RL3 970903 925 0.27 1 0.6 0.76 0.06 <0.011 30 i i I I RL4 970505 1030 3.5 4.1 4.4 I 1 1 0.84 ~ 2 RL4 970602 10401 9.1 1 12 1.5 I 2 ! 1.7 ~ 1 RL4 970708 1 935 1 0.05 1 2.6 13 1 1.7 I 1.6 ~ <1 RL4 970806 940 I 0.06 1 0.9 12 I 1.7 1.6 ~ <1 RL4 970903 1 1000 , 0.07 I 1.1 1 1 3 I 2.9 I 2.7 ~ 22 I I 1 RL5 1 970505 1 1 100 ; 0.67 1 1.1 1 0.76 I 0.27 10.16 4 RL5 970602 1 11051 3.9 I 4.4 0.84 ! 1.1 0.7 ~ ' 2 RL5 970708 955 I 0.09 1 2.1 14 1 1.8 ! 1.6 1 RL5 970806 10001 0.06 1 0.8 8.4 1 1.2 I 1.1 2 RL5 9709031 10201 0.07 1 0.9 9.6 1 2 1 1.8 I 1 ~ I I I I I _ RL6 ' 970505 1 120 1 0.43 1 0.7 I 0.7 1 0.24 1 0.13 ; 3 RL6 9706021 1125) 4.6 1 5.1 I _ 1.5 1 1.6 I 1 ~ <1 RL6 9707081 10201 0.07 I 1.6 I 8.6 I 1.1 i 1.1 I 2 RL6 9708061 1020 I 0.06 1 0.3 i 5.1 i 0.75 10.60 ~ 1 RL6 970903 1040 j 0.11 I 1.1 1 1 ! 2.5 1 2.4 ! 1 40 I I i I I ~ RL7 970505 1255 I 0.22 1 0.6 I 0.62 I 0.17 10.07 ' _ 2 RL7 970602 1305 1 3 I 4.7 1 2.1 i 0.95 10.83 ; i RL7 9707081 1205 1 0.01 1 1.9 1 7.3 1 1 10.99 j 1 RL7 970806 11251 0.07 1 0.8 1 9.4 1 1.5 ( 1.4 1 <1 RL7 970903 1220 0.06 1 0.9 8.3 1 2.4 i 2.2 ~ 3 I I I I I RL8 970505 1235 0.09 1 0.4 I 0.82 0.17 10.03 ~ 1 RLS 970602 1245 1 0.44 1 0.8 I 0.92 ( 0.19 1 0.07 i 1 RL8 970708 1150 1 0.12 1 0.5 I 0.93 i 0.21 i 0.12 ~ <1 RL8 970806 1110 I 0.07 1 0.2 I 0.65 I 0.19 1 0.11 ! 2 RL8 970903 1200 1 0.16 1 0.9 I 0.73 1 0.42 10.24 ~ 2 I I i I RL9 970505 1145 I 0.32 1 0.6 I 0.65 1 0.19 10.08 ! 2 RL9 970602 1150 2.6 ( 3.5 1 2.1 0.79 I 0.7 1 1 RL9 970708 1050 0.02 I 1.6 I 6.9 I 0.93 1 0.76 j <1 RL9 970806 10451 0.13 1 1.1 1 8.8 I 1.4 1 1.3 I <1 RL9 970903 11051 0.17 1 1.3 I 5.5 1 1.8 1 1.6 i 1 TABLE 14 1997 dW0 UPPER DEEP RNER METALS DATA STATIONq DATE THE CD 03 OJ W R3 ZN BARIIAuI ALUMWUM BERYWUMI IRCN MANGANESEIAn,c~"C. 1.£FC.JR1' UG/L UG/l UG/l I UG/L UG/L UG/L UG/L UG/L UG/L UG/l UG/l UC/L ~ UG/L RL1 970505 910 <2.0 <25 5.9 I <10 <10 17 <10 7800 <10 ! 1:900? 75 <10 i <0.2 RL1 970602 935 <2.0 <25 ~ 6 ~ c10 <10 15 26 200 <10 550 7a ~ <t0 <0.2 Rlt 970708 840 <2.0 <25 6.1 I <10 <10 36 30 180 <10 620 190 I ct0 <0.2 RL1 970806 845 <2.0 <25 <2.0I <10 <10 44 39 560 <10 900 B9 <t0 <0.2 RLt 970903 905 <2.0 <25 I 3.8 I <10 <10 45 34 420 <t0 640 150 I <t0 <0.2 I I I I Rl2 970505 1015 <2.0 <25 2.8 I <10 <10 13 34 3500 <10 `2700:' : 330 ( <t0 <0.2 RL2 970602 1020 <2.0 <25 2.7 <10 I <10 <10 27 210 <10 520 B7 I <t0 <0.2 RL2 970708 920 <2.0 <25 4.3 <10 <10 23 42 71 <10 i300 5a0 <;0 <0.2 RL2 970806 925 <2.0 <25 #@.9: .: <10 <10 44 <10 1100 <10 1'500' 220 I <t0 <0.2 RL2 970903 945 <2.0 <25 2.6 c10 <10 <}6? .. 54 96 <10 1zZ.04 610 ~ c10 <0.2 I _. ' RL3 970505 940 <2.0 <25 3.4 I <10 <10 17 32 220 <10 660 120 I <t0 ~ <0.2 RL3 970602 955 <2.0 <25 I 4.5 I <10 I <10 12 30 630 <10 850 120 <;0 <0.2 RL3 970708 900 <2.0 <25 ~ 4.3 I <10 I <t0 30 38 120 <10 380 it0 I <t0 <0.2 RL3 970806 900 <2.0 <25 I 3.8 I <10 ! <10 a%:::71::: ; 41 50'0 <10 090 75 <;0 <0.2 RL3 970903 925 <2.0 <25 :;7:2 <t0 I <10 '<: 7T 40 1000 <t0 `1200" 130 I <;0 <0.2 I I I RL4 970505 1030 <2.0 <25 I d.4 I <10 I <10 19 2i 300 <10 620 120 <t0 <0.2 RLa 970602 1040 <2.0 <25 I 3.a <10 I <10 28 15 150 <10 330 73 ' <t0 <0.2 RL4 970708 935 <2.0 <25 ' 'i17:7 '' <t0 I <10 44 t7 130 <10 340 120 I <t0 <0.2 RL4 970806 940 <2.0 <25 ::7..3 <10 I <10 ;' 62... 