Loading...
HomeMy WebLinkAboutNC0024406_6. BCSS CAP Part 1_Appx D_Final_20151208)rption This page intentionally left blank The WILLIAM STATES LEE COLLEGE of ENGINEERING Soil Sorption Evaluation Belews Creek Steam Station Prepared for HDR Engineering, Inc Hydropower Services 440 S Church Street # 1000, Charlotte, NC 28202 Investigators William G. Langley, Ph.D., P.E. Shubhashini Oza, Ph.D. UNC Charlotte Civil and Environmental Engineering EPIC Building, 3252, 9201 University City Blvd, Charlotte, NC 28223 October, 312015 Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table of Contents List of Tables ----------------------------------------------------- List of Figures ---------------------------------------------------- I . Introduction ------------------------------------------------- 2. Background -------------------------------------------------- 3. Experiment: Kd Determination --------------------------- 3.1 Sample Storage and Preparation -------------------- 3.2 Metal Oxy-hydroxide Phases ------------------------ 3.3 Test Solution ------------------------------------------- 3.4 Equipment Setup -------------------------------------- 4. Model Equations for Kd Determination ------------------ 5. Leaching for Ash Samples -------------------------------- 6. Results ------------------------------------------------------- 7. References --------------------------------------------------- Appendix — A ----------------------------------------------------- Appendix — B----------------------------------------------------- ------------------------------------------- iii ------------------------------------------- iv -------------------------------------------- 1 -------------------------------------------- 1 -------------------------------------------- 2 -------------------------------------------- 2 -------------------------------------------- 3 -------------------------------------------- 3 -------------------------------------------- 3 -------------------------------------------- 4 -------------------------------------------- 5 -------------------------------------------- 5 -------------------------------------------- 8 -------------------------------------------- 9 ------------------------------------------- 19 iiIPage Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte List of Tables Table 1: Site specific soil sample analyzed for Kd......................................................................... 9 Table 2: Synthetic ground water constituents and trace metals concentrations .............................. 9 Table 3: Oxidation-reduction potential values for selected soil samples (ASTM G 200-09) ...... 10 Table 4: Summary of batch and column Kd for AB — 2D............................................................. 10 Table 5: Summary of batch and column Kd for GWA - 8 S......................................................... 11 Table 6: Summary of batch and column Kd for AB — 9S............................................................. 11 Table 7: Summary of batch and column Kd for BG — 3 S............................................................. 11 Table 8: Summary of batch and column Kd for GWA — 12.......................................................... 12 Table 9: Summary of batch and column Kd for GWA — 2D......................................................... 12 Table 10: Summary of batch and column Kd for GWA — 3D....................................................... 12 Table 11: Summary of batch and column Kd for GWA — 11 D.................................................... 13 Table 12: Summary of batch and column Kd for GWA — 5 S....................................................... 13 Table 13: Summary of batch and column Kd for MW — 200 BR ................................................. 13 Table 14: Kd Qualifiers for batch and column plots..................................................................... 14 Table 15: Ogata-Banks parameters used in developing column Kd............................................. 15 Table 16: HFO, HMO and HAO................................................................................................... 17 Table 17: Method 1313 leaching - pH, ORP and conductivity (at natural pH) ............................ 18 Table 18: Method 1313 leaching (at natural pH) data for ash samples collected at the site ........ 18 iiiIPage Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte List of Figures Figure 1: Tumbler for 1313, 1316 and batch Kd........................................................................... 19 Figure 2: Batch filtration set-up.................................................................................................... 19 Figure3: Column set-up............................................................................................................... 20 Figure 4: Syringe filtration for extraction of HFO/HMO/HAO................................................... 21 Figure 5: Arsenic batch Kd - AB - 2D........................................................................................... 22 Figure 6: Arsenic column Kd - AB - 2D....................................................................................... 22 Figure 7: Boron batch Kd - AB - 2D............................................................................................. 23 Figure 8: Boron column Kd - AB - 2D.......................................................................................... 23 Figure 9: Cadmium batch Kd - AB - 2D....................................................................................... 24 Figure 10: Cadmium column Kd - AB - 2D.................................................................................. 24 Figure 11: Iron batch Kd - AB - 2D.............................................................................................. 25 Figure 12: Manganese batch Kd - AB - 2D................................................................................... 25 Figure 13: Molybdenum batch Kd - AB - 2D............................................................................... 26 Figure 14: Molybdenum column Kd - AB - 2D............................................................................ 26 Figure 15: Selenium batch Kd - AB - 2D...................................................................................... 27 Figure 16: Selenium column Kd - AB - 2D................................................................................... 27 Figure 17: Thallium batch Kd - AB - 2D...................................................................................... 28 Figure 18: Thallium column Kd - AB - 2D................................................................................... 28 Figure 19: Vanadium column Kd - AB - 2D................................................................................. 29 Figure 20: Arsenic batch Kd — GWA - 8 5.................................................................................... 30 Figure 21: Arsenic column Kd — GWA - 8 S................................................................................ 30 Figure 22: Boron batch Kd — GWA - 8 S...................................................................................... 31 Figure 23: Boron column Kd — GWA - 8 5................................................................................... 31 Figure 24: Cadmium batch Kd — GWA - 8 S................................................................................ 32 Figure 25: Cadmium column Kd — GWA - 8 S............................................................................. 32 Figure 26: Molybdenum column Kd — GWA - 8 S....................................................................... 33 Figure 27: Selenium batch Kd — GWA - 8 S................................................................................. 34 Figure 28: Selenium column Kd— GWA - 8 5.............................................................................. 34 Figure 29: Thallium batch Kd — GWA - 8 S................................................................................. 35 Figure 30: Thallium column Kd — GWA - 8 S.............................................................................. 35 ivIPage Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 31: Vanadium column Kd— GWA - 8 S............................................................................ 36 Figure 32: Arsenic batch Kd - AB - 9 S........................................................................................ 37 Figure 33: Arsenic column Kd — AB — 9 S.................................................................................... 37 Figure 34: Boron batch Kd — AB — 9 S......................................................................................... 38 Figure 35: Boron column Kd — AB — 9 S...................................................................................... 38 Figure 36: Cadmium batch Kd — AB — 9 S.................................................................................... 39 Figure 37: Cadmium column Kd — AB — 9 S................................................................................ 39 Figure 38: Manganese batch Kd — AB — 9 S................................................................................. 40 Figure 39: Molybdenum column Kd — AB — 9 S.......................................................................... 41 Figure 40: Selenium batch Kd — AB — 9 S.................................................................................... 42 Figure 41: Selenium column Kd — AB — 9 S................................................................................. 42 Figure 42: Thallium batch Kd — AB — 9 S..................................................................................... 43 Figure 43: Thallium column Kd — AB — 9 S................................................................................. 43 Figure 44: Vanadium column Kd — AB — 9 S............................................................................... 44 Figure 45: Arsenic batch Kd — BG — 3 S....................................................................................... 45 Figure 46: Arsenic column Kd — BG — 3 S.................................................................................... 45 Figure 47: Boron column Kd — BG — 3 S...................................................................................... 46 Figure 48: Cadmium batch Kd — BG — 3 S.................................................................................... 47 Figure 49: Cadmium column Kd — BG — 3 S................................................................................ 47 Figure 50: Iron batch Kd — BG — 3 S............................................................................................. 48 Figure 51: Manganese batch Kd — BG — 3 S................................................................................. 48 Figure 52: Molybdenum batch Kd — BG — 3 S.............................................................................. 49 Figure 53: Molybdenum column Kd — BG — 3 S.......................................................................... 49 Figure 54: Selenium batch Kd — BG — 3 S.................................................................................... 50 Figure 55: Selenium column Kd — BG — 3 S................................................................................. 50 Figure 56: Thallium batch Kd — BG — 3 S..................................................................................... 51 Figure 57: Thallium column Kd— BG — 3 S.................................................................................. 51 Figure 58: Vanadium column Kd — BG — 3 S............................................................................... 52 Figure 59: Arsenic batch Kd — GWA — 12.................................................................................... 53 Figure 60: Arsenic column Kd— GWA — 12................................................................................. 53 Figure 61: Boron batch Kd— GWA — 12....................................................................................... 54 v I P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 62: Boron column Kd— GWA — 12.................................................................................... 54 Figure 63: Cadmium batch Kd — GWA — 12................................................................................. 55 Figure 64: Cadmium column Kd — GWA — 12............................................................................. 55 Figure 65: Molybdenum batch Kd— GWA — 12........................................................................... 56 Figure 66: Molybdenum column Kd — GWA — 12........................................................................ 56 Figure 67: Selenium batch Kd — GWA — 12................................................................................. 57 Figure 68: Selenium column Kd — GWA — 12.............................................................................. 57 Figure 69: Thallium batch Kd— GWA — 12.................................................................................. 58 Figure 70: Thallium column Kd — GWA — 12............................................................................... 