Loading...
HomeMy WebLinkAbout19970579 Ver 1_More Info Received_20150611Sealed Air Charlotte North Carolina Geoscience Project No. CH14.0160.CV PROJECT CALCULATIONS STORM WATER/EROSION CONTROL 11y111Gill, !!p1 E -_ 10725 May 26, 2015 Prepared By: GEOSCIENCE GROUP NC Firm License #: F -0585 500 Clanton Road, Suite K Charlotte, North Carolina 28217 Phone (704) 525 -2003 min '/l � �'i e �� ♦ EaaraF / � / p '� rEUro-ERaan �1' \ e ", \ // � TEiOa RLCK �nECK— ! TEMP. DITCH DA Map 1 " =1' T 1 25C s CEEmE J \\ ■DIE I` 'a ! 1 I cFq YEUP OIYENGWH 1 / I •/ / i/kFOF —may 1 l a + ! gE DE WFENCE /l \ I TEMP ROyK ".+BECK l CCNEENi1CIBN II \ 1' / / CPU 56E F�TULiTVajl tECKee sR¢ r J%ol 41 1 wir E '��.' 1 IIFEFW1ECfI01E 1 / P ! 51 � � TIl, \ f r � _ .. '+.. CImc ✓ / f I 1 + Iq iec . \ zs3ECS Tos 'I z]ac Er To s a aeeFS �% IT i aETEW ,T.. Q, E xenc TE-ROCKCIrecK'Ze�SFx _� am raeeE nMgEEaETaI /T P1 4w 3 TEMP AS�CN p1yE BELEB1fWWh I rn -�CF ,Ey ® o \ 5EEE6JF TN, 1 ! V V i I I`. // �PRDTECTgH \ � r 1 11 �\ _ � � Y J J d / f r\ ' „r �' ; 1 _ E TEMP KOCK CHECK 1 \ '\111EE �TEMP.91LT fEK`E CEENL' / ,� lELIrEMMEMIN2 X11 �'� r / OaA SEE 9F alittPl CEPL gEDETaL TEN w- s \ j.11 -":° Q Q qF (►ry. EEWI mw AL fu. >t�awE exo- 1�,� M } } 111 �• (5 gEfeETa1— ,N -� -(1 1 1 ''ti / •/ / S.ER + , \ �— P1N11FL11pl 1EN1 SILT FExCE R PRM APRON ��K � aED£i4L � / OiEnln OOUeli , , � � —rat: 1 I �'``._ _ _ _ /' —.- �: S° �•rP -`,, � � / /// r :// / � �/j P3x,C avi + 4 CEET'� 'IEiNP J11 ER.aLr1 512CFS fENCE 1 1 { N1C1EClt , =E CETaI TEMi`61_REION 5EECE }a 1 P1 o1T x.:KE {oETaL ass /f / / v% QET \ T ! Ke— oa OXOi IK V \ ENN CELwrAE m?) `TS�I�RZxe c saE+EroE�N `:'"�Y \ ➢ fly f/ [1},(;Lj� .'Ciar,I�Fro wcEx+i /.� _ % /� t, ! � .1 oNN�oEUE � caNnmEeEaE �/ � � - -�`'i , d � � � Y,r f % � ' — i. • � / ` i TOTAL TREE SAVE AREA SEE SHEET CT4 Fn MERA4 P um5 3/23/2015 www.ecmds.com/print/analysis/6386&63865 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name. Sealed Air Project Number: 63853 Channel Name: TD 1 Discharge 1.68 Peak Flow Period 0.1 Channel Slope .048 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type SC 150BN Tensar International Corporation 5401 St. Wendel- Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge Velocity Normal Manningss Permissible Shear Calculated Shear Safety I Remarks Staple Depth N Stress Stress Factor Pattern SC 150BN Straigh 1.68 efs 1.84 0.17 ft 0.05 2.1 lbs /ft2 0.5 lbs /ft2 4.23 STABLE D Unve etated ft/s http:i lwww. ecmds .comlprintlanalysis /63863t63865 111 3/23/2015 www.ecmds.com/printianalysis]63863163866 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TD2 Discharge 5.12 Peak Flow Period 0.1 Channel Slope .006 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Ve,gtation Type N Vegetation Density Stress Soil Type SC 150BN Tensar International Corporation 5401 St. Wendel- Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge Velocity Normal Manning Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC 150BN Straigh 5.12 cfs 1.37 0.56 ft 0.049 2.1 lbs /ft2 0.21 lbs /ft2 9.99 STABLE D Unve etated ft/s http :ttwww.ecmds.comlprintlanalysis /63863163866 111 3/2312015 www.er,mds.com/prinUanalysis/63863163867 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TD3 Discharge 1.75 Peak Flow Period 0.1 Channel SIope 065 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type SC 150BN Tensar International Corporation 5401 St. Wendel -Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge Velocity Normal Mannings Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC 150BN Straight 1.75 cfs 2.06 0.16 ft 0.05 2.1 Ibs /R2 0.63 lbs /ft2 3.33 STABLE D Unve etated ft/s hfp: /lwww.ecmds, cam /pririVanalysis /638663163867 1/1 3/23/2015 www.ecm ds.com fpti nUanal ys i s163863163869 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TD4 Discharge 1.47 Peak Flow Period 0.1 Channel Slope 08 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type SC 15OBN Tensar International Corporation 5401 St. Wendel- Cynthiana Road Poseyville, Indiana 47633 Tel. 800. 772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge Velocity Normal Mannings Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC15OBN Straight 1.47 cfs 2.07 0.13 ft 0.05 2.1 lbslft2 0.66 lbslf12 3.11 STABLE D Unve etated ft/s http:/Awm.ecmds.com/p intlanalysis /63863163869 111 3123!2015 wvvw.ecmds.com/pr!nUanalysisl63863/63870 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TDS Discharge 2.63 Peak Flow Period 0,1 Channel Slope .l Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type SC 150BN Tensar International Corporation 5401 St. Wendel -Cynthiana. Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www. nagreen. coin Phase Reach Discharge Velocity Normal Mannings Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC 150BN Straight 2.63 efs 2.74 0.17 ft 0.05 2.1 lbs /ft2 1.09 ibs /ft2 1.94 STABLE D Unve etated ft/s http :l /www.ecmds.com /printlanalysis /63863163870 111 3/23/2015 www.ecmds.com/prirt/analysis/63863/63871 NOR 1 f i AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TD6 Discharge 4.46 Peak Flow Period 0.1 Channel Slope 059 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flaw Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type SC 15OBN Tensar International Corporation 5401 St. Wendel- Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge Velocity Normal Mannings Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC150BN Straight 4.46 cfs 2,78 0.28 ft 0.05 11 lbs /ft2 1.02 lbs /ft2 2.07 STABLE D Unve etated ft/s http :flwww.ecmds.com /print/analysis /63863163871 1!Z 3/23/2015 www.ecmds.com/pritWanalysis/6386N6:3872 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TD7 Discharge 7.73 Peak Flow Period 0.1 Channel Slope .066 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type SC 150BN Tensar International Corporation 5401 St. Wendel - Cynthiana Road Poseyville, Indiana 47633 Tel. 800.772.2040 Fax 812.867.0247 w` w.nagreen.corn Phase Reach Discharge Velocity Normal Matmings Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC15OBN Straight 7.73 efs 3.46 0.37 ft 0.05 2.1 lbs /ft2 1.51 lbs /f12 1.39 STABLE D Unve etated ft/s http:/Iwww.ecmds.com/prirTVanalysis/63863163872 1/1 M90111 www.ecmds.comlprinUanalysisi63863/63873 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TD8 Discharge 11.25 Peak Flow Period 0.1 Channel Slope 059 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type SC 150BN Tensar International Corporation 5401 St, Wendel- Cynthiana Road Poseyville, Indiana 47633 Tel, 800.772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge' Velocity Normal Manning Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC 150BN Straigh 11.25 3.76 0 47 ft 0.05 2.1 lbs /R2 1.72 lbs /ft2 1.22 STABLE D Unve etated efs ft /s http : / /www.ecmds.com /print/analysis /63863/63873 1/1 3/23/2015 www.ecmds.com/prirvUarralysis/63863163874 NORTH AMERICAN GREEN Erosion Control Materials Design Software Version 5.0 Project Name: Sealed Air Project Number: 63863 Channel Name: TD9 Discharge 3.85 Peak Flow Period 0.1 Channel Slope .019 Channel Bottom Width 5 Left Side Slope 3 Right Side Slope 3 Low Flow Liner Retardance Class Vegtation Type N Vegetation Density Stress Soil Type S C 150BN Tensar International Corporation 5401 St. Wendel - Cynthiana Road PoseyviIle, Indiana 47633 Tei. 800.772.2040 Fax 812.867.0247 www.nagreen.com Phase Reach Discharge Velocity Normal Manning Permissible Shear Calculated Shear Safety Remarks Staple Depth N Stress Stress Factor Pattern SC 150BN Straight 3.85 cfs 1.81 0.35 ft 0.05 11 1bs /ft2 0.42 lbs /ft2 5.05 STABLE D Unve etated ft/s http: / /www.eemds .com /printlanalysisl63863163874 111 ) l r "i 1 / / ,114 ♦� � ( � /��\ �;,�� \ — --------- ' !/r y ! IIITF `� ! 0 X D- SkE KI- ll!L L Sediment �.atn DA Map 1 "150, ------------ 0 ------- Sed4mbnt Y/ Basin #4: 5.33 ac - 18.7 AI -diment CD Ba�in #2: TPm=K 4.9 lac - ft-u- T�- 1-1 c..c� 17:22 cf� 0 1 Sediment (D a, S4ment Basin #1: B 01 #3: ac - 0--- 0 a in /* Z, 4.P2 ac - N 04 ds (5 TEWIUQ 1% 0 g 1129 cfs IE- ,nw . (D wrLES A, T fomazeCTAL mull MAL F) 1E. JLTIE14 Q) Rk Ea -41EEM� VMMOMMUAL I TW -Tr— I xl- 7 A 111L v T C- P 2� /v T- �PRDTWTK*� V =,, Iaxv- Ps Z TOTAL TREE SAVE AREA OF a I Pet E 1 1 4 r F� PETu Aw L,. I JJr a `\ / / •' / \ ARFA =Z.52 � Oi \` � ♦ �_, r�ha \\\ r r, , � �;,, ` ♦_ PRE - - -- _/ \\ \,;. `♦ \ / ,/ r / /','' ,f DEVELOPMENT \o / `� ♦♦ \ 'rr lr �< DA Map 1" =150' 1r Y/ 1 \ e / r' ar; '' / JI ' - -- -- - -4y\ 1 �r f1 /AREA OUTSIDE r f OF 9.3 AC IS GOING BACK TO -- �� - -_ r / /`�; ;' JJ T14k STREET j Lk 11 S ° ♦F ° O C,- + " �� I I j ©/ gd It 1. � fl s''. EArt9.3AG. © ° � .ESA O 1 ♦` — � - -1^' .v° - - -- �': /~ :' l I1 % �� :J % 1 cis �w 1111b \� r! bl !(5D ?'% 1 An�, .� �♦ i, 11 ,, - �_"� -- -.err` � -4- - - - --- � ° � �,= Fr?'`� -� j/ / ' / ___ -���'` �. � ° ` \` - _ Sri' -- �� •��~ y ° / / - -- _ °� - O %°f/ /r l �� G�p71P11R�f�` / (} 160Li lS� 'ice t1' �``� - `'_ � '' _ _ _ \ - ^^ \ ` �''^.• ,..r.,/` d^�J /!;'' �. -- � � � ' °ice !� F °��,° Know what's — TOTAL TREE SAVE AREA 05 s �r � s Call be - -- Call2 + / \ \ ° rl Sz, pub I � \ \\ �, �,� �� \\�� � J �� ,`fir- /�, l /4P`�P�\�* J/ 1 � w - -- a „— •��/ !' � � � � � L• y \ f ! I `+` <r J DEVELC,"A ENT DA Map- 1'” =I— 1 a r t fli/ 5 f} ol _ Im Nd 1 I I� l7 OFF �, a 'S'.' i 1 I � / t I t' j _.� - — - " `�!°i" -'1 ' i I ! r �� � •k �'�iCPi'e, x 1 I fk , ��'' °° -'ARE �s f' 4` dlv^Om ��V1� � Ik — i _ - _�- - � - �..JMiRiR.�...�,.� � Ff i �/ :// ✓ // nM o d w k I I i i rd � ^ � �� wd j >C ti ! f /�" / f � �l / / �' ✓' 7�f \ '� \. I� �. ,,��..' I'1 I�II,I ICI / /1 ��\ // ', Jf •/ ,� / ' J f —:l f,�fj / %!ik�iusau.H 1 -`r�'1 �Sl bkJ `5.OL jS ErS rf 3 I A] 2 - -b z� q�y� S = ,64 1 -7.2 - Ls) (-7 P �-;� ' CI vL epc", `:Ol c 7:,-77- 7 S-3 S S ty t� Sealed Air Project Number: Date: Revised: Total Drainage Area Disturbed Area: Wooded /Pasture: Other: SKIMMER BASIN DESIGN 1 3.23.15 Required Input Data by Designer GIVEN DATA 2.6 Acres Minimum Volume = (1,800 x TDA) 2.6 Acres Minimum Surface Area = (325 x Q10) 0 Acres Basin Dewatering Time: 24 _ 72 Hours 0 Acres Emergency Spillway Length = (L= Q101(C *h "1.5)) BASIN DESIGN CALCULATIONS Bare Soil Coefficient: 0.5 WoodedlPasture Coefficient: 0.2 Other Coefficient: 0 Average Runoff Coefficient: 0.5 Q10 = CIA Q10= 9.4 CFS (Sediment Storage Required: Surface Area Required: 10 Year Storm Rainfall Intensity I = 7.26 2 Year Storm Rainfall Intensity I = 5.68 02 = CIA Q2 = 7.4 CFS 4,680 cu.ft. Emergency Spillway Length 3,055 sq.ft. Emergency Spillway Depth: BASIN DESIGN SIZE I ELEVATIONS 3 ft Okay 0.5 ft Basin Top Width: 62 ft Sediment Storage Provided: 8,315 cu.ft. Okay Basin Top Length (2 x W Min.): 125 ft Okay Surface Area Provided: 7,750 cu.ft. Okay Basin Bottom Width: 3 ft Basin Bottom Length: 60 ft Top of Dam Elevation: 926 msl Basin Depth: 2.5 ft Emergency Spillway Elevation: 925.7 msl Sediment Clean Out Depth: 1.25 ft Basin Top Elevation: 925.2 msI Basin Side Slopes (H:V) 3 :1 Basin Bottom Elevation: 922.7 msl ISkimmer Size Diameter: Skimmer Orifice Diameter: SKIMMER DESIGN SIZE 2.5 in. PVC Basin Volume to Dewater: Head on Skimmer (feet) 1.75 in. Dia. Time Required to Dewater: * Skimmer Sizes Available: 1.5", 2.0 ", 2.5 ", 3 ", 4",,5", 6 ", 8" ** Refer to: Skimmer Basin Design Requirements in the NC Erosion and Sediment Control Planning and Design Manual developed by the NCDENR Land Quality Section 8,315 cu.ft. 0.208 2.58 days Okay (Sealed Air SKIMMER BASIN DESIGN 2 Project Number: Date: 3.2315 Required Input Data by Designer Revised: GIVEN DATA Total Drainage Area: 4.9 Acres Minimum Volume = (1,800 x TDA) Disturbed Area: 4.9 Acres Minimum Surface Area= (325 x 010) Wooded /Pasture: 0 Acres Basin Dewatering Time: 24 - 72 Hours Other: 0 Acres Emergency Spillway Length = (L= Q101(C*h "1.5)) BASIN DESIGN CALCULATIONS Bare Soil Coefficient: 0.5 Wooded/Pasture Coefficient: 0.2 Other Coefficient: 0 Average Runoff Coefficient: 0.5 10 Year Storm Rainfall Intensity I = 7.26 2 Year Storm Rainfall Intensity I = 5.68 Q10 = CIA Q2 = CIA Q10 = 17.8 CFS Q2 = 13.9 CFS Sediment Storage Required: 8,820 cu.ft. Emergency Spillway Length: 4 ft Surface Area Required: 5,785 sq.ft. Emergency Spillway Depth: 0.5 ft BASIN DESIGN SIZE 1 ELEVATIONS Okay Basin Top Width: 68 ft Sediment Storage Provided: 9,727 cu.ft. Okay Basin Top Length (2 x W Min.): 136 ft Okay Surface Area Provided: 9,248 cu.ft. Okay Basin Bottom Width: 3 ft Basin Bottom Length: 60 ft Top of Dam Elevation: 926 msl Basin Depth: 2.5 ft Emergency Spillway Elevation: 925.7 msl Sediment Clean Out Depth: 1.25 ft Basin Top Elevation: 925.2 msl Basin Side Slopes (H :V) 3 :1 Basin Bottom Elevation: 922.7 msl ISkimmer Size Diameter: ISkimmer Orifice Diameter: SKIMMER DESIGN SIZE 3 in. PVC Basin Volume to Dewater: Head on Skimmer (feet) 1.75 in. Dia. Time Required to Dewater * Skimmer Sizes Available: 1.5 ", 2.0 ", 2.5 ", 3 ", 4 ", 5" 6" 8" ** Refer to: Skimmer Basin Design Requirements in the NC Erosion and Sediment Control Planning and Design Manual developed by the NCDENR Land Quality Section 9,727 cu.ft. 0.25 2.75 days Okay Sewed Air Project Number: Date: Revised: Total Drainage Area Disturbed Area: Wooded/Pasture: Other: Bare Soil Coefficient: Wooded/Pasture Coefficient: Other Coefficient: Average Runoff Coefficient: SKIMMER BASIN DESIGN 3 3.23.15 Required Input Data by Designer GIVEN DATA 4.92 Acres Minimum Volume = (1,800 x TDA) 4.9 Acres Minimum Surface Area = (325 x Q10) 0 Acres Basin Dewatering Time: 24 - 72 Hours 0 Acres Emergency Spillway Length = (L= Q101(C *h ^1.5)) Q10 = CIA Q10 = 17.8 CFS (Sediment Storage Required: Surface Area Required: BASIN DESIGN CALCULATIONS 0.5 10 Year Storm Rainfall Intensity I = 7.26 0.2 2 Year Storm Rainfall Intensity I = 5.68 0 0.498 Q2 = CIA Q2 = 13.9 CFS 8,820 cu.ft_ Emergency Spillway Length 5,785 sq.ft. Emergency Spillway Depth: BASIN DESIGN SIZE 1 ELEVATIONS 4 ft Okay 0.5 ft Basin Top Width: 58 ft Sediment Storage Provided: 11,914 cu.ft, Okay Basin Top Length (2 x W Min.): 208 ft Okay Surface Area Provided: 12,064 cu.ft. Okay Basin Bottom Width: 3 ft Basin Bottom Length: 60 ft Top of Dam Elevation: 926 msl Basin Depth: 2.5 ft Emergency Spillway Elevation: 925.7 msl Sediment Clean Out Depth: 1.25 ft Basin Top Elevation: 925.2 msl Basin Side Slopes (H:V) 3 :1 Basin Bottom Elevation: 922.7 msl Skimmer Size Diameter: mer Orifice Diameter: SKIMMER DESIGN SIZE 6 in. PVC Basin Volume to Dewater: Head on Skimmer (feet) 1.75 in. Dia. Time Required to Dewater: 11,914 cu.ft. 0.417 2.61 days Okay Skimmer Sizes Available: 1.5" 2.0" 2.611, 3" 4" 5" 6" 8" ** Refer to: Skimmer Basin Design Requirements in the NC Erosion and Sediment Control Planning and Design Manual developed by the NCDENR Land Quality Section ISealed Air SKIMMER BASIN DESIGN 4 Project Number: Date: 2.12.15 Required Input Data by Designer Revised: GIVEN DATA Total Drainage Area: 5.3 Acres Minimum Volume = (1,800 x TDA) Disturbed Area: 5.3 Acres Minimum Surface Area = (325 x Q10) Wooded/Pasture: 0 Acres Basin Dewatering Time: 24 - 72 Hours Other: 0 Acres Emergency Spillway Length = (L= Q10 /(C *h ^1.5)) BASIN DESIGN CALCULATIONS Bare Soil Coefficient: 0.5 10 Year Storm Rainfall Intensity I = 7.26 Wooded/Pasture Coefficient: 0.2 2 Year Storm Rainfall Intensity I = 5.68 Other Coefficient: 0 Average Runoff Coefficient: 0.5 Q10 = CIA Q10= 19.2 CFS jSediment Storage Required: Surface Area Required: Q2 = CIA Q2 = 15.1 CFS 9,540 cu.ft. Emergency Spillway Length: 6,240 sq.ft. Emergency Spillway Depth: BASIN DESIGN SIZE / ELEVATIONS 5 ft Okay 0.5 ft Basin Top Width: 65 ft Sediment Storage Provided: 12,305 cu.ft. Okay Basin Top Length (2 x W Min.): 190 ft Okay Surface Area Provided: 12,350 cu.ft. Okay Basin Bottom Width: 3 ft Basin Bottom Length: 60 ft Top of Dam Elevation: 926 msl Basin Depth: 2.5 ft Emergency Spillway Elevation: 925.7 msl Sediment Clean Out Depth: 125 ft Basin Top Elevation: 925.2 msl Basin Side Slopes (H:V) 3 :1 Basin Bottom Elevation: 922.7 msl SKIMMER DESIGN SIZE Skimmer Size Diameter: 2.5 in. PVC Basin Volume to Dewater: 12,305 cu.ft. Head on Skimmer (feet) 0.208 Skimmer Orifice Diameter: 2 in. Dia. Time Required to Dewater: 2.92 days Okay Skimmer Sizes Available: 1.5 ", 2.0 ", 2.5 ", 3 ", 4 ", 51, 61, 8" ** Refer to: Skimmer Basin Design Requirements in the NC Erosion and Sediment Control Planning and Design Manual developed by the NCDENR Land Quality Section City of Charlotte Land Development Division Post Construction Controls I Detention Worksheet The following sections help to provide information on volume and peak controls for the site. Attach BMP Inset tables and Design Procedure Forms for each BMP to show that each is sized appropriately per the design requirements. irro.lect Veserlptlon: Attach brief explanation of detention plans and anv assumptions Skimmer basin #3 to be converted to a permanent detention pond. This project is exempt from the PCCO. The detention pond will control the 2 and 10 year 6 hour storms. The pond will also take the discharge from the amenity ponds adjacent to building "A ". PRE - DEVELOPED SUMMARY Basin area: 9.3+1.44 ac. (Delineated on attached drainage area map) Time of Concentration, Tcp,,: 18.9 —14.3 min. (Based on the SCS Method) (Tc path shown on attached map) Reference 3.9.6 of the Charlotte - Mecklenburg Storm Water Design Manual — SCS Travel Time. Curve Number, Cnp,e: 70 POST - DEVELOPED SUMMARY Basin area: 9.3+1.44 ac. (Delineated on attached drainage area map) Time of Concentration, Tcpost: S min. (Based on the SCS Method) (Tc path shown on attached map) Reference 3.9.6 of the Charlotte - Mecklenburg Storm Water Design Manual — SCS Travel Time. Runoff Coefficient, Rv- NA Water Quality Volume, WQv (ac -ft)- NA Curve Number, Cnpost: 92.53 - 98 Curve Number, CNpost(modi&ed)- NA Channel Protection Volume, CPv (ac -ft) - NA CPv Release Rate (cfs) NA DETENTION SUMMARY Computer Method Used *: HEC -1 *Land Development flan Review Staff will verify all detention submittals using HEC -1 for compliance with the City of Charlotte Zoning Ordinance, Section 12.6 This summary is to accompany all detention analysis and is not intended to replace that requirement, Note- 2-year storm is required only for sites required detention per Chapter 12 of the zoning ordinance, If a downstream analysis has been performed, submit complete justification for the results Revised: October 2010 