Loading...
HomeMy WebLinkAboutNC0004774_Final GAP Approval Letter_20150224'A NCDENR North Carolina Department of Environment and Natural Resources Pat McCrory Governor February 24, 2015 Mr. Harry Sideris Senior Vice -President Environment, Health, and Safety Duke Energy 526 South Church Street Mail Code EC3XP Charlotte, NC 28202 Re: Buck Steam Station NPDES Permit No. NC0004774 — Rowan County, North Carolina Conditional Approval of Revised Groundwater Assessment Work Plan Dear Mr. Sideris: Donald R. van der Vaart Secretary On December 31, 2014, the Division of Water Resources (Division) received the revised Groundwater Assessment Plan (GAP) for the above listed facility. The revised GAP was submitted in response to the DWR's Review of Groundwater Assessment Work Plan letter dated November 4, 2014. A review of the plan has been completed and several deficiencies or items requiring clarification were noted. Therefore, in order to keep the site assessment activities on a timely schedule, the Division has approved the revised Groundwater Assessment Plan under the condition that the following deficient items are addressed in the Groundwater Assessment Report: • Comment Section 5.3 Hydrogeologic Site Characteristics: Information needed to develop the initial site conceptual site model (ISCM) was available in the revised GAP, but for the most part data were not provided in a clear, cohesive manner to illustrate where data gaps may exist. Duke Energy should incorporate all existing data at the site and be prepared to collect additional data if the Division determines that additional data gaps exist. Continued site conceptual model development should follow guidelines similar to those presented in the American Standards Testing Measures E1689 - 95(2014) Standard Guide for Developing Conceptual Site Models for Contaminated Sites to direct data collection, data interpretation, and model development efforts. Information provided in "Generalized Groundwater Flow Direction Figure, Duke Energy Carolinas, LLC, Buck Combined Cycle Station Ash Basin" letter (2014) was useful with respect to understanding conceptual site conditions and evaluating data gaps, but was not provided in the revised GAP. Data from this report should be used in site assessment and comprehensive site assessment (CSA) report development. If other reports relevant to 1636 Mail Service Center, Raleigh, North Carolina 27699-1636 Phone: 919-807-646411ntennet: http://www.ncwater.org An Equal Opportunity 1 Affirmative Action Employer— Made in part by recycled paper Buck Steam Station February 24, 2015 Page 2 of 4 groundwater contamination and hydrogeologic assessment exist, they should. also be used and documented in the CSA report. • Comment 7.1.3 Deep Monitoring Wells The Division suggests installing a monitoring well screened across the transition zone, or partially weathered rock, in the vicinity of compliance groundwater monitoring well cluster MW-9S/D to address a data gap with respect to that hydrostrafigraphic unit in this area. • Comment Section 7.1.4 Bedrock Monitoring Wells: The Division suggests installing a bedrock monitoring wells in the immediate vicinity of proposed locations AB-2S/SL/D and AB-4S/SL/D to address data gaps within the Celll primary pond and Cell 2 primary pond, respectively. In addition, installation of bedrock monitoring wells is suggested in the immediate vicinity of proposed well cluster locations GWA-3S/D and GWA-6S/D to address data gaps in these areas. These locations will provide more data for assessment of multiple flowpath transects across the site. • Comment Section 7.2 Groundwater Sampling and Analysis: Direction provided in the "EPA Region 1 Low Stress Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells" (2010) should be followed strictly and any deviations from the procedure must be approved by the Division and documented accordingly. For example, samples should not be collected until pH is stabilized within t 0.1 for three consecutive readings rather than t 0.2 written in the GAP. Temperature and specific conductivity readings should stabilize within 3% for three consecutive readings before samples are collected instead of 10% noted in the GAP. Also note that if the pumping rate is so low that the flow-through-cell/chamber volume cannot be replaced in a 5 minute interval, the time between measurements should be increased accordingly Comment Table 10 — Groundwater, Surface Water, and Seep Parameters and Constituent Analytical Methods: Low level Vanadium listed as having a detection limit unit of mg/L. This is likely just a typographical error but the units should be in µg/L rather than mg/L. • Comment Section 7.2.3 Speciation of Select Inorganics and 7.3.3 Seep Samples: The GAP text indicates that review of the NCDENR March 2014 seep and surface water sampling analytical data will be incorporated into assessment plans to evaluate seep and surface water sample locations at the facility. Locations where NCDENR's March 2014 seep and surface water sampling data indicated exceedances or elevated concentrations of iron, manganese and other constituents of concern (COCs) should be incorporated into the assessment's seep/surface water sampling plans with