14 230 <10 I 350 i 57 i <10 <0.2 RL4 970903 1000 <2.0 <25 'ti)` <10 I <10 7s> `>.<'%9 ; 13 300 <10 I 320 I 54 I <70 <0.2 I i . RLS 970505 1100 <2.0 I <25 I 4.6 I <10 I <10 15 32 I 2200 <10 1800 62 <'~ <J.2 Rl5 970602 1105 <2.0 <25 1 5 <t0 t <t0 20 25 I 210 <10 570 ~ i20 <~C <0.2 Rl5 970708 955 <2.0 <25 . a 12' ? <70 1 <10 41 2t I 180 <t0 400 180 <'0 <0.2 RLS 970806 1000 <2.0 I c25 '7.9 <70 i <10 ':':110 - 22 I 930 ~ <10 1100 -- 83 _ -- <•0 _ c0.2 RLS 9709031 1020 <2.0 I <25 13- <t0 1 <t0 96 '; 25 I 3x00 ~ <t0 .2700 9e I _ <;0 <0.2 I~ I I i P.LS 970505 1120 <2.0 I <25 ::.9.7 _ <;0 i <t0 I 13 ~ 41 ~ ta00 <t0 1400 ~ 74 <70 <0.2 RL5 970602 1125 <2.0 I <25 3.9 ! <;0 <t0 ~ 30 25 , 130 ~ <10 420 83 <t0 <0.2 RL5 970708 1020 <2.0 I c25 ~ 6.B ~ <t0 ! <10 43 24 I 170 <10 i00 I 62 <•; <0.2 Rl5 970806 1020 <2.0 <25 °6:6 <10 I <10 18i 24 I 1800 <10 1900- 89 I c;J <0.2 RL5 970903 1040 <2.0 I <25 lA _ <t0 j <10 "86 _ 20 I 320 I <10 j 410 160 I <;C <0.2 ~i ~ ~I j RL7 970505 1255 <2.0 «<"5 i 2.5 i <i0 i <10 <10 28 I 1800 <10 1800 55 1 <'~ <02 RL7 97060 1305 <2.0 I <25 I 5.3 I <10 i <10 25 29 110 <10 I 350 ~ __ 53 i __ c70 _ _ <0.2 RL7 9"1708 1205 <2.0 <25 I 6 <t0 I <10 37 25 110 <t0 i 210 35 <t7 <0.2 RL7 970806 1125 <2.0 ( <25 I 5.1 ~ <10 I <10 <`379%>'<': 22 210 <10 I 310 I 55 ~ <t0 <0.2 RL7 970903 1220 <2.0 <25 8.9 <10 I <10 : :.86 20 590 <10 i 480 45 <70 _ <0.2 1 P.L9 970505 1235 <2.0 <25 ! 3.8 I <t0 I <10 <10 42 I 720 <t0 1500 78 ! c'; <02 RL8 970602 1245 <2.0 <25 : 7.3 <t0 ! <10 to 36 I 2a0 <10 I 610 X80 <•; <0.2 RL3 970708 1150 <2.0 <25 I 3.3 <;0 <10 32 32 230 <10 810 ! 270 ~ c;0 c3.2 RLB 970806 1110 <2.0 <25 I 2.9 i <10 ! <10 45 26 1000 <10 1500 150 i c:J <0.2 RL9 970903 1200 <2.0 <25 6.2 I <10 I <10 : 65 40 ~ 1800 <10 2500 290 <tC . <0.2 I RL9 970505 1145 <2.0 <25 `>9.1.<; <10 I <10 RL9 970602 1150 <2.0 <25 ~4.7 <10 <10 L9 70708 050 2.0 ~ ------ <10 27 970 <10 1600 6B <70 <0.2 27 28 100 <t0 330 41 c70 <0.2 <25 I 5.2 I <10 ! <10 33 25 7a <10 I 190 33 ~ <;0 <C.2 RL9 970806 1045 <2.0 <25 5.4 ~ <10 i <10 54 28 a90 <10 '• 600 ~ X92 y <;0 <0.2 RL9 970903 1105 <2.0 <25 9.4' <t0 ~ <10 '74 ' 25 i500 <10 1400 93 <',; <22 ~• SPADED VALUES EOUAL OR EXCEED PRESENT WATER OUAUTY STANDARDS COPPER ACTION LEVEL=7 UG/L ZINC ACTION LEVEL=50 UCy'l IRON ACTION LEVEL=1000 UG/L TABLE 15 1997 DWO UPPER DEEP RIVER PHYSICAL DATA STATION # DATE TIME CONDUCTI TEMPERATURE D.O. H UMHOS'CM `C MG/L S.U. RL1 970505 910 68 15 9.4 7.5 RL1 970602 935 97 21 6.7 7.3 RL1 970708 840 155 22 5.8 7.2 RL1 970806 845 119 I 21 6 7.3 RL1 970903 905 198 23 5.4 7.4 ~ ~ RL2 970505 1015 95 I 16 ~ 8.7 7.3 RL2 970602 1020 106 I 22 6.2 7.1 RL2 970708 920 204 I 22 5.6 7 RL2 970806 925 154 I 22 5.3 7.1 RL2 970903 945 281 23 ~ 5.2 7.1 I I RL3 970505 940 71 I 13 ( 9.4 7.4 RL3 970602 955 119 I 21 7.3 7.2 RL3 970708 900 179 23 ~ 7.2 7.3 RL3 970806 900 124 I 21 7.6 7.3 RL3 970903 925 135 ( 23 6 7.3 RL4 970505 1030 248 I 16 I 8 I 7.2 RL4 ~ 970602 1040 367 i 21 7.4 j 7.3 RL4 970708 ~ 935 I 510 24 7.8 7 RL4 970806 ~ 940 I 612 24 i 7.8 7.2 RL4 (970903 11000 1 585 ! 