Pagel of 4 Pre (cfs) Post (cfs) Routed (cfs) Elevation (Comments) 1" N/A 1 yr. N/A 2 yr. 1 3.45 36.38 2.55 618.46 10 yr. 12.89 58.81 12.03 620.56 25 yr. 50 yr. NIA 78.02 368.63 622.23 100 yr. N/A Note- 2-year storm is required only for sites required detention per Chapter 12 of the zoning ordinance, If a downstream analysis has been performed, submit complete justification for the results Revised: October 2010 Pagel of 4 PILE- DEVELOPED SUB -BASIN CALCULATIONS: (See attached spread sheets) Sub -basin Name /Level: (Coordinate with attached drainage area map) Type of Flow Travel Length (ft.) Slope ( ° /s) Mannings (n) Time (nun.) Sheet Unpaved 9.3 Woods good McB/D C Sheet Paved 0.48 Woods good McBfD Shallow Cone. (Unpaved) 70 1.56 Open Space, ood Shallow Cone. Paved C 74 Channel Pipe CNPre ` 70 TOTAL NIA N/A N/A Te post = 5 Acreage Land Use Soil Type Hydrologic Group CN Weighted CN (Aereogefrotal Area) x (CN) 9.3 Woods good McB/D C 70 0.48 Woods good McBfD Shallow Cone. (Unpaved) 70 1.56 Open Space, ood Shallow Cone, Paved C 74 Channel Pipe CNPre ` 70 POST - DEVELOPED SUB -BASIN CALCULATIONS: Sub -basin Name /Level: (Coordinate with attached drainage area map) Type of Flow Travel Length (ft.) Slope ( %) Mannings (n) Time (min.) Sheet Unpaved 7.26 Pavement McB/D C Sheet Paved 0.48 Woods good McBfD Shallow Cone. (Unpaved) 70 1.56 Open Space, ood Shallow Cone, Paved C 74 Channel Pipe CNP.t= 92.53 TOTAL NIA N/A N/A Te post = 5 Acreage Land Use Soil Type Hydrologic Group CN Weighted CN (Aereage/Total Area) x (CN) 7.26 Pavement McB/D C 98 0.48 Woods good McBfD C 70 1.56 Open Space, ood McB/D C 74 CNP.t= 92.53 Revised: October 2010 Page 2 of 4 Acreage Land Use Soil Type Hydrologic Group CN Weighted CN (Acreageaotal Area) x (CN) 1.44 Impervious MeB /D C 98 0.48 Woods good McB/D C 70 1.56 1 Open Space, good I MeB /D C "74 CNpost= 98 STORAGE / DISCHARGE CALCULATIONS SEE ATTACHED SPREAD SHEET *(If applicable) Complete Underground Storage Volume Table STORAGE / DISCHARGE CALCULATIONS (SEE ATTACHED SPREAD SHEET) *(If applicable) Complete Underground Storage Volume Table Elevation Underground * Above Ground Total Ace. Volume (cf) Ace. Volume for all Structures (cf) Area (sq. ft.) Inc. Volume (cf) Acc. Volume (cf) (Above and Underground) Stage Discharge (SEE ATTACHED SPREAD SHEET) Co= orifice coefficient: Cw = weir coefficient. Orifice Area unit shall be square feet (sf). Revised: October 2010 Page 3 of 4 Underground Storage Volume Table (If applicable) Provide additional storage volume tables if more structures are used. 600 East Fourth Street, Charlotte, North Carolina 28202 -2844 Telephone: 704 /336 -6642 Fax: 704/336 -6586 landpennits.charmeck.org Revised; October 2010 Page 4 of 4 Ace. Volume (cf) Ace. Volume (cf) Ace. Volume (cf) Ace. Volume (cf) Elevation Underground Structure # Underground Structure # Underground Structure # Underground Structure # Length (ft.) Length (ft.) Length (ft.) Length (ft.) Size /dia (ft.) Size /dia (ft.) Size /dia (ft.) Size /dia (ft.) Upper inv. Upper inv. Upper inv. Upper inv. Lower inv. Lower inv. Lower inv. Lower inv. Slope ( %) Slope ( %) Slope ( %} Slope ( %) Elevation 1 Stage Orifice I In. Orifte etr FA e— Sp m. lWay Outlet --Emergency Control Pipe I o a (cfs) (ft} Inv. nv. Iriv. (Con [led by Dia. —Spillway (F ice flow out of Co= Co= Ft' Inv. Ft. nv. Co= Inv. CHARLMTE. ENGINUMNG & PROPERTY MANAGEMENT - Land Developlent Division 600 East Fourth Street, Charlotte, North Carolina 28202 -2844 Telephone: 704 /336 -6642 Fax: 704/336 -6586 landpennits.charmeck.org Revised; October 2010 Page 4 of 4 tcl with eqns Sheet Flow manning's n for sheet flow (table 3.1 TR -55) _ smooth surfaces(conc.,asphalt, gravel, or bare soil) 0.011 Head= 24.00 Fallow(no residue) 0.05 mannings 0.4 Woods Cultivated Soils - P2= 3.12 in Residue cover <20% 0,06 Length= 300 ft Residue Ccover >20% - 0.17 s =HIL= 0.080 ftlft { Eqn 3.3 TR55 Grass - Short grass praire 0.15 0 .007 (d )0'8 Dense grass - - 0.24 - 0.4 Bermudagrass - 0.41 Range j 0.13 where: I Tt= travel time(hrs.) Woods I I n= mann in s roughness coefficient - — - 9 Light underbrush 0.4 L =flow length(ft.) Dense underbrush 0.8 - - P2 =2 -yr, 24 hr rainfall(in.) s =land slope(ff -fft/j - - - -- Tt= I 0.50 hr - - - Shallow Concentrated Flow -- -- y L=1 333 ft -- h=1 20 ft t - - s= 0.06006 fUft i - _ T 16.1345 s } - - -- V= 3.95 fps 1 - - T= LI(3600V)= 0.02 hr. - _Compute travel time Tc =Tt1 + Tt2....Tn - - Tc= 0.525, hr.= 31.48 min. k LAG= 0.315 -- - 5/27/2015 Head= 19.00 mannings 0.4 Woods P2= 3.12 in Length= 228 ft s =H1L= 0.083 ft/ft Eqn 3.3 TR55 _0.007(d 0.8 — -- i (P 0.4 VV 2 _where: Tt= travel time(hrs.) n= mannings roughness coefficient L=flow length (ft.) P2 =2 -yr, 24 hr rainfall(in.) s =land slope(fi./ftq - Tt= 0.40 h r Shallow Concentrated Flow L= h= s= 0 fuft _V --16,1345 s - 0.00 fps - T= LI(36001/)= O-. 0-01 hr. tc for amenity ponds manning's n for sheet flow(table 3.1 TR -55 smooth surfaces(conc.,asphalt, gravel, or bare soil) 0.011 Fallow(no residue) 0.05 Cultivated Soils - - Residue cover X20% 0.06 .Residue Ccover >20% 0.17 Grass - Short grass praire 0.15 Dense grass 0.24 _ Bermudagrass _ 0,41 - - -- 4- - Range 0.13 Woods Light underbrush - - - - -- 0.4 Dense underbrush - 4.8 i o Compute travel time Tc =Ttl + Tt2....Tn Tc= 0.396 hr.= 23.76 min. - -. - LAG= 0.238 5/2712015 T�e -- { I Or �WK-M4tTi2J e---- A-0-4th0b &Ions) o, 515, 6 (�i �- 5+K c, . f Sheet Flow Head= 24.00 mannings 0.4 Woods P2= 3.12 in Length=[-- 300 ft s =HIL= 0.080 ftfft Eqn 3.3 TR55 - + OF (n,L) V .4 - 2 where: rt= travel time(hrs.) n= mannings roughness coefficient L =flow length(ft.) P2 =2 -yr, 24 hr rainfall(in.) s =land slope(ft./fo F Tt= 0.5D hr Shallow Concentrated Flow L=j 333 ft 11=1 20 ft s= 0.06006 ftlft V =16.1 3r 5 S V= 3.95 fps T= LI(3600V)= D.Q2 hr. tcl with eqns manning's n for sheet flow (table 3.1 TR -55) smooth surfaces(conc.,asphalt, gravel, or bare soil) 0,011 Fallow(no residue) 0.05 Cultivated Soils Residue cover <20% 0.06 Residue Ccover >20% 0.17 Grass Short grass praire 0.15 Dense grass 0.24 Bermudagrass 0 41 Range 0.13 Woods Light underbrush 0.4 Dense underbrush 0.8 Compute travel time Tc =Tt1 + Tt2 .... Tn i Tc= 0.525 hr.= E31.4$ min. t j LANG= 0.315 5/18/2015 tc for amenity ponds i Sheet Flows manning's n for sheet flow(table 3.1 TR -55) _ smooth surfaces(conc.,asphalt, gravel, or bare soil) Head= 19.00 Fallow(no residue) mannings 0.4 Woods Cultivated Soils P2= 3 12 in - _ Residue cover <20% Length = 228 ft Residue Ccover>20% s =HIL= 0.083 ftfft -j Eqn 3.3 TR55 Grass Short grass praire 0.15 . VQ 12L Dense grass 0.24 - - Bermudagrass 041 -- i -V -r � (i.4 � Range 013 where: Tt= travel time(hrs.) Woods ' n= mannings roughness coefficient Light underbrush 0.4 L =flow fength(ft.) Dense underbrush 0 8 1-2 =2 -yr, 24 hr rainfall(!n.) s =land slope(f lft/) l ' -Tt= 0.40 hr - Shallow Concentrated Flow _ h= — s - - O jtlft V _ 16.1345 s V= 0.00 fps T= LI(360OV)= 1 0.00 hr. Compute travel time Tc =Tt1 + Tt2....Tn _ Tc= 0.396 hr.= - - - - - -- j-- -- - -- I - - i A SAG= 0.011 0.05 0.06 0.17 5/18/2015 2376 rnin. 0.238 HEC -J. INPUT LINE ID ....... 1 ....... 2 ....... 3 ....... 4.......5 ....... 6 ....... 7.,., ... 8 ....... 9 ...... 10 1 ID SEALED AIR POND1 2 ID 2 YEAR PRE -- DEVELOPED CONDITION DRAINAGE AREA INCLUDES A14ENITY PONDS 3 ID GEOSCIENCE GROUP, INC.. 4 IT 1 0 0 1800 5 TO 5 0 0 6 KK RUNOFF FROM AREA 7 KM 1 YEAR - 24 HOUR STOR1.1 8 RN 0 0 0.398 0.794 1.36 1.57 1.68 2,04 2.41 2.77 9 KM 2 YEAR 10 PH 0 0 0,42 0.83 1.45 1.76 1.95 2.28 11 KM 10 YEAR 12 Kit 0 0 0.59 1.26 2.36 2.9 3.21 3.72 13 KM 25 YEAR 14 KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 15 KM 50 YEAR 16 KM 0 0 0.75 1.62 3.05 3.78 4.20 4.92 17 KM 100 YEAR 18 KM 0 0 0.83 1.78 3.34 4.12 4.56 5.34 19 KK RUNOFF AMENITY 20 KM AMENITY POND AREA = 1.44 ACRES 21 KO 21 22 BA 0.0023 23 LS 0 70 24 UD 0.238 25 Khi POND 1 AREA = 9.3 ACRES 26 KK RUNOFF POND 1 27 KO 0 21 28 BA 0.0145 29 LS 0 70 30 UD 0.315 31 KK COMBIN E 32 KM COMBINE 2 HYDROGRAPHS. 33 KO 21 34 HC 2 35 ZZ * Fes* FLOOD HYDROGRAPH PACKAGE (HEC -1) * JUN 1998 * VERSION 4.1 * * * RUN DATE 18MAY15 TIME 11.23.05 * U.S. ARMY C * HYDROLOGIC * 609 S * DAVIS, C * (916 SEALED AIR POND1 2 YEAR PRE - DEVELOPED CONDITION DRAINAGE AREA INCLUDES AI•EENITY PONDS GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL O. HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA NMIN 1 MINUTES IN COMPUTATION INTERVAL IRATE 1 0 STARTING DATE ITIME 0000 STARTING TIME NQ 1800 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2 0 ENDING DATE NDTIME 0559 ENDING TIi1E ICENT 19 CENTURY LIARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE VALUE EXCEEDS TABLE IN LOGLOG SQUARE RILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT 01667 .01667 6.00000 * ** * ** * ** * ** * *x * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * 19 KK * RUNOFF * AMENITY * * * * * * * * * * * * * * ** 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SA`:'ED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * 26 KK * RUNOFF * POND 1 * * 27 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVI 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * 31 KK * COMBIN * E * 33 KO OUTPUT CONTROL 7ARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVI 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * ** NORMAL END OF HEC -I * ** MAXI STA RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE PLOW FOR MAXIMUM PERIOD BASIN OPERATION STATION FLOW PEAK 6 -HOUR 24 -HOUR 72 -HOUR AREA HYDROGRAPH AT RUNOFF 0. .00 0. 0. 0. .00 HYDROGRAPH AT RUNOFF 1_ 3.35 0. 0. 0. .00 HYDROGRAPH AT RUNOFF 3. 3.47 I. 0 0 01 2 COMBINED AT COMBIN 3. 3.45 1. Q. 0. .Q2 * ** NORMAL END OF HEC -I * ** MAXI STA Hydrograph Peak Flow Rate Name (CFS) RUNOFF 0.542 RUNOFF 2.965 COMBIN 3.453 Peak Flow Total Volume Date /Time I x1000 (CF) Dec 01, 1900 03:22 1.895 Dec 01, 1900 03:29 11.945 Dec 01, 1900 03:28 13.84 HEC -1 INPUT LINEID ....... 1 ....... 2 ....... 3.......4..,....5.......6. .,....7.......8.......9......10 1 ID SEALED AIR POND1 2 ID 10 YEAR PRE -DE "ELOPED CONDITION DRAINAGE AREA INCLUDES AMENITY PONDS 3 ID GEOSCIENCE GROUP, INC. 4 IT 1 0 0 1800 5 IO 5 0 0 6 KK RUNOFF FROM AREA 7 KM 1 YEAR - 24 HOUR STORM 8 KM 0 0 0.398 0.794 1.36 1.57 1.68 2.04 2.41 2.77 9 KM 2 YEAR 10 KM 0 0 0.42 0.83 1.45 1.76 1.95 2.28 11 KM 10 YEAR 12 PH 0 0 0.59 1.26 2,36 2.9 3.21 3.72 13 KM 25 YEAR 14 KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 15 KM 50 YEAR 16 KM 0 0 0.75 1.62 3.05 3.78 4.20 4.92 17 KM 100 YEAR 1B KM 0 0 0.83 1.78 3.34 4.12 4.56 5.34 19 KK RUNOFF AMENITY 20 KM AMENITY POND AREA = 1.44 ACRES 21 KO 21 22 BA 0.0023 23 LS 0 70 24 UD 0.238 25 KM POND 1 AREA = 9.3 ACRES 26 KK RUNOFF POND 1 27 KO 0 21 28 BA 0.0145 29 LS 0 70 30 UD 0.315 31 KK COMBIN E 32 KM COMBINE 2 HYDROGRAPHS 33 KO 21 34 HC 2 35 zz * * FLOOD HYDROGRAPH * PACKAGE (HEC -1) * JUN 1998 * VERSION 4.1 * * " RUN DATE 18MAY15 TIME 11:25 :03 * * U.S. ARMY C * HYDROLOGIC * 609 S * DAVIS, C * (916 * SEALED AIR POND1 10 YEAR PRE -DE "ELOPED CONDITION DRAINAGE AREA INCLUDES AMENITY PONDS GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL O. HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA NMIN 1 MINUTES IN COMPUTATION INTERVAL IRATE 1 0 STARTING DATE ITIME 0000 STARTING TIME NQ 1800 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2 0 ENDING DATE NDTIME 0559 ENDING TIME ICENT 19 CENTURY MART{ COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE VALUE EXCEEDS TABLE IN LOGLOG SQUARE NILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT .01667 .01667 6.00000 * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** *** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * *,, * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * * 19 KK * RUNOFF * AMENITY w * * * ** * * * * * * * * ** 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * ** * ** * ** * ** * ** * #* * ** * ** ** * ** * ** * ** * ** * ** * ** * ** *w* * ** * ** * ** * ** * ** * ** * ** * ** *w* * ** * * * * * * * * * * * * ** * * 26 KK * RUNOFF * POND 1 * * 27 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * * * * * * * * * * * * ** 31 KK * COMBIN * E * * * * * * * * * * * * * * ** 33 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISM 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * ** NORMAL END OF HEC -1 * ** BASIN AREA .00 .00 .01 .02 MAXI STA RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR [IAXI11U[i PERIOD OPERATION STATION FLOW PEAK 6 -HOUR 24 -HOUR 72 -HOUR HYDROGRAPH AT RUNOFF 0. 00 0. 0. 0. HYDROGRAPH AT RUNOFF 2. 3.32 Q. 0 0 HYDROGRAPH AT RUNOFF 1I. 3.42 2. 0. 0 2 COMBINED AT COMBIN 13. 3.40 2. 1. 0. * ** NORMAL END OF HEC -1 * ** BASIN AREA .00 .00 .01 .02 MAXI STA Nydrograph Peak Flow Rate Peak Flow Total Volume Name (CFS) Date/Time x1000 (CF) RUNOFF 2.024 11.043 Dec 01, 1900 03:20 Dec 01, 1900 03:26 Dec 01, 1900 0325 6.126 38.619 44.745 RUNOFF COMBIN 112.893 1 Ni r ATi6� f �° 0 +s� CL CL ❑ 3 � Cl) V= p U O 0 r C i4 wj N N C) C II Q fl Q , 2 O N cc m c m CD m W 2 C7 `a O jco C7 ❑ ❑ ❑ ❑ 'm ❑ ❑ ❑ ❑ ai w w Q 1 d o C7 O O C7 0 C7 m 0 0 ❑ CD O O C) CD C] O co O E E 0� C] 0 0 fl 0 0 0 C] O 0 N 0�r� O CO 07 r N cc LLI C7 L O O N CL CL ❑ 3 � Cl) V= p U O 0 r C i4 wj N r O O r} LO O C) m C wf Lo 2 CD -p Q1 7 N CU aa) o E o� [a N gp t Li fn I! II J a� w a� U X O ❑ O O 0 W E D 0 47 7 co N E o m in E c D v C X O m Sg C cll J C O 7 a 9) C) C C Lij , 2 Sj U N cc m c m m W 2 v o `a jco C7 ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ 0 O CD d O C7 O O C7 0 C7 0 0 O CD O O C) CD C] O 0� C] 0 0 fl 0 0 0 C] O 0 N 0�r� O CO 07 r N V O C7 C� O O N co� fY- CrJ C�'j m t''7 (Y) C7 N r O O r} LO O C) m C wf Lo 2 CD -p Q1 7 N CU aa) o E o� [a N gp t Li fn I! II J a� w a� U X O ❑ O O 0 W E D 0 47 7 co N E o m in E c D v C X O m Sg C cll J C O 7 a 9) C) C C C N M F- , 2 Sj U N cc m c m m W v o `a E w w ca rn (n 0 � tt� U (D C � ho © N S4 E X N x W r lh v 5 C C ) O C � � CT w II V co l C) r N Q L j II � II LO N co LO lC7 41,b a� C3 � oa000000csaa 00000c�000c?e� i o© o 0 0 0 0 0 o 0 o r�) [1, 0 O 0 `r m � II 4 � O CD c C6 C7 CD CQ ° Cr1 O CD O° 07 T O O , O Cl O 0 N c cli ° O c a 't ((D � O C) o C7 w L w i Q cu w a•coaocrooCrC a w [j r- aj w I I f oca00000 o` t/j a) cu 2 T � Q) � N (� a U 5 c P Z3 m d) cm z � B �1 a ai0i E I v E a) O E -0 - cy O C7 c) o C] a Q Q O 0 N O T © Ct l`� 00 t� T N UocaC�ooN"�a'�� L x © +� w- US CO rn fq • T � � c k o R 00 Q o0 e0 O N a O C1 r 0 0 r O 0a - Q S6 E> r M w 00 a O O C] C, N U 0 ca N c ,s a0 C 47 C p LO ca 0 N %0 LL Q CL o \D C U) � ti�J LLJ o � II p 4f 0 to (6 m w 0 LL �. 3 o voao C5 oaoo c?000 0� �rV aCc o ®Ci @O En a a) r�oQOOCC�oac�o �� C; Cs C66666O o c a) N U © `V�l (D a) 0 0 0 o O o 0 0° 0 0 0 m> �E- C)OO°OC 0CDCD CD EX C) CD Ca o C) o CD C) CD CD X p o ( N x W C] � m O O O 0 0 0 0 0 O O C) Q Cl O C7 O C7 O O 4 0 0 I I 0 0 O O C) C) O C] O O O w O N a� C3 � oa000000csaa 00000c�000c?e� 0 0 0 0 cla co "' o r�) [1, 0 O 0 `r m � II 4 � O CD c C6 C7 CD CQ ° Cr1 O CD O° 07 T O O , O Cl O 0 N c cli ° O c a 't ((D � O C) o C7 w L w �'SJ cu w a•coaocrooCrC a w [j r- aj w o 4L= (D w o` t/j a) cu 2 T � Q) � N (� a U 5 c P Z3 m d) cm z � B �1 a ai0i E I v E a) O E -0 w ai uoi a, T x © ° CD 0 J O mi 7 � w C_u E v- L 0 0 C a) C) CS U_ E C ►• I Q!Jf 0 � QI m L RQ ❑ r oi Lo � � c k o R 00 Q o0 e0 O N a O C1 r 0 0 r O 0a - Q S6 E> r M w 00 a O O C] C, N U 0 ca N c ,s a0 C 47 C p LO ca 0 N %0 LL Q CL o \D C U) � ti�J LLJ o � II p 4f 0 to (6 m w 0 LL �. 3 o voao C5 oaoo c?000 0� �rV aCc o ®Ci @O En a a) r�oQOOCC�oac�o �� C; Cs C66666O o c a) N U © `V�l (D a) 0 0 0 o O o 0 0° 0 0 0 m> �E- C)OO°OC 0CDCD CD EX C) CD Ca o C) o CD C) CD CD X p o ( N x W C] � m O O O 0 0 0 0 0 O O C) Q Cl O C7 O C7 O O 4 0 0 I I 0 0 O O C) C) O C] O O O w O N a� � oa000000csaa 00000c�000c?e� n n Q C a� 000covc�0000 cla U) "' o r�) [1, O lL � II 4 O CD c C6 C7 CD CQ ° Cr1 O CD O° 07 T O O , O Cl O 0 lVl cli ° O c a 't ((D � O C) o C7 m L a O a a 0 a a O C5 �'SJ a� � oa000000csaa 00000c�000c?e� a� 000covc�0000 "' *� U L a O a a 0 a a O C5 �'SJ o a•coaocrooCrC a T � � N c r CF. d) cm O C3 LO C7 to ° Lo f�. C7 N to r- O � IT �1 CE 'eY et V d' �t �' (D fi3 m (D (D C1] (O I CU r pu v )ate 6,117,40 A - 4AI -�s or I QZ- ve, � l $, 610 pion stage - storage Elevation Area III Delta Vol Volume Volume 612 _ 2987 - -- - -4 0 0 614 4515 _ - 7502 7,502 0.172 _ 616 — - 11513 - -j 6998 19015 0.437 16704 618 i ..9706 35719 0.820 _ 22346 620 12640 58065 1.333 13154 _ 621 13668 71219 1.635 5/18/2015 T 2 Lo N (D C7 w CJ E O W �= m v 00 E (p m Ln a) LO L UD L 1 0 D yj V C? E[ Q Fri.. W D O E O w a - (a N E a [6 L C C7 CZ) [4 �j a `I C) to Cd (D C)' 3 g Ei T a CD -0 0 in M W o E C) _0 r, m 41 L E Ico N N J Q (D w U 0 m C) C7 C] LU E O a N N (0 E x (} 4 0 CD LCi r C RS m (n 0 0 E� tU 7 C X D ❑ c 0 cr LD (D r OS e N — C co LLI �00000i00000i lf] 2 .0 M rq ca � N co z CD �—` �o � �❑ ❑ate co ❑ ❑ ❑ ❑❑ 4 oOC:)oCD CDC oao C) ooQC�(D oQ0a 5; � � �; > > > (� wN C] 4 C) O C) C] C) C3 O C) N Q r CO E� T N U CJ C] C? CO CD N M V LO E: (n co M M M C) to Cd (D C)' 3 g Ei T a CD -0 0 in M W o E C) _0 r, m 41 L E Ico N N J Q (D w U 0 m C) C7 C] LU E O a N N (0 E x (} 4 0 CD LCi r C RS m (n 0 0 E� tU 7 C X D ❑ c 0 cr LD (D r OS e N — C co (0 C lf] 2 .0 M rq ca � N `a CD �—` �o CO co Lu 0 m m co 0) 0 m c 12 >1 (D p n] N E X din N X W T V + Li Of L C C*') O D" w M 7. U I--,z -- 0 t�4 L w O N O (n 1 1 m HEC -1 INPUT LINE ID ....... 1 ....... 2 ....... 