speciation of analytical data sufficient to support delineation and modeling efforts. In addition to evaluation NCDENR's March 2014 data for other sampling locations and analytical speciation, a potential area of concern was identified by NCDENR during a Buck Steam Station February 24, 2015 Page 3 of 4 December 5, 2014 investigation of groundwater seepages along the riverbank adjacent to the facility. This area includes a wetland/surface water feature downgradient and northeast of seep location S-6 in GAP Figure 3. There is a proposed sample location designated as 4-1) in this wetland/surface water feature which was identified in the "Topographic Map and Discharge Assessment Plan", dated December 30, 2014. Sampling of the 4-D area and the adjacent riverbank seepages for targeting facility COCs and speciation of selected COCs should also be included in the site assessment activities to evaluate and support modeling of flowpaths in this area. The current GAP proposes to speciate iron and manganese groundwater samples from a subset of wells, and in addition, speciate chromium in select ash basin pore water samples, groundwater samples collected from monitoring wells MW -7S, MW -13D, BG- 1S/D, and in seep/surface waters collected from S -IA, S-113 and S -IC. Additional analytical speciation for iron, manganese, and chromium should be considered for samples collected from locations across the site along flowpath transects. Possible locations could include, but are not limited to, monitoring wells MW -7D, MW -11 S/D, BG-2S/D, BG-3S/D, GWA-14S/D, MW-12S/D and other seep/surface water locations which would support delineation and modeling efforts. • Comment Section 7.2 Groundwater Sampling and Analysis, 7.6 Site -Specific Background Concentrations, and Figure 3: The present version of the GAP proposes three background location monitoring well locations BG-IS/D, BG-2S/D, BG-3S/D. It maybe beneficial to move the proposed location of BG-2S/D further to the south to provide even more distance from the ash basins. In addition, technical direction that will serve as the basis of expectations for completion of the site assessment is provided at Attachment 1. Failure to address the deficient items stated above will result in Duke Energy not being in compliance with the stated statutes. Per G.S. 130A -309.209(a) (3) and (4), you must begin implementation of the revised GAP on March 6, 2015 and the Groundwater Assessment Report is due on August 23, 2015. It is our understanding that Duke Energy may have to obtain additional permits to facilitate installation of certain monitoring wells. In the event permits are needed for this purpose, Duke Energy should take all steps necessary consistent with the law to avoid delaying completion of the assessment report. If you have any questions, please contact Bruce Parris at (704) 235-2185. Sincerely, el r S�� 6) � S. Jay Zimmerman, P.G., Acting Director Division of Water Resources Buck Steam Station February 24, 2015 Page 4 of 4 cc: WQROS — MRO WQROS Central Files DENR Secretary - Don van der Vaart HDR (Attn: William Miller) 440 South Church Street, Suite 1000, Charlotte, NC 28202 Attachment 1 Page 1 of 6 Duke Energy GAP Review Issues The items identified in this Groundwater Assessment Plan (GAP) review summary are provided for general discussion for the various parties to agree upon technical direction and content in the revised GAPs, comprehensive site assessments (CSAs), and corrective action plans (CAPS). Groundwater Monitoring 1. A schedule for continued groundwater monitoring is mandated by the Coal Ash Management Act 2014. An interim plan should include at least two rounds of groundwater samples collected and analyzed in 2015. The analytical results of the first round of data collected in 2015 would be included in the CSA report, while the results of the second round would be submitted as a CSA addendum. After CSA data can be evaluated, a plan for continued groundwater monitoring can be developed for implementation in 2016. 2. Sites impacted by inorganics are typically managed using a tiered site analysis which includes four elements as referenced in EPA/600/R-07/139: • Demonstration of active contaminant removal from groundwater & dissolved plume stability; • Determination of the mechanism and rate of attenuation; • Determination of the long-term capacity for attenuation and stability of immobilized contaminants, before, during, and after any proposed remedial activities; and • Design of performance monitoring program, including defining triggers for assessing the remedial action strategy failure, and establishing a contingency plan. This reference and the framework described above should be used as applicable to meet the corrective action requirements found in 15A NCAC 02L.0106. 3. Because of uncertainty concerning the site's ability to attenuate contaminants over the long term given potentially changing geochemical conditions, there is a need to address the elements of the tiered site analysis described above and collect appropriate samples as part of the CSA, CAP development, and continued groundwater monitoring. 