Loading...
HomeMy WebLinkAboutNC0004979_Allen_Appendix F_20191231Corrective Action Plan Update December 2019 Duke Energy Carolinas, LLC - Allen Steam Station APPENDIX F SynTerra FRACTURED BEDROCK EVALUATION REPORT tip synTerra FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION 253 PLANT ALLEN ROAD BELMONT, NC 28012 DECEMBER 2019 PREPARED FOR & DUKE Vo ENERGY. CAROLINAF DUKE ENERGY CAROLINAS, LLC Lee Drago Project Scientist Chris Suttell, NC LG 2426 Project Manager Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC - Allen Steam Station SynTerra TABLE OF CONTENTS SECTION PAGE 1.0 INTRODUCTION.........................................................................................................1-1 2.0 LINEAMENT EVALUATION.................................................................................... 2-1 2.1 Imagery Selection......................................................................................................2-1 2.2 Lineament Selection and Summary........................................................................ 2-1 3.0 DEEP BEDROCK EVALUATION FIELD PROCEDURES AND IMPLEMENTATION................................................................................................... 3-1 3.1 Purpose....................................................................................................................... 3-1 3.2 Drilling Methodology and Well Design................................................................ 3-1 3.3 Well Development.................................................................................................... 3-4 3.4 Hydraulic Conductivity Measurements................................................................ 3-4 3.5 Deep Bedrock Groundwater Sampling.................................................................. 3-4 4.0 BEDROCK FRACTURE EVALUATION METHODS ........................................... 4-1 4.1 Flow Profile Characterization................................................................................. 4-1 4.2 Fracture Hydraulic Apertures.................................................................................4-3 4.3 Fracture Spacing........................................................................................................4-4 4.4 Fracture Orientation Plots and Statistics............................................................... 4-5 4.5 Summary of Bedrock Fracture Characteristics..................................................... 4-6 4.6 Implications of Bedrock Fracture Network for Groundwater Flow..................4-6 5.0 BEDROCK MATRIX CHARACTERISTICS...........................................................5-1 5.1 Sample Selection........................................................................................................5-1 5.2 Matrix Porosity and Bulk Density.......................................................................... 5-1 5.3 Petrographic Evaluation.......................................................................................... 5-2 5.4 Implications of Bedrock Matrix Characteristics for Flow and Transport ......... 5-2 6.0 REFERENCES................................................................................................................ 6-1 Page i Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station LIST OF FIGURES Figure 1A 1949 USGS Topographic Map without Lineaments Figure 1B 1949 USGS Topographic Map with Lineaments Figure 2A 1948 Aerial Photograph without Lineaments Figure 2B 1948 Aerial Photograph with Lineaments Figure 3 Deep Bedrock Evaluation Locations Figure 4 Hydraulic Conductivity Vertical Profiles Figure 5 Hydraulic Aperture Vertical Profiles Figure 6 Fracture Spacing Vertical Profile Figure 7 General Cross Section A -A' Figure 8 General Cross Section B-B' Figure 9 General Cross Section C-C' Figure 10 General Cross Section D-D' Figure 11 General Cross Section E-E' LIST OF TABLES SynTerra Table 1 Analytical Results for Deep Bedrock Wells Table 2 Porosity and Bulk Density Results LIST OF ATTACHMENTS Attachment A Boring Logs, Well Construction Records, and Well Development Logs Attachment B USGS FLASH Results and Calculations Attachment C Geophysical Logging Report Attachment D Petrographic Evaluation of Core Samples Page ii Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra LIST OF ACRONYMS 02L North Carolina Administrative Code, Title 15A, Subchapter 02L, Groundwater Classification and Standards Allen Allen Steam Station ASTM American Society for Testing and Materials bgs below ground surface CAMA Coal Ash Management Act CAP Corrective Action Plan Core Labs Core Laboratories COI Constituent of Interest CSA Comprehensive Site Assessment DEC Duke Energy Carolinas Duke Energy Duke Energy Carolinas, LLC en hydraulic aperture FLASH Flow -Log Analysis of Single Holes g acceleration due to gravity g gram 9/cm3 grams per cubic centimeter GEL Gel Solutions gpm gallons per minute HPF heat pulse flowmeter I.D. inner diameter IDW investigation derived waste IMAC Interm Maximum Allowable Concentrations IMP Interim Monitoring Plan Ka distribution coefficient µ viscosity of water µg/L micrograms per liter µm microns mm millimeters n number of individual fractures in a flow layer NCAC North Carolina Administrative Code NCDENR North Carolina Department of Environment and Natural Resources NTU nephelometric turbidity unit p W density of water Page iii Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station LIST OF ACRONYMS (CONTINUED) PSI Pounds per Square Inch PVC polyvinyl chloride Q flow rate ro radius of influence rW radius of borehole s well drawdown SAEDACCO South Atlantic Environmental Drilling and Construction Co. Site Allen Steam Station (entire property) SP spontaneous potential SPR single point resistance Station Allen Steam Station (actual facility) TD total depth USGS United States Geological Survey SynTerra Page iv Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra 1.0 INTRODUCTION This report provides a detailed characterization of the bedrock near the ash basin at the Allen Steam Station (Allen, Site, or Station). The characterization is based on additional evaluation of lineaments, the bedrock fracture system, and the bedrock matrix. The information in this report supplements information presented in the Comprehensive Site Assessment (CSA) Update (SynTerra, 2018). This report also supports the development of groundwater remediation alternatives that are part of the Allen Corrective Action Plan (CAP). Page 1-1 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra 2.0 LINEAMENT EVALUATION To supplement the CSA bedrock characterization and support the CAP for the ash basins and coal pile at Allen, SynTerra evaluated lineaments in the vicinity of the Site. Lineaments are linear features at ground surface that might have resulted from underlying bedrock fractures, fracture zones, faults, or other geologic structures. Lineaments represent the approximate area of preferential groundwater flow zones in bedrock. 2.1 Imagery Selection Aerial imagery and topographic survey information used for the lineament evaluation met the following criteria: • The image or survey must have been produced prior to the first ash basin construction (1957). • The scale and resolution are sufficiently detailed to identify apparent linear features not caused by anthropogenic activity. The following image and survey data were selected: • 1949 Clover United States Geological Survey (USGS) Topographic Map (1:62500) and 1949 Charlotte West North Carolina Topographic Map (1:24000) obtained from the USGS store at http://store.usgs.gov/b2c usgs/b2c/start/%%%28xcm =r3standardpitrex_prd%%%29/.do (Figure 1A) • May 15, 1948, Aerial Photograph obtained from the USGS Earth Explorer website at http://earthexplorer.usgs.gov. (Figure 2A) 2.2 Lineament Selection and Summary The following list developed by the USGS (Clark et al., 2016) summarizes types of features that were used to identify lineaments in this evaluation: • Linear topographic features • Straight stream segments • Aligned gaps in ridges • Vegetation Areas near the Allen ash basins and coal pile — between the South Fork Catawba River and the Catawba River (Lake Wylie), and between the northern and southern extents of the Duke Energy Carolinas parcel lines — were visually reviewed to identify linear Page 2-1 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra features. The selected aerial photograph and topographic maps were evaluated separately. Lineaments identified on the 1949 USGS topographic survey map are presented on Figure 1B, and lineaments identified on the 1948 aerial photograph are presented on Figure 2B. Lineament orientations from each image have been summarized on a 360- degree compass rose to identify general trends. Observations from the topographic survey and aerial photograph review are summarized as follows: 1949 USGS Topographic Maps • 16 linear features identified • Primary group oriented southeast — northwest with 62.5 percent of the identified lineaments between azimuths of 88 degrees and 126 degrees 1950 Aerial Photograph • 14 linear features identified • Primary group oriented southeast — northwest with 64.3 percent of the identified lineaments between azimuths of 87 degrees and 130 degrees General agreement on seven linear features (approximately 50 percent). These data indicate a predominant lineament orientation of northwest -southeast, with relatively fewer cross -cutting lineaments of various orientations. Page 2-2 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra 3.0 DEEP BEDROCK EVALUATION FIELD PROCEDURES AND IMPLEMENTATION 3.1 Purpose To refine the Site conceptual model and further improve the accuracy of model predictions that are being prepared for the CAP, additional bedrock wells were recommended for installation adjacent to ash basin dams and in areas of known bedrock impacts. The locations selected for additional bedrock evaluation are presented on Figure 3. Additional data regarding the occurrence of water -bearing fracture(s) and the presence or absence of constituents potentially derived from the ash basins were needed to further evaluate constituent transport and distribution. Therefore, the scope of work described in this section was implemented to evaluate deep bedrock groundwater quality near the dam structures and refine hydraulic conductivity assumptions for the bedrock matrix and potential water -bearing fractures in the area. 3.2 Drilling Methodology and Well Design Monitoring wells were installed in accordance with 15A North Carolina Administrative Code (NCAC) 02C .0108 Standards of Construction: Wells Other Than Water Supply. Drilling was conducted by South Atlantic Environmental Drilling and Construction Co. (SAEDACCO). Drilling oversight and lithologic logging of drill cuttings were conducted by SynTerra scientists, with extensive training and education in geology. Boring advancement and well design/installation were similar for the five deep bedrock evaluation locations. Mud rotary drilling techniques were used to drill through unconsolidated material to refusal (top of bedrock) at each location. These borings measured 143/4 inches in diameter. A permanent 10-inch diameter, schedule 80 flush -joint threaded polyvinyl chloride (PVC) outer casing was installed to the depth of mud rotary refusal. The casing was fitted with a grout shoe seated into the top of rock and tremie-grouted into place. Any casings that exceeded 100 feet were grouted in at least two lifts with approximately 80 feet per lift. After the grout cured (at least 24 hours), pneumatic air hammer technology utilizing a 9.875-inch drill bit advanced the boring through the 10-inch casing to a target depth. The target depth was approximately 30 feet below the screen interval of the deepest adjacent monitoring well where constituents of interest (COIs) were detected at concentrations greater than North Carolina Administrative Code, Title 15A, Subchapter 02L, Groundwater Classification and Standards (02L), Interim Maximum Allowable Concentrations (IMAC), or background values. Once the boring reached its target depth, a 6-inch diameter, schedule 80 flush -joint threaded PVC casing was installed and tremie-grouted into place. Any casings that exceeded 100 feet were Page 3-1 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra grouted in at least two lifts with approximately 80 feet per lift. After the grout cured (at least 24 hours), pneumatic air hammer technology utilizing a 5.875-inch drill bit advanced the boring to a prescribed total depth (TD) of 500 feet below ground surface (bgs), with the exception of GWA-3BRL. At GWA-3BRL, a notable water -bearing zone was encountered at 466 feet bgs, which produced approximately 5 gallons per minute (gpm) under flowing, artesian conditions. Drilling continued until the water production of the borehole outpaced the investigation derived waste (IDW) containment capabilities. The boring was completed at a TD of 472 feet bgs. During geophysical evaluation of the borehole, televiewer logging indicated multiple fractures at the approximate depth of 466 feet bgs. During the air hammer boring advancement below the 6-inch PVC casing, potential fractures were noted based on driller and drill rig observations. Estimated yield of water -bearing zones was determined through downhole circulation after each 10-foot run. Upon determination of a potential water -bearing fracture or fracture zone [yielding approximately 1 (gpm) or more], a sample was collected by air -lifting formation water from the borehole. The sample was screened for boron with a Hach TNT877 spectrophotometer. Samples were field -filtered with a 0.45 micron (µm) filter to reduce influence of turbidity (i.e., suspended solids) on screening results. The Hach TNT877 test kit enables detection of boron concentrations from 50 micrograms per liter (µg/L) to 2,500 µg/L (note the 02L standard for boron is 700 µg/L). Screening results represent a composite sample from the length of the packered-off interval within the open borehole or the entire open borehole. Screening results provided a profile of constituent concentrations, with depth, and were considered during the well design process. The presence or absence of boron at depth is significant for refining groundwater model assumptions and defining the extent of constituents potentially derived from the ash basins. Boron concentrations greater than the 02L standard of 700 µg/L were not encountered during the drilling process. Borings were advanced until reaching the prescribed TD to help delineate the vertical extent of boron to concentrations less than the regulatory standard. Vertical evaluation at each location was deemed complete when the specified TD was reached. Field screening results from each boring at TD indicated concentrations less than the regulatory standard. Upon reaching TD at each boring, geophysical logging was conducted using the following downhole tools: acoustic televiewer, optical televiewer, caliper, fluid conductivity, fluid temperature, single point resistance (SPR), spontaneous potential Page 3-2 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra (SP), and heat pulse flowmeter (HPF). At the northernmost boring location downgradient of the retired ash basin dam (GWA-5BRL), and at the southernmost boring location downgradient of the active ash basin dam (AB-10BRL), geophysical logging was completed in the upper, or "top," column of open borehole throughout existing screened intervals prior to installation of the 6-inch surface casing. After the surface casing was drilled through and the borehole reached TD, the second, or "bottom," column of open borehole was also logged. At each deep bedrock well, with the exception of GWA-3BRL, a portion of the open borehole was backfilled with a bentonite clay plug to facilitate well installation at the desired screened interval, which was identified based on field boron screening and geophysical logs. Well materials were hung (suspended from a lift ring) to avoid casing deflection while the wells were constructed. Due to the water -bearing zone encountered at 466 feet bgs at GWA-3BRL, the screen was installed at the bottom of the borehole (462-472 feet bgs). Well design was determined based on a review of field data — including the boron screening results, lithologic logs, and geophysical logs — after consultation with North Carolina licensed geologists, the groundwater monitoring team, and Duke Energy. Well screen intervals were selected based on the shallowest water -bearing fracture zone that was identified at least 30 feet deeper than the existing bedrock well screen and where boron concentrations, reported from the field screening process, were less than 700 µg/L. Each well was constructed of flush -joint threaded 2-inch inner diameter (I.D.) schedule 40 PVC terminating with a 10-foot long 0.010-inch machine -slotted screen packed with a No. 2 sand filter pack. The annular space between the borehole wall and prepacked well screens for each of the wells was also filled with a No. 2 sand filter pack. The sand pack extends 2-3 feet above the top of the prepacked screen at each well. The well screen was isolated from shallower intervals with a seal that consists of a minimum of 3 feet of coated pelletized bentonite placed atop the sand pack. In some cases, an extensive column of bentonite plug was emplaced above the sand pack (up to approximately 80 feet thick at GWA-3BRL) to mitigate risk of the artesian nature of the borehole negatively affecting the well construction. The remainder of the annular space was backfilled into the outer casing with AquaGuard® via tremie pipe to reduce the risk of grout impacts to groundwater quality. AquaGuard® was also used within the outer casing to fill the remaining annular space to ground surface. Page 3-3 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra Monitoring wells were completed with aboveground aluminum protective casings with locking caps and well tags. The protective covers were secured and completed in a concrete collar and a minimum 2-square-foot concrete pad with bollards (with the exception of GWA-3BRL, GWA-4BRL, and GWA-5BRL). Due to the high traffic area on the eastern portion of the ash basin dam, GWA-3BRL, GWA-4BRL, and GWA-5BRL were completed with highway -grade flush mounted vaults. Well construction details and lithologic logs are provided in Attachment A. 3.3 Well Development The monitoring wells were developed via air -lifting techniques (i.e., air compressor and tremie pipe). Development continued until water quality indicator parameters (e.g., conductivity, pH, temperature) were generally stable and turbidity was measured at acceptable levels [10 nephelometric turbidity units (NTUs) or less]. Development records provided in Attachment A include development method(s), water volume removed, and field measurements of temperature, pH, conductivity, and turbidity. 3.4 Hydraulic Conductivity Measurements Rising head slug tests, were completed at five of the six deep/lower bedrock wells. Artesian conditions were encountered within the screened interval at GWA-3BRL, which prevented slug tests from being conducted at this location. Slug tests were performed in general accordance with American Society for Testing and Materials (ASTM) D4044-96 Standard Test Method (Field Procedure) for Instantaneous Change in Head (Slug) Tests for Determining Hydraulic Properties of Aquifers and North Carolina Department of Environment and Natural Resources (NCDENR) Performance and Analysis of Aquifer Slug Test and Pumping Test Policy, dated May 31, 2007. 3.5 Deep Bedrock Groundwater Sampling After well installation, development, and slug testing, groundwater samples were collected at the six deep/lower bedrock wells. Samples were analyzed for a suite of chemistry parameters consistent with the [North Carolina Coal Ash Management Act (CAMA) Interim Monitoring Plan (IMP) parameter list]. Samples were collected in accordance with the Low Flow Sampling Plan for Duke Energy Facilities (Duke Energy, June 2015) after water quality parameters stabilized. Analytical results for the deep bedrock wells at Allen are presented in Table 1. Page 3-4 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra 4.0 BEDROCK FRACTURE EVALUATION METHODS The deep bedrock fracture system at the Site was further evaluated using bedrock borehole logging data to characterize the general depths of flow zones at borehole locations (to target for monitoring well screen placement), hydraulic conductivity, the hydraulic apertures of fractures and fracture spacing, and the in -situ orientations of bedrock fractures. These evaluations provide a comprehensive assessment of the bedrock fracture system in support of the CAP. 4.1 Flow Profile Characterization FLASH (Flow -Log Analysis of Single Holes), a computer program developed by the USGS, uses HPF data for ambient and pumping conditions to estimate transmissivity profiles along single boreholes (Day -Lewis et al., 2011). FLASH software was used to analyze the HPF data from the deep bedrock boreholes and generate a transmissivity profile for each logged borehole. To produce a unique fit to the data, FLASH estimates either transmissivity or radius of influence. All model iterations used an estimated radius of influence of 1,000 feet. Calculated transmissivity results are relatively insensitive to this parameter, but a conservatively large estimate was selected in order to produce conservatively high estimates for transmissivity. The "objective function" for the FLASH code incorporates the mean squared error between interpreted (from borehole HPF data) and predicted flow profiles and the sum of squared differences between the water level in the borehole and the far -field head. For each borehole, the automated solver in FLASH computes until the objective function reached a minimum value. Total transmissivity for each borehole was also calculated using the Thiem Equation for steady-state flow to a well in a confined aquifer (Thiem, 1906): Q ! ro T = 21c(s) In I ram, I where T is transmissivity, Q is flow rate, s is drawdown, n is radius of influence, and rw is the radius of the borehole. For boreholes with a Thiem calculated transmissivity that was greater than the FLASH estimated total transmissivity, the transmissivity values for borehole intervals from FLASH were scaled up proportionally to produce a total FLASH transmissivity equal to the transmissivity value calculated for the entire borehole. Results from FLASH analysis of the HPF data from four boreholes are presented in detail in Attachment B. One location, GWA-3BRL, exhibited artesian conditions, Page 4-1 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra limiting HPF logging data to ambient conditions only (ambient flow was upward). Therefore, no FLASH analysis was conducted for GWA-3BRL. Transmissivity values of individual bedrock intervals, calculated using FLASH, were divided by interval vertical length to calculate hydraulic conductivity values, which are illustrated versus depth below top of bedrock on Figure 4. Calculated deep bedrock hydraulic conductivity values based on FLASH analysis range from approximately 0.0001 feet per day to 10 feet per day. In general, bedrock hydraulic conductivity decreases with increasing depth below the top of bedrock. The highest calculated hydraulic conductivity values were from the upper portion of the borehole at AB-10BRL, which televiewer logging indicated to be highly fractured (Attachment C); this well location is also near a mapped lineament (Figure 1B). For comparison with the data calculated using FLASH, Figure 4 also shows hydraulic conductivity based on slug test results for the completed deep bedrock monitoring wells. These data are fewer than the extensive FLASH -based dataset but also fit within the overall data distribution based on FLASH analysis. At GWA-3BRL artesian conditions hindered hydraulic conductivity estimation using FLASH or slug testing. However, other data were available to estimate hydraulic conductivity. After well installation, SynTerra installed a pressure gauge on the deep bedrock well. When GWA-3BRL equilibrated to static conditions, SynTerra observed 16 pounds per square inch (PSI) of pressure at the well head, which is equivalent to approximately 37 feet of water above the top of the well. Ambient HPF data indicated upward flow from the bottom to the top of the borehole, so it is interpreted that the artesian pressure represents the hydraulic head of the water -bearing zone at 466 bgs that was observed during drilling. The increase in water production during drilling at 466 feet bgs was approximately 5 gpm, with under flowing artesian conditions. Under flowing artesian conditions, the water level was 37 feet below the static level. Using a drawdown value of 37 feet and pumping rate of 5 gpm, the Thiem equation was used to estimate transmissivity. The resulting hydraulic conductivity estimate for the screened interval of well GWA-3BRL, which includes the water -bearing zone, is 3 feet per day (Figure 4). In general, hydraulic conductivity values decrease with increasing depth within the bedrock. Most of the deep bedrock borehole intervals did not indicate any notable transmissivity (or hydraulic conductivity) based on HPF data; therefore, they are not included in this analysis. In addition, monitoring wells were installed at depths interpreted to have the most significant water -bearing fractures. Therefore, the overall Page 4-2 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra hydraulic conductivity of the bedrock fracture system is lower than suggested by the data shown on Figure 4. 4.2 Fracture Hydraulic Apertures Transmissivity data generated by FLASH were also used to estimate the average hydraulic aperture (en) for individual bedrock intervals using the local cubic law (Steele, 2006): 12Tµ eh = P,N9n where T is transmissivity, µ is the viscosity of water, pw is the density of water, g is the acceleration due to gravity, and n is the number of individual fractures in the flow layer. Bedrock fractures are rough, so fracture widths (apertures) vary at different points within the fracture. The hydraulic aperture is the width of an idealized parallel - plate opening with the same transmissivity as an actual, rough -walled fracture, and it is approximated by the geometric mean of the individual aperture values within the fracture (Keller, 1998). Average hydraulic apertures were estimated for each deep bedrock borehole interval with a transmissivity greater than zero. The number of fractures in each zone was determined from the fracture summary table provided in the geophysical evaluation report by GEL Geophysics, LLC (GEL) (Attachment Q. Only "open major" and "open minor" fractures identified by GEL were included in the fracture count for each zone; "closed" fractures were excluded. For layers without any identified open fractures but with measurable transmissivity, it is assumed that one fracture was present. Based on HPF data and FLASH analysis, mean hydraulic apertures of bedrock fractures at the Site generally range from approximately 0.01 millimeters (mm) to 0.40 mm (10 µm to 400 µm) (Figure 5). The highest calculated hydraulic aperture values were from the upper portion of the borehole at AB-10BRL, which televiewer logging indicated to be highly fractured (Attachment C); this well location is also near a mapped lineament (Figure 1B). The average hydraulic aperture for the fractures within the water -bearing zone at 466 BGS at borehole GWA-3BRL was calculated to be 0.2 mm, or 200 µm (Figure 5). For comparison, Figure 5 shows fracture apertures based on slug test results and fracture logging data for the completed deep bedrock monitoring wells. These data are Page 4-3 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra fewer than the extensive FLASH -based dataset but fit within the overall data distribution based on FLASH analysis In general, hydraulic apertures decrease with increasing depth within the bedrock. As noted above, many of the bedrock borehole intervals logged using HPF did not indicate any significant contribution to flow within the borehole. Most of these intervals had interpreted open fractures, but indicated negligible (approximately zero) transmissivity, and therefore were not used in fracture aperture calculations. Those depth intervals have hydraulic apertures near zero. This fracture aperture evaluation represents only the most transmissive fractures within each logged bedrock borehole. Therefore, the overall apertures within the bedrock fracture system are lower than suggested by the data shown on Figure 5. 4.3 Fracture Spacing Fracture spacing for each borehole interval was calculated by dividing the length of the interval by the number of open fractures identified in that interval. For intervals that did not have any identified open fractures and had an estimated transmissivity of zero, it was assumed that there were no fractures in that interval; therefore, no fracture spacing was calculated for that interval. Televiewer logging results (discussed below) from the combined dataset indicated approximately 147 open fractures identified by GEL in 1,746 vertical feet of logging at the five logged bedrock boreholes, which indicates an overall average spacing of 11.9 feet (vertical separation) between interpreted open fractures. However, the frequency of dipping bedrock fractures is greater than that indicated from vertical borehole data (Morin et al., 1997). Within the investigated depth intervals, the bedrock at the Site shows variable degrees of fracturing (Attachment C). Televiewer logs at AB-10BRL and GWA-5BRL showed interpreted open fractures throughout most of their logged depth intervals; both of those wells are near mapped lineaments (Figure 113). In contrast, televiewer logs for GWA-3BRL and GWA-4BRL showed no interpreted open fractures between approximate depths of 250 feet and 450 feet. Where present, fractures of various cross -cutting orientations were identified, suggesting that fractures intersect one another and produce an overall, interconnected fracture network. Figure 6 shows the mean vertical spacing of open fractures in bedrock intervals identified as relatively transmissive based on HPF logging; these intervals were evaluated using FLASH software to calculate hydraulic apertures shown on Figure 5. Fracture spacings within these more transmissive bedrock intervals are smaller than the overall average for the bedrock. These data suggest that fracture spacing within transmissive bedrock intervals is relatively consistent with depth below the top of rock. Page 4-4 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra However, the upper portion of borehole AB-10BRL shows closely spaced fractures, consistent with the relatively high hydraulic conductivity values noted above. 