25 7.3 7 I I I I RL5 ~ 970505 ~ 1100 108 I 15 i 9.2 I 7.5 RL5 970602 1105 , 233 22 I 8 I 7.4 RL5 970708 I 955 444 I 24 I 7.4 ~ 6.9 RL5 970806 ~ 1000 408 i 24 i 7.9 ~ 7.3 RL5 970903 1 1020 400 I 25 I 7.6 I 7.2 i I ~ P,i_6 ~ 970505 1 11201 104 ~ 15 ~ 8.9 I 7.4 RL6 ~ 970602 1125 I 329 22 7.7 I 7.4 RL6 970708 1 1020 ~ 350 25 i 7.8 i 7.3 RL6 970806 10201 219 24 I 7.6 7.2 RL6 970903 ( 1040 590 25 ~ 7.6 7.4 I I i ~ RL7 970505 1255 113 16 8.3 7.3 RL7 970602 1305 350 I 22 ~ 7.4 7.3 RL7 970708 1205 362 I 25 ~ 8.3 7.5 RL7 970806 ~ 1125 449 ~ 23 ~ 7.6 7.4 RL7 970903 1220 514 I 26 7.4 7.4 I RL8 970505 ~ 1235 110 I 15 I 9.2 7.5 RL8 970602 1245 151 i 21 I 7.3 7.4 RL8 970708 1 1150 164 ~ 22 I 6.9 I 7.3 RL8 970806 1110 119 I 21 I 7.7 I 7.3 RL8 970903 1200 155 i 24 I 6.4 7.3 I ~ RL9 970505 1145 101 15 i 8.7 7.3 RL9 970602 1150 350 , 22 6.6 7.3 RL9 970708 1050 362 I 24 7.3 7.4 RL9 970806 1045 447 I 23 ~ 7.6 ~ 7.5 Rl9 970903 1105 443 I 25 6.6 7.4 REFERENCES 1. North Carolina Division of Environmental Management. 1994. Water Quality Monitoring Data for Waters in the Upper Deep River Area July 28, 1992-0ctober 7,1993. Raleigh, N.C. 2. North Carolina Division of Environmental Management. 1996. Standard Operating Procedures Manual Physical and Chemical Monitoring. Raleigh, N.C. 3. Raschke, Ronald L. 1989. Use of the Algal Growth Potential Test for Data Assessment and Lake Classification. In Proceedings of a National Cor~.ference on Enhancing States' Lake Management Programs. Chicago, IL. Northeastern Illinois Planning Commission. North American Lake Management Society. Washington, D.C. 13912-(A~/ AIJICIIU)R ~ 010 11 71-10~! I:NUItIN O.UJ U 2U9W-2 ALURIN OIN Il 7111-9J~1 IiNUNIN ANUIi11YUli QUS ll 1912.3)-9 AIRA7.INIi U )1 II SN91-]U-S IiNUNIN KIiIUNI> U.UI ll 119-81.6 UIIC-AU•IIA O.U2 U 2S9l-IS-9 1>I IIAJULE U.W ll 719-d1-7 UIIC•UL•TA 11.0! II 7G~14-6 III:I'I~A(:IILUR 0.112 U 119-Mi-d IIIIC-UI:1:1'A 11.111 ll 1011.37-.i 111~:1'IA('lI1.UR 1:1•U%IUE II UI U Sd-d9-9 UIIC-GAMMA(UNUANL"") QUI U 11l-711 Ills%ACIIU)ROIIEN2liNG 0.01 U 37.719 CIII.ORUANE, l1iCIINICAL U.b 11 131-73-3 A1A1 A2111(NI 0.0! U 3111,1-71-9 l.'111JIRUANIi-AlJ91A 0111 Il 7i~11-S Al1iI11UXYl'IILUR, 1'I' U. US ll SIOf-712 1'lI1.UNUAN1i~GAA1 AlA 11111 II 71111 AS-S Al11lISX 11 OI tl JIN-111] CI11J)ItUtiNl( /1 U! II 7.1161 M11 IItAN$NIINA('IILUN 00! ll 1613-71-4 CIILUNNIiII 0111 U It.I1M)1/~d UXS'CIIL1IIlUANIs ~ 11111 ll R/1•IS~(. l'IILIIRUI11iNLll~Jli 1.11 U 111.IS.11.1 MI81 U I'UtAIIiI IININ I W ll 2921-6d-2 CIIWRI•YNIFGS U.IM 11 I71d-167 1'ItUPACIIIAN U. IU U 1l91•IS~6 l'111.ORUIIlAWN11, 0.01 11 IU-IIl0 7f:CNA%IiNli O.U2 U 11141•)1-1 UCI•A 11(17 ll Iltl~O,-d '1 Nlf LlINA1JN UA) ll 3)•190 UbU, (N' OU4 ll ^(./1-II.2 AN/X'IILUN IU16 O.SU U 72.31! UUU, PI• U.W ll IIIW-3A~2 ARUL'111A1R 1331 D.SU U .1131-R2-G UUIi, OI• 11.111 II 11111-141 ANIK'i1LUR U)1 ILNI ll 72-3SA UUIi, I.1• 1)U7 ll S.HIA~71A nut K'IILUIl 1111 U.W ll 769-01-6 UI)I', UI• U.W ll 1X12-196 ANIX'111.UR IN! U. SO ll 50~29J UI)1', I'P O.IK ll 11(/11.49-1 AItIK;IIIUR 1231 0.30 U 4037.1 UIELURIN O.U2 ll I lOw~l1-3 ARUL'i11AM 12W 0.30 U 939-9d-9 ENUOSUIPAN I 0.01 U ])1212)-3 AR(X:IIIJNt 1242 0.30 U 71217-65-9 FNDUSUU'AN 11 0.01 U MIUl-73-2 2U%AI'llliNE 1.30 U 1071-07•! IiNUOSUU'AN SUIf-Al E 0.02 U UNIUF.NI IFIEU PEAKS UETECIFU 4 ACID IIEf1D iCIDES IlY ELECff10N CAP-iUIIE DETECTION 30391-444 ACII'I.UURFEN (UIa2CR) U.SO U 13U-J4-3 UICIIIAItI'RUI' /.SO U 25057-l9-0 DEN IAZUN S.W ll td6S•7 UINUSI;D 0.10 U 1]}90-1 CIILORAMpEN O.SO U 1WU-30-2 3-IIYUROXYUICAAf OA 2.W U 41.73-7 