4. The Division of Water Resources (Division) Director is responsible for establishing background levels for COPCs in groundwater. This determination is based on information and data provided by the responsible party and may include formal statistical testing using background wells with at least four rounds of data. Wells identified as "background" are subject to periodic review based on a refined understanding of site chemistry and hydrogeologic conditions. In general, each facility must have a background well or wells screened or open to each of the dominant flow systems that occur at the site and are associated with groundwater contamination. Any questions concerning adequacy of background monitoring locations or conditions at the facilities should be directed to the Regional offices. Attachment 1 Page 2 of 6 S. Delineation of the groundwater contaminant plume associated with coal combustion residuals is a requirement of the investigation and if off-site monitoring wells are ultimately required to perform this task, then it is expected that these activities will be completed as part of the groundwater assessment activities and included in the final report. Documentation of the effort to gain off-site access, or right of way permits, will be provided if off-site access is denied or alternate means of assessing the area were not available within the allocated timeframe (such as within right-of-ways). Site Assessment Data Requirements and Sampling Strategy 1. Robust data collection is warranted to support timely completion of site assessments and subsequent corrective action plans because of the impending deadlines for completion of CSAs and CAPs, scale and geologic complexity of the sites, the challenges of modeling heterogeneous systems, and site proximity to potential human and sensitive ecosystem receptors. 2. Robust data collection will be focused along strategically positioned flowpath transect(s) - from ash pond source to potential receptor—as an efficient approach for model development (analytical, geochemical, groundwater flow, and transport) in support of risk assessment and CAP development. Data collected to support evaluation of site conditions along the flowpath transects should be located along or defensibly proximate to the modeled transects. 3. The dataset developed along proposed flowpath transects will include any information needed to determine constituent concentrations, conduct Kd tests, and perform batch geochemical modeling in multiple flow horizons as appropriate. This data will include a) solid phase sample collection for Kd measurement and batch geochemical modeling, inorganic analysis and speciation, and other parameters identified in General Comment #4 of the November 4, 2014 GAP comments issued by DWR, b) solution phase sample collection for total and dissolved inorganic analysis of total concentrations, small pore filtration for dissolved samples, etc., and c) slug, constant/falling head, and packer testing. The solid phase sample mineralogy, total concentration results, re-dox measurements, and other geochemical parameters will be used as input for equilibrium speciation calculations of redox sensitive constituents calculated by PHREEQC or similar program (EPA/540/5-92/018). This geochemical modeling will be performed to identify potential mineral phases, estimated species speciation and concentrations, and will be performed varying key solubility controlling parameters to predict mineral phases, speciation, and concentrations under varying conditions. Solid samples for Kd tests from locations where moderately to strongly reducing conditions are anticipated shall be frozen upon collection and tested in glove box conditions (EPA/600/R-06/112). Refer to EPA/600/R-07/139 Section III for the data collection and characterization needed to support the four -tiered analysis discussed above. 4. Speciations for groundwater and surface water samples should include Fe, Mn, and any COPCs whose speciation state may affect toxicity or mobility (e.g. As, Cr, Se, or others if applicable). This speciation will apply for groundwater samples collected at wells located along proposed Attachment 1 Page 3 of 6 flowpath transects and in wells where these constituents exceed 2L groundwater standards as well as for surface water samples collected within ash impoundments. S. Solid phase samples shall be analyzed for: minerals present, chemical composition of oxides, hydrous Fe, Mn, and AL oxides content; moisture content; particle size analysis; plasticity; specific gravity; porosity; permeability, or other physical properties or analyses needed to provide input to a chosen model. The Division reserves the right to request analysis for organic carbon content, organic carbonate content (as appropriate if site conditions warrant), or ion exchange capacities, if needed to complete the site assessment process. 6. In addition to conducting the SPLP leachable inorganic compounds analysis for selected ash samples to evaluate the potential for leaching of constituents to groundwater, the leachable analysis should also be conducted for some soil samples from locations beneath the ash ponds, within the plume, and outside the plume to evaluate potential contributions from native soils. 