4.4 Fracture Orientation Plots and Statistics In -situ bedrock fracture data measured at five deep/lower bedrock boreholes by GEL using a combination of optical and acoustic televiewer are summarized as bedrock fracture tables, stereonet plots, and rose diagrams of fracture orientation statistics in Attachment C. GEL classified each identified fracture as either "closed," "minor open," or "major open" based on flow logging or other evidence. The two "open" classes were evaluated in terms of orientation; "closed" fracture orientations were compared qualitatively. Bedrock fracture orientations logged at each deep bedrock borehole indicate a wide range of fracture orientations with no predominant, consistent fracture sets. The absence of a Site -wide preferential fracture orientation is illustrated on the "All Wells" stereonets provided in Attachment C. General observations for the fractures GEL characterized as open at the five logged boreholes are as follows: • AB-10BRL: Scattered fracture orientations with a wide range of dip magnitudes and directions; the upper portion of the borehole (approximately 50 feet to 100 feet) is highly fractured; this well location is near a mapped lineament (Figure 1B). • GWA-3BRL: Relatively few fractures with wide range of orientations, but most dip west or southwest with a range of dip magnitudes; no interpreted open fractures between approximate depths of 250 feet and 450 feet. • GWA-4BRL: No significant trend; wide range of dip magnitudes and orientations; no interpreted open fractures between approximate depths of 250 feet and 450 feet. • GWA-5BRL: No significant trend; fractures mostly dip gently with a wide range of orientations, and with steeper cross -cutting fractures also with a wide range of orientations. • GWA-6BRL: Predominant fractures strike west-southwest to east-northeast, with a gentle to moderate dip to the south-southeast and steep secondary cross- cutting fractures that strike north-northwest and south-southeast. Page 4-5 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra Overall, the fracture data indicate a wide range of dip angles and dip directions. The cross sections presented on Figures 7 to 11 illustrate at a conceptual level the absence of any predominant fracture set. The relative lengths of fractures shown on the cross sections decrease with depth to illustrate, at a conceptual level, that the degree of overall fracturing decreases with depth. However, the lengths and spacings of fractures are conceptual and qualitative. As noted above, the overall average vertical spacing between open fractures is approximately 18.7 feet; therefore, fractures at the Site are too numerous to illustrate on the cross sections. In -situ fracture lengths are impractical to measure, but Gale (1982) suggested that typical fracture lengths may be on the order of 3 to 4 times the fracture spacing. 4.5 Summary of Bedrock Fracture Characteristics Overall, the bedrock hydraulic conductivity near the ash basins and coal pile decreases with increasing depth below the top of rock. This finding is consistent with the literature. Gale (1982) showed that bedrock well yield and fracture permeability decrease systematically as a function of depth. Neretnieks (1985) also showed a systematic decline in bulk bedrock hydraulic conductivity with increasing depth. Fracture spacing in the logged intervals of the bedrock are relatively consistent with depth below the top of rock. This finding is consistent with data reported for a variety of rock types by Snow (1968). Overall, calculated fracture apertures decrease with increasing depth in the deep bedrock. This finding is also consistent with information reported in the literature. Snow (1968) published fracture aperture as a function of depth for several rock types, including crystalline rocks such as granite, gneiss, and schist, and concluded that fracture apertures generally decrease with increasing depth. With increasing depth, the weight of the overlying rock increases. This increases the effective stress and causes the fracture walls to deform and flatten, reducing fracture apertures with increasing depth. The available data do not indicate any predominant interconnected bedrock fracture sets near the ash basins and coal pile at Allen. Overall, a wide range of open fracture dip angles and dip directions is observed. 4.6 Implications of Bedrock Fracture Network for Groundwater Flow Based on the orientations of lineaments and open bedrock fractures near the ash basins and coal pile at Allen, horizontal groundwater flow within the bedrock should occur approximately parallel to the hydraulic gradient, with no preferential flow direction (i.e., no expected, significant anisotropy). The lineaments are approximately east -west, Page 4-6 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra approximately parallel to the prevailing eastward horizontal hydraulic gradient toward Lake Wylie. The absence of any significant, predominant oblique fracture set indicates that the general orientations of groundwater flow should be in the downgradient direction, toward Lake Wylie. Consistent with this interpretation, the current groundwater flow model for Allen does not simulate plan -view anisotropy. The observed decline in bedrock hydraulic conductivity and hydraulic aperture with increasing depth is consistent with expectations based on the literature and indicates that the overall volumetric rate of groundwater flow in the bedrock decreases with depth. Page 4-7 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra 5.0 BEDROCK MATRIX CHARACTERISTICS Core Laboratories (Core Labs) analyzed bedrock rock core samples for porosity, bulk density, and thin section petrography. Data provided by Core Labs can be used to evaluate the potential influence of matrix diffusion and sorption on constituent fate and transport within the fractured bedrock system at Allen. 5.1 Sample Selection Rock core samples were selected from three bedrock locations, AB-22, GWA-5, and GWA-6, which represent areas of affected groundwater migration, east and northeast of the ash basin (Figure 3). Samples were chosen from discrete options of rock core with the most notable weathering of fracture surfaces, as these are interpreted to coincide with zones of preferential groundwater flow. Sample locations and depth intervals were: • AB-22BR: o 174.5 feet bgs o 204 feet bgs • AB-22BRL: o 246 feet bgs • GWA-5BR: o 135 feet bgs o 161.5 feet bgs • GWA-6BR: o 138 feet bgs o 190 feet bgs 5.2 Matrix Porosity and Bulk Density Core Laboratories prepared samples by pulling 1-inch-diameter plugs drilled into the rock core and trimming into right cylinders with a diamond -blade trim saw. Samples were then cleaned by Soxhlet extraction and oven -dried at 240' F to weight equilibrium (+/- 0.001 g). Rock core samples were analyzed for porosity using Boyle's Law technique by measuring grain volume and pore volume at ambient conditions. Grain density values Page 5-1 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra were calculated by direct measurement of grain volume and weight on the dried plug samples. Grain volume was measured by Boyle's Law technique. Results from the matrix porosity and bulk density analysis are presented in Table 2. The reported matrix porosity values ranged from 0.49 percent to 5.16 percent, with an average of 1.88 percent. Bulk density ranged from 2.653 to 2.951 grams per cubic centimeter, with an average of 2.784 grams per cubic centimeter. 5.3 Petrographic Evaluation Thin sections were prepared by impregnating the samples with epoxy to augment cohesion and to prevent loss of material during grinding. Each thinly sliced sample was mounted on a slide and ground to an approximate thickness of 30 microns. Thin sections were stained to aid in mineral identification and analyzed using standard petrographic techniques. The thin section petrographic evaluation results are presented in Attachment D. Core Labs classified all seven samples as igneous rocks. Five samples are intrusive (plutonic) and two are extrusive (volcanic). The plutonic igneous rocks are classified as quartz diorite and tonalite. The volcanic igneous rocks are classified as hornblende andesite. The principal minerals are plagioclase, quartz, biotite, and amphibole. Accessory minerals include K-feldspar, epidote, pyrite, magnetite, apatite, and sphene. Many plagioclase crystals have been altered into sericite/illitic clays. Biotite and amphibole crystals are locally altered into chlorite. 5.4 Implications of Bedrock Matrix Characteristics for Flow and Transport The reported matrix porosity values are within the range of those reported for crystalline rocks in the literature (Freeze and Cherry, 1979; L6fgren, 2004; Zhou et al., 2008; Ademeso et al., 2012). The presence of measurable matrix porosity suggests that matrix diffusion contributes to plume retardation at the Site (Lipson et al., 2005). In addition, the identification of sericite (a mixture of muscovite, illite, or paragonite produced by hydrothermal alteration of feldspars) in all of the samples indicates the bedrock has the capacity to sorb boron and other elements associated with coal ash. The influences of matrix diffusion and sorption are implicitly included in the groundwater flow and transport model as a component of the constituent partition coefficient (Ka) term used for the bedrock layers. Page 5-2 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra 6.0 REFERENCES Ademeso, O.A., J.A. Adekoya and B.M. Olaleye. 2012. The Inter -relationship of Bulk Density and Porosity of Some Crystalline Basement Complex Rocks: A Case Study of Some Rock Types In Southwestern Nigeria. Journal of Engineering, Vol. 2, No. 4, pp. 555-562. Clark, S.F., Moore, R.B., Ferguson, E.W., Picard, M.Z. 2016. "Criteria and Methods for Fracture Trace Analysis of the New Hampshire Bedrock Aquifer." U.S. Geological Survey Open File Report 96-479. Day -Lewis, F.D., C.D. Johnson, F.L. Paillet, and K.J. Halford. 2011. FLASH: A Computer Program for Flow -Log Analysis of Single Holes. Computer software. Version 1.0. U.S. Geological Survey. Duke Energy. 2015. Low Flow Sampling Plan, Duke Energy Facilities, Ash Basin Groundwater Assessment Program, North Carolina. Freeze, R.A. and J.A. Cherry. 1979. Groundwater. Prentice -Hall, Inc. Englewood Cliffs, New Jersey. 604 p. Gale, J.E. 1982. Assessing the permeability characteristics of fractured rock. Geological Society of America Special paper 189. Keller, A. 1998. High -resolution, non-destructive measurement and characterization of fracture apertures. Int. J. Rock Mech. Min. Sci., 35(8), pp. 1037-1050. Lipson, D.S, B.H. Kueper and M.J. Gefell. 2005. Matrix diffusion -derived plume attenuation in fractured bedrock. Ground Water, Vol. 43, No. 1, pp. 30-39. L6fgren, M. 2004. Diffusive properties of granitic rock as measured by in -situ electrical methods. Doctoral Thesis, Department of Chemical Engineering and Technology Royal Institute of Technology, Stockholm, Sweden. Morin, R.H., G.B. Carleton, and S. Poirier. 1997. Fractured -Aquifer Hydrogeology from Geophysical Logs; The Passaic Formation, New Jersey. Ground Water, 35(2), 328- 338. Neretnieks, I. 1985. Transport in fractured rocks. Hydrology of Rocks of Low Permeability. Memoirs. International Association of Hydrogeologists, v. XVII, part 1 of 2, pp. 301-318. Page 6-1 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station SynTerra Snow, D.T. 1968. Rock fracture spacings, openings, and porosities." J. Soil Mech. Found. Div., Proc. Amer. Soc. Civil Engrs., v. 94, pp. 73-91. Steele, A., D.A. Reynolds, B.H. Kueper, and D.N. Lerner. 2006. "Field determination of mechanical aperture, entry pressure and relative permeability of fractures using NAPL injection." Geotechnique 56, no. 1, pp. 27-38. SynTerra. 2018. Comprehensive Site Assessment Update — Allen Steam Station — January 2018. Terrell, NC. Thiem, G. 1906. Hydrologische methoden. Leipzig: Gebhardt. Zhou, Q., H.H. Liu and F.J. Molz. 2008. Field -scale effective matrix diffusion coefficient for fractured rock: results from literature survey. Lawrence Berkeley National Laboratory. https:Hescholarship.org/uc/item/3dw5c7ff. Page 6-2 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station FIGURES SynTerra \_ In o \ ant ti i ALLEN STEAM ■ f STATION PARCEL LINE 1 L j •, / j _ ( FUTURE ALLEN STEAM STATION i I I �7'' �- ,T\ _ - - r i�' • RETIRED ASH BASIN �I o`�'so , \ �\ WASTE BOUNDARY (APPROXIMATE) oil �� � / \ • / ACTIVE ASH BASIN f ■ I Lbwert 4r SHORELINE OF LAKE WYLIE O� Bridge (CATAWBA RIVER) ,. S9 9USGS TOPOGRAPHIC MAP (CLOVER. SC) -NC OBTAINED FROM THE USGS STORE AT http://store.usgs.gov/b2c_usgs/b2c/start/%%%28xcm=r3standardpitrex_prd%%%29/.do DUKE GRAPHIC SCALE l000 0 l000 z000 FIGURE 1A 40) ENERGY IN FEET 1949 USGS TOPOGRAPHIC MAP WITHOUT CAROLINAS DRAWN BY:J.CHASTAIN DATE:12/18/2019 LINEAMENTS REVISED CHECKED DATE:- FRACTURED BEDROCK EVALUATION APPROVCHECKED BY: L., DRAO DATE:12/18/2019 PROJECT MANAD BYGER: R:C.S DATE.12/18/2019 ALLEN STEAM STATION PROJECT MANAGER: C. SUTTELL synTerra r www.synterracorp.com BELMONT, NORTH CAROLINA LINEAMENT ORIENTATION SUMMARY C ✓� G`� ��'\ /� RANGE OF PREDOMINANT ORIENTATIONS _ Q' /. 0. .�y int �w 270° 268° 88' 90• �o lb Sant L\ALLEN STEAM r~� STATION PARCEL LINE l - _ • ) I 180, 1 RANGE OF PREDOMINANT ORIENTATIONS q J W 01 r ��• /�" _ J FUTURE ALLEN O - STEAM STATION t _ • �. RETIRED ASH BASIN �I \� \ WASTE BOUNDARY (APPROXIMATE) 667 �. �� J � i • / ACTIVE ASH BASIN , IM ~_1 werl 1t r .SHORELINE OF LAKE WYLIE J T (CATAWBA RIVER) Bridge ,� S _� �,`y 0,10 p SOURCE: 1949 USGS TOPOGRAPHIC MAP (CLOVER, SC) -NC OBTAINED FROM THE USGS STORE AT - - I htt store.us s. ov b2c us s b2c sta %%%28xcm=r8standard itrex rd%%%29 .do % DUKE GRAPHIC SCALE l000 0 1000 2000 FIGURE 1 B 446� ENERGY IN FEET 1949 USGS TOPOGRAPHIC MAP WITH CAROLINAS DRAWN BY:J.CHASTAIN DATE:12/18/2019 LINEAMENTS REVISEED Y: DATE:- FRACTURED BEDROCK EVALUATION CHECKED BB:L. :T. DRAO DATE:12/18/2019 APPROVED BY: L. R: L. D DATE:12/18/2019 ALLEN STEAM STATION PROJECT MANAGER: L. DRAGO synTelra www.synterracorp.com BELMONT, NORTH CAROLINA v 6+ ALLEN STEAM STATION PARCEL LINE �� \ _ - FUTURE ALLEN STEAM STATION Mir1 ` RETIRED ASH BASIN WASTE BOUNDARY (APPROXIMATE) I i / ACTIVE ASH BASIN l/ \ ` r SHORELINE OF LAKE WYLIE (CATAWBA RIVER) SOURCE: MAY 14, 1948 AERIAL PHOTOGRAPH OBTAINED FROM THE USGS EARTH EXPLORER WEB SITEAT http://earthexplorer.usgs.gov/ DUKE GRAPHIC SCALE loon 0 l000 z000 FIGURE 2A 46� ENERGY IN FEET 1948 AERIAL PHOTOGRAPH WITHOUT CAROLINAS DRAWN BY: J. CHASTAIN DATE:12/18/2019 LINEAMENTS REVISED BY: DATE: - 1 CHECKED BY: L. DRAGO DATE:12/18/2019 FRACTURED BEDROCK EVALUATION APPROVED MANAGER: DRAGO DATE:12/18/2019 PROJECT MANAG ALLEN STEAM STATION synTeYl'd www.synterracorp.com BELMONT, NORTH CAROLINA i DUKE ENERGY CAROLINAS 161P synTeaa L, f• ALLEN STEAM STATION PARCEL LINE I LINEAMENT ORIENTATION SUMMARY RANGE OF PREDOMINANT ORIENTATIONS oo V 270 90° 180, SOURCE: MARCH 22, 1951 AERIAL PHOTOGRAPH OBTAINED FROM THE USGS EARTH EXPLORER WEB SITE AT http://earthexplorer.usgs.gov/ 1 ^ � RETIRED ASH BASIN I WASTE BOUNDARY (APPROXIMATE) � I �I J� ACTIVE ASH BASIN h\ r SHORELINE OF LAKE WYLIE /— (CATAWBA RIVER) GRAPHIC SCALE 1000 0 1000 2000 IN FEET DRAWN BY: J. CHASTAIN DATE: 1 REVISED BY: DATE: - CHECKED BY: L. DRAGO DATE: 1 APPROVED BY: L. DRAGO DATE: 1 PROJECT MANAGER: L. DRAGO www.synterracorp.com FIGURE 2B 1948 AERIAL PHOTOGRAPH WITH LINEAMENTS FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION BELMONT, NORTH CAROLINA t. 1' ~ pRMStROpG R p0 - N LEGEND ODEEP BEDROCK EVALUATION LOCATION OROCK CORE SAMPLE LOCATION —� ACTIVE ASH BASIN WASTE - - RETIRED ASH BASIN WASTE - ASH BASIN COMPLIANCE BOUNDARY _ RETIRED ASH BASIN ASH LANDFILL WASTE BOUNDARY RETIRED ASH BASIN ASH LANDFILL COMPLIANCE BOUNDARY DORS FILLS BOUNDARIES SITE FEATURE DUKE ENERGY CAROLINAS PROPERTY LINE )II, STREAM (AMEC NRTR 2015) ® WETLAND (AMEC NRTR 2015) NOTES: 1. PROPERTY BOUNDARY PROVIDED BY DUKE ENERGY CAROLINAS, LLC. 2. ALL BOUNDARIES ARE APPROXIMATE. 3. AERIAL PHOTOGRAPHY OBTAINED FROM GOOGLE EARTH PRO ON DECEMBER 13, 2018. AERIAL WAS COLLECTED ON MARCH 30, 2018. 4. NATURAL RESOURCES TECHNICAL REPORT (NRTR) PREPARED BY AMEC FOSTER WHEELER, INC., MAY 29, 2015. 5. DRAWING HAS BEEN SET WITH A PROJECTION OF NORTH CAROLINA STATE PLANE COORDINATE SYSTEM FIPS 3200 (NAD83). 6. `DENOTES ABANDONED MONITORING WELLS. I" -. f 1 t .I I 375 0 375 750 DUKE ENERGY GRAPHIC SCALE IN FEET CAROLINAS DRAWN BY: K. KING DATE: 05/07/2019 REVISED BY: C. WYATT DATE: 12/14/2019 APPROVED BY: L. DRAGO DATE: 12/14/2019 CHECKED BY: L. DRAGO DATE: 12/14/2019 T PROGRAM MANAGER: C. SUTTELL RETIRED ASH BASIN ASH LANDFILL C GWA-46RL C GWA-3BRL CAB-10BR AB-10BRL FIGURE 3 DEEP BEDROCK EVALUATION LOCATIONS FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION BELMONT, NORTH CAROLINA 100 10 1 = 0.01 0.001 0.0001 -L 1 0 50 100 150 200 250 300 350 400 Depth (Feet Below Top of Rock) NOTES•DUKE DRAWN BY: P.ALTMAN DATE:10/23/2019 1. FLASH hydraulic conductivity values calculated from FLASH ENERGY REVISED BY: . estimated transmissivity values. CHECKED BY: 2. SLUG hydraulic conductivity values estimated from slug CAROLINAS APPROVED BY: test data. PROJECT MANAGER: C. SUTTELL 3. Hydraulic conductivity for GWA-313RL was calculated with Thiem Equation calculated transmissivity using flow and tip hydraulic head data measured during drilling and well synTem www.synterracorp.com installation activities. 9AB-10BRL FLASH OAB-10BRL SLUG ♦ GWA-3BRL 0GWA-413RL FLASH OGWA-413RL SLUG •GWA-5BRL FLASH OGWA-513RL SLUG GWA-6BRL FLASH GWA-6BRL SLUG 450 FIGURE 4 HYDRAULIC CONDUCTIVITY VERTICAL PROFILE FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION BELMONT, NORTH CAROLINA 0.45 0.40 0.30 E E aj 0.25 v a a 0.20 T 2 0.15 0.10 0.05 50 100 150 200 250 300 350 400 Depth (Feet Below Top of Rock) NOTES: 1. FLASH hydraulic aperture values calculated from FLASH estimated transmissivity values. 2. SLUG hydraulic aperture values estimated from slug test data. 3. Hydraulic aperture for GWA-3BRL was calculated with Thiem Equation calculated transmissivity using flow and hydraulic head data measured during drilling and well & DUKE ENERGY.: CAROLINAS t' synTem DRAWN BY: P. ALTMAN DATE: 10/23/2019 REVISED BY: CHECKED BY: APPROVED BY: PROJECT MANAGER: C. SUTTELL www.synterracorp.com • A13-106131- FLASH OAB-10BRL SLUG ♦ GWA-3BRL • GWA-46RL FLASH OGWA-46RL SLUG • GWA-56RL FLASH OGWA-56RL SLUG GWA-66RL FLASH GWA-66RL SLUG 450 FIGURE 5 HYDRAULIC APERTURE VERTICAL PROFILE FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION BELMONT, NORTH CAROLINA 25.0 20.0 v 15.0 v LL ao c U M a V) v L V M L 10.0 5.0 re, 0 50 100 150 200 250 300 350 400 450 Depth (Feet Below Top of Rock) *AB-10BRL GWA-36RL • GWA-46RL • GWA-5BRL GWA-66RL NOTES: DRAWN BY: P. ALTMAN DATE: 10/23/2019 1. Fracture spacing data shown above are specific to relatively `� DUKE transmissive bedrock intervals identified based on HPF logging ENERGY.: REVISED BY: FIGURE 6 and FLASH analysis. HECKED BY: APPROVEDB FRACTURE SPACING 2. Fracture spacing calculated by dividing the length of the CAROLIPIAS APPROVED VERTICAL PROFILE interval by the number of open fractures identified in that PROJECT MANAGER: C. SUTTELL FRACTURED BEDROCK EVALUATION interval. tipALLEN STEAM STATION 3. Fracture spacing for GWA-36RL was calculated only based on HPF logging. No FLASH analysis was conducted for GWA-36RL synTerra BELMONT, NORTH CAROLINA because of artesian conditions. www.synterracorp.com A (NORTH) LIVE COAL PILE — 600 rn .7 v cai tai ca.1 ca.> v L — — 8.8j, S1 55 <50 568.22' 1 568.61' 512 COMPLIANCE BOUNDARY C K� mO ql uj In aaa 3 3 an 3 n 3 - c� 0 U 0 c�c� 1520 18.8j, S1 604 578.49' 317 1700 1380 I — 572.80' 573.4� SAPROLITE 65 2080 573.23' 571.76' 572.65' S77.90' 36.1j, S� 1700 568.33' ' SAPROLITE 50 1766 572.98' 45 732 / BEDROC\�`/\\ 350 \\ \/ ;\\/�I/1 �'/\I/1\' \/\I/1\' �/ \/\I/1\ T� w w , 150/\I/1�'/\I/1"\/\I/1�'\/\�/1"\/\I/1�'\/ 10 4816 1470 609 574.51' 586.E 30.9j, S1 573.33' TRANSITION ZONE _ _ _ 568.27' 1L/s\/\ — /-1 I/1\, \/il/1♦ /—/\I/1"\/il/1\/—/\I/1" \/\'/1` /— \,/1♦ /\/\'/\` /—/\I/1" \/\'/1`• /\ I / 1 N \ / \I / 1 \ /� I N �' /' I\ /` II\/\II N N CANAL ROAD LEGEND ALLEN SSTM TATION GWA-22S WELL IN FILL/ALLUVIUM/SAPROLITE SHALLOW ZONE FLOW LAYER GROUNDWATER GWA-22D WELL IN TRANSITION ZONE WELL WATER LEVEL ELEVATION PLANTAL N RD. GWA-21BR WELL IN BEDROCK DEEP ZONE FLOW LAYER GROUNDWATER WELL WATER LEVEL ELEVATION RETIRED AB-35S WELL IN ASH PORE WATER ASH BASIN (ASH STORAGE/ ABANDONED WELL/ GEOTECHNICAL CCR-11D V BEDROCK FLOW LAYER GROUNDWATER WELL WATER LEVEL ELEVATION STRUCTURAL FILL) RETIRED BORING ASH BASIN ASH LANDFILL GENERALIZED WATER TABLE WELL SCREEN 0 ALLUVIUM BORON CONCENTRATION (ug/L) CATAWBA ® FILL WATER LEVEL ELEVATION (NAVD 88) RIVER (LABEL COLORING BY FLOW ZONE) (LAKE WYLIE) 0 SAPROLITE _ _ _ COMPLIANCE BOUNDARY P G�OPO CAON $ ® TRANSITION ZONE P ACTIVE ASH BASIN ;:�i•,—,; ' BEDROCK BEDROCK FRACTURE ORIENTATION PREDOMINANT BEDROCK D FRACTURE ORIENTATION NOTE: CROSS SECTION A -A' IS LINEAR IN NATURE AND ALL LOCATIONS NOT ALONG THE CROSS SECTION ARE PROJECTED ONTO THE CROSS SECTION. CROSS SECTION LOCATION NOTES <50 ALLUVIUM 572.87' <50 573.97' 21.4j, S1 SAPROLITE 572.05' _ A' (SOUTH) <50 'BEDROCK I 150 00 Z O Q j J w 1. DEPTH TO WATER GAUGED IN MONITORING WELLS ON MARCH 13, 2019, REFERENCED TO NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. 2. GROUNDWATER FLOW IS APPROXIMATELY WEST TO EAST, PERPENDICULAR TO THE CROSS SECTION. 3. FRACTURES DEPICTED ON THIS CROSS SECTION REPRESENTS THE GENERALIZED FRACTURE ORIENTATIONS BASED ON TELEVIEWER LOGGING AT SITE SPECIFIC BOREHOLES. AS CONCEPTUALLY ILLUSTRATED HERE, TELEVIEWER LOGGING RESULTS DID NOT INDICATE ANY DISTINCT, CONSISTENT FRACTURE SETS, BUT A WIDE VARIETY OF FRACTURE ORIENTATIONS AT THE SITE. THE ACTUAL NUMBER OF FRACTURES IS FAR TOO NUMEROUS TO ILLUSTRATE AT THIS SCALE. IN ADDITION, THE DEPTH AND LENGTH OF FRACTURES VERSUS DEPTH ARE CONCEPTUAL ONLY. 4. ALL BOUNDARIES ARE APPROXIMATE. 5. CROSS SECTION REPRESENTATIVE OF PRE -DECANTING CONDITIONS. 6. BORON CONCENTRATIONS SHOWN ARE THE MOST RECENT VALUES AS OF JUNE 2019. V DUKE ENERGY CAROLINAS 1410 synTena GRAPHIC SCALE 0 112 225 450 HORIZONTAL SCALE: 1" = 450' VERTICAL SCALE: 1" = 90' 5X VERTICAL EXAGGERATION DRAWN BY: C. NEWELL DATE: 9/13/2019 REVISED BY: D. KRESKI DATE: 12/6/2019 CHECKED BY: L. DRAGO DATE: 12/6/2019 APPROVED BY: C.SUTTELL DATE:12/6/2019 PROJECT MANAGER: C. SUTTELL LAYOUT: XSECT_AA (FIG-7) www.synterracorp.com FIGURE 7 GENERAL CROSS SECTION A -A' FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION BELMONT, NORTH CAROLINA 150 100 B- (WEST) COMPLIANCE BOUNDARY STRUCTURAL STRUCTURAL FILL FILL to O I 0 o I M COAL PILE - B' (EAST) lei i1. /\I , �\/\lil". /\I ,\/\li1\ �. ,.� ,� �\/\l i1. /\I , \ /\lil". /\I ,\/\lil\ �. ,.� ,� \/\lit". /\I ,\ /\lit". ,.� ,� \/\lil. ,.� ,� �\/\l i1". /\I ,�� \ /\li1\'. ,.� ,� �\/\l il`• LEGEND GWA 22S WELL IN FILL/ALLUVIUM/SAPROLITE GWA-22D WELL IN TRANSITION ZONE GWA-21BR WELL IN BEDROCK AB-35S WELL IN ASH PORE WATER L GENERALIZED WATER TABLE RETIRED mmm..1j, GENERALIZED GROUNDWATER ASH BASIN FLOW DIRECTION 1SH LANDFILL �� GENERALIZED ASH PORE WATER FLOW DIRECTION CATAWBA RIVER ASH (LAKE WYLIE) ASH PORE WATER krTIVE SAPROLITE H BASIN TRANSITION ZONE BEDROCK NOTE: SURFACE WATER CROSS LOCATIONS NION B-B'IS LINEAR IN NATURE AND OTALONG THE CROSSS SECTION ARE PREDOMINANT BEDROCK PROJECTED ONTO THE CROSS SECTION. FRACTURE ORIENTATION CROSS SECTION LOCATION 200 150 100 NOTES ASH PORE WATER FLOW LAYER 1. DEPTH TO WATER GAUGED IN MONITORING WELLS ON MARCH 13, 2019, AND OCTOBER 24, 2019 (AB-41SS, AB-41D, AB-44AP, AB-44SS, AB-44D, WATER LEVEL ELEVATION GWA-285, GWA-28D, GWA-28BR, GWA-295, GWA-29D, GWA-29BR, GWA-305, GWA-30D) REFERENCED TO NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. SHALLOW ZONE FLOW LAYER GROUNDWATER 2. FRACTURES DEPICTED ON THIS CROSS SECTION REPRESENTS THE GENERALIZED FRACTURE ORIENTATIONS BASED ON TELEVIEWER LOGGING AT WELL WATER LEVEL ELEVATION SITE SPECIFIC BOREHOLES. AS CONCEPTUALLY ILLUSTRATED HERE, TELEVIEWER LOGGING RESULTS DID NOT INDICATE ANY DISTINCT, DEEP ZONE FLOW LAYER GROUNDWATER CONSISTENT FRACTURE SETS, BUT A WIDE VARIETY OF FRACTURE ORIENTATIONS AT THE SITE. THE ACTUAL NUMBER OF FRACTURES IS FAR T00 WELL WATER LEVEL ELEVATION NUMEROUS TO ILLUSTRATE AT THIS SCALE. IN ADDITION, THE DEPTH AND LENGTH OF FRACTURES VERSUS DEPTH ARE CONCEPTUAL ONLY. 3. ALL BOUNDARIES ARE APPROXIMATE. BEDROCK FLOW LAYER GROUNDWATER WELL WATER LEVEL ELEVATION 4. CROSS SECTION REPRESENTATIVE OF PRE -DECANTING CONDITIONS. BORON CONCENTRATION (ug/L) 5. BORON CONCENTRATIONS SHOWN ARE THE MOST RECENT VALUES AS OF JUNE 2019. WATER LEVEL ELEVATION (NAVD 88) GRAPHIC SCALE 0 100 200 400' (LABEL COLORING BY FLOW ZONE) DUKE WELL SCREEN 4n ENERGY HORIZONTAL SCALE: 1" = 400' VERTICAL SCALE: 1"=80' FIGURE 8 BREAKLINE CAROLINAS EXAGGERATION S:J.CHA GENERAL CROSS SECTION B-B' THINCAL DRAWN BY:J.CHASTAIN DATE:7/26/2019 REVISED BY: D. KREFSKI DATE: 12/7/2019 - — - COMPLIANCE BOUNDARY FRACTURED BEDROCK EVALUATION 41P CHECKED BY: L.. DATE: 12/7/2019 ALLEN STEAM STATION APPROVED BY: C. SUTTELL DATE: 12/7/2019 SUTT PROJECT MANAGER:C.SUTTELL BELMONT, NORTH CAROLINA LAYou WRSynterracorp.com WnTerra z O Q W J W A (WEST) c a O z 700 a N ASH STORAGE AREA lrn II I MI I uLq Q Q n -ASH PORE N 650 SAPROLITE , ; , ; I WATER a a FILL -_-- - --__ -- - -- ----------- - �-= _ -- — — ---_'_ SAPROLITE <5 630.9 ' 600 COMPLIANCE BOUNDARY RETIRED ASH BASIN STRUCTURAL FILL - - i LL�Y N t0 � --= FILL M M ______ -_ ___ — a a EL� 116 =_ RETIRED ASH BASIN ASH LANDFILL 622._3_0'=_=____ __ _--------____ -_ ---- - _ — ------------------------------- ---- ---- --- --- ---- ---- __=_r3Sit=== _� ==:615.52'-==-===_====-===_====-===-=======-=======------- -----"-=z=-=-_-_-_-__- -------------- ------------------------------------- 9.8j,S1--------------------_--- ------ �► 623.12' AWATERSH E <50 TRANSITION ZONE`' SAPROLITE 580.14' <50 a III \I SAPROLITE 57•81, SfiqD1 -. /1628.7-d�1� I i \/ \,`� /I \l �Ti/t1t� �i /I \l '\`�\1 ��� /I \l ♦' �, 62 S7 / \♦ I _ \`- / /\` TRANSITION ZONE _ \ 579.35' W1:�/\� � 1 \/♦ / / /�\/` /1 '�'��•� � , \i � BEDROCK L!— I \ / I X'i I , I •ems � IL H 7.6�, S1 — \ � /�—_ \ — / —_ \ " \ � /�-- \ — / " \ � /\—y� / �— \ � /�—_ 766 I' \ / I \ / ; / \ \ / I \ / \ // I 624 \ / i \ / I \ / i / �/ I i \ / i \ / I \ / i / \ / .r{ i \ % i / \ / I \� ` / I / / \ / I f\x 72.98' Ail\l\�\� \`�\`mil\/I/\i`i ♦��/I/\�/\�/I,\ ♦' / — \ \ i / — _ \' / —�\ \ i / — \'� / — ♦' / — _ \' / — \ \ i .BEDROCK'- "\/\I/1�'\/\I/\\ � 60 S1 629.79' ASH PORE WATER %\ /1 200 BEDR`OCKI/\\/\/,I/1\/ /\I/1\/\/,I/\\/ /\I/\\/\/,I/\\/ /\I/1\/\/,I/1\/ /\I/1,I/\\/ /\I/\,I/\\/ /\I/1�BEDROCK\/\I/\\' i i t \\/ I/ \ i l \`/ l i l i l \`/ I/ \ i l \\/ l i l i l \`/ I/\ i t \\/ l i l i l \`/ I/ \ i l \`/ l i l i l \`/ I/ \ i l \\/ l i l i l \`/ I/\ i t \`/ l i l i l \`/ I/ \ i l \`/ l i l i l \`/ I/\ i t \\/ l i l i l \`/ I/\ i t \`/ l i l i l \`/ I/ \ i l \\/ l i l i l \`• I i \`i �\`/ I / \ i l \\/ I � \`� �\\/ I / \ i l \\/ I � \`� �\\/ I / \ i l \\/ I � \`� �\`/ I / \ i l \\/ I � \`� �\\/ I / \ i l \\/ I � \`� �\\/ I / \ i l \\/ I � \`� �\`/ I / \ i l \\/ I � \`� �\\/ I / \ i l \\/ I � \`� �\\/ I / \ i l \\/ I � \`� �\`/ I / \ i l \\/ I � \`i �\`• \ / \ 0- l \ / I LEGEND GWA-22S WELL IN FILL/ALLUVIUM/SAPROLITE ASH PORE WATER FLOW LAYER WATER LEVEL ELEVATION \ : /I _ \\� I . \ \ I /_ \ \ / I . \ \ I / \ \ / I . \ I / \ \ / I • \ \ GWA-22D WELL IN TRANSITION ZONE ` / - - ` � � � � � `' ` � - - ` �� ' � - ` `' ` / - - ` �• � / � � `' ` / - - ` �• ` CANAL ROAD ALLh GWA-216R WELL IN BEDROCK SHALLOW ZONE FLOW LAYER GROUNDWATER WELL WATER LEVEL ELEVATION NOTES STEAM AB-35S WELL IN ASH PORE WATER DEEP ZONE FLOW LAYER GROUNDWATER STATION C' (EAST) I I I I I I I I I I I I 9� mm as CATAWBA R (LAKE WYL EL.565' ALLUVIUM 700 650 600 550 500 450 250 200 150 100 GWA-5BR ABANDONED WELL/ WELL WATER LEVEL ELEVATION 1. DEPTH TO WATER GAUGED IN MONITORING WELLS ON MARCH 13, 2019, REFERENCED TO NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. PLANTAL N RD. ` C. GEOTECHNICAL BORING � BEDROCK FLOW LAYER GROUNDWATER 2. FRACTURES DEPICTED ON THIS CROSS SECTION REPRESENTS THE GENERALIZED FRACTURE ORIENTATIONS BASED ON TELEVIEWER LOGGING AT AL34 WATER SUPPLY WELL — WELL WATER LEVEL ELEVATION SITE SPECIFIC BOREHOLES. AS CONCEPTUALLY ILLUSTRATED HERE, TELEVIEWER LOGGING RESULTS DID NOT INDICATE ANY DISTINCT, (DEPTH UNKNOWN) CONSISTENT FRACTURE SETS, BUT WIDE VARIETY OF FRACTURE ORIENTATIONS AT THE SITE. THE ACTUAL NUMBER OF FRACTURES IS FAR TOO RETIRED ASH BASIN . BORON CONCENTRATION (NFL) NUMEROUS TO ILLUSTRATE AT THIS SCALE. IN ADDITION, THE DEPTH AND LENGTH OF FRACTURES VERSUS DEPTH ARE CONCEPTUAL ONLY. (ASH STORAGE/ GENERALIZED WATER TABLE WATER LEVEL ELEVATION (NAVD 88) 3. ALL BOUNDARIES ARE APPROXIMATE. STRUCTURAL FILL) RETIRED �� GENERALIZED GROUNDWATER (LABEL COLORING BY FLOW ZONE) ASH BASIN ASH LANDFILL FLOW DIRECTION 4. CROSS SECTION REPRESENTATIVE OF PRE -DECANTING CONDITIONS. GENERALIZED ASH PORE WATER WELL SCREEN —� FLOW DIRECTION 5. BORON CONCENTRATIONS SHOWN ARE THE MOST RECENT VALUES AS OFJUNE2019. NOTE: CROSS SECTION GC' IS LINEAR IN NATURE AND ALL LOCATIONS NOT ALONG THE CROSS SECTION ARE PROJECTED ONTO THE CROSS SECTION. CROSS SECTION LOCATION - ASH 0 ASH PORE WATER ALLUVIUM ® FILL SAPROLITE ® TRANSITION ZONE BEDROCK SURFACE WATER - PREDOMINANT BEDROCK FRACTURE ORIENTATION BREAKLINE - - - - COMPLIANCE BOUNDARY %''DUKE n ENERGY CAROLI NAS 161P synTerra GRAPHIC SCALE 0 100 200 400 HORIZONTAL SCALE: 1" = 400' VERTICAL SCALE: 1" = 80' 5X VERTICAL EXAGGERATION DRAWN BY: J. CHASTAIN DATE: 7/26/2019 REVISED BY: D. KREFSKI DATE: 12/8/2019 CHECKED BY:L.DRAGO DATE:12/8/2019 APPROVED BY: C. SUTTELL DATE: 12/8/2019 PROJECT MANAGER: C. SUTTELL LAYOUT: FIGURE_9 www.synterracorp.com FIGURE 9 GENERAL CROSS SECTION C-C' FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION BELMONT, NORTH CAROLINA D, (WWD T) �_ COMPLIANCE BOUNDARY - � (EAST) i � ASH BASIN I I p N i PRIMARY POND 1 PRIMARY POND 2 — — PRIMARY POND 3 700 N N N 700 90U' �U' Q = a _ 0� aava yp a as NNNN QQQQ vmiumiuy��n NNNN N NN moomm m m 00 �a � 650 1 ASH - --------------- a a a ASH a a s ----- 650 -- ----- _L---- ------ ------------_ -------- __ _ ____ _________ 930 WATER - _-637-9T:=__ ___ ____ ____ __________________ _ 638.68' -- p m m = =-_-_v) 7 _=__= ASH -PORE WATER C7 -=:715 _==_- �=_- �=_- �=_- �=_- �=_- �=_- �=_ --- ------ 1030a a a i� �► ===_==__==__==___==__==___==___==_ =__==___=__==__==__==__== _______ 636.4T _=_ ___ __ __ __ 0 1 CATAWBA RIVER SAPROLITE SAPROLITE �=___=____________________ ==-600 ---- _-___________ ____-______= C9 t9 C7 C9 LAKE WYLIE _____ FILL ( ) EL. 565' 1 �� 1250 �� SAPROLITE (APPROX.) 