Loading...
HomeMy WebLinkAbout20028_Alcatel Facility_Revised CM ReportAMEC Environment & Infrastructure, Inc.Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 RCRA CORRECTIVE MEASURES IMPLEMENTATION (CMI) REPORT FORMER ALCATEL FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 NCD 003-185-238 Submitted to: North Carolina Department of Environmentand Natural ResourcesDivision of Waste Management, Hazardous Waste Section Prepared for:Alcatel-Lucent USA Inc. 1067 NW High Point DriveLee’s Summit, Missouri 64081 Submitted by:AMEC Environment & Infrastructure, Inc.Raleigh, North Carolina April 22, 2013 AMEC Project No.565280000 AMEC Environment & Infrastructure, Inc.Page i Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 TABLE OF CONTENTS EXECUTIVE SUMMARY ...........................................................................................................iii 1.0 INTRODUCTION................................................................................................................1 1.1 Background ...............................................................................................................11.2 Purpose.....................................................................................................................1 1.3 Baseline Site Conditions............................................................................................1 1.3.1 Baseline Potentiometric Groundwater Surfaces .............................................21.3.2 Baseline Concentrations of Constituents of Concern......................................2 2.0 CORRECTIVE MEASURES...............................................................................................3 2.1 Corrective Action Objectives......................................................................................32.2 Remediation System Design......................................................................................3 2.3 Remediation System Implementation.........................................................................4 3.0 POST-REMEDIATION GROUNDWATER MONITORING..................................................5 3.1 Installation and Repair of Groundwater Monitoring Wells...........................................63.2 Replacement of Upgradient Monitoring Well MW-2D.................................................7 4.0 OCTOBER 2012 SEMI-ANNUAL GROUNDWATER MONITORING EVENT ....................7 4.1 Potentiometric Groundwater Surfaces .......................................................................74.2 Groundwater Sampling ..............................................................................................84.3 Analytical Results ......................................................................................................8 4.3.1 General..........................................................................................................8 4.3.2 1,1,1-TCA.......................................................................................................94.3.3 PCE ...............................................................................................................9 4.3.4 1,1-DCE.......................................................................................................10 4.3.5 1,4-Dioxane..................................................................................................104.4 Results of Remediation Activities.............................................................................11 4.5 Proposed Remedial System Monitoring ...................................................................13 5.0 CONCLUSIONS...............................................................................................................15 6.0 REFERENCES.................................................................................................................15 AMEC Environment & Infrastructure, Inc.Page ii Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 TABLE OF CONTENTS (CONTINUED) TABLES Table 1 Historical Groundwater Analytical DataTable 2 Groundwater Analytical Results, Temporary Wells –September 2008 Table 3 Groundwater Elevations Table 4 Groundwater Analytical Data –October 2012 FIGURES Figure 1 Site LocationFigure 2 Site LayoutFigure 3 Total VOC Concentration -Unconsolidated Aquifer (October 2011) Figure 4 Total VOC Concentration -Bedrock Aquifer (October 2011)Figure 5 Treatment Cell Layout Figure 6 Potentiometric Surface Map (October 2012) Figure 7 Groundwater Elevation -Bedrock Aquifer (October 2012)Figure 8 Total VOC Concentration -Unconsolidated Aquifer (October 2012) Figure 9 Total VOC Concentration -Bedrock Aquifer (October 2012) Figure 10 1,1,1-TCA Concentration –Bedrock Aquifer (October 2012)Figure 11a PCE Concentration -Unconsolidated Aquifer (October 2012) Figure 11b PCE Concentration -Bedrock Aquifer (October 2012) Figure 12a 1,1-DCE Concentration -Unconsolidated Aquifer (October 2012)Figure 12b 1,1-DCE Concentration -Bedrock Aquifer (October 2012) Figure 13a 1,4-Dioxane Concentration -Unconsolidated Aquifer (October 2012)Figure 13b 1,4-Dioxane Concentration -Bedrock Aquifer (October 2012) APPENDICES Appendix A Photographic LogAppendix B Well Construction Records and SchematicsAppendix C Analytical Data –October 2012 AMEC Environment & Infrastructure, Inc.Page iii Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 EXECUTIVE SUMMARY AMEC Environment & Infrastructure, Inc (AMEC) has completed the Corrective Measures Implementation (CMI) report for the former Alcatel Sourcing Facility located at 2912 Wake Forest Road, Raleigh, North Carolina. The purpose of this CMI report is to address thecomponents of the Corrective Measures Study (CMS) which recommended the remedial actions to be implemented at the facility. The CMI includes a summary of pre-remediation site conditions,remedial activities performed in April 2012,and the proposed post-remediationmonitoring activities. The corrective measures described in the