7. In addition to collecting solid phase samples onsite for Kd procedures, soil samples should be also collected from unaffected soils within groundwater flow pathway to evaluate Kd(s) or hydrous ferrous oxide. 8. Rock samples for laboratory analyses should be collected as commented in General Comment 4 of the November 4, 2014 GAP comments issued by DWR. This GAP review comment indicated that the sample(s) collected from bedrock well soil and rock cores shall be analyzed, at a minimum, for the following: type of material, formation from which it came, minerals present, chemical composition as oxides, hydrous Fe, Mn, and Al oxides content, surface area, moisture content, etc.; however, these analyses were not mentioned in the GAP. The Division reserves the right to request analysis for organic carbon content, organic carbonate content, and ion exchange capacity if needed to complete the site assessment process. 9. The coal ash and soil analyte lists should match the groundwater analyte lists. 10. Total uranium analysis should be analyzed where total radium is analyzed for groundwater. 11. If analytical results from a seep sample exceed 2L standards, then the area in the vicinity of the sample location should be investigated for groundwater contamination. If analytical results from a surface water sample exceed 2B standards, then the area in the vicinity of the sample location should be investigated for groundwater contamination. 12. Surface water/seep samples should be collected during baseflow conditions and that the groundwater monitoring (water levels and sampling) should occur at about the same time. 13. Measurement of streamflow in selected perennial streams is expected as needed in support of simulation/calibration of flow and transport models; major rivers that serve as groundwater divides are not included in this expectation. Conceptual Model Elements 1. In the CSA report, data gaps remaining should be specifically identified and summarized. 2. Site heterogeneities should be identified and described with respect to: a) their nature, b) their scale and density, c) the extent to which the data collection successfully characterizes them, d) how the modeling accounts for them, e) and how they affect modeling uncertainty. Attachment 1 Page 4 of 6 3. The impact of data gaps and site heterogeneities should be described in relation to the elements developed in the Site Hydrogeologic Conceptual Model and Fate and Transport Model subsections. 4. For sites in the Piedmont or Mountains, the CSA Report should include a subsection within the Site Geology and Hydrogeology Section titled 'Structural Geology'. This section should describe: a) foliations, b) shear zones, c) fracture trace analysis, and d) other structural components anticipated to be relevant to flow and contaminant transport at the site. 5. Duke Energy will include a poster -sized sheet(s) (ANSI E) combining tabulated analytical assessment results (groundwater, surface water, and leachate samples); multiple sheets may be needed to present the data. This should be provided in addition to the individual analytical results tables that will be prepared for the CSA reports. Any questions concerning format or content of the analytical result summaries should be directed to the Regional offices. Geochemical Modeling 1. The Division agrees that a geochemical model "coupled" to a 3-D fate and transport model is inappropriate given the size and complexity of the sites and the extremely large amount of data required to calibrate such a model. Rather, a "batch" geochemical model approach should be sufficient for successfully completing the site assessment and/or corrective action plan. 2. Samples collected for "batch" geochemical analysis should be focused along or defensibly proximate to flowpath transects. 3. To support successful batch geochemical modeling, dissolved groundwater samples collected along a contaminant flowpath transect should be obtained using a 0.1 um filter. This will help ensure a true dissolved phase sample. Note that the dissolved samples are for assessment purposes only and may not be used for purposes of compliance monitoring. If there is uncertainty about which areas/wells will be used in the batch geochemical modeling, the initial round of assessment sampling at the facility can utilize the 0.45 um filter until the contaminant flow path transects are selected. Once determined, Duke Energy can go back and re -sample the wells needed for geochemical modeling using the 0.1 um filter. It is recognized that the use of a 0.1 um filter will be difficult for wells with elevated turbidity; in this case, it is recommended that Duke Energy use two filters in series (the water initially passes through a 0.45 um filter to remove larger particles prior to passing through the 0.1 um filter). Information for a disposable 0.1um field filter designed specifically for sampling groundwater for metal analysis is provided at the following link: http://www.vosstech.com/index.php/products/filters. If field comparisons of 0.1 versus 0.45 micron filtration at several transect wells at a given site show no significant differences between the two methods, then 0.45 micron filters may be used for evaluating the dissolved phase concentrations at that site. 4. In support of the