58 Figure 71: Vanadium column Kd — GWA — 12............................................................................. 59 Figure 72: Arsenic batch Kd — GWA — 2 D.................................................................................. 60 Figure 73: Arsenic column Kd — GWA — 2 D............................................................................... 60 Figure 74: Boron batch Kd — GWA — 2 D..................................................................................... 61 Figure 75: Boron column Kd — GWA — 2 D................................................................................. 61 Figure 76: Cadmium batch Kd — GWA — 2 D............................................................................... 62 Figure 77: Cadmium column Kd — GWA — 2 D............................................................................ 62 Figure 78: Iron batch Kd— GWA — 2 D........................................................................................ 63 Figure 79: Manganese batch Kd — GWA — 2 D............................................................................ 63 Figure 80: Molybdenum batch Kd — GWA — 2 D......................................................................... 64 Figure 81: Molybdenum column Kd — GWA — 2 D...................................................................... 64 Figure 82: Selenium batch Kd — GWA — 2 D................................................................................ 65 Figure 83: Selenium column Kd — GWA — 2 D............................................................................ 65 Figure 84: Thallium batch Kd — GWA — 2 D................................................................................ 66 Figure 85: Thallium column Kd — GWA — 2 D............................................................................. 66 Figure 86: Vanadium column Kd — GW — 2 D.............................................................................. 67 Figure 87: Arsenic batch Kd — GWA — 3 D.................................................................................. 68 Figure 88: Arsenic column Kd — GWA — 3 D............................................................................... 68 Figure 89: Boron column Kd — GWA — 3 D................................................................................. 69 Figure 90: Cadmium batch Kd — GWA — 3 D............................................................................... 70 Figure 91: Cadmium column Kd — GWA — 3 D............................................................................ 70 Figure 92: Molybdenum column Kd — GWA — 3 D...................................................................... 71 viIPage Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 93: Selenium batch Kd — GWA — 3 D................................................................................ 72 Figure 94: Selenium column Kd — GWA — 3 D............................................................................ 72 Figure 95: Thallium batch Kd — GWA — 3 D................................................................................ 73 Figure 96: Thallium column Kd — GWA — 3 D............................................................................. 73 Figure 97: Vanadium batch Kd — GWA — 3 D.............................................................................. 74 Figure 98: Vanadium column Kd — GWA — 3 D........................................................................... 74 Figure 99: Arsenic batch Kd — GWA — 5 S................................................................................... 75 Figure 100: Arsenic column Kd — GWA — 5 S.............................................................................. 75 Figure 101: Boron batch Kd — GWA — 5 S................................................................................... 76 Figure 102: Boron column Kd — GWA — 5 S................................................................................ 76 Figure 103 : Cadmium batch Kd — GWA — 5 S.............................................................................. 77 Figure 104: Cadmium column Kd — GWA — 5 S.......................................................................... 77 Figure 105: Iron batch Kd — GWA — 5 S....................................................................................... 78 Figure 106: Molybdenum batch Kd — GWA — 5 S........................................................................ 79 Figure 107: Molybdenum column Kd — GWA — 5 S.................................................................... 79 Figure 108: Selenium batch Kd — GWA — 5 S.............................................................................. 80 Figure 109: Selenium column Kd — GWA — 5 S.......................................................................... 80 Figure 110: Thallium batch Kd — GWA — 5 S.............................................................................. 81 Figure 111: Thallium column Kd — GWA — 5 S........................................................................... 81 Figure 112: Vanadium batch Kd — GWA — 5 S............................................................................. 82 Figure 113 : Vanadium column Kd — GWA — 5 S......................................................................... 82 Figure 114: Arsenic batch Kd — GWA — 11 D.............................................................................. 83 Figure 115: Arsenic column Kd — GWA — 11 D, Trial A............................................................. 83 Figure 116: Arsenic column Kd — GWA — 11 D, Trial B............................................................. 84 Figure 117: Arsenic column Kd — GWA — 11 D, Trial C............................................................. 84 Figure 118: Boron column Kd— GWA — 11 D, Trial A................................................................ 85 Figure 119: Boron column Kd — GWA — 11 D, Trial B................................................................ 86 Figure 120: Boron column Kd — GWA — 11 D, Trial C................................................................ 86 Figure 121: Cadmium batch Kd— GWA — 11 D........................................................................... 87 Figure 122: Cadmium column Kd — GWA — 11 D, Trial A .......................................................... 87 Figure 123: Cadmium column Kd— GWA — 11 D, Trial B.......................................................... 88 viiIPage Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 124: Cadmium column Kd — GWA — 11 D, Trial C.......................................................... 88 Figure 125: Iron batch Kd — GWA — 11 D.................................................................................... 89 Figure 126: Manganese batch Kd— GWA — 11 D......................................................................... 89 Figure 127: Molybdenum batch Kd — GWA — 11 D..................................................................... 90 Figure 128: Molybdenum column Kd— GWA — 11 D, Trial A .................................................... 90 Figure 129: Molybdenum column Kd — GWA — 11 D, Trial B.................................................... 91 Figure 130: Molybdenum column Kd — GWA — 11 D, Trial C.................................................... 91 Figure 131: Selenium batch Kd — GWA — 11 D............................................................................ 92 Figure 132: Selenium column Kd — GWA — 11 D, Trial A ........................................................... 92 Figure 133: Selenium column Kd— GWA — 11 D, Trial B........................................................... 93 Figure 134: Selenium column Kd — GWA — 11 D, Trial C........................................................... 93 Figure 135: Thallium batch Kd — GWA — 11 D............................................................................ 94 Figure 136: Thallium column Kd — GWA — 11 D, Trial A ........................................................... 94 Figure 137: Thallium column Kd — GWA — 11 D, Trial B........................................................... 95 Figure 138: Thallium column Kd — GWA — 11 D, Trial C........................................................... 95 Figure 139: Vanadium batch Kd — GWA — 11 D.......................................................................... 96 Figure 140: Vanadium column Kd — GWA — 11 D, Trial A ......................................................... 96 Figure 141: Vanadium column Kd — GWA — 11 D, Trial B......................................................... 97 Figure 142: Vanadium column Kd— GWA — 11 D, Trial C.......................................................... 97 Figure 143: Arsenic batch Kd — MW — 200 BR............................................................................ 98 Figure 144: Arsenic column Kd — MW — 200 BR......................................................................... 98 Figure 145: Boron column Kd — MW — 200 BR........................................................................... 99 Figure 146: Cadmium batch Kd — MW — 200 BR....................................................................... 100 Figure 147: Cadmium column Kd — MW — 200 BR.................................................................... 100 Figure 148: Molybdenum batch Kd — MW — 200 BR................................................................. 101 Figure 149: Molybdenum column Kd — MW — 200 BR.............................................................. 101 Figure 150: Selenium batch Kd — MW — 200 BR....................................................................... 102 Figure 151: Selenium column Kd — MW — 200 BR.................................................................... 102 Figure 152: Thallium batch Kd — MW — 200 BR........................................................................ 103 Figure 153 : Thallium column Kd — MW — 200 BR..................................................................... 103 Figure 154:: Vanadium batch Kd — MW — 200 BR.................................................................... 104 viiiIPage Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 155: Vanadium column Kd — MW — 200 BR.................................................................. 104 Figure 156: pH versus US for AB - 2 D..................................................................................... 105 Figure 157: ORP versus US for AB - 2 D.................................................................................. 105 Figure 158: Conductivity versus US for AB - 2 D..................................................................... 106 Figure 159: pH versus US for GWA - 8 S................................................................................. 106 Figure 160: ORP versus US for GWA - 8 S.............................................................................. 107 Figure 161: Conductivity versus US for GWA - 8 S................................................................. 107 Figure 162: pH versus US for AB - 9 S..................................................................................... 108 Figure 163: ORP versus US for AB - 9 S.................................................................................. 108 Figure 164: Conductivity versus US for AB - 9 S..................................................................... 109 Figure 165: pH versus US for BG - 3 S..................................................................................... 109 Figure 166: ORP versus US for BG - 3 S.................................................................................. 110 Figure 167: Conductivity versus US for BG - 3 S..................................................................... 110 Figure 168: pH versus US for GWA - 12.................................................................................. 111 Figure 169: ORP versus US for GWA - 12................................................................................ 111 Figure 170: Conductivity versus US for GWA - 12................................................................... 112 Figure 171: pH versus US for GWA - 2 D................................................................................. 112 Figure 172: ORP versus US for GWA - 2 D.............................................................................. 113 Figure 173: Conductivity versus US for GWA - 2 D................................................................. 113 Figure 174: pH versus US for GWA - 3 D................................................................................. 114 Figure 175: ORP versus US for GWA - 3 D.............................................................................. 114 Figure 176: Conductivity versus US for GWA - 3 D................................................................. 115 Figure 177: pH versus US for GWA - 11 D............................................................................... 115 Figure 178: ORP versus US for GWA - 11 D............................................................................ 116 Figure 179: Conductivity versus US for GWA - 11 D............................................................... 116 Figure 180: pH versus US for GWA - 5 S................................................................................. 117 Figure 181: ORP versus US for GWA - 5 S.............................................................................. 117 Figure 182: Conductivity versus US for GWA - 5 S................................................................. 118 Figure 183: pH versus US for MW 200 BR............................................................................... 118 Figure 184: ORP versus US for MW 200 BR............................................................................ 119 Figure 185: Conductivity versus US for MW 200 BR............................................................... 119 ixIPage Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 186: Arsenic 1316 Belews Creek Ash Basin................................................................... 