2.1-U I.IA U IW 01.7 1-NIIRIN'l1ENUL /.W U 9441.6 2.1-00 S.W U t7-M;-3 1'1?IIACIIIAROI'111iNUL(PCP) O.JO U IN::PA (ACID MI>IAIN11J 11iS) O.lf. ll 1911102.1 1•ICIANtAM LW U 19UW 9 IIICAAf IIA U.]S ll 91•T43 1,1,1• "1' 0.73 V 31.163 3,3 UICIIIAItO111iN7.U1C ACID U.30 ll 9)•71.1 2,1 S=II• (SILV14%) LSO V UNIUENIIFIED PEAKS DETECTED ~ REPOR I EU IlY \~ -- r--- CNECKED DY _~~ REVIEWED DY SAMPLE TYPE: WAIEIT CASq VOl~,1'A12C~ET~ EIINIt/UWQ LAUOITAIORY VOLA 1ILE ANALYTICAL REIrOIt I ANALYSIS ItCSULI S LAU NO. 7W2906 suprltwsort ~~ DATE Jr~ ~~~7 LNILIiL:UUY -f / DA'f E ~ S / ~ f ~ 7 u 'Iq(. ur:~rctcu _ cnsn vc)q rnItGETcoMPOUNU :. TqL ucTECTEo ~~ ;:uglL uq/L :» '::... ua/L >' uoJL !;: 75-35-4 1,1-Oicldoroetlrene 0.75 U 9G-1 B-4 1, 2, ~-Tr ictrloropropane 0.25 U 75-09-2 Methylene Chloride 10 U 108-DG-1 Drornoberrzene 1 U 156-60-5 trans-l,2-Diclrloroellrene 0.75 U 95-49-D 2-Clrloiolotueno 0.25 U 75-34-3 1,1-Diclrtoroellrane 0.25 U 10G-43-4 4-Clrlorololuene 0.25 U 590-20-7 2,2-Uiddoropropane 0.25 ll 541-73-1 1,3-Uichlorobonzene 0.25 U 15G-59-4 cis-1,2-Dichloroelhono U.25 U tOG-4G-7 1,4-Ukhlorobenzeno U.25 U 67-66-3 Cldorolorm 0.25 U 95-50-1 1,2•Uiclilorobenzene 0.25 U 74-97-5 Dromochloromelhane 0.75 U 9G-12-D 1,2-Dibromo-J-Chloropropane 1 U 71-55-6 1,1,1-Trichloroelhane 0.25 U 12U-02-1 1,2,4-Trlchlorobenzone 0.25 U 563-SD•G 1,1-Dicldoropropene 0.25 U 07-GO-~ Ilcxaclrlorobutadicne 0.25 U 5G-23-5 Cmbon lohnchlorklo 0.75 ll 07-GI-G 1,2,3-Irichtorobenzeno U.75 U 107-OG-2 1,2-Diclrloroetlrane 0.25 U 1G34-04-4 Mcllryt-lcrl-butyl ellrer 5 U 79-01-6 lrichloroelheno 0.25 U 71-43 ~ benzene 1 U 78-87-5 1.2•Dichloropropane 0.25 ll 100-00-3 l olucne 1 U 75-27-4 Uromodicldoromelhano 0.25 U t0U-41-4 Clhyl benzene 1 U 74-95-3 DibromomeUrane 1 U 100-30-3 m,p-Xyloncs 2 U 10061-01-5 cis-1,3-Diddoropropene 0.25 U 95-47-G o-Xylono 1 U 100G1-02-G Irnns-l,3-Dkhloropropeno 0.25 U 100-42-5 Styrare 1 U 79-UO-5 1,1,2- f r kldor oelhane 0.25 U 90-02-0 I sopr opylbenzono 1 U 127-18-4 Telrachloroelhene 0.25 U 103-GS-1 n-Propylbenzene 1 U 142-28-9 1,3-Dkhloropropane 0.25 U 100-G7-0 1,3,5-Irinrclhylbenzene 1 U 124-48-1 Dibwmochloromelhane 0.75 U 911-OG-G tml-Dutylbenzene 1 U 106-93-4 1,2-Dibromoelhane 1 U 95-G3-6 1,2,4-1 rinrethylbenzene 1 U tOB-90-7 Clrlarobenzene 0.25 U 135-90-8 sec-Dutylbenzene - 1 U 630-20-6 1,1,1,2-Tetraclrlorocllrano 0.25 U 99-B7-G p-Isopropylloluene 1 U 75-25-2 Dromolorm 0.5 U 1U4-5. a n-Dutylbenzene 1 U 79J4-5 1, 1,2.2.1 clraclrlorocthano 0.75 U 91-20-3 Naphthalene 1 U 1 QL- T'arget Ouanlilalion Lloril• Subject to change due to Instrument sensitivity T- Tentatively Identified, not confirmed E- Estimated Value U- Samples analyzed for this compound but not detected N- Sample not analyzed for tlrls compound D• Detected below quanlilalion lirnil M- GClMS Anolysls porlonnod RENTS: mglL mg/L Gosolina Rmrge Estimated total Pcbolcum Ilydrowrbon Q25 N Other purgoables detected Defected (up l0 10 Iriplresl peaks) ug/L NO VOLA f ILE ORGANIC COMPOUNDS UE I EC I EU IlY GC/EICU/PIU. REPORTED DY _ "`~_ CI IECKED OY II@VIEWCU DY - - SAMPLE TYPE: WA'IEII EIINIl/DWO LAUOIIATOIIY SEMI-VOLAl1LE ANALYI ICAL RC-I'OHT ANALYSIS IIESULIS LALt NO. 7w29oc SUI'EIIVIS011'~~~ un1EJ ~ , <- CNIf:1tEU IIY // UAIE 5 /ad ~~ .......:C~ ............. ........................ .............~1...44!~..14,f.S.................................................... ......................................................................................... .............~1 «...... ........... :....U1,. 4......U.. .::::.:: ::::::::::::::::.::...A~.::.:: :.....:t1,Ml .O,A711,G5................................... :::............1..... ......f. :...... Q4....... .. 7E ]EU ...G?.E.... C...... :.::: .... ,~:.:.: •:•;.. <...T . H T. C MPOUN ......: ..... .....:.......,............ u l :::>~>> ........ A L.... :~<??? i t ......I II.L .:;> ?;t.i;•p ip;;?%<iii;:?:i:ii'S+ii::;:iE` <;': :E>?E7•AI1GE7:COMi'UUNU'.',>Ei;;>::::>1:::•~;:7;:.. .:.. U /L•;::;;: ;;:,::;:U 1L. .,: 62-53-3 ANILINE 10 U 606-20.2 2,6-DINITROTOLUENE 10 U 108-95-2 PHENOL 10 U 99.09.2 3•NIfROANILINE 50 U 111-44-4 DIS12-CIILOROEf11YL) E111ER IU U 03.32-9 ACENAI'11111ENE 10 U 95-57-8 2-CHLOROPHENOL 10 U 51.28-5 2,A•DINI7110 PHENOL 50 /J .-H~ 541-73-1 1,3-DICIILOROOENZENE lU U 100-02-7 4-NI1110 PIIENUL 50 U 106.46-7 1,4•DICIILOROOENZENE 10 U 132-G4.9 UIU[NZO~URAN 10 U 100.51-6 DENZYLnLCO110L 2U U 121-14.2 2,4-DINIIIlOTOLUENE 10 JV~ LL 95-50-I 1,2-UICIILORODENZENE 10 U 04•GG-2 UIEIIIYL PII111ALAlE 10 U 95-48-7 2-ME'111YL PHENOL lU U 7005.72-3 4-CIILUIIUI'l1ENYl PIIENYL EIIIER 10 U 108-GO-1 DISI2-CIILOITOISOPIIOPYL) ETHER 10 U 8G-73-7 fLUO11ENE 10 U 106-44-5 4-MET I IYL PFIENOL l U U 100-01 •G 4-NI I RUANILINE 50 U 621-64-7 N-NIIIlOSO-UI-N-PIIOPYLAMINC 10 U 634.62.1 4,G-UINIII10.2-METIIYLPIIENUL 5U U G7.72.1 IIEXACIILOIIUEIIIAN[ lU U OG•3U-G N NIIIIUSODIPIIENYLAMINE 10 U 98-95-3 NITRUDENZENE IU U 101-55.3 4•UIIOMOi'l1ENYLPIIENYLEIIlE11 10 U 78-59.1 ISOPTIORONE 10 U 118.74.1 ItEXAC11LO110DENZENE 10 U 88-75-5 2-NITRO PHENOL 10 U 87-OG-5 I'ENIACFILORO PHENOL 50 U 105•G7-9 2,4-DIME111YL PHENOL IO U 05.01.0 PIII:NANIIIIIENE 10 U G5.85.0 UENZUIC ACID SU N 120-12-7 nN11111ACENE 10 U 111.91-I 111512-CIILOIIOE1110XY-ML•IItANE IU U 04-74-2 UI-N-IIUI YL I'1I111ALAIE 1U U 120.03.2 2,4-UICIILUIIO PIIENUL IU U 2UG-44-U I1l1UIlANIIIENE IU U 120-82-1 1,2,4-1 I11CIILOIIOD[NZENE lU U 129.00-U I'YIICNE 10 U 91-20-3 NAI'ItIIIALENC IU U 05•GO.7 IIUIYLUENZYLPIIIIIALAIE lU U lOG•47.0 4•CIILOIIOANILINE 2U U 91-9A-I J,3'-UICIILUIIUUEN7_IUINE 20 U 07•GO.3 IIC-XACIILOIWIIUTADIENE IU 11 GG-65-:i III:NZOIA-ANIIIIIACENE tU U 69.60-7 4-CIILUIIU-3•MEIIIYLPIIENOL 2U U 210.01-9 CIIIIYSENE 10 U 91.57-G 2-MEIIIYL NAPIIIIIALENE 10 U 117.01-7 UISl2-EIIIYLIIEXYL) PtIIIIALATE 10 U 77.47.4 IIEXACIILOROCYCLOPEN1nD1ENE 10 U 117-84-U UI-N-OCIYLPHIiIALAIE f0 U 88.OG-2 2,4,6-1RICHLORO PHENOL 10 U 205.99.2 UENZOIDIfLUORANIIIENE 10 U 95.95-4 2,4,5-1RICIILOIlO PHENOL 10 U 207-00-9 UfNZUIK-f-LUORANf11ENE 10 U 91-58-7 2-CHLORO NAPHTHALENE 10 U 60-32-8 UENZUTAIPYIIENE 10 U 88-74-4 2-NITROANILINE 50 U 193.39.5 INDEN011,2,3-CDIPYRENE 10 U 131-11-3 DIMEIIIYLPHfIIALATE ~ 10 U 63-70-3 DIUENZOIn,IIIANTFIRACENE 10 U 208-96-8 ACENAPHTIIYLENE 10 U 191-24.2 DENZO(G,II,IIPERYLENE 10 U rra 1lcun_s ncrun t - uwu 1.nu rncE z LAI3 q ~wz9oc UItO/1NU1') IUSI'l l/1'I I: 1'l:S I It:IUI.S ItY I-I./1M1 = 1'I IU 1 UMI_ I Ilil: UI : i l_(: I IUN t,A91:... >:.:::;>:>::;•::~:.:...... ::..:.. 11.'S71LI1.rL •::::.:;:~ii':' :.:.::.:.::.::•:::..~::::::::.:. _ :::~:a:;:::o-::; .:.) I ............ ~! .. ..:111,11!