CMS have been implemented in accordance with therequirements specified in that document.The measures were designed to reduce the residual concentration of constituents of concern (COCs) in the groundwater through the implementationof in-situ chemical oxidation (ISCO),with the ultimate goal of promoting reductions inconcentration at or below the North Carolina Administrative Code 15A Subtitle 2L Section .0202 (g) (2L Standard)through monitored natural attenuation (MNA).The purpose of this CMI reportis to provide a record of the implementation of these measures and provide indicators on the effectiveness of the remedial measures. ISCO via soil blending was implemented as the remedial action for reducing concentrations of COCs in the source area.ISCO soil blending provided an alternative method to deliver oxidants to the subsurface. This method involved the use of an in-situ blender to effectively distributechemical amendments, including persulfate, throughout the soil column.Persulfate catalyzed by sodium hydroxide was applied to the target treatment area from approximately 13 feet below land surface (bls)to a depth of approximately 22 feet bls,and over an area of approximately8,000 square feet (sf). Following the remedial activities, a groundwater monitoring event was performed to evaluate theperformance of the remedial activities and provide semi-annual monitoring data as required by the hazardous waste permit requirements for the site. Post-remediation sampling of key monitoring points showed an overall reduction in the primary COCs in the source area.Asstated in the CMS, the goal of the remedial activities was to reduce contaminant mass in the shallow aquifer material located in the source area so that MNA can be utilized to address theremaining dilute plume. The remedial method employed has been successful in reducing thecontaminant mass present in the shallow aquifer in the source area.Additional monitoring according to the Sampling and Analysis Plan (SAP)shall be performed to evaluate the naturalattenuation of COCs in the groundwater. AMEC Environment & Infrastructure,Inc.Page 1 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 1.0 INTRODUCTION 1.1 Background A Corrective Measures Study (CMS)was prepared by AMEC Environment & Infrastructure, Inc.(AMEC)for the former Alcatel USA Sourcing, Inc.facility (Alcatel)located at 2912 Wake Forest Road in Raleigh, Wake County, North Carolina (subject site)(Figure 1).The former Alcatel facility operates under the Resource Conservation and Recovery Act (RCRA)Hazardous WastePermit NCD-003-185-238 (Permit).The Permit requires that Alcatel-Lucent USA, Inc. (ALU) investigate and address historic releases of hazardous waste and hazardous constituents that may have occurred at the site.Under this permit,ALU has performed interim correctivemeasures from 1996 until 2011,through the extraction and treatment of groundwater and eventual reinjection of treated groundwater.During this time,Interim Measure Progress Reports were prepared and submitted on a semi-annual basis to the North Carolina Department ofEnvironment and Natural Resources (NCDENR), Division of Waste Management (DWM);the regulatory agency responsible for enforcing the provisions of the Permit.The overalleffectiveness of the reduction of contaminants in the groundwater from the pump and treatsystem reached its limit as evidenced by asymptotic concentrations witnessed over several groundwater monitoring events. This resulted in the preparation of a CMS in October 2010, which detailed the recommended remediation strategy for further treating the chlorinated solventimpacted groundwater beneath the subject site. The CMS was approved by the NCDENR DWM on November 2, 2010, and remedial efforts detailed in the CMS were implemented at thesubject site in April 2012. As part of these efforts,this Corrective Measures Implementation(CMI) Report has been prepared to address the following components of the CMS: Document pre-remediation baseline site conditions Detail the remediation activities performed in April 2012 Present the post-remediation groundwater monitoring event performed in October 2012 Present the proposed post-remediation monitoring to measure the efficiency of the remedial activities. 1.2 Purpose The corrective measures described in the CMS have been implemented in accordance with therequirements specified in that document. The measures were designed to reduce the residual concentration of constituents of concern (COCs) in the groundwater through the implementationofin-situ chemical oxidation (ISCO),with the ultimate goal of promoting reductions inconcentration at or below the North Carolina Administrative Code 15A Subtitle 2L Section .0202 (g) (2L Standard)through monitored natural attenuation (MNA).The purpose of this CMI reportis to provide a record of the implementation of these measures and provide indicators on the effectiveness of the remedial measures. 1.3 Baseline Site Conditions Since October 2007, AMEC has conducted semi-annual groundwater sampling at the formerAlcatelfacility.As part of the sampling event,approximately 18 to 20 monitoring wells are sampled and analyzed for volatile organic compounds (VOCs) using United States RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 2 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 Environmental Protection Agency (USEPA) Method 6210D,and 1,4-dioxane using USEPA Method 8260 with selective ion method (SIM) analysis. The semi-annual sampling eventperformed in October 2011 serves as the pre-remediation baseline conditions to measure the effectiveness of remediation activities performed in April 2012.As part of the October 2011 sampling event,17 wells were sampled across the site: MW-2s, MW-3d, MW-3s, MW-4d,MW-4s, MW-12s, MW-13d, MW-13s, MW-14d, MW-2ik, MW-2sk, MW-3dk, MW-3sk, MW-5sk,MW-9dk, MW-9sk, and MW-12dk.The locations of these monitoring wells are provided on Figure 2.The analytical results of the groundwater