120 Figure 187: Boron 1316 Belews Creek Ash Basin..................................................................... 120 Figure 188: Chromium 1316 Belews Creek Ash Basin.............................................................. 121 Figure 189: Manganese 1316 Belews Creek Ash Basin............................................................. 121 Figure 190: Molybdenum 1316 Belews Creek Ash Basin.......................................................... 122 Figure 191: Selenium 1316 Belews Creek Ash Basin................................................................ 122 Figure 192: Vanadium 1316 Belews Creek Ash Basin.............................................................. 123 Figure 193: Zinc 1316 Belews Creek Ash Basin........................................................................ 123 Figure 194: Boron 1316 Pinehall Road Ash Landfill................................................................. 124 Figure 195: Iron 1316 Pinehall Road Ash Landfill.................................................................... 124 Figure 196: Zinc 1316 Pinehall Road Ash Landfill.................................................................... 125 Figure 197: pH at varying US ratio for 1316 testing of Belews Creek Ash Basin .................... 126 Figure 198: ORP at varying US ratio for 1316 testing of Belews Creek Ash Basin ................. 126 Figure 199: Conductivity at varying US ratio for 1316 testing of Belews Creek Ash Basin .... 127 Figure 200: pH at varying US ratio for 1316 testing of Pinehall Road Ash Landfill ................ 128 Figure 201: ORP at varying US ratio for 1316 testing of Pinehall Road Ash Landfill ............. 128 Figure 202: Conductivity at varying US ratio for 1316 testing of Pinehall Road Ash Landfill 129 x I P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 1. Introduction Duke Energy Carolinas, Inc. (Duke Energy), owns and operates the Belews Creek Steam Station located in Stokes County, North Carolina. The coal ash residue from the coal combustion process for power generation was placed in the plant's ash basin, which is permitted by the North Carolina Department of Environmental and Natural Resources (NCDENR) Division of Water Resources (DWR) under the National Pollution Discharge Elimination System. In a Notice of Regulatory Requirements (NORR) letter dated August 13, 2014, the Division of Water Resources (DWR) requested that Duke Energy prepare a Groundwater Assessment Plan to identify the source and cause of possible contamination, any potential hazards to public health and safety, and actions taken to mitigate them, and all receptors and complete exposure pathways. In addition, the plan should determine the horizontal and vertical extent of possible soil and groundwater contamination and all significant factors affecting contaminant transport and the geological and hydrogeological features influencing the movement, chemical, and physical character of the contaminants. The work plan was also prepared to fulfill the requirements stipulated in Coal Ash Management Act 2014 — North Carolina Senate Bill 729: The Groundwater Assessment Plan includes the collection of groundwater and surface water information to prepare a Comprehensive Site Assessment Report and support the development of a groundwater computer model to evaluate the long term fate and transport of constituents of concern (COC) in groundwater associated with the ash basin. Critical input parameters for the model are site specific soil sorption coefficients Kd for each COC. This report presents the initial results of sorption testing on selected soils from the Steam Station to quantify the Kd terms. Testing was performed at the Civil and Environmental Engineering laboratories in the EPIC building at UNC Charlotte. Soil samples were collected during the geotechnical and environmental exploration program at the facility between March and June 2015, thirty one of which were delivered to UNC-Charlotte between March 15th and June 12th of 2015. 2. Background In groundwater, sorption is quantified by the equilibrium relationship between chemicals in the dissolved and adsorbed phases. Experiments to quantify sorption can be conducted using batch or column procedures. A batch sorption procedure consists of combining soil samples and solutions across a range of soil -to -solution ratios, followed by shaking until chemical equilibrium is achieved. Initial and final concentrations of chemicals in the solution determine the adsorbed amount of chemical, and provide data for developing plots of adsorbed versus dissolved chemical. If the plot, or isotherm, is linear, the single -valued coefficient Kd, with units of volume per unit mass, represents the slope of the isotherm. Depending on the chemical, its dissolved phase concentration, and the soil characteristics, nonlinear isotherms, characterized by two or more coefficients, may result. The column sorption procedure consists of passing a solution of known chemical concentration through a cylindrical column packed with the soil sample. A plot of the chemical constituent measured in the column effluent is plotted versus time or its equivalent, pore volumes passed. 1 I Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte This so-called breakthrough curve is plotted together with the analytical solution of the advection-dispersion-adsorption equation from which the linear sorption coefficient Kd is estimated by visual curve fitting [1]. When comparing the merits of the two procedures for quantifying sorption, the batch procedure provides a more effective contact between the solution and soil, while the column procedure is more representative of in -situ groundwater flow conditions where solution soil contact may non -uniform and less than fully effective. Both batch and column procedures were employed for the sorption experiments on soils from the facility. Depending on practical considerations, the batch procedure may be designed to capture a wide range of Kd values. Metal oxy-hydroxide phases of iron, manganese, and aluminum in soils are considered to be the most important surface reactive phases for cationic and anionic constituents in many subsurface environments [2]. Quantities of these phases in a given soil can thus be considered as a proxy for COC sorption capacity for a given soil. In this study, oxy-hydroxide phases of iron, manganese, and aluminum (hereafter referred to as HFO, HMO, and HAO) were measured concurrently with sorption coefficients for selected COCs and soil samples. 3. Experiment: Kd Determination 3.1 Sample Storage and Preparation Ten soil samples were selected for determination of sorption coefficients (Table 1). The basis for selection was to provide adequate coverage of the saturated zone beneath and down gradient of the ash basin. Preserved soils arrived at the EPIC lab in air -tight plastic bags on ice in coolers. Samples were stored in their original containers in a cold room at less than 4° C until tested. For batch and column procedures, soil samples were disaggregated, homogenized, and air-dried at room temperature in aluminum pans (21" x 13" x 4"), for a minimum of 72 hours, with turning every 12 hours. The dry samples were then sieved to a particle diameter of less than 2 mm (#10 U.S. Standard mesh). Sample splits for column testing were sieved a second time to remove particles less than 0.30 mm (#50 U.S. Standard mesh) in order to have sufficient permeability of the sample such that water passed through the column without operational problems, such as leaking or reduced flow. Bedrock samples were fragmented using a Sotec Systems Universal Testing Machine (UTM). Fragmentation was continued until the approximate grain size was 2.0 to 0.30 mm by visual inspection. Like the soil samples, bedrock samples intended for column testing were sieved a second time to remove particles less than 0.30 mm (#50 U.S. Standard mesh) to minimize operational problems associated with the smaller particle size fraction. Soil samples for batch sorption testing were weighed and placed in 250 mL wide -mouth HDPE bottles with polypropylene screw tops (in accordance with U.S. Environmental Protection Agency (EPA) Technical Resource Document EPA/530/SW-87/006-F). For each test on a single sample, soil masses of 10, 25, 50, 75, and 100 grams were placed in separate bottles. The columns were 8 inch long (20.3cm) polyethylene tubes with dimensions 0.675 in. (16 mm) I.D. by 0.75 in. (19 mm) O.D. Each column setup included two polypropylene end caps with barbed fittings which accept 0.25 to 0.375 in. (6.4 to 9.5 mm) I.D. tubing. Two discs of porous 2 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte polyethylene and polymer mesh screen were placed between the end cap and tube to retain the soil in the column. A modified slurry packing method was used to provide homogenous sample packing without preferential flow in the columns [3]. With one end cap in place acid -washed Ottawa sand was added through the open end to a depth of about 2 cm to ensure the effective dispersal of now across the column cross section. With the lower end cap and sand in place, 3 mL of 18 MQ water (high purity de -ionized water) was added to the column. Then sample material was added in 5 cm lifts. The column assembly was weighed after each addition of water and soil. In order to eliminate trapped air, the column was placed on a vibrating table for 15 seconds. This process also ensured proper compaction while promoting a uniform density throughout the column. The sequence of adding water and sample material followed by vibrating was continued until roughly 2 cm of column head space remained. A 2 cm thick sand layer was added at the top of the compacted sample and the upper end cap was attached. The length of material in the column was measured in order to estimate the dry bulk density and porosity of the packed sample. Experimental set-up is presented in Figure 4. 3.2 Metal Oxy-hydroxide Phases The analytical method for determining hydrous ferric oxide (HFO) and hydrous aluminum oxide (HAO) was adapted from Chou and Zhou [4] and that of hydrous manganese oxide (HMO) from T. T. Chao [5]. The HFO and HAO method calls for extracting the soil sample using a 0.25M NH2OH-HC1-0.25M HCl combined solution as the extractant at 50' C for 30 minutes (soil/liquid = 0.1 g/25 mL). The HMO methods calls for extracting the soil samples using a 0.1 M NH2OH-HC1-0.25M HCl combined solution as the extractant at 25' C for 2 hours (soil/liquid = 0.025 g/50 mL) (Figure 4). 3.3 Test Solution A synthetic groundwater, with chemical composition is provided in Table 2, was prepared using reagent grade solid chemicals and 18 MQ water. Target COC concentrations were attained by diluting concentrated reference standards to the synthetic groundwater solution. After adding the reference standards, the COC-amended feed solution was back-titrated as needed to an approximate pH range of 6.5 to 7.5 using 0.IN sodium hydroxide solution. Iron and manganese were omitted from the list of target COC given that they were considered likely to leach when exposed to the synthetic groundwater. 3.4 Equipment Setup The COC-amended solutions were prepared in 10 liter and 20 liter LDPE carboys for the batch and column experiments, respectively. For each batch experiment, 200 mL of solution was added to each 250 mL bottle to obtain soil mass to solution ratios of 50, 125, 250, 375, and 500 mg/L. The soil -solution mixtures were equilibrated in a rotary mixer operating at 60 rpm for 24 hours. The experimental set-up and filtration details are presented in Figure 1 and 2. Following equilibration, water samples were drawn, filtered, and preserved for analysis of ten COC (arsenic, boron, cadmium, chromium, molybdenum, iron, manganese, selenium, thallium, and 3 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte vanadium). Sample blanks were included in selected experiments to confirm stability of the solution. For the column experiments, Masterflex peristaltic pump drives with 12-channel, 8-roller cartridge pump heads and cartridges were connected between the carboys and the columns using Tygon tubing, valves, and fittings. The columns were operated in the up -flow mode. The now rate was set to pass approximately twelve pore volumes, or approximately 200 mL, per day through each column. Before pumping began with the COC-amended solutions, the columns were fully saturated by slowly pumping reagent water in the up -flow mode. The COC-amended solutions were stirred continuously using magnetic stirrers. The arrangement of the carboys, pump, and columns is shown in Figure 4. Real-time, grab sample volumes of approximately 50 ml were drawn for each sampling event. The sample time and total volume pumped since the previous sampling event were recorded for calculating flow rates and pore volume passed. Concurrent samples of the feed solutions were also taken for each sampling event. Each sample was proportioned, filtered, and preserved for the analyses of eight COC (arsenic, boron, cadmium, chromium, molybdenum, selenium, thallium, and vanadium). Iron and manganese Kd values were determined from the combination of batch and HFO-HMO values and not by the column method. 