636.39' 317-Z---------- 550 j ETRAN�SITION345 NE 573.74' 550 583.71' 636.34' 1'/Z �' 1 63611 O 500 \ /� \I_ \�/ �� - \�/ -��\ _ \�/ - \/\ /1 �� -r'/ - �\ \ / \ \/\ /1 �\ - \'/ - \- \ / \ I / \ /\ /1 \ TRANSITION �\ - 1 1a.2j,s1 \�/ �� _ \ ZONE 500 J � `\ %: �,\/i, , \\ \ ; J/I � \\i ��\/ I � \`� ;.\ � \\i l +!x/ I i \1, \ i l �\/ I � \,;. / I \ i ;<X/ I � \;� LLI /I \ 1 / 1 / �� \ / \ / 1 � BEDROCK\ / 1 / \ / \ / 1 � � /I � -� \ /� / 1 / \ /�\ / 1 � \ /� / 1 / \�/ \ / 1 / ' ,� \ / \ / \ BEDROCK-, /•\ ' 450 / �-yam\ - / i \�_ \ / �-_ \ - � \ / \ ��� /�- \ - \ / �-_ \ \ /�- / / _ - \ � �-_ \ - \ /�- \ \ / � - / / 450 i \ / BEDROCK` I '�/ / 1960 575.1 I \ / I \ / T I \ / �I. �I. / 585.19' 400 I 1_-� / �\/ - I i \ \ � I i \ \ �`/ I i \ \ �\x I i \ \ �`/ x . \ \ 84.7 400 / - �� / - _ _ �� /� 575.'� �\ - / - �- / - - / - �- / - / - 1 / - - / - 00 _ ` BEDROCK 150 �\/ /BEDROiKr !Li 'ARTESIAN ' CONDITIONS ASH BASIN NOTE: CROSS SECTION D-D' IS LINEAR IN NATURE AND ALL LOCATIONS NOT ALONG THE CROSS SECTION ARE PROJECTED ONTO THE CROSS SECTION. CROSS SECTION LOCATION LEGEND GWA-22S WELL IN FILL/ALLUVIUM/SAPROLITE GWA-22D WELL IN TRANSITION ZONE GWA-21BR WELL IN BEDROCK AB-35S WELL IN ASH PORE WATER GWA-5BR ABANDONED WELL/ GEOTECHNICAL BORING AL34 WATER SUPPLY WELL - (DEPTH UNKNOWN) GENERALIZED WATER TABLE GENERALIZED GROUNDWATER FLOW DIRECTION GENERALIZED ASH PORE WATER FLOW DIRECTION 0 ASH 0 ASH PORE WATER 0 ALLUVIUM ® FILL 0 SAPROLITE ® TRANSITION ZONE BEDROCK © SURFACE WATER -- PREDOMINANT BEDROCK FRACTURE ORIENTATION V ASH PORE WATER FLOW LAYER WATER LEVEL ELEVATION _ SHALLOW ZONE FLOW LAYER GROUNDWATER NOTES WELL WATER LEVEL ELEVATION V DEEP ZONE FLOW LAYER GROUNDWATER 1. DEPTH TO WATER GAUGED IN MONITORING WELLS ON MARCH 13, 2019, REFERENCED TO NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. WELL WATER LEVEL ELEVATION 2. FRACTURES DEPICTED ON THIS CROSS SECTION REPRESENTS THE GENERALIZED FRACTURE ORIENTATIONS BASED ON TELEVIEWER LOGGING V BEDROCK FLOW LAYER GROUNDWATER AT SITE SPECIFIC BOREHOLES. AS CONCEPTUALLY ILLUSTRATED HERE, TELEVIEWER LOGGING RESULTS DID NOT INDICATE ANY DISTINCT, WELL WATER LEVEL ELEVATION CONSISTENT FRACTURE SETS, BUT WIDE VARIETY OF FRACTURE ORIENTATIONS AT THE SITE. THE ACTUAL NUMBER OF FRACTURES IS FAR TOO NUMEROUS TO ILLUSTRATE AT THIS SCALE. IN ADDITION, THE DEPTH AND LENGTH OF FRACTURES VERSUS DEPTH ARE CONCEPTUAL ONLY. BORON CONCENTRATION (Ng/L) 3. ALL BOUNDARIES ARE APPROXIMATE. WATER LEVEL ELEVATION (NAVD 88) (LABEL COLORING BY FLOW ZONE) 4. CROSS SECTION REPRESENTATIVE OF PRE -DECANTING CONDITIONS. 5. BORON CONCENTRATIONS SHOWN ARE THE MOST RECENT VALUES AS OF JUNE 2019. WELL SCREEN BREAKLINE GRAPHIC SCALE 0 100 200 400 ----- COMPLIANCE BOUNDARY DUKE ENERGY HORIZONTAL SCALE: 1" = 400' VERTICAL FIGURE 10 5XVERTICALEXAGGERATION GENERAL CROSS SECTION D-D' CAROLINAS DRAWN BY: J. CHASTAIN DATE:7/26/2019 FRACTURED BEDROCK EVALUATION REVISED BY: D. KREFSKI DATE: 12/8/2019 CHECKED BY: L.DRAGO DATE: 12/8/2019 ALLEN STEAM STATION 116rip APPROVED BY: C.SUTTELL DATE:12/8/2019 BELMONT NORTH CAROLINA PROJECT MANAGER: C. SUTTELL r LAYOUT: XSECT DID (FIG 10) synTerid www.synterracorp.com 750 E - -mom.E' (WEST) COMPLIANCE BOUNDARY (EAST) C m N i ACTIVE ASH BASIN I 700 `'' `�' `�' ~= I ASH BASIN EAST DAM I Q Q I C9V' C9= �rnrnrn GIm mmOytl)fNA fAGmm � Q Q Q N NNNN N NNNNNNN650 IFILLQaaaaaa aaaa ASHH S ASH WATER ELEVATION = 634 <50 ===______________________________________________________________= ____=�=_=�=_=_ � =_ � _ ------------ASH---�---�-- �-- ===- PORE WATER _________________ 3900 �-- �-- �--------------------------- - _== === === === === === === ===�_ 640.85_______________ ___ ___ __ __ 637.01 ==_= -=_= -___ __ _____ -___ -__= -___ -___ -___ -_=== === === === === === === === === ==___ tr _ _�__ � ====-----__-__-__-__ _ _ _ _ _ _ _ _ CATAWBA __= t=�===�=-=�=-=�=--�----= ---= ---= ---= ---- --- --========================_ ___-_ __-_ __=======_=�__ ---__-=====_--------------------- ________________________ fn G 00 00 RIVER 600 ___ ___ ______ _ ____ _ __�______________________ ___= ASH PORE WATER ==_= == �=_===_===_===_===_===_=-- FILL r r r r LAKE SAPROLITE =_= =__== _ _ _ _======-===-===-===-===-===-===-===-== I---------------------------------------------------------------------------------------------------------------- 00 OD 00 00 WYLIE) ====================================-=�=--�---�---�---�=-=�=-=�=-=�=-=�=-=�=-=�==�==�==�==�=_=�= EL. 565' ____== �a �a a a __ ____ ____ ____ ______ _______ _ APPROX. <50------ ------------ 550 634.80' 9.1 j, S1 ecm 000 O 640A2 <50 SAPROLITE 595.25' SAPROLITE ' 641.69' Q ® TRANSITION ZONE f� I �► \ � 30.9j S1 > 9.3j, S1 �I I ' \/ i / 9'1j I — \/ i \ TRANSITION ZONE 568.2T w 500 639.42' ` I/ _ \ ,450 639.94' / _ �I W /II �\ / 641.69' T40� / \ / 1 / - \�/\�/// <50/v 637.35'\ 450 / Q / — I \ / /_ �/\'//1 \�/\ /1 �� 7/\ /1 ,�\�\ BEDROCK/ / .BEDROCK_\ 400- / — \/\I/1���/\/1 7 50 / \ . \ I . \ i I / \ i \ I . \ I / \ . \ I . \ i I / \ i \ I . \ I / \ ' \ I . \ I / \ , \ I . \ I / \ , \ I . r 100 50\/\I/1\\/\I/1\\/\I/1\/\I/1\\/\I/1\\/\I/1\\/\I/1\\/\I/1\\/\I/1\\/\I/1\\/\I/1��\/\I/1\�\/\I/1��\/\I/1\�` LEGEND GWA-22S WELL IN FILL/ALLUVIUM/SAPROLITE ASH PORE WATER FLOW LAYER GWA-22D WELL IN TRANSITION ZONE WATER LEVEL ELEVATION GWA-21BR SHALLOW ZONE FLOW LAYER GROUNDWATER WELL IN BEDROCK 0 WELL WATER LEVEL ELEVATION NOTES AB-35S WELL IN ASH PORE WATER DEEP ZONE FLOW LAYER GROUNDWATER 750 700 50 00 GWA-5BR ABANDONED WELL/ WELL WATER LEVEL ELEVATION 1. DEPTH TO WATER GAUGED IN MONITORING WELLS ON MARCH 13, 2019, REFERENCED TO NORTH AMERICAN VERTICAL DATUM (NAVD) OF 1988. GEOTECHNICAL BORING BEDROCK FLOW LAYER GROUNDWATER 2. FRACTURES DEPICTED ON THIS CROSS SECTION REPRESENTS THE GENERALIZED FRACTURE ORIENTATIONS BASED ON TELEVIEWER LOGGING AL34 WATER SUPPLY WELL - WELL WATER LEVEL ELEVATION AT SITE SPECIFIC BOREHOLES. AS CONCEPTUALLY ILLUSTRATED HERE, TELEVIEWER LOGGING RESULTS DID NOT INDICATE ANY DISTINCT, (DEPTH UNKNOWN) CONSISTENT FRACTURE SETS, BUT A WIDE VARIETY OF FRACTURE ORIENTATIONS AT THE SITE. THE ACTUAL NUMBER OF FRACTURES IS FAR TOO BORON CONCENTRATION (ug/L) NUMEROUS TO ILLUSTRATE AT THIS SCALE. IN ADDITION, THE DEPTH AND LENGTH OF FRACTURES VERSUS DEPTH ARE CONCEPTUAL ONLY. RETIRED ASH BASIN _ GENERALIZED WATER TABLE WATER LEVEL ELEVATION (NAVD 88) ASH LANDFILL GENERALIZED GROUNDWATER (LABEL COLORING BY FLOW ZONE) 3. ALL BOUNDARIES ARE APPROXIMATE. FLOW DIRECTION WELL SCREEN 4. CROSS SECTION REPRESENTATIVE OF PRE -DECANTING CONDITIONS. GENERALIZED ASH PORE WATER CATAWBA FLOW DIRECTION 5. BORON CONCENTRATIONS SHOWN ARE THE MOST RECENT VALUES AS OF JUNE 2019. RIVER (LAKE WYLIE) 0 ASH BREAKLINE v E' 0 ASH PORE WATER ----- COMPLIANCE BOUNDARY GRAPHIC SCALE ACTIVE ASH BASIN 0 ALLUVIUM DUKE 0 100 200 400 ® FILL ENERGY HORIZONTAL ICALSSCALE:1"=400' VERTICAL VERTICAL SCALE: 1" = 80' FIGURE 11 0 SAPROLITE 5XVERTICALEXAGGERATION GENERAL CROSS SECTION E-E' NOTE: ® TRANSITION ZONE CAROLINAS DRAWN BY: J. CHASTAIN DATE:7/26/2019 FRACTURED BEDROCK EVALUATION CROSS SECTION E-E' IS LINEAR IN NATURE AND ALL LOCATIONS NOT ALONG THE CROSS SECTION ARE BEDROCK REVISED BY: D. KREFSKI DATE: 12/9/2019 CHECKED BY: L.DRAGO DATE: 12/9/2019 ALLEN STEAM STATION PROJECTED ONTO THE CROSS SECTION. CROSS SECTION LOCATION O SURFACE WATER --�-- PREDOMINANT BEDROCK FRACTURE ORIENTATION v7 synTerra APPROVED BY: C. SUTTELL DATE: 12/9/2019 PROJECT MANAGER: C. SUTTELL LAYOUT: FIGURE 11 www.synterracorp.com BELMONT, NORTH CAROLINA Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC — Allen Steam Station TABLES SynTerra TABLE 1 ANALYTICAL RESULTS FOR DEEP BEDROCK WELLS FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION DUKE ENERGY CAROLINAS, LLC, BELMONT, NC Analytical Parameters Antimony Arsenic Beryllium Boron Cadmium Chromium (VI) Chromium Cobalt Iron Lithium Manganese Molybdenum Nickel Selenium Strontium Sulfate Thallium Total Dissolved Solids Vanadium Reporting Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L mg/L µg/L mg/L µg/L i5A NCAC 02L Standard 1* 10 4* 700 2 10 10 1* 300 NE 50 NE 100 20 NE 250 0.2* 500 0.3* Background Threshold Values 3 2 0.1 50 0.08 0.8 10 0.3 1242 26 360 11 7 0.5 181 7 0.1 221 13 Sample ID Screen Interval (ft bgs) Sample Collection Date Analytical Results AB-10BR 150 - 160 03/04/2019 <0.5 0.25 <0.1 537 <0.08 0.076 2.5 S1 0.51 819 <2.5 42.6 1.2 2.7 <0.5 530 48.4 <0.1 285 8.6 AB-10BR 150 -160 06/03/2019 <0.5 0.13 <0.1 571 <0.08 0.053 S1 0.61 0.099 j 188 <2.5 26.8 0.39 j 1.1 <0.5 523 45.1 <0.1 256 7 AB-10BRL 208 - 218 03/05/2019 <0.5 3.1 <0.1 434 S1 <0.08 <0.025 0.94 0.13 240 3.9 45.6 11 1.3 <0.5 467 1S3 <0.1 506 0.47j AB-10BRL 208 - 218 06/03/2019 <2 D3 13.5 <0.4 D3 406 <0.32 D3 0.068 S1 <2 D3 <0.4 D3 426 <10 D3 94.6 6.8 <2 D3 <2 D3 662 176 <0.4 D3 596 <1.2 D3 GWA-03BRL 461 - 471 03/04/2019 <0.5 1.4 <0.1 <50 <0.08 <0.025 <0.5 <0.1 <50 <2.5 5.1 3 <0.5 0.77 138 6.2 <0.1 126 6.7 GWA-03BRL 461 - 471 06/03/2019 <0.5 1.3 <0.1 17.2 j,S1 <0.08 0.046 S1 <0.5 <0.1 27.1 j 1.3 j 5.6 3.1 <0.5 0.32 j 119 6 <0.1 130 3.6 GWA-04BRL 208 - 218 03/05/2019 0.12 j 1.6 <0.1 244 S1 <0.08 0.44 0.65 0.062 j 46.5 j 13 24.5 7.5 <0.5 0.92 205 54 <0.1 232 6.3 GWA-04BRL 208 - 218 06/03/2019 <5 D3 5.2 <1 D3 167 <0.8 D3 0.044 S1 15.6 <1 D3 210 18.2 j 51.8 45.5 11.6 <5 D3 544 468 <1 D3 2060 3.2 GWA-05BRL 335 - 345 03/04/2019 0.29 j 5.5 <0.1 40.7 j <0.08 <0.025 <0.5 0.13 171 1.3 j 26.8 8.9 1.9 <0.5 214 38.4 <0.1 211 1.3 GWA-05BRL 335 - 345 06/03/2019 <1 D3 5.3 <0.2 D3 44.9 j,S1 <0.16 D3 0.046 S1 <1 D3 <0.2 D3 51.5 <5 D3 20.7 8 1.1 <1 D3 190 72.3 <0.2 D3 204 1.1 GWA-06BRL 290 - 300 03/05/2019 0.15 j 3.5 <0.1 119 Sl <0.08 <0.025 <0.5 0.31 135 2.8 63 14.3 0.481 <0.5 344 49.4 <0.1 272 0.37 j GWA-06BRL 290 -300 06/03/2019 <1 D3 4.9 <0.2 D3 30.9 j,S1 <0.16 D3 0.043 S1 1.7 0.55 667 5.1 71.7 20.3 2.3 <1 D3 407 94.1 Al <0.2 D3 256 1.1 Notes: Background Threshold Values updated with Background Results through December 2018. ft bgs - feet below ground surface * - Interim Maximum Allowable Concentrations (IMACs) of the 15A NCAC 02L Standard, Appendix 1, April 1, 2013. < - concentration not detected at or above the adjusted reporting limit. µg/L - micrograms per liter D3 - Sample was diluted due to the presence of high levels of non -target analytes or other matrix interference. j - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit. Ll - Analyte recovery in the laboratory control sample (LCS) was above quality control (QC) limits. Results may be biased high. M1 - Matrix spike recovery was high: the associated Laboratory Control Spike (LCS) was acceptable. MDC - Minimum Detectable Concentration mg/L - milligrams per liter NE - Not established NM - Not measured Sl - Data review findings indicate result may be unreliable. Use with caution. Prepared by: LWD Checked by: EMY Page 1 of 1 TABLE 2 POROSITY AND BULK DENSITY RESULTS FRACTURED BEDROCK EVALUATION ALLEN STEAM STATION DUKE ENERGY CAROLINAS, LLC, BELMONT, NC Sample ID Depth (ft) Porosity (%) Grain Density (g/Cm3) Bulk Density (g/Cm3) AB-22BR 174.5 0.54 2.965 2.951 AB-22BR 204.0 0.49 2.765 2.755 AB-22BRL 246.0 1.03 2.750 2.729 GWA-5BR 135.0 0.55 2.818 2.806 GWA-5BR 161.5 1.43 2.978 2.937 GWA-6BR 138.0 3.96 2.752 2.655 GWA-6BR 190.0 5.16 2.767 2.653 Prepared by: LWD Checked by: PWA Notes: 1.0" diameter plugs were drilled and trimmed into right cylinders with a diamond -blade trim saw. Plugs selected for routine core analysis were cleaned by Soxhlet extraction cycling between a chloroform /methanol (87:13) azeotrope and methanol. Samples were oven dried at 2400 F to weight equilibrium (+/- 0.001 g). Porosity was determined using Boyle's Law technique by measuring grain volume & calculating pore volume at ambient conditions. Grain density values were calculated using Boyle's Law technique by direct measurement of grain volume and weight on dried plug samples. Grain volume was measured by Boyle's Law technique. - percent ft - feet g/cm3 - gram per cubic centimeter Page 1 of 1 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC - Allen Steam Station ATTACHMENT A SynTerra BORING LOGS, WELL CON RECORDS, AND WELL DEV SUMMARY TABLE PROJECT: DEC Allen WELL / BORING NO: AB-1 OBR PROJECT NO: 1026.17 STARTED: 10/16/18 COMPLETED: 10/24/18 DRILLING COMPANY: SAEDACCO NORTHING: 524955.972 EASTING: 1400594.082 DRILLING METHOD: Air Rotary/Hammer G.S. ELEV: 573.92 ft M.P. ELEV: 576.70 ft BOREHOLE DIAMETER: 14 3/4, 10, 6 IN DEPTH TO WATER:13.5 ft TOTAL DEPTH: 160.0 ft BGS NOTES: bgs: below ground surface LOGGED BY: L. Drago CHECKED BY: C. Suttell w v U _ O 0 W CL O^ o U) 3 z o f WELL CONSTRUCTION Q DESCRIPTION g U _j Q p o O < �` m0 CL CLAY, silty, red (2.5 YR 5/8), very stiff, dry 5 10-0 - — — — — — — — — — — — — — — — — — — — — — — — — — CL Silty CLAY, red (2.5 YR 5/8), firm, dry 15 SC Sandy CLAY, yellowish brown (10YR 5/6), very loose, fine grain, wet 20 SW SAND, white (Gley 1 8/1 N) to dark greenish gray (Gley 25 1 4/1 10GY) very loose to firm, weathered rock Grouted Casing SynTerra CLIENT: Duke Energy 148 River Street, Suite 220 PROJECT LOCATION: Belmont, North Carolina Terra Greenville, South Carolina 29601 s)mPhone:864-421-9999 PAGE 1 OF 6 PROJECT: DEC Allen WELL / BORING NO: AB-1 OBR PROJECT NO: 1026.17 STARTED: 10/16/18 COMPLETED: 10/24/18 DRILLING COMPANY: SAEDACCO NORTHING: 524955.972 EASTING: 1400594.082 DRILLING METHOD: Air Rotary/Hammer G.S. ELEV: 573.92 ft M.P. ELEV: 576.70 ft BOREHOLE DIAMETER: 14 3/4, 10, 6 IN DEPTH TO WATER:13.5 ft TOTAL DEPTH: 160.0 ft BGS NOTES: bgs: below ground surface LOGGED BY: L. Drago CHECKED BY: C. Suttell w v U _ O 0 W CL O^ o U) 0 z OJ 0 E WELL CONSTRUCTION Q DESCRIPTION g U LU E Q p o C� < m 0 SAND, white (Gley 1 8/1 N) to dark greenish gray (Gley SW 1 4/1 10GY) very loose to firm, weathered rock 35 (continued) >>>> — ------------------------ 1 0-inch Diameter Outer Casing to 78 feet bgs 40 > SW SAND, mottled white (7.5 YR 8/1) to dark brown (7.5 YR 3/2), very firm, coarse grain, wet 45 CL CLAY, light brownish gray (2.5 Y 6/2), hard with quartz clasts, difficult drilling noted at 43 feet bgs 50 Clayey SAND, light brownish gray, dense with partially 55 SC weathered rock clasts present, quartz rich, hard material noted at 50 feet bgs SynTerra CLIENT: Duke Energy 148 River Street, Suite 220 PROJECT LOCATION: Belmont, North Carolina Terra Greenville, South Carolina 29601 s)mPhone:864-421-9999 PAGE 2 OF 6 PROJECT: DEC Allen PROJECT NO: 1026.17 WELL / BORING NO: AB-1 OBR STARTED: 10/16/18 COMPLETED: 10/24/18 DRILLING COMPANY: SAEDACCO DRILLING METHOD: Air Rotary/Hammer BOREHOLE DIAMETER: 14 3/4, 10, 6 IN NOTES: bgs: below ground surface NORTHING: 524955.972 EASTING: 1400594.082 G.S. ELEV: 573.92 ft M.P. ELEV: 576.70 ft DEPTH TO WATER:13.5 ft TOTAL DEPTH: 160.0 ft BGS LOGGED BY: L. Drago CHECKED BY: C. Suttell w v p U _ Q O �� C� 0 DESCRIPTION W CL g < O^ U o LU U) 0 z OJ m0 0 E E Q WELL CONSTRUCTION 65 70 75 80 85 SC Clayey SAND, light brownish gray, dense with partially weathered rock clasts present, quartz rich, hard material noted at 50 feet bgs (continued) 6-inch Diameter Inner Casing to 140 feet bgs PWR, brown and white, partially weathered rock with sit, quartz and black clasts present Diabase, dark greenish gray, very strong, sound rock, aphanitic SynTerra CLIENT: Duke Energy 148 River Street, Suite 220 PROJECT LOCATION: Belmont, North Carolina Terra Greenville, South Carolina 29601 s)mPhone:864-421-9999 PAGE 3 OF 6 PROJECT: DEC Allen PROJECT NO: 1026.17 WELL / BORING NO: AB-1 OBR STARTED: 10/16/18 COMPLETED: 10/24/18 DRILLING COMPANY: SAEDACCO DRILLING METHOD: Air Rotary/Hammer BOREHOLE DIAMETER: 14 3/4, 10, 6 IN NOTES: bgs: below ground surface NORTHING: 524955.972 EASTING: 1400594.082 G.S. ELEV: 573.92 ft M.P. ELEV: 576.70 ft DEPTH TO WATER:13.5 ft TOTAL DEPTH: 160.0 ft BGS LOGGED BY: L. Drago CHECKED BY: C. Suttell w v p U _ Q O o C� 0 DESCRIPTION W CL g < O^ U o LU U) 0 z OJ m 0 0 E E Q WELL CONSTRUCTION 95 100 105 110 115 Diabase, dark greenish gray, very strong, sound rock, aphanitic (continued) Diorite, meta -quartz diorite, black and white, very strong, sound rock, phaneritic, pyrite increases at 129 feet bgs, fracture noted at 147 feet bgs SynTerra CLIENT: Duke Energy 148 River Street, Suite 220 PROJECT LOCATION: Belmont, North Carolina Terra Greenville, South Carolina 29601 s)mPhone:864-421-9999 PAGE 4 OF 6 PROJECT: DEC Allen PROJECT NO: 1026.17 WELL / BORING NO: AB-1 OBR STARTED: 10/16/18 COMPLETED: 10/24/18 DRILLING COMPANY: SAEDACCO DRILLING METHOD: Air Rotary/Hammer BOREHOLE DIAMETER: 14 3/4, 10, 6 IN NOTES: bgs: below ground surface NORTHING: 524955.972 EASTING: 1400594.082 G.S. ELEV: 573.92 ft M.P. ELEV: 576.70 ft DEPTH TO WATER:13.5 ft TOTAL DEPTH: 160.0 ft BGS LOGGED BY: L. Drago CHECKED BY: C. Suttell w v p U _ Q O o C� 0 DESCRIPTION W CL g < O^ U o LU U) 0 z OJ m 0 0 E E Q WELL CONSTRUCTION 125 130 135 140 145 Diorite, meta -quartz diorite, black and white, very strong, sound rock, phaneritic, pyrite increases at 129 feet bgs, fracture noted at 147 feet bgs (continued) Bentonite SynTerra CLIENT: Duke Energy 148 River Street, Suite 220 PROJECT LOCATION: Belmont, North Carolina Ter Greenville, South Carolina 29601 Phone:864-421-9999 PAGE 5 OF 6 PROJECT: DEC Allen PROJECT NO: 1026.17 WELL / BORING NO: AB-1 OBR STARTED: 10/16/18 COMPLETED: 10/24/18 DRILLING COMPANY: SAEDACCO DRILLING METHOD: Air Rotary/Hammer BOREHOLE DIAMETER: 14 3/4, 10, 6 IN NOTES: bgs: below ground surface NORTHING: 524955.972 EASTING: 1400594.082 G.S. ELEV: 573.92 ft M.P. ELEV: 576.70 ft DEPTH TO WATER:13.5 ft TOTAL DEPTH: 160.0 ft BGS LOGGED BY: L. Drago CHECKED BY: C. Suttell w v p U _ Q O o C� 0 DESCRIPTION W CL g < O^ U o LU U) 0 z OJ m 0 0 E E Q WELL CONSTRUCTION 155 160 165 170 175 Diabase, dark greenish gray, very strong, sound rock, aphanitic, fracture at 156 feet bgs f Sand Well Screen SynTerra CLIENT: Duke Energy 148 River Street, Suite 220 PROJECT LOCATION: Belmont, North Carolina Terra Greenville, South Carolina 29601 s)mPhone:864-421-9999 PAGE 6 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: AB-10BRL PROJECT NO: 1026.17 STARTED: 10/16/2018 COMPLETED: 01/19/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 573.679 M.P. ELEV: 576.098 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 13 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U HPF-Pumping � �.OTw�80 (7 a LL 0. 90° 5- 10- 15- 20- 25- 30- 35- 40- 45- 50- 55- 60- 65- 70- 75- 80- 85- 9o- 95 Inn Clay: Red (2.5 YR 5/8), very stiff silty clay (CL), ................. dry .................. ... ... .................... .................... ` (CL) Clay and Silt: Red (2.5 YR 5/8), firm silty clay ...................... (CL) dry ... .................. Sandy Clay: Yellowish brown (10 YR 5/6), very lose clayey fine sand (SC), wet (SC) ... ` .................... Sand: White (Gley 1 8/1 N) to dark greenish .: gray (Gley 1 4/1 10GY), very loose to firm weathered rock (sampled as sand) (SW) ................. :............:..:. .... ... :................ti ` ;•;•;•;• Sand: Mottled white (7.5 YR 8/1) to dark brown (7.5 YR 3/2), very firm coarse sand (SW), wet , ti Clay: Light brownish gray (2.5 Y 6/2), hard clay (CL) (CL) with quartz clasts; difficult drilling noted at 43' ; ....................` Clayey Sand: Light brownish gray, dense clayey ......... ... ... sand with partially weathered rock clasts ................ present, quartz rich, hard material noted at 50' .............: .................... ..... ......... PWR: Brown and white, partially weathered rock with silt, quartz and black clasts present .......... ^ ^non Diabase: Dark greenish gray, very strong, AAAAA� sound rock, aphanitic .......... .. ^^........ ^ ^^^ ............^n ^n^n .............. n^n^n^ ^n^n^n n^n^n^ ...... ........ n^n^n^ l _ n^n^n^ .............. .n.n.n ..... % Stick-up \/ Grouted 10" \� r �` surface casing r 10" Sch 80 PVC \� Surface Casing r r r rN r tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE i OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: AB-10BRL PROJECT NO: 1026.17 STARTED: 10/16/2018 COMPLETED: 01/19/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 573.679 M.P. ELEV: 576.098 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 13 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 a a�n) r 7.0 W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 1 0.040 0 U O.00HPF-Pumping 80 1 po IL go. n^n^ n n ^n^n^ n 105 n^n^n^ n^n^n^ 110 Meta -Quartz Diorite: Meta -Quartz Diorite, black 0 C and white, very strong, sound rock, phaneritic 0 Pyrite increase at 129'; Fracture noted at 147' 115 0 0 120 125 0 130 0 135 0 140 0 145 0 150 n^n^n^ Diabase: Dark greenish gray, very strong, n^n^n^ sound rock, aphanitic 155 n^n^n^ Fractures noted at 156' and 161' n^n^n^ n^n^n^ 160 AAAAAn n n n 165 AAAAAA Diabase: Dark greenish gray, very strong, ^n^n^n sound rock, aphanitic AAAAA� Quartz vein noted from 185-186' 170 ^n^n^n n^n^n^ 175 nnnnnn n^n^n^ n^n^n^ 180 ^n^n^n n^n^n^ n^n^n^ 185 nnnnnn n^n^n^ 190 nnnnnn n^n^n^ n^n^n^ 195 ^n^n^n n^n^n^ n^n^n^ ,n,n,n casing . \� �� 6" Sch 80 PVC .... .. A ua uarded ... \� \� 2 well ... ... ;� �/ �/ ; 2" Sch 40 PVC ......... r\ \ r �i ............. ... .................... .................... .............r \ \ r ................. ....... . ;Z .................... ..............r \ \ r ............. ... ... r\ \ r ......... ................. r \ \ r ... \ ......... N r\ \ r r\ \ r rN ............. ....... ...... ....... ...... r\ \ r ................... `i \/ \/ iN .................... r\ \ r ......... .... �r \/ \/ r� .................... .............. �r \/ \/ �� ....................r \ \ r tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 2 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: AB-10BRL PROJECT NO: 1026.17 STARTED: 10/16/2018 COMPLETED: 01/19/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 573.679 M.P. ELEV: 576.098 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 13 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 (7 Ww") 0. L. go. - - ................. ^^^^^^ Diabase: Dark greenish gray, very strong, _ .......... � .�A 205 n^n^n^ sound rock, aphanitic, olive colored clasts - - - - ^nnnnn present .............. 210 ^"^"^" Soft zone/potential fracture noted from .................... = ' n An AAA Quartz vein noted from 247-248'.- 215 ^n^n^n ^n^n^n .............. 220 ^n^n^n - n^n^n^ ^n^n^n 225 ^"^"^" _ _ .............. ^ n ^ n ^ n n n n .............. 230 n n n ^n^n^n .................... \ \ \ n n n ... ... � 235 n^n^n^ n n n _ . .... ......... ^n n n nn - .............. ....... ....... 240 ^"^"^" \ \ \ ^ n ^ n ^ n .............. n^n^n^ 245 ^^^^^^ ::............... 250 n^n^n^ ^n^n^n :::::::............. .............. 255 """ AAAAAA ........ 260 "n"n"n n n n....................\ ............. \ \ A^A^A^ Diabase: Dark greenish gray, very strong, 265 n^n^n^ sound rock aphanitic .................... ^A^A^A A^A^A^ Slight red mineralization noted at 312' ............. 270 Drilling rate —2 min/ft at 322'/�/�/� n^n^n^ n n n 275 n n n ^n^n^n .............. "' "' n n n � 230 ^^^^^^ n n n ^ A ^ A ^ .............. 285 AAAAAA .............. """""""" n n n n n n n^n^n^ ............... 290 ^n^n^n ... 295 ^^^^^^ \ \ \ n n n n n n \ \ \ Bentonite seal Sand pack 2" well screen Sand backfill Bentonite backfill tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 ynTerra Phone: 864-421-9999 PAGE 3 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: AB-10BRL PROJECT NO: 1026.17 STARTED: 10/16/2018 COMPLETED: 01/19/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 573.679 M.P. ELEV: 576.098 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 13 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 Tw) ■ U. L. 90. n^n^ n^n^n^ n^n^n^ 305 n^n^n^ n^n^n^ n^n^n^ 310 n^n^n^ n^n^n^ n^n^n^ 315 nnnnnn n^n^n^ n^n^n^ 320 ^n^n^n n^n^n^ n^n^n^ 325 nn^n^n n^n^n^ n^n^n^ 330 AAA AAA n^n^n^ n^n^n^ 335 n^n^n^ n^n^n^ n^n^n^ 340 n^n^n^ n^n^n^ n^n^n^ 345 ^An AAA n^n^n^ n^n^n^ 350 n^n^n^ n^n^n^ n^n^n^ 355 AA^n^n n^n^n^ n^n^n^ 360 ^An AAA n^n^n^ n^n^n^ 365 n^n^n^ n^n^n^ n^n^n^ 370 AAAAAn n^n^n^ 375 AAAAAn 0 Meta -Quartz Diorite: Meta -Quartz Diorite, black 380 0 < and white, very strong, sound rock, phaneritic, green mineralization present 385 0 IC Increase of pink mineralization noted from 0 390-395', 418', 450-458', 462-482' 390 0 0 395 0 0 nnn Aquaguard backfill tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 4 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: AB-10BRL PROJECT NO: 1026.17 STARTED: 10/16/2018 COMPLETED: 01/19/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 573.679 M.P. ELEV: 576.098 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 13 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U HPF-Pumping � -.0Tw�80 a LL 0° 90° 0 < 405 0 < 0 < 410 0 < 415 0 < 0 < 420 0 < 0 < 425 0 < 0 < 430 0 < 0 < 435 0 < 0 < 440 0 < 445 0 < 0 < 450 < 0 < 455 0 < 0 < 460 0 < 0< 465 0 < 0< 470 0 < 0< 475 0 < 480 0 < 485 0 < 0 < 490 0 < 0 < 495 0 < 0< rJ i , N�N�\ tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 5 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: AB-10BRL PROJECT NO: 1026.17 STARTED: 10/16/2018 COMPLETED: 01/19/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 573.679 M.P. ELEV: 576.098 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 13 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS Caliper( CJ 6.0 7.0 W i+ CL _ 0 Q 0 DESCRIPTION � > O F j WELL CONSTRUCTION HPF-Ambient -0.040 (g ) 0.040 W U O.OePF-PPuumpingO.80 Q (gw") o. LL go. SynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 SynTerra Phone: 864-421-9999 PAGE 6 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-3BRL PROJECT NO: 1026.17 STARTED: 11/28/2018 COMPLETED: 01/30/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.168 M.P. ELEV: 580.614 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 7 ft bgs TOTAL DEPTH: 472 ft bgs NOTES: Artesian well; HPF-P not conducted LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U HPF-Pumping � 0.O (7 Q 9w) .8� 0° U.90° Clay: Dark reddish gray (10 YR 4/1), stiff, dry, fine grained (FILL) - '- Sandy Silt: Olive (5Y 4/4), soft, moist, contains 10 - _ fine grained sand (ALLUVIUM) 15 - Sandy Silt: Pale brown (10YR 6/3), very soft, — contains fine to medium grained sand 20 T T' Silty Sand: Pale brown (10YR 6/3), medium, . T T contains fine grained sand (ALLUVIUM) T.' 25 T T' T' Sand: Pale brown (10YR 6/3), medium, 30contains fine grained sand (SAPROLITE) *fine Silt: Dark brown and orange, very stiff, dry, 35 grained sand (SAPROLITE) Sand: Light brown and white, dense, dry, fine 40 grained sand (SAPROLITE) Very Dense @ 44' bgs 45 ; Contains fine to medium grained sand @ 48' bgs •; Contains medium to coarse grained sand @ 88' 50 bgs Contains fine gravel @ 113' bgs 55 Reddish brown and white, contains medium to coarse gained sand @ 118' bgs 60 65 70 75 80 85 90 95 inn :................ � �` i \/ \/ i i� Well Cap (CL) ... .................�i� i i r N N -7.. /� / / (ML) .......... �% \/ \/ i / / .................... (SP- .................... SM) ...............\/� ... .. / \/ \/ i / /� .................... ..................... ....................�/� .....................�i� .................... Nr� ... .. :::::::::::::::;�� Grouted 10" (SP) .................... / \/ \/ / r ✓� surface casing r i� �r� \/ \/ i /� 10" Sch 80 PVC / / Surface Casing ..................... i \/ \/ i " ... r r / ........................ / \/ \/ / ! ... tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 ynTerrd Phone: 864-421-9999 PAGE i OF 5 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-3BRL PROJECT NO: 1026.17 STARTED: 11/28/2018 COMPLETED: 01/30/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.168 M.P. ELEV: 580.614 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 7 ft bgs TOTAL DEPTH: 472 ft bgs NOTES: Artesian well; HPF-P not conducted LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 (7 .. 105 �rN / \ \ r r� Grouted 6" :................N N i / / \/ \/ / % casing 110 .. re / I / \ \ \/ \/ / r / � IN 6" Sch 80 PVC .... .... .... i / \/ \/ i r r` 115 •. •. •. •. .... `r� r 'r. .................... / \ \ A \ / / r r rN! :::::::::::::::::^rN r` / Silt: Black and brown, hard, dry, contains very 125 fine grained sand (SAPROLITE) (ML) r / \/ \/ �� ' Sand: Orangish brown and white, some gravel, :...... / ::::::::::..::...�r� / \ \ \/ \/ / rN / rN! 130 '.'.'.'. :.:.:.:. medium to coarse grained sand (SAPROLITE) ................... ....................`r\ / / r\ \/ \/ 135 40— ............:...`r� r� .................1/� .................�/� .................... 145 •. •. •. •. i \% \% \ x 0 Meta -Quartz Diorite: Black and white, strong,....................\ 0 phaneritic, partially weathered rock cuttings .............. 150 0 present Potential fracture noted at 148 ft bgs .............. .............. 155 0 Pink mineralization present from 148-156 ft bgs \ \ 0..................................r1 .. ... r 160 0 IC 165 0 < 170 0 0 Ic 175 0 Ic .............. �r1\� \� /N ............. ;/1 \/ \/ i; 180 0 .............. 185 ............. 0 Meta -Quartz Diorite: Black and white, strong,.................... 0 sound rock, quartz dominant, minor green .............. 190 0 mineralization, phaneritic Pink mineralization present at 201 ft bgs / \i \i \i \i it A ua uarded r 0 Ic 2" well 195 Q < tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 ynTerra Phone: 864-421-9999 PAGE 2 OF 5 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-3BRL PROJECT NO: 1026.17 STARTED: 11/28/2018 COMPLETED: 01/30/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.168 M.P. ELEV: 580.614 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 7 ft bgs TOTAL DEPTH: 472 ft bgs NOTES: Artesian well; HPF-P not conducted LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 205 210 215 230 235 240 245 250 255 260 0 0 iAAAAAA,Meta-Quartz 4 _ �` .................... .................... ' \/ \/ r r �r \r �r �r .............. " " " Diabase: Dark greenish gray, strong, sound rock, aphanitic AAAAAAsound �"A"A^ " "rock, Diorite: Black and white, strong,220 rock, phaneritic"n"n"n Potential fracture noted from 216-217 ft bgs,n^n^n^notable water coming from the borehole5 Diabase: Dark greenish gray, strong, sound" aphanitic Drilling rate — 2 min/ft 0 0 0 0 0 0 0 0 0 0 ................ Meta -Quartz Diorite: Black and white, strong, sound rock, quartz dominant, green mineralization, phaneritic Minor pink mineralization present at 238 ft bgs and 260 ft bgs Drilling rate ranges from —1.5 min/ft to 2min/ft ................... .................... .............. •' .......... ............... ...................... :............. ... ........ ... n"" nn Diabase: Dark greenish gray, strong, sound rock, aphanitic 265 210 275 280 285 290 295 :............: .............• r r \/ \/ r r r r �r r r r r 0 0 0 0 0....................�r 0 0 0 0 Meta -Quartz Diorite: Black and white, strong, sound rock, pink mineralization, phaneritic Meta -Quartz Diorite: Black and white, strong, sound rock, green mineralization, phaneritic Drilling rate —1.5 min/ft .................... .. ... .............. .............. .. ... ........ AAAAAA ^A^A^� Diabase: Dark greenish gray, strong, sound rock, aphanitic ,\ Meta -Quartz Diorite: Black and white, strong, 2" Sch 40 PVC tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 ynTerra Phone: 864-421-9999 PAGE 3 OF 5 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-3BRL PROJECT NO: 1026.17 STARTED: 11/28/2018 COMPLETED: 01/30/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.168 M.P. ELEV: 580.614 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 7 ft bgs TOTAL DEPTH: 472 ft bgs NOTES: Artesian well; HPF-P not conducted LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 V sound rock, green and pink mineralization, -------"I', 1r �r 305 310 315 320 325 330 335 340 345 350 355 0 0.................... 0 0 0 0 0 0 0 phaneritic - .............. �r �r �r �r r r �r �r �r r r r r �r �r r r �r �r r r �r �r �r �r �r �r .............. .............. ....................�r ...... ............. .. ... .................... .............. ... ............ .. .............. ... . ...... .............. AAA' ^^ ^nn n^n^n^ Diabase: Dark reenish ra stron sound 9 9 Y 9 rock, aphanitic ..... .. .......... 0 0 0 0 0 Meta -Quartz Diorite: Dark green and pink, strong, sound rock, phaneritic Potential fracture noted at 354 ft bgs 360 365 370 375 380 0 0 -V .............. ... .................... - .................... .................... 0 0 0 0 0 0 Meta -Quartz Diorite: Black and white, strong, sound rock, minor green and pink mineralization, phaneritic Potential fracture noted at 466 ft bgs .... .............. 385 0 0 ::::::::. Irr .............. 390 0 _ 0 ... ... _ r 395 0A = r I 0 Ann ............::::: tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 4 OF 5 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-3BRL PROJECT NO: 1026.17 STARTED: 11/28/2018 COMPLETED: 01/30/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.168 M.P. ELEV: 580.614 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 7 ft bgs TOTAL DEPTH: 472 ft bgs NOTES: Artesian well; HPF-P not conducted LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 Tw) ■ U. U. 90. '_ .................... Q.............. .. ... 405 Q — .................... Q 410 Q — .................... 4150— Q — — 420 Q Q Bentonite seal 425 Q .............. — — Q.................... 430 Q — — Q_-. ..........9. 435 Q — — Q .............: 440 445 Q Q::....::: Q ......... — — .... 450 Q Q�*............ — .................... 455 Q Q .. ... .............. 460 — ;• Q .............. — 465 470 �.. .:.'� Sand pack =_ 2" well screen ' '—' ' Diabase: Dark greenish gray, highly weathered rock, purple and red mineralization present Artesian fracture zone noted from 466-470 ft bgs Meta -Quartz Diorite: Black and white, strong, sound rock, phaneritic tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 5 OF 5 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-4BRL PROJECT NO: 1026.17 STARTED: 11/07/2018 COMPLETED: 01/14/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 580.458 M.P. ELEV: 580.315 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 17 ft bgs TOTAL DEPTH: 503 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U HPF-Pumping � -.O�wI (7 Q .8� 0. U.90° u - Sandy Silt: Yellowish red (5YR 5/6), stiff, low....................`i` i \/ �/ / / Well Cap 5 _ ,- plasticity, dry, cohesive (FILL) ... ......::::��� \/ \/ _ - Medium, contains lenses of gravel at 8 ft bgs �% .................�/\ / r /� \/ \/ — ... •. T. T T Silty Sand: Reddish yellow (5YR 6/8), loose, (SM) .......... :::..........:::::::`i` `i` i \/ \/ \ \ i i` 20 T' non -plastic, wet, non -cohesive, contains / r /� o : • GP_ medium to coarse grained sand (ALLUVIUM) `/� Gravel: Reddish yellow 5YR 6/8) contains clay 25 ��!'� GC) / \/ \/ , ,- T T and coarse grained sand, loose, non -plastic, .................. 30 T -r wet, non -cohesive (ALLUVIUM) Silty Sand: Mottled white (N 8/) and greenish .................\/� ............ T T T • T ; 35 T T TT gray (5G 5/1), very loose, non -plastic, wet, """"""""'`i` i \/ \/ i i` T T non -cohesive, fine to coarse sand, micaceous ........ ........ T T; • (SAPROLITE) ::::::::::::..:::L/� 40 T T Medium dense at 33 ft bgs `i` i \/ \/ i i`' Grouted 10" T T: T Reddish yellow (7.5YR 6/8) and moist at 43 ft .................\/\ / \/ \/ r r �� surface casing 45 r. : T M. bgs \ \ / / 10" Sch 80 PVC ' M. T • •.T. M. .................1/� ....................\/\ / \ \ Surface Casing / /� 50 ................ T T Silty Sand: Mottled white (N/8) and greenish M. T. gray (5G 5/1) and reddish yellow (7.5YR 6/8), (SM) 55 :T T medium dense, non -plastic, moist, .................. , T T: non -cohesive, micaceous, contains fine to . .. .........::.... ....................r\ 60 .T T• coarse grained sand (SAPROLITE) Wet at 53 ft bgs Fine grained, dense, very dark grayish green ............. 65 (5G 3/2) at 58 ft bgs Sand: Mottled white (N/8), reddish yellow .............. 70 ••T (7.5YR 6/8), very dense, non -plastic, moist, ................. T' T....................\ non -cohesive, micaceous, contains medium to ... ;;;;;;;;;,,,,,`;` \ ; \ 75 T T' coarse grained sand (SAPROLITE)\�\ Z Silty Sand: Dark grayish green (5G 3/2), very T 80 T T : T . dense, non -plastic, dry, non -cohesive, contains . fine grained sand (SAPROLITE) ................. Meta -Quartz Diorite: Black and white, partially..................... 85 0 0 weathered rock, moderately weak .................... .............. 0 .............. Grouted 6" g0 \� \� casing 0 Meta -Quartz Diorite: Black and white, 95 �"""""' � � 6" Sch 80 PVC 0 moderately strong, sound rock, minor green :::::::::::::: \� \ / / \/ \/ , arded inn i--� mineralization haneritic , p ::::::::::::: \� \� 2�� Well 2" well tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE i OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-4BRL PROJECT NO: 1026.17 STARTED: 11/07/2018 COMPLETED: 01/14/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 580.458 M.P. ELEV: 580.315 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 17 ft bgs TOTAL DEPTH: 503 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 v Potential fracture noted at 93 ft bgs 105 0 110 0 115 0 120 0 125 0 Meta -Quartz Diorite: Black and white, strong, 0 sound rock, phaneritic Pink mineralization noted at 173 ft bgs 130 0 < Potential fracture noted at 197 ft bgs 0 135 0 140 0 145 0 0 150 0 155 0 160 0 0 165 0 170 0 175 0 180 0 185 0 0 190 0 0 195 0 Meta -Quartz Diorite: Dark green and pink, .................... ..............,1 ,. .................... �i 2" Sch 40 PVC .................... .................... .................... .................... .................... I ;r ............. r\ \ r ............. .................... .................... r1 \ \ rl .................... .............. ... ... ... ... .............. \/ \/ \� r .................... \� r ... ... :............. \� r .. i r �. :........ Bentonite seal tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 2 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-4BRL PROJECT NO: 1026.17 STARTED: 11/07/2018 COMPLETED: 01/14/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 580.458 M.P. ELEV: 580.315 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 17 ft bgs TOTAL DEPTH: 503 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 V potential fracture zone, phaneritic 0 < Potential fracture noted at 210 ft bgs ...........— — 205 0 — — 210 215 0 0 _ ::::: ............ `} . = — Meta -Quartz Diorite: Black and white, strong, sound rock, phaneritic 220 Potential fracture noted from 215-217 ft bgs 0 Meta -Quartz Diorite: Pink and dark green, 225 230 235 240 245 250 255 265 270 275 280 285 290 295 0 0 0 0 0 0 0 0 0 0 0 < 0 0 0 0 0 0 0 0 0 0 0 0 0 0o phaneritic - . .......... �N N ///11 Meta -Quartz Diorite: Black and white, strong, sound rock, phaneritic Pink mineralization noted at 275-288 ft bgs :............. .................... .............. ... ... ............../�/�/ ......... ......... .. ... ... ................. ............. .............. :::::::::::::: .. ... .............. ................... ................. .. ... .................... Sand pack 2" well screen Sand backfill Bentonite backfill tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 3 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-4BRL PROJECT NO: 1026.17 STARTED: 11/07/2018 COMPLETED: 01/14/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 580.458 M.P. ELEV: 580.315 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 17 ft bgs TOTAL DEPTH: 503 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 T■ ) po IL go. 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 AnA O- O O O O O...... O O O O O O O O O - -- ............. ........... ............:::::: rrr \rNrNr� \r\r\r\ rrr \ j� j� j� \r\r\r\ r r r rri r r r ��X� rrr �r�rNr\ �j�jN/ % \ \r\r\r\ .............. :::: :::::::..::::: ................. .......... ... - K V; .............. .............. .............. .............. ... .......... .. ................... .... AAAAAA Diabase: Dark greenish gray, strong, sound rock, aphanitic O O O O O O O O Meta -Quartz Diorite: Black and white, green mineralization, strong, sound rock, phaneritic Pink mineralization noted at 380 ft bgs « ............. .............. -.- -. .. ... ................. ......... .............. n A n A n n n n Diabase: Dark greenish gray, strong, sound rock, aphanitic, contains pink mineralized clasts O O Meta -Quartz Diorite: Black and white, pink mineralization, strong, sound rock, phaneritic ................. :::::::::::::: O O O Meta -Quartz Diorite: Black and white, green mineralization, strong, sound rock, phaneritic Drilling rate — 2 min/ft Decrease in green mineralization at 443 ft bgs ................:.:. .................. ... ... Aquaguard backfill tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 4 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-4BRL PROJECT NO: 1026.17 STARTED: 11/07/2018 COMPLETED: 01/14/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 580.458 M.P. ELEV: 580.315 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 17 ft bgs TOTAL DEPTH: 503 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 0 405 0 0 410 0 415 0 420 0 0 425 0 0 430 0 0 435 0 0 440 0 445 A AnAn Diabase: Dark greenish gray, strong, sound n^n^n^ rock, aphanitic Meta -Quartz Diorite: Black and white, strong, 450 0 sound rock, phaneritic 455 0 ^^^ n nn Diabase: Dark greenish gray, strong, sound 0 460 rock, aphanitic 0 Drill noted as skipping at 460 ft bgs Meta -Quartz Diorite: Black and white, minor 465 0 green and pink mineralization, strong, sound 0 < rock, phaneritic 470 0 Decrease in pink mineralization at 494 ft bgs 0 Drill noted as skipping at 501 ft bgs 475 0 480 0 0 485 0 490 0 0 495 0 0 rnn n.n,n N�N�\ tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 5 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-4BRL PROJECT NO: 1026.17 STARTED: 11/07/2018 COMPLETED: O1/14/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 580.458 M.P. ELEV: 580.315 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 17 ft bgs TOTAL DEPTH: 503 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS Caliper( CJ 6.0 7.0 W i+ CL _ 0 Q 0 DESCRIPTION � > O F j WELL CONSTRUCTION HPF-Ambient -0.040 (g ) 0.040 W U O.OePF-PPuumping0.80 Q (gw") o. LL go. ^A^A^J Diabase: Dark greenish gray, strong, sound ^ ^ rock, aphanitic SynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 SynTerra Phone: 864-421-9999 PAGE 6 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-SBRL PROJECT NO: 1026.17 STARTED: 10/31/2018 COMPLETED: 01/11/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.461 M.P. ELEV: 581.164 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 18 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W " w _ Q 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 1 0.040 0 U 0.0ePF-PPuwmping0 80 (7 TwI ■ U• L. 9o- 1 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 inn �o►. Gravel: Road bed (FILL) ............ ` — Sandy Silt: Brown (7.5YR 4/2) (FILL) (ML) ... :. .. Silty Clay: Brown (7.5YR 4/2), soft, dry, ... ............... cohesive (FILL) ....................: ... •_• Very soft at 18 ft bgs .. _ ' - .................... ................; ............:::::^ Clay: Brown (7.5YR 4/2), soft, dry (FILL) Medium at 28 ft bgs (CL) ` Dark yellowish brown (10YR 4/4), high ... ... ............:::� plasticity, cohesive at 33 ft bgs ...................., Sandy Clay: Dark yellowish brown (10YR 4/4), medium, high plasticity, cohesive, contains fine ` • grained sand (FILL) .... • (SP) Sand: Olive brown (2.5YR 6/8). loose (FILL) ......... ... ........ -- Silt: Olive yellow (2.5Y 6/8), very stiff ... -- (ALLUVIUM) —11 .................... -= — Olive brown (2.5Y 4/3) and white at 57 ft bgs (ML) ::................. .................... T T: Silty Sand: Light brown (7.5YR 6/3) and white, ..................� .................� T T dense (SAPROLITE) •.T. T. (SM) .................. TT• . T . .................� ............. •; Sand: Light brown (7.5YR 6/3) and white • (N/9.5), very dense (SAPROLITE) .............. •; Cobble -sized quartzite/river-rock clasts blown .•.•.•.• • out of borehole while advancing """""""""" PWR: Partially weathered Meta -Quartz Diorite, black and white, weak to moderately strong .............. ............... Well Cap Grouted 10" surface casing 10" Sch 80 PVC Surface Casing _Z \/ 6` 61 \� \� ,i Grouted 6" casing 6" Sch 80 PVC tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE i OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-SBRL PROJECT NO: 1026.17 STARTED: 10/31/2018 COMPLETED: 01/11/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.461 M.P. ELEV: 581.164 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 18 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 (7 Tw� ■ U. L. 90. 105 O Meta -Quartz Diorite: Black and white, strong, 110 sound rock, green mineralization, minor pyrite, 0 IC phaneritic 0 Potential fracture noted at 132 ft bgs 115 0 120 0 0 125 0 0 130 0 0 135 0 0 140 0 145 0 0 150 0 155 0 0 160 0 � AAAAA Diabase: Dark greenish gray, strong, sound 165 rock, aphanitic 0 Meta -Quartz Diorite: Black and white, strong, 170 0 C sound rock, phaneritic 0 Drilling rate —3 min/ft 175 Minor green mineralization starts at 215 ft bgs 0 Minor pink mineralization starts at 233 ft bgs 0 c Potential fracture noted at 237 ft bgs 180 0 185 0 0 190 0 0 195 0 0 Aquaguarded 2" well 2" Sch 40 PVC tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 2 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-SBRL PROJECT NO: 1026.17 STARTED: 10/31/2018 COMPLETED: 01/11/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.461 M.P. ELEV: 581.164 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 18 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 Tw� ■ U. L. 90. 205.E 0 0 210 0 0 215 0 220 0 0 225 0 0 230 0 0 235 0 nAnAnA Diabase: Dark greenish gray, strong, sound °.. 240 rock, aphanitic Meta -Quartz Diorite: Black and white, strong, 245 O c sound rock, phaneritic Minor green and pink mineralization starts at 250 0 255 ft bgs 0 - 255 0 0 260 0 v Meta -Quartz Diorite: Black and white, strong, 265 0 sound rock, minor green mineralization, 0 phaneritic�__ 270 0 Pink mineralization starts at 313 ft bgs 0 275 0 0 - 280 0 - - 285 0 0 290 0 - 0 ' 295 0 0 .-. tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 3 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-SBRL PROJECT NO: 1026.17 STARTED: 10/31/2018 COMPLETED: 01/11/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.461 M.P. ELEV: 581.164 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 18 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 Tw) ■ U. L. 90. 305 0 0 310 0 315 """""^ Diabase: Dark greenish gray, strong, sound 320 n^n^n^ rock, aphanitic n^n^n^ n^n^n^ " " " 325 O C Meta -Quartz Diorite: Black and white, strong, sound rock, minor green and pink 330 0 mineralization, phaneritic 0 Potential fracture zone noted from 338 to 342 335 0 ft bgs 0 340 0 345 0 350 0 Meta -Quartz Diorite: Pink, black, and white, 0 strong, sound rock, minor green mineralization, 355 phaneritic 0 360 0 0 365 0 0 370 0 0 375 0 Diabase: Potential fracture zone noted from 380 338 to 342 ft bgs Meta -Quartz Diorite: Black and white, strong, 385 0 sound rock, minor green and pink 0 mineralization, phaneritic Meta -Quartz Diorite: Pink, black, and white, 390 0 < 0 Ic strong, sound rock, green mineralization, phaneritic 395 0 nnn 0 i Bentonite seal Sand pack 2" well screen Sand backfill Bentonite backfill tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 4 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-SBRL PROJECT NO: 1026.17 STARTED: 10/31/2018 COMPLETED: 01/11/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.461 M.P. ELEV: 581.164 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 18 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 T■ � po IL go. N N V Meta -Quartz Diorite: Black and white, strong, 405 0 C sound rock, green mineralization, phaneritic 0 Drill noted as skipping at 489 ft bgs 410 0 415 0 420 0 0 425 0 0 430 0 0 435 0 0 440 0 445 0 0 450 0 455 0 0 460 0 0 465 0 0 470 0 0 475 0 0 480 485 0 0 490 A AnAA Diabase: Dark greenish gray, strong, sound nAAAA� rock, aphanitic 495 Meta -Quartz Diorite: Black and white, strong, rnn 0 i—\ sound rock, green mineralization, phaneritic Aquaguard backfill tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 5 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-SBRL PROJECT NO: 1026.17 STARTED: 10/31/2018 COMPLETED: O1/11/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 581.461 M.P. ELEV: 581.164 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: 18 ft bgs TOTAL DEPTH: 502 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS Caliper( CJ 6.0 7.0 W i+ CL _ 0 Q 0 DESCRIPTION � > O F j WELL CONSTRUCTION HPF-Ambient -0.040 (g ) 0.040 W U O.OePF-PPuumping0.80 Q (gw") o. LL go. SynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 SynTerra Phone: 864-421-9999 PAGE 6 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-6BRL PROJECT NO: 1026.17 STARTED: 12/13/2018 COMPLETED: 01/17/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 628.05 M.P. ELEV: 630.607 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: ft bgs TOTAL DEPTH: 500 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g I 0.040 0 U 0.0ePF-PPuwmping0 80 (7 TwI ■ U. L. 9o. l c 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 inn •.M M. Silty Sand: Red (IOR 5/8) grading downward to ............:::::1, : T M. reddish yellow (5YR 6/6), poorly graded, ............:::\ .. ... moist, non -plastic, non -cohesive, poor saprolitic fabric, fine grained (SAPROLITE) T T T.' ....................; ................. \ Silty Sand: Predominantly red (2.5YR 5/6) T T' T T grading downward to light red (2.5YR 6/6), (SP T T' poorly graded, moist, non -plastic, non -cohesive, fine to very fine grained, trace SM) ` T T •T• muscovite (SOIL) ;;;;;;;;;;;; Silty Sand: Predominantly light red (2.5YR 6/6), \ T T T T: poorly graded, moist, non -plastic, T T ..r. non -cohesive, fine to very fine grained, poor M. relic rock fabric, highly weathered (SAPROLITE) .......... .................. Sandy Silt: Very pale brown (10YR 7/3), ................... ............. . mottled, wet, low plasticity, cohesive, fine grained, moderately relic rock fabric, highly ...............:\ ... ... — weathered micaceous (SAPROLITE) , - Moderate relic rock fabric with weak foliation at -- 45ftbgs (ML) \ ..... ................: T T Silty Sand: Light yellowish brown (2.5YR 6/4), ...............:� T T: poorly graded, moist, non -plastic, cohesive, ................. T T fine grained, massive to weakly migmatitic, * T: relic rock fabric, highly weathered, infrequent manganese filled relic fractures (SAPROLITE) ... ... ............... """""' ' T. T. Silty Sand: Light gray (2.5YR 7/2), poorly ............::::: T T: T T •T• graded, wet, non -plastic, cohesive, fine, .................\ T T uniformly grained, well preserved igneous .T T (phaneritic) texture, highly weathered diorite (SP T T. (SAPROLITE) SM) T T; Thin, steeply inclined, Fe -oxide stained relic .............. ` T T fracture present from 75-80 ft bgs T T. (SAPROLITE) .................; T T Diorite -highly weathered (SAPROLITE), No rock ............:::::� TT - (PWR) fragments • .T. T . ................... ................... ... .TT...................... TT ............ • '.T. T. •.T.• .................� ... .... ....................� .. T. T Silty Sand: Olive brown (2.5YR 4/3), well • T' T. graded, grained, rainedigy highly weathered, .................\ ................... .T. Well Cap i '` Grouted 10" surface casing 10" Sch 80 PVC Surface Casing tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE i OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-6BRL PROJECT NO: 1026.17 STARTED: 12/13/2018 COMPLETED: 01/17/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 628.05 M.P. ELEV: 630.607 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: ft bgs TOTAL DEPTH: 500 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U O.00HPF-PPu�mping0 80 (7 Tum ■ U. LL 9o. ,.T.'. r. M. M. I I Silty Sand: Olive brown (2.5YR 4/3), wet, well _ (SW .. /.1 Z1 i�� % 1 105 T T: T. graded, fine to medium grained, highly SM).................... .. ................. T T weathered diabase \ ;\ TT.' T .................. /\ 113 Meta -Quartz Diorite: Black and white, weak to \\�\ 0 IC 0 strong, medium to coarse grained, massive, ......:::::::: i 115 0 weakly foliated, slightly to moderately .............. weathered ... ... 120 \�\ 0 .................... 130 0 \�\ 0 ... ... .............. \�\ j 135 0 \\ 0 .............. 140 0 .................... ............. �\ 145 0 \�\ ...........:: 0 :::::::::::::: 150 \ .............. 0 \/\ i 155 0 \�\ ............. \�\ A^A^A^ 160 Diabase: Black (2.5N), strong, massive, fine .............. .............. grained, slightly to moderately weathered 165 A A A A A A Meta -Quartz Diorite: Black and white, weak to ............•• AAAAAn strong, medium to coarse grained, massive, n^A^A^ weakly foliated, slightly to moderately 170 weathered .................... ^A^A^� n^A^A^ Diabase: Black (2.5N), moderate to strong, i \ 0 175 massive, fine grained, slightly to moderately \ weathered .............. 180 0 Meta -Quartz Diorite: Black and white, moderate .............. .............. 0 to strong, medium to coarse grained, massive, i 0 weakly foliated, slightly weathered to fresh .............. i 185 Diabase: Black (2.5N), strong, fine grained, ^ ^ ^ 190 massive, slightly weathered 0 .............. Meta -Quartz Diorite: Black and white, moderate 195 0 to strong, medium to coarse grained, massive, .......•• •• • i weakly foliated, slightly weathered to fresh i Diabase: Black (2.5N), strong, fine grained, /\ Grouted 6" casing 6" Sch 80 PVC Aquaguarded 2" well 2" Sch 40 PVC tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 2 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-6BRL PROJECT NO: 1026.17 STARTED: 12/13/2018 COMPLETED: 01/17/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 628.05 M.P. ELEV: 630.607 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: ft bgs TOTAL DEPTH: 500 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 Tw� ■ U. L. 90. V I massive, slightly weathered 0 Meta -Quartz Diorite: Black and white, strong, 205 0 sound rock, phaneritic 0 Ic 210 0 Ic Ic 215 0 Ic 220 0 0 Ic 225 0 0 Ic 230 0 Ic 0 Ic 235 0 Ic 0 Ic 240 0 Ic 245 0 Ic 250 0 Ic 255 0 O Ic 260 0 Ic O 265 0 O Ic 270 0 O Ic 275 0 Ic Ic 280 0 Ic 285 0 O 290 0 AAAAAA Diabase: Dark greenish gray, strong, sound 295 n^n^n^ rock, aphanitic Potential fracture noted at 292 ft bgs Bentonite seal Sand pack 2" well screen tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 3 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-6BRL PROJECT NO: 1026.17 STARTED: 12/13/2018 COMPLETED: 01/17/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 628.05 M.P. ELEV: 630.607 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: ft bgs TOTAL DEPTH: 500 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0wn).040 0 U ■ 00ePF-PPumping0.80 Lu p� .Tw� ■ U. L. 90. 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 V Meta -Quartz Diorite: Black and white, strong, sound rock, phaneritic .. __%%�. _ _.................... .............. ............ ::: Sand backfill Bentonite backfill /N/N/` ` \/\/\/\ n^n^n^ O Diabase: Dark greenish gray, strong, sound rock, aphanitic Potential fracture noted at 305 ft bgs n^n^n^ 0 O C Meta -Quartz Diorite: Black and white, strong, sound rock, phaneritic ..........•••• .............. ................. ............ :::' ..... Diabase: Dark greenish gray, strong, sound rock, aphanitic Meta -Quartz Diorite: Black and white, strong, sound rock, phaneritic ^"^"^" 0 0 0 0 0 0 0 4C 0 0 0 Diabase: Dark greenish gray, strong, sound rock, aphanitic .......... . .......... .................... Meta -Quartz Diorite: Black and white, strong, sound rock, phaneritic ... ..... ........... .............. .. ... 0 0 C 0 04C 0 Ic 0 Ic 0 0 Ic Meta Quartz Diorite: Black and white, strong, sound rock, minor green and pink mineralization, phaneritic Abundant pink mineralization at 378 ft bgs .............. :::::... ......... .. W" ^ ^ ^ Diabase: Dark greenish gray, strong, sound rock, aphanitic 0 0 <C 0<Cmineralization, .............. ................. Meta -Quartz Diorite: Black and white, strong, sound rock, minor green and pink phaneritic .............. tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 4 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-6BRL PROJECT NO: 1026.17 STARTED: 12/13/2018 COMPLETED: 01/17/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 628.05 M.P. ELEV: 630.607 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: ft bgs TOTAL DEPTH: 500 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS V 6.0 ��n) r 7.0 Lq W w _ a 0 DESCRIPTION U j WELL CONSTRUCTION HPF-Ambient -0.040 �g 0.040 0 U 0.0ePF-PPu�mping0 80 Tw� ■ U. L. 90. 0 ...............�� ..... Aquaguard 405 0 ::: %N N backfill 0 ... :: 410 0 ::::::�..::: 415 0 .......... Diabase: Dark greenish gray, strong, sound 420 ""'""" 0 rock, aphanitic Meta -Quartz Diorite: Black and white, strong, 425 0 0 sound rock, minor green and pink .......... mineralization, phaneritic%%% 430 0 Pink mineralization dominant at 449 ft bgs ........... 0 .............. 435 0 .................... 440 o 0 41 �j�j�j 445 ................. .......... :: 11 450 0 ............ .................... nAnAnA nnnnnn Diabase: Dark greenish gray, strong, sound rock, aphanitic, olive green clasts present 455 :: ....... 460 AA - �� ....... ......... 0 Meta -Quartz Diorite: Black and white, strong, ............... sound rock, minor green and pink ������� 0 mineralization, phaneritic 465 0 Little to no mineralization from 475 to 480 ft bgs... 470 0 �il 0 ... 475 0 0 :::::::::::::: 480 0 .............. ... ... 485 0 .................... 0 .................... 490 0 0::::: /-\ 495 IL A A 0 Diabase: Dark greenish gray, strong, sound .........�... rnn rock, aphanitic i i i tipSynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 synTerra Phone: 864-421-9999 PAGE 5 OF 6 PROJECT: Deep Bedrock Evaluation WELL/BORING NO: GWA-6BRL PROJECT NO: 1026.17 STARTED: 12/13/2018 COMPLETED: O1/17/2019 DRILLING COMPANY: SAEDACCO NORTHING: EASTING: DRILLING METHOD: Mud Rotary / Air Rotary G.S. ELEV: 628.05 M.P. ELEV: 630.607 BOREHOLE DIAMETER: 14 3/4" / 10" / 6" DEPTH TO WATER: ft bgs TOTAL DEPTH: 500 ft bgs NOTES: LOGGED BY: LWD CHECKED BY: CJS Caliper( CJ 6.0 7.0 W i+ CL _ 0 Q 0 DESCRIPTION � > O F j WELL CONSTRUCTION HPF-Ambient -0.040 (9 ) 0.040 W U O.OePF-PPuumpin90.80 Q (g�) o. LL go. Meta -Quartz Diorite: Black and white, strong, sound rock, minor green mineralization, phaneritic SynTerra CLIENT: Duke Energy Carolinas, LLC 148 River Street, Suite 220 PROJECT LOCATION: Allen Steam Station Greenville, South Carolina 29601 SynTerra Phone: 864-421-9999 PAGE 6 OF 6 GROUNDWATER WELL DEVELOPMENT DUKE ENERGY PROGRESS, INC 0 synTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 (864) 421-9999 . (864) 421-9909 Fax www.synTerracorp.com WELL DEVELOPMENT LOG WELL ID: �#- loog, MEASURING POINT: TOC WELL DIAMETER: 2 IN WELL DEPTH: (FT) DEPTH TO WATER: (� (FT) FIELD PERSONNEL: WEATHER: X SUNNY ❑ OVERCAST ❑ RAIN TEMPERATURE (APPROX): Z, F NOTES: START DEVELOPMENT TIME/DATE: I .t I lm r I % END DEVELOPMENT TIME/DATE: 3 TOTAL VOL PURGED: DEVELOPMENT METHOD: ❑ Grundfos Pump ❑ 12 Volt Pump ❑ Polyethylene Bailer DATE TIME VOL TEMPERATURE DO CONDUCTANCE pH (AS/CM) (su) ORP" TURBIDITY' NOTES (° Celsius) (mg/L) (mV) (NTU) 2t Zak � 3� g•N� aH� � 'S"10 �• � )zlo \A 1� L4.70 -401 4 0 -1- .31 IZISr \" for CL 720 tizo -41"40 16 q, 91, 1 z< , IT - 3 70 3 `i 3, (P A#-r i2 3V n q. -?at tj ID 5D ,D 73 S 'iCb 44ce i COMMENTS: FIELD VEHICLE ACCESSIBLES ❑ NO Associated midday/end-of-day DO, conductivity, pH within range? (See calibration sheet for this sample date) ❑ YES ❑ NO. If NO, which parameter . NOTE that reported data should be considered as flagged accordingly, ' SynTerra is not NC -certified for these parameters. Data collected for information purposes only -- WELL TAG P TECTIVE CASING LOCK CAP CONCRETE PAD GOOD I ❑ BAD ❑ NONE GOOD BAD ;: ❑NONE 1 GOOD 9A❑D ❑NONE FOOD ❑BAD '❑ NONE GOOD € ❑BAD :€ ❑NONE I 11 III st ti P:IDuke Energy Progress. 