samples collected as part of the October2011baseline sampling event are included in Table 1. The remediation strategy outlined in the CMS was based,in part,on the results of anassessment performed in October 2008 that included the installation and sampling of temporary wells located within the former onsite building. In October 2008, AMEC installed temporary groundwater monitoring wells to further define where the highest concentrations of COCs werepresent within the shallow aquifer unit.The groundwater analytical results were used to identify areas beneath the floor slab of the building that needed to be addressed as part of the final groundwater remedial alternative. Groundwater samples were collected from temporary wellsinstalled in borings SB-5, SB-8, SB-11, SB-12, SB-19, and SB-21 (Figure 2) from within the building footprint.The results from this sampling event provided the center of the remedialdesign and therefore,the analytical results of groundwater samples collected from thesetemporary wells will be compared to post remediation groundwater analytical results within the same area to evaluate remedial action effectiveness.The groundwater analytical results ofsamples collected from these temporary wells have been included in Table 2. 1.3.1 Baseline Potentiometric Groundwater Surfaces As part of the semi-annual monitoring performed, depth to groundwater measurements were collected on October 24, 2011,from 43 existing recovery,containment recovery, injection,andmonitoring wells located on the former Alcatel facility. Table 3 summarizes construction details for the site monitoring wells and water level elevations measured during the October 2011 and 2012 gauging events.As previously reported in the October 2011 Interim MeasuresGroundwater Monitoring Report,the overall direction of groundwater flow in both the water table and bedrock aquifer is towards the southwest. The average groundwater gradient at the water table is approximately 0.001 feet per foot (ft/ft). 1.3.2 Baseline Concentrations of Constituents of Concern Twelve VOC compounds were observed in the October 2011 sampling event at concentrations exceeding their respective 2L Standards. These COCs included 1,1,1-trichloroethane (1,1,1-TCA), 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), 1,2-dichloroethane (1,2- DCA), benzene, carbon tetrachloride, chloromethane, naphthalene, tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride and 1,4-dioxane. Total VOC isoconcentration mapsdetailing baseline conditions as reported in October 2011,are presented as Figure 3 for theunconsolidated aquifer,and Figure 4 for the deep bedrock aquifer. RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 3 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 The four most prominent constituents present in the unconsolidated and bedrock aquifer are 1,1,1-TCA, PCE, 1,1-DCE and 1,4-dioxane. The greatest concentration of COCs in theunconsolidated aquifer exists beneath the former chiller room and extends south approximately 100 feet beneath the main building. The remaining VOC plume consists of much lower dilute concentrations of various VOCs,and extends south and southwest beneath the main building,and onto the adjoining property to the south. 2.0 CORRECTIVE MEASURES 2.1 Corrective Action Objectives Soil assessment activities performed have been successful in identifying the location(s) of chlorinated solvents. The excavation of impacted soil in 2008 has removed the remainingsource material and greatly minimized the further degradation of groundwater. However, analytical results of post excavation soil samples indicate the presence of limited impacted soil remaining in the subsurface.With approval of the land owner, land use restrictions can be usedinsteadto address any soil impact remaining. Since the soils can be addressed using engineering controls, soils were not addressed when considering the various remedialalternatives applicable to this site. In support of the corrective action objectives, performance goals have been established todetermine the extent of groundwater to be addressed under the proposed action. Theperformance goals for groundwater are the 2L Standards. The analytical results of samples collected as part of the October 2011 semi-annual sampling event,are included in this CMIreport as a depiction of the pre-remedial conditions in the unconsolidated and bedrock aquifer. Groundwater samples collected from temporary wells in October 2008 (Table 2) are included to provide evidence to the concentration of COCs near the source area within the unconsolidatedaquifer. The results from the 2011 sampling event are depicted in the isoconcentration maps presented as Figures 3 and 4. These maps show the extent of COCs at concentrations exceeding their respective 2L Groundwater Standard prior to the April 2012 remedial action.The successful treatment of large dilute plumes is technically challenging. Treatment of the plume at the former Alcatel site to meet 2L Standards cannot be guaranteed with the active remedial methods currently available. ALU implemented the corrective measures to move thesitetoward an MNA alternative, allowing the physical processes of advection, dispersion and adsorption to address the remaining downgradient low concentrations of COCs.For the longterm success of the MNA alternative, removal of mass material in the source area will promotethe creation of a shrinking plume,and decrease overall cleanup times and monitoring costs. The objective of the corrective measures presented in this CMI report is to reduce contaminant massmaterial in the source area. 2.2 Remediation System Design The CMS recommended ISCO via soil blending as the preferred treatment method for the site to reduce the concentration of COCs in the source area. In-situ soil blending provides analternative method to deliver oxidants to the subsurface,where direct injection may not provide sufficient delivery. This method involves the