4. Model Equations for Kd Determination After equilibration of a batch soil -solution mixture, the COC concentration in solution will be reduced due to sorption. This may be expressed as x m = [(CO — C)/m] * V where, x/m is the soil concentration (µg/g), Co is the initial solution concentration (µg/L), C is the final solution concentration, m is the soil sample mass, and V is the volume of solution. For sorption characterized by a linear isotherm, a plot of measured solution concentration versus calculated soil concentration for each soil sample (five data points: one for each soil to solution ratio) will yield the linear Kd term as the slope of x/m versus C. For the steady-state flow regime considered in the column tests, van Genuchten and Alves [1982] presented the following form of the Ogata-Banks equation for one-dimensional, advection-dispersion equation with sorption as a close approximation to that for a finite length, lab -scale column [1, 6]: COx — vtl Rx + Vtll C(x, t) = 2 [erfc (2 DRt I + exp(�x/D)erfc (2 DRt /J where, C(x,t) is the solute concentration (M/L3), x is the column length (L), t is the elapsed time (T), Co is the feed concentration (M/L3), R is the dimensionless retardation coefficient, v is the seepage velocity (L/T), and D is the soil dispersion coefficient (L2/T). For sorption characterized by a linear isotherm, the Kd term (L3/M) is incorporated in R: 4 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte R=1+Pb Kd n where, Pb is the dry bulk density of the soil (M/L3) and n is the porosity. For the given test conditions where dispersion was dominant over diffusion, the soil dispersion coefficient D is equal to the product of the longitudinal dispersivity, aL (L) and the seepage velocity. Supporting data used to estimate Kd based on O-B equation are provided in Table 15. For plotting the analytical results together with the O-B equation, cumulative pore volumes corresponding to the elapsed time of each sampling event were calculated using measured water volumes pumped and the column pore volume. For each COC and soil column, Kd was estimated by visually fitting the plotted O-B equation to the measured solution concentrations. 5. Leaching for Ash Samples The site specific ash samples were subjected to two leaching protocols, Method 1313 and Method 1316. Method 1313: Liquid -Solid Partitioning as a Function of Extract pH using a Parallel Batch Extraction Procedure [6]. The procedure calls for reaching nine specific pH targets after mixing. If the natural pH of the material, without acid or based addition, is not one of the target pH positions, the natural pH is a tenth position in the procedure. For the purpose of this study, the test was conducted at the natural pH of the material only. The ash samples were extracted for 24 hours with 18 MQ water. The leachate from the extraction step were filtered using 0.45 µ filter paper and analyzed for pH, ORP, conductivity, and concentration of anions and cations. Method 1316: Liquid -Solid Partitioning as a Function of Liquid -Solid Ratio using a Parallel Batch Extraction Procedure [7]. This method consists of five parallel extractions over a range of US values from 0.5 to 10 mL eluent/g dry material. In addition to the five test extractions, a method blank without solid sample was carried out to verify that analyte interferences are not introduced as a consequence of reagent impurities or equipment contamination. The 250 mL test bottles were equilibrated for 24 hours with 18 MQ water (and as per method specification). At the end of the contact interval, the leachate from the extraction step was filtered (0.45 filter paper) and analyzed for pH, ORP, conductivity, and concentration of anions and cations 6. Results The oxidation and reduction potential (ORP) values of soil samples, measured as per ASTM G 200 — 09, are listed in Table 3 [7]. The sorption test results are grouped by soil sample. Batch and column results are tabulated in Tables 4 to 13. The Kd result for COCs are assigned qualifiers as presented in Table 14. The parameters used in Ogata-Banks equation for developing the Kd column plots are presented in Table 15. Batch and column test results for the COCs are shown in Figure 5 through 155 for each soil sample. 5 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte At the conclusion of the breakthrough experiment six pore volumes of 18 MQ water was passed through the column (data not shown in column Kd plots). No significant COC desorption was observed based on the column effluent monitoring. General comments for Kd experiments: The sorption coefficients extracted from the experimental results in this study may be affected to some extent by factors related to the experimental design. They include the following: • The goal of the batch and column sorption studies was to expose each soil sample to COCs in the aqueous phase and allow COC adsorption to occur until equilibrium is achieved. A solution intended to represent a generic groundwater was used as the background solution to which COCs were added. This solution differs from the in -situ solution in groundwater from which the soil sample was sampled. As a result, the soil sample is exposed to a geochemical environment in which a number of chemical reactions may take place in addition to sorption. • The number of COCs for which sorption estimates are required for each sample necessitates combining a number of COCs in a single solution for simultaneous measurement. These COCs may interact chemically, thus altering their respective sorption characteristics for individual soil samples. • Sorption characteristics for selected COCs are sensitive to redox conditions. Experiments in the lab were conducted in atmospheric conditions unless otherwise noted. The resulting sorption coefficients may not be representative of other redox settings. • Sample splits for column testing were sieved to remove particle sizes less than 0.30 mm in order to have sufficient permeability of the sample to pass water through the column without operational problems such as leaking and reduced flow. This could also affect the observed Kd value. Specific comments for batch and column Kd experiments are summarized as follows • Batch Kd for As ranged from 16.6 to 3025.5 mL/g and column Kd ranged from 30.0 to 775.0 mL/g. • Batch Kd for B ranged from 0.9 to 3.4 mL/g and column Kd ranged from 13 to 18 mL/g. • Batch Kd for Cd ranged from 15.0 to 414.0 mL/g and column Kd ranged from 175 to 675 mL/g. • Fe and Mn were not included in the test solution, so its occurrence in the batch test solution is indicative of leaching. HFO and HMO values were used as the initial concentration to predict the Kd values for Fe and Mn, respectively. If the concentration of Fe and Mn increased with mass of soil per unit volume of test solution during batch experiments, it is an indication of a linear leaching model, as opposed to a linear sorption 6 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte model. Kd for Fe indicated linear isotherm for few soil samples and ranged from 2254.9 to 66,192.0 mL/g and in Mn Kd ranged from 0.05 to 52.5 mL/g. • Batch Kd for Mo ranged from 51.1 to 3373.8 mL/g and column Kd ranged from 45 to 520 mL/g. • Batch Kd for Se ranged from 3.2 to 3458.5 mL/g and column Kd ranged from 25 to 650 mL/g. • Batch Kd for Tl ranged from 73 to 1664.3 mL/g and column Kd ranged from 290 to 900 mL/g. • Batch Kd for V ranged from 21.3 to 1090.7 mL/g, and column Kd ranged between 25 to 700 mL/g. pH, ORP, and conductivity at different liquid to solid (L/S) ratios for batch experiment is depicted through Figures 156 through 185. HFO, HMO and HAO results are presented in Table 16. The leaching test for 1313 is tabulated in Table 17 and 18. From Table 18 it can be observed that leaching was negligible for beryllium, cadmium, cobalt, nickel, lead and thallium (below minimum detection limit of 1 ppb). Leaching was observed for other metals, such as arsenic, boron, chromium, cobalt, iron, manganese, molybdenum, selenium, vanadium and zinc. The leaching trend for 1316 is presented through Figures 186 through 202. 7 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 7. References 1. Akio Ogata, R.B.B., A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media. Geological Survey Professional Paper 411 - A, 1961: p. 1-13. 2. Robert G. Ford, R.T.W., Robert W. Puls, Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. 2007, National Risk Management Research Laboratory, U.S. EPA: Cincinnati, Ohio. 3. Oliviera, I.B., A.H. Demond, and A. Salehzadeh, Packing of Sands for the Production of Homogeneous Porous Media. Soil Science Society of America Journal, 1996. 60(1): p. 49-53. 4. Chao, T.T. and L. Zhou, Extraction Techniques for Selective Dissolution of Amorphous Iron Oxides from Soils and Sediments. Soil Sci. Soc. Am. J., 1983. 47(2): p. 225-232. 5. Chao, T.T., Selective Dissolution of Manganese Oxides from Soils and Sediments with Acidified Hydroxylamine Hydrochloride. Soil Science Society of America Journal, 1972. 36(5): p. 764-768. 6. W.J.Alves, M.T.v.G.a., Analytical Solutions of the One -Dimensional Convetive- Dispersive Solute Transport Equation. 1982. 7. ASTM, ASTM G 200 - 09 "Standard Test Method for Measurement of Oxidation - Reduction Potential (ORP of Soil) ". 2014, ASTM International: West Conshohocken, PA. 8 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Appendix — A Table 1: Site specific soil sample analyzed for Kd Sample Name Depth ft. AB-2D 75 GWA - 8 S 28 AB-9S 45 BG-3 S 40-42 GWA — 12 25 — 27 GWA — 2 D 45 GWA —3D 54-56 GWA— 11D 10'BWT GWA-5 S 28-35 MW — 200 BR 10' B WT Table 2: Synthetic ground water constituents and trace metals concentrations Chemical Concentration Units CaSO4.2H20 20.0 PPM M SO4 5.0 PPM Na HCO3 10.0 ppm Arsenic 500 ppb Boron 500 ppb Cadmium 500 ppb Chromium 500 ppb Molybdenum 500 ppb Selenium 500 ppb Thallium 500 ppb Vanadium 500 ppb 9 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 3: Oxidation-reduction potential values for selected soil samples (ASTM G 200-09) Sl. No. Sample Name Depth ft. ORP mV Trial A Trial B Trial C Average 1 AB - 25 A 64 445.8 438.1 433.1 439.0 2 AB - 2D 75 450.6 464.5 461.6 458.9 3 AB - 3D 45 - 50 430.3 425.7 441.6 432.5 4 AB - 3 S 28 462.0 465.6 463.9 463.8 5 GWA - 8 S 28 372.9 386.1 337.3 365.4 6 AB - 8D 59 - 60 247.6 236.5 249.8 244.6 7 AB - 9D 60 376.3 222.0 243.8 243.8 8 AB - 9S 45 456.6 445.7 475.4 459.2 9 BG - 2S 55 - 60 463.2 476.0 484.3 474.5 10 BG - 3 S 40 - 42 469.0 468.4 468.3 468.6 11 BG - 3 S 44 - 45 473.0 477.4 477.6 476.0 12 GWA- 11 D 10 331.0 246.9 243.3 273.7 13 GWA- 11 D 10B 425.2 432.9 430.4 429.5 14 GWA - 12 D 25 - 27 442.4 478.2 480.4 467.0 15 GWA- 16 S 44 - 47 421.5 444.4 454.7 440.2 16 GWA - 2D 45 300.7 270.8 345.7 305.7 17 GWA-3D 44 436.1 421.2 411.5 422.9 18 GWA - 7S 42.5 - 43.5 472.3 499.6 498.1 490.0 19 MW - 200 BR 9 7.5 10.3 12.4 10.1 20 GWA - 5D 53.2 - 53.9 BEDROCK 21 GWA - 2D 56 - 56.6 BEDROCK 22 GWA - 3D 54 - 56 BEDROCK 23 MW - 200 BR 21.6 - 22.5 BEDROCK Table 4: Summary of batch and column Kd for AB - 2D Batch Column Metals Trial I R Trial - 2 R Arsenic 1903.2 0.96 1451.5 0.97 675 Boron 1.4 0.71 -- -- 15 Cadmium 87.0 0.97 79.0 0.99 175 Chromium Non -linear isotherm NA Iron 26810.0 0.56 17737.0 0.73 NA Manganese 8.8 0.48 -- -- NA Molybdenum 2083.0 0.90 3373.8 0.49 360 Selenium 2455.7 0.47 -- -- 625 Thallium 137.8 0.99 135.0 0.99 640 Vanadium Non -linear isotherm 625 101Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 5: Summary of batch and column Kd for GWA - 8 S Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 2848.9 0.57 -- -- 520 Boron 3.0 0.49 3.4 0.91 18 Cadmium 15.7 0.87 17.2 0.93 500 Chromium Non -linear isotherm NA Iron 39.9 1 0.87 1 1 NA Manganese Non -linear isotherm NA Molybdenum Non -linear isotherm 520 Selenium 3458.5 0.54 1 500 Thallium 73.3 0.97 1 84.7 0.99 500 Vanadium Non -linear isotherm 510 Table 6: Summary of batch and column Kd for AB - 9S Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 2528.9 0.76 -- -- 460 Boron 2.5 0.91 2.6 0.97 14 Cadmium 17.1 0.99 17.6 0.97 300 Chromium Non -linear Isotherm NA Iron Non -linear Isotherm NA Manganese 0.05 1 0.64 1 -- I -- NA Molybdenum Non -linear Isotherm 400 Selenium 2910.0 0.80 3291.3 0.66 500 Thallium 124.1 0.97 133.4 0.99 440 Vanadium Non -linear Isotherm 600 Table 7: Summary of batch and column Kd for BG - 3 S Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 1285.9 0.99 1311.9 0.99 725 Boron 0.9 0.81 -- -- 15 Cadmium 57.3 0.98 57.4 0.98 675 Chromium Non -linear isotherm NA Iron -- -- 41502.0 0.70 NA Manganese 0.37 0.67 -- -- NA Molybdenum 2637.3 0.84 2495.3 0.86 225 Selenium 2169.5 0.90 2250.5 0.89 460 Thallium 128.8 0.99 131.5 0.99 700 Vanadium Non -linear isotherm 700 11 I Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 8: Summary of batch and column Kd for GWA - 12 Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 414.0 0.98 434.8 0.98 260 Boron 1.2 0.88 -- -- 14 Cadmium 58.5 0.98 60.0 0.99 175 Chromium Non -linear isotherm NA Iron Non -linear isotherm NA Manganese 0.43 0.41 -- -- NA Molybdenum 453.3 0.73 459.7 0.69 100 Selenium 650.5 0.84 643.0 0.91 190 Thallium 1 112.4 0.98 118.8 0.99 1 290 Vanadium 1 1033.3 0.90 -- -- 290 Table 9: Summary of batch and column Kd for GWA - 2D Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 2903.6 0.75 3025.5 0.69 775 Boron 1.7 0.64 13 Cadmium 16.4 0.90 15.0 0.84 270 Chromium Non -linear isotherm NA Iron 18505.0 0.71 35059.0 0.54 NA Manganese -- -- 52.5 0.52 1 NA Molybdenum 1379.0 0.88 -- -- 260 Selenium 1650.4 0.95 -- 1 -- 490 Thallium 152.7 0.99 155.7 0.98 900 Vanadium Non -linear isotherm 700 Table 10: Summary of batch and column Kd for GWA - 3D Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 16.6 0.98 17.2 0.98 30 Boron Non -linear isotherm NA Cadmium 414.0 1 0.81 1 -- -- 480 Chromium Non -linear isotherm NA Iron Non -linear isotherm NA Manganese Non -linear isotherm NA Molybdenum Non -linear isotherm NA Selenium 3.2 0.90 3.3 0.80 25 Thallium 1628.6 0.80 1664.3 0.86 550 Vanadium 23.0 0.99 21.3 0.98 25 121Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 11: Summary of batch and column Kd for GWA - 11 D Batch Column Metals Trial I R' Trial - 2 R2 Trial A Trial B Trial C Arsenic 1063.8 0.99 1104.8 0.98 700 675 600 Boron Non -linear isotherm 15 15 15 Cadmium 18.7 1 0.92 1 17.0 0.62 675 650 600 Chromium Non -linear isotherm NA Iron 66,192.0 0.66 -- -- NA Manganese 33.5 0.73 35.2 0.64 NA Molybdenum 258.1 0.73 176.1 0.62 300 350 330 Selenium 456.8 0.92 555.4 0.91 650 650 575 Thallium 490.7 0.98 524.2 0.95 675 675 600 Vanadium 868.6 0.90 1090.7 0.94 675 675 600 Table 12: Summary of batch and column Kd for GWA - 5S Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 413.9 0.99 407.0 0.99 75 Boron Non -linear isotherm NA Cadmium 161.9 1 0.98 1 164.2 0.99 350 Chromium Non -linear isotherm NA Iron 4739.8 1 0.82 1 2254.9 0.60 NA Manganese Non -linear isotherm NA Molybdenum 49.3 0.55 48.2 0.50 50 Selenium 157.1 0.83 160.5 0.90 85 Thallium 197.7 0.99 206.0 0.98 430 Vanadium 988.5 0.91 961.7 0.89 190 Table 13: Summary of batch and column Kd for MW - 200 BR Batch Column Metals Trial I R2 Trial - 2 R2 Arsenic 270.4 0.92 327.8 0.94 125 Boron Non -linear isotherm NA Cadmium 102.5 0.87 87.0 0.75 575 Chromium 238.3 0.95 -- -- NA Iron Non -linear isotherm NA Manganese 6.2 0.78 -- -- NA Molybdenum 51.7 0.94 51.1 0.71 45 Selenium 137.1 0.79 154.0 0.62 170 Thallium 120.6 0.91 112.8 0.72 600 Vanadium 77.5 0.92 -- 131Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 14: Kd Qualifiers for batch and column plots Batch Kd Qualifiers Sl. Description Qualifier No. Identification Number 1 The concentration distribution is sufficient for the selected US Q — B — 1 ratio and given COC under consideration. 2 The range of final COC concentration is narrow, such that Q — B — 2 normal variation due to the analytical method resulted in a non -linear isotherm. 3 The range of final COC concentration is narrow and low, such Q — B — 3 that normal variation due to the analytical method resulted in a non -linear isotherm. 4 Leachable COC is present in the soil sample prior to testing. Q — B — 4 This resulted in higher concentration of COC in the final COC concentration at the end of batch experiment. The mass balance approach for estimating sorption can only be done if leachable COC is known. 5 Anomalous variability in the experimental results resulted in a Q — B — 5 non -linear isotherm. 6 Initial COC concentration in the synthetic ground water is not Q — B — 6 sufficient to produce a well-defined linear isotherm. Column Kd Qualifiers Sl. Description Qualifier No. Identification Number 1 The breakthrough curve is sufficient for applying the Ogata- Q — C — 1 Banks model equation. 2 The COC reached breakthrough although the concentration Q — C — 2 was less than the feedstock. Other chemical interactions between soil and synthetic ground water occurring after the initial breakthrough caused a transient decrease in effluent concentration with increased pore volumes (very commonly observed with arsenic in most soil samples from various sites). 3 Effluent and influent concentrations are essentially the same Q — C — 3 over the period of data collection, indicating minimal COC sorption onto the soil (observed frequently with boron and molybdenum). 4 Breakthrough was not observed. A conservation estimate of Q — C — 4 sorption was made by assuming breakthrough occurred at the end of the data collection period. 5 The model equation is fit to the initial segment of the Q — C — 5 breakthrough curve to yield a conservative estimate of sorption. 141Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 15: Ogata-Banks parameters used in developing column Kd Sample Name AB-2 GWA - 8 S AB - 9 S BG - 3 S GWA - 12 GWA - 2 D Depth ft. 75 28 45 40 - 42 25 - 27 45 Parameter Units Effective porosity (n)0.32 0.47 0.40 0.34 0.32 0.36 Bulk density b /cm 1.80 1.41 1.60 1.75 1.79 1.70 Column diameter cm 1.5 Column area cm 1.77 Column length cm 17.75 18.6 17.2 1 16.6 18.0 16.75 Diffusivity Do cm2/s 9.00E-06 b 0.05 a 0.66 w = a* n - b 0.18 0.28 0.23 0.19 0.18 0.20 Effective molecular diffusion coefficient D* cm2/s 1.62E-06 2.49E-06 2.06E-06 1.73E-06 1.62E-06 1.83E-06 Dispersivity factor 0.01 - 0.20 Dis ersivit cm 1.66 - 3.72 Average flow rate Q cm'/daycm'/day 132.25 129.92 154.08 130.71 128.00 148.00 Bulk volume cm 31.37 32.87 30.39 29.16 31.81 29.60 Pore volume cm 10.11 15.44 12.08 9.93 10.28 10.61 Hydraulic detention Day 0.24 0.25 0.20 0.22 0.25 0.20 Linear velocity cm/day 232.21 156.53 219.33 217.15 224.21 233.67 151Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Ogata-Banks parameters continued.... Sam ple name GWA - 3 D GWA - 11 D GWA - 5 S MW - 200 BR Depth ft. 54-56 10' B-WT 28-35 10' B-WT Parameter Units Trial A Trial B Trial C Effective porosity (n)0.33 0.35 0.29 0.30 0.33 0.30 Bulk density b /cm3 1.79 1.73 1.89 1.86 1.79 1.86 Column diameter cm 1.50 Column area cm 2 1.77 Column length cm 17.0 17.50 17.2 Diffusivit Do cm /s 9.00E-06 b 0.05 a 0.66 w=a* n-b 0.18 0.02 0.16 0.16 0.18 0.16 Effective molecular diffusion coefficient D* cm2/s 1.64E-06 1.80E-07 1.41E-06 1.46E-06 1.64E-06 1.47E-06 Dispersivity factor 0.01 - 0.20 Dis ersivit cm 0.17 - 3.50 Average flow rate Q cm /da 116.80 132.58 137.42 132.67 140.00 125.33 Bulk volume cm 30.04 30.93 30.93 30.93 30.93 30.39 Pore volume cm 9.77 10.77 8.87 9.17 10.06 9.05 Hydraulic detention Day 0.26 0.23 0.23 0.23 0.22 0.24 Linear velocity cm/day 203.14 215.47 271.25 253.11 243.55 238.17 161Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 16: HFO, HMO and HAO Sample Name Depth HFO HMO HAO ft. mg/Kg mg/Kg mg/Kg MW - 200 BR 10' B WT 3830.2 37.7 27267.2 GWA - 5 S 28 - 35 2004.7 307.7 1728.8 GWA - 11 D 10' B WT 2446.0 446.6 1947.8 GWA - 3 D 54 - 56 2155.5 217.5 1381.3 GWA - 12 25 - 27 412.4 98.4 796.3 AB - 2 D 75 1256.5 151.2 1963.3 BG - 2 S 40 - 42 1190.5 390.1 1163.8 GWA - 2 D 45 1085.2 245.8 1110.0 AB - 9 S 45 1246.25 NA 4120.0 S 28 4060.0 NA 1957.5 -GWA-8 GWA - 5 S 42.5 - 43.5 435.0 309.1 337.5 BG - 2 S 55 - 60 380.0 446.6 337.5 S 33 - 35 227.5 60.9 415.0 -GWA-8 AB-3 D 45 - 50 347.5 172.2 580.0 GWA - 10 D 45 - 47 555.0 205.3 591.3 AB - 25 A 64 272.5 219.8 576.3 S 28 338.8 243.7 482.5 -AB-3 AB - 75 L 23 377.5 59.6 611.3 GWA - 3 D 44 830.0 199.4 427.5 AB - 8 D 59 - 60 1555.0 504.2 1061.3 BG - 3 S 44 - 45 358.8 369.0 286.3 AB - 15 20 - 25 270.0 242.4 483.8 AB - 15 35 - 40 232.5 214.0 335.0 171Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Table 17: Method 1313 leaching - pH, ORP and conductivity (at natural pH) Sample Name Trial H Conductivity ORP S/cm mV Pinehall Road Ash Landfill A 5.29 44.0 336.4 B 5.29 47.3 327.7 Belews Creek Ash Basin A 6.33 103.1 330.4 B 6.78 100.4 328.1 Table 18: Method 1313 leaching (at natural pH) data for ash samples collected at the site Sample Name As B Be I Cd I Cr I Co I Cu I Fe I Mn I Mo I Ni I Pb I Se I Tl I V I Zn Trial b Pinehall Road A 1.9 < 1 < 1 < 1 1.7 3.7 27.5 17.1 < 1 < 1 < 1 4.0 < 1 < 1 3.4 Ash Landfill B 1.9 <1 <1 <1 1.8 3.7 19.9 16.4 <1 <1 <1 4.2 <1 <1 8.3 Belews Creek A 9.0 < 1 < 1 25.6 < 1 < 1 13.2 52.8 90.7 < 1 < 1 44.6 < 1 21.9 1.2 Ash Basin B 8.4 < 1 < 1 24.5 < 1 < 1 11.2 52.0 86.6 < 1 < 1 43.6 < 1 22.8 1.3 181Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Appendix — B Figure 1: Tumbler for 1313, 1316 and batch Kd I t Figure 2: Batch filtration set-up of 191Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 3: Column set-up 201Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Figure 4: Syringe filtration for extraction of HFO/HMO/HAO 211Page Soil Sorption Evaluation Belews Creek Steam Station Kd plots .Arsenic 10 g _Kd= 1903.2 mL/g y = 1.9032x Kd = 1451.5 mL%g R== 0.9552 • s 7 6 i 4 ♦mil 3 2 1 ° ° 4 0 1 2 Figure 5: Arsenic batch Kd - AB - 2D Q—B-3 500 300 _ 300 a. a. 200 100 0 0 Arsenic - Column AB - 2 D • • • • • • As in Effluent • As in Feed — • — Kd 650 mL/g Kd 675 mL/g — — Kd 700 mL/g 50 100 150 200 Pore volumes passed Figure 6: Arsenic column Kd - AB - 2D Q—C-5 UNC Charlotte 221Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte L4 Kd = 1.4 mLlg Kd = 1.4 mL!g 1.2 • 1.0 0.8tin • • D 106 }_4 }_2 }_0 600 650 Boron y = 0.0014x • R2 = 0.7059 • i 4 • y = 0.0014x R2 = 0.3869 • Trial A • Trial B 700 750 800 850 900 950 Ngq- Figure 7: Boron batch Kd - AB - 2D Q—B-4 500 400 300 a a co 200 100 0 0 Boron - Column AB - 2 D f i r f f • B in Effluent • B in Feed — • — Kd 9 mL!g Kd 15 mLlg — — Kd 24 mL!g 50 100 150 200 Pore volumes passed Figure 8: Boron column Kd - AB - 2D Q—C— 1 231Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 Cadmium 10 ?0 30 40 50 60 70 µ9/L Figure 9: Cadmium batch Kd - AB - 2D Q—B-3 Cadmium - C olun-ni AB - 2 D 500 400 • • � • + • • • * • + • • • Cd in Effluent 300 — —+ • • + r� r�' i — • Cd in Feed — • — Kd 150 mL!g 200 i' • ` Kd 175 mL/g • • — — Kd 200 mL/g 100 —• 0 50 100 150 200 Pare vArnes passed Figure 10: Cadmium column Kd - AB - 2D Q—C-5 241Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Iron 140 Kd = 26810.0 a/g 120 -Kd=17737.0 rk/2 • 100 y=17737x • • .. R2 = 0.7292 80 Y = 26814x ►' • 60 Rz= 0.5567 — 40 _ - 20 • • • Trial A • Trial B 0 1- 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 mg/L Figure 11: Iron batch Kd - AB - 2D Q—B-5 16 Kd = 8.8 mL/a 12 8 4 0 0.0 0.2 0.4 Figure 12: Manganese batch Kd - AB - 2D Q—B-2 Manganese y = 8.614x Rz = 0.3771 y = 8.8031x R2 = 0.4846 •• • • • Trial A • Trial B 0.6 0.8 1.0 1.2 1.4 mJL 251Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 10 9 8 7 6 ac � 5 4 3 2 0 Molybdenum d—=-208.3 Kd = 3373_8 • /g y=3.3738x y = 2.083x R2 = 0.898 • •Trial A •Trial B 0 1 2 3 4 5 P9/L Figure 13: Molybdenum batch Kd - AB - 2D Q—B-3, 5 Molybdenum - Column AB - 2 D 500 • • • • • • • • • • • • • • • • • • • • • • 400 • 300 a 0. O 200 100 0 0 • Mo in Effluent • Mo in Feed t— • — Kd 340 mL/g Kd 360 mL/g — — Kd 380 mL/g 50 100 150 200 Pore volumes passed Figure 14: Molybdenum column Kd - AB - 2D Q—C-5 261Page Soil Sorption Evaluation Belews Creek Steam Station Selenium 10 Kd = 2455.7 mL/g 8 6 4 2 0 0.0 0.5 Figure 15: Selenium batch Kd - AB - 2D Q—B-3 700 600 500 400 c. `n 300 200 100 0 0 50 100 150 Pore volumes passed Figure 16: Selenium column Kd - AB - 2D Q—C-5 y = 2.4557x RZ = 0.4744 • UNC Charlotte • • • Trial A 1.0 1.5 2.0 2.5 µg/L Selenium - Column AB - 2 D • Se in Effluent • Se in Feed — - — Kd 600 mL/g Kd 625 mL/g — — Kd 650 mL/g 200 271Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 6 7 6 5 ba 44 3 2 1 0 0 Thallium 10 20 30 40 50 60 R9/- Figure 17: Thallium batch Kd - AB - 2D Q—B-3 700 600 500 400 a H 300 200 100 Thallium - Column AB - 2 D • • Tl in Effluent • Tl in Feed — — Kd 620 mL/g Kd 640 mL/g — — Kd 660 mL/g 0 c� 0 50 100 150 200 Pore volumes passed Figure 18: Thallium column Kd - AB - 2D Q—C-5 281Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 a. 300 200 100 0 0 Vanadium - Colunui AB - 2 D • \' in Effluent • V in Feed — • — Kd 600 mL/g Kd 625 mL/g — • — Kd 650 mL/g 50 100 150 200 Pore volumes passed Figure 19: Vanadium column Kd - AB - 2D Q—C-5 291Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Arsenic 9 8 Kd = 2848.9 mUg 7 6 y = 2.8489x 5 RZ = 0.5656 4 3 !• 2 �. 1 = 0 0.0 0.5 1.0 1.5 µlb Figure 20: Arsenic batch Kd — GWA - 8 S Q—B-3 Arsenic - Column AB - 6 GTE 500 400 300 d 200 100 0 0 � 0 100 Pore vol unes passed Figure 21: Arsenic column Kd — GWA - 8 S Q—C-5 • 2.0 2.5 • As in Effluent • As in Feed — • — Kd 500 mLlg Kd 520 mLlg — — Kd 540 mLlg 150 301Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 3.0 Kd = 3.0 mL/g 2.5 Kd =-3-.T mL/g 2.0 - 1.5 - 1.0 0.5 0.0 0 200 Figure 22: Boron batch Kd — GWA - 8 S Q—B-4 500 400 300 100 0 0 50 100 Pore volumes passed Figure 23: Boron column Kd — GWA - 8 S Q—C— 1 Boron y = 0.0034x R' = 0.9068 • . '' y = 0.003x • RZ = 0.4875 400 600 µg/L Boron - Column AB - 6 GTB • Trial A • Trial B 800 1000 • B in Effluent • B in Feed — • — Kd 12 mL/g Kd 18 mL/g — • — Kd 24 mL/g 150 311Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Cadmium 1.2 Kd = 15.7 mL/g y = 0.0172x 1.0 Kd = 17.2 -mL-/ Rz = 0.9322 � 0.8 y = 0.0157x ?' 