3.......4.......5.......6. ......7,......8.......9......10 1 ID SEALED AIR DETENTION POND 1 2 ID 2 YEAR STORM POST DEVELOPMENT CONDITION INCLUDES AMENITY POND AND 9.3 ACRE DRA 3 ID GEOSCIENCE GROUP, INC. 4 IT 1 0 0 1800 5 IO 5 0 0 6 KK UPPER POND 7 KM 2 YEAR 8 PH 0 0 0.42 0.83 1.45 1.76 1.95 2.28 9 KM 10 YEAR 10 KM 0 0 0.59 1.26 2.36 2.9 3.21 3.72 11 KM 25 YEAR 12 KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 13 KM 50 YEAR 14 KM 0 0 0.75 1.62 3.05 3.78 4.2 4.92 15 KO 21 16 KM UPPER AMENITY POND 17 BA 0.0010 5 18 LS 0 98 19 UD 0.05 20 KO 21 21 KK ROUTE 22 KM ROUTE UPPER POND 23 KM "NORMAL" DAY Q = 0.51 cfs 24 RS 1 ELEV 653.04 25 SV 0 0.07 0.167 0.293 0.433 0.605 0.85 1.164 26 SE 647 648 649 650 651 652 653 654 27 KM 20' WEIR @ ELEVATION = 653 26 SQ 0 1.9 3.49 5.37 7.5 9.86 12.42 15.18 21.21 37.21 29 SQ 60 30 SE 653 653.1 653.15 653.2 653.25 653.3 653.35 653.4 653.5 653.75 31 SE 654 32 KO 21 33 KK LOWER POND 34 KM LOWER POND INFLOW HYDROGRAPH 35 BA 0.0012 36 LS 0 98 37 UD 0.05 38 KO 21 39 KK COMBIN E 40 KM COMBINE OUTFLOW FROM UPPER WITH INFLOW TO LOWER POND 41 HC 2 42 KO 21 43 KK ROUTE LOWER 44 KM ROUTE THROUGH LOWER POND 45 KM "NORMAL" DAY Q = 0.51 cfs 46 RS 1 ELEV 643.55 47 SV 0 0.124 0.27 0.449 0.662 0.903 1.037 1.185 48 SE 638 639 640 641 642 643 643.5 644 49 SQ 0 6 16.97 31.18 48 67.08 88.18 50 SE 643.5 643.75 644 644.25 644.5 644.75 645 HEC -1 INPUT LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 51 KO 21 52 KK POST 53 KM 9.3 ACRE DRAINAGE AREA 54 BA 0.0145 55 LS 92.53 56 UD 0.05 57 KO 21 58 KK COMBIN E 59 HC 2 60 KO 21 61 KK ROUTE 62 RS 1 ELEV 612 63 Sv 0 0.172 0.437 0.82 1.333 1.635 64 SE 612 614 616 618 620 621 65 KM 6" ORIFICE AT ELEVATION = 612 66 KM 1' WEIR AT ELEVATION = 618.5 67 SQ 0 0.89 1.35 1.7 1.98 2.23 2.46 2.56 2.99 3.72 68 SQ 8.36 14.89 69 SE 612 613 614 615 616 617 618 618.5 618.75 619 70 SE 620 621 71 KM MODEL TOP OF 4' x 4' BOX WITH ST RECORD WEIR LENGHT = 16 -1 = 15' 72 ST 620.6 1 3 1.5 73 KO 21 74 ZZ * ............ * * FLOOD HYDROGRAPH PACKAGE (HEC -1) * JUN 1998 * VERSION 4.1 * * RUN DATE 18MAY15 TIME 14:45 :52 * * IPLOT 0 * U.S. ARMY C HYDROLOGIC * 609 S * DAVIS, C ( 916 * * * * * * * * * * * * * * * ** SEALED AIR DETENTION POND 1 2 YEAR STORM POST DEVELOPMENT CONDITION INCLUDES AMENITY POND AND 9.3 ACRE DRA GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN I IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29,9E HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * 6 KK * UPPER * POND * * * * * * * * * * * * * * ** 20 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL * * 6 KK * UPPER * POND * * * * * * * * * * * * * * ** 15 KO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IPNCH 0 TOUT 21 ISAV1 1 ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * 6 KK * UPPER * POND * * * * * * * * * * * * * * ** 20 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT QSCAL I PNCH IOUT ISAV1 ISAV2 TIMINT VALUE EXCEEDS TABLE IN LOGLOG 0 PLOT CONTROL 0. BYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1800 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS .01667 .01667 6.00000 * ** * ** * * * * ** * ** * ** * ** w ** *** * ** www * ** * ** * ** :r,* * ** * ** * * * www * * * * * * * * * * ** * * * *** * * * * ** * * * * * * * * * * * * ** * * 21 KK * ROUTE * * * ** *www * * * * *w* 32 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 I FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * * * * *w * *w* ** ** * * 33 KK * LOWER * POND * * * * * *w * * * * * * * ** 38 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * ** * ** * ** * ** * ** *** *** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * 39 KK * COMBIN * E * * * * * * ** ** * * * * ** 42 KO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0, IPNCH 0 TOUT 21 ISAV1 1 ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * ** * ** * ** * ** * ** , ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * * 43 KK * ROUTE * LOWER * * 51 KO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IPNCH 0 IOUT 21 ISAV1 1 ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SA'.'ED TIME INTERVAL IN HOURS * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * 52 KK * POST * * * * * * * * * * * * ** 57 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT 017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * 58 KK * COMBIN * E * * * * * * * * * * * * * * ** 60 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL 'QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * * * * * * * * * * * * ** * * 61 KK * ROUTE * * * * * * * * * * * * * * ** 73 KO OUTPUT CONTROL IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT VARIABLES 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1600 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES OPERATION STATION PEAK FLOW TIME OF PEAK AVERAGE 6 -HOUR FLOW FOR MAXIMUM 24 -HOUR PERIOD 72 -HOUR BASIN AREA MAXI STA HYDROGRAPH AT UPPER 3. 3.07 0. 0, 0. .00 ROUTED TO ROUTE 2. 3.15 0. 0. 0. .00 653 HYDROGRAPH AT LOWER 3. 3.07 0. 0. 0. .00 2 COMBINED AT COMBIN 5. 3.08 1. C. 0 00 ROUTED TO ROUTE 3. 3.18 1. 0. 0. .00 643 HYDROGRAPH AT POST 34. 3.07 2. 1. 0. .01 2 COMBINED AT COMBIN 36. 3.07 3. 1. 1. .02 ROUTED TO ROUTE 3, 3.98 2. 1. 1. .02 618 * ** NORMAL END OF HEC -1 * ** SUMMARY OF DAM OVERTOPPING /BREACH ANALYSIS FOR STATION ROUTE (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION} PLAN 1 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 612.00 620.60 620.60 STORAGE 0. 2 2 OUTFLOW 0. 12. 12. RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME O OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILUR PMF W.S.ELEV OVER DAM AC -FT CFS HOURS HOURS HOURS 1.00 618.46 .00 1. 3. .00 4.05 .00 * ** NORMAL END OF HEC -1 * ** Hydrograph I Peak Flow Rate Peak Flow I Total Volume me Na (CFS) Date /Time 1 x1000 (CF) UPPER 2.883 1.621 3.459 4.748 3.245 33.978 36.376 2.551 Dec 01, 1900 03:05 Dec 01, 1900 03:10 Dec 01, 1900 03:05 Dec 01, 1900 03:06 Dec 01, 1900 03:12 Dec 01, 1900 03:05 Dec 01, 190003.-05 Dec 01, 1900 04:01 4.767 5.314 5.721 11.035 11.68 51.672 63.351 64.892 ROUTE LOWER COMBIN ROUTE POST COMBIN ROUTE nrlu -1 1NruT LINEID ....... 1.......2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 1 ID SEALED AIR DETENTION POND 1 2 ID 10 YEAR STORM POST DEVELOPMENT CONDITION INCLUDES AMENITY POND AND 9.3 ACRE DR 3 ID GEOSCIENCE GROUP, INC. 4 IT 1 0 0 1800 5 IO 5 0 0 6 KK UPPER POND 7 KM 2 YEAR 8 KM 0 0 0.42 0.83 1.45 1.76 1.95 2.28 9 KM 10 YEAR 10 PH 0 0 0.59 1.26 2.36 2.9 3.21 3.72 11 KM 25 YEAR 12 KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 13 KM 50 YEAR 14 KM 0 0 0.75 1.62 3.05 3.78 4.2 4.92 15 KO 21 16 KM UPPER AMENITY POND 17 BA 0.0010 5 18 LS 0 98 19 U 0.05 20 KO 21 21 KK ROUTE 22 KM ROUTE UPPER POND 23 KM "NORMAL" DAY Q = 0.51 cfs 24 RS 1 ELEV 653.04 25 SV 0 0.07 0.167 0.293 0.433 0.605 0.85 1.164 26 SE 647 648 649 650 651 652 653 654 27 KM 20" WEIR @ ELEVATION = 653 28 SQ 0 1.9 3.49 5.37 7.5 9.86 12.42 15.16 21.21 37.21 29 SQ 60 30 SE 653 653.1 653.15 653.2 653.25 653.3 653.35 653.4 653.5 653.75 31 SE 654 32 KO 21 33 KK LOWER POND 34 KM LOWER POND INFLOW HYDROGRAPH 35 BA 0.0012 36 LS 0 98 37 UD 0.05 38 KO 21 39 KK COMBIN E 40 KM COMBINE OUTFLOW FROM UPPER WITH INFLOW TO LOWER POND 41 HC 2 42 KO 21 43 KK ROUTE LOWER 44 KM ROUTE THROUGH LOWER POND 45 KM "NORMAL" DAY Q = 0.51 cfs 46 RS 1 ELEV 643.55 47 SV 0 0.124 0.27 0.4.49 0.662 0.903 1.037 1.185 48 SE 638 639 640 641 642 643 643.5 644 49 SQ 0 6 16.97 31.18 48 67.06 88.18 50 SE 643.5 643.75 644 644.25 644.5 644.75 645 hhU -1 1NYUT LINEID ....... I ....... 2.. .....3.......4.......5.......6. ......7,.,....8.......9......10 51 KO 21 52 KK POST 53 KM 9.3 ACRE DRAINAGE AREA 54 BA 0.0145 55 LS 92.53 56 UD 0.05 57 KO 21 58 KK COMBIN E 59 HC 2 60 KO 21 61 KK ROUTE 62 RS 1 ELEV 612 63 SV 0 0.172 0,437 0.82 1.333 1.635 64 SE 612 614 616 618 620 621 65 KM 6 " ORIFICE AT ELEVATION = 612 66 KM 1' WEIR AT ELEVATION = 618.5 67 SQ 0 0.89 1.35 1.7 1.98 2.23 2,46 2.56 2.99 3,72 68 SQ 8.36 14.89 69 SE 612 613 614 615 616 617 618 618.5 618.75 619 70 SE 620 621 71 KM MODEL TOP OF 4' x 4' BOX WITH ST RECORD WEIR LENGHT = 16 -1 = 15" 72 ST 620.6 1 3 1.5 73 KO 21 74 ZZ * FLOOD HYDROGRAPH PACKAGE (EEC -1) * ,TUN 1998 * VERSION 4.1 * RUN DATE 18MAY15 TIME 14:48:09 * * * * ** * * * * * * * * * ** * * U.S. ARMY C * HYDROLOGIC 609 S * DAVIS, C. (916 * * * * * * * * * * * * * * ** SEALED AIR DETENTION POND 1 10 YEAR STORM POST DEVELOPMENT CONDITION INCLUDES AMENITY POND AND 9.3 ACRE DR GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 1 IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * * * * * * * * * * * * ** * * 6 KK * UPPER * POND * * * * * * * * * * * * * * ** 15 KO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IPNCH 0 IOUT 21 ISAV1 1 ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * * * * * * * * * * * * ** 6 KK * UPPER * POND * * 20 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT QSCAL IPNCH TOUT ISAVI ISAV2 TIMINT VALUE EXCEEDS TABLE IN LOGLOG 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1800 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS 01667 .01667 6.00000 * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * 21 KK * ROUTE * * * * * * * * * * * * * * ** 32 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * * * * * * * * * * * * ** * * 33 KK * LOWER * POND * * 38 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVI 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * * * * * * * * * * * * * * * * * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * ** 39 KK * COMBIN * E * * * * * * * * * * * * ** 42 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * * * * * * * * * * * * ** * * 43 KK * ROUTE * LOWER * * 51 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAVI 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * ** * ** * ** * ** * ** * ** * ** * ** k ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** *' ** * ** * * * * * * * * * * * * ** * * 52 KK * POST * * 57 KO OUTPUT CONT, IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT ROL VARIABLES 5 0 0. 0 21 1 1800 .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * * * * * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * 58 KK * COMBIN * E * * * * * * * * * * * * * * ** 60 K0 OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IPNCH 0 IOUT 21 ISAV1 1 ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** *** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * ** * * ** 61 KK * ROUTE * * * * * * * * * * * * * * ** IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1800 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXI OPERATION STATION FLOW PEAK 6 -HOUR 24 -HOUR 72 -HOUR AREA STA HYDROGRAPH AT UPPER 4. 3.07 0. 0. 0. .00 ROUTED TO ROUTE 3. 3.15 0. 0. 0. .00 653 HYDROGRAPH AT LOWER 51 3.07 0. 0. 0. .00 2 COMBINED AT COMHIN 7. 3.08 1. O. 0. .00 ROUTED TO ROUTE 5. 3.18 1. 0. 0. .00 643 HYDROGRAPH AT POST 55. 3.07 5. 1. 1. .01 2 COMBINED AT COMBIN 59. 3.07 5. 1. 11 .02 ROUTED TO ROUTE 12. 3.50 4. 1. 1. .02 620 * ** NORMAL END OF HEC -1 * ** SUMMARY OF DAM OVERTOPPING /BREACH ANALYSIS FOR STATION ROUTE (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION) PLAN I ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 612.00 620.60 620.60 STORAGE 0. 2 2 OUTFLOW 0. 12. 12. RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME 0 OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILUR PMF W.S.ELEV OVER DAM AC -FT CFS HOURS HOURS HOURS 1.00 620.56 .00 2. 12. .00 3.50 .00 * ** NORMAL END OF HEC -1 * ** Hydrograph I Peak Flow Rate Peak Flow I Total Volume me Na (CFS) Date/Time x1000 (CF) UPPER 4.189 2,796 5.027 7.293 5.254 54.886 58.81 12.029 Dec 01, 190003:05 Dec 01, 1900 03 :10 Dec 01, 1900 03:05 Dec 01, 1900 03 :06 Dec 01, 1900 0312 Dec 01, 1900 03 :05 Dec 01, 1900 03:05 Dec 01, 1900 03:31 8.098 8.644 9.718 18,363 19.007 97.703 116.71 118.276 ROUTE LOWER COMBIN ROUTE POST COMBIN ROUTE f 49 - -- rou. - 5b, 6 3 /o.- - fir' - n� = 103 0:� = �` �b 1� Ord HEC -1 INPUT LINEID ....... 1 ....... 2 ....... 3 ....... 4.......5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 1 ID SEALED AIR DETENTION POND 1 2 ID 50 YEAR STORM POST DEVELOPMENT CONDITION INCLUDES AMENITY POND AND 9.3 ACRE DR 3 ID GEOSCIENCE GROUP, INC. 4 IT 1 0 0 1800 5 TO 5 0 0 6 KK UPPER POND 7 KM 2 YEAR 8 KM 0 0 0.42 0.83 1.45 1.76 1.95 2.28 9 KM 10 YEAR 10 KM 0 0 0.59 1.26 2.36 2.9 3.21 3.72 11 KM 25 YEAR 12 KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 13 KM 50 YEAR 14 PH 0 0 0.75 1.62 3.05 3.78 4.2 4.92 15 KO 21 16 KM UPPER AMENITY POND 17 BA 0.0010 5 18 LS 0 98 19 UD 0.05 20 KO 21 21 KK ROUTE 22 KM ROUTE UPPER POND 23 KM "NORMAL" DAY Q = 0.51 cfs 24 RS 1 ELEV 653.04 25 SV 0 0.07 0,167 0.293 0.433 0.605 0.85 1.164 26 SE 647 648 649 650 651 652 653 654 27 KM 20' WEIR @ ELEVATION = 653 28 SQ 0 1.9 3.49 5.37 7.5 9.86 12.42 15.18 21.21 37.21 29 SQ 60 30 SE 653 653.1 653.15 653.2 653.25 653.3 653.35 653.4 653.5 653.75 31 SE 654 32 KO 21 33 KK LOWER POND 34 KM LOWER POND INFLOW HYDROGRAPH 35 BA 0.0012 36 LS 0 98 37 UD 0.05 38 KO 21 39 KK COMBIN E 40 KM COMBINE OUTFLOW FROM UPPER WITH INFLOW TO LOWER POND 41 HC 2 42 KO 21 43 KK ROUTE LOWER 44 KM ROUTE THROUGH LOWER POND 45 KM "NORMAL" DAY Q = 0.51 cfs 46 RS 1 ELEV 643.55 47 SV 0 0.124 0.27 0.449 0.662 0.903 1.037 1.185 48 SE 638 639 640 641 642 643 643.5 644 49 SQ 0 6 16.97 31.18 48 67.08 88.18 50 SE 643.5 643.75 644 644.25 644.5 644.75 645 HEC -1 INPUT LINE ID ....... I ....... 2 ....... 3 ....... 4 ....... 5 ....... 6... .... 7 ....... 8 ....... 9...... 10 51 Ko 21 52 KK POST 53 KM 9.3 ACRE DRAINAGE AREA 54 BA 0.0145 55 LS 92.53 56 UD 0.05 57 KO 21 58 KK COMBIN E 59 HC 2 60 KO 21 61 KK ROUTE 62 RS 1 ELEV 612 63 SV 0 0.172 0.437 0.82 1.333 1.635 64 SE 612 614 616 618 620 621 65 KM 6" ORIFICE AT ELEVATION = 612 66 KM 1' WEIR AT ELEVATION = 618.5 67 SQ 0 0.89 1.35 1,7 1.98 2.23 2.46 2.56 2.99 3.72 68 SQ 8.36 14.89 69 SE 612 613 614 615 616 617 618 618.5 618.75 619 70 SE 620 621 71 KM MODEL TOP OF 4' x 4' BOX WITH ST RECORD WEIR LENGHT = 16 -1 = 15' 72 ST 620.6 15 3 1.5 73 KO 21 74 ZZ ********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * FLOOD HYDROGRAPH PACKAGE (HEC -1) * JUN 1998 * VERSION 4.1 * * * RUN DATE 18MAY15 TIME 14156:36 * * * * * * * * * * * * * * * ** * * U.S. ARMY C * HYDROLOGIC * 609 S * DAVIS, C. * (916 * SEALED AIR DETENTION POND 1 50 YEAR STORM POST DEVELOPMENT CONDITION INCLUDES AMENITY POND AND 9.3 ACRE DR GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 1 IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *** * * * * * * * * * * * * ** * * 6 KK * UPPER * POND * * * * * * * * * * * * * * ** 15 KO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL Q. IPNCH 0 IQUT 21 ISAV1 1 ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED_ LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * * * * * * * * * * * * ** * * 6 KK * UPPER * POND * * * * * * * * * * * * ** 20 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL as LVa QSCAL IPNCH IOUT ISAVI ISAV2 TIMINT VALUE EXCEEDS TABLE IN LOGLOG v r" vi I'UN -KUL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1800 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS 01667 .01667 6.00000 * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** *** * ** * ** * ** * ** * ** * ** * ** * ** * ** *** * * * * * * * * * * * * ** * * 21 KK * ROUTE * * * * * * * * * * * * * * ** 32 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 I FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** + ** * ** * ** * ** *** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * 33 KK * LOWER * POND 38 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * * * * * * * * * * * * ** * * 39 KK * COMBIN * E * * * * * * * * * * * * * * ** 42 KO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 ¢SCAT. 0. IPNCH 0 IOUT 21 ISAV1 I ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * * 43 KK * ROUTE * LOWER * 51 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH LOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 I FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * ** * ** * ** * ** * ** * ** -* ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** *** * * 52 KK * POST + * * * + + + + * * * * * + ** 57 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL D. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH TOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1900 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 + * 58 KK * COMBIN * E * * 60 KO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IPNCH 0 IOUT 21 ISAV1 1 ISAV2 1800 TIMINT .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS * * * * * * * ** * ** * ** * ** * ** * ** * * * * ** * ** * ** * ** *** * ** * ** * ** * ** * ** * ** * ** * ** * * * * ** * ** * ** * ** * * 61 KK * ROUTE * * * * * * * * * * * * ** 73 KO OUTPUT CONTROL IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT VARIABLES 5 PRINT CONTROL 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1800 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXI OPERATION STATION FLOW PEAK 6-HOUR 24 -HOUR 72 -HOUR AREA STA HYDROGRAPH AT UPPER S. 3.07 1. 0, 0. .00 ROUTED TO ROUTE 4. 3.13 1. 0. 0. .00 653 HYDROGRAPH AT LOWER 6. 3.07 1. 0. 0. .00 2 COMBINED AT COMBIN 10, 3.08 1. 0. 0. .00 ROUTED TO ROUTE 7. 3.17 1. 0. 0. .00 643 HYDROGRAPH AT POST 73. 3.07 6. 2. 11 .01 2 COMBINED AT COMBIN 78. 3.07 7. 2. 2. .02 ROUTED TO ROUTE 39. 3.22 6. 2. 2. .02 621 aUMuAKI Ur UAM OVERTUPPING /BREACH ANALYSIS FOR STATION ROUTE (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION) PLAN 1 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 612.00 620.60 620.60 STORAGE 0. 2. 2. OUTFLOW 0. 12. 12. RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME O OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILUR PMF W.S.ELEV OVER DAM AC -FT CFS HOURS HOURS HOURS 1.00 621.23 .63 2. 