1 026\00 FIELD PAPERWORMWell Development Log.doc GROUNDWATER WELL DEVELOPMENT DUKE ENERGY PROGRESS, INC 10 synTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 (864) 421-9999 . (864) 421.9909 Fax www.synTerracorp.com WELL DEVELOPMENT LOG FIELD PERSONNEL: k WEATHER: Le SUNNY ❑ OVERCAST ❑ RAIN TEMPERATURE (APPROX05 F WELL ID: �` 'A - 4 VIAL MEASURING POINT: TOC WELL DIAMETER: 2 IN WELL DEPTH: (FT) DEPTH TO WATER: —7 (FT) NOTES: START DEVELOPMENT TIME/DATE: END DEVELOPMENT TIME/DATE: TOTAL VOL PURGED: l' DEVELOPMENT METHOD: ❑ Grundfos Pump ❑ 12 Volt Pump ❑ Polyethylene Bailer = A-f' DATE TIME VOL TEMPERATURE (° Celsius) DO CONDUCTANCE pH ORP' TURBIDITY" NOTES (mg/L) (AS/CM) (su) (mV) (NTU) 2 Y T z 711 1 % tS C5' &/2 J . -D� z Zq D z Z3 I AD 1-% f T l 1 I�t� -1.z� �� ,1 2 , 140) 1. 1 Z�H �&Ib Ji COMMENTS: FIELD VEHICLE ACCESSIBLE ,YES ❑ NO Associated midday/end-of-day DO, conductivity, pH within range? (See calibration sheet for this sample date) ❑ YES ❑ NO. If NO, which parameter . NOTE that reported data should be considered as flagged accordingly. SynTerra is not NC -certified for these parameters. Data collected for information purposes only WELL TAG PROTECTIVE CASING LOCK CAP CONCRETE PAD ......... -- ............. ... ............................... --- ................... P1Fi00D ❑BAD El NONE :.GOOD ❑ BAD ❑ NONE GOOD BQ ❑ NONE GOOD [IBAD ❑ NONE FOOD ❑BAD ❑NONE P:IDuke Energy Progress.1026\00 FIELD PAPERWORKIWell Development Log.doc GROUNDWATER WELL DEVELOPMENT DUKE ENERGY PROGRESS, INC ,�Ap synTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 (864) 421-9999 . (864) 421-9909 Fax www.synTerracorp.com WELL DEVELOPMENT LOG WELL ID: <i� w MEASURING POINT: TOC WELL DIAMETER: 2 IN WELL DEPTH: (FT) DEPTH TO WATER: <jIS" (FT) FIELD PERSONNEL: I'vj y WEATHER: JkSUNNY ❑ OVERCAST ❑ RAIN TEMPERATURE (APPROX): 41a F NOTES: START DEVELOPMENT TIME/DATE: It) Crib END DEVELOPMENT TIME/DATE: 415s1-- ZaTOTAL VOL PURGED:1 DEVELOPMENT METHOD: ❑ Grundfos Pump ❑ 12 Volt Pump ❑ Polyethylene Bailer DATE TIME TEMPERATURE I' Celsius) �. . �.. COMMENTS: FIELD VEHICLE ACCESSIBLE ❑ YES ❑ NO Associated middayleld-of-day DO, conductivity, pH within range? (See calibration sheet for this sa pte date) ❑ YES ❑ NO. If NO, which parameter . NOTE that reported data should be considered as flagged according(y. ` SynTerra is not NC -certified for these parameters. Data collected for information purposes only WELL TAG PROTECTIVE CASING LOCK CAP CONCRETE PAD OOD ❑ BAD [I NONE r7, �OOD ❑ BAD i _ T - ❑NONE — ..�.....� GOOD 1 ❑ BAD .. ...—.._....j ........._.................... .. j ❑NONE ❑ 1 . OOD ❑ BAD f ..�....!................._—......_.,,._..:::... ❑ NONE L�OOD ❑ BAD [I NONE ' r P:1Duke Energy Progress.1026100 FIELD PAPERWORKIWell Development Log.doc GROUNDWATER WELL DEVELOPMENT DUKE ENERGY PROGRESS, INC 410 synTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 (864) 421-9999 • (864) 421-9909 Fax ww W. synTe rracorp. corn WELL DEVELOPMENT LOG � FIELD PERSONNEL: iV1,G� 1 WEATHER: ❑ SUNNY OVERCAST ❑ RAIN TEMPERATURE (APPROX): y'ID F NOTES: WELL ID: &-. nt. START DEVELOPMENT TIME/DATE: b qhq � MEASURING POINT: TOC END DEVELOPMENT TIME/DATE: WELL DIAMETER: 2 IN TOTAL VOL PURGED: I WELL DEPTH: Z00-4' (FT) _ L� (9 (•.k d DEPTH TO WATER: (FT) DEVELOPMENT METHOD: ❑ Grundfos Pump ❑ 12 Volt Pump ❑ Polyethylene Bailer MO N TEMPERATURE �• f 1VI E E�V� Fmii� -' A - 1L9jLQ7V MMM ff=1 La ii COMMENTS: FIELD VEHICLE ACCESSIBLE ❑ YES ❑ NO 45- - a1-4 IS Ip Ills � zl� � 1-1 'T,nY Associated midday/end-of-day DO, con uctivity, pH within range? (See calibration sheet for this sample date) ❑ YES ❑ NO. If NO, which parameter . NOTE that reported data should be considered as flagged accordingly. " SynTerra is not NC -certified for these parameters. Data collected for information purposes only WELL TAG PROTECTIVE CASING !_ LOCK CAP CONCRETE PAD GOOD ❑BAD _ ❑NONE GOOD € ❑BAD ;_ ❑NONE € OOD = _ ❑NONE OOD ❑BAD ❑NONE �'>;OOD ❑BAD ❑ NONE lBAD P:IDuke Energy Progress. 1 026\00 FIELD PAPERWOftftl Development Log.doc GROUNDWATER WELL DEVELOPMENT DUKE ENERGY PROGRESS, INC WnTerra 148 River Street, Suite 220 Greenville, South Carolina 29601 (864) 421-9999 . (864) 421-9909 Fax www.synTerracorp.com WELL DEVELOPMENT LOG FIELD PERSONNEL: WEATHER: SUNNY ❑ OVERCAST ❑ RAIN TEMPERATURE (APPROX): "3�c; ' F WELL ID: l MEASURING POINT: TOC WELL DIAMETER: 2 IN WELL DEPTH: .0 I IFTy DEPTH TO WATER: ( (FT) NOTES: jNtaJirr W / �CSdZ START DEVELOPMENT TIME/DATE: C7I END DEVELOPMENT TIME/DATE: of 50 y TOTAL VOL PURGED: DEVELOPMENT METHOD: ❑ Grundfos Pump ❑ 12 Volt Pump ❑ Polyethylene Bailer �(NRI bflk vRt*NT DATE TIME VOL TEMPERATURE DO CONDUCTANCE pH ORP" TURBIDITY" NOTES (° Celsius) (mg/L) (PS/CM) (su) (mV) (NTU) 0 3u ly 0 6 r 8 f"k,"Ve c,)0M z f� - r --,io -'y kong 1 COMMENTS: FIELD VEHICLE ACCESSIBLE O YES ❑ NO Associated midday/end-of-day DO, conductivity, pH within range? (See calibration sheet for this sample date) ❑ YES ❑ NO. If NO, which parameter . NOTE that reported data should be considered as flagged accordingly. " SynTerra is not NC -certified for these parameters. Data collected for information purposes only WELL TAG PROTECTIVE CASING OOD ❑ BAD ❑ NONE LOCK CAP CONCRETE PAD GOOD I ❑ BAD [INONE OD ClBAD ❑NONE ❑ GOOD ❑ BAD I NONE GOOD ❑ NONE I I ) im P:1Duke Energy Pmgress.1026100 FIELD PAPERWORKIWell Development Log.doc WELL CONSTRUCTION RECORD Thy fOrn S-0n be used FK Single 9r m0l iuk wells 1. Wdl Cantractor Informallon: Robert Miller 1W01 -Con4n IDT tia nw 2675 NC Well Conlr.morCerlifwMionNiullber SAEDACCO Inc {'mlllkui} Nan1C 2, Wtill C',0H%tFVCti0H PergPit ff List Lffl d7pp6 aWr 16ellpl'rllnrs t1_'. Cf1YIlh'_ .52dw, Yariunre, ffWGR rjr.0 3, Wv1l Use (chccl, w0l u red: MAIg,Timulturifl DMlmicipaVFtrblic DGeaihemtal tHeati kKoclirlg Apply) OResidenfial WaluSupph' (single) DI1KfUSnia1fC0mmerc1ial DRcsideniiial Waler 5upph: (shared) ❑lrri tion NON-;' stff Supfrl}' Well: 5ahlpnilorin.4 ❑RCcrr3 Ca}' []Aquifer RCCha%6 13Agtlifcr Storage aTxJ RCC4%v7 ❑Aquifer T 11Ex4p dnLrn4111 TrxhnOLpg.%- ❑Geodlernml 1Closed Limp) ❑GmElrennal McAn eCboline Rewn11 ❑GroUndvr'Alcr 1RC1114C1i714ian ❑Salinity Haniu ❑540rrm ai;gr E"Lnagc ❑TrauT ❑011ier 4e9rtllain under #21 1 4.114te 1J4'rll(s) Conrpleltvl; 10-24-2018 tVs�ll 1Dff AB-l0BR Sa_ %`tdl 1.1watilln. Allen Steam Station/Duke Energy Facility-'0n-. rr Nonce 1-aciliw TVA! of applicnblel 253 Plant Allen Road , Belmont, N.C., 28012 Phrsi--d Addles_ City- and Zip Gaston C"My 1'.jKel IdCfllif" ivri No. (PIN) 5b,1ji ituds ilwl Lnngitoliv in tivgreerlmiFwtcs+rccontlF. nr decimal dcgrci's: Qrmr,11 field. 1nk: 1;dbli tg is milk kmll T1 }}' 6.Is 1A1vl the welllsk 50R'cnnAM!n1 or 7Temporary 7. is thin a reimir to an existi.olg: wrell. Flex Ilr ®Nu f/fhfs Jx rr fgmir, fly4,or trn"m 1-dit+ fnnfri*ra elrloraweWai 4md expfabi rAe ewnwre of rAr repair under AIL remurl'.s.ree'aiam m on the ixrl'f of rJdr form. 13.11umhcrof wills touellrurtrtd: 1 for lrtkke(le jrtfeer"i of rofx1-wbrer srVph- aeth ONLY mrh My slraeraor sP%wfk*. teal [ei0 salbrirrme foral. 9. Totid wt11 depth belim lard surfiam 160' (.) formllfrrXJr wrfh 1fsr-fWA-fubr ffEf0-emf1e.y(wwfe-3@ZM' al.1d 2@Jfhfx) 1 U. Stair weer levri below tup. of carsiug: (fiJ If mioefi fir, d es Awe ivafrag_ ilnr' "+ " 1 I. Bmrhille diamrrcr: 6" , 14" (ilL) 12, WCjj cantilrneti0rr nllothod• 6" Air Hammer, 14" Mud Rotary 4i.e. allptr. carol}', cable_ diced pushLre.) FOR WATER SUPPLY WELLS ONLY. 13a, Vidd (qm) Mc111od of test' 13b. bimnRcriun npe- Amount: For rrKrnlal 4rso ON Ly: DESCHCPI ION ]:+.OUTER CAS [for mull! -royal vwlsl OR LIKER{i asokabkS 0 fi. 78' fL 10" in, SCH 80 PVC i6. INNER CALSI NG OR I 'n ING I2MAL-rvr Yl c iAOA if PLIOEF.TE:k TAFCKNCffi MATTUAL 0 ft. 140' FL 6" "L SCH 80 PVC 0 Ito 150, fti 2" �k SCH 40 PVC I 150'ft� 1160' (1, 12" iR 0.10 I SCH40 I PVC I rL ft. ia. 0 ft 1 78' fL Portland/Be#aLneaikare Grout 0 4. 140' r4, Portland/ Bel3atessiftee Grout 04 fL if le MSA.Nrxll6Ri4VELPACK FROM 11) 'AATPRU3. rf!AP'3A[TAIFAT MVTllrin 148' (L 160' ft, Silica Sand 20/30 i ft. ft. Eight feet bentonite seal from 140'to 148' 1 22, ('errifiraWrn: 11/1/2018 _ By ]ignmg afro fwae, F here -y Lwjr 4' roar Me we 4mo w y (wemi cxmsrnri'rea is a xvrdm c[ 1L'arlt f SA JVCAC OTC .0f00 Pr f iA NCAC UC ,0 Weti Czmfrwr cn Sfandafda 4vO rfllu iT "y of rAir remFd brab m Iwm'irfrvf ra Abe ,Ir44 �rwwn 23, She diawh tam or addMonal well drfaits: You rnmy ,rse tile back of this page to provide atldifional wdl site debits Or well WMISJ311rdUrl derails. You rrr3,' also aillach addilicmat pages if uecessan . SURNIMAL INSTUCTIONS 24a. Pqr All Wrilx: Subniii 111os faro) williin 0 days of complerioo of well Con5lnlctipn to 4hc following- birWun of WAtcr 1C[rraurc[s, Informatiou Proccsuiog, Unit, 1617 Mail 9crsire {:enter, Raleigh, XC 17699-1617 tab. For Iniectios Weill ONLY: In addiuoll [o sending 4he form to e1w address in 24a above. also submit a cop of this farm within zd days of caniple[ioik of twll conSIMULiarl [o [Ile f00CnVi1lg: Dh-ision dWAler RemmreeN.lrllderpvund Injeciioll Control Program, 1636 Mail Srrvilx'Center. RrilelGh, NC 27699-1636 25r, For W4W SR der In"gtrillo W►' ft Also submit One copy of this folnl Ntiithin 30 days ofconrpleil ion of wdl cnoslnrctian to the ¢rnmry health depurmprrt of the crr1uay when: consriuCtad Forlri OW-L Nonh Carol Ira D jarinriu aF Ern 3lulrnlrlu aid NarllrW Rtisoluccs - Dii rs roe of Woor Ravin Rt, Iscd ALIg1St 2013 WELL CONSTRUCTION RECORD Thh fOrnl S-0n be used FK 5i ngk 9r m0l iuk wells 1. Wdl Cantractor Infurmallon: Robert Miller W01 -Con4n IDT tia nw 2675 NC Well Conlr.morCerlifwMionNiullber SAEDACCO Inc {'mlllkui} Nan1C 2, Wtill f0n%tFVCti0H PergPit �f List Lffl d7pp6 aWr 16ellpl'rllnrs t1_'. Cf1YIlh'_ .52dw, Yariunre, ffWGR rjr.0 3, Wv1l Use (chccl, w0l u ale): MAIg,Timulturrll DMlmicipaVFtlblic DGeaihemtal tHeati kKoclirlg Apply) OResidenfial WaluSupph' (single) DI11dus4ria1fC0mmerc1ial DResideniiial Waler Supph: (shared) ❑Irri tion Nom-;'TI`atff Suy Well: phlpnilnr4i.z ❑RCcrr3 Ca}' QAglrifcr Rccha%c 13AgllikF Storage Aud RCC4',v7 ❑Agllifcr T 11Ex4p dnLrn4111 TrxhnOLpg.%- ❑Geodlernml 1C'Iosed Limp) ❑GmElrennal M eAnneCboline Rewnsl ❑GroUndvr'Alcr 1RC1114C1i714ian ❑Salinity Darriu ❑540rrm ai;gr E"Lnagc ❑TFacrr 0011ier i!Mlaifi fflOu1 -" t I 4. Dias 1J4'rll(s) Conrpletcd; 1-19-2019 WLI1 RDo AB-10BRL so- %`tdl 1.1watilln. Allen Steam Station/Duke Energy Facility-'0n-. rr Nonce 1-aciliw TVA! of applicnblel 253 Plant Allen Road , Belmont, N.C., 28012 Phrsis-d Address_ City- and Zip Gaston ,,,"My 1'.jKel IdCnlff" ivri Na fPl^1} 5b,1ji ituds ilwl LnngitaliC in llCgmrlmiFwtcs+scci)nlls nr decimal degrci's: Qrmr,1l fidd. 1nk: LW ing 3s milk kmll T1 }}' 6. Is h alv1 the welllsk 5OPer-ma lent o r 7Temporary 7. is thin a repair to an exisvtn : weed. Flex Ilr ®Nu f/fhfs Jx rr fgmir, fly4,or trn"m 1-dioxt+ fnnrichu elrlorrwrWai 4md expfabi rAe ewnwre of rAr repair underAlL mrourl•.s.rre•Jiare of on the ixrl•f of efibe orm. 13.11umhcrof wills touellrurtrtd: 1 for lrtkke(le ark,ecr"i of rofx1-wbrer srMh- aeth ONLY mrh My slraeraor sP%wfk*. }%,4 [ei0 salbrirrme foral. 9. Totid TFt11 depth belim lard surfiam 219' (.) FoFm11frlX4e weth Ifsrrrffdrfu f ffdOfemfl r(np3pfe- @ZM' al.1d 2@Jfhfx) 1 U. Stair weer levri below hrp of casing: (h1.I If mioefi Ir, d es Awe ivafrag_ i3nr' "+ " 11. Bmrhille diamrrcr: 6" , 14" (ia) 12, WCjj canl<lrneti0rl nlethod• 6" Air Hammer, 14" Mud Rotary 4i.e. allptr. regal}', cable_ diced pushLre.) FOR WATER SUPPLY WELLS ONLY. 13at, Vidd (qm) Mc111od of test' 13b. bimnRclian npe- Amount: For rrKrnlal 4rso ON Ly: DESCHCPI ION ft. fl, ]:+.OUTER CAS [for mull! -royal vwlsl OR LIKER{i asokabkS 0 fL. 50' fL 10" in, SCH 80 PVC i6. INNER CALSI NG OR I 'n ING I2MAL-rvr Yl c iAOA if PLIOEF.TE:k TATCKNEffi MATTUAL 0 ft. 201' FL 6" "L SCH 80 PVC 0 Ito 208' rti 2" �k SCH 40 PVC 208'ft� 1 218' (1• 2" rR 0.10 rSCH40 PVC R it ia. i41. c1�auT FROM TO MATEMAL I EMPL&CEMLN'T SIET1101P d AMOUNT 0 ft 51' rL Portland/Be aikare Grout 10" 0 4. 202r4, Portland/ BePitesd&ee Grout 6" 0 04 203' fL Aqua Guard pressure Grout VR4111 j 10 MILTFRIA3. 1?f!AF3.A[-T-.N1E'4 MVT1113Tk 206' Or 221' A, Silica Sand 20/30 i ft. ft. 221 (L 225 fL Bentonite 225 fL 500 ft, Aquaguard ft, rL fL fL r4 rt, IZ. fr. Tx, rr, Three feet bentonite seal from 203'to 206' 1 22, CrrrifiraWrn: } 1/19//2019 SiGlulrllcaf'::s::.;" :��F dale By ]ignmg afro fwae, F herek-y LrFio— hour Me we 4mo w y (wrmj cxmsrnri'red is ff xwrdm c[ 1L'arlt f SA JVCAC 02C .0f00 Pr I iA NCAC UC ,0 Weti CzmfrrKr cn Sfandafda 4vO rfpu iT "y of rAir remFd ire' b m Iwm'irfrvf ra Aw ,Irlf �rwjwn 23, She diawh iam or addMonal wdl drfaits: You rnmy arse t31e back of this page to provide addifional wdl site debits Or well WMISJ311rdUrl delails. You rrr3,' also aillach aLddilicmat pages if uecessan . SUBNIMAL INSTUCTIONS 24a. Eqr All Wrilx: �ubnli4 111os faro) williin 0 days of complelioo of well Con5lnlctipn to 4hc fnllouing- birWun of WAter krNraurc[s, Informatiou Proccsuiog, Unit, 1617 Mail 9crsire {:enter, Raleigh, XC 27699-1617 tab. For Iniettias Weill ONLY: In addifioll [o sending 4he fom to t1w address in 24a above. also subtllit a cop of 1:10r, farm within zp days of caniple[ioll of twll conSIMULiarl [o [Ile f00a„'i1lg: Dh-isiotl d WAter RemmreeN.lroderpaund Injeciioll Control Program, 1636 Mail Srrvilx'Center. RrilelGh, NC 27699-1636 25r, For V j4W SR * In"gtrillo W4' ft Also submit One copy of this folnl Ntiithin 30 days ofconrpleil ion of wdl cnoslnir:tian to the ¢rnmry health depurmpnt of the crr1uay when: CVFW UCtW Forlri OW-L Nonh Carol Ira D jarinriu aF Ern 3lulrnlrlu aid NarllrW Rtisoluccs - Dii rs roe of Woor Ravu1!�' Rt, Iscd ALIg1St 2013 WELL CONSTRUCTION RECORD Thh FOrn S-0n be used FN 5i ngk 9r m0l iuk wells 1. Wdl Cantractor Infurmallon: Robert Miller W01 -Con4n IDT tia nw 2675 NC Well Conlr.morCerlikoLionNinikber SAEDACCO Inc {'Mikpui} Nan1C 2, Wtill CUH%tFVCtign Psr•geit �f List Lffld7 p6 aWr 16ellpl hies tr_'. Cfwjlf-,S3urr, Yariunre, ffWGR rjr.0 3, Wv1l Use (chccl, w0l u ney For rrworilal 4rso ON Ly: DESCRIFI ION rt p, ]�OUT&CIRCASMG [For mull! -royal vwlsl OR LIKE R(if sionkahkS 0 fiL 147' k 10" io. I SCH 80 PVC Ub INNER CALSI NG OR I 'RING 42MIlkrvral c FROM if PLIOEF.TE:R 7TirCItNCffi MArFuAL 0 ft. 212' FL " 6" - SCH 80 PVC 0 Ito 462' f4 2" iiik SCH 40 PVC I]AlgxistilCLlftE DGeotheimtal OHeali kKooring Supply) DI1KfUS rialfCommercial ❑lrri tion I�1rllmlclpallFttblic DResidenlial WaluSupph' (single) DResideniiial Walu Supph: (sharod) 4621ft� 472' (1• 2" iR 0.10 SCH40 PVC 't- ft is J9.CMUT FROM TO MATERIAL EMPL &CEML 'T SIET1101P d 0 ft 145' fL Portland/Be sikare Grout Noe-Wswr 9tlpj Well: Mk1pni1orin4 ❑RCcp3 0 0. 213' r4, Portland/ BeAtessitoee Grout Iriloci Ion WuLl 0 04 380' R, Aqua Guard pressure Grout QAglrifcrRCchmp ❑Gr0Undvr'AICFRC1k"ia4i4n Storage and Roca; ❑5&linit} H mCr ❑Aquifer T" ❑540rrm atCr E"Lnaq; ❑ExEcri;rrrcn4Rl Tq�hnOLp�❑51ia5;dkllcc {'olyTpl ❑Geoilrernlol 1C'losed Limp) ❑Trdcrr ❑Gmdrenual ft!Awi •'Cboline Rrwnsl 00111er ilex in u20ui 121 Rrrnarkm) 19LSA.NOfGRJk VIM PACK(if ie lr] 17A7PRLA7�pAa�lrifcr Ffl 473' rt, Silica Sand 20/30 fr, If. DR11LLIDFG 4314aeh aldlli4One13heelw if met' 4lry FROM TU nF'.ti[ ItEP71f}\ it,thr, hMrdns'n, r il'nn'L 1 R fit- H. -t. Djtte w 0j' (s) C0nrplettvl; 1-30- 2019 wLjj TDv GWA-3BRL so- k eI1 l.Iacatilrnr Allen Steam Station/Duke Enery Facil�IrYn. r Maila I-acilily TVA f4Fapplicnblel 253 Plant Allen Road , Belmont, N.C., 28012 Physical Address_ City- and Zip Gaston f:4pmr 1'jRel IdCnisf" iun No fPl^1} fr. rt, R, rL fL rt fi Fr fa, F11 11- R- MARKS Bentonite seal from 380'to 458' id. Lmitmx ilnd 1.nngatpliv in gkXiixwinrrrytCl wconds or LtcCrmill degrCi's: Qrmr,1l held. 1nt Ldblimg is xldlickmll T1 }}' 6.Is iarri flip well1sk 5M-nnanent or ❑Temporary 7. is thin a repair to an exist n%weed. Flex Irr 19 Nu f/fhfs rx rr fgmir, f+y,,wr trn"m 1-di oxt+ fan riche eirlorr,wWai 4md expi'abi rAe ewnwre of rAr repair under All remurky.yrx'aiam mein the r5cul of efibe fo Fm. S. l�umhcrof wills toueltrurtrtd: 1 for 1rtkke(le ark,ecr7wi of r1rvi-warer mph- 4efls ONLY mrA die seaeraor sP%wAw. }%,4 [aid aabmirrme foray. 9. Totid wt11 depth belim lard surface* 472' (.) FoFm1lfrlpie wetk IfsrrrffA-f. f rjdOfemfl y( wfe-?@ZM' amd 2@lfhfr) 1 U. Stair weer levri below hrp of caisiuey (fl.l If mirrfi Ir, d es Awe ivafrag_ dj;e "+ " 11. Bmrhirle diamrrcr: 6" , 14" (ia) 12, WICII canfilrnetiorl rnbthod• 6" Air Hammer, 14" Mud Rotary 4i.e. a11-,Lzr. miwy, cable_ diem pushLre.) FOR WATER SUPPLY WELLS ONLY. 13a, Vidd (dual) Mc1hrid of test' 13b. DimnRclian npe- Amount: 22, Crrtirratian: } 1/30/2019 _ SiGlulrllcaf'::s::.;" :��F dale By ]ignmg afro fwae, F herek-y LrFio— hoar Me we 4mo w y (wrmj cxmsrrui'red is a xvrdm c[ 1L'arlt f SA JVCAC OTC .0f00 yr i5AJVCACUC.02MWetiCzmfrrKrfcnSfandads4vOrAwx4T r+'L']r alrfliT rrr,+rd biudx ew Iwm'irdr•d ra r�b• ,Irlf �+wx�r, 23, She diawh am or addMonal wdl Ilefaiii: You may ,rse tire back of this page to provide additional wdl site debits Or well WMISJ311rdUrl delails. You iflay also aUach addilicmat pages if uecessan . SUBNIMAL INSTUCTIONS 24a. Eqr All Wells: Subaru! 111os faro) williin xU days of compkiioo of well con5lnlctipn to the following- Dili-Wun of WAtcr krNriurc[s, Informatiou Proc"*iing, Unit, 1617 Mail Sersire {:enter, Raleigh, XC 27699-1617 tab. For Inimflos Wells ONLY. In addition [o sending Me form to t1w address in 24a nbm'e. Also submit a cop of this farm within zp days of cDnlp-lekiI of twll corISUOULiarl [) [Ile f00CnVi1lg: Dh'isioll dWAler RemmreeN.lrilderpvund Injeciiom Control Program, 1636 Mail Srrvilx'Center. Raltith, NC 27699-1636 25r, For V j4W SR der [n-gtrilln V4' ft Also subnlit One copy of this form Ntiithin 30 days of conrp4eil ion of wdl cnoslnir:tian to the ¢rnmr; health drparroat= of the rrminry whom corrs4rtactad Form OW-L Nonh Carol Ira 0.jari11ri1E aF Ern 3Iulrnke u aid NicaW 7i:&w uccs - Dii rs roe of Woor Ravin Rt, Iscd ALIg1St 2013 WELL CONSTRUCTION RECORD Thh fOrnw S-0n be used FK 5i ngk 9r m0l iuk wells 1. Wdl Cantractor Informallon: Robert Miller 1W01 -Con4n IDT tia nw 2675 NC Well Conlr.morCerlifwMionNiullber SAEDACCO Inc {'mlllkui} Nan1C 2, Wtill C',0H%tFVCti0H PergPit ff List Lffl d7pp6 aWr 16ellpl'r]Rlrs t1_'. Cf1YIlh'_ ,53urr, Yariunre, ffWGR rjr.0 3, Wv1l Use (chccl, w0l u red: MAIg,Timulturrll DMlmicipaVFtrblic DGeaihemtal tHeati kKoclirlg Apply) OResidenital WaluSupph' (single) DI1KfUSnia1fC0mmerc1ial DResideniiial Waler 5upph: (shared) ❑lrri tion Nom-;'TI`atff Suy Well: phlpnilnr4i.z ❑RCcrr3 Ca}' QAglrifcr Rccha%c 13AglrikF Storage aTxJ RCC4%v7 ❑Agllifcr T 11Ex4p dnLrn4111 TrxhnOLpg.%- ❑Geodlernml 1Closed Limp) ❑GmElrennal M eAnneCboline Rewnll ❑GroUndvr'Alcr 1RC1114C1i714ian ❑Salinity Darriu ❑540rrm ai;gr E"Lnagc ❑TFacrr 0011ier ilMlaiti oikici -" t I 4. Dias 1J4'rll(s) Conrpletcd; 1-14-2019 WLj1 RDv GWA-4BRL 5a_ k`te111.1watilln. Allen Steam Station/Duke Energy Facility-'0n-. rr Nonce 1-aciliw TVA! of applicnblel 253 Plant Allen Road , Belmont, N.C., 28012 Phrsis-d Address_ City- and Zip Gaston ,,,"My 1'.jKel IdCnlff" ivri Na fPlrl} 5b,1ji ituds ilwl Lnngitaliv in llCgmrlmiFwtcs scci)nlls nr decimal degrci's: Qrmr,1l fidd. 1nk: hdblimg is milk kmll T1 }}' 6. Is h alvl the welllsk 5OPer-ma Lent o r 7Temporary 7. is thin a repair to an exisvtn : weed. Flex Ilr ®Nu f/rhfs Jx rr rgmir, fly4,or trn"m 1-dioxt+ rranrichu elrlorrwrWai 4md expfabi rAe ewnwre of rAr repair under AIL m on the ixrl•f of rJdr form. 13.11umhcrof wills touellrurtrtd: 1 for lrtkke(le jrtfeerrwl or rrrxl-wbrer srMh- aefls ONLY mrh My slraeraor sP%wfk*. teal [ei0 salbrirrme foral. 9. Totid wt11 depth belim lard surfiam 218' (.) formllf1rX4e wrflr Irsrrrffdrfubr rjd0Femf1e.Y(wfe- @ZM' ar.1d 2@lfhfr) 1 U. Stair weer levri below hrp of carsing: (h1.I If miner fir, d es Awe ivafrag_ ilnr' "+ " 11. Bmrhille diamrrcr: 6" , 14" (ia) l2,'WCjjCoFfilrnCL10rrfll0thod, 6" Air Hammer, 14" Mud Rotary 4i.e. allptr. regal}', cable_ diced pushLre.) FOR WATER SUPPLY WELLS ONLY. 13a, Vidd (qm) Mc111od of test' 13b. bimnRclian npe- Amount: For rrKrnlal 4rso ON Ly: DESCHCPI ION ft. ft, ]:+.OUTER CAS [for mull! -royal vwlsl OR LIKER{i asokabkS 0 fi. 82' fL 10" in, SCH 80 PVC i6. INNER CALSI NG OR I 'RING I2MAL-rvr Yl c iAOA if PLIOEF.TE:k TAfCKNCffi MATTUAL 0 is. 179' FL 6" "L SCH 80 PVC 0 Ito 208' fti 2" �k SCH 40 PVC I 208'ft� 1218' (1, 12" rR 0.10 I SCH40 I PVC I R, ft. ia. 0 ft 82' ft Portland/Be#aLneaikare Grout 0 4. 179' ft., Portland/ BeAtesd&ee Grout 0 04 1 190' FL Aqua Guard pressure Grout if ke MSA.NDIGRAVPLPACK FROM 11) 1 MATPRIAL ECMF.A[TAIFAT MVTllrin 206' (L 220' A. Silica Sand 20/30 i ft. ft, 220 (L 225 fL Bentonite 225 fL 500 ft, Aquaguard ft, rL R. fL fx. ft, IZ. fr. 1 16 foot bentonite seal from 190'to 206' 1 22, ('errifiealirin: } 1/14/2019 _ SiGlulrllcaf'::s::.;" :��F dale By ]ignmg afro fwae, F herek-y Lwjr 4' roar Me we 4mo w y (wemi cxmsrnri'red is a xvrdm c[ 1L'arlt f SA JVCAC 02C .0f00 Pr f iA NCAC UC ,0 Weti Czmfrwr cn Sfandarda 4vO rfllu iT "yalrAir remFd ire'.5 m Iwm'irdrvf raAw,Irlf �rwwn 23, She diawh tam or addMonal well drfaits: You rnmy ,rse tile back of This page to provide additional wdl site debits Or well WMISJ311rdUrl delails. You rrr3,' also aillach addilicmat pages if uecessan . SUBNIMAL INSTUCTIONS 24a. Eqr All Wrilx: Subniii Ihlos faro) williin 0 days of complerioo of well Con5lnlctipn to 4hc following- birWun of WAter IC[rraurc[s, Informatiou Proccsuiog, Unit, 1617 Mail 9crsire {:enter, Raleigh, XC 27699-1617 tab. For Inictrios Weill ONLY: In addition [o sending 4he form to e1w address in 24a above. also submit a cop of this farm within zp days of caniple[ioik of twll conSIMULiarl [o [Ile f00a„'i1lg: Dh-ision dWAler RemmreeN.lrelderpvund Injeciioll Control Program, 1636 Mail Srrvilx'Center. RrilelGh, NC 27699-1636 25r, For V j4W SR der In"gtrillo W►' ft Also submit One copy of this folnl Ntiithin 30 days ofconrpleil ion of wdl cnosinir:tian to the ¢rnmry health depurmprrt of the crr1uay when: consriuCtad Forlri OW-L Nonh Carol Ira D jarinriu aF Ern 3lulrnlrlu aid NarllrW Rtisoluccs - Dii rs roe of Woor Ravin Rt, Iscd ALIg1St 2013 WELL CONSTRUCTION RECORD Tlh FOrn S-0n be used FN Single 9r m0l iuk wells 1. Wdl Cantractor Informallon: Robert Miller We11 -Con4n IDT tia nw 2675 NC Well Conlr.morCerlifwMionNinikber SAEDACCO Inc {'Mikpui} Nan1C 2, Wtill CUH%tFVCtign Psr•geit �f List Lffld7 p6 aWr i6ellpluir es tr_'. Cfwjlf-,S3urr, Yariunre, ffWGR rjr.0 3, Wv1l Use (chccl, w0l u ney For rrworilal 4rso ON Ly: nESCREPI ION rt ft, ]�OUT&CIRCASMG [For mull! -royal vwlsl OR LIKE R(if sionkahkS 0 fi. 69' fL 10" in, SCH 80 PVC 7b INNER CALSI NG OR I 'RING 42MIlkrvral c FROM if PLIOEF.TE:R 771rCItNCffi MArFuAL 0 ft. 178' It, " 6" - SCH 80 PVC 0 Ito 335' f4 2" iiik SCH 40 PVC I]AlgxisliltilfrE I�lrlrmlclpallFtrblic i MCw1hetal OHeaultg,�Cocling Supply) OResidenital WaluSupph' (single) DI11dusnialfCommercial DResideniiial Walu Supph: (shared) ❑lrri tion 3351ft� 345' (1• 2" iR 0.10 SCH40 PVC '� � is iB.CIGOEFf FROM To MATERIAL EMPL &CEMEN'T METHOD L 0 (L 78' fL Portland/Be sikare Grout NOM-Neater Supfrl} Well: MN1pni1orin4 ❑RCcp3 0 4. 178' r4, Portland/ Be)aitessdtse Grout Iriloci Ion WuLl 0 04 333' FL Aqua Guard pressure Grout QAglrifcrRCchmp 0Gr0Undvr'AICFRC1k"ia4i4n pAa�lrifcr Storage and Roca; ❑5&linit} H mCr ❑Aquifer T" ❑540rrm atCr E"Lnaq; ❑ExEcri;rrrcn4al Tq�hnOLp�❑51ia5;dklrcc {'olyTpl ❑GeoilrernlollCloxedLimp) ❑Trdcrr ❑Gmdbennal iHeAml •'Cboline Rewni) ❑011rer 4ex iri uirtit°I "t Rrrnarkm] 19LSA.Nf1fGRJk VIM PACK(if ie rR{}11 lr] 17A7PRLA7� 333' Or 348' rt, Silica Sand 20/30 ft. fr, 3n, DR11LL1f1; lAG aErlaeh ald0iane13heetw if mer, 4lry FROM TO OF.S('REFTIE}\.S,thr,%Ardns'n,r.irnn'L1 R 348 fL 390 fL Bentonite 4. DjIte 1J4'ril(s) C0nrplettvl; 1-11- 2019 We11 IDv GWA-5BRL 5a_ knell 1.lacatilrn Allen Steam Station/Duke Energy Facil�l+' Yn. r Maila I-acilily TVA! of applimblel 253 Plant Allen Road , Belmont, N.C., 28012 ` Phrsis-d Address_ City- and Zip Gaston f:4pmr 1'jRel IdCsilif yliun No fPlrl} 390 (L 500 fi Aquaguard ft, fi fL fL fi ft, fi Fr fx, 2L_ ItlMAR[Cii Three feet bentonite seal from 330'to 333' id. Lmitmx ilnd Lnngatplte in gwgi1xvmrrwtCwwconlls or LtcCrmM degrCics, Qrmr,1l fidd. 1nt Ldblimg is milk kmll T1 }}' 6.Is iarri flip well1sk 5M-nnanent or ❑Temporary 7. is thin a repair to an exist n%weed. Flex Irr 19 Nu f/fhfs Jx rr fgmir, f+y,,wr trn"m 1-di oxt+ fan riche eirlorr,wWai 4md expi'abi rAe ewnwre of rAr repair underAlL remurky.Yeeaiam mein the r5cul of efibe orm. S. l�umhcraf wills toueltrurted: 1 for 1rtkke(le ark,ecr7wi of r1rvi-warer srVph- aeth ONLY mrA die seaeraor sP%wAw. }%,4 cw) aabmirrme form. 9. Totid wt11 depth belim lard surface* 345' (.) FoFmllfrrpie weth IfsrrrffA-f.v f ffdOfemfle.Y(wfe-?@ZM' awd 2@lfhfr) 1 U. Stair weer levri below hrp of carsiur, (fl.l If mirrfi fir, d es Awe a ivafrag_ it De '•+ " 1 I. Bmrhirle diamrrcr: 6" , 14" (ia) 12, WICII.CoFfilrnetiorr rnbthod• 6" Air Hammer, 14" Mud Rotary 4i.e. a1i--,'tr. miwy, cable_ diem pushLre.) FOR WATER SUPPLY WELLS ONLY. 13a, Vidd (qm) Mc1hrid of lest: 13b. bimnRclian npe- Amount: 22, CrrrifiraWrn: } 1/11/2019 _ SiGlulrllcaf'::s::.;" :��F dale By ]ignmg afro fwae, F herek-y LrFio- hoar Me we 4mo w y (wrmj cxmsrnri'red is a xvrdm c[ 1L'arlt f SA JVCAC OTC .0f00 yr f iA NCAC UC ,0 Weti CzmfrrKrfcn Sfandafda 4vO rAW1 a• r+'L']r of rAiT remFd bra b m Iwm'irdrrf ra Aw ,Ir4f �rwjwn 23, Site diawh iam or addMonal well defaiii: You may ,rse tire back of rhis page to provide additional wdl site debits Or well WMISJ311rdUrr delails. You rrla,' also aUach addilicmat pages if uecessan . SUBNIMAL INSTUCTIONS 24a. Eqr All Wells: Subaru! Illos faro) williin xU days of compkiioo of well con5lnlctipn to 4hc fnllouing- Di,rixiun of WAtcr krNriurc[s, lnformatiou Proccsuiog, Unit, 1617 Mail Sersire {:enter, Raleigh, XC 27699-1617 tab. For Inictrios Weill ONLY. In addillon [o sending Me foiln to the address in 24a nbmwe. Also submit a cop of tlris farm within zp days of caniple[ioir of twll corISUOULiOrr [) [Ire f00CnVj1rg: Dh-ision dWAler RemmreeN.lrilderpvund Injeciiom Control Program, 1636 Mail Srrvilx'Center. R.216th, NC 27699-1636 25r, For V j4W SR * In-gerilln V4'eils: Also submit One copy of this folni Ntiithin 30 days of conrp4eil ion of wdl cnosinrctian to the ¢rnmr; health drparroat= of the criunry whom corrs4rtactad Form OW-L Nonh Carol Ira 0.jari11ri1E aF Ern 3rui nke u aid NicaW Rtisoluccs - Dit rs roe of Woor Ravin Rt, Iscd ALIg1St 2013 WELL CONSTRUCTION RECORD Thh FOrn S-0n be used FN 5i ngk 9r m0l iuk wells 1. Wdl Cantractor Infurmallon: Robert Miller W01 {.on4nmIDT tia nw 2675 NC Well Conlr.morCerlikoLiorkNinikber SAEDACCO Inc {'mlkpuiF Nan1C 2, Wtil CUH%tFVCtign Psr•geit �f List Lffld7 p6 aWr 16ellpl hies tr_'. Cfwjlf-,S3urr, Yariunre, ffWGR rjr.0 3, Wv1l Use (chccl, w0l u ire): For rrworikil 4rsc ON Ly: DESCRIFI ION rt p, ]�OUT&CIRCASMG [For mull! -royal vwlsl OR LIKE R(if sionkahkS 0 fL. 110' FL 10" io. I SCH 80 PVC U. INNER LASING OR I 'RING 42MIlkrvral c FAOA if PLIOEF.TE:R 771rCItNCffi MATTUAL 0 ft. 224' FL 6" "- I SCH 80 PVC 0 fx, 290' k 2" iiik I SCH 40 PVC I]AlgxistllCElftE DGeotheimtal OHealilkKocling Supply) DI1KfUS rialfCommercial ❑lrri tion I�1rllmlclpallFttblic DResidenital WaluSupph' (single) DResideniiial Walu Supph: (sharod) 2901W 300' (1• 2" iR 0.10 SCH40 PVC L is ie.cltolffr FROM TO MATEMAL I EMPL&CEML 'T SIET1101P L 0 (L 110' H. Portland/Be sikare Grout NOM-Wswr Supfrl} Well: Mk1pni1orin4 ❑RCcp3 0 0. 224' fi. Portland/ BeAtesd&ee Grout Iriloci Ion WuLl 0 04 291' (L Aqua Guard pressure Grout QAglrifcrRrcha%g ❑qj-F0UndR'a4CrRCIk"ia4i4n Strnagc and Roca; ❑5&linit} H mCr ❑Ag1lifcr T" ❑540rrm atCr E"inaq; ❑ExEcri;rrrcn4Rl Tq�hn�Lp�❑51ia5;dklkcc {'olyTpl ❑GeollkernLal1 Closed Limp) ❑Trdcrr ❑Gmdkenual ft!Awi •'Cboline Rewni) 00111er ilex in u20ui 121 Rrrnarks) 19LSA.NOfGRJkVEL PACK (if 1e l� 17A7PRLA7�pAa�lrifcr M 302' ft, Silica Sand 20/30 h, If. DR11LLIDFG 4314aeh aldlli4 One13heelw if met' 4lry FROM TU nF'.ti[ ItEP71f}\ it,thr,hMrdns'n, r.il'nn'L 1 ra 302 fL 305 A. I Benonite 4. Ditte 1r 0j' (a) C0"kpletcd; 1-17-2019 WLjJ 1DIa GWA-6BRL 5a_ k eI1 l.Iacatilknr Allen Steam Station/Duke Energy Facil�IrYn. r Maila I-acillh' TVA! f4Fapplicablel 253 Plant Allen Road , Belmont, N.C., 28012 Physical Address_ City- and Zip Gaston f:4pmr 1'jRel IdCsilif yliun Nn fPl^1} 305 fL 500 F4, Aquaguard fL FL Fz Ft, Fi Fr fa, F11 IL REMARKS Four feet bentonite seal from 284'to 288' i4, Lmitmx find Lnngatwhe in gkXieerlmrnuteli wconds nr LtcCrmnl degrmc: Qrmr,1l held. 1nt Ldblimg is xldlickmll T1 }}' 6.Is hare) flip welUsk 5M-nnanent or ❑Temporary 7. is thin a repair to an exist n%wrell. Flex Ikr 19 Nu f/fhfs rx rr fgmir, f+y,,wr trn"m 1-di oxt+ fan riche eirlorr,wWai 4md expi'abi rAe ewnwre of rAr repair under All remurky.yrx'aiam mein the r5cul of efibe fo Fm. S. l�umhcrof wills toueltrurtrtd: 1 for 1rtkke(le rrtfeerlwl of r1rvi-warer mph- 4efls ONLY mrA My seaeraorrsP%w. Sou. }%,4 [aid aabmirrme foray. 9. Totid trt11 depth belim lard surfiam 300' (.) FoFm1lfrlpie wetk IfsrrrffA-f. f rjdOfemfley(wfe-?