use of an in-situ blender to effectively distribute RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 4 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 chemical amendments, including persulfate, throughout the soil column.The remediation system was designed so that the use of soil blending was effective in treating impactedsaturated soil and groundwater rather than unsaturated impacted soils. The remedial action was designed to address the remaining source material,thereby makingMNA a viable remedial alternative for the remainder of the impacted groundwater.The target zone included the shallow saturated soil column where the spatial area has total VOC concentrations in the groundwater that exceed approximately 1,000 micrograms per liter (µg/L)(Figure 5).With the previous removal of the impacted soils, the majority of the contaminant mass remaining lies in this shallow aquifer material. Therefore,the zone targeted forremediationincluded the saturated portion of the soil column encompassing a volume ofapproximately 2,000 cubic yards of soil that extended from a depth of approximately 13 feet bls to approximately 22 feet bls.In this design,the unsaturated, non-impacted portion of the soilcolumn from ground surface to approximately 13 feet bls was removed from the treatment area to gain access to the treatment zone. A limiting factor associated with this technology is the depth of the treatment zone and equipment access. By removing the upper 13 feet of unsaturated overburden, the excavation was benched allowing the blender to reach the targeted depths of up to 25 ft bls. To provideadequate access for the operation, the building overlying the treatment area was demolished and the debris removed. Another limiting factor can be the type of equipment available to reach the intended treatment depths.For this treatment design,the saprolite and upper portion of the partially weathered rock(PWR) geologic zones required treatment using the soil blending method. However,the use of a traditional blender was not capable of addressing large rocks because they would break off the “teeth” on the mixing drum.Therefore,traditional blending equipment could not address bedrockor PWR with a high degree of unweathered rock. To meet the demands of this project,a dual- axis blender mounted on a large excavator with a modified diesel engine and hydraulic power system was employed. The mixer is capable of mixing dry soil as well as sludge material todepths of up to 15 ft bls. Deeper depths can be achieved if the excavation is benched. The 28-inch mixing drum with “teeth” is rotated at speeds up to 100 revolutions per minute (rpm)withtorque of 20,300 feet pounds (ft-lbs). This allows the blender to penetrate all soil types,includingsaprolite and highly weathered PWR material. Sodium persulfate was selected as the oxidant for soil blending because of its ability to successfully oxidize all the COCs,including 1,4-dioxane.Sodium hydroxide was selected as the catalyst to elevate the pH of the soil blending mixture to an approximate pH of 10.5 to 12, thusactivatingthe sodium persulfate.Persulfate was applied in an average dosage of 15% solution by weight. Sodium hydroxide was applied at an average concentration of 25% solution by weight. 2.3 Remediation System Implementation Prior to the arrival of the soil blending subcontractor on April 9, 2012,Doyle & Lang, LLC (Lang), the excavation contractor, Ammons Resource Group (Ammons),removed the concrete coverand the upper ten feet of clean soil,and stockpiled it outside the area of excavation.The site RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 5 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 preparation work was performed from April 2 -8, 2012.Based on the proposed treatment area, Lang developed a treatment grid (Figure 5)that included 82 treatment cells.The purpose of theapproximately10ft by 10 ft treatment cells was so that the chemicals could be distributed with accuracy.The limits of excavation were surveyed using GPS equipment,permitting the chemical application to be measured from within the cab of the dual-axis blending equipment.Appendix A contains photographic log of the field activities. Lang provided two major pieces of equipment;the dual-axis blending equipment,and a truckoutfitted with two 200-gallon tanks for mixing sodium persulfate and sodium hydroxide. The mixing truck also contained two pallet-sized scales which were used to measure the mass of chemicals mixed per cell. A tote of sodium persulfate was located on a scale and a pallet ofsodium hydroxide drums was located on the second scale.Using a vacuum delivery system, sodium hydroxide and sodium persulfate were transferred to the mixing tanks, along with the volume of water (from a nearby fire hydrant)necessary for dilution to reach the properconcentrations.Each batch formulation was altered depending on the size of the cell and if field observations indicated chemical adjustment was necessary.The pH in each mixing cell was checked using a YSI 556 to determine if the target pH of 10.5 to 12 was being achieved.If thepH was too low or too high, Lang was notified and a formulation change was made to the subsequent batch. Once Lang was ready to begin a row of cells, Ammons removed an additional five feet of overburden from the target row.The blending equipment entered the treatment excavation andbegan mixing in the target cell.The starting depth of treatment ranged from approximately 13feet bls to 15 feet bls, corresponding to the depth of groundwater encountered in the treatment cells.In each cell,the treatment mixing depth was attempted to extend to a maximum of 15 feetaccording to the limits of the equipment;however,the total depth was found to be limited in the majority of treatment cells by the presence of PWR and the inability of the mixing equipment to extend any deeper.Therefore,the total depth of the treatment zone did not extend beyond adepth of 28 feet