39. .65 3.22 .00 * ** NORMAL END OF HEC -1 * ** Hydrograph Peak Flow Rate Peak Flow Total Volume Name (CFS) Date/Time I x1000 (CF) UPPER 5.363 3.804 6.436 9.635 7.372 72.847 78.018 38.627 Dec 01, 1900 03:05 Dec 01, 1900 03:09 Dec 01, 1900 03:05 Dec 01, 1900 03:06 Dec 01, 1900 03:11 Dec 01, 1900 03 :05 Dec 01, 1900 03:05 Dec 01, 1900 03:14 10.88 11.427 13.056 24.483 25.127 137.041 162.169 164.214 ROUTE LOWER COMBIN ROUTE POST COMBIN ROUTE i 50 YEAR STORM 30" ON 0.76% SLOPE Project Description Friction Method Manning Formula Solve For Normal Depth Input Data ft2 Roughness Coefficient 0.012 Channel Slope 0.00760 ft/ft Diameter 2.50 ft Discharge 38.63 ft3 /s Results Critical Depth Normal Depth 2,04 ft Flow Area 4.29 ft2 Wetted Perimeter 5,65 ft Hydraulic Radius 0.76 ft Tap Width 1,93 ft Critical Depth 2,10 ft Percent Full 81,7 Critical Slope 0.00726 ft/ft Velocity 9.00 ft/s Velocity Head 1.26 ft Specific Energy 3.30 ft Froude Number 1.06 Maximum Discharge 41.67 fts /s Discharge Full 38-74 ft' /S Slope Full 0.00756 ft/ft Flow Type SuperCriticai GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0,00 ft Average End Depth Over Rise O.OD % Normal Depth Over Rise 81,72 % Downstream Velocity Infinity ft!s Bentley Systems, Inc. Haestad Methods SoI%ad6JalF wMaster v8i (SELECTseries 1) 108.11.01.031 5!18/2015 3:11:24 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1668 Page 1 of 2 10 YEAR STORM 30" ON 0.76% SLOPE Project Description Friction Method Manning Formula Solve For Normal Depth Input Data ft2 Roughness Coefficient 0.012 Channel Slope 0.00760 fdft Diameter 2.50 ft Discharge 12.03 ft3 /s Results Critical Depth Normal Depth 0.96 ft Flow Area 1.73 ft2 Wetted Perimeter 3.33 ft Hydraulic Radius 0.52 ft Top Width 2.43 ft Critical Depth 1.16 ft Percent Full 38.3 % Critical Slope 0.00375 fUft Velocity 6.96 ft/s Velocity Head 0.75 ft Specific Energy 1.71 ft Froude Number 1 A6 Maximum Discharge 41.67 Wis Discharge Full 38.74 ft9 /s Slope Full 0.00073 ft/ft Flow Type Supercritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Normal Depth Over Rise 38.26 % Downstream Velocity Infinity fus Bentley Systems, Inc. Haestad Methods SolBfiodeg0#nwMaster V8i (SELECTseries 1 ) [08.11.01.031 5/18/2015 3:12:28 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 1 of 2 City of Charlotte Land Development Division Post Construction Controls / Detention Worksheet The following sections help to provide information on volume and peak controls for the site. Attach BMP Inset tables and Design Procedure Forms for each BMP to show that each is sized appropriately per the design requirements. ect Description: Attach brief explanation of detention plans and anv assumptions Skimmer basin #4 to be converted to a permanent detention pond. This project is exempt from the PCCO. The detention pond will control the 2 and 10 year 6 hour storms. PRE - DEVELOPED SUMMARY Basin area: 2.52 ac. (Delineated on attached drainage area map) Time of Concentration, Tcpre: 32.55 min. (Based on the SCS Method) (Tc path shown on attached map) Reference 39.6 of the Charlotte - Mecklenburg Storm Water Design Manual — SCS Travel Time. Curve Number, Cnp,r: 70 POST- DEVELOPED SUMMARY Basin area: 2.52 ae. (Delineated on attached drainage area map) Time of Concentration, Tcpost: 5 min. (Based on the SCS Method) (Te path shown on attached map) Reference 3.9.6 of the Charlotte - Mecklenburg Storm Water resign Manual — SCS Travel Time. Runoff Coefficient, Rv- NA Water Quality Volume, WQv (ac -ft)- NA Curve Number, Cnpost: 93.8 Curve Number, CNpost(modified)- NA Channel Protection Volume, CPv (ac -f}) - NA _ CPv Release Rate (cfs) NA DETENTION SUMMARY Computer Method Used *: HEC -1 *Land Development Plan Review Staff will verb all detention submittals usingHEG1 for compliance with the City of Charlotte Zoning Ordinance, Section 12.6. This summary is to accompany all detention analysis and is not intended to replace that requirement. Note- 2-year storm is required only for sites required detention per Chapter 12 of the zoning ordinance. If a downstream analysis has been performed, submit complete justif cation for the results Revised: October 2010 Pagel of 3 Pre (cfs) Post (cfs) Routed (cfs) Elevation (Comments) 1" I yr. N/A N/A 2 yr. 0.785 9.691 0.773 615.02 10 yr. 2.92 15.219 2.792 616.35 25 yr. 50 yr. N/A 36.017 620.51 100 yr. N/A 22.23 13.78 616.85 - Note- 2-year storm is required only for sites required detention per Chapter 12 of the zoning ordinance. If a downstream analysis has been performed, submit complete justif cation for the results Revised: October 2010 Pagel of 3 PRE - DEVELOPED SUB -BASIN CALCULATIONS- Sub-basin Name /Level.: (Coordinate with attached drainage area map) Type of Flow Travel Length (ft.) Slope ( ° / ©) Mannings (n) Time (min.) Sheet Unpaved 300 7 0.4 31.8 Sheet Paved 70 0.44 1 Open space, good MeB /D Shallow Conc. (Unpaved) 74 Shallow Conc. Paved 292 13.7 0.75 Channel Pipe CNPre 70 TOTAL NIA NIA ILN/A �Tcre =3 2.55 Acreage Land Use Soil Type Hydrologic Group CN Weighted CN (Acreagerfatat Area) x (CHI) 2.52 Woods , $!ood MeB /D C 70 70 0.44 1 Open space, good MeB /D Shallow Conc. (Unpaved) 74 Shallow Cone. Paved Channel Pipe CNPre 70 POST- DEVELOPED SUB -BASIN CALCULATIONS: Sub -basin Name/Level: (Coordinate with attached drainage area map) Type of Flow Travel Length (ft.) Slope ( %) Mannings (n) Time (min.) Sheet Unpaved 2.08 Pavement MeB /D C Sheet Paved 0.44 1 Open space, good MeB /D Shallow Conc. (Unpaved) 74 Shallow Cone. Paved Channel Pipe CNF°st= 93.8 TOTAL NIA N/A NIA Tc p °st = 5 Acreage Land Use Soil Type Hydrologic Group CN Weighted CN (Acreagefrota[ Area) x (CA') 2.08 Pavement MeB /D C 98 0.44 1 Open space, good MeB /D C 74 CNF°st= 93.8 Revised: October 2410 Page 2 of 3 STORAGE / DISCHARGE CALCULATIONS (SEE ATTACHED SPREAD SHEET) *(If applicable) Complete Underground Storage Volume Table Elevation Underground * Above Ground 'Total Ace. Volume (cf) Weir 2/Em. Spillway (Controlled by outlet pipe'struct) Ft' Inv. Cw= Ace. Volume for all Structures (cf) Area (sq. ft.) Inc. Volume (cf) Ace. Volume (cf) (Above and Underground) Stage Discharge (SEE ATTACHED SPREAD SHEET) Cc= orifice coefficient: Cw = weir coefficient. Orifice Area unit shall be square feet (sf). Elevation I Stage (ft) Orifice 1 In. Inv. Area Co= Orifice 2 In. Inv. Area Co= Weir 1 Ft. InV. Cw= Weir 2/Em. Spillway (Controlled by outlet pipe'struct) Ft' Inv. Cw= Outlet Control Pipe Dia. Length Inv. Co= Emergency Spillway (Free flow out of pond) Ft. Inv. Cw= Total Q (cfs) Underground Storage Volume Table (If applicable) Provide additional storage volume tables if more structures are used. Elevation Ace. Volume (cf) Underground Structure # Length (ft.) Size /dia (ft.) Upper inv. Lower inv. Slope ( %) Ace. Volume (cf) Underground Structure # Length (ft.) Size /dia (ft.) Upper inv. Lower inv. SIope ( %) Ace. Volume (cf) Underground Structure # Length (ft.) Size /dia (ft.) Upper inv. Lower inv. Slope ( %) Ace. Volume (cf) Underground Structure # Length (ft.) Size /dia (ft.) Upper inv. Lower inv. SIope ( %) CH1'M. ENGINEERING & PROPERTY MANAGEMENT Land Development Division 600 East Fourth Street, Charlotte, North Carolina 28202 -2844 Telephone: 704 /336 -6692 Fax: 704/336 -6586 landpermits.charmeck.org Revised: October 2010 Page 3 of 3 Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) i ,frfv *.j s � "rte ���.p'' •�� � � � �- .,,,y�'"e •i. j t l� IP �v - + It 5c;n Irl) A rxA,A .I ktnr Ava, = Z 5Z C aM �1(*( 'I c���G2�L��: GU►fl, �I)M W9, biooD' Pre - Development Tc Sheet Flow Head= 21.00 - — mannings 0.4 Woods _ P2= 3.12 in Length= 300 ft - - s =H1L= _ 0.070 ftlft - - - — Eqn 33 TR55 - - M - Tf P2 S where: Tt =travel time(hrs.) n= mannings roughness coell`icient' L =flow length(ft.) — -- — P2 =2 yr, 24 hr rainfall(in.) s =land slope hr- - — --- — L71 292 ft h=1 40 ft s= 0.136986,ft/ft - — V I 345V�- V= � 5.97�fps T =LI(3600V)= manning's n for sheet flow {tabs smooth surfaces (conc.,asphalt, gravel, or ba Fallow(no_r_esidu_ e) Cultivated Soils_ —� - _ Residue cover <20% I - - -- Residue Ccover�20_% Grass — _!Short grass pra_ire - - Dense grass Berm udagrass Range- - - - -_ -- __ - -- -- W oods 1 Light underbrush Dense underbrush 3.1 TR -55 sail) _ 0._011 0,05 0.06 0.'17 6.15 0.24 0.41 -s Q.131 Compute travel time 'Tc =Tt1 + Tt2....Tn Tc= - r- 0.542 hr.= 32.55 min. -- - LAG = Wm�. 4/17/2015 M.I 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 HEC -1 INPUT ID....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7. ...... 8 ....... 9......10 ID SEALED AIR POND 2 ID 2 YEAR PRE - DEVELOPED CONDITION ID GECSCIENCE GROUP, INC. IT 1 0 0 1800 10 5 0 0 KK RUNOFF FROM AREA KM 2 YEAR PH 0 0 0.42 0.83 KM 10 YEAR KM 0 0 0.59 1.26 2.36 2.9 3.21 3.72 KM 25 YEAR KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 KM 50 YEAR KM 0 0 0.75 1.62 3.05 3.78 4.2 4.92 KM 100 YEAR KM 0 0 0.83 1.78 3.34 4.12 4.56 5.34 KO 0 BA 0.0039 LS 0 70 UD 0.325 ZZ 1.45 21 1.76 1.95 2.28 * * FLOOD HYDROGRAPH PACKAGE (HEC -1) * JUN 1998 VERSION 4.1 * * * RUN DATE 21APR15 TIME 10:37,26 * * SEALED AIR POND 2 2 YEAR PRE- DEVELOPED CONDITION GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 1 IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 COMPUTATION INTERVAL TOTAL TIME SASE ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK .02 HOURS 29.98 HOURS SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * *1� * U.S. ARMY C * HYDROLOGIC * 609 S * DAVIS, C * (916 * * * * * * * * * * * * * ** * * 6 KK RUNOFF * FROM AREA * * 17 KO OUTPUT CONT IPRNT IPLOT QSCAL IUNCH IOUT ISAV1 ISAV2 TIMINT 20L VARIABLES 5 0 0. 0 21 1 1800 .017 PRINT CONTROL PLOT CONTROL, HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 OPERATION STATION HYDROGRAPH AT RUNOFF * ** NORMAL END OF HEC -1 * ** RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN FLOW PEAK 6 -HOUR 24 -HOUR 72 -HOUR AREA 1. 3.47 0. 0. 4. .00 MAXI STA Hydrograph Name RUNOFF Peak Flow Rate (CFS) 0.785 Peak Flow Date /Time Dec 01, 1900 03:30 Total Volume x1000 (CF) 3.213 Hydrograph Name RUNOFF Peak Flow Rate (CFS) 0.785 Peak Flow Date /Time Dec 01, 1 900 03:30 Total Volume x1000 (CF) 3.213 LINE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 HEC -1 INPUT 1D.......1.......2.. .....3.......4.......5.......6. ......7.......8.......9......10 ID SEALED AIR POND 2 ID 10 YEAR PRE - DEVELOPED CONDITION ID GEOSCIENCE GROUP, INC. IT 1 0 0 1800 IO 5 0 0 KK RUNOFF FROM AREA KM 2 YEAR KM 0 0 0.42 0.83 1.45 1.76 1.95 2.28 KM 10 YEAR PH 0 0 0.59 1.26 KM 25 YEAR KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 KM 50 YEAR KM 0 0 0.75 1.62 3.05 3.78 4.2 4.92 KM 100 YEAR KM 0 0 0.83 1.78 3.34 4.12 4.56 5.34 KO 0 BA O.0039 LS 0 70 UD 0.325 ZZ 2.36 21 2.9 3.21 3.72 SEALED AIR POND 2 10 YEAR PRE-- DEVELOPED CONDITION GEOSCIENCE GROUP, INC. 5 10 OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 1 IRATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 COMPUTATION INTERVAL TOTAL TIME BASE ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME, SURFACE AREA TEMPERATURE PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE L1INUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK .02 HOURS 29.98 HOURS SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * ** 17 KO OUTPUT CONT IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT ROL VARIABLES 5 0 0. 0 21 1 1800 .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * FLOOD HYDROGRAPH PACKAGE (HEC -1) * JUN 1998 U.S. ARMY C * VERSION 4.1 * * HYDROLOGIC * * ' 609 S * RUN DATE 21APR15 TIME 10:39:36 * DAVIS, C. * * * {916 SEALED AIR POND 2 10 YEAR PRE-- DEVELOPED CONDITION GEOSCIENCE GROUP, INC. 5 10 OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 1 IRATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 COMPUTATION INTERVAL TOTAL TIME BASE ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME, SURFACE AREA TEMPERATURE PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE L1INUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK .02 HOURS 29.98 HOURS SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * ** 17 KO OUTPUT CONT IPRNT IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT ROL VARIABLES 5 0 0. 0 21 1 1800 .017 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE PUNCH COMPUTED HYDROGRAPH SAVE HYDROGRAPH ON THIS UNIT FIRST ORDINATE PUNCHED OR SAVED LAST ORDINATE PUNCHED OR SAVED TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 OPERATION STATION HYDROGRAPH AT RUNOFF '** NORMAL END OF HEC -1 * ** RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN FLOW PEAK 6 -HOUR 24 -HOUR 72 -HOUR AREA 3. 3.42 O. O. O. .DO MAXI STA Hydrograph Name RUNOFF Peak Flow Rate (CFS) 2.92 Peak Flow Date /Time Dec 01, 1900 03:27 Total Volume x1000 (CF) 10.388 �t,►IWE �U��� a� - 2, �V !i/ O1 gg Rev 2 Stage Storage 4121/2015 Area delta Vol Volume Volume Elevation (ft2) ft3) (ft3) (ac -ft) 612 1,898 0 0 2,241 613 2,584 2,241 0.051 2,973 614 3,361 5,214 0.120 3,778 615 4,195 8,992 0,206 4,642 616 5,089 13,634 0.313 5,566 617 5,043 19,200 0.441 6,5.50 618 7,057 25,750 0.591 7,595 619 8,132 33,344 0.765 8,700 620 9,267 42,044 0.965 4121/2015 cn Q C 00 m d O ❑ it Q n Q P- Lu + N Q O 11 a oC)000 CD O LU W o E E O fl W = W — o a a d L7 0 m a� E E _0 u m m CD (D s � ?y G i Q C rn � ❑ d ❑ O Lu + U ©aooC o 3� 11 m o iv 7 oC)000 01 a r N ti-. M� mol U7 L W 0 CD ul m ID E cu L M w II li YA Q _a) W N LS U X 0 m O O Ci m LU E O Ll 'o N a m v E T7 © fC L6 C ro C 3 0 v c X O m s` m 7 Cil C C C y ZQ C .O � N rn � Lu + w 2 ©aooC o 3� 11 m o iv 7 oC)000 � tea❑ ❑ ❑ ❑ ❑ ❑ ❑a 0 Q 000ci0C)0C)c)o ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ .-. C7 > O > O > O > O > Q > C) > 0 > 0 > 0 > O O O O O N O 0 r Il- 00 0) r N ( O O Q C7 O O O 0 D O O N C7 m r-_ M C7 co C'1 ti-. M� mol U7 L W 0 CD ul m ID E cu L M w II li YA Q _a) W N LS U X 0 m O O Ci m LU E O Ll 'o N a m v E T7 © fC L6 C ro C 3 0 v c X O m s` m 7 Cil C C C y ZQ C .O � N rn � w 2 o 3� 11 m o iv 7 W Q 5 fn In 0 CD C L a) a "' N ro> Ex N X W r V-1 a a C M 0 � � 0 C3' Li_r M II .5 M ❑ N C) Q.+ r!. C N O 6 W C> � (D II cY U ti (4 m T O N C�V HEC -1 INPUT LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 1 ID SEALED AIR POND 2 2 ID 2 YEAR POST DEVELOPMENT CONDITION 3 ID GEOSCIENCE GROUP, INC. 4 IT 1 0 0 1600 5 IO 5 0 0 6 KK RUNOFF FROM AREA 7 KM 2 YEAR 8 PH 0 0 0,42 0.83 1.45 1.76 1.95 2.28 9 KM 10 YEAR 10 KM 0 0 0.59 1.26 2.36 2.9 3.21 3.72 11 KM 25 YEAR 12 KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 13 KM 50 YEAR 14 KM 0 0 0.75 1.62 3.05 3.78 4.2 4.92 15 KM 100 YEAR 16 KM 0 0 0.83 1.78 3.34 4.12 4.56 5.34 17 KO 0 21 18 SA 0.0039 19 LS 0 93,8 20 UD 0.05 21 KO 21 22 KK ROUTE 23 RS 1 ELEV 612 24 SV 0 0.051 0.12 0.206 0.313 0.441 0.591 0.765 0.965 25 SE 612 613 614 615 616 617 618 619 620 26 KM 4" Orifice, Invert Elevation = 612 27 SQ 0 0.42 0.62 0.77 0.89 1 1.1 1.19 1.27 28 SE 612 613 614 615 616 617 618 619 620 29 ST 620 20 3 1.5 30 KO 21 31 ZZ SEALED AIR POND 2 2 YEAR POST DEVELOPMENT CONDITION GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 1 IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * * * * * * * * * * * * * * ** * FLOOD HYDROGRAPH PACKAGE (HEC -1) * * * UN 1996 * U.S. U ARMY C * VERSION 9.1 * * HYDROLOGIC * * * 609 S * RUN DATE 21APR15 TIME 15:46:35 * * DAVIS, C IPLOT 0 * (916 QSCAL * HYDROGRAPH PLOT SCALE IPNCH 0 SEALED AIR POND 2 2 YEAR POST DEVELOPMENT CONDITION GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 0 QSCAL 0. IT HYDROGRAPH TIME DATA NMIN 1 IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * ** 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL * * 6 KK * RUNOFF * FROM AREA 17 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 I FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL, IN HOURS * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * ** 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT VALUE EXCEEDS TABLE IN LOGLOG 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1800 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS .01667 .01567 6.00000 22 KK * ROUTE 30 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH TOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS RUNOFF SUITI-]ARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK OPERATION STATION FLOW TIME OF PEAK AVERAGE FLOW FOR MAXIMUM PERIOD 6 -HOUR 24 -HOUR 72 -HOUR BASIN MAXI AREA STA HYDROGRAPH AT RUNOFF 10, 3.07 1. 0. 0. 00 ROUTED TO ROUTE 1. 3.60 1. 0. 0. .00 615 * ** NORMAL END OF HEC -1 * ** SUMMARY OF DAM OVERTOPPING/BREACH ANALYSIS FOR STATION ROUTE (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION) PLAN 1 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 612.00 620.00 620.00 STORAGE 0. 1. 1. OUTFLOW 0. 1. 1. RATIO t-I1XIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME O OF PMF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILUR W.S.ELEV OVER DAM AC -FT CFS HOURS HOURS HOURS 1,00 615.02 .00 0. 1. .00 3.73 .00 * ** NORMAL END OF HEC -1 * ** Hydrograph Peak Flow Rate Peak Flow I Total Volume me Na (CFS) Date /Time x1000 (CF) RUNOFF 9.091 Dec 01, 1900 03:05 14.88 ROUTE 10.773 Dec 01, 1900 03:40 15.195 122 _ pr • - - .r , fb - U 15 i Ix- . hvog2 . -702v HEC -1 INPUT LINE ID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6. ...... 7 ....... 8 ....... 9 ...... 10 1 ID SEALED AIR POND 2 2 ID 10 YEAR POST DEVELOPMENT CONDITION 3 ID GEOSCIENCE GROUP, INC. 4 IT 1 0 0 1800 5 IO 5 0 0 6 KK RUNOFF FROM AREA 7 KM 2 YEAR 8 KM 0 0 0.42 0.83 1.45 1.76 1.95 2.28 9 KM 10 YEAR 10 PH 0 0 0.59 1.26 2.36 2.9 3.21 3.72 11 KM 25 YEAR 12 KM 0 0 0.68 1.47 2,76 3.4 3.75 4.38 13 KM 50 YEAR 14 KM 0 0 0.75 1.62 3.05 3.78 4.2 4.92 15 KM 100 YEAR 16 KM 0 0 0.83 1.78 3.34 4.12 4.56 5.34 17 KO 0 21 18 BA 0.0039 19 LS 0 93.8 20 UD 0.05 21 KO 21 22 KK ROUTE 23 RS 1 ELEV 612 24 SV 0 0,051 0.12 0.206 0.313 0.441 0.591 0.765 0.965 25 SE 612 613 614 615 616 617 618 619 620 26 KM 4" Orifice, Invert Elevation = 612 -- 6" Weir at Elevation 615.25 27 SQ 0 0.42 0.62 0.77 1.02 1,87 4.47 7.94 12.08 16.8 28 SE 612 613 614 615 615.5 616 617 618 619 620 29 ST 620 20 3 1.5 30 KO 21 31 ZZ SEALED AIR POND 2 10 YEAR POST DEVELOPMENT CONDITION GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0, HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA NMIN 1 IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * * * ** 17 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS 6 KK * RUNOFF * FROM AREA * * 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL * * * * FLOOD HYDROGRAPH PACKAGE (HEC -1) * * U.S. ARMY C * JUN 1998 * # HYDROLOGIC * VERSION 9,1 * * 609 S * * * DAVIS, C * RUN DATE 21APR15 TIME 15;20.53 * (916 ********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * ** SEALED AIR POND 2 10 YEAR POST DEVELOPMENT CONDITION GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0, HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA NMIN 1 IDATE 1 0 ITIME 0000 NQ 1800 NDDATE 2 0 NDTIME 0559 ICENT 19 MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * * * ** 17 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS 6 KK * RUNOFF * FROM AREA * * 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT QSCAL IPNCH IOUT ISAV1 ISAV2 TIMINT VALUE EXCEEDS TABLE IN LOGLOG 0 PLOT CONTROL 0. HYDROGRAPH PLOT SCALE 0 PUNCH COMPUTED HYDROGRAPH 21 SAVE HYDROGRAPH ON THIS UNIT 1 FIRST ORDINATE PUNCHED OR SAVED 1800 LAST ORDINATE PUNCHED OR SAVED .017 TIME INTERVAL IN HOURS 01667 .01667 6.00000 22 KK * ROUTE * * * * * * * * * * * * * ** 30 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0, HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXI OPERATION STATION FLOW PEAK 6 -HOUR 24 -HOUR 72 -HOUR AREA STA HYDROGRAPH AT RUNOFF 15. 3.07 1. 0. 0. .00 ROUTED TO ROUTE 3. 3.42 1. 0. 0. .00 616 * ** NORMAL END OF HEC -1 * ** SUMMARY OF DAM OVERTOPPING /BREACH ANALYSIS FOR STATION ROUTE tPEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION) PLAN 1 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 512.00 620.00 620.00 STORAGE 0. 