Loading...
HomeMy WebLinkAboutApproach to Managing COIs for CAPsROY COOPER. Governor MICHAEL S. REGAN Secretary LINDA CULPEPPER Director Paul Draovitch Senior Vice President Environmental, Health & Safety Duke Energy 526 South Church Street Mail Code EC3XP Charlotte, North Carolina 28202 NORTH CAROLINA Environmental Quality October 24, 2019 Subject: Approach to Managing Constituents of Interests for Purposes of Corrective Action Plans Dear Mr. Draovitch: On September 4, 2019 Duke Energy presented a Constituent of Interest (COI) Management Plan (Plan) to facilitate Corrective Action Plan (CAP) development required at its coal combustion residuals (CCR) facilities. In lieu of a document to review, the North Carolina Department of Environmental Quality (DEQ) has reviewed the content of the presentation to develop a position regarding the subject matter. The COI Plan as presented to date is conditionally acceptable with notable revisions described in Attachment 1. These revisions will assist Department review and ensure a consistent approach across the CCR facilities. DEQ staff welcome the opportunity to discuss related COI Plan issues with Duke Energy, including attending other facility -specific presentations. If you have questions or concerns regarding the Department's position relative to the COI Plan provided in this correspondence, please contact Steve Lanter in the DWR Central Office at (919) 707-3667 and he will coordinate with the respective Regional Offices to initiate discussion. Sincerely, Jtl�son, Deputy Director Division of Water Resources Attachments Attachment 1 - Approach to Managing Constituents of Interests for Purposes of Corrective Action Plans cc: WQROS Regional Offices (electronic copy) GWRS Central File Copy North Carolina Department of Environmental Quality 1 Division of Water Resources � D_E � 512 North Salisbury Street 1 1636 Mail Service Center I Raleigh, North Carolina 27699-1636 �0-ft 919.707.9000 October 22, 2019 Attachment 1- Approach to Managing COls for Purposes of CAPS Attachment 1 Approach to Managing Constituents of Interests for Purposes of Corrective Action Plans On September 4, 2019, Duke Energy presented a Constituent of Interest (COI) Management Plan (Plan) for Corrective Action Plan (CAP) development required at its coal combustion residuals (CCR) sites. The presented Plan is conditionally acceptable with notable revisions described below. These revisions Will assist Department review and ensure a consistent approach across coal ash facilities. Framework as Presented by Duke on 9/04/19. As described in the 9/04/19 Duke presentation, COls that occur above the criterion (defined as the greater of 15A NCAC 02L standards [02L], interim maximum allowable concentrations [IMACs], or background threshold values [BTUs]) at/beyond the compliance boundary (CB) will be identified for corrective action. Depending on their observed/modeled occurrence and distribution and a "groundwater (GW) exceedance ratio", Duke Energy proposes to map some COIs; other CON will, as proposed, be unmapped and only listed in a table. The typical mobility of each COI will be described along with conditions that affect its mobility. Attenuation mechanisms will be described for each COI along with the expected long-term stability of those mechanisms. Framework Response by DWR with Revisions. This COI Management Framework is a process developed to facilitate corrective action planning. The Framework helps identify the areas and COls in need of corrective action and the potential remedies that could be effective. Corrective actions are being implemented in conjunction with and to support and augment basin closures. When CBs are modified or expire, and compliance has not been achieved in an area no longer covered by a CB, corrective actions will be required in those areas. Corrective actions may or may not need to be "active" depending on factors evaluated in the Framework such as, for example, mobility of the CON in question, stability of attenuation mechanism(s), remediation goals for the COls, etc. Rather than computing a maximum mean and a GW exceedance ratio, use of a lower confidence limit (LCL)95 (95% lower confidence limit)' is a more appropriate metric to identify and document areas in need of corrective action. For each monitoring well, Duke Energy shall compute an LCL95 for the COI in 1 See, for example, United States Environmental Protection Agency (EPA) Unified Guidance (March 2009) and ProUCL Technical guidance (2013), including discussion of parametric and non -parametric 95% LCLs. Note that if the well sample dataset is shown to be trending for a given COI, an LCL95 may be computed on the trendline. Page 1 of 4 October 22, 2019 Attachment 1- Approach to Managing COls for Purposes of CAPs question by using data from all sample events at the wel12. If the computed LCL95 exceeds the applicable criterion then that well -COI would be identified in the CAP as a localized area in need of corrective action. If the localized area for the identified COI is isolated and does not represent a larger scale plume, it may be mapped accordingly in the CAP by simply showing a large scale plan view map with the well that contains the exceeding LCL95, along with the LCL95 value, representative pH and Eh values, Kd, ratio of species concentrations for the C01 in question (if applicable and assuming speciations have been measured/computed), and a dashed line containing the area in need of corrective action. As described in the 9/4/19 presentation, a table(s) will also be provided containing the list of CON, and their corresponding typical speciation (anion, cation, neutral), mobility under acidic/alkaline conditions, mobility under reducing/oxidizing conditions, localized conditions that affect mobility, propensity for sorption, ion exchange, and (or) precipitation, and expected long term stability of the attenuation mechanisms. Influence of hyporheic zone on geochemical conditions and COI mobility, if applicable, should also be