@ZM' amd 2@Jfhfx) 1 U. Stair weer levri below hrp of carsiuey (hl.l If mioefi Ir, d es Awe ivafrag_ irne "+ " 11. Bmrhole diamrrcr: 611, 14" (ia) 12, WICII caltilrnetiorl nliethod• 6" Air Hammer, 14" Mud Rotary 4i.e. a11-,Lzr. relay}', cable_ diem pushLre.) FOR WATER SUPPLY WELLS ONLY. 13a, Vidd (qm) Mc1hrld of test' 13b. DimnRclian npe- Amount: 22, Crrtirrat an: 1/17/2019 By ]ignmg afro fwae, F her ' LrFio— rh r Me we 4mo w y (wemi dYrRyrrui'redL is a xvrdm c[ 1L'arlt f SA JVCAC OTC .0f00 yr i5AJVCACUC.02MWetiCzmfrrKrfcnSfandads4vOrAwx4T r+'L']r alrfliT Frr,+Fd biudx ew Iwm'irdr•d ra r�b• ,Irlf �+wx�F, 23, She diawh am or addlliunal wdl Ilefails: You may ikse tire back of this page to provide additional wdl site debits Or well WMISJ311rdUrl delails. You iflay also aUach addilicmat pages if 1lecessan . SUBMITTAL INSTUCTIONS 24a. Eqr All Wells: Subarui lies faro) williin xU days of compkiioo of well con5lnlctipn to 4hc following- Dili-Wun of WAtcr krNriurc[s, lnformatiou Proccsuiog, Unit, 1617 Mail Sersire {:enter, Raleigh, XC 27699-1617 tab. For Inimflos Wells ONLY. In addiliall io sending Me form to t1w address in 24a nbm'e. Also submit a cop of this farm within zd days of cantipletioik of twll corISUOULiarl 10like f00a„'i1lg: Dh'hsion dWAler RemmreeN.lrilderpvund Injeciiom Control Program, 1636 Mail Srrvilx'Center. Raltith, NC 27699-1636 25r, For Wj4W SR lire In-gtrion W4'CLIs: Also subnlit One copy of this folnl Ntiithin 30 days of conrp4eil ion of wdl cnosinir:tian to the ¢rnmr; health drpuroat= of the rrminry when: corrstrtactad Forlri OW-L Nonh Carol Ira 0.jari11ri1E aF Ern 3Iulrnke u aid NicaW Rtisoluccs - Dii rs roe of Woor Ravin Rt, Iscd ALIg1St 2013 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC - Allen Steam Station ATTACHMENT B SynTerra USGS FLASH RESULTS AND CALCULATIONS wol-,. Allen AB-10BRL (TOPI Elevation of measuring point [FT] 0 Number of Flow zones[-] 19 Well diameter [IN] 9 Drawdown [FTJ 2.70 Depth to ambient water level [FTJ 6.3 Depth at bottom of casing [FT] 47.8 Depth at bottom of well [FT] 201.3 Radius of influence (R°) [FT] 1000.0 Total tmnsmissivity (Tew) [FT'/day] 5.62 Flow above layer bottom depth. Bottom DePlh [FT] Ambient [GPM] Stressed [G [-1'Esllmele Tran5m I5 I1" 1 I Estimate ROI C' Solve without Rellularl2atlon C' SOlvewlth Requ MRZetlon ABS(Ah) maximum 5.00E+00 Regularization weight 1.00E-04 TfaRormmimam(-] 1.00E-09 Ah rFTI Farfield Mad MSE [GPMI 5.494147E-04 Ambient W L [FTJ fi.30 Pumped WL[FTJ FRACTURES: 19 1e 17 1a 15 14 13 12 11 19 Depth Sum Tye, 1.000 Sum dh42 0.30052a07a9297 Estimated Ttotal[FTa/day] 5.619 Regularized Misfit 0.00 Ambient Stressed Ambient Stressed Flow above Flow above Error Error Zone T Fraction of ..I 90.37 0.007 0.070 0.009 -0.024 0.000 0.000 94.19 0.007 0.070 0.009 -0.041 0.000 0.006 100.41 0.007 0.070 0.009 -0.058 0.000 0.000 110.38 0.007 0.070 0.021 -0.014 0.000 0.006 120.43 0.007 0.070 0.011 0.021 0.000 0.000 130.35 0.007 0.070 0.010 0.081 0.000 0.006 136.11 0.007 0.070 0.009 0.028 2.619 0.466 140.04 0.005 0.038 0.007 -0.021 0.000 0.006 150.13 0.005 0.038 0.009 0.013 0.000 0.000 153.91 0.005 0.038 0.023 0.009 0.957 0.170 159.85 0.004 0.027 -0.016 -0.010 0.000 0.000 162.09 0.004 0.027 0.015 0.009 0.000 0.000 165.65 0.004 0.027 0.017 -0.002 0.000 0.000 170.00 0.004 0.027 0.010 0.006 0.000 0.006 175.14 0.004 0.027 0.021 -0.018 0.000 0.000 179.73 0.004 0.027 0.018 -0.002 0.000 0.006 190.13 0.004 0.027 0.014 0.001 0.000 0.000 196.77 0.004 0.027 0.039 -0.012 0.000 0.006 199.80 0.004 0.027 0.028 -0.009 2.043 0.364 Ambient Flow Profile Pumped Flow Profile OT Upward Flow, in GPM 0 Upward Flow, In GPM rl 1.? 1-1 i , I .I .4 - r • r � 1 r� I� 1 I� •� 1 y z 2.10 AB-1013RL(TOP) FLASH AS-IOBRL (TOP) FLASH Results and Individual Hydraulic Aperture Values Flow Layer in FLASH Flow Layer in FLASH AMBIENT FLOW PUMPED FLOW Depth F'r GPM M77-6 DepthFT GPM 40 51 60 0.0089 0.0063 40 50 60 0.0275 0.0070 0.0113 70 81 0.0146 0.0000 70 81 0.0118 0.0073 1 90 0.0161 91 0.0459 2 94 0.0158 95 0.0289 3 100 0.0155 100 0.0115 4 110 0.0276 110 0.0559 5 6 120 130 0.0178 0.0168 121 131 0.0910 0.1511 7 136 0.0159 136 0.0976 8 140 0.0112 140 0.0168 9 150 0.0140 150 0.0509 SO 154 0.0279 154 0.0475 11 I60 -0.0114 I60 0.0170 12 162 0.0190 162 0.0364 13 166 0.0217 166 0.0254 170 0.0144 171 0.0333 175 0.0254 175 0.0095 I80 0.0226 181 0.0250 U1920. 190 0.0177 190 0.0278 197 0.0428 198 0.0147 0.0318 200 0.0182 Dl'L3CY�9PE, Total Trans. issivity Calculated from Thiem Equation Q (gpm) ftz/da D..do, s (ft) Re (ft) R,„ (in) R.(ft) TT TPL (ftz/day) 1 192.5 2.7wn1000 4.5 0.375 89.51 FLASH Total T and Fit Parameters Radius of Transmissivity, Influence, Re T-L MSE Ah F (ft) (ftz/day) 5000 5.62 5.49E-04 3.01E-01 5.79E-04 NMes: 1. Following a logarithmic sensitivity analysis of the FLASH model to radius of influence, a conservative value of 1000 feet was used. 2. Objective function, F, for model incoporates mean squared error (MSE) between interpreted and predicted Flow profiles and the sum of squared differences (Oh) between the borehole's water level and far -field heads. Model objective is to minimize F; therefore, a value closer to zero indicates a better fit. 3. Model was run until no more iterations produced changes in output. 4. FLASH Software: Day -Lewis, F.D., Johnson, C. D., Paillet, F.L., and Half0rd, K.l, 2011, FLASH: A Computer Program for Flow -Log Analysis of Single Holes v1.0: U.S. Geological Survey Software Release, 07 March 2011, 5. FLASH Report: Day -Lewis, F.D., Johnson, C. D., Paillet, F,L., and Halford, K.I., 2011, A computer program for Flow -log analysis of single holes (FLASH): Ground Water, https://dx.doi.0rg/10.1111/j.1745-6584.2011.00798., 6. Highlighted cells indicate flow levels that do not have any observed open fractures and did not contribute to total transmissivity. These depth intervals were not used for fracture spacing versus depth below top of rock figure because it is assumed that there are no fractures in these intervals. FLASH - Flow Log Analysis of Single Holes LAU REQUIRED weuneme. Allen AB-10BRL (BOTTOM I INPUT: Elevation of measuring point [FT] 0 un Solver n EsUnt ale Tran1,111 Vlry Number of Flow zones[-] 21 OEstlmate ROl Well diameter [IN] 5.5 Dmwdown [FT] 30.70 Depth to ambient water level [FT] 3.5 C, Solve without Reg uMrl2atlon Depth at bottom of casing [FT] 201.1 Depth at bottom of well [FT] 500.3 C' SOlvewltll Requ MRzatlon Radius of influence (Re) [FT] 1000.0 Total tmnsmissivity (Taw) [FT'/day] 0.11 ABS(Ah) maximum 5.00E+00 Regularization weight 1.00E-04 Tfanor minimum[-] 1.00E-09 Flow above layer bottom depths FRACTURES Bottom Depth IF] Ambient [GPM] Stressed [GPM] Tfactor [FT -JD] Ah [FT] Farfield Mad [FT] 21 211 0.0101 0.0091 0.00 0.00 -3.50 20 19 18 17 18 15 14 13 12 11 10 9 6 5 z t SIMULATED PROFILES (DO NOT EDIT) MSE [GPMrJ 4.966824E-05 Sum Tye, 1.000 Sum Ah^2 0.0000838a02296 Ambient W L [FT] Estimated Ttotal [FT'/day] 0.113 Regularized Mleilt 0.00 Pumped WL[FT] -34.20 Ambient Stressed Ambient Stressed Depth Flow above Flow above Error Error Zone T Fraotlon of..I FRACTURES: [FT] [GPM] [GPM] [GPM] [GPM] [FT'may] tralrsmisslvlly 21 20 19 18 17 18 15 14 19 12 11 to 8 7 8 5 4 3 2 1 Dashed lines indi-le tole relations of maeaured dale. adid lines indeeasirnu-d las. 231 0.0110 0.0136 0.00 0.00 -3.50 250 0.0100 0.0177 0.00 0.00 -3.50 v1 o.olso o.ou1 0.00 0.00 -3.50 z91 o.o13s o.0161 0.11 0.00 -3.50 311 0.01a0 0.0120 0.19 0.00 -3.50 331 0.0135 0.0089 0.00 0.00 -3.50 351 0.0081 0.0094 0.00 0.00 -3.50 371 0.008a 0.0077 0.00 0.00 -3.50 390 0.0089 0.0082 0.00 0.00 -3.50 400 0.0078 0.0091 0.00 0.00 -3.50 all 0.007a 0.0088 0.00 0.00 -3.50 a20 0.0079 0.0115 0.00 0.00 -3.50 431 0.0068 0.0119 0.09 0.00 -3.50 aa1 o.00n o.0081 0.00 0.00 -3.50 a51 0.0080 0.0083 0.07 0.00 -3.50 460 0.0077 0.0062 0.00 0.00 -3.50 470 0.0075 0.0079 0.00 0.00 -3.50 480 0.0087 0.0078 0.07 0.00 -3.50 490 0.0084 0.0063 0.05 0.00 -3.50 497 0.0094 0.0056 0.41 0.01 -3.49 210.90 0.000 0.014 0.010 -0.004 0.000 0.000 230.71 0.000 0.014 0.011 0.000 0.000 0.000 250.22 0.000 0.014 0.010 0.004 0.000 0.000 270.62 0.000 0.014 0.015 -0.002 0.000 0.000 291.48 0.000 0.014 0.013 0.003 0.013 0.113 310.65 0.000 0.012 0.014 0.000 0.021 0.190 330.59 0.000 0.009 0.013 -0.001 0.000 0.000 350.64 0.000 0.009 0.008 0.000 0.000 0.000 370.61 0.000 0.009 0.008 -0.002 0.000 0.000 390.05 0.000 0.009 0.009 -0.001 0.000 0.000 400.48 0.000 0.009 0.006 0.000 0.000 0.000 410.69 0.000 0.009 0.007 -0.001 0.000 0.000 420.44 0.000 0.009 0.006 0.002 0.000 0.000 430.73 0.000 0.009 0.007 0.002 0.010 0.090 440.66 0.000 0.008 0.008 0.000 0.000 0.000 450.58 0.000 0.006 0.006 0.000 0.006 0.070 4fi0.35 0.000 0.007 0.006 -0.001 0.000 0.000 470.20 0.000 0.007 0.007 0.001 0.000 0.000 479.64 0.000 0.007 0.009 0.000 0.006 0.071 490.25 0.000 0.006 0.008 0.000 0.006 0.053 496.93 0.000 0.006 0.009 0.000 0.047 0.414 Ambient Flow Profile Pumped Flow Profile Upwartl Flow, in GPM Upward Flow, In GPM z 00 • I. •I • •Il .I .I 1 I •I - G r� I' o a I 11 { a 1 1� I• 1 AB-10BRL (BO170M)FL45H AB-IOBRL (BOTTOM) FLASH Results and Individual Hydraulic Aperture Values Depth Of Interval Fracture CALIBRATED Viscosity f Mytlrctivi ty o Density f Water, ty o Acceleration due Hydraulic y Hydraulic y Flow Layer in Depth Depth Center of Leath # of Fractures in Spacing in Fraction of Total Tran5mi55ivity Tran5mi55ivity Transmissivity Conductivity Water, pa p„.' to Gravity, g Aperture, en Aperture, en FLASH (feet bg5) (feet BTOR) Interval (feet) FIOw Layer Interval Tran5mi55ivity (ft2/tlay) (R2/day) (feet/day) (N s/m) (kg/m') (m/52) (m) (mm) (feet BTOR) (feet) 1 210.90 127.90 123.00 9.80 3 3.3 0.0 0.000 0.000 2 230.71 147.71 137.80 19.82 1 0.0 0.000 0.000 3 250.22 167.22 157.47 19.51 1 0.0 0.000 0.000 4 270.62 187.62 177.42 20.39 1 20.4 0.0 0.000 0.000 5 291.48 208.48 198.05 20.87 1 20.9 0.1 0.013 0.235 2.53E-07 1.13E-02 1.20E-03 999.33 2.05E-02 1.20E-03 999.33 9.8 9.8 7.20E-05 0.07 0.04 6 310.85 227.85 218.16 19.37 7 2.8 0.2 0.022 0.397 4.27E-07 4.48E-05 7 330.59 247.59 237.72 19.74 1 0.0 0.000 0.000 8 350.84 267.84 257.71 20.25 1 0.0 0.000 0.000 9 370.61 287.61 277.73 19.77 1 0.0 0.000 0.000 10 390.05 307.05 297.33 19.44 1 0.0 0.000 0.000 11 400.48 317.48 312.26 10.43 1 0.0 0.000 0.000 12 410.69 327.69 322.59 10.22 1 0.0 0.000 0.000 13 420.44 337.44 332.57 9.74 1 0.0 0.000 0.000 14 430.73 347.73 342.58 10.29 1 10.3 0.1 0.010 0.187 2.01E-07 1.82E-02 1.20E-03 999.33 9.8 6.66E-05 0.07 15 440.86 357.86 352.80 10.13 1 0.0 0.000 0.000 16 450.58 367.58 362.72 9.72 1 9.7 0.1 0.008 0.147 1.58E-07 1.51E-02 1.20E-03 999.33 9.8 6.15E-05 0.06 17 460.35 377.35 372.46 9.77 1 0.0 0.000 0.000 16 470.20 387.20 382.28 9.85 1 0.0 0.000 0.000 1.53E-02 1.20E-03 999.33 1.08E-02 1.20E-03 999.33 1 1.29E-01 1.20E-03 999.33 19 479.84 396.84 392.02 9.64 1 9.6 0.1 0.008 0.147 1.58E-07 9.8 6.15E-OS 0.06 20 490.25 407.25 402.04 10.40 1 10.4 0.1 0.006 0.112 1.21E-07 9.8 5.62E-OS 9.8 1 1.11E-04 0.06 0.11 21 496.93 413.93 410.59 6.69 1 6.7 0.4 0.047 1 0.865 1 9.30E-07 Open Fractures Flow Layer in Identified by FLASH 2028GEL . 205.2 1 205.5 257.2 4 295.2 297.0 298.1 301.0 6 305.5 305.7 305.9 Flow Layer in FLASX PUMPED FLOW Depth (FT) 191 Q (GPM) 0.0080 Depth (FT) 191 Q (GPM) 0.2423 1 200 211 0.0122 0.0101 200 210 0.2530 0.0091 2 231 0.0110 230 0.0136 3 250 0.0100 251 0.0177 4 271 0.0150 271 0.0111 5 291 0.0135 291 0.0161 6 311 0.0140 311 0.0120 7 331 0.0135 330 0.0089 8 351 0.0081 351 0.0094 9 371 0.0084 371 0.0077 10 390 0.0089 390 0.0082 11 400 0.0078 401 0.0091 12 411 0.0074 410 0.0088 13 420 0.0079 421 0.0115 14 431 0.0068 431 0.0119 15 441 0.0077 441 0.0081 16 451 0.0080 451 0.0083 17 461 0,0077 461 1,0062 18 470 0.0075 471 0.0079 19 480 0.0087 481 0.0078 20 490 0.0084 1 491 0.0063 21 497 0.0094 1 497 0.0056 average u.- Total Transmissivity Calculated from Thiem Equation Q (9pm) 1 Q (ft'/day) Drawdown, s (tt) Ru (ft) Rw (in) R. (ft) T1011L (ft /day) 0.25 48.125 30.7 1000 2.75 1 0.229 2.09 FLASH Total T and Fit Parameters Radius of Transmi55ivity, Influence, Rr TT-L MSE Ah F (ft) (ft2/day) 1000 0.11 4.97E-OS 8.38E-OS 4.97E-OS Slu Test Information -Com letetl in Completed Wells $Green $Green Interval(ft Midpoint Of Tranlmi55ivity Hydra YliC Hydraulic Interval ee BTOR interval ft2 da A enure m Conducdvi AB-lOBRL 206 125 130 0.03 135 0.03 2.51E-03 208 Notes: 1. Following a logarithmic sensitivity analysis of the FLASH model to radius of influence, a conservative value of 1000 feet was used. 2. Objective function, F, for model Incoporates mean squared error (MSE) between Interpreted and predicted flow profiles and the sum of squared differences (Ah) between the borehole's water level and far -field heads. Model objective is to minimize F; therefore, a value closer to zero Indicates a better fit. 3. Model was run until no more Iterations produced changes In output. 4. FLASH Software: Day -Lewis, F.D., ]ohnson, C. D., Paillet, F.L., and Halford, K.J, 2011, FLASH: A Computer Program for Flow -Log Analysis of Single Holes v1.0: U.S. Geological Survey Software Release, 07 March 2011, S. FLASH Report: Day -Lewis, F.D., Johnson, C. D., Paillet, F.L., and Halford, K.J., 2011, A computer program for Flow -log analysis of single holes (FLASH): Ground Water, https://dx.dol.org/10.1111/j.1745-6584.2011.00798.x 6. Highlighted cells Indicate flow levels that do not have any observed open fractures and did not contribute to total transmissivity. These depth intervals were not used for fracture spacing versus depth below top of rock figure because it is assumed that there are no fractures In these Intervals. FLASH - Flow Log Analysis of Single Holes LAO REQUIRED Writ-,. Allen GWA-4BRL INPUT: Elevation of measuring point [FT] 0 un Solver n EsUnt ale Transmtsslvpy Number of Flow zones[-] 32 0Estimate ROl Well diameter [IN] 5.5 Dmwdown [FT] 23.80 Depth to ambient water level [FT] 8.3 O SOW without Reg ularl2atlon Depth at bottom of casing [FT] 179.1 Depth at bottom of well [FT] 499.8 C' Solvewltll RequMRzatlon Radius of influence (Re) [FT] 1000.0 Total tmnsmissivity (T..) [FT'Iday] 2.01 ABS(Ah) maximum 5.00E+00 Regularization weight 1.00E-04 Tf.- inimv H 1.00E-09 Flow above layer bottom depths FRACTURES Bottom Depth [FT1 Ambient [GPM] Stressed [GPM] Tfactor [FT -ID] ah [FT] Farfield Mad [FT] 32 185 0.0094 0.1865 0.14 0.00 -8.30 31 30 29 28 27 2e 2s za 23 22 31 20 19 18 17 18 15 14 13 12 11 10 5 a 1 SIMULATED PROFILES (DO NOT EDIT) MSE [G PM'J 3.960865E-05 Sum Tye, 1.000 Sum dh^2 0.0004908544577 Ambient W L [FT] Estimated Ttotal [FT'/day] 2.011 Regularized Misfit 0,00 Pumped WL[FT] -32.10 Ambient Stressed Ambient Stressed Depth Flow above Flow above Error Error Zone T Fraction of..l FRACTURES: [FT] [GPM] [GPM] [GPM] [GPM] [FT'/day] tratrsmisslvlly 3231 w 28 28 27 2s 24 23 2221 2a 19 18 17 18 15 14 13 12 11 10 9 s 6 5 4 3 2 1 I -hod lines lodmele mte mtarons or meeeored ante. sale lines lndw-imu-d las. 195 0.0081 0.1597 0.24 0.01 -8.29 z05 0.0100 0.1151 0.55 0.02 -8.28 zIs o.0108 o.olos 0.00 0.00 -8.30 225 0.0106 0.011a 0.00 0.00 -8.30 235 0.0107 0.0123 0.00 0.00 -8.30 zaa o.0108 o.o1z7 0.00 0.00 -8.30 zss o.olzz o.olzz 0.00 0.00 -8.30 265 0.0055 0.0127 0.00 0.00 -8.30 275 0.0085 0.0135 0.00 0.00 -8.30 280 0.0095 0.0119 0.00 0.00 -8.30 295 0.009a 0.0122 0.00 0.00 -8.30 305 0.0041 0.011a 0.00 0.00 -8.30 315 0.0097 0.0119 0.00 0.00 -8.30 3zs o.0083 0.0106 0.00 0.00 -8.30 335 0.0083 0.0130 0.00 0.00 -8.30 345 0.0118 0.0113 0.00 0.00 -8.30 355 0.0111 0.0118 0.00 0.00 -8.30 365 0.0090 0.0101 0.00 0.00 -8.30 37s o.0090 o.olao 0.01 0.00 -8.30 385 0.0079 0.0074 0.00 0.00 -8.30 395 0.0082 0.0093 0.00 0.00 -8.30 a05 0.0075 0.0106 0.00 0.00 -8.30 a15 O.00aa 0.0101 0.00 0.00 -8.30 4z5 0.0064 0.0065 0.00 0.00 -8.30 a3s o.0078 o.o11z 0.00 0.00 -8.30 aaa 0.0092 0.010a 0.00 0.00 -8.30 ass o.00as o.0113 0.01 0.00 -8.30 465 0.0067 0.0055 0.00 0.00 -8.30 a7s o.0076 o.00sz 0.00 0.00 -8.30 aes o.olla o.00s3 0.01 0.00 -8.30 495 0.0060 0.0054 0.03 0.01 -8.29 185.16 0.000 0.186 0.009 0.000 0.289 0.144 195.11 0.000 0.160 0.006 0.000 0.480 0.239 204.69 0.000 0.115 0.010 0.000 1.110 0.552 214.61 0.000 0.012 0.011 -0.002 0.000 0.000 225.24 0.000 0.012 0.011 -0.001 0.000 0.000 235.32 0.000 0.012 0.011 0.000 0.000 0.000 z4a.os o.aoo o.a1z o.a11 0.001 o.aoo o.aoo 255.12 0.000 0.012 0.012 0.000 0.000 0.000 2s4.64 0.000 0.012 0.005 0.000 0.000 0.000 274.79 0.000 0.012 0.009 0.001 0.002 0.001 280.10 0.000 0.012 0.010 0.000 0.000 0.000 295.08 0.000 0.012 0.009 0.000 0.003 0.001 304.60 0.000 0.012 0.004 0.000 0.000 0.000 314.72 0.000 0.012 0.010 0.000 0.000 0.000 324.79 0.000 0.012 0.008 -0.001 0.000 0.000 334.91 0.000 0.012 0.006 0.001 0.000 0.000 344.65 0.000 0.012 0.012 0.000 0.000 0.000 354.60 0.000 0.012 0.011 0.000 0.000 0.000 3s4.73 0.000 0.012 0.009 -0.002 0.000 0.000 375.07 0.000 0.012 0.009 0.002 0.024 0.012 385.23 0.000 0.010 0.008 -0.002 0.000 0.000 394.77 0.000 0.010 0.006 0.000 0.000 0.000 404.68 0.000 0.010 0.008 0.001 0.000 0.000 415.29 0.000 0.010 0.004 0.001 0.000 0.000 424.66 0.000 0.010 0.006 -0.003 0.000 0.000 435.18 0.000 0.010 0.008 0.002 0.000 0.000 444.47 0.000 0.010 0.009 0.001 0.000 0.000 455.06 0.000 0.010 0.005 0.002 0.024 0.012 464.95 0.000 0.007 0.007 -0.002 0.000 0.000 475.00 0.000 0.007 0.008 0.001 0.000 0.000 484.55 0.000 0.007 0.011 0.001 0.021 0.010 494.96 0.000 0.005 0.006 0.000 0.059 0.029 Ambient Flow Profile Pumped Flow Profile Upwartl Flow,in GPM Upward Flow,in GPM • 1� f i•..t 1 r-� r � = G rl - 1 4� 1 1r 1 1� wl 1 1 GWA-0BRL FL4SH GWA-4BRL FLASH Results and l,di,id,,l Hydraulic Aperture V,hm, �-Lsaa I- L saaJ--L IOU J- 0�� Open Fractures Flow Layer in Identified by FLASH GEL 191 192 2 193 195 196 196 197 198 198 3 200 20 202 202 201 t213 4 213 213 458 29 458 AMBIENT FLOW PUMPED FLOW Depth (FT) 175 Q (GPM) 0.0000 Depth (FT) 175 Q (GPM) 0.1867 1 2 I7 111 195 1,0114 0.0081 111 195 0,1111 0.1597 3 4 205 215 0.0100 0.0108 205 215 0.1151 0.0105 5 225 0.0106 226 0.0114 6 235 244 0.0107 0.0108 236 246 0.0123 0.0127 8 255 0.0122 255 0.0122 9 265 0.0055 265 0.0127 SO 11 275 280 0.0085 1 0.0095 275 280 0.0135 0.0119 12 295 0.0094 295 0.0122 13 305 0.0041 305 0.0114 14 315 0.0097 314 0.0119 15 325 0.0083 325 0.0108 16 335 0.0083 335 0.0130 17 345 0.0118 345 0.0113 18 355 0.0111 355 0.0118 19 365 0.0090 365 0.0101 20 375 0.0090 375 0.0140 21 385 0.0079 385 0.0074 22 395 0.0082 395 0.0093 23 405 0.0075 405 0.0106 29 - 1 0.0044 415 0.0101 25 425 0.0064 425 0.0065 26 435 0.0078 435 0.0112 27 444 0.0092 445 0.0104 28 455 0.0045 455 0.0113 29 465 0.0067 465 0.0055 30 475 0.0076 475 0.0082 31 485 0.0114 485 0.0083 32 495 0.0060 495 0.0054 Average u.UI Total Transmissivity Calculated from Thiem Equation Q (gpm) ft2 da Drawdown, s (ft) R. (R) Rw (in) R. (ft) TT T R2/da 0.2 38.5 23.8 1000 2.75 0.229 2.16 FLASH Total T and Fit Parameters Radius of Transmissivity, Influence, Ro TTO MSE Ah F (ft) (ft2/day) 1000 2.01 3.96E-OS 4.91E-04 3.9]E-05 Slug Test Information - Completed In Com IMetl Wells Screen Interval R be,, s Screen Interval (ft Mid -point of BTOR ee interval Transmissivity Hydraulic ft2 da Aperturem Hydraulic onuctivitV GWA-4BRL 208 127 132 137 0.54 0.06 5.45E-02 218 Notes: 1. Following a logarithmic sensitivity analysis of the FLASH model to radius of influence, a conservative value of 1000 feet was used. 2. Objective function, F, for model incoporates mean squared error (MSE) between interpreted and predicted flow profiles and the sum of squared differences (4h) between the borehole's water level antl far -field heads. Model objective is to minimize F; therefore, a value closer to zero indicates a better fit. 3. Model was run until no more iterations produced changes in output. 4. FLASH Software: Day -Lewis, F.D., Johnson, C. D., Pallet, F.L., and Halford, K.J, 2011, FLASH: A Computer Program for Flow - Log Analysis of Single Holes v1.0: U.S. Geological Survey Software Release, 07 March 2011, 5. FLASH Report: Day -Lewis, F.D., Johnson, C. D., Paillet, F.L., and Halford, K.J., 2011, A computer program for flow -log analysis of single holes (FLASH): Ground Water, https://dx.doi.org/10.1111/j.1745-6584.2011.00798., 6. Highlighted cells indicate Flow levels that do not have any observed open fractures and did not contribute to total transmissivity. These depth intervals were not used for fracture spacing versus depth below top of rock figure because it is assumed that there are no fractures in these intervals. Weuname. Allen GWA-SBRL(TOP) Elevation of measuring point [FT] 0 Number of Flow zones[-] 7 Well diameter [IN] 9 Dmwdown [FT] 1.80 Depth to ambient water level [FT] 10.8 Depth at bottom of casing [FT] 65.5 Depth at bottom of well [FT] 177.3 Radius of influence (Ro) [FT] 1000.0 Total tmnsmissivity (Tew) [FT'/day] 1,77 Flow above layer bottom depth. Bottom Depth [FT] Ambient [GPM] Stressed [G Esllm ale TlanSn11HIl" I Esllmale ROI 1 C' Solve whhout Regult". atlon C' SGlvewltll Requ Mriza0on ABS(Ah) maximum 5.00E+00 Regularization weight 1.00E-04 TfeRor minimum[-) 1.00E-09 dh rFTI Farfield Mad MSE [GPMrJ 4.009561E-05 Sum Tyr 1.000 Sum dhA2 0.0704592593666 Ambient W L [FT] -10.80 Estimated Ttotal [FT'/day] 1.770 Regulerl od Misfit 0.00 Pumped WL[FTJ -12.60 Ambient Stressed Ambient Stressed Depth Flow above Flow above Error Error Zone T Fraction of..I FRACTURES: [FT] [GPM] [GPM] [GPM] [GPM] [FT'/day] transmissivily ® 1111 11 � 111 I11 �� ®' : 1111 111 111• 111 1111 1111 1111 111 111• I11 Ambient Flow Profile Pumped Flow Profile "Word Flow, in GPM Upward Flow, In GPM • I• I 1 I • I _ � I I I• I I I I I o I ~ 1 I ' rl I I ' GWASBRL (TOP) FLASH GWA-SBRL (TOP) FLASH Results and Individual Hydraulic Aperture Values Depth of Interval Fracture CALIBRATED Hydraulic Viscosity of Density of Acceleration Hydraulic Aperture, Hydraulic Flow Layer in Depth Depth Center of Lenth it of Fractures in Spacing in Fraction of Total Transmissivity Transmissivity Transmissivity Conductivity Water, p3 Water, pw3 due to Gravity, Aperture, en FLASH (fee[ bgs) (feel BTOR) Interval (feet BTOR) (feet) Flow Layer Interval (feet) Transmissivity (ft'/day) (fI3/tlay) (m /s) (feet/day) (N s/m2) (kg/m3) (m/s3) / (eh) (mm) 1 113.95 7.95 3.97 7.95 1 1 7.9 0.0 0.000 sivity calculEt e�6y Thlem quaclon corporates Flow from 40 feet of rr, l t6erefore,nno <aubratea minarn-vnlea were calculates. 2 123.72 17.72 12.83 9.]7 9.8 0.3 0.459 4 g3E-07 4.]OE-02 1.20E-03 999.33 999.33 9.8 8.99E-05 9.8 6.56E-05 0.09 0.07 3 133.82 27.82 22.77 10.10 4 2.5 0.4 0.713 7.66E-07 7.06E-02 1.20E-03 4 143.81 37.81 32.81 9.99 1 10.0 0.0 0.000 5 153.38 47.38 42.60 9.57 1 0.0 0.000 6 164.29 58.29 52.83 10.91 1 10.9 0.3 0.598 6.43E-07 5.49E-02 1.20E-03 999.33 9.8 9.82E-OS 0.10 7 174.04 68.04 63.16 9.76 1 0.0 0.000 OPT Flow Layer in Identified by FLASH 80.0 Transition 98.1 Zone 109.8 1 2 129.1 129.7 3 131.9 133.3 138.0 4 Flow Layer n FLASH AMBIENT FLOW PUMPED FLOW Depth FT GPM Depth (FT) I Q (GPM) 64 74 0,0000 0.0058 64 73 0,3535 0.0070 84 0.0072 84 0.0102 94 104 0.0126 0.0079 93 104 0.0078 0.0185 1 2 114 124 0.0110 0.0058 114 125 0.0117 0.0153 3 134 0.0125 134 0.0095 4 144 0.0060 144 0.0000 5 6 153 164 0.0084 0.0065 152 164 0.0054 0.0074 7 1 174 1 0.0097 1]4 0.0000 Average 0.08 Total Transmissivity Calculated from Thiem Equation Q (gpm) Q ft3/da Drawdown, s (ft) Re (ft) R„, (in) R. (ft) TTarA. (ft2/day) 1.1 211.]5 1.8 J.O. 1 4.5 1 0.375 1 147.70 FLASH Total T and Fit Parameters Radius of Transmissivity, Influence, Re TTe MSE Ah F (ft) (ft2/day) 1000 1.77 4.01E-OS 1.05E-02 4.11E-OS Notes: 1. Following a logarithmic sensitivity analysis of the FLASH model to radius of influence, a conservative value of 1000 feet was used. 2. Objective function, F, for model incoporates mean squared error (MSE) between interpreted and predicted flow profiles and the sum of squared differences (4h) between the borehole's water level antl far -field heads. Model objective is to minimize F; therefore, a value closer to zero indicates a better fit. 3. Model was run until no more iterations produced changes in output. 4. FLASH Software: Day -Lewis, F.D., Johnson, C. D., Pallet, F.L., and Halford, K.J, 2011, FLASH: A Computer Program for Flow - Log Analysis of Single Holes y1.0: U.S. Geological Survey Software Release, 07 March 2011, 5. FLASH Report: Day -Lewis, F.D., Johnson, C. D., Paillet, F.L., and Halford, K.J., 2011, A computer program for flow -log analysis of single holes (FLASH): Ground Water, https://dx.doi.org/10.1111/j.1745-6584.2011.00798.x 6. Highlighted cells indicate Flow levels that do not have any observed open fractures and did not contribute to total transmissivity. These depth intervals were not used for fracture spacing versus depth below top of rock figure because it is assumed that there are no fractures in these intervals. FLASH - Flow Log Analysis of Single Holes LAO REQUIRED Weuname. Allen GWA-5BRL(BOTTOM ) INPUT: Elevation of measuring point [FT] 0 tun Solver n E511m ale Tran9mt99lvpy Number of Flow zones[-] 33 OEstlmate ROl Well diameter [IN] 5.5 Drawdown [FT] 6.30 Depth to ambient water level [FT] 1.2 C, SOW without Reg uMrl2atlon Depth at bottom of casing [FT] 177.E Depth at bottom of well [FT] 500.3 C' SDlvewltll Requ Mrintlon Radius of influence (Ro) [FT] 1000.0 Total tmnsmissivity (T..) [F71day] 32.69 ABS(Ah) maximum 5.00E+00 Regularization weight 1.00E-04 Tfanor minimum [-) 1.00E-09 Flow above layer bottom depths FRACTURES Bottom Depth [FT] Ambient [GPM] Stressed [GPM] Tfactor [FT -JD] ah [FT] Fairfield Mad [FT1 33 179 0.0000 0.8027 0.01 0.00 -1.20 32 31 3a 29 28 27 28 25 24 23 22 21 20 19 18 17 18 15 14 13 12 11 18 9 8 6 5300 a 1 SIMULATED PROFILES (DO NOT EDIT) MSE [GPMrJ 7.824636E-04 Sum Tye, 1.000 Sum dh^2 0.0006758373597 Ambient W L [FT] Estimated Ttotal [FT'/day] 32.686 Re .Wlzed Mid 0.00 Pumped WL[FT] Ambient Stressed Ambient Stressed Depth Flow above Flow above Error Error Zone T Fraction of..I FRACTURES: [FT] [GPM] [GPM] [GPM] [GPM] [FT'/day] tralrsmisslvlly 33 32 31 29 28 2] 28 25 za 23 22 21 za 19 18 17 18 15 14 19 12 11 18 9 e 7 8 5 4 3 2 1 Dashed lines indi-le tole relations of measured dale. adid lines indeaasi-1-d las. 189 -0.0069 0.7920 0.00 0.00 -1.20 199 -0.0104 0.8078 0.00 0.00 -1.20 208 -0.0146 0.7768 0.00 0.00 -1.20 218 -0.0145 0.8027 0.00 0.00 -1.20 228 -0.0141 0.8027 0.00 0.00 -1.20 238 0.0000 0.8027 0.00 0.00 -1.20 248 0.0000 0.8027 0.00 0.00 -1.20 258 0.0045 0.7275 0.00 0.00 -1.20 268 0.0000 0.7275 0.00 0.00 -1.20 278 0.0075 0.8027 0.00 0.00 -1.20 288 0.0056 0.7275 0.00 0.00 -1.20 299 0.0000 0.8027 0.00 0.00 -1.20 308 0.0000 0.7620 0.00 0.00 -1.20 318 0.0000 0.8922 0.00 0.00 -1.20 329 0.0127 0.8027 0.00 0.00 -1.20 339 0.0151 0.8922 0.00 0.00 -1.20 349 0.0145 0.7275 0.00 0.00 -1.20 358 0.0131 0.8027 0.00 0.00 -1.20 368 0.0178 0.8027 0.00 0.00 -1.20 378 0.0227 0.8027 0.00 0.00 -1.20 368 0.0200 0.8922 0.98 0.03 -1.17 399 0.0063 0.0059 0.00 0.00 -1.20 408 0.0044 0.0045 0.00 0.00 -1.20 418 0.0047 0.0000 0.00 0.00 -1.20 428 0.0052 0.0000 0.00 0.00 -1.20 438 0.0058 0.0052 0.00 0.00 -1.20 448 0.0060 0.0054 0.00 0.00 -1.20 458 0.0057 0.0056 0.00 0.00 -1.20 468 0.0059 0.0058 0.00 0.00 -1.20 478 0.0061 0.0047 0.00 0.00 -1.20 488 0.0056 0.0066 0.00 0.00 -1.20 a98 0.0045 0.0060 0.01 0.01 -1.19 178.50 0.003 0.805 -0.003 -0.002 0.211 0.006 188.63 0.003 0.800 -0.010 -0.008 0.000 0.000 198.57 0.003 0.800 Ambient Flow Profile Pumped Flow Profile Upwartl Flow, in GPM Upward Flow, in GPM • 1 1� r i 1 11 1 1 1 �r • r • 1 1 1 GWA-SBRL (BOTTOM) FL48H GWA-SBRL (BOTTOM) FLASH Results and Individual Hydraulic Aperture Values Depth of Interval Fracture CALIBRATED Hydraulic Viscosity of Density of Acceleration Hydraulic Aperture, Hydraulic Flow Layer in Depth Depth Center of Lenth it of Fractures in Spacing in Fraction of Total Transmissivity Transmissivity Transmissivity Conductivity Water, p2 Water, pw3 tlue to Gravity, Aperture, es FLASH (fee[ bgs) (feet BTOR) Interval feet OR) (feet) Flow Layer Interval (feet) Transmissivity (ft2/day) (ft2/day) (an /s) (feet/day) (N s/m2) (kg/m3) g (m/s2) (m) (mm) 1 178.50 72.50 72.05 0.90 1 0.9 0.006 0.211 0.263 2.83E-07 2.92E-01 1.20E-03 999.33 9.8 7.47E-05 0.07 2 188.83 82.83 77.66 10.33 2 5.2 0.000 a 000 0.000 Flow Layer m FLASH AMBIENT FLOW PUMPED FLOW Depth FT GPM De th FT GPM 168 0.0000 169 0.8060 1 2 179 189 0.0000 -0.0069 179 188 0.8027 0.7920 3 4 199 208 -0.0104 -0.0146 198 208 0.8078 0.7768 5 6 218 228 -00145 I n 141 218 228 0.8027 0.8027 7 238 0.0000 238 0.8027 8 248 0.0000 249 0.8027 9 10 258 268 0.0045 0.0000 258 268 0.7275 0.7275 11 278 0.0075 278 0.8027 12 288 0.0056 288 0.7275 13 299 0.0000 299 0.8027 14 308 0.0000 309 0.7620 15 318 0.0000 319 0.8922 16 329 0.0127 329 0.8027 17 339 0.0151 338 0.8922 IS 349 0.0145 348 0.7275 19 358 0.0131 358 0.8027 20 368 0.0178 368 0.8027 21 378 0.0227 379 0.8027 22 388 0.0200 388 0.8922 23 399 0.0063 398 0.0059 24 408 0.0144 409 0.0045 25 418 0.0047 418 0.0000 26 428 0.0052 429 0.0000 27 438 0.0058 439 0.0052 28 448 0.0060 448 0.0054 29 458 0.0057 459 0.0056 30 468 0.0059 468 0.0058 31 478 0.0061 478 0.0047 32 488 0.0056 488 0.0066 33 498 0.0045 498 0.0060 Total Transmissivity Calculated from Thiem Equation Q (Span) ft3/da Drawdown, s (ft) Re (ft) R.(in) lt. (ft) Tt.... (ft2/tlay) 1 192.1 6.3 1000 2.75 0.229 40.76 FLASH Total T and Fit Parameters Radius of Transmissivity, Influence, R. Tr MSE Ah F (ft) (ft2/day) 1000 32.69 7.82E-04 I 6.76E-04 7.83E-04 Slu Test Information -Com leted in Com letetl Wells Screen Interval (ft. s Screen Interval (ft BTOR Mid -point of Transmissivity ee interval ft2 da Hydraulic A erture m Hydraulic Conductivl GWA-58RL 335 229 234 0.20 0.04 1.98E-02 45 239 (Notes: 1. Following a logarithmic sensitivity analysis of the FLASH model to radius of influence, a conservative value of 1000 feet was used. 2. Objective function, F, for model incoporates mean squared error (MSE) between interpreted and predicted Flow profiles and the sum of squared differences (Ah) between the borehole's water level and far -field heads. Model objective is to 1 ze F; therefore, a value closer to zero indicates a better fit. 3.Model was run until no more iterations produced changes in output. 4. FLASH Software: Day -Lewis, F.D., Johnson, C. D., Paillet, F.L., and Halford, K.J, 2011, FLASH: A Computer Program for Flow -Log Analysis of Single Holes v1.0: U.S. Geological Survey Software Release, 07 March 2011, 5. FLASH Report: Day -Lewis, F.D., Johnson, C. D., Paillet, FL., and Halford, K.J., 2011, A computer program for How -log analysis of single holes (FLASH): Ground Water, https://dx.doi.org/10.1111/j.1745-6584.2011.00798., 6. Highlighted cells indicate flow levels that do not have any observed open fractures and did not contribute to total tra nsmissivity. These depth intervals were not used for fracture spacing versus depth below top of rock figure because it is assumed that there are no fractures in these intervals. FLASH - Flow Log Analysis of Single Holes LAO 61 REQUIRED Writ-,. Allen GWA-6BRL INPUT: Elevation of measuring point [FT] 0 un Solver n EsUnt ale Trensmtsslvpy Number of Flow zones[-] 26 0Estimate ROl Well diameter [IN] 5.5 Dmwdown [FT] 28.90 Depth to ambient water level [FT] 42.1 O SOW without Reg uMrl2atlon Depth at bottom of casing [FT] 222.5 Depth at bottom of well [FT] 500.4 C' Solvewltll RequMRZntlon Radius of influence (Re) [FT] 1000.0 Total tmnsmissivity (T..) [FT'/day] 1,98 ABS(Ah) maximum 5.00E+00 Regularization weight 1.00E-04 Tf.