0.6 • R2-=-0.8715 0.4 « 02 • Trial A • Trial B 0.0 �! 10 30 40 50 60 70 p a I Figure 24: Cadmium batch Kd — GWA - 8 S Q—B-3 Cadmium - ColuninAB - 6 GTB 500 Holi7 300 200 100 0 0 50 100 Pore vohnnes passed Figure 25: Cadmium column Kd — GWA - 8 S Q—C-5 Cd in Effluent • Cd in Feed - — Kd 475 mL{g Kd 500 mL{g - — Kd 525 mLIg 150 321Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 500 400 300 a a 200 100 0 0 Molybdenui7i - Colunui AB - 6 GTB 50 100 Porevohimes passed Figure 26: Molybdenum column Kd — GWA - 8 S Q—C-5 • MD in Effluent • Mo in Feed - - — Kd 500 mL/g Kd 520 mL/g - - — Kd 540 mL/g 150 331Page Soil Sorption Evaluation 12 10 8 6 4 2 0 - 0.0 Belews Creek Steam Station Selenium L/g • 0.5 Figure 27: Selenium batch Kd — GWA - 8 S Q—B-3 700 600 500 400 300 200 100 0 0 0 y = 3.5978x R2 = 0.2729 �,..• " y = 3.4585x R2 = 0.5439 0 8 • Trial A • Trial B 1.0 1.5 µg/L Selenium - Column AB - 6 GTB UNC Charlotte 2.0 • SeinEffluent • SeinFeed — • — Kd 480 mLfg Kd 500 mLig — • — Kd 520 mL{g 50 100 150 Porevohnnes passed Figure 28: Selenium column Kd — GWA - 8 S Q—C-5 3 4 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Thallium 7 Kd = 73.3 mL/g y = 0.0847x • z 6 _Kd = 84.7 mL/g5 TO R = 0.9854 •,.•••' y = 0.0733x 4 e Rz = 0.9702 3 2 1 i e • Trial A• Trial B 0 — 0 20 40 60 80 100 Figure 29: Thallium batch Kd — GWA - 8 S Q—B-3 700 600 500 In 400 300 200 100 0 Thallium - Coluiim AB - 6 GTB •• • • • • • • • T1 in Effluent • Tl in Feed - — Kd 480 mL/g Kd 500 mL/g - — Kd 520 mL/g 0 50 100 150 Pore volumes passed Figure 30: Thallium column Kd — GWA - 8 S Q—C-5 351Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 300 200 100 0 0 Vanadium - Column AB - 6 GTB • V in Effluent • V in Feed — - — Kd 490 mL/g Kd 510 mL/g — - — Kd 530 mLig 50 100 150 Pare vohunes passed Figure 31: Vanadium column Kd — GWA - 8 S Q—C-5 361Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 9 8 7 6 5 =L 4 3 2 1 0 0.0 0.� 1.0 Figure 32: Arsenic batch Kd - AB - 9 S Q—B-3 500 400 300 a. .94 200 100 Arsenic • 5289x • Trial '- C 1.2.0 2.5 µ a1L Arsenic - Column AB - 9S 9M As in Effluent + As in Feed — — Kd 440 mLFg Kd 460 mL{g — — Kd 480 mL{g 0 — 0 =0 100 150 200 Pore volumes passed Figure 33: Arsenic column Kd — AB — 9 S Q—C-2 371Page Soil Sorption Evaluation Belews Creek Stearn Station UNC Charlotte 3-0 2-5 2-0 tw -8b 1-5 1-0 0-5 00 Boron Kd='L.D mLlg .11g— —Kd-E:-=2-6 y = 0.0026x ...... . R,- = 0-9724 y 0-0025X R' = 0-96W *Thal A *Thal B 400 fiii 600 Figure 34: Boron batch Kd — AB — 9 S Q—B-4 500 1 400 300 a. oa 200 100 A 0 50 100 150 Pore volumes passed 700 800 900 1000 ANL Boron - Column AB - 9S Figure 35: Boron column Kd — AB — 9 S Q—C—I * 13 in Effluent * B in Feed --- Kd 10 mL/g Kd 14 n1L/g Kd28 mL/g 200 38 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 1.2 1.0 0.9 0_6 0.4 0.2 n_n 0 Cadmium 10 20 30 40 50 50 70 N9/L Figure 36: Cadmium batch Kd — AB — 9 S Q—B-3 Cadmium - Column AB - 9S 500 400 • • • • o • • • • Cd in Effluent • • • Cd in Feed 300 • • • •IZ f — — Kd 275 mL/g U ' 200' Kd 300 mL/g ' — — Kd 325 mL/g 0900 100 i • • 0 — 0 50 100 150 200 Pore volumes passed Figure 37: Cadmium column Kd — AB — 9 S Q—C-5 391Page Soil Sorption Evaluation Belews Creek Stearn Station UNC Charlotte Manganese 0.12 IKd = 0.05 mL/c, 0.10 0.08 0.06 0.04 0.02 000 0.0 0.5 Figure 38: Manganese batch Kd — AB — 9 S Q—B-5 0.0477x 0.6409 y = 0.0438x R2= 0.4568 • • Trial A • Trial B 1.0 1.5 2.0 ma,'L 40 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 500 400 300 P. P4 o" 200 100 0 Lr# • 0 50 Molybdenum - Column AB - 9S # # # # # # # # # # # # Of s I %! Nlo in Effluent # Mo in Feed — • — Kd 375 mLIg Kd 400 mLlg — — Kd 425 mLIg 150 200 Pore volumes passed Figure 39: Molybdenum column Kd — AB — 9 S Q—C-5 411Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 12 10 9 bD -8b 6 4 2 0 r Selenium Kd= 2910.0mL/g Kd = 3291.3 mL!g y = 32913x R2 = 0-6622 Y= R' = 0. 8AIQ II *Trial A *Tji2l B -n 11-� 1.0 1.5 2-0 2-5 3-0 IIWL Figure 40: Selenium batch Kd — AB — 9 S Q—B-3 700 600 500 400 300 200 100 A Selenium - ColumnAB - 9S • r. 0 50 100 150 200 Pore volumes passed Figure 41: Selenium column Kd — AB — 9 S Q-C-5 • Se in Effluent • Se in Feed Kd 480 mL/g Kd 500 mL/g Kd 520 mL/g 42 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Thallium Kd = 124.1 Kd = 133.4, /g /9 y = 0. 1334x W = 0.9871 Y= R' = 0-9688• *TAaIA *ThalB 0 10 20 30 40 50 60 II&L Figure 42: Thallium batch Kd — AB — 9 S Q—B-3 Thallium - CcluiniiAB - 9S 700 600 500 400 300 200 100 • TI in Effluent • T1 in Feed — - — Kd 420 mL/g Kd 440 mL/9 — - — Kd 460 mL/g 0 0 50 100 150 200 Pore vohunes passed Figure 43: Thallium column Kd — AB — 9 S Q—C-5 43 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 300 200 100 0 0 Vanadium - Column AB - 9S V in Effluent • V in Feed — - — Kd 580 mL!g Kd 600 mL. g — - — Kd 620 mL,/g 50 100 150 200 Pore volumes passed Figure 44: Vanadium column Kd — AB — 9 S Q—C-5 441Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Arsenic 10 Kd= 1285.9 mLlg g -Kd-= 1311.9 mL;'g s 7 6 en 5 4 2 1 a 0 1 _ Figure 45: Arsenic batch Kd — BG — 3 S Q—B-3 500 400 300 a 200 100 0 0 50 100 150 Porevrolumes passed Figure 46: Arsenic column Kd — BG — 3 S Q—C-5 y = 1.3119x �.• Rz = 0.9926 i- y = 12s59x R2 = 0.9902 • Trial A • Trial B 3 4 5 6 7 8 P91L Arsenic - Column BG- 3S • As in Effluent • As in Feed - • - Kd 700 mL.?g Kd 725 mLfg - - Kd 750 mL?g 200 451Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte q Boron- Column BG - 3 S 500 511I11 300 200 10o a B in Effluent • B in Feed —•— Kd10mL,g Kd 15 mLt — • — Kd 20 mLlg 0 0 50 100 150 200 Pare volumes passed Figure 47: Boron column Kd — BG — 3 S Q—C— 1 461Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 5 5 4 4 3 tio 43 2 2 1 1 0 0.00 Cadmium 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 R9/L Figure 48: Cadmium batch Kd — BG — 3 S Q—B-2 500 400 300 200 100 Cadmium - Column BG - 3 S • Cd in Effluent • Cd in Feed — Kd 650 mL.tg —Kd 675 mLtg — Kd 700 mLrg 0 50 100 150 200 Pare volumes passed Figure 49: Cadmium column Kd — BG — 3 S Q—C-5 471Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 160 140 120 100 80 60 40 20 0 0.000 Iron = 41502x ? = 0.7039 y = 23943x Rz = 0.3771 0.001 0.002 0.003 mg/L Figure 50: Iron batch Kd — BG — 3 S Q—B-5 • Trial A 0 Trial B 0.004 0.005 0.006 Manganese 0.25 0.20 • 0.15 y = 0.3725x • R2 - 0.6716 0.10 0.05 • • • 0.00 Trial - C 0.0 0.1 0.2 0.3 0.4 mg/L Figure 51: Manganese batch Kd — BG — 3 S Q—B-5 0.5 481Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte ivLULY UU� 11u 11 Kd=2 37.3 / 1 •0 Kd = 2495.3 mL/g y = 2-6373x RI=0.8 05 y. .4953�- R' = 0.8639 • • e Trial A iTrial 1 0-0 0-5 1-0 1-5 2-0 2-5 3-0 3.5 4.0 "9/L Figure 52: Molybdenum batch Kd — BG — 3 S Q—B-3 Molybdenum- Column BG- 3 S 500 400 300 u. u. 200 100 0 0 50 100 150 Pore volumes passed Figure 53: Molybdenum column Kd — BG — 3 S Q-C-I 200 Mo in Effluent Mo in Feed Kd 200 mL/g Kd 225 mL/g Kd 250 mL/g 49 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Selenium 10 9 Kd = 2169.5 mL/g y = 2.1695Z • • g Kd = 2250.5 mL/g RZ = 0.8993 7 6 5 —y = 2.2505x 4 __ Rz = 0.8922 0 3 2 0 1 8 • Trial A • Trial B 0 0 1 ? 3 4 1�a;L Figure 54: Selenium batch Kd — BG — 3 S Q—B-3 Selenium - Column BG - 3S 700 600 500 A 400 "0 300 200 100 0 0 50 100 150 200 Pare volumes passed Figure 55: Selenium column Kd — BG — 3 S Q—C-5 Se in Effluent Se in Feed Kd 450 mL/g Kd 460 mLlg Kd 470 mLlg 501Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte s 7 6 5 U 44 3 2 1 0 0 Thallium 10 20 30 40 50 60 R9/L Figure 56: Thallium batch Kd — BG — 3 S Q—B-3 Thallium - Column BG - 3S 700 600 500 400 300 200 100 • T7 in Effluent • T7 in Feed — • — Kd 675 mL./g Kd 700 mLlg — • — Kd 725 mLlg 0 —•��• • • • •-• — — — - 0 50 100 150 200 Pore vohunes passed Figure 57: Thallium column Kd — BG — 3 S Q—C-5 511Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 300 200 100 0 L 0 Vanadium - Cohmili BG - 3 S • V in Effluent • V in Feed — - — Kd 675 mL?g Kd 700 mL/g — - — Kd 725 mLIg 50 100 150 200 Pore volumes passed Figure 58: Vanadium column Kd — BG — 3 S Q—C-5 521Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 10 s 8 7 6 5 4 3 2 1 0 Arsenic Kd = 414.0 z Kd = 434.8mLl9 v=0. R2 =1 y. Ji �r 0 5 10 P9/L Figure 59: Arsenic batch Kd — GWA — 12 Q—B-3 Arsenic - Column GWA - 12 500 400 300 a. d 200 100 0 0 50 100 150 200 Pore vohunes passed Figure 60: Arsenic column Kd— GWA — 12 Q—C-2 in Effluent in Feed 230 mL/g 260 mL/g 290 mLlg 531Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0.50 � Kd = 1.2 mL/g 0.40 0.3 0 0.20 0.10 0.00 0 100 Figure 61: Boron batch Kd— GWA — 12 Q—B-3 q 500 400 300 200 100 Boron • y 0.0012x R' = 0.8817 200 300 p a'I Boron - Colunni MNA - 12 400 500 • B in Effluent • B in Feed — — Kd 7 mLig Kd 14 mLlg — • — Kd 21 mL/g 0 1 1 I 1 0 50 100 150 200 Pare volumes passed Figure 62: Boron column Kd— GWA — 12 Q — C — 1 541Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 5-0 4-5 4-0 3-5 3-0 2-5 2-0 1-5 1-0 0-5 00 Cadmium Kd = 8.5 n3U y = 006x R1=0.986 Kd 0.0 Mug �y IR2: 0 10 20 30 40 50 (YO PA Figure 63: Cadmium batch Kd — GWA — 12 Q—B-3 Cadmium - Column GIN A - 12 500 400 ••Cd in Effluent 300 a CdinFeed Kd 150 mL/g 200 —Kd 175 mL/9 Kd 200 mL/g 100 0 0 50 100 150 200 Pore vohunes passed Figure 64: Cadmium column Kd — GWA — 12 Q-C-5 55 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 10 9 8 7 6 bD 5 4 3 2 1 0 Molybdenum Kd= 453.3 mLlg M = 459.7 !g y = 0.4597 _ . 9I0 ,t •� y-=-0:4533x R2 = 0.7299 •Trial A •Trial B 0 5 10 15 20 25 Figure 65: Molybdenum batch Kd— GWA — 12 Q—B-3 50( 40C 30C a. a. 0 20C 10C R9/L Molvbdeniun- Column GINA- 12 • 0 *a* & 0 50 100 150 200 Pore volumes passed Figure 66: Molybdenum column Kd — GWA — 12 Q—C— 1 in Effluent in Feed 80 mug WD mLlg 120 mLlg 561Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 10 9 8 6 an a� 5 4 3 2 1 0 Selenium Kd = 65 .5 mLJg Kd = 64 3.0 mL!g t: ° i• y = 0.6505x 511`14• y = z — .643x 48 • • • •Trial A ♦Trial B i 0 2 4 6 8 10 12 14 16 N9/L Figure 67: Selenium batch Kd — GWA — 12 Q—B-3 700 600 500 400 n. a ci 300 200 100 0 0 �0 Selenium - Column GWA - 12 • 100 150 Pore volumes passed Figure 68: Selenium column Kd — GWA — 12 Q—C— 1 • Se in Effluent • Se in Feed —•— Kd170mL/g Kd 190 mL/g — • — Kd 210 mL/g 200 571Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 8 7 6 5 tM 44 3 2 1 0 0 Thallium 10 20 30 40 50 60 70 R9/L Figure 69: Thallium batch Kd — GWA — 12 Q—B-3 700 600 500 400 c a 300 200 100 0 0 Thallium - Column GWA - 12 • • 50 100 150 Pore volumes passed Figure 70: Thallium column Kd — GWA — 12 Q—C-5 • T1 in Effluent i • Tl in Feed — — Kd 270 mL/g Kd 290 mL/g — — Kd 310 mL/g 200 581Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 300 200 100 0 0 Vanadium - Column GWA - 12 • • a • - • • • . . • _ • • • 50 100 150 Pore volumes passed Figure 71: Vanadium column Kd - GWA - 12 Q-C-5 • V in Effluent • V in Feed - - - Kd 270 mL/g Kd 290 mL/g - - Kd 310 mL/g 200 591Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Arsenic 10 - 9 -Kd= 2903-64n.L,/g . Kd = 302515 mL/g s 7 y = 3.0255x 6=-0.691 on 5 4 • y = 2.9036x 3 Rz = 0.7452 2 • 1 • . Trial A •Trial B 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 kg1- Figure 72: Arsenic batch Kd — GWA — 2 D Q—B-3 Arsenic - Column GWA - 2D Soo •'.. • -100 300 a. 4 200 100 0 0 50 100 150 200 Pore volumes passed Figure 73: Arsenic column Kd — GWA — 2 D Q—C-5 • As in Effluent • As in Feed - • - Kd 750 mL/g Kd 775 mL/g - - Kd 800 mL/g 250 601Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 2.5 Kd =1.7 mL/g 2.0 1.5 — — - Ob 1.0 - 0.5 0.0 0 200 400 Figure 74: Boron batch Kd— GWA — 2 D Q—B-4 rQ 500 400 300 200 100 0 0 50 100 150 200 Pore volumes passed Figure 75: Boron column Kd — GWA — 2 D Q—C— 1 Boron v = 0.002lx R' = 0.398 y = 0.0017x RI = 0.63 81 • • Trial A • Trial B 600 800 1000 1200 µg/L Boron- Column MNA- 2D • B in Effluent B in Feed — — Kd 10 mLlg Kd 13 mLlg — • — Kd 17 mL/g 250 61 Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 1.2 1.0 0.8 O.6 0.4 0.2 0.0 0 Cadmium 10 20 30 40 50 60 70 80 kg2 Figure 76: Cadmium batch Kd — GWA — 2 D Q—B-3 Cadmium - Column MNA - ='D 500 F- 1 -1 400 ••• • • �• 300 - • • 200 ' 100 • �.'• ••• ••000.0•••••1 0 0 50 100 150 200 Pore volumes passed Figure 77: Cadmium column Kd — GWA — 2 D Q—C-2 • Cd in Effluent • Cd in Feed — • — Kd 220 mL.fg Kd 270 mL/9 — Kd 320 rnDg 250 621Page Soil Sorption Evaluation Belews Creek Stearn Station UNC Charlotte Iron 140 Kd = 35059.0 niL/g 120 Kd= 18505.0 niUg y = 35059x .'P R 2 = 0.5394 • 100 so i 0 y = 18505x R2= 0.7084 60 40 • 20 • o Trial A o Trial B 0 0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 Figure 78: Iron batch Kd— GWA — 2 D Q-13-5 in2)'L Manganese 30 - Kd = 52.