bls. Standard sized cells were divided into quarters and were thoroughly mixed within each quarterof the cell (Figure 5). Approximately 30 minutes was spent in each cell.Over the course of the blending operation, 17,600 lbs of sodium persulfate and 25,760 lbs (2,417 gallons) of sodium hydroxide were used. Each standard cell size received approximately 217 lbs of sodiumpersulfate and 318 lbs of sodium hydroxide, formulated into a 200-gallon aqueous solution. Approximately 50 gallons of solution were delivered to each quarter of a standard cell.The soilblending activities were completed over the course of six days from April 11 –17, 2012.Afterthe completion of the soil blending activities, geotechnical fabric was placed over the treatment area and overburden was returned to the excavation.A photographic log showing the soilblending activities is provided in Appendix A. 3.0 POST-REMEDIATION GROUNDWATER MONITORING To monitor the success of the remedial action, post-remediation groundwater monitoring is being conducted to assess the effectiveness of the remedial activities. The post-remediation groundwater monitoring includes the following: RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 6 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 Installation of groundwater monitoring wells within the remediation area Replacement of upgradient monitoring well MW-2D Completion of semi-annual groundwater monitoring Preparation of groundwater monitoring reports. 3.1 Installation and Repair of Groundwater Monitoring Wells In order to monitor the progress of the groundwater remediation system, four new groundwatermonitoring wells were installed in the treatment area and damaged monitoring wells were repaired. Monitoring wells MW-13s,MW-13sr, MW-13d and MW-14d were formerly located in the treatment area, but were abandoned or removed during the remediation activities. In orderto assess the groundwater conditions in the remediation area, three shallow monitoring wells (MW-22s, MW-23s and MW-24s) were installed in the unconfined shallow aquifer, and one deep monitoring well (MW-24d) was installed in the deeper bedrock aquifer. The monitoring wellswere installed in locations as shown on Figure 2 and as described below: Shallow monitoring well MW-22s was installed near the southern extent of the treatment area and in the former location of MW-13s.Data from this well may provide details of the treatment effectiveness in the southwestern portion of the treatment areaand immediately downgradient of the treatment area. Shallow monitoring well MW-23s was installed near the former location of MW-14d andtemporary groundwater monitoring well SB-12 in the northern portion of the treatment area.Data from this well will help define the effectiveness of remedial efforts in that portion of the treatment area. Shallow monitoring well MW-24s and deep monitoring well MW-24d were installed near the center of the treatment area,and near the former location of temporary wellsSB-5 and SB-19. The shallow monitoring wells were installed as Type II monitoring wells to approximately 20 ftbls and completed with 2” Schedule 40 PVC casing, except for the basal 10 feet, which was completed with 0.01-inch slotted well screen.The deep monitoring well (MW-24d)was installedas a double cased, Type III monitoring well in the bedrock aquifer.A 6-inch isolation casing was installed three feet into competent bedrock material and grouted to the surface. The deep monitoring well was completed with 2”PVC inner casing and five feet of 0.01-inch slotted wellscreento an approximate depth of 43 ft bls.Well schematics for each newly installed well areincluded as Appendix B. Following the installation of the replacement monitoring wells, several wells which were damaged during the building demolition activities were repaired.The damaged wells required repairs including new manhole covers and concrete well pads. These wells included monitoringwells: MW-3d, MW-4s, MW-4d, MW-11s, MW-12s, MW-18i, MW-19i and MW-20i. The wells were repaired during the monitoring well replacement field activities in September 2012. Additionally, monitoring wells MW-2s, MW-3s, MW-17i and MW-22i could not be located duringthe October 2012 groundwater sampling event due to the recent building demolition and debris left onsite.However,a reconnaissance and the movement of debris at the site in April 2013 RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 7 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 was able to locate all missing wells with the exception of MW-17i, which remains under a large amount of demolition debris.The monitoring wells found in April 2013 will be repaired for futuregroundwater monitoring events. 3.2 Replacement of Upgradient Monitoring Well MW-2D During previous monitoring events,AMEC field personnel reported an obstruction in monitoringwell MW-2d, at a depth of approximately 40 ft bls. The appearance of the obstruction coincided with high groundwater elevations in the well, a milky coloration in purged water, and unusually high pH readings. This combination of factors indicated that the obstruction was most likelycaused by a break in the PVC casing, which has lead to the intrusion of grout from the annulus into the well. As such, monitoring well MW-2d was abandoned, and a replacement well was drilled approximately 40 feet to the north.The placement of the replacement well wasdetermined by the presence of building rubble and the presence of a storm sewer line in the vicinity of MW-2d.The monitoring well was installed as a Type III well to a depth of 73 ft bls,and labeled as MW-2dr. The well was installed in the same manner as monitoring well MW-24ddescribed in Section 3.1.The well schematic for newly installed well MW-2dr is included in Appendix B. 4.0 OCTOBER 2012 SEMI-ANNUAL GROUNDWATER MONITORING EVENT Following the installation of the replacement wells,the regularly scheduled semi-annualgroundwater monitoring event was conducted in October 2012.This semi-annual sampling event also represented the first post remediation monitoring event. 