objectives of General Comment #2 of the November 4, 2014 GAP comments issued by DWR, Duke Energy should add a column titled 'relative redox' to the analytical results tables to record the geochemical conditions for that location/sample date. The redox determination should be based on observed DO, ORP, and any other relevant measures and presented for historic and new samples (wells, ash pore water, surface waters, etc.). Relative Attachment 1 Page 5 of 6 redox designations may include "iron reducing", "sulfate reducing', mildly oxidizing, moderately oxidizing, etc. and should be footnoted with a statement about the degree of confidence in the designation based on amount and quality of available data. 5. Duke Energy shall also evaluate: a) spatial geochemical trends across the facility and along selected flow paths, b) temporal geochemical trends where observable (such as for compliance boundary wells), along with the likely reason for the change (e.g. increase in seasonal recharge, pond de -watering and subsequent reversal of groundwater flow direction, inundation of well from river at flood stage, etc.) in support of the CAP. This evaluation step will require a comparison of geochemical conditions over time with rainfall data, notable ash capping, dewatering, disposal/removal, or other plant operations, etc. The quality of existing geochemical data will be evaluated using field notes, calibration records, and consistency in redox measurements (e.g. eH vs. raw ORP). Groundwater Models 1. The technical direction for developing the fate and transport modeling will follow guidelines found in Groundwater Modeling Policy, NCDENR DWCt, May 31, 2007, and discussions conducted between Duke Energy and their consultants with the Division. Ultimate direction for completion of fate and transport models will be provided by the Division. 2. The CAP Report should include a subsection within Groundwater Modeling Results titled 'Site Conceptual Model' that succinctly summarizes, for purposes of model construction, the understanding of the physical and chemical setting of the site and shall include, at a minimum: a) the site setting (hydrogeology, dominant flow zones, heterogeneities, areas of pronounced vertical head gradients, areas of recharge and discharge, spatial distribution of geochemical conditions across the site, and other factors as appropriate), b) source areas and estimated mass loading history, c) receptors, d) chemical behavior of COPCs, and f) likely retention mechanisms for COPCs and how the mechanisms are expected to respond to changes in geochemical conditions. 3. Modeling will be included in the Corrective Action Plan (CAP). The four -tiered analysis previously referenced and appropriate modeling should be conducted, and the mass flux calculations described in the EPA/600/R-07/139 should be performed. 4. The CAP Report shall provide separate subsections for reporting groundwater flow models and fate and transport models. 5. The CAP Report should include subsections within Groundwater Modeling Results titled 'Groundwater Model Development' that describes, for each chosen model: a) purpose of model, built-in assumptions, model extent, grid, layers, boundary conditions, initial conditions, and others as listed in Division guidance. Include in this section a discussion of heterogeneities and how the model(s) account for this (e.g. dual porosity modeling, equivalent porous media approach, etc.). Separate subsections should be developed for the groundwater flow model, fate and transport model, and batch geochemical models, respectively. 6. CAP Reports should include a subsection within Groundwater Modeling Results titled 'Groundwater Model Calibration' that describes, for each model used, the process used to Attachment 1 Page 6 of 6 calibrate the model, the zones of input and calibration variables (for example, hydraulic conductivities) that were used, the actual (measured) versus modeled results for all key variables, and others. Separate subsections should be developed for the groundwater flow model, fate and transport model, and batch geochemical model(s), respectively. 7. CAP Reports should include a subsection within Groundwater Modeling Results titled 'Groundwater Model Sensitivity Analysis' that describes, for each model used, the process used to evaluate model uncertainty, variable ranges tested, and the key sensitivities. Separate subsections should be developed for the groundwater flow model, fate and transport model, and batch geochemical model(s), respectively. Development of Kd Terms 1. Kd testing and modeling in support of CAP development should include all COPCs found above the NCAC 15A 02L .0106(8) standards in ash leachate, ash pore water, or compliance boundary well groundwater samples. 2. The selected Kd used in transport modeling often will profoundly affect the results. Duke Energy should acknowledge this concept and document within the transport modeling section(s) of the CAP all widely recognized limitations inherent in the estimation of the Kd term. Risk Assessment 1. Provide references for guidance and potential sampling methodology related to conducting a baseline ecological risk assessment or habitat assessment, if warranted.