1. 1. OUTFLOW 0. 17. 17. RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME 0 OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILUR PMF W.S.ELEV OVER DAM AC-FT CFS HOURS HOURS HOURS 1.00 616.35 .00 0. 3. .00 3.43 .00 * ** NORMAL END OF HEC -1 * ** Hydrograph I Peak Flow Rate I Peak Flow I Total Volume me Na (CFS) Date /Time x1000 (CF) RUNOFF 15.219 Dec 01, 1900 03:05 27.45 ROUTE 2.792 Dec 01, 1900 03:26 28.046 a N a M v M II C {n C O + ooa0©C)C)0 co CL co O N rn En EL II Q C,0 J Q ❑O❑ w ❑m N Q N O CD O O O O 0 C) C7 0 0 Ca O iu O W w al 111 7O o >1 E 91N y w cD -D LLJ 1-101 n0 U C)o0 a C) va 0 a) E a> E C] O C7 C] O N O O E OD (� O O 9 q C] 1 �OC7OC]Om4,. (D N C7 d I- a 0 0 co E N c 0 a as x 0 m d1 J c a N a M v M II C {n C O M co CL co O N rn En EL II Q Q J Q w N N O CD O CD Q% Qi L iu O W w al 111 7O o >1 E 91N y w cD -D LLJ 1-101 U a co -0 va 0 a) E a> E O E aa) m C7 r -C (D .= a 0 0 �o w O 0 Ca 7 0 in o V V E Q1 L 0 co .0 co r • � C7 V tL7 E N c 0 a as x 0 m d1 J c a N a M v M II C {n C O M CL co N rn En EL II a) 0 M� w En m — _0 U (Q C � W v U C rr. 0 *- w N cn 1 1 cqo Q a Ln ea N N 6r' N C O D M O Q W M II as m U C rr. 0 *- w N cn 1 1 cqo Q a Ln ea N N 6r' HEC -1 INPUT LINEID ....... 1 ....... 2 ....... 3 ....... 4 ....... 5 ....... 6 ....... 7 ....... 8 ....... 9 ...... 10 I ID SEALED AIR POND 2 2 ID 100 YEAR POST DEVELOPMENT CONDITION 3 ID GEOSCIENCE GROUP, INC. 4 IT 1 0 0 1800 5 IO 5 0 0 6 KK RUNOFF FROM AREA 7 KM 2 YEAR 8 KM 0 0 0.42 0.83 1.45 1.76 1.95 2.28 9 KM 10 YEAR 10 KM 0 0 0.59 1.26 2.36 2.9 3.21 3.72 11 KM 25 YEAR 12 KM 0 0 0.68 1.47 2.76 3.4 3.75 4.38 13 KM 50 YEAR 14 KM 0 0 0.75 1.62 3.05 3.78 4.2 4.92 15 KM 100 YEAR 16 PH 0 0 0.83 1.78 3.34 4.12 4.56 5,34 17 KO 0 21 18 BA 0.0039 19 LS 0 93.8 20 UD 0.05 21 KO 21 22 KK ROUTE 23 RS 1 ELEV 612 24 SV 0 0.051 0.12 0.206 0.313 0.441 0.591 0.765 0.965 25 SE 612 613 614 615 616 617 618 619 620 26 KM 4" Orifice, Invert Elevation = 612 - 6" Weir at Elevation 615.25 27 S4 0 0.42 0.62 0.77 1.02 1.87 4.47 7.94 12.08 16.6 28 SE 612 613 614 615 615.5 616 617 618 619 620 29 KM Model 4' x 4' Riser with ST record - Weir length = 15.5' Weir Crest = 616.5 30 ST 616.5 15.5 3 1.5 31 KO 21 32 ZZ SEALED AIR POND 2 100 YEAR POST DEVELOPMENT CONDITION GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA NMIN 1 MINUTES IN COMPUTATION INTERVAL IRATE 1 0 STARTING DATE ITIME 0000 STARTING TIME NQ 1800 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2 0 ENDING DATE NDTIME 0559 ENDING TIRE ICENT 19 CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * * 6 KK * RUNOFF * FROM AREA * * 17 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1600 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * * * * * * * * * * * * ** * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * * * ** 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL * FLOOD HYDROGRAPH PACKAGE (HEC --1) * * U.S. ARMY C JUN 1998 * * HYDROLOGIC * VERSION 4.1 * 609 S * * * DAVIS, C * RUN DATE 21APR15 TIME 15;26:48 * * (916 * * * SEALED AIR POND 2 100 YEAR POST DEVELOPMENT CONDITION GEOSCIENCE GROUP, INC. 5 IO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IT HYDROGRAPH TIME DATA NMIN 1 MINUTES IN COMPUTATION INTERVAL IRATE 1 0 STARTING DATE ITIME 0000 STARTING TIME NQ 1800 NUMBER OF HYDROGRAPH ORDINATES NDDATE 2 0 ENDING DATE NDTIME 0559 ENDING TIRE ICENT 19 CENTURY MARK COMPUTATION INTERVAL .02 HOURS TOTAL TIME BASE 29.98 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE -FEET ACRES DEGREES FAHRENHEIT * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * ** * * * * * * * * * * * * ** * * 6 KK * RUNOFF * FROM AREA * * 17 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1600 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS * * * * * * * * * * * * ** * * 6 KK * RUNOFF * FROM AREA * * * * * * * * * * * * * * ** 21 KO OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH IOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 I FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS VALUE EXCEEDS TABLE IN LOGLOG .01667 .01667 6.00000 * * 22 KK * ROUTE * 31 KO OUTPUT CONTROL VARIABLES IRRNT 4 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE IPNCH 0 PUNCH COMPUTED HYDROGRAPH TOUT 21 SAVE HYDROGRAPH ON THIS UNIT ISAV1 1 FIRST ORDINATE PUNCHED OR SAVED ISAV2 1800 LAST ORDINATE PUNCHED OR SAVED TIMINT .017 TIME INTERVAL IN HOURS RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUS -7 PERIOD BASIN MAXI OPERATION STATION FLOW PEAK 6 -HOUR 24 -HOUR 72 -HOUR AREA STA HYDROGRAPH AT RUNOFF 22. 3.07 2. 0. 0. .00 ROUTED TO ROUTE 14. 3.15 2. 0. 0. .00 616 SUMMARY OF DAM OVERTOPPING /BREACH ANALYSIS FOR STATION ROUTE (PEAKS SHOWN ARE FOR INTERNAL TIME STEP USED DURING BREACH FORMATION) PLAN 1 ............... INITIAL VALUE SPILLWAY CREST TOP OF DAM ELEVATION 612.00 616.50 616.50 STORAGE 0. 0. 0. OUTFLOW 0. 3. 3. RATIO MAXIMUM MAXIMUM MAXIMUM MAXIMUM DURATION TIME OF TIME 0 OF RESERVOIR DEPTH STORAGE OUTFLOW OVER TOP MAX OUTFLOW FAILUR PMF W.S.ELEV OVER DAM AC -FT CFS HOURS HOURS HOURS 1.00 616.85 .35 0. 14. .5-7 3.15 .00 * ** NORMAL END OF HEC -1 * ** Hydrograph Peak Flaw Rate Peale Flow Total Volume Name (CFS) DateMme x1000 (CF) RUNOFF 22.234 Dec 01, 1900 03:05 41.871 ROUTE 113.777 Dec 01, 1900 0310 42.88 Pond_ 2 Barrel[ 10 Year Storm Project Description 0.42 Friction Method Manning Formula Solve For Normal Depth Input Data 1.68 Roughness Coefficient 0.012 Channel Slope 0,02000 ft/ft Diameter 150 ft Discharge 2.79 ft3 /s Results ft Normal Depth 0.42 ft Flow Area 0.41 ftz Wetted Perimeter 1.68 ft Hydraulic Radius 0.24 ft Top Width 1.35 ft Critical Depth 0.63 ft Percent Full 28,2 % Critical Slope 0.00433 ft/ft Velocity 6.83 ft/s Velocity Head 0.72 ft Specific Energy 1.15 ft Froude Number 2.19 Maximum Discharge 17.31 ft3 /s Discharge Full 16.09 ft' /s Slope Full 0.00060 ft/ft Flow Type SuperCritical GVF Input Data Downstream Depth 0.0Q ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Normal Depth Over Rise 28.18 % Downstream Velocity Infinity ff/s Bentley Systems, Inc, Haestad Methods SolBli'oticfy�Master VBi (SELECTseries 1) (08.11.0i.03] 4/211201.5 3:55 «28 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203455 -1666 Page 1 of 2 Pond 2 Barrell Full Flow Capacity Project Description Friction Method Manning Formula ft3 /s Solve For Full Flow Capacity ft Input Data 177 fta Roughness Coefficient 0.012 ft Channel Slope 0.02000 ft/ft Normal Depth 1.50 ft Diameter 150 ft Discharge 16.09 ft3 /s Results 0.01733 ft/ft Discharge 16.09 ft3 /s Normal Depth 1.50 ft Flow Area 177 fta Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.43 ft Percent Full 100.0 % Critical Slope 0.01733 ft/ft Velocity 9-11 ftis Velocity Head 1.29 ft Specific Energy 2.79 ft Froude Number 0.00 Maximum Discharge 17.31 ft' /s Discharge Full 16.09 ft' /s Slope Full 0.02000 ft/ft Flow Type SubCritical +GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley systems, Inc. Haestad Methods sc'IMQIJQdtewMaster V6i (SELECTseries 1) [08.11.01.031 412112015 3:57:03 PM 27 Siemons Company Drive suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 it / ff( // Jj11 til �\ _ \ zarnac•i ��ca >r / j\,,. GJ . Z7 N \ � l ' \ i \ r r IT maa rrx,Ea ASSOC LL 1 !/ 4a ,te1O- u -esa 4 l f r r r � 1 (s/ I ` {r \I HGIlC11oN 9WRORTI J r i r e� lorl _� - '� % it -• _� ��' 1 P Sealed Air - Slope Drains Orifice Equation Q = CdA(2gb)o.s Minimum Height of Berm above Top of Pipe = 1.5' Let Freeboard (10 year storm) =12" Qya = CIA _ Tc = 5 min. Rational C = 0.5 Iaa (in/hr.) 7.03 - Location SDl Comment Drainage Area (acres) 1.20 Qlo (CS) 4.22 Pipe Invert 642.00 Pipe Diameter (inches) 12.00 Pipe Diameter (feet) 1 Area (ft) 0.78 Head A. Required for Q`0 1.07 Head Elevation 643.57 Min. Top of Berm Elevation (top of pipe +1.5') 644.50 freeboard too low Revised Top of Berm 644.57 ok Freeboard 1.00 ok Hw/D 1.57 ok A. measured from c/1 of pipe. Location SD 2 Comment Drainage Area (acres) 0.67 Qto (cfs) 2.36 Pipe Invert 638.00 Pipe Diameter (inches) 12.00 Pipe Diameter (feet) 1 Area (ft) 0.78 Head A' Required for Q10 0.33 Head Elevation 638.83 Mira. Top of Berm Elevation (top of pipe +I S) 640.50 ok Revised Top of Berm na Freeboard 1.67 ok Hw/D 0.83 ok A. measured from c/i of pipe. Location SD3 Comment Drainage Area (acres) Qta(cfs) 2.13 7.49 - Pipe Invert 636.00 Pipe Diameter (inches) 15.00 Pipe Diameter (feet) Area (ft) 1.25 1.22 Head A' Required for Q10 1.38 Head Elevation 638.01 Min. Top of Berm Elevation (top of pine +1S) 638.75 freeboard too low Revised Top of Berm 639.01 ok Freeboard 1.00 ok Hw/D 1.61 ok A. measured from c/I of pipe. Location SD4 Comment Drainage Area (acres) 1.05 Q 14 (cfs) 3.69 Pipe Invert 640.00 Pipe Diameter (inches) 12.00 Pipe Diameter (feet) 1 Area (ft') 0.78 Head A. Required for Q10 0.82 Head Elevation 641.32 Min. Top of Berm Elevation (top of pi pe +1.51) 642.50 ok Revised Top of Berm Freeboard 1.18 ok Hw/D 1.32 ok A. measured from c/I of pipe. Location SD5 Comment Drainage Area (acres) 2.40 Qjo(efs) Pipe Invert 8.44 632.00 Pipe Diameter (inches) 18.00 Pipe Diameter (feet) 1.5 Area (ft) 1.76 Head A. Required for Q10 0.85 Head Elevation 633.60 ok Min. Top of Berm Elevation (top of pipe +1.5 ") 635.00 ok Revised Top of Berm Freeboard 1.40 ok Hw/D 1.06 ok A. measured from c/1 of pipe. Location SD6 Comment Drainage Area (acres) L19 Qio (cfs) 4.18 Pipe Invert 650.00 Pipe Diameter (inches) 12.00 Pipe Diameter (feet) 1 Area (ft) 0.78 Head A'Required for Q10 1.05 Head Elevation 651.55 ok Min, Top of Berm Elevation (top of pipe +1.51) 652.50 Revised Top of Berm 652.55 ok Freeboard 1.00 ak Hw'D 1.55 ok A. measured from c/1 of pipe. Location SD7 Comment Drainage Area (acres) 3.18 Qia(efs) 11.18 Pipe Invert 638.00 Pipe Diameter (inches) 18.00 Pipe Diameter (feet) 1.5 Area W) 1.76 Head A. Required for Qbo 1.49 _ Head Elevation 640.24 ok Min. Top_ of Berm Elevation (top of pipe +1.5') 641.00 ok Revised Top of Berm 641.24 ok Freeboard 1.00 ok Hw/D 1.49 ok A. measured from c/l of pipe. Location SD8 Comment Drainage Area (acres) 1.55 Qlo (cfs) 5.45 Pipe Invert 625,00 Pipe Diameter (inches) 12.00 Pipe Diameter (feet) 1 Area (ft) 0.78 Head A' Required for Qlo 1.79 Head Elevation 627.29 ok Min.. Top of Berm Elevation (top of pipe +1.5') 627.50 Revised Top of Berm 628.29 ok Freeboard 1.00 ok Hw /D 2.29 ok A. measured from c/1 of pipe. Location Drainage Area (acres) Q 10 (cfs) Pipe Invert Pipe Diameter (inches) SD9 0.60 2.11 632.00 12.40 Comment Pipe Diameter (feet) 1 Area (ft) 0.78 Head A' Required for Qla Head Elevation 0.27 632.77 ok Min. Top of Berm Elevation (top of pipe +1S) 634.50 ok Revised Top of Berm Freeboard 1.50 na ok HW/D 0.77 ok A. measured from c/l of pipe. oce ti 1 � I I r rr rJ JJ r+ r r IJ e r r ��J J Fj It 1 � l r r rr r� Worksheet for Temp IS" flexible pipe Project Description Friction Method Manning Formula ftg/s Solve For Full Flow Capacity ft Input Data 1.23 ft2 Roughness Coefficient 0.010 ft Channel Slope 0.12000 fUft Normal Depth 1.25 ft. Diameter 1.25 ft Discharge 29.09 ft3/s Results Discharge 29.09 ftg/s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.25 ft Percent Full 100.0 Critical Slope 0.11716 ft /ft Velocity 23.70 fUS Velocity Head 8.73 ft Specific Energy 9.98 ft Froude Number 0.00 Maximum Discharge 31.29 ft3 /s Discharge Full 29.09 ftlls Slope Full 0.12000 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods Sol &1kffll0prdewMaster V8i (SELECTseries 1) [08.11.01.03] 3/2312015 11:16:16 AM 27 5iemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for Temp 15" flexible pipe GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity fUs Upstream Velocity Infinity ftls Normal Depth 1.25 ft Critical Depth 1.25 ft Channel Slope 0.12000 fUft Critical Slope 0.11716 ft/ft Bentley Systems, Inc. Waestad Methods Sald1Wnl *fitewMaster V8i (SEI-ECTseries 1) [05.19.01.03] 312312015 11:15:15 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for str2 -strl Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3is Channel Slope 0.00500 ft/ft Normal Depth 3.50 ft Diameter 3.50 ft Discharge 77.07 ftg /s Results Discharge 77.07 ft3is Normal Depth 3.50 ft Flow Area 9.62 ft' Wetted Perimeter 11.00 ft Hydraulic Radius 0.88 ft Top Width 0.00 ft Critical Depth 2.75 ft Percent Full 100.0 % Critical Slope 0.00544 fUft Velocity 8.01 ftls Velocity Head 1.00 ft Specific Energy 4.50 ft Froude Number 0.00 Maximum Discharge 82.90 ft-/s Discharge Full 77.07 ft' /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SoldkiiudlOptiitewMaster V8i (SELECTseries 1) [08.11.01.03] 4/28/2015 8:30:45 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for str2 -stri GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ftls Normal Depth 3.50 ft Critical Depth 2.75 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00544 ft/ft Bentley Systems, Inc. Haestad Methods Solk@iodl*KtawMaster V81 (SELECTseries 1) [08.11.01.03] 4128/2015 8:30:45 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.765 -1666 Page 2 of 2 Worksheet for STR3 -STR2 Project Description Friction Method Manning Formula Salve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.00000 ft/ft Normal Depth 3.00 ft Diameter 3.00 ft Discharge 129.25 ft31s Results Discharge 129.25 ft3 /s Normal Depth 3.00 ft Flow Area 7.07 ft2 Wetted Perimeter 9.42 ft Hydraulic Radius 0.75 ft Top Width 0.00 ft Critical Depth 2.96 ft Percent Full 100.0 % Critical Slope 0.02919 ft/ft Velocity 18.29 fUs Velocity Head 5.20 ft Specific Energy 8.20 ft Froude Number 0.00 Maximum Discharge 139.03 ft' /s Discharge Full 129.25 ft3 /s Slope Full 0.03200 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth OAO ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods Soli EortlOpeFtewMaster V8i (SELECTseries 1 ) [08.11.01.03] 4/28/2015 8:35:20 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1203- 755 -1666 Page 1 of 2 Worksheet for STR3 -STR2 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fUs. Upstream Velocity Infinity fUs Normal Depth 3.00 ft Critical Depth 2.96 ft Channel Slope 0.00000 ft/ft Critical Slope 0.02919 ft/ft Bentley Systems, Inc. Haestad Methods SoliftiodlOpfitewMaster V8i (SELECTseries 1) [08.11.01.031 4128!2015 8;35:20 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 2 of 2 Worksheet for STR4 -STR3 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.00500 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft3 /s Results Discharge 4.95 ft3 /s Normal Depth 1.25 ft Flow Area 1.23 ftz Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 fttft Velocity 4.03 ft/s. Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft-Is Discharge Full 4.95 ft3 /s Slope Full 0.00500 Rift Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SoLRiuffl pifftewMaster VBi (SELECTseries 1) [08.11.01.03] 4/2812016 8:36:11 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203. 755 -1666 Page 1 of 2 Worksheet for STR4 -STR3 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ftts Upstream Velocity Infinity ftls Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 f}/ft Critical Slope 0.00660 ft/ft Bentley Systems, Inc. Haestad Methods SoliftWitlOpfftewMaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 8:36:11 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STR4 -STR3 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft' /s Channel Slope 0.00500 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 W/6 Results Discharge 4.95 ft' /s Normal Depth 1.25 ft Flow Area 1.23 ftz Wefted Perimeter 3,93 ft Hydraulic Radius 0,31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 ftlft Velocity 4.03 ftls Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 fts /s Discharge Full 4.95 fP /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Dumber Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol ifii orIN)e 1ewMaster V8i (SELECTseries 1 ) [08,11.01.43] 4/2812015 8:36:27 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 1 of 2 Worksheet for STR4 -STR3 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ftlft Critical Slope 0.00660 Tuft Bentley Systems, Inc. Haestad Methods 5aldUsdltpfitewMaster VBi (SELECTseries 1) [08.11.01.031 4/28/2015 8:36:27 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for STR5 -STR4 Project Description Friction Method Manning Formula Solve For Full Flow Capacity 'Input Data Roughness Coefficient 0.012 ft3ls Channel Slope 0.00500 ft/ft Normal Depth 1.25 ft Diameter 1 -25 ft Discharge 4.95 ft31s Results Discharge 4.95 ft3ls Normal Depth 1.25 ft Flow Area 1.23 ftz Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 %® Critical Slope 0.00660 fUft Velocity 4.03 fus Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft-11s Discharge Full 4.95 f{3 /s Slope Full 0.00500 ft /ft Flow Type SubCriticai GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SWRindlOpBtewMaster V81 (SELECTseries 1) [08.11.01.03] 412812015 8:36:52 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203 - 755.1666 Page 1 of 2 Worksheet for STR5 -STR4 ,GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft1s Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00660 ftltt Bentley Systems, Inc. Haestad Methods Sol fentlt�-FtewMaster V8i (SELECTserles 1) [08.11.01.83] 4/28/2015 8:36:52 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -756 -1666 Page 2 of 2 Worksheet for STR6 -STR3 Project Description Friction Method Manning Formula ft31s Solve For Full Flow Capacity ft Input Data 1.77 fta Roughness Coefficient 0.012 ft Channel Slope 0.00500 fuft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 8.05 ft -Is Results Discharge 8.05 ft31s Normal Depth 1.50 ft Flow Area 1.77 fta Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.10 ft Percent Full 100.0 % Critical Slope 0.00636 ftlft Velocity 4.55 ftls Velocity Head 0.32 ft Specific Energy 1.82 ft Froude Number 0.00 Maximum Discharge 8.66 ft'Is Discharge Full 8.05 ft3 /s Slope Full 0.00500 ftlft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Solilthyd]44- gtewMaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 8.37:52 AM 27 Siemans Company Drive Suite 200 W Watertown, CT 06796 USA +1- 203 - 755 -1656 Page 1 of 2 Worksheet for STR6 -STR3 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftIs Upstream Velocity Infinity ft/5 Normal depth 1.50 ft Critical Depth 1.10 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00636 ft/ft Bentley Systems, Inc. Haestad Methods Sol dteudlBppttowMaster V8i (SELECTseries 1) [08.11.01.031 4/2812015 8:37:52 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 2 of 2 Worksheet for STR7 -STR6 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft' /s Channel Slope 0.00500 fUft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 8.05 ft3ts Results Discharge 8.05 ft' /s Normal Depth 1.50 ft Flow Area 1.77 ft= Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width O.DO ft Critical Depth 1.10 ft Percent Full 100.0 % Critical Slope 0.00636 ft/ft Velocity 4.55 ft/s Velocity Head 0.32 ft Specific Energy 1.82 ft Froude Number 0,00 Maximum Discharge 8.66 ft' /s Discharge Full 8.05 ft3 /s Slope Full 0.00500 fUft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 -GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Soh livAlOefftewMaster V8i (SELECTsenes 1) [08,11.09.031 4/2812015 8:38:23 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203. 