4.1 Potentiometric Groundwater Surfaces Depth to groundwater measurements were collected on October 17, 2012. Groundwater elevations were measured from 35 existing recovery, containment recovery, injection, and monitoring wells. Several wells,including MW-2d, MW-2s,RW-1,RW-2, RW-5,MW-17i, MW-22i, IW-1, IW-2 and IW-3,were inaccessible, damaged or could not be located due to the building demolition activities completed in early 2012 and the remaining debris left onsite.For instance injection wells IW-1, IW-2 and IW-3 and recovery wells RW-1 and RW-2 were coveredwith large, concrete blocks.Additionally, several wells have been abandoned,including monitoring wells MW-13d, MW-13d, MW-13sr, and MW-14d,and therefore,were not gauged.Table 3 summarizes construction details for the site monitoring wells and water level elevationsmeasured during the October 2012 gauging event.Figures 6 and 7 show the potentiometric surface and groundwater elevations at the water table,and in the bedrock aquifer, respectively.In an attempt to replace monitoring well MW-2d, the replacement well (MW-2dr)was installed to the north of the original well location. Based on the water level elevation recorded in monitoring well MW-2dr, it appears that the fracture intersected was not connected to the same fracturezone intersecting the other deep monitoring wells in the vicinity; therefore, the water elevation data from MW-2dr was not used when preparing the potentiometric surface for the deep aquifer. RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 8 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 Depth to groundwater measurements collected in October 2012,from both the shallow and deep bedrock and recovery wells,exhibited on average a 1.3-feet decrease in elevation,ascompared to previous results. The overall direction of groundwater flow in both the water table and the bedrock aquifer continues towards the southwest. 4.2 Groundwater Sampling The semi-annual groundwater sampling event was conducted from October 17 -22, 2012,in accordance with the RCRA Facility Investigation Work Plan. All future sampling events at thesite will be performed according to the 2013 Sampling and Analysis Plan (SAP). Groundwatersampleswere collected from existing monitoring wells MW-3d, MW-4d,MW-4s, MW-12s,MW- 2ik, MW-2sk, MW-3dk,MW-3sk, MW-5sk, MW-9dk, MW-9sk and MW-12dk. In April 2011, AMEC began collecting groundwater samples from select wells including MW-17i, MW-18i, MW-19i, MW-20i, MW-21i and MW-22i,which were installed in 2009 to assess the intermediate portion of the aquifer.However, monitoring wells MW-17i and MW-22i were not accessibleduring the October 2012 groundwater sampling event due to building demolition and debrisremaining on the property; and therefore could not be sampled.In addition, the five new replacement wells (MW-2dr, MW-22s, MW-23s, MW-24s and MW-24d),which were installed inSeptember 2012 to evaluate the remediation efforts,were also sampled.The wells were purged and sampled using either a decontaminated submersible pump with clean tubing,or a disposable bailer. After purging, each well was allowed to recover to a minimum of 80 percent ofits static water column height before collecting a sample. During sampling activities, the dissolved oxygen (DO),oxygen reduction potential (ORP), conductivity, pH, and temperature of the groundwater were measured. The locations of the monitoring wells are presented in Figure2. The groundwater samples were transferred directly from the tubing into pre-chilled laboratory-supplied containers. The groundwater samples were transported under chain-of-custody protocol to Prism Laboratories, Inc. of Charlotte, North Carolina. The samples were analyzed for the presence of VOCs using USEPA Method 6200B,and 1,4-dioxane using USEPA Method8260 SIM. All purge water was containerized in a 55-gallon drum, labeled and left on site in a secure location. 4.3 Analytical Results 4.3.1 General Six VOCs have historically been identified in the groundwater (1,1,1-TCA,1,1-DCA,1,1-DCE,TCE, PCE and 1,4-dioxane). A summary of the groundwater analytical data for the past five years is provided in Table 1.The laboratory analytical results from the October 2012 semi- annual event are included in Appendix C,and summarized in Table 4. Twelve VOC compoundswere observed in the October 2012 sampling event at concentrations exceeding their respective 2L Standards,including 1,1,1-TCA,1,1-DCE, 1,1-DCA, 1,2-DCA, benzene,bromomethane, ethanol,chloromethane, PCE, TCE, vinyl chloride and 1,4-dioxane. Chloromethane (detected inMW-23s, MW-24s, MW-24d), bromomethane (detected in MW-23s),and ethanol (detected in MW-23s and MW-24s)were detected in monitoring wells located in the treatment area. With the RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 9 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 exception of the sample collected from monitoring well MW-5sk in October 2011,chloromethane and bromomethane have not been detected in the groundwater at the site. The presence ofthese constituents at higher concentrations in the groundwater near the treatment area, combined with the understanding that bromomethane and chloromethane are commonly generated during chlorination of drinking water, indicates it was likely a result of soil mixingactivities as a large volume of city water was introduced to the aquifer.Additionally, ethanol hasnot historically been detected on the site and the source is unknown.The concentrations of these constituents will continue to be monitored. To provide an overview of the extent of impact, isoconcentration maps showing the distribution of total VOCs in both the unconsolidated and bedrock units,based on the October 2012sampling event,are provided as Figures 8 and 9, respectively.When compared to historical results as shown in Figure 3 and 4, these figures show an overall reduction in the area of impact.In particular,the areas on the isoconcentration maps encompassed by the 10 µg/L and100µg/L isoconcentration lines (Figures 8 and 9),are smaller during this sampling event as compared to October 2011 (Figures 3 and 4).Additionally,there has essentially been no change in the shape and extent of the total VOC contaminant plume. Isoconcentration maps of three of the most prevalent chlorinated solvents and degradationproducts(1,1,1-TCA, PCE, and 1,1-DCE) are included for the unconsolidated zone (Figures 11aand 12a),and the bedrock aquifer (Figures 10,11b and 12b).Isoconcentration maps are included that show the distribution of 1,4-dioxane in the unconsolidated and bedrock aquifers,respectively (Figures 13a and 13b). 