considered/discussed, as should the influence of potential surface water mixing on geochemical conditions and mobility during storm -induced rises in surface water levels that can, in some cases, reverse groundwater gradients. The extent of boron above background is to be shown on all maps as an approximate extent of hydraulic influence from the basin. If the modeled boron plume has not yet stabilized (is continuing to move in time) then the extent of boron above background at future year 2120 should also be shown on the maps to indicate the predicted future extent of basin influence. Transects referred to in the CAP shall be shown (a) in a plan view map along with the observed head contours and corresponding flow lines, (b) in a plan view map along with modeled head contours, and (c) in cross section with modeled head contours and velocity vectors. Dissolved Groundwater Concentrations. Unfiltered (total) concentrations of constituents are measured for most groundwater samples. However, for geochemical modeling purposes, dissolved concentrations must be used in the input file of the computer code. For each CCR basin, a conceptual 2 Rather than using only data from 2018 to 2019 as presented by Duke, data from all sample events should be used. If a technical reason exists to omit a portion of the historic dataset, an appendix may be provided that includes the well, all values in the historic record for the COI in question, the values that should be omitted, and rationale for the omission (e.g. early break-in issues, COI concentration -time trends, pH or turbidity issues, etc.). Future monitor wells would also undergo LCL95 computation to identify additional areas in need of corrective action. Page 2 of 4 October 22, 2019 Attachment 1- Approach to Managing Cols for Purposes of CAPS geochemical model will be developed to represent current conditions and estimate how COI concentrations may change in the future in response to changes in environmental conditions, such as redox change due to decanting/dewatering. The results of ion speciation and mineral equilibrium calculations from groundwater data along flowpaths from the source areas to downgradient locations will be used to develop the geochemical conceptual site models. Dissolved concentration data for all parameters (major/minor ions and COls) must be collected from the monitoring wells along the flowpaths to develop these models. This will also be done for areas where anomalous geochemical conditions occur such as the low pH area at Allen. In most cases, dissolved sampling conducted under the Interim Monitoring Plans will be sufficient for modeling purposes. Valence State Measurements. Several of the potential CON are redox-sensitive and occur in more than one valence state [e.g., As (III,V), Se (-II, 0, IV, VI), Fe {II,III), Mn (II, III, IV)]. Because of the perceived difficulty of preserving samples in the field for redox species measurement in the laboratory, redox speciation is being calculated from the measured pH and Eh using a geochemical modeling code. This method assumes redox equilibrium and may not always be appropriate. In situations where anomalous groundwater concentrations of a redox-sensitive COI are present, it would be beneficial to conduct sampling and laboratory analyses for the redox species of the COI to determine if speciation is a factor leading to the anomalous behavior. This would require appropriate preservation of water samples in the field for lab measurements of the specific redox species. Additional sampling and analysis of redox species in selected wells would help to demonstrate that the modeled speciations that have been calculated under an assumption of equilibrium conditions are appropriately determined. The number and location of wells used for this purpose should be appropriate to demonstrate confidence in the modeling approach, input data, and results. COI Identification. The Plan process discussed in the meeting included a comparison of groundwater concentrations to relevant regulatory criteria in order to select Cols based on exceedances of their respective criteria. Consideration should also be given for those constituents that do not currently exceed their criteria but may feasibly exceed that criteria in the future if environmental conditions change. For example, if the arsenic criterion is 10 µg/L and the measured groundwater concentration is 5 µg/L, then arsenic would be included in predictive geochemical modeling to determine if corrective Page 3 of 4 October 22, 2019 Attachment 1- Approach to Managing COls for Purposes of CAPs actions produce conditions that elevate the arsenic concentration above its criterion. For practical purposes, constituents that are currently measured in a groundwater well beneath or downgradient of a basin at an LCL95 concentration at or above 50% of the criterion (i.e. LCL95 >= COI criterion x 0.5) would be included in the modeling of future conditions to estimate whether or not those future conditions increase the groundwater level to a concentration greater than the criterion. Conclusions and Discussion in CAPS. Findings and conclusions presented in the CAPS should pertain to a specifically identified local area beneath and (or) downgradient of a basin. Each area identified for corrective action, whether it be a plume, an isolated, localized area, or an anomalous area, should be discussed individually and specifically. For consistency in the CAP, discussions and tables related to COI management generally should refer to the LCL95 (rather than the mean or geomean) and the COI criterion (rather than 2L, IMAC, or background). Where the CAP discusses performance or effectiveness monitoring that will be conducted as part of corrective action implementation, an upper confidence limit 95% (UCL95) would be the appropriate evaluation metric rather than the LCL95 (i.e. corrective action continues until the UCL95 is below the cleanup criterion'). s See EPA (2018) Groundwater Statistics Tool — User's Guide. Page 4 of 4