755 -1666 Page 1 of 2 Worksheet for STR7 -STR6 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ft/s Normal Depth 1.50 ft Critical Depth 1.10 ft Channel Slope 0.00500 ft /ft Critical Slope 0.00636 ftlft Bentley Systems, Inc. Waestad Methods SoliBiartlOpfitewMaster V8i (SELECTseries t) [08.11.01.03] 4128/2015 8:38:23 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -3666 Page 2 of 2 Worksheet for STRB -STR7 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.00500 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft °/s Results Discharge 4.95 ft3 /s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 ft/ft Velocity 4.03 ft/s Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft3 /s Discharge Full 4.95 ft3 /s Slope Full 0.00500 ft]ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 bVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol dliutlOpfilewMaster V81 (SELECTseries 1 ) [08.11.01.03] 412812015 8:38:56 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.765 -1666 Page 1 of 2 Worksheet for STRS -STR7 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fUs Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ft/ft Critical Slope 0.0066D ft/ft Bentley Systems, Inc. Haestad Methods Soh BirtlOafitewMaster V8i (SELECTseries 1) [08.11.01.03] 4128/2015 8:38:56 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 LISA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for STR9 -STR2 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 fi' /s Channel Slope 0.00500 fUft Normal Depth 3.00 ft Diameter 3.00 ft Discharge 51.09 ft3 /s Results Discharge 51.09 fi' /s Normal Depth 3.OD ft Flow Area 7.07 ftz Wetted Perimeter 9.42 ft Hydraulic Radius 0.75 ft Top Width 0.00 ft Critical Depth 2.33 ft Percent Full 100.0 % Critical Slope 0.00558 ft/ft Velocity 7.23 ftfs Velocity Head 0.81 ft Specific Energy 3.81 ft Froude Number 0.00 Maximum Discharge 54.96 ft8 /s Discharge Full 51.09 ft3 /S Slope Full 0.00500 fUft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol dNm1I*fr1ewMaster V8i (SELE=CTseries 1) [08.11.01.03] 4/2612015 8:40:27 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 Worksheet for STR9 -STR2 GVF Output Data Norma! Depth Over rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ftls Normal Depth 3.00 ft Critical Depth 2.33 ft Channel Slope 4.00500 ftlft Critical Slope D.00558 ft/ft Bentley Systems, Inc. Haestad Methods Sol OkMIG�eFtea+Master VBi (SELECTseries 1) [08.11.01.031 4128!2015 8:40:27 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -16$6 Page 2 of 2 Worksheet for STR7 0 -STR9 Project Description Friction Method Manning Formula WIS Solve For Full Flow Capacity ft Input Data 7.07 ft3 Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 3.00 ft Diameter 3.00 ft Discharge 51.09 ft' /s Results Discharge 51.09 WIS Normal Depth 3.00 ft Flow Area 7.07 ft3 Wetted Perimeter 9.42 ft Hydraulic Radius 0.75 ft Top Width 0.00 ft Critical Depth 2.33 ft Percent Full 100.0 % Critical Slope 0.00558 ft/ft Velocity 7.23 ft/s Velocity Head 0.81 ft Specific Energy 3.81 ft Froude Number 0.00 Maximum Discharge 54.96 ft -/s Discharge Full 51.09 ft3 /s Slope Full 0.00500 ft/ft Flow Type SubCriticai GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc, Haestad Methods SDIiRbAl6}eFtewMaster V8i (SELECTseries 1) [08.19.01.03] 4/28/2015 8:41:03 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203- 765 -1666 Page f of 2 Worksheet for STR1 O -STR9 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ft is Normal Depth 3.00 ft Critical Depth 2.33 ft Channel Slope 0.00500 ftfff Critical Slope 0.00558 ft/ft Bentley Systems, Inc. Haestad Methods Soli fi r tldpFtewMaster V8i (SELECTseries 1) [08.11.01.03] 4/28/2015 8:41:03 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for STRI I -STR10 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft� /s Channel Slope 0.00500 ft/ft Normal Depth 3.00 ft Diameter 3.00 ft Discharge 51.09 W/s Results Discharge 51.09 ft� /s Normal Depth 3.00 ft Flow Area 7.07 ft2 Wetted Perimeter 9.42 ft Hydraulic Radius 015 ft Top Width 0.00 ft Critical Depth 2.33 ft Percent Full 100.0 % Critical Slope 0.00558 ft/ft Velocity 7.23 ftls Velocity Head 0.81 ft Specific Energy 3.81 ft Froude Number 0.00 Maximum Discharge 54.96 ft -/s Discharge Full 51.09 ftsls Slope Full 0.045D0 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 IGVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Soli@ioAlOpfStewMaster V8i {SELECTseries 1} 108.11.01.031 4/2812015 8:52:04 AM 27 Siemons Company Drive Suite 200 Ohl Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 2 Worksheet for STR7 a -STRI Q GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.00 ft Critical Depth 2.33 ft Channel Slope 0.00500 ft!ft Critical Slope 0.00558 fUft Bentley Systems, Inc. Haestad Methods SohBarrtltpfitewMaster VBi (SELECTseries 1) [08.11.01.031 4/2812015 8:52:04 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 09795 USA +1 -203- 755 -1656 Page 2 of 2 Worksheet for STR7 2 -STR11 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft' /s Channel Slope 0.00500 ftlft Normal Depth 3.00 ft Diameter 3.00 ft Discharge 51.09 fts /s Results Discharge 51.05 ft' /s Normal Depth 3.00 ft Flow Area 7.07 ft2 Wetted Perimeter 9.42 ft Hydraulic Radius 0.75 ft Top Width 0.00 ft Critical Depth 2.33 ft Percent Full 100.0 Critical Slope 0.00558 Tuft Velocity 7.73 ft/s, Velocity Head 0.81 ft Specific Energy 3.81 ft Froude Number 0.00 Maximum Discharge 54.96 ft /s Discharge Full 51.09 fta /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SoliB6urtlepRiewMaster V81 (SELECTseries 1) [08.11.01.03] 4/2812015 8:52:39 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 Worksheet for STR7 2 -STRI I GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 3.00 ft Critical Depth 2.33 ft Channel Slope 0.00500 fUft Critical Slope 0.00558 ft/ft Bentley Systems, Inc. Haestad Methods Solrgbatl0ftftewMaster V8i (SELECTseries 1) [08.11.01.03] 4128/2015 8:52:39 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 756 -1666 Page 2 of 2 Worksheet for STRI2 -STRI I Project Description Friction Method Manning Formula ft3 /s Solve For Full Flow Capacity ft ,Input Data 7.07 ftz Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 3.00 ft Diameter 3.00 ft Discharge 51.09 ft' /s Results Discharge 51.09 ft3 /s Normal Depth 3.00 ft Flow Area 7.07 ftz Wetted Perimeter 9.42 ft Hydraulic Radius 0.75 ft Top Width 0.00 ft Critical Depth 2.33 ft Percent Full 100.0 % Critical Slope 0.00558 ft/ft Velocity 7.23 ft/s Velocity Head 0.81 ft Specific Energy 3.81 ft Froude Number 0.00 Maximum Discharge 54.96 ft'/s Discharge Full 51.09 ft3 /8 Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SoIa®rt1g�--6tewMaster V8i (SELECTseries 1) [08.11.o1.o3] 4/2612015 8:53:00 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 LISA +1- 203- 755 -1666 Page 1 of 2 Worksheet for STRI2 -STR71 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fUs Upstream Velocity Infinity ftls Normal Depth 3.00 ft Critical Depth 2.33 ft Channel Slope 0.00500 fuft Critical Slope 0.00558 ft/ft Bentley Systems, Inc, Haestad Methods Sah6mdiWtewMaster V8i 1SELECTserfes 1) [08.11.01.03] 4/28/2015 8;53:00 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 2 of 2 Worksheet for STR13 -STR12 'Project Description Friction Method Manning Formula Solve For Discharge Input Data Roughness Coefficient 0.000 Channel Slope 0.00000 ft/ft Normal Depth 0,00 ft Diameter 0.00 ft Results Discharge 0.00 ft9 /s Flow Area 0.00 ftz Wetted Perimeter 0,00 ft Hydraulic Radius 0.00 ft Top Width 0,00 ft Critical Depth 0.00 ft Percent Full 0.0 % Critical Slope 0.00000 ft/ft Velocity 0.00 ft/s Velocity Head 0.00 ft Specific Energy 0.00 ft Froude Number 0.00 Maximum Discharge 0.00 fts /s Discharge Full 0,00 ft3 /s Slope Full 0.00000 ft/ft Flow Type Undefined 'GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description NIA Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 %b Normal Depth Over Rise 0.00 %n Downstream Velocity 0. DO ft/s Bentley Systems, Inc. Haestad Methods SolftbMlf�eritewMaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 8:53:32 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 Worksheet for STR73 -STR12 GVF Output Data Upstream Velocity 0.00 ft/s Normal Depth 0.00 ft Critical Depth 0.00 ft Channel Slope 0.00000 Tuft Critical Slope 0.00000 ft/ft Bentley Systems, Inc. Haestad Methods Sol AlurflOpFtewMaster V81 (SELECTseries 1) [08.11.01.03] 4128/2015 8:53:32 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STR7 3 -STR12 Project Description Friction Method Manning Formula fts /s Solve For Full Flow Capacity ft Input Data 7.07 ft2 Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 3.00 ft Diameter 3.00 ft Discharge 51.09 ft'Is Results Discharge 51.09 fts /s Normal Depth 3.00 ft Flow Area 7.07 ft2 Wetted Perimeter 9.42 ft Hydraulic Radius 0.75 ft Top Width 0.00 ft Critical Depth 2.33 ft Percent Full 100.0 % Critical Slope 0.00558 Rift Velocity 7.23 ft/s Velocity Head 0.81 ft Specific Energy 3.81 ft Froude Number 0.00 Maximum Discharge 54.96 ft3 /S Discharge Full 51.09 W/s Slope Full 0.00500 Rift Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 It Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Soldr3indlOpIftewMaster V8i (SELECTseries 1) [08.11.01.03] 4128/2015 8:54:00 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 Worksheet for STR13 -STRi 2 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft is Normal Depth 3.00 ft Critical Depth 2.33 ft Channel Slope 0.00500 fUft Critical Slope 0.00558 ftlft Bentley Systems, Inc. Haestad Methods SolOemtlipfftervMaster V8i (SELECTseries 1) [08.11.01.03] 4128/2016 8:54:00 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203. 755 -1666 Page 2 of 2 Worksheet for STR14 -STR13 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft' /s Channel Slope 0.00500 ftlft Normal Depth 2.50 ft Diameter 2.50 ft Discharge 31.42 ftl /s Results Discharge 31.42 ft' /s Normal Depth 2.50 ft Flow Area 4.91 ft- Wetted Perimeter 7.85 ft Hydraulic Radius 0.63 ft Top Width 0.00 ft Critical Depth 1.91 ft Percent Full 100.0 % Critical Slope 0.00577 ft/ft Velocity 6.40 ft/s Velocity Head 0.64 ft Specific Energy 3.14 ft Froude Number 0.00 Maximum Discharge 33.80 ft3 /s Discharge Full 31.42 ft' /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 'GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Soh@imtlOpfitewMaster V8i (SELECTseries 1) [08.11.01,031 4/2812015 9:00:05 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755.1666 Page 1 of 2 Worksheet for STR7 4 -STR1 3 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity fUs Normal Depth 2.50 ft Critical Depth 1.91 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00577 ft/ft Bentley Systems, Inc. Haested Methods Sohaan81p6towMaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 9:00.05 AM 27 Siemens Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for STR15 -STR14 Project Description Friction Method Manning Formula ft'Is Solve For Full Flow Capacity ft Input Data 3.14 ft2 Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft' /s Results Discharge 17.33 ft'Is Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 Critical Slope 0.00601 ft/ft Velocity 5.52 ft/s Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft'Is Discharge Full 17.33 ft-Is Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SoldkbdlepgtewMaster V8i (SELECTseries 1) [08.11.01.031 4/28/2015 9:00:53 AM 27 Siemens Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 7 of 2 Worksheet for STR15 -STR14 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fVs Upstream Velocity Infinity ft/s Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00601 fVft Bentley Systems, Inc. Haestad Methods SoltlitimtivfitewMaster V8i (SELECTseries 1) [08.11.01.03] 412812016 9:00;53 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755 -1666 Page 2 of 2 Worksheet for STR7 6 -STR7 5 Project Description Friction Method Manning Formula ft3 /s Solve For Full Flow Capacity ft Input Data 3.14 ft; Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft3fs Results Discharge 17.33 ft3 /s Normal Depth 2.00 ft Flow Area 3.14 ft; Wetted Perimeter 6.28 ft Hydraulic Radius D.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 10D.0 % Critical Slope 0.00601 ft/ft Velocity 5.52 fus Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft'Is Discharge Full 17.33 ft3 /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.0D ft Length 0.00 ft Number Of Steps 0 �GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SoidlWdl efitewMaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 9:01:38 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06796 USA +1- 203 - 755 -1666 Page 1 of 2 Worksheet for STRI6 -STRI5 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ftlft Critical Slope 0.00601 {t/ft Bentley Systems, Inc. Haestad Methods Sol ii®rti0p6tewMaster VBi {SELECTseries 1} [08.11.01.03] 4128/2015 9:01:38 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1. 203 -755 -1666 Page 2 of 2 Worksheet for STR17 -STRI4 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 W/s Channel Slope 0.00500 Tuft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft' /s Results Discharge 17.33 W/s Normal Depth 2.00 ft Flow Area 3.14 ft- Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 Critical Slope 0.00601 ftift Velocity 5.52 ft/s Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 W/s Discharge Full 17.33 fl' /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol ffivniOp6fewMaster V8i (SELECTseries 1) [08.11.01.03] 4/28/2015 9:02:05 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 2 Worksheet for STR17 -STRI4 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00601 ft/ft Bentley Systems, Inc. Haestad Methods Soli@i*AlWtowMaster VBi {SELECTseries 1} [08,11.01.03] 4128/2015 9:02 :05 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 2 of 2 Worksheet for STR7 S -STR17 Project Description Friction Method Manning Formula ft'Is Solve For Full Flow Capacity ft Input Data 3.14 ft2 Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft'Is Results Discharge 17.33 ft'Is Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 % Critical Slope 0.00601 fuft Velocity 5.52 fUs Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft'Is Discharge Full 17.33 ft' /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ,GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol i@eyrtlG}efiteovMaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 9:03:07 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for STR18 -STR17 iGVF Output Data Normal Depth Over Rise 100.OD % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00601 Rift Bentley Systems, Inc. Haestad Methods Vai (SELECTseries t ) 108.11.01.03] 4128/2015 9:03:07 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STRI9 -STR18 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 W/s Channel Slope 0.00500 ft/ft Normal Depth 2.00 ft Diameter 2,00 ft Discharge 17.33 fts /s Results Discharge 17.33 W/s Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 % Critical Slope 0.00601 ft/ft Velocity 5.52 fUs Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ff 1s Discharge Full 17.33 ft3ls Slope Full 0.00500 ftlft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SoItftW I0plVtewMaster V8i (SELECTseries 1 ) [08.11.01.03] 4/2812015 9:03:56 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for STR19 -STRI8 GVF Output Data Normal Depth Over Rise 1MOO Downstream Velocity Infinity ftls Upstream Velocity Infinity ftls Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00601 ft/ft Bentley Systems, Inc. Haestad Methods SolOb3itlOpfitewMaster VBi (SELECTseries 1 ) [08.11.01.031 4/28/2015 9.03:56 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1- 203- 755 -1686 Page 2 of 2 Worksheet for STR20-STR17 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.00500 ft/ft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ftsts Results Discharge 17.33 ft3 /s Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 % Critical Slope 0.00601 fdft Velocity 5.52 ftls Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft' /s Discharge Full 17.33 ft'fs Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SolSbAtlfpfitegWaster V8i (SELECrseries 1) [08.11,01,03] 4128/2015 9:04:29 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for STR20 -STR17 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ftfs Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00601 ft/ft Bentley Systems, Inc. Haestad Methods SOIEW tl0pfitewMaster V8i (SELECTseries 1) [08.11.07.03] 412812015 9:04:29 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755 -1666 page 2 of 2 Worksheet for STR21 -STR20 Project Description Friction Method Manning Formula Solve For Full Flaw Capacity Input Data Roughness Coefficient 0.012 fV1s Channel Slope 0.00500 ft/ft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft'Is Results Discharge 17.33 fV1s Normal Depth 2.00 ft Flow Area 3.14 ftl Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 % Critical Slope 0.00601 ft/ft Velocity 5.52 ft/s Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft3 /s Discharge Full 17.33 ft� /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol iWirtlOpffiewMaster V8i (SELECTseries 1 ) [08.11.01.03] 4128/2015 9 :04:56 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 2 Worksheet for STR21 -STR20 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 fUft Critical Slope 0.00601 fUft Bentley Systems, Inc. Haestad Methods Soh@®rtlG�efitawMaster Vol tSELECTseries 1 j [08.11.01.03] 412812015 9:04:56 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755.1866 Page 2 of 2 Worksheet for STR23 -STR22 Project Description Friction Method Manning Formula Salve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft'!s Channel Slope 0.00500 ftlft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft3 /s Results Discharge 4.95 ft'!s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 ft/ft Velocity 4.03 ft/s Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft9 /s Discharge Full 4.95 ft3 /s Slope Full 0.00500 ft/ft Flow Type SubCritical 'GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods Soh@e7110pRtewMaster Val (SELECTseries 1 ) [08.1 1,01,031 412812015 9:06:07 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755 -1666 Page 1 of 2 Worksheet for STR23 -STR22 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity tnfinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ft/ft Criticai Slope 0.00660 ft/ft Bentley Systems, Inc. Haestad Methods Sol&�n dlC�efitocvMaster V8i (SELECTser es 1) [08.11. 