<,17ay .......... .....::.:. ............:.::::.:... .... ~ : ..... t.A./.::: •:::.:': .:. ;. ;•r.J'1':$Ill.lilb..:...... ......... ) ,,,, r .:c:i ............................. :,..:..::..::...;..:,:.:.::: .................................:::.:.:::....:............ r ( 1 )'.£iiii:;Yi:iii:i:i:i:~;>i :..:~:.TARlai7?:CUh1111N1 ...........:::._..... , .................... :ii:i:i iii:isi::...... :.:.:,:,.,.,N L ..............................:::.~. ,i,i`::.:j:i??i:.:,,:;:::C::::;x>: .,::...., :..I' L...::: ,,.->;;r: .:.:.................................. isi:::>r:i:>:;:i;i`i::i:ii:i~ii:::i`o;oi:^, :..;:.:::::::.;•.: ,::....~:.::::.::::: ................................a............::............. iii:::,~:::,,:•;:.-::::.~:::.,.:.<:;:::isici;og`;::;;:;isit:i't;3Ef :;: nK rr.. :.:._:::.;;:.:;:::;:..:.::::::::: 7 U . CUMI'QONI3 ..............., .. :.. ............... :iii~i?R::%~'3i :.:.:.:. .:.,., , ~ ,1.. ............ :iiii:ii:ii>i: ..::::::::: ......::: -.: ..................... :i:i:i5ici:ii::. ;::.::::..:..::. :::,::: ,...:.:. ~ it )e619~6 CARWPIIL•NUI"IIION LO U 33•le-7 FI?N 1111(7N 2.0 U 2921-ee-2 CIItA,RPYRII~US 1.1 U 115.911.2 I'I:NSUU'UIIIIUN IU.O U s429a urr• 2.s u Iw ws Fuu:x 2.o u 29e~W-) DL•MEIUN 1,3 U 4917.22.1 h11:VINPIIUS 1.9 U )))-11-3 UTA7.INUN U.e 11 311074-3 h1UNUCRUI UI'iIUS 10.0 U 42-7)•7 UICIIII)N VUS 7.1 II 3(..3112 NALIiU 1.U 11 (!131.3 Ulhll?IIIIrA 11{ f5 tl ]411x111 GIIIYI. 1•AIIAIIIIIIN 11.1 ll 2'71101.1 I11SlILfl11UN III II 1411111-1 hl ha 111'1. 1'ANAIIIIUN L3 ll 219/~W4 I11S111.fUlUN SIII)~UN15 ! 1 11 1'r7 E4-) 1'111 /NAl1? 1.3 U N97-U7-4 UlSlll-FUIUN SULFUXIIIIi NI? ll .Ndf7.14 t RUNNIiI• U.e II 2101.663 lil'N •111 II 14)71-7.17 tiULhUllil'1' U.3 II 341-IZ-2 EIIIION 1.) lI 77h6J1-7 "IFRUl1FUS LI ll 1319A-48-4 ETIIOPIIOP 2.0 U UNIDENiIF1ED PEAKS DETECTED 0 NITROGEN PESTICIDES BY NP DETECTION »:::zi::<::.iiE::: .. ::: • ::::::::::.::?~!!,'.4.:::: ::::::.:......:..::.:...... ........................ .....: f•5 1 111 .ii«•~`:;iiii;:>?ii;cii ii iiiii:i. i:'ii:;:;; .:•::. L ~:1 C..:: E:•::: -::.::.:.: ....... ...::......:...:..:.::•:.~:::::::::::.::.::: :i?i ig i:i:~:' 1 1 U ::::::::: •.:._ - ,; ... ,.:.:.:'•iii;i>ii:.: ::: 1?Ig t ~.:I fuY; .. [;iESiz::::;:;,:ii:r'r ....::........ (. tr ::. > r :...... :;; 't, n ) ;>:.::.: ~::.>;>: »:>::•;:::>: . 1 ,5. ,411,4......................... .; :;: r,:~;:i;;: y.. ... :....:;.;:: - , .....::::.::.... ........... ....TAkGI.t.(.UMI'UUNU:.,.;;•:::::.:::::.~:::::. ...:>ilx/L ;.;:. UI(J4r,<>::.>•;::.:;: ..:.~::::..;~.:..:.:. IAKLLI-LtN1U'UUNU ;.Gp/L - .;IiC1L 13972.64e AI/1CIIWR 3.1 N 21047-W-9 h1l:I RIOUZIN 1.4 N e11-12-e AM6IRYN LI N 11)-16-1 MGK 241 3J N 1912-21-9 AlRA7.INi? O.e N 2112.47-1 MULINA"11? 2.1 N 3N 1t69 IIN(N.1 A<71. 7A N 13179 'A-7 NAI'NUI'AMIUI? 7.4 N 2.11111~r/.~9 Iltf(ACIILUN •111 N 77.111.112 NUNFLIIRA7.l1N 7.1 N rillal114 IltIIYIAII? 11 N 111111.1 1'LIIIIIAII? 