- inimv H 1.00E-09 Flow above layer bottom depths FRACTURES Bottom Depth [F11 Ambient [GPM] Stressed [GPM] Tfactor [FT -JD] ah [FT] Farfield Mad [FT] 28 224 0.0103 0.2229 0.00 0.00 -42.10 27 26 25 24 23 22 21 29 19 18 17 ifi 15 14 13 12 11 10 8 6 5 a 2 t SIMULATED PROFILES (DO NOT EDIT) MSE [GPMrJ 3.865761E-05 Sum Tye, 1.000 Sum dhA2 0.0031a83a53524 Ambient W L [FTJ -02.10 Estimated Ttotal [FT'/day] 1.979 Regularized Mlstlt 0,00 Pumped WL[FT] -71.00 Ambient Stressed Ambient Stressed Depth Flow above Flow above Error Error Zone T Fraction of..I FRACTURES: [FT] [GPM] [GPM] [GPM] [GPM] [FT'may] tratrsmisslvlly 28 27 28 25 24 23 22 21 2a 19 18 17 16 15 14 13 12 11 is 9 s fi 5 4 3 2 1 I -hod lines lodmele mte reta5ane or meeeored sine. sdla lines lndw-imu-d las. 234 0.0109 0.2229 0.05 0.00 -42.10 244 0.0099 0.2086 0.00 0.00 -42.10 254 0.0122 0.2069 0.00 0.00 -42.10 264 0.0107 0.2229 0.12 0.01 -42.09 274 0.0114 0.1665 0.41 0.04 -42.06 284 0.0139 0.0943 0.04 0.00 -42.10 z9a o.00fio 0.0849 0.35 0.04 -42.06 304 0.0047 0.0080 0.00 0.00 -42.10 314 0.0058 0.0076 0.00 0.00 -42.10 324 0.0060 0.0079 0.00 0.00 -42.10 334 0.0053 0.0082 0.00 0.00 -42.10 344 0.0069 0.0069 0.00 0.00 -42.10 354 0.0067 0.0067 0.00 0.00 -42.10 364 0.0058 0.0067 0.00 0.00 -42.10 375 0.0069 0.0076 0.00 0.00 -42.10 383 0.0071 0.0062 0.00 0.00 -42.10 394 0.0086 0.0069 0.00 0.00 -42.10 404 0.0091 0.0059 0.00 0.00 -42.10 414 0.0073 0.0060 0.00 0.00 -42.10 424 0.0088 0.0066 0.00 0.00 -42.10 434 0.0077 0.0054 0.00 0.00 -42.10 aaa 0.0082 0.0061 0.00 0.00 -42.10 ass 0.0081 0.0057 0.00 0.00 -42.10 a6a 0.0072 O.00Sa 0.00 0.00 -42.10 a7a o.0066 0.0071 0.00 0.00 -42.10 483 0.0082 0.0062 0.00 0.00 -42.10 a9a o.007z o.0060 0.03 0.01 -42.09 224.18 0.000 0.223 0.010 0.000 0.000 0.000 234.32 0.000 0.223 0.011 0.000 0.090 0.045 243.68 0.000 0.213 0.010 -0.004 0.000 0.000 254.21 0.000 0.213 0.012 -0.006 0.000 0.000 264.20 0.000 0.213 0.010 0.010 0.233 0.118 273.66 0.000 0.187 0.011 0.000 0.819 0.414 284.39 0.000 0.094 0.014 0.000 0.082 0.041 294.38 0.000 0.085 0.008 0.000 0.684 0.346 304.15 0.000 0.008 0.005 0.000 0.000 0.000 314.32 0.000 0.006 0.006 0.000 0.000 0.000 324.33 0.000 0.006 0.006 0.000 0.000 0.000 334.19 0.000 0.008 0.005 0.000 0.008 0.004 344.32 0.000 0.007 0.007 0.000 0.000 0.000 353.77 0.000 0.007 0.007 0.000 0.000 0.000 364.16 0.000 0.007 0.006 0.000 0.000 0.000 374.60 0.000 0.007 0.007 0.001 0.004 0.002 382.92 0.000 0.007 0.007 0.000 0.000 0.000 394.24 0.000 0.007 0.009 0.000 0.003 0.002 404.08 0.000 0.006 0.009 0.000 0.000 0.000 414.19 0.000 0.006 0.007 0.000 0.000 0.000 424.22 0.000 0.006 0.009 0.000 0.001 0.001 434.22 0.000 0.006 0.006 -0.001 0.000 0.000 444.22 0.000 0.006 0.008 0.000 0.000 0.000 454.24 0.000 0.006 0.008 0.000 0.000 0.000 464.22 0.000 0.006 0.007 -0.001 0.000 0.000 474.35 0.000 0.006 0.009 0.001 0.000 0.000 483.36 0.000 0.006 0.006 0.000 0.000 0.000 494.03 0.000 0.006 0.007 0.000 0.053 0.027 Ambient Flow Profile Pumped Flow Profile Upwartl Flow,in GPM Upward Flow,In GPM • h f� r �I 1, o � o 1� 1 1� h < ll r 1 r e"11 r • GWA-FBRL FLASH GWA-66RL FLASH Results and Individual Hydraulic Aperture Values therefore no 3�-09 calibre ;a mm It �L o��o® i 1 11 - 1W l� 0�®0® 00� Open Fractures Flow Layer in Identified by FLASH 2]4 6 2]4 7 292 292 293 8 293 293 294 295 295 295 296 296 296 9 296 296 297 297 336 13 337 367 18 424 21 424 Flow Layer In FLASH AMBIENT FLOW PUMPED FLOW Depth (FT) 214 Q (GPM) 0.0100 Depth (FT) 214 Q (GPM) 0.2004 1 224 0.0103 224 0.2229 2 3 234 244 0.0109 0.0099 234 244 0.2229 0.2086 4 5 254 264 0.0122 0.0107 254 264 0.2069 0.2229 6 7 274 284 0.0114 0.0139 274 284 0.1865 0.0943 8 9 294 304 ON 0 0.0047 294 304 0.0849 0.0080 SO 11 314 324 0.0058 0.0060 314 324 0.0076 0.0079 12 334 0.0053 334 0.0082 13 344 0.0069 344 0.0069 14 354 0.0067 354 0.0067 15 364 0.0058 364 0.0067 16 375 0.0069 374 0.0076 17 383 0.0071 384 0.0062 18 394 0.0086 394 0.0069 19 404 0.0091 404 0.0059 20 414 0.0073 414 0.0060 21 424 0.0088 424 0.0066 22 434 0.0077 434 0.0054 23 444 1 0.0082 444 0.0061 24 454 0.0081 454 0.005] 25 464 0.0072 464 0.0054 26 474 0.0086 474 0.0071 27 483 0.0082 494 0.0062 28 494 0.0072 494 0.0060 Average 0.04 Total Transmissivity Calculated from Thiem Equation E11 Q (9pm) ft d Drawdown, s (ft) Ro (tt) Rw (In) It. (ft) T taL tt'/da 0.2 38.5 28.9 1000 2.75 0.229 1.78 FLASH Total T and Fit Parameters Radius of Transmissivity, Influence, R. Tro- MSE Ah F (ft) (ftz/day) 1000 1.98 3.8]E-OS 3.15E-03 3.90E-OS Slu Test Information - Com feted in Com feted Wells Screen Interval ft b s Screen Interval (ft Mid -point of Transmissivity BTOR n interval ft2 da ee--- Hydraulic A enure m Hydraulic Conductivity GWA-6BRL ISO 29.48 190 0.21 2.96E+00 300 Notes: 1. Following a logarithmic sensitivity analysis of the FLASH model to radius of influence, a conservative value of 1000 feet was used. 2. Objective function, F, for model incoporates mean squared error (MSE) between interpreted and predicted flow profiles and the sum of squared differences (4h) between the borehole's water level and far -field heads. Model objective is to minimize F; therefore, a value closer to zero indicates a better fit. 3. Model was run until no more iterations produced changes in output. 4. FLASH Software: Day -Lewis, F.D., Johnson, C. D., Pallet, F.L., and Halford, K.J, 2011, FLASH: A Computer Program for Flow - Lag Analysis of Single Holes v1.0: U.S. Geological Survey Software Release, 07 March 2011, 5. FLASH Report: Day -Lewis, F.D., Johnson, C. D., Paillet, F.L., and Halford, K.J., 2011, A computer program for flow -log analysis of single holes (FLASH): Ground Water, https://dx.doi.org/10.1111/j.1745-6584.2011.00798., 6. Highlighted cells indicate Flow levels that do not have any observed open fractures and did not contribute to total trensmissivity. These depth intervals were not used for fracture spacing versus depth below top of rock figure because it is assumed that there are no fractures in these intervals. Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC - Allen Steam Station ATTACHMENT C GEOPHYSICAL LOGGING REPORT SynTerra Solutions 821 Livingston Court, Suite E Marietta, GA 30067 770.980.1002 Geophysical Logging Report AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-5BRL, and GWA-6BRL Allen Steam Station, Gaston County, North Carolina Performed for: SynTerra March 28, 2019 problem solved Geophysical Logging Report, AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-SBRL, and GWA-6BRL Allen Steam Station, Gaston County, North Carolina TABLE OF CONTENTS Section Page SignaturePage..................................................................................................................................ii ExecutiveSummary.........................................................................................................................iii 1.0 Introduction........................................................................................................................... 1 2.0 Equipment and Methodology................................................................................................ 1 2.1 Acoustic Televiewer...................................................................................................... 1 2.2 Optical Televiewer........................................................................................................ 2 2.3 3-Arm Caliper................................................................................................................ 2 2.4 Fluid Temperature........................................................................................................ 2 2.5 Fluid Conductivity......................................................................................................... 2 2.6 Single Point Resistance(SPR)........................................................................................ 3 2.7 Spontaneous Potential (SP).......................................................................................... 3 2.8 Heat Pulse Flowmeter(HPF)......................................................................................... 3 3.0 Field Procedures.................................................................................................................... 3 4.0 Data Processing and Results.................................................................................................. 4 Appendices Appendix 1 Appendix 2 Appendix 3 Appendix 4 Fracture Summary Table Schmidt Stereonets and Rose Diagrams Heat Pulse Flowmeter Logs and Fracture Characteristics Geophysical Logs problem solved Geophysical Logging Report, AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-5BRL, and GWA-6BRL March 28, 2019 Allen Steam Station, Gaston County, North Carolina (synt00118) Page ii SIGNATURE PAGE This report, entitled "Geophysical Logging Report — AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-5BRL, and GWA-6BRL, Allen Steam Station, Gaston County, North Carolina" has been prepared for SynTerra located in Greenville, South Carolina. It has been prepared under the supervision of Mr. Jorgen Bergstrom at the request of and the exclusive use of SynTerra. This report has been prepared in accordance with accepted quality control practices and has been reviewed by the undersigned. GEL Solutions, LLC A Member of the GEL Group, Inc. Jorgen Bergstrom, P.Gp. Senior Geophysicist Nicholas Rebman Geophysical Specialist March 28, 2019 Date problem solved Geophysical Logging Report, AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-5BRL, and GWA-6BRL March 28, 2019 Allen Steam Station, Gaston County, North Carolina (synt00118) Page iii EXECUTIVE SUMMARY GEL Solutions performed geophysical borehole logging services in five borings located at Allen Steam Station in Gaston County, North Carolina. The field investigations were performed between October 3, 2018 and January 4, 2019 during several, separate mobilizations. This investigation was conducted to aid SynTerra in evaluating potential pathways for groundwater migration through fractured bedrock at the site. The geophysical logs consisted of acoustic televiewer, optical televiewer, caliper, fluid conductivity, fluid temperature, single point resistance (SPR), spontaneous potential (SP), and heat pulse flowmeter (HPF). Logging of the top part of AB-10BRL and GWA-5BRL was conducted before setting the second casing, and before reaching the total depth. Logging of the bottom part of AB-10BRL and GWA-5BRL was conducted after setting the second casing and reaching the total depth. HPF logging was conducted under ambient conditions for all wells, and under pumping conditions for all wells except GWA-3BRL since this boring exhibited artesian conditions. The logging data was analyzed to determine the location and orientation of fractures; and other features. In addition to these data sets, synthetic caliper logs were calculated from the acoustic televiewer travel time data to aid in the interpretation. The logs were analyzed for fractures and other features. Dip and azimuth (dip direction) were calculated for each detected fracture based on the televiewer dataset. HPF data was analyzed to detect water producing fractures. problem solved Geophysical Logging Report, AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-SBRL, and GWA-6BRL March 28, 2019 Allen Steam Station, Gaston County, North Carolina (synt00118) Page 1 1.0 INTRODUCTION GEL Solutions performed geophysical borehole logging services in five borings located at Allen Steam Station in Gaston County, North Carolina. The geophysical logs consisted of acoustic and optical televiewer, 3- arm caliper, fluid conductivity, fluid temperature, single point resistance (SPR), spontaneous potential (SP), and heat pulse flowmeter (HPF). The field investigation was performed between October 3, 2018 and January 4, 2019. The logging data was analyzed to determine the location and orientation of fractures; and other features. In addition to these data sets, synthetic caliper logs were calculated from the acoustic televiewer travel time data to aid in the interpretation. 2.0 EQUIPMENT AND METHODOLOGY The information below is an overview of the geophysical methodologies used for this investigation. The intent of this overview is to give the reader a better understanding of each method, and background information as to what is actually measured, the resolution of the method, and the limitations imposed by site -specific subsurface conditions. 2.1 Acoustic Televiewer Acoustic televiewer (ATV) logging produces a high resolution, magnetically oriented digital image of the borehole wall to map the location and orientation of intersecting fractures, foliations, and lithologic contacts. The Acoustic televiewer tool emits a rotating, narrow, acoustic beam that is reflected off the borehole wall. The travel time and amplitude of the reflected wave are recorded by the tool and used to create borehole images. Both datasets are useful for identifying the location and orientation of fractures. The amplitude of the reflected signal will decrease at the location of fractures and the travel time will increase. The travel time data can also be used for developing a high resolution caliper log for a more comprehensive analysis of fractures. Acoustic televiewers can only be used in fluid filled boreholes. However, the fluid does not have to be optically clear for the method to work. When operating the ATV, a "time window" is set based on the borehole diameter. The time window is the time interval in which the ATV instrument searches for an echo from the borehole wall. For smaller increases in borehole diameter around fractures and sections of weaker rock, the ATV typically records an accurate borehole diameter (correlates well with three -arm caliper data). However, if borehole openings are problem solved Geophysical Logging Report—AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-5BRL, and GWA-6BRL March 28, 2019 Allen Steam Station, Gaston County, North Carolina (synt00118) Page 2 much larger than the borehole diameter, the echo from the borehole wall may fall outside the time window, or be too weak to be detected. In these situations, borehole diameters recorded with ATV may be inaccurate. Since ATV only records the reflection from the borehole wall, the data cannot be used to determine how far a fracture extends from the borehole. The acoustic televiewer has a vertical resolution of 2 millimeters. 2.2 Optical Televiewer Optical televiewer (OTV) logging is used to record and digitize a 360-degree color image of the borehole wall. Planar features such as fractures, foliation, and lithologic contacts can be identified directly on the images. The tool is magnetically oriented in order to determine the strike and dip of features. Televiewers have a vertical resolution of 2mm, which is significantly better than many other geophysical tools. As a result, it is able to see features other tools cannot resolve. Optical images can be collected above or below the water surface, provided the water is sufficiently clear for viewing the borehole wall. 2.3 3-Arm Caliper Caliper logging is used to generate a profile of the borehole diameter with depth. The tool measures the borehole diameter using three spring -loaded arms. Narrow enlargements in the borehole diameter can, in most cases, be attributed to fractures. Caliper logging can be conducted above and below the water surface. 2.4 Fluid Temperature Fluid temperature logging is used to identify where water enters or exits the borehole. In the absence of fluid flow, a gradual increase on water temperature of approximately 1°F per 100 feet of depth is expected. Rapid changes in the fluid temperature indicate water -producing or water -receiving zones. Little or no temperature gradient indicates intervals of vertical flow. 2.5 Fluid Conductivity Fluid conductivity logging is used to measure the electrical conductivity of the fluid in the borehole. Variations in fluid conductivity can be contributed to concentration variations of dissolved solids. These differences can occur when sources of water have contrasting chemistry and have come from different transmissive zones. Fluid temperature and conductivity are measured concurrently using the same logging tool. problem solved Geophysical Logging Report—AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-SBRL, and GWA-6BRL March 28, 2019 Allen Steam Station, Gaston County, North Carolina (synt00118) Page 3 2.6 Single Point Resistance (SPR) Single point resistance logging involves passing an alternate current between a surface electrode and a probe electrode and measuring the voltage difference created by the current. SPR is then calculated using Ohm's law. SPR is the sum of cable resistance, and the resistance based on the composition of the medium, the cross sectional area and length of the path through the medium. Therefore, the single point resistance log does not provide quantitative data. In general, SPR increases with increasing grain size and decreases with increasing borehole diameter, fracture density, and the concentration of dissolved solids in the water. Single - point resistance logs are useful in the determination of lithology, water quality, and location of fracture zones 2.7 Spontaneous Potential (SP) SP logging is conducted to measure naturally occurring voltage differences along a borehole. The method has been found useful for delineating sandstone/shale layering and other boundaries between permeable and impermeable beds. The measurements are made with reference to an electrode at ground level. Therefore, SP logging does not provide quantitative data. 2.8 Heat Pulse Flowmeter (HPF) HPF logging measures the direction and rate of vertical fluid flow in a borehole by heating up a small volume of water and monitoring temperature variations as the heated water moves with the fluid flow in the borehole. Under ambient conditions, differences in hydraulic head between two transmissive fractures produce vertical flow in the borehole. However, if the hydraulic head is the same, no flow will occur under ambient conditions. Therefore, HPF logging is also conducted under low -rate pumping conditions. HPF readings are point readings at the location of fractures. The location and number of these readings can be determined after analyzing the other geophysical logs for fractures. HPF can be used for measuring vertical flows between 0.005 gallons per minute (gpm) and approximately 1.5 gpm. In HPF data, upward flow is shown as positive flow, and downward flow is shown as negative flow. 3.0 FIELD PROCEDURES All GEL Solutions activities on -site were supervised by a senior geophysicist. For this investigation, GEL Solutions used a Mount Sopris Matrix logging system. Pumping tests during HPF testing were conducted using a Grundfos Redi-Flow-2 water pump with variable speed control box and an in -situ Mini -Troll pressure transducer with logging capabilities. The pump is placed in the casing above the open hole section of the problem solved Geophysical Logging Report-AB-1OBRL, GWA-3BRL, GWA-4BRL, GWA-5BRL, and GWA-6BRL March 28, 2019 Allen Steam Station, Gaston County, North Carolina (syntOO118) Page 4 borehole. HPF logging under pumping conditions commenced after the borehole water level had stabilized. HPF logging was conducted at every 10 feet throughout the logging intervals under ambient and pumping conditions. More closely spaced readings were then conducted at sections with abrupt changes in flow. Logging of the top part of AB-10BRL and GWA-5BRL was conducted before setting the second casing, and before reaching the total depth. Logging of the bottom part of AB-10BRL and GWA-513RL was conducted after setting the second casing and reaching the total depth. HPF logging was conducted under ambient conditions for all wells, and under pumping conditions for all wells except GWA-313RL since this boring exhibited artesian conditions. A summary of the configuration of the boreholes, pumping rates, and water levels is provided below. All depth measurements are referenced from the ground surface. All borings are surface cased and open hole below the casing. Logging Configuration Summary Well ID: AB-10BRL (TOP) AB-10BRL (BOTTOM) GWA-3BRL GWA-4BRL Casing material: PVC PVC PVC PVC Casing diameter (in): 10.5 6.0 6.0 6.0 Open hole (ft): 47.8-201.3 201.1-500.3 211.7-471.9 179.1-499.8 Open hole diameter (in): 9.0 5.5 5.5 5.5 Pumping rate (gpm): 1.0 0.25 Artesian well 0.2 Pump depth (ft): 14 50 N/A 40 Water level before pumping (ft): 6.3 3.5 N/A 8.3 Water level at equilibrium (ft): 9.0 34.2 N/A 32.1 Well ID: GWA-5BRL (TOP) GWA-5BRL (BOTTOM) GWA-6BRL Casing material: PVC PVC PVC Casing diameter (in): 10.0 6.0 6.0 Open hole (ft): 65.5-177.3 177.6-500.3 222.5-500.4 Open hole diameter (in): 9.0 5.5 5.5 Pumping rate (gpm): 1.1 1.0 0.2 Pump depth (ft): 30 30 80 Water level before pumping (ft): 10.8 1.2 42.1 Water level at equilibrium (ft): 12.6 7.5 71.0 problem solved Geophysical Logging Report—AB-10BRL, GWA-3BRL, GWA-4BRL, GWA-5BRL, and GWA-6BRL March 28, 2019 Allen Steam Station, Gaston County, North Carolina (synt00118) Page 5 4.0 DATA PROCESSING AND RESULTS The logs were analyzed for fractures and other features using WellCAD software, manufactured by Advanced Logic Technology. The travel time data from the acoustic televiewer log was used to develop a maximum caliper log. Fractures were interpreted through a complete data analysis of all logs. Dip and azimuth (dip direction) were calculated for each detected fracture. The fracture data was corrected from apparent to true dip and azimuth using deviation logs included with the televiewer dataset, and from magnetic north to true north by rotating the fracture azimuths 7.3° counterclockwise. Magnetic north is 7.3° west of true north at the site (according to National Oceanic and Atmospheric Administration). The reported azimuth is measured clockwise from true north (Figure 1). A fracture summary table including fracture attributes is provided in Appendix 1. Dominating water producing fractures based on flow logging or other evidence are highlighted and shown in bold and italics text. Minor water producing fractures based on flow logging are shown in bold. Schmidt stereonets (lower hemisphere) with fracture characteristics and fracture rose diagrams are presented on Appendix 2. HPF logs and fracture characteristics are shown on Appendix 3. All logs are presented on Appendix 4. All depths are referenced from ground surface. vest Fwst Rela6ns beApm Dip and A�bvwb angle Figure 1: Explanation of azimuth and dip for fractures problem solved APPENDIX 1 Allen Steam Station, Gaston County, North Carolina Fracture Data from Geophysical Logging AB-10BRL AB-10BRL GWA-3BRL Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip ft deg deg ft deg deg ft deg deg 56.5 276 0 Major blowout 185.7 349 64 212.0 358 6 66.1 341 23 186.0 108 53 213.0 120 43 68.5 238 35 187.4 254 24 216.1 162 26 69.6 300 41 191.3 242 14 216.3 344 85 72.4 172 36 192.0 348 5 217.4 255 20 74.3 146 64 192.6 181 59 217.9 359 82 77.8 113 71 193.2 143 20 218.8 358 2 80.3 73 11 194.4 351 5 'a 219.4 342 83 83.6 43 9 196.3 121 51 0 220.7 89 37 83.9 356 7 197.3 96 51 z 222.8 75 65 86.9 82 18 198.8 119 51 m 0 224.0 217 69 92.6 285 32 199.6 135 47 ¢ 225.1 75 64 92.7 248 80 200.7 340 75 227.6 160 25 92.8 77 46 202.8 229 68 227.8 159 22 93.2 99 14 205.2 229 79 0 233.2 79 53 93.3 131 78 205.5 106 53 0 237.6 100 36 93.7 338 9 210.9 153 48 CO J 247.8 57 68 94.2 76 26 212.2 120 56 m 259.1 259 60 0 95.6 344 39 213.0 116 54 1 260.6 247 61 97.3 297 71 213.5 125 53 m ¢ 271.2 128 6 97.5 154 83 213.8 110 57 271.8 329 86 97.7 161 26 214.8 191 69 285.4 19 35 99.1 315 37 221.8 178 24 292.5 230 73 104.1 314 30 236.0 274 34 293.9 309 88 104.5 6 78 239.8 239 49 310.6 23 23 106.0 254 7 248.3 333 60 318.5 95 68 106.4 186 9 249.7 80 36 330.6 86 65 107.3 139 25 250.9 329 50 335.7 119 79 107.7 7 67 251.0 330 47 338.8 107 83 110.0 249 23 257.2 295 38 345.1 339 25 113.6 131 10 279.3 94 49 347.5 293 65 115.4 353 8 280.3 159 33 347.6 20 46 116.4 300 52 281.6 277 83 347.7 341 23 121.3 123 6 287.8 113 80 348.4 332 86 121.4 134 17 295.0 167 27 349.2 289 57 129.2 332 1 295.2 112 49 349.5 292 62 129.6 285 37 297.0 124 65 350.0 336 1 131.7 113 62 298.1 110 30 350.6 48 25 132.7 137 42 301.0 92 26 350.7 292 83 135.2 231 52 305.5 95 65 352.5 356 16 141.3 330 50 305.7 318 70 352.8 291 62 142.2 125 45 305.9 84 63 353.4 281 67 142.2 129 32 310.2 143 30 353.9 169 53 142.3 123 46 317.0 90 47 354.1 344 69 146.2 331 9 322.9 123 67 355.0 45 78 146.6 336 16 324.1 152 61 355.3 297 71 147.9 199 46 332.4 95 47 355.7 99 77 149.3 339 31 332.9 171 53 364.2 286 56 151.3 232 66 337.4 272 74 364.6 280 59 152.5 233 61 344.1 116 36 367.9 158 22 155.8 73 19 350.5 327 8 374.7 298 53 158.5 62 25 352.0 113 45 377.2 216 30 160.4 76 43 356.9 293 80 377.9 172 27 160.7 194 62 359.8 139 12 378.4 220 27 161.5 187 29 362.5 311 37 379.2 194 31 163.8 325 26 364.0 339 72 379.6 228 34 168.0 334 63 365.6 348 86 383.7 82 77 168.1 32 56 369.1 49 33 395.8 278 79 169.3 231 27 408.8 281 35 396.5 286 82 169.3 266 62 415.3 160 76 414.2 139 80 170.3 226 24 440.9 149 81 427.9 25 60 173.4 136 s0 444.1 289 83 433.0 33 71 174.3 163 45 446.5 277 79 433.7 24 69 176.7 11 9 440.1 342 31 178.5 106 20 443.1 334 36 179.3 237 22 451.5 256 25 180.8 122 12 455.7 301 33 182.0 306 58 456.1 334 79 Major open fractures are highlighted and shown in bold and italics text. Minor open fractures are shown in bold. Closed fractures are shown in plain text. Allen Steam Station, Gaston County, North Carolina Fracture Data from Geophysical Logging GWA-3BRL GWA-4BRL Depth Azimuth Dip Depth Azimuth Dip ft deg deg ft deg deg 464.3 106 61 190.6 316 52 465.8 338 2 192.1 282 70 466.1 206 37 192.7 333 48 466.5 279 60 194.5 326 37 468.0 268 72 196.0 323 19 468.7 227 34 196.5 137 45 470.1 235 73 197.2 127 42 470.8 318 72 197.6 133 43 197.8 285 47 199.6 157 41 201.2 350 15 Porous Zone 201.8 159 30 201.9 163 34 208.5 333 23 209.3 352 19 212.8 36 79 212.9 313 20 Porous Zone 216.9 164 37 217.3 55 15 218.6 163 31 219.0 147 33 222.1 205 68 223.0 258 17 223.3 319 30 249.1 78 10 249.7 279 71 252.2 0 20 276.2 109 39 276.8 107 62 276.9 117 68 285.2 315 13 285.5 122 41 296.4 86 52 301.1 74 80 302.4 96 48 305.2 350 38 306.9 324 38 309.1 300 73 310.9 295 70 315.4 123 37 317.0 74 50 322.8 70 65 339.9 124 38 340.0 314 32 344.6 187 52 346.0 203 39 346.2 186 53 346.7 175 60 350.0 213 45 350.3 193 45 353.9 124 20 354.3 77 19 357.4 138 30 357.8 158 46 358.2 137 54 358.2 79 70 360.4 190 59 360.4 153 75 372.6 139 28 373.0 133 30 378.8 147 64 379.1 124 28 379.1 157 19 379.2 153 20 379.4 144 78 380.8 89 39 381.0 141 29 381.0 125 22 GWA-4BRL Depth Azimuth Dip ft deg deg 401.1 344 58 401.2 193 49 406.1 318 51 407.1 121 57 407.3 335 50 408.4 252 50 408.6 313 49 411.8 273 28 411.8 90 29 413.3 138 54 414.4 121 43 415.0 60 56 419.4 202 58 419.6 188 49 419.8 202 59 420.0 181 65 423.4 146 11 426.0 150 13 427.7 139 34 428.3 145 21 428.4 151 27 430.8 138 38 434.2 144 69 434.3 74 58 437.1 210 58 437.1 198 48 438.5 173 54 438.8 179 42 439.2 335 27 439.3 139 66 439.9 163 48 440.2 166 57 440.3 284 22 440.4 290 15 440.8 106 26 441.0 103 25 442.3 139 60 444.1 87 58 444.2 344 4 446.3 338 16 446.7 335 17 448.9 48 80 456.2 178 34 456.4 332 70 456.4 184 35 457.7 201 47 457.7 325 83 457.9 192 44 489.3 290 60 498.3 135 30 498.5 143 22 498.7 87 71 Major open fractures are highlighted and shown in bold and italics text. Minor open fractures are shown in bold. Closed fractures are shown in plain text. Allen Steam Station, Gaston County, North Carolina Fracture Data from Geophysical Logging GWA-SBRL GWA-5BRL GWA-6BRL Depth Azimuth Dip Depth Azimuth Dip Depth Azimuth Dip ft deg deg ft deg deg ft deg deg 80.0 160 14 Major blowout 318.2 256 34 224.4 256 43 98.1 121 12 Major blowout 319.2 90 8 256.2 273 35 109.8 315 59 320.6 136 51 256.4 291 30 115.3 178 57 323.0 29 21 258.0 94 75 119.8 337 57 324.1 157 28 258.4 163 14 122.8 118 20 328.2 169 32 259.0 173 18 126.0 339 37 328.6 160 37 273.8 353 77 127.0 334 55 332.9 66 50 274.4 274 27 127.3 158 50 334.7 328 73 274.6 287 21 127.4 333 58 337.0 118 74 292.2 142 21 129.1 168 11 338.3 87 77 292.3 338 83 129.7 336 54 338.6 139 76 293.1 16S 27 131.9 308 44 0 339.6 73 56 293.1 326 39 133.3 104 28 0 340.1 52 58 293.4 157 31 138.0 300 42 m 340.6 73 54 294.4 322 6 161.5 138 20 ¢ 341.5 110 64 294.5 151 15 162.9 140 21 3� 341.9 140 52 295.0 251 63 176.9 95 84 343.8 107 72 295.4 246 75 181.9 75 26 344.0 111 74 295.7 242 71 189.3 133 69 345.1 146 66 296.0 57 62 189.8 122 80 347.5 93 76 296.1 244 64 194.5 279 13 348.0 146 61 296.2 69 57 199.0 110 27 N 348.5 355 40 296.3 267 60 200.3 332 78 3 348.6 198 2 296.5 259 62 224.0 7 7 350.0 281 22 Porous Zone 297.3 303 9 224.1 4 7 351.9 204 68 303.7 331 83 236.1 2 4 352.3 330 8 304.6 157 10 237.4 14 69 353.5 75 21 305.9 109 74 237.7 337 0 355.4 83 80 306.0 343 79 237.7 352 79 358.6 99 66 306.6 150 59 237.9 60 10 364.7 189 63 306.7 257 19 242.5 90 78 365.2 168 58 310.4 256 65 245.9 331 46 369.6 96 82 311.1 217 69 248.7 297 73 372.6 325 46 Porous Zone 312.1 244 61 249.4 344 56 373.1 108 67 312.5 241 60 253.2 332 53 373.7 341 60 319.2 323 11 257.6 338 30 Porous Zone 376.1 295 68 323.2 348 81 261.8 127 75 380.3 149 73 323.7 77 25 268.1 124 12 381.2 321 39 Porous Zone 324.4 166 20 268.3 160 32 383.0 351 14 Porous Zone 325.8 147 24 270.8 320 79 385.7 330 51 327.9 273 51 276.5 152 82 385.9 339 55 336.4 139 28 279.8 156 24 388.3 353 54 336.6 158 25 279.8 152 30 388.7 333 31 339.6 296 48 280.4 197 53 389.9 327 56 340.4 314 70 280.8 134 14 390.1 275 22 340.9 328 77 281.4 153 9 390.6 330 59 345.1 97 69 281.6 323 2 392.1 137 45 352.4 13 63 281.8 155 17 394.7 23 20 353.0 93 74 283.3 326 71 396.0 346 7 Porous Zone 362.8 283 26 287.0 326 82 396.6 26 18 378.0 291 78 289.0 165 26 396.9 348 6 380.6 314 66 293.9 327 74 401.8 288 68 382.8 276 63 294.3 106 37 408.1 24 44 387.5 114 58 295.9 335 67 408.2 139 76 401.1 244 81 297.4 93 83 430.1 21 49 402.1 350 64 302.2 91 85 434.9 130 76 404.6 357 61 306.2 143 74 443.1 57 76 405.5 331 66 309.1 325 68 474.0 330 65 409.6 297 65 309.5 276 36 480.9 51 73 411.7 330 53 310.4 336 43 492.3 140 20 413.2 92 74 310.8 102 68 497.7 51 79 417.7 189 66 310.8 138 66 420.1 326 66 315.3 325 82 421.0 263 71 316.5 310 5 421.3 82 77 316.5 170 31 421.7 260 67 316.6 165 25 422.2 264 66 317.6 326 49 423.3 17 67 Major open fractures are highlighted and shown in bold and italics text. Minor open fractures are shown in bold. Closed fractures are shown in plain text. Allen Steam Station, Gaston County, North Carolina Fracture Data from Geophysical Logging GWA-6BRL Depth ft Azimuth deg Dip deg 423.6 144 25 423.7 154 33 423.9 159 30 424.3 281 80 424.8 322 68 428.7 350 52 430.4 326 81 437.1 278 54 438.7 275 58 441.3 315 68 442.3 266 44 443.7 266 57 447.4 325 63 452.5 105 63 453.2 110 84 454.5 46 52 454.6 44 52 456.1 103 83 456.3 117 56 458.2 146 63 463.9 347 74 466.1 354 76 469.5 266 45 470.7 272 40 472.3 338 62 473.3 336 57 475.7 338 74 485.8 143 64 491.1 137 52 494.4 68 72 494.9 85 74 495.2 114 56 497.4 111 53 Major open fractures are highlighted and shown in bold and italics text. Minor open fractures are shown in bold. Closed fractures are shown in plain text. APPENDIX 2 Depth Fractures Poles - Dip - Lower Hemisphere Great Circles - Strike - Lower Hemisphere 1ft:600ft 0 90 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 25 50 75 100 Well ID: 125 AB-10BRL 150 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 175 Depth: 43.86 [ft] to 469.25 [ft] Depth: 43.86 [ft] to 468.66 [ft] 0' 0° o eo 200 i 2 2 5 30 -3o- 10 • 270° 10-20-30 40-50-60-70a80 90° 270' 10 20Y30 40-50-60-70-8090° 250 r 275 300 -------- ----- 80° 180° Counts Dip[deg] Azi[deg] Counts Dip[deg] Strike[deg] Mean 131 15.87 130.23 Mean 131 15.87 40.23 325 • 58 13.24 138.59 • 58 13.24 48.59 O 66 23.06 123.96 O 66 23.06 33.96 • 7 21.71 279.46 0 7 21.71 189.46 350 375 400 Major fracture open �— Minor open fracture 425 ® Closed fracture 450 475 Page 1 Depth Fractures Poles - Dip - Lower Hemisphere Great Circles - Strike - Lower Hemisphere 1ft:600ft 0 90 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 175 Well ID: GWA-3BRL 200 225 250 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type Depth: 173.78 [ft] to 492.48 [ft] 0" Depth: 173.98 [ft] to 493.27 [ft] 0. 