01,03] 412812015 0:06:07 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STR25 -STR24 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ftl /s Channel Slope 0.02000 fUft Normal Depth 9.25 ft Diameter 125 ft Discharge 9.90 ft °!s Results Discharge 9.90 ftl /s Normal Depth 1.25 ft Flow Area 1.23 ft' Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.18 ft Percent Full 100.0 % Critical Slope 0.01730 fUft Velocity 8.06 ft/s Velocity Head 1.01 ft Specific Energy 2.26 ft Froude Number 0.00 Maximum Discharge 10.65 ft °Is Discharge Full 9.90 ft31s Slope Full 0.02000 ft /ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Soli@®rtlg�errtewMaster V8i (SELECTseries 1) [08,11.01.03) 4/2812015 9:17:113 AM 27 Siemons Company drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1886 Page 1 of 2 Worksheet for STR25 -STR24 ' GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 1.18 ft Channel Slope 0.02000 ft/ft Critical Slope 0.01730 ft/ft Bentley Systems, Inc. Haestad Methods SolftWAIWtewMaster V8i (SELECTseries 1) [06.11.01.03] 412812015 9:17:13 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STR27 -STR26 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft'/s Channel Slope 0.02000 Rift Normal Depth 1.25 ft Diameter 125 ft Discharge 9.90 ft-Is Results Discharge 9.90 ft'/s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 193 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.18 ft Percent Full 100.0 % Critical Slope 0.01730 ft/ft Velocity 8.06 ft/s Velocity Head 1.01 ft Specific Energy 2.26 ft Froude Number 0.00 Maximum Discharge 10.65 ft'!s Discharge Full 9.90 ft °Is Slope Full 0.02000 ftlft Flaw Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol kRbrtl6yeFtewMaster V81 (SELECTseries 1) [08.11.01.031 412812015 9:17 :52 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page i of 2 Worksheet for STR27 -STR26 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fUs Upstream Velocity Infinity fUs Normal Depth 1.25 ft Critical Depth 1.18 ft Channel Slope 0.02000 ft/ ft Critical Slope 0.01730 ft/ft Bentley Systems, Inc, Haestad Methods SoIdibrkl0e6tewMaster V8i (SELECTseries 1) [08.11.01.033 4/28/2015 9:17:52 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for STR29 -STR28 Project Description Friction Method Manning Formula 9.90 ft3 /s Solve For Full Flow Capacity 1.25 ft Input Data 1.23 ftz Roughness Coefficient 0.012 ft Channel Slope 0.02000 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 9.90 ft31s Results Discharge 9.90 ft3 /s Normal Depth 1.25 ft Flow Area 1.23 ftz Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.18 ft Percent Full 100.0 % Critical Slope 0.07730 fdft Velocity 8.06 ft/s Velocity Head 1.01 ft Specific Energy 226 ft Froude Number 0.00 Maximum Discharge 10.65 ft3 /s Discharge Full 9.90 ft3 /s Slope Full 0.02000 ft/ft Flow Type SubCritical. GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SolebalOpfitewMaster V8i (SELECTseries 1) [08.11.01.03] 4/28/2015 9:18:43 AM 27 Siemens Company drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 Worksheet for STR30 -STR29 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft'/s Channel Slope 0.100D0 fVft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 22.13 W/s Results Discharge 22.13 ft'/s Normal Depth 1.25 ft Flow Area 1.23 ft= Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.25 ft Percent Full 100.0 % Critical Slope 0.09596 ft/ft Velocity 18.03 ftfs Velocity Head 5.05 ft Specific Energy 6.30 ft Froude Number 0.00 Maximum Discharge 23.80 ft3 /s Discharge Full 22.13 ft9 /s Slope Full 0.10000 ftlft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SolieWdi ftnewMaster V8i {SELECTseries 1 ) 108.11.01.03] 4/2812015 9,19.21 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1- 203- 755 -1666 Page 1 of 2 Worksheet for STR29 -STR28 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity fUs Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 1.18 ft Channel Slope 0.02000 fuft Critical Slope 0.01730 ft/ft Bentley Systems, Inc. Haestad Methods Sol RiudiMptiitewMaster V8i (SELECTseries 1 ) [08.11.01.03] 4/28/2015 9:18:43 AM 27 Siemons Company Drlve Suite 200 W Watertown, CT 06795 USA +1 -203 -755 -1666 Rage 2 of 2 Worksheet for STR30 -STR29 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft /s Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 1.25 ft Channel Slope 0.30000 fuft Critical Slope 0.09596 ft/ft Bentley Systems, Inc. Haestad Methods SolLR®ntl6}e6lewMaster V8i (SSLBCTseries 1) [08.11.01.03] 412812015 9:19:21 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 2 of 2 Worksheet for STR3I -STR29 Project Description Friction Method Manning Formula ft'Is Solve For Full Flow Capacity ft Input Data 1.23 ft3 Roughness Coefficient 0.012 ft Channel Slope 0.03900 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 13.82 ft' /s Results Discharge 13.82 ft'Is Normal Depth 1.25 ft Flow Area 1.23 ft3 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.23 ft Percent Full 100.0 Critical Slope 0.03531 fUft Velocity 11.26 ft/s Velocity Head 1.97 ft Specific Energy 3.22 ft Froude Number 0.00 Maximum Discharge 14.87 ft' /s Discharge Full 13.82 ft' /s Slope Full 0,03900 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth am ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods Soll@tortl0pfitewMaster V81 (SELECTseries 1) [08.11.01.031 4/28/2015 9:20:01 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1668 Page 1 of 2 Worksheet for STR31 -STR29 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ftls Upstream Velocity Infinity fUs Normal Depth 1.25 ft Critical Depth 1.23 ft Channel Slope 0.03900 Rift Critical Slope 0.03531 Rift Bentley Systems, Inc. Haestad Methods Soli@imflOp tewMaster V8i (SELECTseries 1) [08.11.01.03] 4128/2015 9:20:01 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1686 Page 2 of 2 Worksheet for STR32 -STR31 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.10000 ft/ft Normal Depth 1.25 ft. Diameter 125 ft Discharge 22.13 ft3 /s Results Discharge 22.13 ft3 /s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.25 ft Percent Full 100.0 % Critical Slope 0.09596 ft/ft Velocity 18.03 ft/s Velocity Head 5.05 ft Specific Energy 6.30 ft Froude Number 0.00 Maximum Discharge 23.80 ft' /s Discharge Full 22.13 ft' /s Slope Full 0.10000 Rift Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SoltakffIdOpflewMaster V81(SELECTseries 1) [08.11.01.03] 412812015 9:20 :26 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1868 Page 1 of 2 Worksheet for STR32 -STR31 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity fUs Upstream Velocity Infinity fUs Normal Depth 1.25 ft . Critical Depth 1.25 ft Channel Slope 0.10000 ftlft Critical Slope 0.09596 ft/ft Bentley Systems, Inc. Haestad Methods SOIRW II®q tewvlVlaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 9:20:26 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755 -1666 Page 2 of 2 Worksheet for STR34 -STR33 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.02000 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 9.90 ft' /s Results Discharge 9.90 ft3 /s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 193 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 1.18 ft Percent Full 100,0 Critical Slope 0.01730 ft/ft Velocity 8.06 ft+s Velocity Head 1,01 ft Specific Energy 2.26 ft Froude Number 0.00 Maximum Discharge 10.65 ft3 /s Discharge Full 9.90 ft3/s Slope Full 0.02000 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol i1b7di pliftewMaster V8i (SELECTseries 1) [08.11.01.03] 412812015 9:30:08 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for STR34 -STR33 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 1.18 ft Channel Slope 0.02000 ft/ft Critical Slope 0.01730 ft/ft Bentley Systems, Inc. Haestad Methods Sol dftaml0pfr1owMaster V8i (SELECTseries 1) [08.11.01.03] 4/2812015 8:30:08 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STR36-STR35 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft'!s Channel Slope 0.02000 fUft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 34.66 ft'Is Results Discharge 34.66 ft'!s Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.92 ft Percent Full 100.0 % Critical Slope 0.01741 ft/ft Velocity 11.03 ft,s Velocity Head 1.89 ft Specific Energy 3.89 ft Froude Number 0.00 Maximum Discharge 37.28 ft'Is Discharge Full 34.66 ft3is Slope Full 0.02000 ftlft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol0odlWtewMaster V8i (SELECTserles 1) [08.11.01.03] 4/28/2015 9:44:29 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203 -755 -1666 Page 1 of 2 Worksheet for STR36 -STR35 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fUs Upstream Velocity Infinity ftls Normal Depth 2.40 ft Critical Depth 1.92 ft Channel Slope 0.02000 #t/$ Critical Slope 0.01741 Rift Bentley Systems, Inc. Haestad Methods S01LR1iartl0ftfitewMaster V8i (SELECTseries 1) [08.11.01.03] 412812015 9:44:29 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 2 of 2 Worksheet for STR37 -STR36 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft' /s Channel Slope 0.00500 ft /ft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft3 /s Results Discharge 17.33 ft' /s Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 Critical Slope 0.00601 ftlit Velocity 5.52 ft/s Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft- /s Discharge Full 17.33 W/s Slope Full 0.00500 fuft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol iabyllopli"IewMaster Vai (SELECTseries 1) [08.11.01.03] 4/2812015 9:43:54 AM 27 Siennons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 2 Worksheet for STR37 -STR36 OVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Shope 0.00500 ft/ft Critical Slope 0.00601 fUft Bentley Systems, Inc. Haestad Methods Sol tHWdl8}efftewMaster V8i {SELECTseries 1) 106.11.01.03] 412812015 9:43:54 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 LISA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STR38 -STR37 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft,15 Channel Slope 0.03220 ft/ft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 20.42 ft3/s results Discharge 20.42 ft,15 Normal Depth 1.50 ft Flow Area 1.77 ftz Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.47 ft Percent Full 100.0 % Critical Slope 0.02884 ft/ft Velocity 11.55 ft/s Velocity Head 2.07 ft Specific Energy 3.57 ft Froude Number 0.00 Maximum Discharge 21.96 ftl /s Discharge Full 20.42 ft -/s Slope Full 0.03220 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SoliHeariloprrtesvMaster Vai (SELECTseries 1) [08.11.01.03] 4/2812015 9:45:15 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 7 of 2 Worksheet for STR38 -STR37 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ftls Normal Depth 1.50 ft Critical Depth 1.47 ft Channel Slope 0.03220 ft/ft Critical Slope 0.02884 ft/ft Bentley Systems, Inc. Haestad Methods SoliftbMlGp flewMaster V8i tSELE=CTseries 1 j [08.11.01.03] 4/2612015 9:45:15 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1 -203 -755 -1666 Page 2 of 2 Worksheet for STR39 -STR40 Project Description Friction Method Manning Formula Salve For Full Flow Capacity 'Input Data Roughness Coefficient 0,012 fts /s Channel Slope 0.00500 ft/ft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 8.05 fts /s Results Discharge 8.05 fts /s Normal Depth 1.50 ft Flow Area 1.77 ft2 Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.10 ft Percent Full 100.0 % Critical Slope 0.00636 fUft Velocity 4.55 ft/s Velocity Head 0.32 ft Specific Energy 1.82 ft Froude Number 0.00 Maximum Discharge 8.66 ft' /s Discharge Full 8.05 ft' /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 %, Bentley Systems, Inc. Haestad Methods Sol i@emtlOpfetewlVlaster VSi (SELECTseries 1) [08,11.01.031 4128/2015 9:45:54 AM 27 siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 Worksheet for STR39 -STR40 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ftls Upstream Velocity Infinity ftls Normal Depth 1.50 ft Critical Depth 1.10 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00636 tuft Bentley Systems, Inc. Haestad Methods Soli6hritlOeFtewMaster V8i (SELECTseries 1) [08,11.01.03] 4/2812015 9:45:54 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 2 of 2 Worksheet for STR40 -STR39 Project Description Friction Method Manning Formula ft-/s Solve For Full f=low Capacity ft Input Data 1.77 ftZ Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 8.05 ft' /s Results Discharge 8.05 ft-/s Normal Depth 1.50 ft Flaw Area 1.77 ftZ Wetted Perimeter 4.71 ft Hydraulic Radius 0.36 ft Top Width 0.00 ft Critical Depth 1.10 ft Percent Full 100.0 % Critical Slope 0.00636 ft/ft Velocity 4.55 ft/s Velocity Head 0.32 ft Specific Energy 1.82 ft Froude Number 0.00 Maximum Discharge 6.66 ft3/s Discharge Full 8.05 fts /s Slope Full 0.00500 fuft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Waestad Methods SohRemtl18jefitew master V8i (SELECTseries 1) [08.11.01.031 412812015 8:46:28 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 1 of 2 Worksheet for STR40 -STR39 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.60 ft Critical Depth 1.10 ft Channel Slope 0.00500 Rift Critical Slope 0.00636 Rift Bentley Systems, Inc. Waestad Methods Sot &MIMp6iewMaster V8 (SELECTserles 1) [08.11,01.03] 4/28/2015 9:46:28 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 2 of 2 Worksheet for STR41 -STR40 Project Description Friction Method Manning Formula Salve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.00500 fUft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft3 /s Results Discharge 4.95 ft3 /s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 Tuft Velocity 4.03 ft/8 Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft' /s Discharge Full 4.95 ft3/s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ;GVF Output Data Upstream Depth 0.00 It Profile Description Profile Headloss mo ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods Sol ObndoefitewMaster V8i (SELECTseries 1) [08.11.01.03] 4128/2015 9:47:07 AM 27 Slemons Company Drive Suite 200 W Watertown, CT 06796 USA +1 -203- 755 -1666 Page 1 of 2 Worksheet for STR41 -STR40 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity fus Upstream Velocity Infinity fus Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00660 ft/ft Bentley Systems, Inc, Haestad Methods SoI*tWdl&eFtewMaster V8i (SELECTseries 1) [08.11.01.03] 4128/2015 9:47:07 AM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -205- 755 -1686 Page 2 of 2 Worksheet for STR42 -EXFES Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft' /s Channel Slope 0.01900 ft/ft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 15.68 ft' /s Results Discharge 15.68 ft' /s Normal Depth 1.50 ft Flow Area 1.77 ft' Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.42 ft Percent Full 100.0 Critical Slope 0.01644 ft/ft Velocity 8.88 ft/s Velocity Head 1.22 ft Specific Energy 2.72 ft Froude Number 0.00 Maximum Discharge 16.87 ft'/s Discharge Full 15.68 ft'Is Slope Full 0.01900 Rift Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ,GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Sol i@®rtlSpfilewMaster V8i (SELECTseries 1) [08.11.01.03] 5/22/2015 1:56:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203 -755 -1666 Page 1 of 2 Worksheet for STR42 -EXFES GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ftls Upstream Velocity Infinity ft/s Normal Depth 1.50 ft Critical Depth 1.42 ft Channel Slope 0.01900 Rift Critical Slope 0.01644 fklft Bentley Systems, Inc. Haestad Methods Soh BarrtltpFtewMaster 116i (SELECTseries 1) [08.11.01.031 5/2212615 1:56:26 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755.1666 Page 2 of 2 Worksheet for STR43 -STR42 Project Description Friction Method Manning Formula fWs Solve For Full Flow Capacity ft Input Data 3.14 fta Roughness Coefficient 0.012 ft Channel Slope 0.03560 ftlft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 46.24 ft'!s Results Discharge 46.24 fWs Normal Depth 2.00 ft Flow Area 3.14 fta Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.97 ft Percent Full 100.0 Critical Slope 0.03240 Rift Velocity 14.72 ft is Velocity Head 3.37 ft Specific Energy 5.37 ft Froude Number 0.00 Maximum Discharge 49.74 ft'15 Discharge Full 46.24 ft' /s Slope Full 0.03560 fUft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods Sol Rtk"OpfilewMaster V8i (SELECTseries 1 ) [08.11.01.03] 512212015 1:55:16 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 1 of 2 Worksheet for STR43 -STR42 GVF Output Data Normal Depth Over Rise 100.