4.7 N 3231-Ge-3 GRIK,XIN 63 N 141016-0 1'RUMIiIUN 2.3 N 101.21-7 CIIWRPRUPIIAM 1.2 N 72117-194 1'RUMI>IAYN 2.1 N IIN-27-2 CYCWA~IH 2.1 N 2J9w-36.3 1'RUNAhtIUC 7.4 N 2172f-162 CYANAZINE 2.3 N 119-142 PR(N'AZINE 1.0 N 292t•eb-2 CIIWRPYRIFOS 1.0 N 122-)1-9 SIMAZINE I.I N 733~I-3 ~ DIAZINON 0.5 N 1011.744 SIh1FlRYN 2.2 N 937.31.7 UII'tIFNAMIn 2.6 N 34011-161 7I:II111111URUN 3.1 N 739.94-1 fl•IC (r:Pl'Ah1) 2,3 N 3901-31-2 lI:N11ACIL 1.1 N 227N-92.6 FIiNAMIP110S LI N 6K.w0 '1IiRI1l71RYN t.1 N 312)3-OI-2 IIE'(AZIN(N1E 3.7 N 1919-77-7 VI:RNUI~~IP 0.4 N s12Ie-IS-2 MliIUlAC11WR 1.2 N UNIDENTIFIED PEl,ICS DETECTED TOL- Terpet Quanlitetial Llnlit- SubJecl to N- Sample not analyzed for tl)Is compowNl clronpe due to Instrument corlsitivity D- Doloctod below quantltetfon Ihnit T- Tentellvoly hla)tlliad, Ilot conOmwd NE- No ostnbllslrod TOL E- Esllnmlod Vohro U- Sanploe mrolyrod Ilx Ilde conryround but Iwt detected COMMENTS: .~. -~ ~ y ~~,~ ~. ''~ ~ ~,~ ~EL97-12°86 ~,,~~r l ~ j d ~,- '-'e~,Ll~c.~,'Cc~ A. Purgable (Volatile Organic) Fraction, ErA metnoa b14 Number of chemicals detected in fraction: 1 Fraction STOREY Number 84085 STOREY Compound Number Quantitation Quantitation Concentration Limit Target Limit' Detected 1. Pollutants to be anal zed for. (uo/I) 34210 Acrolein 100 ~ itrile l A 100 34215 on c 34030 Benzene ~ 5 32101 ~ Bromodichloromethane 5 32104 Bromoform 5 34413 ~ Bromomethane 10 tetrachloride b C 5 32102 ~ on ar ~ benzene Chl 6 34301 oro 34311 ~ Chloroethane 10 ~ Chloroeth I vin I ether 2 10 34576 - m f Chl 5 32106 ~ or oro ~ methane Chl 10 34418 oro 32105 ( Dibromochloromethane 5 344°6 ( 1,1-Dichloroethane 5 34531 ~ 1,2-Dichloro=thane _ 5 ~ hloroeth lene Di 1 1 5 34501 c - , 34546 2-Dichloroeth lene trans-1 5 , ane ro hloro Di 2 1 6 34541 p o c - , Dichloro ro ene 3 i 1 5 34704 - s - , c 34699 3-Dichloro ro ene trans-1 5 , ene Eth (b 8 34371 enz e chloride th l M 5 34423 en e 34516 1,1,2,2-Tetrachloroethane 7 hloroeth lene t T 5 34475 rac e 34010 Toluene 6 34506 1,1,1 -Trichloroethane 5 34511 1,1,2-Trichloroethane 5 39180 Trichloroeth lene 5 34488 Trichlorofluoromethane 10 39175 Vinyl chloride 10 < 100 < 100 < 5 < 5 < 5 < 10 < 5 < g < 10 < 10 7.8 < 10 < 5 < 5 < 5 < 5 < 5 < 6 < 5 < 5 < 8 < 5 < 7 < 5 < 6 < 5 < 5 < 5 < 10 < 10 Page 2 of 9 GClMS Confirmation? Yes No X • If different from quantation limit target :L97-1 "Lytsn B. Acid Extractable Fraction, EPA Method 625 Number of chemicals detected in Fraction: 0 Fraction STOREY Number 45582 TORET LomP° dumber I. Pollutants to be anal 34452 4-Chloro-3-r 34586 2-Chloro hE 34601 2,4-Dichlorc 34606 2,4-Dimeth~ 34616 2,4-Dinitro 34657 2-Meth I-4, 34591 2-Nitro her 34646 4-Nitro her 3°032 ~ Pentachlor 34694 Phenol 34621 2,4,6-Trich ' If different from quantitation limit target MEL97-12986 C. Base/Neutral Fraction, EPA Method 625 Number of chemicals detected in Fraction: 0 Fraction STOREY Number 45683 STOREY Compound Number 1. Polluta nts to be anal zed for: 34205 Acena hthene 34200 Acena hth lene 34220 Anthracene 39120 Benzidine 34526 Benzo a) anthracene 34247 Benzo a) rene 34230 Benzo b fluoranthene 34521 Benzo hi) a lene 34242 Benzo k fluoranthene 34278 Bis 2-chloroetho methane 34273 Bis 2-chloroeth I ether 34283 Bis 2-chloroisooro I) ether 39100 Bis(2-eth the I) hthalate 34636 4-Bromophen I phen I ether 34292 Bu I benz I phthalate 34581 2-Chloronaphthalene 34641 4-Chlorophen I phen I ether 34320 Ch sene 34556 Dibenzo (a,h) anthracene 34536 1,2-Dichlorobenzene 34506 1, 3-Dichlorobenzene 34571 '1,4-Dichlorobenzene 34631 3,3-Dichlorobenzidine 34336 Dieth t hthalate 34341 Dimeth I hthalate 39110 Di-n-bu I hthalate 34611 2,4-Dinitrotoluene 34626 