4.3.2 1,1,1-TCA The 1,1,1-TCA source is believed to have been an aboveground storage tank (AST) along the north end of the building,near former monitoring well MW-14d and existing monitoring well MW-23s. Analytical data from the past five years indicates that 1,1,1-TCA concentrations have fluctuated such that concentrations have both exceeded and fallen below the 2L Standard in MW-14d. Historically, elevated concentrations of 1,1,1-TCA have existed in the unconsolidatedunit, primarily beneath the former Alcatel property and in the bedrock aquifer. More recent sampling events indicate that 1,1,1-TCA concentrations exceeding 2L Standards have been relatively localized to the area around MW-4d. During the October 2012 sampling event,afterremediation, the only location that exhibited 1,1,1-TCA concentrations exceeding the 2L Standard was in bedrock well MW-4d (210 µg/L),which is located downgradient of thesuspected source area.1,1,1-TCA was also detected at concentrations below the 2L Standardsduring the October 2012 sampling event in several monitoring wells (Figure 10). 4.3.3 PCE Since ALU began conducting groundwater remediation activities, PCE concentrations havegenerallydecreasedover time. However, during the October 2012 sampling event,theconcentration of PCE increased in many wells.Eleven wells in the unconsolidated unit contained PCE at concentrations exceeding the 2L Standard of 0.7 µg/L. These included wells MW-2sk (21 g/L), MW-3sk (6.4 g/L),MW-4s (38 g/L),MW-12s (1.8 g/L),MW-18i (61 g/L), RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 10 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 MW-19i (31 g/L),MW-20i (12 g/L),MW-21i (560 g/L), MW-22s (140 g/L), MW-23s (34 g/L) and MW-24s (5.3 g/L)(Figure 11a).Six wells in the bedrock unit contained PCE at concentrations exceeding the 2L Standard. These included wells MW-2ik (430 g/L), MW-3d (4.7 g/L), MW-3dk (130 g/L), MW-4d (1,100 g/L), MW-9dk (14 g/L)and MW-24d (20 g/L) (Figure 11b). Based on this most recent set of analytical data, the geometry and extent of the PCE contaminant plume in the bedrock aquifer has remained similar to past sampling eventswith no significant expansion or reductions. The absence of PCE in the groundwater sample collected from the downgradient shallow aquifer monitoring well MW-9sk,indicates that the leading edge of the PCE plume in the shallow aquifer remains upgradient of MW-9sk anddowngradient of MW-3sk. Degradation products of PCE are present within the groundwater plume, including TCE andcis-1,2-dichloroethene (cis-1,2-DCE). TCE was present in bedrock wells MW-2ik, MW-9dk,and wells within the unconsolidated aquifer including MW-2sk,MW-5sk,MW-19i,and MW-22s. 4.3.4 1,1-DCE The majority of 1,1-DCE is present due to the abiotic degradation of 1,1,1-TCA. Since October2003, only one well in the unconsolidated zone, MW-13s,has consistently exceeded the 2L Standard of 7 g/L for 1,1-DCE. In October 2012,several monitoring wells exceeded the 2L standard for 1,1-DCE in the unconsolidated aquifer,such as MW-2sk (19 g/L), MW-18i (10 g/L), MW-19i (48 g/L),MW-20i (35 g/L),MW-21i (48 g/L)and MW-22s (34 g/L). Six wells completed in the bedrock unit contained 1,1-DCE at concentrations exceeding the 2L Standard. This included monitoring wells MW-2ik (65 g/L), MW-3d (11 g/L), MW-3dk (27 g/L), MW-4d (80 g/L),MW-9dk (15 g/L), and MW-24d (28 g/L) (Figure 12b).The limits ofthe 1,1-DCE contaminant groundwater plume that exceeds the 2L Standard extends to theadjacent southern property in both the unconsolidated and bedrock aquifers,as seen in MW-2sk (17 g/L) and MW-9dk (10 g/L). 4.3.5 1,4-Dioxane The compound 1,4-dioxane is commonly associated with 1,1,1-TCA. Groundwater samples collected at the site have been analyzed for the presence of this constituent since 2005. Figures13a and 13b show the lateral distribution of the compound in both the unconsolidated andbedrock aquifers, respectively. Concentrations of 1,4-dioxane were observed to be slightly lower in groundwater samples collected from the unconsolidated aquifer during the October 2012samplingevent, as compared to the October 2011 event.In particular, a lower 1,4-dioxaneconcentration was observed in the samples collected from wells MW-3s, MW-4s and MW-12s. The highest concentration of 1,4-dioxane (760 g/L) was encountered in well MW-22s, which is slightly lower than the concentration detected in October 2011 in MW-13s (1,000 g/L),located in close proximity to MW-22s.Generally, the unconsolidated aquifer exhibits higherconcentrations of 1,4-dioxane than is present in the underlying bedrock aquifer; however, the lateral extent of 1,4-dioxane observed in the bedrock aquifer is greater,but it has remained stable over the past year. Three successive sampling events have identified the presence of RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 11 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 1,4-dioxane in the sample collected from well MW-9dk, located along Six Forks Road.1,4- Dioxane concentrations exceeded the 2L Standard of 3 g/L in wells MW-2ik (98 g/L), MW-2sk (69 g/L),MW-3dk (16 g/L),MW-4d (6.2 g/L), MW-9dk (17 g/L), MW-12s (30 g/L),MW-18i (20 g/L),MW-19i (46 g/L), MW-20i (30 g/L), MW-22s (760 g/L), MW-23s (110 g/L), MW- 24d (30 g/L) and MW-24s (350 g/L). 