()0 Downstream Velocity Infinity ft/s Upstream Velocity Infinity ftls Normal Depth 2.00 ft Critical Depth 1.97 ft Channel Slope 0.03560 f{/ft Critical Slope 0.03240 ft/ft Bentley Systems, Inc. Haestad Methods SoldlibdiSpRtewMaster V8i (SELECTseries 1) [08.11.01.03] 512212016 1:55:16 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 2 of 2 Worksheet for STR44 -STR43 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.00500 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft' /s Results Discharge 4.95 ft3 /s Normal Depth 1.25 ft Flow Area 1.23 ft, Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 ft/ft Velocity 4.03 ft/s Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft3/s Discharge Full 4.95 ft3 /s Slope Full 0.00500 ft/ft Flow Type SubCritical ,GVF Input Data Downstream Depth 0.0D ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.0D % Bentley Systems, Inc. Haestad Methods Sohftb 0QpfftowMaster V8i (SELECTseries 1) [68.11.09.031 5/2212015 1:54:32 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755.1666 Page 1 of 2 Worksheet for STR44 -STR43 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00660 it/ft Bentley Systems, Inc. Haestad Methods Sal tfl:Wrtld�p6tewMaster V8i (SELECTseries 1) [08.91.01.03] 5/2212015 1:54.32 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for STR45 -STR44 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft2 /s Channel Slope 0.00500 fUft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft' /s Results Discharge 4.95 ft2 /s Normal Depth 1.25 ft Flow Area 1.23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 fUft Velocity 4.03 ft/s Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft3 /s Discharge Full 4.95 ftl /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss o.0o ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc- Haestad Methods Sol ifty4ll8p itewMaster V8i (SELECTseries 1 ) [08.19.01.03] 5122!2015 1:54:17 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 -755 -1666 Page 1 of 2 Worksheet for STR45 -STR44 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00660 ft/ft Bentley Systems, Inc. Haestad Methods SDI @®rtl@�efrtewMaster VBf (SELECTseries 1) [08.11.01.03] 512212015 1:54:17 PM 27 Siem©ns Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755 -1666 Page 2 of 2 Worksheet for STR46 -STR43 Project Description Friction Method Manning Formula Solve For Full Flaw Capacity 'Input Data Roughness Coefficient 0.012 ft'Is Channel Slope 0.00500 ftlft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft$/s Results Discharge 17.33 ft'Is Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 Critical Slope 0.00601 fuft Velocity 5.52 ftls Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft' /s Discharge Full 17.33 ft3]s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 !GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc, Haestad Methods Soldlim lOpfitawMaster V8i (SELECTseries 1) [08.11.01.03] 5/2212015 1:54:06 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755 -1666 Page 1 of 2 Worksheet for STR46 -STR43 GVF Output Data Normal Depth Over Rise 100.00 Downstream Velocity Infinity ftis Upstream Velocity Infinity fus Normal 'Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 fUft Critical Slope 0.00601 ft!ft Bentley Systems, Inc. Haestad Methods Sal iBentlg�eRtewMaster Vai (SELECTseries 1) [08.11.01.03] 512212015 1:54:06 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -203- 755 -1666 Page 2 of 2 Worksheet for STR47 -STR46 Project Description Friction Method Manning Formula ft3ls Solve For Full Flow Capacity ft Input Data 3.14 ft2 Roughness Coefficient 0.012 ft Channel Slope 0.00500 Rift Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ftsls Results Discharge 17.33 ft3ls Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 % Critical Slope 0.00601 ft /ft Velocity 5.52 ftls Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft3 /s Discharge Full 17.33 ft3 /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 'GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SoldRb t]0pFtocvMaster V8i (SELECTseries 1) [08.11.01.03] 5/22/2015 1:53:48 PM 27 Siemons Company Drive suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1656 Page 1 of 2 Worksheet for STR47 -STR46 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity fUs Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00601 ft/ft Bentley Systems, Inc. Haestad Methods SOI&W16pfitewMaster V8i (SELECTseries 1) [08.11.01.03] 5!22!2015 1:53:40 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755-1666 Page 2 of 2 Worksheet for STR48 -STR47 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft3 /s Channel Slope 0.00500 Rift Normal Depth 2.QD ft Diameter 2.00 ft Discharge 17.33 ft'Js Results Discharge 17.33 ft3 /s Normal Depth 2.00 ft Flow Area 3.14 ft2 Wetted Perimeter 6.28 ft Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 % Critical Slope 0.00601 Rift Velocity 5.52 ft/s Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number 0.00 Maximum Discharge 18.64 ft3JS Discharge Full 17.33 ft-Is Slope Full 0.00500 Tuft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SohaWoltpfftewMaster Vai (SELECTseries 1) [08.11.01.03] 512212015 1:53:39 PM 27 Siemons company Drive Suite 200 W Watertown, CT 06795 LISA +1 -203- 755 -1666 Page 1 of 2 Worksheet for STR48 -STR47 GVF Output Data Normal Depth Over Rise 100,00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ftls Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00601 ft/ft Bentley Systems, Inc. Haestad Methods Soli WdIGpFteueMaster V8i (SELECTseries 1) [08.91.01.03) 5/22!2015 9:53:39 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203455 -9666 Page 2 of 2 Worksheet for STR49 -STR48 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 fts /s Channel Slope 0.00500 ft/ft Normal Depth 2.00 ft Diameter 2.00 ft Discharge 17.33 ft3 /s Results Discharge 1733 fts /s Normal Depth 2.00 ft Flow Area 3.14 ft3 Wetted Perimeter 6.28 It Hydraulic Radius 0.50 ft Top Width 0.00 ft Critical Depth 1.50 ft Percent Full 100.0 Critical Slope 0.00601 ft/ft Velocity 5.52 ft/s Velocity Head 0.47 ft Specific Energy 2.47 ft Froude Number O.DO Maximum Discharge 18.64 fts /s Discharge Full 17.33 fts /s Slope Full 0.00500 ft/ft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0. DO ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SolAarrtlGpfitewMaster VBi (SELECTseries 1) [08.11.67.63] 5/2212015 1 :53:30 PM 27 5iemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203.755 -1666 Page 1 of 2 Worksheet for STR49 -STR48 GVF Output Data Normal Depth Over Rise 100.00 %u Downstream Velocity Infinity fk/s Upstream Velocity Infinity ft/s Normal Depth 2.00 ft Critical Depth 1.50 ft Channel Slope 0.00500 Tuft Critical Slope 0.00601 ftlft Bentley Systems, Inc. Haestad Methods SoIMb3dIWfitewMaster V8t (SELECTseries 1 ) [06.11.01.03] 5122120151:53:30 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203.755.1668 Page 2 of 2 Worksheet for STRSO -STR49 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft'Is Channel Slope 0.00500 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft' /s Results Discharge 4.95 ft'Is Normal Depth 1.25 ft Flow Area 1.23 ftz Wetted Perimeter 193 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 ft/ft Velocity 4.03 ft/s Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft'Is Discharge Full 4.95 ft9 /s Slope Full 0.00500 ftlfi Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Solilleyr fflewMaster V81 (SELECTseries 1) [08.11.01.03] 5/2212615 1:53:16 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 LISA f1- 263. 755 -1666 Page 1 of 2 Worksheet for STRSO- STR49 GVF Output Data Normal Depth Over Rise 100.OD % Downstream Velocity Infinity fUs Upstream Velocity Infinity ft/s Normal Depth 115 ft Critical Depth 0.90 ft Channel Slope 0.00500 ftlft Critical Slope 0.00660 ftift Bentley Systems, Inc. Haestad Methods Solidi dltpEtewMasterV6i (SELECTseries 1) [08.11.01.03] 512212015 1:53.15 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1.203 -755 -1666 Page 2 of 2 Worksheet for 3TR51 -STR50 Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.012 ft'Is Channel Slope 0.00500 fuft Normal Depth 1,25 fit Diameter 1.25 ft Discharge 4.95 ft3 /s Results Discharge 4.55 ft'Is Normal Depth 1.25 ft Flow Area 1,23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 ft/ft Velocity 4.03 ft/s Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft-/s Discharge Full 4.95 ft' /s Slope Full 0.00500 ft/ft Flow Type SubCritical iGVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 Bentley Systems, Inc. Haestad Methods SoItftWdl®pfftearMaster V8i (SELECTseries 1) [08,11,01.03] 512212016 1:58:44 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1 -x03- 755 -1666 Page 1 of 2 Worksheet for STR59 -STR50 GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 ft/ft Critical Slope 0.00660 fflft Bentley Systems, Inc. Haestad Methods Solfib7dlWtewMasterviii (SELECTseries 1) [08.11.01.031 5/22/2015 1:58:44 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06796 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for STR52 -STR51 Project Description Friction Method Manning Formula ft3 /s Solve For Full Flow Capacity ft Input Data 1.23 ft2 Roughness Coefficient 0.012 ft Channel Slope 0.00500 ft/ft Normal Depth 1.25 ft Diameter 1.25 ft Discharge 4.95 ft3 /s Results Discharge 4.55 ft3 /s Normal Depth 1.28 ft Flow Area 1.23 ft2 Wetted Perimeter 3.93 ft Hydraulic Radius 0.31 ft Top Width 0.00 ft Critical Depth 0.90 ft Percent Full 100.0 % Critical Slope 0.00660 ft /ft Velocity 4.03 ft is Velocity Head 0.25 ft Specific Energy 1.50 ft Froude Number 0.00 Maximum Discharge 5.32 ft3/s Discharge Full 4.95 ft3 /s Slope Full 0.00500 fuft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods Soli bd[OjeFtewMasterV8i (SELECTseries 1) [08.11.01,03] 512212015 1:52:46 PM 27 Slemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203. 755 -1666 Page 1 of 2 Worksheet for STR52 -STRSI GVF Output data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ftls Normal Depth 1.25 ft Critical Depth 0.90 ft Channel Slope 0.00500 {tiff Critical Slope 0.00660 ft/{t Bentley Systems, Inc. Haestad Methods Sol iffiadllpfitewMaster V& fSELECTseries 1) (0811.01.03] 5/22/2015 1:52:46 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203 - 755 -1666 Page 2 of 2 Worksheet for 18 "PVC SYSTEM Project Description Friction Method Manning Formula Solve For Full Flow Capacity Input Data Roughness Coefficient 0.010 ft3/s Channel Slope 0.00500 ft/ft Normal Depth 1.50 ft Diameter 1.50 ft Discharge 9.66 ft3 /s Results Discharge 9.66 ft3/s Normal Depth 1,50 ft Flow Area 1,77 ft2 Wetted Perimeter 4.71 ft Hydraulic Radius 0.38 ft Top Width 0.00 ft Critical Depth 1.20 ft Percent Full 100.0 %p Critical Slope 0.00524 fUft Velocity 5.46 fUs Velocity Head 0,46 ft Specific Energy 1.96 ft Froude Number 0.00 Maximum Discharge 10.39 ft3 /s Discharge Full 9.66 ft3/s Slope Full 0.00500 fUft Flow Type SubCritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 �GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Average End Depth Over Rise 0.00 % Bentley Systems, Inc. Haestad Methods SoliftdiOeiftewMaster V8i (SELECTseries 1) [08,11.-01.03) 5!2212015 2:14:49 PM 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1- 203- 755 -1666 Page 1 of 2 Worksheet for 18 "PVC SYSTEM GVF Output Data Normal Depth Over Rise 100.00 % Downstream Velocity Infinity ftls Upstream Velocity Infinity ft/s Normal Depth 1.50 ft Critical Depth 1.20 ft Channel Slope 0.00500 fuft Critical Slope 0.00524 ft/ft Bentley Systems, Ine- Haestad Methods SolRbdI&,- FtewMaster V8i {SELECTseries 1} [08.11.01.03) 5/22/2015 2:14;44 PM 27 Siemons Company 'Drive Suite 200 W Watertown, CT 06795 USA }1- 203. 755.1666 Page 2 of 2 / 1 1' liF'.r�1r ��rserw. • II Ip�IMn IIIW � •�% It J1i !� WAS I ' t Is11• •��'� - *a m�� • �� tltlaml .� '' C i�►,�irr.� tmf�tslwfftllmffl �iilfr� m IlnlzW! �f11RIf1aaliRt iW11111M1I1WW11 �. ��y�� i�al»�AR.i>RI'�� a. �n+ulE 1 rtfrettt�r Irm�i ullullmi"wonu��wfe olnl�m�w� rtllriwerJ ®Iffnl�ntlnunm •tt`tfw � �¢ It ���� �r Imalamffnil uultlmnl�ff�nl�>a fftuaulomumu+� ��,,. � tltlraelrweflnr "i ' 1 ®aaflffllonmmtm � +• ®eumRflfnumnlllnl RI,� arnnallmismnnuutuulutu � - �= �����! �fiiW�inr� ��i�����r MMtwll MMIKli�^��r�� ��� 1f�lr ftsemraulra� . 0A[€1S Kww—__ww"P `..w10R� fwslr �t� /1n1� 1! /i rlw�r>�llr a an1�.�I�IfRUaRflillunnn ®lr���� f � aR�I R +�•/�t i mMaMU ii iniii1ILWiii� a� I�a ii �edr • �nr r C.. s�i f�,�tseltr �eza►�►s�� pf111>s�aillnllfllln 11111ifti# 'Om � A1f4F���"t�Jl' MR911911R11•ti�tfl1n tlIDlil i�� IIIOY6 111■ mU p Y�i1•tl'�iJ�� / nnl!lR�:�fiH111O11111C ai t�� • Jlp�s "J /JfP1JlfO f6M ®®�aMl�Ui M fuIlmfo asstlttr rM° =Ru1n�Ra I am= nn °�Si ',r�as�I�R�� rs R/rsIf>ti•te►fJ'�'sImtTlr�r JrQ�It�� ®ma�van>s•rlw � �� i n �ftltlttfs��fafaltfw irw� m� Itlallrttlal!• �Rm�n tw am � 11 11 11 111 Curves may not be extrapolated. Design Of Riprap Apron Under Minimum Tailwater Conditions Figure 8 -1 a -$ 1 frr i • i • � a•1JlrJ[� '. 11 1oRl • t Iplr�n i��� '` i.�I�Tiw �r w� � o ..rrr.■rnr r �i11M]MiCe 111 �1!► sl'ii en�l�ly arinwr, 11! n�i .�il��IrJUr �J��ivr EIHIM Ili4(11<* l/ sASra ti�ffiI��Iri Rm unni�� ®e �I®i111111 wrtm �1 ri sa�l,w ® umiipll oil 0111111 �Ili�w9P��L!+���r!rr + rnlmlr ■ rrr nirl mumaum Nm1�3ifitliU pillullllflt® i� =� �IpR�Jri'�{�f�' ii131�a4mFInR11ri11lrUl�! pplLl3�pp11iR1111111111i1IIW ������ �u�P I Jil< Ari11t!•RID ®RUHIri1LL11���� 11' � , FiQ111>•�1�i1iY!"y.�l'JSr�� !� �'»IIOT,�' MWAU ptllitis�r"�illirLIIIII l�� i!>di /�! Q !RnWFA i 1 ariler-_��i1R1RA111llllllfl ®r ! 0 �w / Jf>rq►AI u1ll �liiuiuuiiu m 1 Cnr ,�,� , iMr ArA. � AFM l An p>a>VUUllpflllBIHIUM �► .1<lfi"JRI Nam ' �g*,�iilillln`luumn >d�i,!l�Ir '• ����F qtl = ®i11�1i11f111tlIitU11101� „fir `a�1!!�J►�JY R1ilUi�II�iilllll__II�11 tIIG9D� ■�R� � �� ,Q�iR�,�rJialFa>«,f1�1��� g11111>O•�NfBii 111 it �Yf>■�am „pr • ��YI�QF/J�� nml�lilm�iilmrinu 1 ��a YlrilolSl�llm� I{l1� � m =�■ �� 1 17•!PlTIIVal14��ti�10l�1� �r1101�1Y1111{1lYt<� .���° - f , f ff if fl fff • • i • ° I! • • • 40 a • 1 � J , 'MJJI`I�I ! � , Ji1'IAVw • X11 wi 1i was ili ii sJwr J -was • l CY 1!1 !IJr � I ■ r w � � . ,w��J�rir' ��u1�r� rlrwr nralr>•It�mr+ # j�P A #lltwti ®�piwd Its Um ��JQImr7 ' �!lnllnmm��' /ice „am�rlea esl�!ldlie°� !rw Hunan rlarlonrr�n � row 1 Marue�� wnnu1lNIM1!!al na�r •.. ��'' ,tw��s ,la .uuwr�r� fail ®!!ntliallllilllall ®mm u�H , E haw rrY tululnuum r °any HUM rerr°1M nitlmu n sear d ° ! ,�P' °°11�}g1ti1lgqp14p�l11I �w tia° :I�naQf r� ; Qmr�ennSM 113111tfllilu =• �� �iil� �� !ll���� � i■IV i .� + tewtlsnm ®u+rltlutluu�rw�s`>'- wags . JriJar m�tuS11 �” r awlwwrntaarlrs��onuaT�Ir aul+r-_.,�1rnrlt�ltuanulnlam� w �awnr�rtRm�as w. .I��er�_ tt�la�s ®w rulmlllltnlu�l ���r 'CIS air . �rm�rnr• aJrllwm►Inarilrr!lnulllra Gl) ii rr ,l�v Js � �j� UnHUREnlnar:rnlaln ulalllu� =a EffU lrrslo rn1�I� lA unit= tt lU nutum °I�ullr i m Inu°� �°��°r rwra�swlr Ila s t1i1g1 t: �alr��w - ur asmwallwrae!�p Ilalil ca ��Amm�llrllll�r,nq.�r,�lrarirrw nulm lalr�lu111 �` i 1 ' „a„lmlrt�>nslrnllslmr I rmunw �`� I ��lo alrmowllnlw a�m�ilirrmil� �i �nl�wsuwwtaz��� �mvwr.��ariar »odtaam iuu ®t I� miffm rants sl ��lllifi��lr1 µ� r rr r+r Design Of Riprap Apron Under ' Minimum Tailwater Conditions Figure 8— 1 e -5 ' ; •il MII ��� 1 M • � Iw rr t��i /r r�r �. OM Mp �W 1 s�..rw...a.�.r lu•ttttmnm lu � IetttMleet strwrir, tliiinu� ou•a ir`���►�iu° e�lmnte�r. nmlrr >.r ��'� � aM1M�ellnrm�etlse�� um umrlrta�MIN a � r nssu�oe�m��r��tr� rin �wu1=muumm wM i��tltrsMiielt ,elu�rir e�l�untl mlluilnneuttreswslte� set! .� �lrtrwsssv �mt�lIR011TIIlulllllllt9l �r�� ��� 1� ��� t•usmaevmnmunmulnm � u `l �j} nlnr�oe�nrtnuuuuliw • �i.,..e��.atr r i� ='• utltttre�ezeleen�tnuu � �� � os1 s M�� „ ' ' nentla•tua.:uu :� �� ee�auailtat>s:. �rrar �ns�.r- �ntw_-.sercanr � �j ��a�t�M•�rq�! rte. Ir M. 'a��rur* � un1F ---MriIm1Wi1......1111i1ppC11lEY1� unlum m UJISI1111t111111i11i� 1M � � ` u_ JrtMr �• ' � � 1n11i1tila11160 allIiFA�ii Olnlil�el<II® Ileelll l p11mf ttl� _ � � �! /i'11' ' nsnnmme>nf ml lentlmet�1 t nl sl Ir - �Jn�1•itd'��� am= etltlx. mutes WmM1� ®ennllm + lM u �m 1 �� *>r alr�aal� ® ®ttmeeeeM umtn�leot ®111n� ii i�r�ilstr ■� �>���rsr�ar 1re1s1>Mmna� mtmltto®it�i °1 - r�►J►� •o11te>altmMe�i��� of 1 Design Of Riprap Apron Under Minimum Tailwater Conditions Figure S -1 I $ -5 ► I i M► "ISO �.. •11 , `•tl�� � �Il lltll�� K � • 1 ISIS n 1� >r/ 4511 I iittbM_iiiii t 4 �� inntlr�� . •�iiMi�n . , �s�r,llrars�r'i�aEa I E;Mf 4S s1�ISs iganEiE4ttlloi� 1IHlIIlii i / %'�.Il��� >1ti�'Mtl1 trst�'� In I nll �1IHii � ���r�verr�s nu3�n aiii� t tl�isl4ai �i� -�� u>�ISantIQ�IS Er.�w itoiluQlii�u°`��s�rrnl�iar�, � p'�.u�uMi4r�r ®nrul�niuuuEm��oEtri El Qdltmli11i1IISI (p1HillliE4S31�riSlirS� cm rLQilf7E��'1SIiOtiUtlltllll.11f! ulut�iMMIMni17IILUftIIISI n� I+ R11t�it =rl/g11tC11i111t1ESIIS411i11 r" �,11�1si ���► Apr � i utumaamrtIDUUlgrulu M �rlrl• IIp113fE�El�ili.W t�4tti Belli ®itMlri� ■rdr ►arar lam naMI:�rar°�1ldpmt� 1>�tRMiR ��E;iltti unl4flw1�® r t;rtElt anivw,-�w---dwtrlielulmltuuuleem �� w isiu as ems A Il,r, Ma�ni •EIn� Eltll[llimf141i1 �lllltn4tI1Q11UItI iii�lr� >� Mt4ttS!•M�V �tdl•1SI' � a���llMt �t4�I,peIDliinlRt11W111l1fSta � AQIe1�4S�tStt llllltli111111{It1111#� ` '�E�' .'� -,fir ���� . uorilvEl<urlliiilllullli IIISIIe 1 Ulu t1�7 . ��r nmlti.atlt�l fl11t 1{I����' �E����� !qp MrfTaiuii•�JT���1li�LdLA��fI� niIISIQE�fffiI1 111 If � . �J!liiI'ME4t'si�`� 1l�Ill4S��l Idt Int ,�/�ISI�i1�.��ltM® YIE[�[ti���ilillt��{1{1i1i�Q ®R��11pp1��l r�jp��tjjlul1lI I M �i�.�ir�QaliSas�'�EImEI•E4'1 RW1m {IW11I1�tf1110 � J'REI•�r�1I,M fAitl tBLe�i 1311311 11 U � �� N uu .%►4tS1r 4SBO�E»� �' � iaum � 14 *t• IM lid � a Design Of Riprap Apron Under Minimum Tailwater Conditions Figure S -1 I $ -5 • n JI • • � pla It �/ #lam ., �� • •l1 X11 1ltll���' ! `•Sr men • I iw n le�� r rt JIIIIIIIIIII t 1 m14>t r - ■w DID 4w 4�•i�i� ' lam ■ 31 gym! �al■14,aws •_ • rrl t g� �, C ii■►.�l�r nmallnlmtm►��■rrw Love144II�11♦■ t Ih�� ��pp �� p{�'' ire ►.a�r.�s11°4* u■■rlunl��i� 1114u143 4i�U1H111ii1 ,r a4�4p �i4tisl��Al►�� 1 I1u mm �aarrc /f,�p aka t�en.�lr 111BUITi �4f�lif�EM�;I. �am'� �aluB iaar�r.�l ,11111iI1 mien 1� ■■f� ■l��ffP•,l ►llpylF�'/ JIIa�a..r! >!! N{ q1 111lI111111I11tIH14i l4�47vil1iAa¢ .si�`•,/1'�ri011r ����� a➢wla�lwluloUIUMU .q p1al 1l}1 rI®r1r�v4el4tiuffiTQ4 u 4ia4l�IDlal811, n11l1l11u11Qlla 11111111t111t41m 14 4 mc 1111ti11I11L4f 1�i E ww • wmlmain■rrli�l w� r v !t � � 1JiRils4>Q14�111U!���4r ' ry� !qr Is11ti9v,m4r.1� _ .441'AV AIIII� ®1!� 1111�'rmIC�414L5� ' @flll Iw�w■r+■m4r■e4u44411rrz44ti' lr s. �►�� uulE�...altAl4luRglmul4i4lt�UMNli w�71 =1'"U1 Illul lull�l>li � /l mtl ® tatmllullnlum �1 ■1 ■n�' � MAIN .nulr .a4ralr.+lr�sr 4t. ' Sp111��11111 Irsrsma��_ � � �t� ���► .'• �r�l►.wl���'v lului® �u�il��wnlll 'l'llla��I"'kInn�nua111►� rsu o . ar■r ur.lrLt°ii.>�% puHllillliiXlllliiltW�Ij tl4f4 ■�11� p • �li1iS�'��� all ��nml>n1 1I rn� mw� R�� .I ��r� .all�srtl��ti■nirw dFp�■Itt44II1 111 �� 1 � - �� _ '• ,. ��odr�4rAar tititititit�luu4rula mn�4lQUSt�11%- iif�aTn �i .r�rr�.i►��� m�allm.r4ls>�1 .mlwamw tl t 1 1 t 1.f t/ tt ttt ■