2,6-Dinitrotoluene 34596 Di-n-oc I hthalate 34346 1,2-Di hen Ih drazine 34376 Fluoranthene 34381 Fluorene 39700 Hexachlorobenzene 34391 Hexachlorobutadiene 34386 Hexachloroc clo entadiene 34396 Hexachloroethane 34403 Indeno 1,2,3-cd rene 34408 Iso horone 34696 Na hthalene 34447 Nitrobenzene 34438 N-nitrosodimeth lamine 34428 N-nitroso-di-n- ro lamine 34433 N-nitrosodi hen lamine 34461 Phenanthrene 34469 P rene 34551 1,2,4-Trichlorobenzene Page 6 of 9 Quantitation Quantitation Concentration GC/MS Limit Target I Limit* Detected Confirmation? r. ~~m I (ua/I) (ug/~ Yes ~ No < 10 < 10 < 10 < 50 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 50 < 10 < 10 < 10 < 10 < 10 < 20 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 10 10 10 50 10 10 10 10 10 10 10 10 10 10 10 10 50 10 10 10 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ME•L97-12986 D. Organochlorine/Organophosphon.is Pesticides and PCB's Paqe 8 cf 9 Number of chemicals detected in Fraction: 0 Fraction STOREY Number 00188 STOREY Compound Number Quantitation Limit Target Quantitation Limit' Concentration Detected Confirmation? Dual Column ~ GClMS 1. Pollutants to be analyzed for. (ug/I) Or anochlorine Pesticides/PCB's, EPA Method 608 (ug/I) (ug/I) Yes No (Yes No 39330 Aldrin 0.05 < 0.05 39337 al ha-BHC 0.05 < 0.05 39338 Beta-BHC 0.05 < 0.05 I I I 34259 Delta-BHC 0.10 I < 0.10 39340 Gamma-BHC Lindane) I 0.05 < 0.05 I 39350 Chlordane 0.20 < 0.20 I 39310 4,4'-DDD 0.10 < 0.10 ( 39320 4,4'-DDE 0.10 < 0.10 I 39300 4,4'-DDT 0.10 < 0.10 I ( I 39380 Dieldrin 0.02 < 0.02 34361 Endosulfan I al ha) I 0.10 I < 0.10 I 34356 Endosulfan II beta) I 0.10 < 0.10 34351 Endosulfan sulfate I 0.70 I < 0.70 39390 Endrin I 0.06 I < 0.06 34366 Endrin aldeh de I 0.20 I < 0.20 39410 He tachlor I 0.05 ( < 0.05 39420 He tachlor a oxide I 0.80 I < 0.80 39480 Metho chlor 0.50 < 0.50 I I I 39755 Mirex I 0.20 I < 0.20 39400 Toxa hene ~ I 2.40 I < 2.40 I 34671 PCB 1016 0.50 I < 0.50 39488 PCB 1221 I 0.50 I < 0.50 I ( I I 39492 PCB 1232 I 0.50 ( < 0.50 I I I 39496 PCB 1242 I 0.50 < 0.50 39500 PCB 1248 0.50 < 0.50 I I I 39504 PCB 1254 I 1.00 < 1.00 I ( 39508 PCB 1260 1.00 < 1.00 Or ano hos horns Pesticides: EPA Method 608 39560 Demeton 2.5 < 2.5 I 39540 Parathion eth I) 0.6 < 0.6 I E. Herbicides, EPA Method 615 Number of chemicals detected in Fraction: 0 Fraction STOREY Number 00148 STOREY Com ound Quantitation Quantitation Concentration Confirmation? Number Tar et Limit Limit" Detected Dual Column 1. Pollutants to be anal ed for. ua/I u /I u /I Yes No 39730 2,4-D 12 < 12 39045 Silvex 2 < 2 I 39740 2,4,5-T 2 < 2 ' If different from quantitation limit target REFERENCES 1. North Carolina Division of Environmental Management. 1994. Water Quality Monitoring Data for Waters in the Upper Deep River Area July 28, 1992-0ctober 7, 1993. Raleigh, N.C. 2. North Carolina Division of Environmental Management. 1996. Standard Operating Procedures Manual Physical and Chemical Monitoring. Raleigh, N.C. 3. Raschke, Ronald L. 1989. Use of the Algal Growth Potential Test for Data Assessment and Lake Classification. In Proceedings of a National Conference on Enhancing States' Lake Management Programs. Chicago, IL. Northeastern Illinois Planning Commission. North American Lake Management Society. Washington, D.C.