0 80 275 io 70 0 510 60 510 300 0 30 0 30 20 ® 20 10 10 I 325 270' O 10-20-30-40-500-70 80 90` 270' 10-20-30-40-50-60-70-80 90' � O O I I 350 O 375 180' 180' Counts Dip[deg] Azi[deg] Counts Dip[deg] Strike[deg] Mean 76 36.23 289.89 Mean 76 36.23 199.89 400 69 46.11 297.43 — 69 46.11 207.43 O 4 31.48 245.80 O 4 31.48 155.80 425 • 3 23.89 217.75 0 3 23.89 127.75 450 Major open fracture 475 Minor open fracture Closed fracture 500 - -LL T Page 1 Depth Fractures Poles - Dip - Lower Hemisphere Great Circles - Strike - Lower Hemisphere 1ft:500ft 0 90 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 175 Well ID: AO GWA-4BRL 200 225 250 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 275 Depth: 173.78 [ft] to 511.06 [ft] Depth: 173.98 [ft] to 511.38 [ft] 0° 0. 80 ..., 80 ' -\ O 70 // 0 , 300 o _ o- -� 30�i % 30 20 325 0 0 270° 10-2 30-40-50-80-70-80 90° 10 270. 0-30-40-501f 0-70-80 90' O 350\� 375 180"------- 180' Counts Dip[deg] Azi[deg] Counts Dip[deg] Strike[deg] Mean 120 24.93 147.48 Mean 120 24.93 57.48 400 O 14 15.83 192.24 O 14 15.83 102.24 O 5 11.38 335.01 O 5 11.38 245.01 C' 101 28.23 144.99 101 28.23 54.99 425 Major open fracture 450 — Minor open fracture Closed fracture 475 500 Page 1 Depth Fractures Poles - Dip - Lower Hemisphere Great Circles - Strike - Lower Hemisphere 1ft:600ft 0 90 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 75 100 Well ID: GWA-5BRL 125 150 175 200 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type Depth: 64.76 [ft] to 516.14 [ft] Depth: 64.37 [ft] to 516.14 [ft] 0° 225 0. - o 0 0, S b0250 �o /i 30 30 � 20 275 270' 0 2 30 0-50-60-70-80 90° I 270" 0 20—f30 0 50 70 80 90" 300 O O , 325 180, 180` Counts Dip[deg] Azi[deg] Counts Dip[deg] Strike[deg] 350 Mean 130 9.70 75.61 Mean 130 9.70 345.61 O 5 7.20 73.93 0 5 7.20 343.93 O 43 9.05 130.22 O 43 9.05 40.22 375 82 81.96 313.79 82 81.96 223.79 400 425 Major open fracture 450 4&— Minor open fracture ® Closed fracture 475 500 Page 1 Depth Fractures Poles - Dip - Lower Hemisphere Great Circles - Strike - Lower Hemisphere 1ft:500ft 0 90 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 200 Well ID: 225 GWA-6BRL 250 275 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LHI - Type 104 Depth: 195.77 [ft] to 511.06 [ft] Depth: 196.42 [ft] to 511.38 [ft] o° o° 300 80 �70 o 0 � 50 50 0 yo 3 2 5 30 310 10 V -. -10 -.- -- ---- - n 270° • 10-2 30�A0 50 0-70-SO 90° 270° IN10 20-30 40 50-60-70 '80 90° 350 375 � 80° 400 180° Counts Dip[deg] Azi[deg] Counts Dip[deg] Strike[deg] Mean 101 58.24 291.56 Mean 101 58.24 201.56 lip 77 67.30 298.51 77 67.30 208.51 0 12 33.85 150.40 0 12 33.85 60.40 425 12 23.59 249.38 0 12 23.59 159.38 46 Major open fracture 450 �— Minor open fracture • Closed fracture 475 500 Page 1 Depth Fractures Poles - Dip - Lower Hemisphere Great Circles - Strike - Lower Hemisphere 1ft:700ft 0 90 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type 50 75 ilk 100 Well ID: ALL WELLS 125 150 175 Schmidt Plot - LH - Type Schmidt Plot (Strike) - LH - Type Depth: 39.76 [ft] to 516.14 [ft] Depth: 39.37 [ft] to 516.14 [ft] 200 0° o° 0 ,..... ---- �- 70 -76-- fl I 225 \/ 50 —50— �\ 3 30-` 250 zo zo 10 • o ,;� 270° 10 2 30 0 50 0-70 80 90° 270' 10 20 30-40 SO 60 70J-80 90° I 275 I � O 300 N;��,. 325 - - 180° 180° Counts Dip[deg] Azi[deg] Counts Dip[deg] Strike[deg] 350 Mean 558 13.57 134.22 Mean 558 13.57 44.22 O 131 13.82 145.93 O 131 13.82 55.93 375 - 395 26.12 125.14 395 26.12 35.14 • 32 9.41 256.38 • 32 9.41 166.38 400 425 Major open fracture 450 � — Minor open fracture J Closed fracture 475 500 Page 1 Depth Fractures Rose Diagram - Dip Direction Rose Diagram - Dip 1ft:1000ft 0 90 Azimuth - Absolute (Count) Dip Count - Absolute (Count) 50 100 Azimuth -Absolute (Count) Depth: 34.45 [ft] to 473.43 [ft] 150 0° Well ID: Dip Count -Absolute (Count) AB-10BRL 1 C Depth: 34.45 [ft] to 473.75 [ft] 200 0° 10 45022226 250 300 Counts: 131.00 Mean (3D): 15.87 180' Min: 0.40 Components: Azimuth Max: 86.23 350 Ok Counts: 131.00 Mean (3D): 130.23 Min: 5.89 Max: 356.13 400 450 Page 1 Depth Fractures Rose Diagram - Dip Direction Rose Diagram - Dip 1ft:1000ft 0 90 Azimuth - Absolute (Count) Dip Count - Absolute (Count) 150 200 Azimuth -Absolute (Count) Depth: 163.32 [ft] to 530.51 [ft] 250 0° Well ID: Dip Count -Absolute (Count) GWA-3BRL Depth: 163.98 [ft] to 530.51 [ft] 300 0° 14 8 1 350 - - 1 1,214 Counts: 76.00 400 Mean (3D): 36.23 180' Min: 1.40 Components: Azimuth Max: 88.33 Counts: 76.00 450 Mean (3D): 289.89 Min: 18.55 Max: 359.28 500 Page 1 Depth Fractures Rose Diagram - Dip Direction Rose Diagram - Dip 1ft:1000ft 0 90 Azimuth - Absolute (Count) Dip Count - Absolute (Count) 150 200 Azimuth -Absolute (Count) Depth: 128.61 [ft] to 530.51 [ft] 0° 14 Dip Count -Absolute (Count) 250 Well ID: Depth: 128.28 [ft] to 530.51 [ft] GWA-4BRL 300 0° 1 e14A)!350 kF 11222 Counts: 120.00 Mean (3D): 24.93 400 180° Min: 4.10 Components: Azimuth Max: 82.60 Counts: 120.00 Mean (3D): 147.48 450 Min: 0.08 Max: 352.37 500 Page 1 Depth Fractures Rose Diagram - Dip Direction Rose Diagram - Dip 1ft:1000ft 0 90 Azimuth - Absolute (Count) Dip Count - Absolute (Count) 50 100 150 Well ID: Azimuth -Absolute (Count) GWA-5BRL Depth: 57.41 [ft] to 520.67 [ft] 0° 200 0 Dip Count -Absolute (Count) Depth: 58.07 [ft] to 521.65 [ft] 250 i 0° i1 20 300 C1-112224 Counts: 130.00 350 - Mean (3D): 9.70 180° Min: 0.39 Components: Azimuth Max: 85.52 Counts: 130.00 400 Mean (3D): 75.61 Min: 2.48 Max: 355.18 450 500 Page 1 Depth Fractures Rose Diagram - Dip Direction Rose Diagram - Dip 1ft:1000ft 0 90 Azimuth - Absolute (Count) Dip Count - Absolute (Count) 200 Azimuth -Absolute (Count) Depth: 177.100[ft] to 530.51 [ft] 250 Well ID: Dip Count -Absolute (Count) GWA-6BRL Depth: 177.10 [ft] to 530.51 [ft] 300 0' 8 350 400 2226 Counts: 101.00 Mean (3D): 58.24 180° Min: 5.92 Components: Azimuth Max: 83.90 450 Counts: 101.00 Mean (3D): 291.56 Min: 12.63 Max: 357.28 500 Page 1 APPENDIX 3 Depth Caliper FracturesNoids HPF - Ambient 1ft:200ft 8 in 14 0 90 -0.01 gpm 0.2 Caliper - Long Arms HPF - Pumping 8 in 26 -0.01 gpm 0.2 Caliper - max from AN 8 in 14 40.0 Well AB-10BRL (Top) ID: Bottom of Casing 50.0 Major Blow -outs Hole diameter more than 27 inches 60.0 70.0 $�'� Major open fracture �— Minor open fracture Major Blow -outs and sections of competent rock Closed fracture Hole diameter up to 26 inches 90.0 100.0 110.0 lit 120.0 130.0 140.0 F /7 -1 150.0 Page 1 160.0 170.0 180.0 190.0 200.0 Page 2 Depth Caliper Fractures HPF - Ambient 1ft:210ft 5 in 6 0 90 0 gpm 0.3 Caliper - max from AN HPF - Pumping 5 in 7 0 gpm 0.3 190.0 Well ID: AB-10BRL (Bottom) 200.0 Bottom of Casing 210.0 220.0 230.0 Major open fracture 4&— Minor open fracture • Closed fracture 240.0 250.0 260.0 270.0 280.0 290.0 300.0 310.0 320.0 330.0 340.0 Page 1 350.0 360.0 370.0 380.0 390.0 400.0 410.0 420.0 430.0 440.0 450.0 460.0 470.0 480.0 490.0 Page 2 Depth Caliper Fractures HPF - Ambient 1ft:200ft 5 in. 6 0 90 0 gpm 1 Caliper - max from ATV 5 in 6 205.0 210.0 WELL ID: GWA-3 BRL Bottom of Casing 215.0 220.0 225.0 230.0 235.0 240.0 245.0 250.0 255.0 i Major open fracture Minor open fracture Closed fracture 260.0 265.0 270.0 275.0 280.0 285.0 290.0 295.0 300.0 305.0 310.0 315.0 320.0 325.0 330.0 335.0 340.0 345.0 Page 1 355.0 360.0 365.0 370.0 375.0 380.0 385.0 390.0 395.0 400.0 405.0 410.0 415.0 420.0 425.0 430.0 435.0 440.0 445.0 450.0 455.0 460.0 465.0 470.0 Page 2 Depth Caliper Fractures HPF - Ambient 1ft:250ft 5.2 in 6 0 90 0 gpm 0.2 Caliper- max from ATV HPF - Pumping 5.4 in 6.2 0 gpm 0.2 175.0 Well ID: GWA-4 BRL Bottom of Casing 180.0 185.0 190.0 195.0 200.0 205.0 210.0 215.0 220.0 225.0 230.0 l Major open fracture Minor open fracture ® Closed fracture 235.0 240.0 245.0 250.0 40 255.0 260.0 265.0 270.0 275.0 280.0 285.0 290.0 295.0 300.0 305.0 310.0 315.0 320.0 325.0 330.0 335.0 340.0 345.0 350.0 355.0 Page 1 360.0 365.0 370.0 375.0 JET 380.0 \ 385.0 390.0 9 395.0 i 400.0 405.0 410.0 415.0 420.0 425.0 430.0 435.0 440.0 445.0 450.0 455.0 460.0 465.0 470.0 475.0 480.0 485.0 490.0 495.0 500.0 Page 2 Depth Caliper - max from ATV Fractures HPF - Ambient 1ft:200ft 8 in 12 0 90 0 gpm 0.4 Caliper HPF - Pumping 8.5 in 11.5 0 gpm 0.4 60.0 Well ID: GWA-513 Bottom of Casing 70.0 80.0 Major open fracture �— Minor open fracture Closed fracture 90.0 100.0 110.0 120.0 130.0 140.0 150.0 160.0 170.0 - Page 1 Depth Caliper - max from ATV Fractures HPF - Ambient 1ft:200ft 5 in 7 0 90 -0.01 gpm 1 Caliper HPF - Pumping 5.2 in 6.5 -0.01 gpm 1 170.0 175.0 Well ID: GWA-5BRL Bottom Bottom of Casing 180.0 185.0 190.0 195.0 200.0 205.0 210.0 Major open fracture Minor open fracture Closed fracture 215.0 220.0 225.0 230.0 235.0 240.0 245.0 250.0 255.0 260.0 265.0 270.0 275.0 280.0 285.0 290.0 295.0 Page 1 300.0 305.0 310.0 315.0 320.0 325.0 330.0 335.0 340.0 345.0 350.0 355.0 41 360.0 365.0 370.0 375.0 380.0 385.0 390.0 395.0 400.0 405.0 410.0 415.0 420.0 425.0 430.0 435.0 440.0 Page 2 450.0 455.0 460.0 465.0 470.0 475.0 480.0 485.0 490.0 495.0 500.0 Page 3 Depth Caliper - max from ATV Fractures HPF - Ambient 1ft:200ft 5.2 in 7 0 90 0 gpm 0.25 Caliper HPF - Pumping 5.2 in. 6 0 gpm 0.25 215.0 220.0 Well ID: GWA-6 BRL Bottom of Casing 225.0 230.0 41 235.0 240.0 245.0 250.0 255.0 Major open fracture Minor open fracture Closed fracture 260.0 265.0 270.0 275.0 280.0 285.0 290.0 295.0 300.0 305.0 310.0 315.0 320.0 325.0 330.0 335.0 340.0 345.0 350.0 355.0 Page 1 Depth Caliper - max from ATV Fractures HPF - Ambient 1ft:200ft 5.2 in 7 0 90 0 gpm 0.25 Caliper HPF - Pumping 5.2 in. 6 0 gpm 0.25 365.0 370.0 375.0 380.0 385.0 390.0 395.0 400.0 405.0 410.0 415.0 420.0 425.0 430.0 435.0 440.0 445.0 450.0 455.0 460.0 465.0 470.0 475.0 480.0 485.0 490.0 495.0 500.0 Page 2 APPENDIX 4 i = �� �� - �1 ,x r� 1�S .s VIN 0 i - � 'spa~ - ' • �.�.■ Aks-1�' I �,�� '•$.ice' - RIMME i p. � ',,�, 1P- Jok- Ylk 4� 'Al em?70" �-!VWEIMINIM MMLi A 4� 'Al em?70" �-!VWEIMINIM MMLi A *Mumma .7M- M-! w2w- 4M tjwtl%lffw mill P21 `i _ !°4- Wiwi 21, : ;ij. 4 M7, Q e, 'r RUN- �. =4. = —�s�w a I � 9 �R r T v.v� �f � - am ME- 9 P-R- fflPF-Ir . } y an V `4� 1 Nili �i v,!w Z 4 ' ec 21 i I /� /:/\\�( 2�� £�./�} /�y�w.:� 9'� §/�� -.». W�:/� \ /� � � � � V �� % « z� \/�§��<^c :\� ; 2� t.� %2`� \`K� ���� - ~: J: \� � y/� -- Z.-�7.�f - .� w.� a \ '�/�+-� � ° \ %� \� � \�� _ /� � S�}� \ ,� w MENNEN MENSIMI im� �- *�L ML MWRIV FIX 19; 01 -- W A."Mar. SWRIM wN.M.M. s _`� ��� � \ - \ \�`\2\ - 2� y-� � � _ . . _� � � � � .� / ,� \�`� \� d � � ��\��\ �� \ /� � m . �14WAIAIWq ROM Q. P!qwrlMMlMllMlMlmMMM 457.0-KNIESE 458.5 NEW 459 5 16 -"Mlmmlmlllmmmm -460.0m.0 loillim - 4615 -Som imilml NIEMEN - 462.0 -m-mms.- - 462.5 -simowl, MINOR W.. - 464 0 -MRS 11511011011111110 -0, Em-mal , MENE, plam immilmommimmism -467.5- mmm moolimiesimilinomm - 469.0 - 10010111011011111110 111111151111111111110 moommilminininomm - 470.5 M�, via JR - 471.0 - 472.0 -Effimm Page 17 Page 2 •�� �� �' }i,F . - .,art=r r .�u:-- - 238.5 5' 239 0 239.5 240.0 240.5 2410 241.5 _ s 242.0 242.5 243.0 243.5 ` � � 'S` .- ��. f •: - -.:cam€ r: - .s'aF'M 245.0 245.5 246.0 t4 246.5 247.0 247.5 248.0 248.5L ' 249.0 249.5 r, Y. " - 250.0 250.5 - v 251.0 "i' 251.5 {Y f 252.0 252.5 253.0 _ 253.5 Page 3 254.0 fair a AN ON 11 �- .�*•if 254.5 255.5 256.5 257.0 257.5 258.0 s , 258.5 259.0¢ 259.5 260.0 260.5 261.0 261.5 s , 262.0 262.5 �c �'� • - sue- s .� 'G'.Y 263.5 264.0 , ` y a , 264.5265.0 265.5 266.0 266.5 267.0 Y' x 268.0 y 268.5 269.0 8 269.5 �' 270.0 Page 4 INFIN M-molmlimmimmmill wEll MEMEMIMUMEMEMIN -275.5-23MEM 276.0 -WEEM no AIMIM WEIMIMEMEMIN 276.5 -m- KIM 11 277.0 -MIAMMI R-MmElmlimmommil Effialamimimmommil - 278.5 'Elum BEEN m..-MMEEMIMUMEMEMIN ENUMMIMIMEMEMIN S' ME Etrl, offl-ro-MMIMIMEMEMIN -280.5- - 281.5 jo SERUM'. FAMM, - 284.0 -1- HE. mmuldnimimmommil MOM mom-mmimimmommil 286.0 - -un-S-0 Page 5 Z :x _ :�1113 Prim VIM - NOW Now, WE U �j � IMMER 9 W.. _ r - _i AM 7-�� 74 T�1 TA. 5 Y .o9gVIR. —SA PIr dPaMANOR 01--w®r.-I —m m a,� 601 in 21". L { - ➢ A-is me - OMEN ON mwm--N;- rc_ ZEN wo , R-I M, 0 - - Nil W- a ' y 'S , ,a a I W f 0--9q�.�Y - 'Edina DUE `_ _ �M� 0 x a } Som -9 0199 -- NO 0-141w. - - � 01 v. 9 I ;y ����\\���.>\� . . . ��.w«�«>. . ,^ � a:� : �. . . ��, ���\«/ /\\/\ �\ ƒ� � � � 21� � t,\ 2\ r�s =,�d� �f �.� 9C.�L°�.- �ra � .� .. �v .'_ =i :�, k: .S ' K._;' _ V� M1 '7� .. .� �i}'.. yr. ,''�:'::-� • w ' F t'. .. .� ;_ _�' _ � .� _ r . t+S' _ •_r. ;-fir`. �`_�_. _ _ _ � � .'� ti NEEL mommomms mommmumm �� Mgt Ro.z. Mas AIM Bra. V- No, 1, Wn � i Kk�l ZY 61 Mr-RIX yn �,�-•- r`f _ _ `:�'��.:•, .stir ,. • Y �iFS' ~ 03 a�iF ��a-- � E 'iyy'ii1L.55- � 'f ►f ., nBs 5 L�kLs� d;�'ni• - { _ �., .. _ ]� -y •__ � '. T yr• � tti. _ ,�•.o..,.a.,..�.-.,� �-.�-�°G-`ram �-_ - _ P �.,�,=-"�i M32OW", Aiiamm OM pwYK .'f".�.� TK'•:. *cam' �A' ORO" �4 dip `"�._ ice• ��. 1 / _ ,.I .: {; EWEN ::.. • :.. 1. +�� �. .�.'-' ANDNONE '� •: •Y.�NONE - _ F* -FUR, WORM .7 y - -- .a 499.5 500.0 500.5 501.0 501.5 Page 21 is �1 l®���� _. / IN IL A so oil MODERN al MINES malloommil Mallsoffilil T am Tlrl� m F K• _-•F! 4�_ _. _ ���.- �_ r-x _ �`� k ' `p I�r= d. .' J 2 � � - -. .. .. !' - '- �� :4' �'ry .c�� _ - .Fa' .. � ,t fix* '� ���-_ �4�. x.x ,[ .���_" - moor lmmilmonomilinl - 175.5 1 MENEM[ lmminiiiisomilloll -176.0- NINON[ i lmminsiolismilim -176.5- WRIJ it, -177.0- & _ 0 is =:MMMLIMMIIIIIMMMM OMNI lmmillinilsloillso Page 8 F ; �:; -,. 7-JIMMW- -.. 3�y - IAZ4 4 hLia 3 LR�_•'� . �.: ;FT =P r MUM" `1 NO 407.5 INS - 409.: "Iffilm -409.5 glum -410.5- -411.0 ON INIMMENIMINESS - 412. 0 NEON ElIMININNES - 414.0 vrr��- SEEN - 414.5 - 415.: MERE., - 416.0 -417.5 WIN. ' - 418.0 -Am UNNIN -418.5-" IN IMMINIMININESS -419. 0 I NI WIN -421. 0 -421.5 Page 17 -Em ���IMMMMMIMMMM - 422.5 -MM AMR ���IMMIMMIMMMM - 423.0 AIMMENNIMEME - ONE 731 MERNIMEME - 427.5 - P.. -428.0-'N-m to ���ImmffmmlmmmM IMMEMNIMEME MINOR L VIM NOME WROM NO AL IMMES .-,I IMEMENIMMEM , Page 18 NOMINEES L NOMINEES RAU IMIMENIMMEM NEED' OMMIMMEM EMS W mm MISMIMMEM I NOMINEES ROOM 1-1 womm., - ANNE NO w N- s IMININIM0,00 I@m ELI, ME NOWN.- Amon NONE. 1=10IMMEMS OMAN, IMININIMMEM M-M-MIN T I ORMI'MMEM �Iml MEMS NNER M�I=IRIMIMMMM MM[ -450.0 WINFIRM No I IMMMIMMEM - 450.5 - FAMR3 im ME Page 19 IMIKSMIMEME -451.5-0m, -452.0-00, 0 - 453.5 NMI EmEll m - 458. 0 -458.5- min WIN, ME MEN IMME11 459.0 -lam Elm I is MINIONS 60. 60. - OEM, Mimi RIME Mo011 Ell I IMEM EmEll a MEM -461.0 mom MmEll '00111101111011 -461.5 462.0 ARM i.00011011 IMME11 A r 91. MEMENIESIMINEIMME11 463.0 - ­4 - im -463.5 50 EWS.'' MEMENIMEMISSIMME11 - 464.0 -M Wf_ mm.lw MEN Illsolommil - 464.5 ME 111110111ME11 - 465.5 -wouS. Page 20 moommim MIMS HENN - 496.0 Enos MENERIMENINISESIAMS -496. SEE mommalmmollommil - 497.0 moommamm -497.5 NINO mmmmm=mmmll 1011 -498.0 NEON - 498.5 MEMO ol 011SIMS MEN - 499.0 - 499.5 MEM-E NONE MOSES 'Emm '111, 0 11MMIES mi, NONE MENEEME MOISES NONE 11MMIES Page 23 g 7:'y jib mA, lj '141k some Og Kral , mak Page 11 ' 1• •1• :1' 1' 1' 1' •1' :1' 1' 1' 1 .. 1 1' •1' :1' 1' 1' .1 11 111 • 11 1 .. 1 F. ROOM m'' _ .-___I�■■■ 1 , ■--�I.... �. i�a:'>- '�_ ice' - - _ .�,,�: _ r -. {y`�.. ,■---III ■,■ 1 .ke - - •- �kr 4c. rt,■-II-�I.■.� -3815 -� 5- SEEM 10% -383.0 -384.5 386.0 386.5 SEEM -387.0-.-. Page 12 Page 13 \� \ � � - z \\\2. . _ an : . ?� io W-A A jum-1 - Me Page 16 PIR Page 19 Fractured Bedrock Evaluation December 2019 Duke Energy Carolinas, LLC - Allen Steam Station ATTACHMENT D SynTerra PETROGRAPHIC EVALUATION OF CORE SAMPLES Umm Lab AESIA10012t arrnNaARl PETROLEUM SERVICES Petrographic Evaluation Of Core Samples SynTerra Corporation Allen Deep Bedrock Project September 2019 Core Laboratories, Inc. Houston Advanced Technology Center 6316 Windfern Road Houston, Texas 77040 Houston ATC Job File No.: 1902523G The analytical results, opinions or interpretations contained in this report are based upon information and material supplied by the client for whose exclusive and confidential use this report has been made. The analytical results, opinions or interpretations expressed represent the best judgment of Core Laboratories. Core Laboratories, however, makes no warranty or representation, expressed or implied, of any type, and expressly disclaims same as to the productivity, proper operations or profitableness of an oil, gas, coal or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsoever. This report shall not be reproduced, in whole or in part, without the written approval of Core Laboratories. PETROGRAPHIC SUMMARY Seven core samples from Allen Deep Bedrock project were selected for thin section petrographic analysis (Table 1). The analytical program and petrographic summary are presented in Table 1. Thin section photomicrographs and descriptions are provided in Plates 1 — 7. • Seven samples are all igneous rocks. Among them, five samples are intrusive (plutonic), and two are extrusive (volcanic). The plutonic igneous rocks are classified as quartz diorite and tonalite, based on the relative abundances of minerals (quartz, alkali feldspar, and plagioclase). Two volcanic rocks are classified as hornblende andesite (Table 1). • The principal minerals are plagioclase, quartz, biotite, and amphibole. Accessory minerals consist of K-feldspar, epidote, pyrite, magnetite, apatite, and sphene. • Many plagioclase crystals are altered into sericite/illitic clays. Biotite and amphibole crystals are locally altered into chlorite. Fe -dolomite is rarely observed in a couple of samples. • Macropores are generally rare to minor, and consist of dissolution intracrystal, moldic and fracture pores. Micropores are probably rare to minor in abundance and associated with some illitic clays. Thank you for choosing Core Laboratories to perform this study. Please feel free to contact us if you have any questions or comments concerning this report. Sincerely, Yong Q. Wu PhD Staff Geologist Reservoir Geology Core Laboratories - Houston Phone: 713-328-2554 E-mail: Yong.Wu(@corelab.com ANALYTICAL PROCEDURES THIN SECTION PETROGRAPHY Thin sections were prepared by first impregnating the samples with epoxy to augment cohesion and to prevent loss of material during grinding. Each thinly sliced sample was mounted on a frosted glass slide and then grounded to an approximate thickness of 30 microns. The thin sections were stained with the following: Alizarin Red-S to differentiate calcite (stains red) from clear dolomite (does not stain); potassium ferricyanide to identify ferroan dolomite (stains dark blue) and ferroan calcite (stains purple to dark blue depending on acid concentration and iron content of the sample). They were also stained with sodium cobaltinitrite for potassium feldspar (stains yellow). The thin sections were analyzed using standard petrographic techniques. Igneous rock classification scheme (excluding volcanic) is as follows (Q = quartz; A = alkali feldspar; P = plagioclase; F = feldspathoid): qualu alkah feldspar Syen11P alkalifeklspar S syenife A fa���ng alkali r,.0 par syenlfe 0 F quadx diorlie rplariz gabhrn quarizarnorthome gabbro diorite P anorthosite fd,&Lwar ing gabbre foid bearingdionle foid-bearing wWh&we TABLE 1 SynTerra Corp., Allen Deep Bedrock Project ANALYTICAL PROGRAM AND SAMPLE SUMMARY Sample No.: Depth (ft): TS Lithology: Classification: Plate No. GWA-5BR 135.0 X Igneous Rock Quartz diorite 1 GWA-613R 138.0 X Igneous Rock Quartz diorite 2 GWA-5BR 161.5 X Igneous Rock (Volcanic) Hornblende andesite 3 AB-22BR 174.5 X Igneous Rock (Volcanic) Hornblende andesite 4 GWA-6BR 190.0 X Igneous Rock Quartz diorite 5 AB-22BR 204.0 X Igneous Rock Quartz diorite 6 AB-22BRL 246.0 X Igneous Rock Tonalite 7 PLATE 1 Thin Section Petrography Company: SynTerra Corp. Project: Allen Deep Bedrock Location: na Sample No.: GWA-5BR Depth (ft): 135.0 A AW F 17 Mag (l y Sample Description Lithology: Igneous Rock Classification: Quartz diorite Crystal Size (mm): 2.10 Structures: massive Principal Minerals: abundant plagioclase; moderate quartz; minor amphibole; minor biotite Accessory Minerals: rare to minor magnetite, pyrite, epidote, sphene, and apatite OrPlag/Ser Alteration and Replacement: Q' moderate plagioclase crystals are altered into sericite " - 1 mm and/or illitic clays; rare biotite and amphibole crystals are altered into chlorite; rare Fe -dolomite i .P s yd.r•"-�.. .�' .� ice' , t � 9 Relative Abundances: Rare <1 % Minor 1-5% Moderate 5-10% Common 10-20% HESERVOIR Abundant >20% Pore Types: no visible pores Photomicrograph Caption The principal minerals are plagioclase (Plag), quartz (Q), amphibole (Am), and biotite (Bi) in this igneous rock (quartz diorite). These mineral crystals show an interlocking fabric. Accessory minerals are epidote (Ep), magnetite (Mag), pyrite, apatite, and sphene. Moderate plagioclase is altered into sericite/illitic clays (Ser). Macropores are absent. Micropores are probably rare to minor in abundance and associated with some illitic clays. The green box in Image A indicates the location of Image B. Company: SynTerra Corp. Project: Allen Deep Bedrock Location: na Sample No.: GWA-6BR Depth (ft): 138.0 A lag ^ Fr PLATE 2 Thin Section Petrography Sample Description Lithology: Igneous Rock Classification: Quartz diorite Crystal Size (mm): 1.30 Structures: massive, fractures B KF Plag a Relative Abundances: Rare <1 % Minor 1-5% Moderate 5-10% Common 10-20% HESERVOIR Abundant >20% r �_- Principal Minerals: abundant plagioclase; common quartz; minor amphibole; minor biotite KF Mag Accessory Minerals: L,- rare to minor K-feldspar, magnetite, pyrite, epidote, and apatite Plag Alteration and Replacement: minor plagioclase crystals are altered into sericite and/or 1 mm illitic clays Pore Types: minor to moderate fracture pores; rare dissolution intracrystal pores Photomicrograph Caption Plagioclase (Plag), quartz (Q), biotite (Bi), and amphibole (Am) are the principal minerals in this igneous rock (quartz diorite). These mineral crystals show an interlocking fabric. Accessory minerals consist of epidote (Ep), K-feldspar (KF; stained yellow), pyrite, magnetite (Mag), and apatite. The plagioclase is locally altered into sericite/illitic clays (Ser). Fracture pores (Fr) are widely distributed. Micropores are probably rare to minor in abundance and associated with some illitic clays. The green box in Image A indicates the location of Image B. PLATE 3 Thin Section Petrography Company: SynTerra Corp. Sample Description Project: Allen Deep Bedrock Lithology: Igneous Rock (Volcanic) Location: na Sample No.: GWA-5BR Classification: Hornblende andesite Depth (ft): 161.5 Crystal Size (mm): 0.11 Structures: A massive B Relative Abundances: Rare <1 % Minor 1-5% Moderate 5-10% Common 10-20% HESERVOIR Abundant >20% Principal Minerals: abundant amphibole; common biotite; common plagioclase; moderate epidote; minor quartz Accessory Minerals: rare to minor magnetite, pyrite, sphene, and apatite Alteration and Replacement: rare plagioclase crystals are altered into sericite and/or illitic clays Pore Types: rare dissolution intracrystal and moldic pores Photomicrograph Caption This igneous rock is extrusive (volcanic), and classifies as hornblende andesite. Amphibole (Am; hornblende) is the most abundant mineral, followed by biotite (Bi), plagioclase (Plag), epidote (Ep), and quartz (Q). These mineral crystals show an interlocking fabric, and have an average crystal size of 0.11 mm. Accessory minerals are pyrite (Py), magnetite, sphene, and apatite. Dissolution intracrystal/moldic pores are rarely observed. Micropores are probably rare to minor in abundance. The green box in Image A indicates the location of Image B. PLATE 4 Thin Section Petrography Company: SynTerra Corp. Sample Description Project: Allen Deep Bedrock Lithology: Igneous Rock (Volcanic) Location: na Sample No.: AB-22BR Classification: Hornblende andesite Depth (ft): 174.5 Crystal Size (mm): 0.38 Structures: A massive B Relative Abundances: Rare <1 % Minor 1-5% Moderate 5-10% Common 10-20% HESERVOIR Abundant >20% Principal Minerals: abundant amphibole; abundant plagioclase; moderate biotite; minor quartz Accessory Minerals: rare to minor magnetite, pyrite, epidote, sphene, and apatite Alteration and Replacement: abundant plagioclase crystals are altered into sericite and/or illitic clays; rare Fe -dolomite Pore Types: rare dissolution intracrystal pores Photomicrograph Caption This igneous rock is extrusive (volcanic), and is hornblende andesite. Amphibole (Am; hornblende) and plagioclase (Plag) are the most abundant minerals; biotite (Bi) and quartz (Q) are less common. These mineral crystals show an interlocking fabric. Accessory minerals are magnetite, pyrite, epidote, sphene, and apatite. Plagioclase crystals are extensively altered into sericite/illitic clays (Ser). Fe - dolomite (Fdol; stained blue) is locally observed. Dissolution intracrystal/moldic pores are rare. Micropores are probably rare to minor in abundance and associated with some illitic clays. The green box in Image A indicates the location of Image B. PLATE 5 Thin Section Petrography Company: SynTerra Corp. Project: Allen Deep Bedrock Location: na Sample No.: GWA-6BR Depth (ft): 190.0 A Fr o° B r� 40 :JKf Mag p , h,. Plag/Ser,� ,y Q err ((� Pleg/$err a mm Plag ,. Relative Abundances: Rare <1 % Minor 1-5% Moderate 5-10% Common 10-20% HESERVOIR Abundant >20% Sample Description Lithology: Igneous Rock Classification: Quartz diorite Crystal Size (mm): 1.60 Structures: massive, fractures Principal Minerals: abundant plagioclase; common quartz; moderate biotite; minor amphibole Accessory Minerals: rare to minor K-feldspar, magnetite, pyrite, epidote, and apatite Alteration and Replacement: moderate plagioclase crystals are altered into sericite and/or illitic clays Pore Types: minor fracture pores; rare dissolution intracrystal pores Photomicrograph Caption This igneous rock is classified as quartz diorite. Plagioclase (Plag), quartz (Q), biotite (Bi), and amphibole (Am) are the principal minerals. These mineral crystals show an interlocking fabric. Accessory minerals include epidote (Ep), K-feldspar (KF; stained yellow), pyrite, magnetite (Mag), and apatite. The plagioclase is locally altered into sericite/illitic clays (Ser). Fracture pores (Fr) are widely distributed and locally filled with illitic clays (Fr/clay). Micropores are probably rare to minor in abundance and associated with some illitic clays. The green box in Image A indicates the location of Image B. PLATE 6 Thin Section Petrography Company: SynTerra Corp. Sample Description Project: Allen Deep Bedrock Lithology: Igneous Rock Location: na Sample NO.: AB-22BR Classification: Quartz diorite Depth (ft): 204.0 Crystal Size (mm): 1.70 Structures: A massive, fractures der Q r , 1 mm B PlaAn y', yj. Plag/ r' y' Plag. z , Relative Abundances: Rare <1 % Minor 1-5% Moderate 5-10% Common 10-20% HESERVOIR Abundant >20% Principal Minerals: abundant plagioclase; common quartz; moderate amphibole; moderate biotite Accessory Minerals: rare to minor K-feldspar, magnetite, pyrite, epidote, sphene and apatite Alteration and Replacement: moderate plagioclase crystals are altered into sericite and/or illitic clays Pore Types: rare fracture and dissolution intracrystal pores Photomicrograph Caption The principal minerals are plagioclase (Plag), quartz (Q), amphibole (Am), and biotite (Bi) in this igneous rock (quartz diorite). These mineral crystals show an interlocking fabric. Accessory minerals are K-feldspar (KF; stained yellow), epidote (Ep), magnetite (Mag), pyrite, apatite (Ap), and sphene. Moderate plagioclase is altered into sericite/illitic clays (Ser). Macropores are rare; micropores are probably rare to minor in abundance and associated with some illitic clays. The green box in Image A indicates the location of Image B. PLATE 7 Thin Section Petrography Company: SynTerra Corp. Project: Allen Deep Bedrock Location: na Sample No.: AB-22BRL Depth (ft): 246.0 A f' Pg/s�'er' k"Aag/Ser F; f�', Fr/clay Q B Y F� Relative Abundances: Rare <1 % Minor 1-5% Moderate 5-10% Common 10-20% HESERVOIR Abundant >20% Sample Description Lithology: Igneous Rock Classification: Tonalite Crystal Size (mm): 2.00 Structures: massive, fractures Principal Minerals: abundant plagioclase; abundant quartz; minor to moderate biotite Accessory Minerals: rare to minor K-feldspar, amphibole, magnetite, pyrite, epidote, and apatite Alteration and Replacement: moderate to common plagioclase crystals are altered into sericite and/or illitic clays; rare biotite and amphibole crystals are altered into chlorite Pore Types: rare fracture and dissolution intracrystal pores Photomicrograph Caption Plagioclase (Plag), quartz (Q), and biotite (Bi) are the principal minerals in this igneous rock (tonalite). These mineral crystals show an interlocking fabric. Accessory minerals consist of epidote (Ep), K-feldspar (KF; stained yellow), amphibole (Am), pyrite, magnetite (Mag), and apatite. Moderate to common plagioclase is altered into sericite/illitic clays (Ser). Fracture are locally present and filled with illitic clays (Fr/clay). Micropores are probably rare to minor in abundance and associated with some illitic clays. The green box in Image A indicates the location of Image B.