�5 n1L/g 25 20 - y = 52.449x 15 - RI = 0.5195 10 y 52.474x 5 9 Trial A • Trial B R2 = 0.4006 0 0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 ma,1 Figure 79: Manganese batch Kd — GWA — 2 D Q-13-5 63 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 10 8 6 cA 4 2 0 0.0 2.0 Molybdenum Figure 80: Molybdenum batch Kd — GWA — 2 D Q—B-3 500 400 300 l 200 100 0 0 50 100 150 200 Pore volurnes passed Figure 81: Molybdenum column Kd — GWA — 2 D Q—C— 1 y = 1.379L R2 = 0.877 • Trial - C 4.0 6.0 8.0 µg/L Molybdenum - Column GWA - 2D • •-- 0 000 • Mo in Effluent • Mo in Feed - — Kd 250 mL/g Kd 280 mL/g - — Kd 310 mL/g 250 641Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 14 12 10 rt, 8 6 4 2 0 0 Selenium 2 4 6 8 10 ug/L Figure 82: Selenium batch Kd — GWA — 2 D Q—B-3 Selenium - Column GWA - 2D 700 600 500 400 300 200 100 0 0 50 100 150 200 Pore -,oluiiies passed Figure 83: Selenium column Kd — GWA — 2 D Q—C-5 • • Se in Effluent • Se in Feed — — Kd 450 mL/g Kd 490 mL/g — — Kd 540 mL/g 250 651Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte s 7 6 5 �n 4 3 2 1 0 0 = 155.7 10 20 Thalliurn y = 0.1557x R' = 0.9763 y = 0.1527x R2 = 0.9948 Figure 84: Thallium batch Kd — GWA — 2 D Q—B-3 . Trial A • Trial B 30 40 50 60 N9/- Thallium - Column GWA - 2D 700 600 . • • . • 500 • • T1 in Effluent 400 • • . • . • • Tl in Feed a. _ — — Kd 800 mL/g 300 Kd 850 mL/g 200 — • — Kd 900 mL/g 100 0gooses 9 _• 0 50 100 150 200 250 Pore volumes passed Figure 85: Thallium column Kd— GWA — 2 D Q—C-5 661Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Vanadium - Column GWA - 2D Kill] .• • • • • • • • • • • • • • • • • • • • • • . • . 200 100 0 , 0 50 100 150 200 Pore volumes passed Figure 86: Vanadium column Kd — GW — 2 D Q—C-5 • V in Effluent • V in Feed - • - Kd 600 mL/g Kd 650 mL/g - - - Kd 700 mL/g 250 671Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 45 4.0 3.5 3.0 �n 2.5 to 1 20 1.5 1.0 0.5 0.0 0 Arsenic 50 100 150 200 250 300 P&I Figure 87: Arsenic batch Kd — GWA — 3 D Q—B—I Arsenic - Column GWA - 3D 500 • 400 • Of �. • •• 300 • .a 1 a t 200 • r 100 — r 0 � r 0 50 100 150 Pore volumes passed Figure 88: Arsenic column Kd — GWA — 3 D Q—C— 1 • As in Effluent • As in Feed — • — Kd 20 mL/g Kd 30 mL/g — • — Kd 40 mL/g 200 681Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 500 400 300 p 200 100 Baron - Column GWA - 3D D 50 100 150 200 Pare volumes passed Figure 89: Boron column Kd — GWA — 3 D Q—C-3 «B in Effluent •BinFeed 691Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Cadmium 6-0 1 - - -- -- --- -- : ................................. F d = 414.0 inL/g 5.0 ............................................................. 4-0 3-0 Y = 0.414x 2-0 iR 2=0_aj 1.0 • rL n *TrialA I 0 2 4 6 8 10 12 14 119/L Figure 90: Cadmium batch Kd — GWA — 3 D Q—B-3 500 400 300 200 100 Cadmium - Column MN -A - 3D • 0 0 50 100 150 Pore vohunes passed Figure 9 1: Cadmium column Kd — GWA — 3 D Q—C-5 • Cd in Effluent • CdinFeed . — Kd 460 mL/g —Kd 480 mL/g . . — Kd 500 mL/g 200 70 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Molybdenum - Column G�NA - 3D 500 ... 400 �.. •............ 0 L 0 Si 100 150 200 Pore volumes passed Figure 92: Molybdenum column Kd — GWA — 3 D Q—C-3 711Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 1.6 1.4 Kd = 3.2 Kd = 3.3 1.2 1.0 c, 0.8 0.6 0.4 0.2 0.0 0 Selenium • • y = 0.0033x R z- 0.7955 _ v = 0.0032x R'=0.895 • Vial A • Trial B 100 200 300 400 ug/L Figure 93: Selenium batch Kd — GWA — 3 D Q—B-1 Selenium - Column GWA - 3D 700 600 •�• • 500 ® i•,•• 400 • 300 � r 200 i 100 — i 0 0 50 100 150 Pore volumes passed Figure 94: Selenium column Kd — GWA — 3 D Q—C— 1 • SeinEffluent • Se in Feed — • — Kd 15 mL/g Kd 25 mL/g — • — Kd 35 mL/g 200 721Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Thallium 10 Kd = 1628.6 mL/g g Kd = 1664.3 mL/g •• y = 1.6643x 6 R2 = 0.8637 s='``' y = 1.6286x 4 ,.��•`t• R2 = 0.8018 • 2— _ 0 • Trial A • Trial B 0 1 2 3 4 µg/L Figure 95: Thallium batch Kd — GWA — 3 D Q—B-3 700 600 500 400 300 200 100 0 Thallium - Coluinn MNA - 3D • • • T7 in Effluent • T4 in Feed - — Kd 525 mL/g Kd 550 mLlg - — Kd 575 mLlg 0 50 100 150 200 Pore volumes passed Figure 96: Thallium column Kd — GWA — 3 D Q—C-5 731Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 3.5 3.0 2.5 2.0 04 x 1.5 1.0 0.5 0.0 Vanadium Kd = 23.0 mL/g y = 0.0_23x �1 Kd = 21.3 mL/g I R2 = 0.996S y = 0.0213x R- = 0.9834 04 • Trial A • Trial B -! 40 60 80 100 120 140 160 µg/L Figure 97: Vanadium batch Kd — GWA — 3 D Q—B-2 c, c. ;uu 200 100 Vanadium - Column GWA - 3D 0 0 50 100 150 Pore volumes passed Figure 98: Vanadium column Kd — GWA — 3 D Q—C— 1 • V in Effluent • V in Feed — — Kd 20 mL/g Kd 25 mL/g ... Kd 30 mL/g 200 741Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 9 s 7 6 txo5 non �4 3 2 1 0 Arsenic Kd= 413-9 mU Kd = 407-0 mLfg y = ; x y = 0.4139x Rz = 0.9971 *Trial A *Trial B a. r 0 5 10 15 20 25 P&L Figure 99: Arsenic batch Kd — GWA — 5 S Q—B-3 Arsenic - Column GWA- 5S Sao 400 300 n. a. d 200 100 0 0 50 100 150 Porevohmies passed Figure 100: Arsenic column Kd — GWA — 5 S Q—C-2 200 As in Effluent As in Feed Kd 60 mLfg Kd 75 mLfg Kd 90 mLlg 751Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Boron 0.9 Kd = 0.8 mL'g 0.8 .......... 0. ............................... 0.6 CL 0.5 ED 0.4 0.3 0.2 0.1 0.0 800 820 840 860 Figure 101: Boron batch Kd — GWA — 5 S Q—B-4 = 0.0008X R- = 03344 *Thal A 880 900 920 940 960 PB2 Boron - Column GWA - SS 500 400 300 - c. • B in Effluent 200 •Bin Feed 100 n 50 100 150 200 Pore vohunes passed Figure 102: Boron column Kd — GWA — 5 S Q—C-3 761Page Soil Sorption Evaluation 6 Kd= 161.9 mL/g 5 Kd = 164�2 rnUg 4 to c8n 3 2 • 0 0 5 Belews Creek Steam Station Cadmium i y=0.1642x R2 = 0.9898 . l: y = 0.1619x R2 = 0.9776 *Trial A •Trial B 10 15 20 25 30 35 Rg/L Figure 103: Cadmium batch Kd— GWA — 5 S Q—B-3 Cadmium - Column GWA - 5S 500 400 300 -d' U 200 100 0 0 50 100 150 Porevohnnes passed Figure 104: Cadmium column Kd — GWA — 5 S Q—C-5 UNC Charlotte • Cd in Effluent • Cd in Feed - — Kd 325 mL/g Kd 350 mL/g — Kd 375 mL/g 200 771Page Soil Sorption Evaluation Belews Creek Steam Station Iron 250 Kd = 473 9.8 mL/g Kd = 2254.9 n L/g 200 1 :• y = 4739.8x • 150 100 I 50 •• 0 0.00 0.02 Figure 105: Iron batch Kd — GWA — 5 S Q—B-2 R2 = 0.8227 y = 2254.9x R2 = 0.6046 0.04 0.06 mg/L UNC Charlotte • Trial A • Trial B 0.08 0.10 781Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 8 7 6 5 -Bb 4 3 2 I 0 Molybdenum Kd = 493 mLlg — 93x —4$-2 mL. g =0.5507 y = 0.0482g R2 = 0501 y11t51y1s • °`sts • • .T lial A Trial B 0 20 40 60 80 100 120 140 160 Pg/Z Figure 106: Molybdenum batch Kd — GWA — 5 S Q—B-5 500 400 300 a. 200 100 0 0 50 100 150 Pare volumes passed Figure 107: Molybdenum column Kd — GWA — 5 S Q—C— 1 Molybdenum - C olumn GWA - 5 S r � r � r r � f � r . r r . r � • r • Mo in Effluent • Mo in Feed — Kd 35 mL/g —Kd 50 mLlg — Kd 65 mLJg 200 791Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 9 8 7 nn 5 �4 3 2 1 0 Selenium Kd= 157. -L/9 Kd = 160. mUg y = 0.1605x R' = 0.8967 y = 0.1571x R' = 0.8262 • • • *Trial A *Trial B I 0 10 20 30 40 50 60 WL Figure 108: Selenium batch Kd — GWA — 5 S Q—B-3 Selenium - Column GWA - 5S 700 600 500 400 V' 300 200 100 • SeinEffluent • SeinFeed — • — Kd 75 mLlg Kd 85 mLlg — • — Kd 95 niL�Z 0 1e_rr I I 0 50 100 150 200 Pore volumes passed Figure 109: Selenium column Kd — GWA — 5 S Q—C— 1 801Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 9 8 7 6 �5 �4 3 2 1 0 0 Thallium 5 10 15 20 25 30 35 40 P&L Figure 110: Thallium batch Kd — GWA — 5 S Q—B-3 700 600 500 400 F 300 200 100 0 0 Thallium - Colunm GVLTA - 5S • Tl in Effluent • T1 in Feed — • — Kd 420 mL!g Kd 430 mLIg — • — Kd 440 mLJg 50 100 150 200 Porevohanes passed Figure 111: Thallium column Kd — GWA — 5 S Q—C-4 811Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 7 6 5 4 3 2 1 0 1 2 3 4 Pg/L Figure 112: Vanadium batch Kd— GWA — 5 S Q—B-3 Vanadium - Column GWA - 5S 300 200 100 0 0 50 100 150 PoTevohunes passed Figure 113: Vanadium column Kd — GWA — 5 S Q-C-I Vanadium Kd= 9k5 mL/g —Kd-��-96 --7-mL!g-- "0 Y=0.9885x R7- = 0-9058 y=O 1 .9617. R = 0-8915 so Trial A *Trial B • 5 6 7 200 • in Effluent • in Feed Kd 170 mL!g Kd 190 rnLIg Kd 210 rnLfg 82 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Arsenic 10 Kd = 1063.8 mL/g y = 1.1048s 8 Kd = 1104.8 mL/� R2 = 0.981 • • 6 - cn y = 1.0638t 4 R= = 0.9956 2 low _ • • Trial A • Trial B 0 0 2 4 6 8 10 µgIL Figure 114: Arsenic batch Kd — GWA — 11 D Q—B-3 Arsenic - Column GWA - 11 D Trial A 500 400 300 .o c. 200 100 0 0 50 100 150 Pore volumes passed Figure 115: Arsenic column Kd — GWA — 11 D, Trial A Q—C-5 • As in Effluent As in Feed — - — Kd 650 mL/g Kd 700 mL/g — — Kd 750 mL/g 200 831Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Arsenic - Column GWA - 11 D Trial B 500 400 300 a 200 100 0 0 50 100 150 Pore volumes passed Figure 116: Arsenic column Kd — GWA — 11 D, Trial B Q—C-5 Arsenic - Column GWA - 11D Trial C 500 400 300 200 100 0 0 50 100 150 Pore volumes passed Figure 117: Arsenic column Kd — GWA — 11 D, Trial C Q—C-5 • As in Effluent • As in Feed - • - Kd 650 mL/g Kd 675 mL/g - - Kd 700 mL/g 200 • As in Effluent • As in Feed - Kd 550 mL/g Kd 600 mL/g - - Kd 650 mL/g 200 841Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 500 400 300 a. 200 100 Boron - Column GWA - 11 D Trial A • B in Effluent • B in Feed — • — Kd 10 mL/g Kd 15 mL/g 1 — • — Kd 20 mL/g 0 50 100 150 200 Pore volumes passed Figure 118: Boron column Kd— GWA — 11 D, Trial A Q—C— 1 851Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Boron - Column GWA - 11 D Trial B 500 400 300 a a a. C!1 200 i i 100 0 I • 0 50 100 150 Pore volumes passed Figure 119: Boron column Kd — GWA — 11 D, Trial B Q—C— 1 500 400 1 1 1 1 300 a, 200 100 0 0 50 100 150 Pore volumes passed Figure 120: Boron column Kd — GWA — 11 D, Trial C Q—C— 1 Boron - Column GWA - 11D Trial C • • • • • • • • • • • • • • • • • • B in Effluent • B in Feed - - Kd 10 mL/g Kd 15 mL/g - - Kd 20 mL/g 200 • B in Effluent • B in Feed - - Kd 10 mL/g Kd 15 mL/g - • - Kd 20 mL/g 200 861Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Cadmium 3.5 Kd = 18.7 mL/g • 3.0 Kd = 17.0 mL/g y = 0.0187x2.• 5 R' = 0.9227 2.0 y = 0.0171 1.5 • • R'=0.6154 1.0 • 05 - • • • Trial A • Trial B 0.0 0 20 40 60 80 100 120 140 160 µ21 Figure 121: Cadmium batch Kd— GWA — 11 D Q—B-2 Cadmium - Column GNVA - 11 D Trial A 500 400 300 a v U 200 100 0 0 50 100 150 Pore volumes passed Figure 122: Cadmium column Kd — GWA — 11 D, Trial A Q—C-5 • Cd in Effluent • Cd in Feed - - Kd 650 mL/g Kd 675 mL/g - - Kd 700 mL/g 200 871Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Cadmium - Column GWA - 11 D Trial B 500 400 300 a. a. -d U 200 100 0 0 50 100 150 Pore volumes passed Figure 123: Cadmium column Kd — GWA — 11 D, Trial B Q—C-5 500 400 300 n. U 200 100 0 0 50 100 150 Pore volumes passed Figure 124: Cadmium column Kd — GWA — 11 D, Trial C Q—C-5 • Cd in Effluent • Cd in Feed - - Kd 625 mL/g Kd 650 mL/g - - Kd 675 mL/g 200 Cadmium - Column GWA - 11D Trial C • Cd in Effluent • Cd in Feed - Kd 575 mL/g Kd 600 mL/g - - Kd 625 mL/g 200 881Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Iron 300 - Kd = 66192 inL/a y = 66192x 2 50 R2 = 0.6582 • 200 150 - y = 47179x R2 =' 0.1789 100 - 50 • • • Trial A • Trial B 0 0.000 0.001 0.002 0.003 0.004 0.005 0.006 mg/L Figure 125: Iron batch Kd — GWA — 11 D Q—B-5 50 Kd = 33.4 mL/g 40 Kd = 35.2 mL/g 30 cn r� 20 10 0 0.0 0.2 Manganese y = 35.223x RZ = 0.6384 • y = 33.448x » Rz = 0.7276 .. • Trial A • Trial B 0.4 Figure 126: Manganese batch Kd— GWA — 11 D Q—B-5 0.6 0.8 1.0 1.2 ug'L 891Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Molybdenum 10 Kd = 258.1 mL/g 8 Kd = 176.1 mL/g • i 6 y = 0.2581x R2 = 0.7324••'• -z y = 0.176lx 4 M R2 = 0.6226 2 - • Trial A • Trial B 0 ' 0 10 20 30 40 50 60 µg/L Figure 127: Molybdenum batch Kd — GWA — 11 D Q—B-3 Molybdenum - Column GWA - 11 D Trial A 500 400 300 0 z 200 100 0 0 50 100 150 Pore volumes passed Figure 128: Molybdenum column Kd — GWA — 11 D, Trial A Q—C-5 • Mo in Effluent • Mo in Feed — Kd 290 mL/g Kd 300 mL/g — — Kd 310 mL/g 200 901Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Molybdenum - Column GWA - 11 D Trial B 500 400 300 100 0 0 50 100 150 Pore volumes passed Figure 129: Molybdenum column Kd — GWA — 11 D, Trial B Q—C-5 Molybdenum -Column GWA - 11D Trial C 500 400 300 c C i 200 100 0 0 50 100 150 Pore volumes passed Figure 130: Molybdenum column Kd — GWA — 11 D, Trial C Q—C-5 • Mo in Effluent • Mo in Feed - • - Kd 340 mL/g Kd 350 mL/g - - Kd 360 mL/g 200 • Mo in Effluent • Mo in Feed - - Kd 320 mL/g Kd 330 mL/g - - Kd 340 mL/g 200 911Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 10 Kd = 456.8 mL/g 8 Kd = 555.4 mL/g 6 ao • 2 - 0 0 5 Selenium y = 0.5554x RZ = 0.914 y = 0.4568x Rz = 0.9211 • Trial A • Trial B 10 15 20 u¢/L Figure 131: Selenium batch Kd — GWA — 11 D Q—B-3 Selenium - Column GWA - 11 D Trial A 700 600 500 400 a. a. 300 200 100 0 0 -;0 100 150 Pore vohunes passed Figure 132: Selenium column Kd — GWA — 11 D, Trial A Q—C-5 25 • Se in Effluent • Se in Feed — — Kd 625 mL/g Kd 650 mL/g — — Kd 675 mL/g 200 921Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Selenium - Column GWA - 11 D Trial B 700 600 • 500 • • • • Se in Effluent 400 • • • • • Se in Feed — • — Kd 625 mL/g 300 Kd 650 mL/g 200 — - — Kd 675 mL/g 100 0 0 50 100 150 200 Pore volumes passed Figure 133: Selenium column Kd— GWA — 11 D, Trial B Q—C-5 Selenium - Column GWA - 11D Trial C 700 600 500 a 400 2 300 200 100 • Se in Effluent • Se in Feed — • — Kd 550 mL/g Kd 575 mL/g — — Kd 600 mL/g 0 L i • • 0 50 100 150 200 Pore volumes passed Figure 134: Selenium column Kd — GWA — 11 D, Trial C Q—C-5 931Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Thalliulu 10 Kd = 490.7 mL/g 8 Kd = 524.2 mL/g y = 0.5242x Ai 4 2 0 0 R2 = 0.9504 y = 0.4907x R2 = 0.9783 t- • % • Trial A • Trial B Figure 135: Thallium batch Kd — GWA — 11 D Q—B-3 700 600 500 400 CL 300 200 100 0 0 50 100 150 Pore volumes passed Figure 136: Thallium column Kd — GWA — 11 D, Trial A Q—C-5 10 15 pgI Thallium - Column GWA - 11 D Trial A 20 • T1 in Effluent • Tlin Feed — • — Kd 650 mL/g Kd 675 mL/g — . — Kd 700 mL/g 200 941Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 700 600 500 400 c. a. 300 200 100 0 0 Thallium - Column GWA - 11 D Trial B • T1 in Effluent • Tlin Feed — • — Kd 650 mL/g Kd 675 mL/g — — Kd 700 mL/g 50 100 150 200 Pore volumes passed Figure 137: Thallium column Kd — GWA — 11 D, Trial B Q—C-5 Thallium - Column GWA - 11D Trial C 700 600 500 a. 400 a. H 300 200 100 • TI in Effluent • Tlin Feed — — Kd 575 mL/g Kd 600 mL/g — — Kd 625 mL/g 0-• • 0 50 100 150 200 Pore volumes passed Figure 138: Thallium column Kd — GWA — 11 D, Trial C Q—C-5 951Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 7 Kd = 868.6 mL/g 6 Kd = 1090.7 mL 5 4 3 2 0 0 2 Vanadium y = 1.09071 /g R2 = 0.935S a Figure 139: Vanadium batch Kd — GWA — 11 D Q—B-3 300 = 0.86861 R2 = 0.9015 • Trial A • Trial B 4 Et€/L Vanadium - Column GWA - 11 D Trial A 9 ••• • • • •• ••• •• • • • • • • • • • • • V in Effluent 200 • V in Feed a. - • - Kd 650 mL/g 9 100 Kd 675 mL/g - - Kd 700 mL/g 0 • • • • • • • • • • •-• - - - • •-• aa-�t r�'i — 50 100 1i0 200 Pore volumes passed Figure 140: Vanadium column Kd — GWA — 11 D, Trial A Q—C-5 S 961Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte a a a 300 200 100 Vanadium - Column GWA - 11 D Trial B • • • • • • • • VinEffluent • V in Feed - - Kd 650 mL/g Kd 675 mL/g - - Kd 700 mL/g 0 0 50 100 150 200 Pore volumes passed Figure 141: Vanadium column Kd — GWA — 11 D, Trial B Q—C-5 Vanadium - Column GWA - 11D Trial C 300 • • . • • • • • V in Effluent 200 • V in Feed - - Kd 575 mL/g 100 Kd 600 mL/g - • - Kd 625 mL/g 0 •� 0 50 100 150 200 Pore volumes passed Figure 142: Vanadium column Kd — GWA — 11 D, Trial C Q—C-5 971Page Soil Sorption Evaluation Belews Creek Stearn Station UNC Charlotte 9 8 7 txo L'T 4 3 2 Arsenic Kd = 279.4 —K I mL/g y = Rz 03278x 0.9413 t *TrialA OTrialB y = 0-2704x • 0 5 10 15 20 25 P9/L Figure 143: Arsenic batch Kd — MW — 200 BR Q—B-3 30 35 Arsenic - Column MW - 200 BR 500 400 9 AsinEffluent 300 As in Feed Kd 100 mL/g 200 —Kd 125 mL/g Kd 150 mL/g 100 • 0 50 100 150 200 Pore volumes passed Figure 144: Arsenic column Kd — MW — 200 BR Q—C-2 98 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 500 400 300 200 100 0 Boron - Column M - 200 BR 0 50 100 150 200 Pore volumes passed Figure 145: Boron column Kd — MW — 200 BR Q—C-3 . B in Effluent oBinFeed 991Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Cadmium 6 Kd = 102.5 mL Kd = 87.0 ni /, 5 - -- 4 on 3 2 1 • • r: 0 0 10 v = 0.1025 R2 = 0.8727 y = 0.087x RI= 0.7517 *Trial A ' • Trial B 20 30 40 50 60 N9/L Figure 146: Cadmium batch Kd — MW — 200 BR Q—B-3 500 400 ••• • 300 a. rJ 200 100 0 • Cadmium - Column NM7 - 200 BR 0 50 100 150 Porevoiumes passed Figure 147: Cadmium column Kd — MW — 200 BR Q—C-5 Cd in Effluent Cd in Feed Kd 550 mL!g Kd 575 mL/g — • — Kd 600 mL/g F "I • 200 1001Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 8 7 6 5 R 4 3 2 1 0 0 Molybdenum 20 40 60 80 100 120 140 RP/ - Figure 148: Molybdenum batch Kd — MW — 200 BR Q—B-5 Molybdenum - Column MW - 200 BR 500 400 300 a a. a. d 200 100 0 0 50 100 150 Pore volumes passed Figure 149: Molybdenum column Kd — MW — 200 BR Q—C— 1 • Mo in Effluent • Mo in Feed - — Kd 35 mL/g Kd 45 mL/g - — Kd 55 mL/g 200 1011Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 9 8 7 6 �5 4 3 2 1 0 0 Selenium 10 20 30 40 50 PF/- Figure 150: Selenium batch Kd — MW — 200 BR Q—B-3 700 600 500 a 400 a c V 300 200 100 0 0 Selenium - Column 1VIW - 200 BR 50 100 150 200 Pore volumes passed Figure 151: Selenium column Kd — MW — 200 BR Q—C— 1 Se in Effluent Se in Feed Kd 150 mL/g Kd 170 mL/g Kd 190 mL/g 1021Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 9 8 7 6 5 4 3 2 1 0 0 Thallium 10 20 30 40 50 60 70 P91L Figure 152: Thallium batch Kd — MW — 200 BR Q—B-3 700 600 500 400 F 300 200 100 0 0 Thallium - Coluimi KiN- - 200 BR • T1 in Effluent • T1 in Feed - — Kd 575 mL./g — Kd 600 mLlg - — Kd 625 mLlg 50 100 150 200 Porevohunes passed Figure 153 : Thallium column Kd — MW — 200 BR Q—C-5 1031Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Vanadium 6 1 Kd = 77- mL/g Kd = 66 mUg 4 y = 0-0668x R'= 0.0097 3 0 0 10 20 y = U-U I p� R2- 0.91 7 1 917 • *Tri2I A 1 4 30 40 50 60 P9/L Figure 154: : Vanadium batch Kd — MW — 200 BR Q—B-3 Vanadium - Column MW - 200 BR 300 200 0 0 50 100 150 Pare vohunes passed Figure 155: Vanadium column Kd — MW — 200 BR Q-C-5 • V in Effluent VinFeed --— Kd 260 mL!g Kd 275 rnLI9 Kd 290 rnLfg 200 104 1 P a g e Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 5.50 5.45 5.40 5.35 5.30 5.25 5.20 5.15 5.10 5.05 5.0n 0 pH vs LIS 40 60 80 100 120 L/S (ML -g) Figure 156: pH versus US for AB - 2 D 440 435 430 425 a 420 0 415 410 405 400 0 ORP vs L. S _0 40 61D 80 100 120 L S i;mL'g) Figure 157: ORP versus US for AB - 2 D 1051Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Conducti-vity vs L."S, 200 190 180 170 b 0 160 e.� 150 140 0 20 40 60 80 100 L/S (mLlg) ......................................................................................................................................................................................................................... Figure 158: Conductivity versus US for AB - 2 D pH vs L/S 5.50 • Trial A • Trial B 5.45 5.40 • 5.35 5.30 • • ¢5.25 • 5.20 5.15 • 5.10 5.05 • 5.00 0 20 40 60 80 100 L/S (mL/g) Figure 159: pH versus US for GWA - 8 S 120 1�0 1061Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 350 • Trial A • Trial B 345 340 335 > 330 325 ark • 0320 • 315 310 305 300 0 20 40 ORP vs L/S 60 L/S (mL/g) Figure 160: ORP versus US for GWA - 8 S Conductivity vs US 170 165 160 155 U 150 145 140 U 135 130 125 120 0 20 40 60 80 100 120 L/S (mL/g) Figure 161: Conductivity versus US for GWA - 8 S 80 • 100 120 1071Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 5.3 • Trial A • Trial B • 5.3 • 5.2 5.2 • 5.1 0 5.1 5.0 — 0 20 pH vs L/S • • • • 40 60 80 100 120 L/S (mL/g) Figure 162: pH versus US for AB - 9 S 425 • Trial A ® Trial B 423 421 419 • - 417 • 415 0413 411 409 • • 407 - 405 0 20 ORP vs L/S 40 60 80 100 120 L/S (mL/g) Figure 163: ORP versus US for AB - 9 S 1081Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Conductivity vs L/S 170 165 160 155 y U 0 150 U 145 140 0 20 40 60 L/S (mL/g) Figure 164: Conductivity versus US for AB - 9 S pH vs L/S 5.50 • Trial 5.45 5.40 • 5.35 5.30 x�.25 • 5.20 5.15 5.10 5.05 5.00 0 80 100 120 20 40 60 80 100 L/S (mL/g) Figure 165: pH versus US for BG - 3 S 120 1091Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 450 • Trial A • Trial B 445 440 > • • 435 O 430 • 425 • 420 0 20 40 ORP vs L/S • • 60 L/S (mL/g) • • Figure 166: ORP versus US for BG - 3 S Conductivity vs US 158 156 - 154 2 Cn 152 150 r_ O U 148 MER 144 • • 80 100 120 0 20 40 60 80 100 120 L/S (mL/g) Figure 167: Conductivity versus US for BG - 3 S 1101Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 5.42 5.40 5.38 ¢5.3 6 5.34 5.32 5.3 0 0 pH vs L/S 20 40 60 80 100 120 L/S (mL/g) Figure 168: pH versus US for GWA - 12 ORP vs L/S 438 • Trial A ® Trial B 436 434 0 432 430 E 0 428 426 • 424 • 422 • 420 0 20 • • 40 60 80 100 120 L/S (mL/g) Figure 169: ORP versus US for GWA - 12 111 I Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 2 Cn Conductivity vs L/S 165 160 155 150 145 0 U 140 =1911 130 0 20 40 60 L/S (mL/g) Figure 170: Conductivity versus US for GWA - 12 pH vs L/S 5.60 5.50 5.40 05.3 0 5.20 5.10 5.00 0 20 40 60 L/S (mL/g) Figure 171: pH versus US for GWA - 2 D 80 100 120 80 100 120 1121Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 435 • Trial A • Trial B 430 425 > 420 • • � 415 410 • 405 400 0 20 40 ORP vs L/S • • 60 80 100 120 L/S (mL/g) Figure 172: ORP versus US for GWA - 2 D Conductivity vs US 166 164 162 U vA 160 158 U 156 0 U 154 152 150 0 20 40 60 L/S (mL/g) Figure 173: Conductivity versus US for GWA - 2 D 80 100 120 1131Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 8.3 0 8.10 7.90 7.70 x 7.50 7.30 7.10 6.90 0 pH vs L/S 20 40 60 80 100 120 L/S (mL/g) Figure 174: pH versus US for GWA - 3 D ORP vs L/S 340 • Trial A ® Trial B 320 300 > 280 • E �260 240 220 200 0 20 • • 40 60 L/S (mL/g) Figure 175: ORP versus US for GWA - 3 D 80 100 120 1141Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Conductivity vs L/S 240 230 - 220 U 210 U 190 180 170 0 20 40 60 L/S (mL/g) Figure 176: Conductivity versus US for GWA - 3 D pH vs L/S 6.4 6.2 6.0 C 6 5.8 5.6 5.4 5.2 0 20 40 60 L/S (mL/g) Figure 177: pH versus US for GWA - 11 D 80 100 120 80 100 120 1151Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte ORP vs L/S 430 • Trial A • Trial B 420 410 400 O 390 • • 380 • - 370 • 0 20 40 60 L/S (mL/g) Figure 178: ORP versus US for GWA - 11 D Conductivity vs US 250 240 230 U rn 220 210 U 200 0 U 190 180 170 0 20 40 60 L/S (mL/g) Figure 179: Conductivity versus US for GWA - 11 D • • 80 100 120 80 100 120 1161Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte pH vs L/S 6.4 • Trial A • Trial B 6.3 • 6.2 a, 6.1 • 6.0 • 5.9 - • • • 5.8 0 20 40 60 80 L/S (mL/g) Figure 180: pH versus US for GWA - 5 S ORP vs L/S 420 • Trial A • Trial B 410 400 390 • • O 380 370 s 360 0 20 40 60 80 L/S (mL/g) Figure 181: ORP versus US for GWA - 5 S • • 100 120 100 120 1171Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte Conductivity vs L/S 170 165 160 155 U J 0 150 U 145 140 0 20 40 60 L/S (mL/g) Figure 182: Conductivity versus US for GWA - 5 S pH vs L/S 6.65 • Trial A ® Trial B 6.60 • 6.55 • 6.50 x o. 6.45 6.40 6.35 • 6.30 0 20 40 Figure 183: pH versus US for MW 200 BR • • 80 100 120 • • 60 80 100 120 L/S (mL/g) 1181Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 380 370 360 E 350 p340 330 320 310 0 ORP vs L/S 20 40 60 80 100 120 L/S (mL/g) Figure 184: ORP versus US for MW 200 BR Conductivity vs L/S 230 220 210 200 y U 0 190 U 180 170 0 20 40 60 L/S (mL/g) Figure 185: Conductivity versus US for MW 200 BR 80 100 120 1191Page Soil Sorption Evaluation 0 20 15 Belews Creek Steam Station 1316 plots 2 4 6 8 10 • Trial (A) 0 3 6 9 L:S Ratio (mUg-dry) Figure 186: Arsenic 1316 Belews Creek Ash Basin 0 2 4 6 6800 C 5100 Q a 3400 c 0 `o • m 1700 0 20 15 10 5 0 12 8 10 6800 Trial (A) 5100 3400 1700 0 0 3 6 9 12 L:S Ratio (mUg-dry) Figure 187: Boron 1316 Belews Creek Ash Basin UNC Charlotte 1201Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 10 8 Q. g P 6 7 O L V 4 2 3 6 9 12 • Trial 0 3 6 9 L:S Ratio (mLlg-dry) Figure 188: Chromium 1316 Belews Creek Ash Basin 0 2 4 6 320 240 O. Q N 160 d c m 01 c ea 80 0 10 8 6 4 2 12 8 10 320 Trial (A) 240 160 80 • 0 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 189: Manganese 1316 Belews Creek Ash Basin 1211Page Soil Sorption Evaluation Belews Creek Steam Station 0 2 4 6 4so 360 Q 240 c m O 2 120 0 8 10 • Trial (A) 0 3 6 9 L:S Ratio (mLlg-dry) Figure 190: Molybdenum 1316 Belews Creek Ash Basin 0 3 6 9 160 120 2 a 80 E N a� v7 40 0 0 3 6 9 L:S Ratio (mL/g-dry) Figure 191: Selenium 1316 Belews Creek Ash Basin • Trial (A) 480 360 240 120 0 12 12 1 12 60 120 80 40 0 UNC Charlotte 1221Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 3 6 9 12 40 30 o. E 20 v m c m 10 0 40 30 20 10 0 0 3 6 9 12 US Ratio (mL/g-dry) Figure 192: Vanadium 1316 Belews Creek Ash Basin 0 3 6 9 12 20 2 15 a pCL 10 U C N 5 0 0 3 6 9 L:S Ratio (mL/g-dry) Figure 193: Zinc 1316 Belews Creek Ash Basin • Trial (A) 0 15 10 5 0 12 1231Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 3 6 9 12 680 510 2 340 c O O [0 170 0 680 510 340 170 0 0 3 6 9 12 US Ratio (mL/g-dry) Figure 194: Boron 1316 Pinehall Road Ash Landfill 0 3 6 9 12 400 4 00 1241Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 48 36 CL 24 v e N 12 0 3 6 9 12 0 3 6 9 L:S Ratio (mUg-dry) Figure 196: Zinc 1316 Pinehall Road Ash Landfill Trial (A) 46 36 24 12 0 12 1251Page Soil Sorption Evaluation Belews Creek Steam Station 0 2 4 6 16 12 2 8 Q 4 0 8 10 16 12 8 4 0 0 3 6 9 12 L:S Ratio (mUg-dry) Figure 197: pH at varying US ratio for 1316 testing of Belews Creek Ash Basin 0 2 4 6 8 10 240 230 E 220 a it 0 210 200 • Trial 240 230 220 210 200 0 3 6 9 12 L:S Ratio (mUg-dry) Figure 198: ORP at varying US ratio for 1316 testing of Belews Creek Ash Basin UNC Charlotte 1261Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 3 6 9 12 1200 r 800 Z u 7 c U 400 0 1600 1200 800 400 0 0 3 6 9 12 L:S Ratio (mUg-dry) Figure 199: Conductivity at varying US ratio for 1316 testing of Belews Creek Ash Basin 1271Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 16 12 2 8 a 4 0 3 6 9 12 16 12 8 4 0 0 3 6 9 12 US Ratio (mLlg-dry) Figure 200: pH at varying US ratio for 1316 testing of Pinehall Road Ash Landfill 0 3 6 9 12 250 2 240 E 230 a O 220 210 50 240 230 220 210 0 3 6 9 12 L:S Ratio (mLlg-dry) Figure 201: ORP at varying US ratio for 1316 testing of Pinehall Road Ash Landfill 1281Page Soil Sorption Evaluation Belews Creek Steam Station UNC Charlotte 0 20 90 E W 60 w t) c O U 30 0 3 6 9 12 120 90 60 30 0 0 3 6 9 12 US Ratio (mLlg-dry) Figure 202: Conductivity at varying US ratio for 1316 testing of Pinehall Road Ash Landfill 1291Page