4.4 Results of Remediation Activities The October 2012 semi-annual sampling event also served as the first post-remediationgroundwater monitoring event for the remediation activities performed in April 2012. The area targeted for treatment is shown on Figure 2.Several temporary and permanent monitoring wells were identified in the treatment area as key well pairs for monitoring the performance of theremediation activities. The following well pairs were evaluated to determine the performance of the remedial activities:temporary well SB-12 and newly installed well MW-23s;abandoned and removed wells MW-13s and MW-13sr,as well as temporary well SB-19 compared to results ofnewly installed well MW-24s. The analytical results ofthe groundwater sample collected from the firstwell pair, SB-12 andMW-23s,reveals an overall 72% reduction intotal VOCs detected in the groundwater. This is excluding the presenceof constituents such as ethanol, chloromethane and bromomethane,asthese appear to be related to the remediation efforts andnot an indicator of groundwater impact from former site operations.Furthermore,the data reveals that there was a90% reduction in theconcentration of 1,4-dioxane in this area of the groundwater plume.Graph 1 shows a comparison of key constituents in temporary well SB-12 and monitoring well MW-23s,used toshow the effectiveness of the remediation efforts. 1000 1200 1400 Co n c e n t r a t i o n ( µg/ L ) RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 11 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 1,4-dioxane in the sample collected from well MW-9dk, located along Six Forks Road.1,4- Dioxane concentrations exceeded the 2L Standard of 3 g/L in wells MW-2ik (98 g/L), MW-2sk (69 g/L),MW-3dk (16 g/L),MW-4d (6.2 g/L), MW-9dk (17 g/L), MW-12s (30 g/L),MW-18i (20 g/L),MW-19i (46 g/L), MW-20i (30 g/L), MW-22s (760 g/L), MW-23s (110 g/L), MW- 24d (30 g/L) and MW-24s (350 g/L). 4.4 Results of Remediation Activities The October 2012 semi-annual sampling event also served as the first post-remediationgroundwater monitoring event for the remediation activities performed in April 2012. The area targeted for treatment is shown on Figure 2.Several temporary and permanent monitoring wells were identified in the treatment area as key well pairs for monitoring the performance of theremediation activities. The following well pairs were evaluated to determine the performance of the remedial activities:temporary well SB-12 and newly installed well MW-23s;abandoned and removed wells MW-13s and MW-13sr,as well as temporary well SB-19 compared to results ofnewly installed well MW-24s. The analytical results ofthe groundwater sample collected from the firstwell pair, SB-12 andMW-23s,reveals an overall 72% reduction intotal VOCs detected in the groundwater. This is excluding the presenceof constituents such as ethanol, chloromethane and bromomethane,asthese appear to be related to the remediation efforts andnot an indicator of groundwater impact from former site operations.Furthermore,the data reveals that there was a90% reduction in theconcentration of 1,4-dioxane in this area of the groundwater plume.Graph 1 shows a comparison of key constituents in temporary well SB-12 and monitoring well MW-23s,used toshow the effectiveness of the remediation efforts. 0 200 400 600 800 1000 1200 1400 Co n c e n t r a t i o n ( µg/ L ) Graph 1 Remediation Effectiveness Comparison: SB-12 & MW-23s RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 11 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 1,4-dioxane in the sample collected from well MW-9dk, located along Six Forks Road.1,4- Dioxane concentrations exceeded the 2L Standard of 3 g/L in wells MW-2ik (98 g/L), MW-2sk (69 g/L),MW-3dk (16 g/L),MW-4d (6.2 g/L), MW-9dk (17 g/L), MW-12s (30 g/L),MW-18i (20 g/L),MW-19i (46 g/L), MW-20i (30 g/L), MW-22s (760 g/L), MW-23s (110 g/L), MW- 24d (30 g/L) and MW-24s (350 g/L). 4.4 Results of Remediation Activities The October 2012 semi-annual sampling event also served as the first post-remediationgroundwater monitoring event for the remediation activities performed in April 2012. The area targeted for treatment is shown on Figure 2.Several temporary and permanent monitoring wells were identified in the treatment area as key well pairs for monitoring the performance of theremediation activities. The following well pairs were evaluated to determine the performance of the remedial activities:temporary well SB-12 and newly installed well MW-23s;abandoned and removed wells MW-13s and MW-13sr,as well as temporary well SB-19 compared to results ofnewly installed well MW-24s. The analytical results ofthe groundwater sample collected from the firstwell pair, SB-12 andMW-23s,reveals an overall 72% reduction intotal VOCs detected in the groundwater. This is excluding the presenceof constituents such as ethanol, chloromethane and bromomethane,asthese appear to be related to the remediation efforts andnot an indicator of groundwater impact from former site operations.Furthermore,the data reveals that there was a90% reduction in theconcentration of 1,4-dioxane in this area of the groundwater plume.Graph 1 shows a comparison of key constituents in temporary well SB-12 and monitoring well MW-23s,used toshow the effectiveness of the remediation efforts. SB-12 (9/25/2008) MW-23s (10/18/2012) RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 12 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 0 1000 2000 3000 4000 5000 6000 Co n c e n t r a t i o n ( µg/ L ) Graph 3 Remediation Effectiveness Comparison: SB-5 & MW-24s The analytical results of the groundwater sample collected from the second well pair, SB-19 and MW-24s,reveals an overall reduction in total VOC concentration of 81%.Graph 2 shows acomparison of keyconstituents in temporary well SB-19and monitoring wellMW-24s.In particular, the concentration of1,4-dioxane was reduced by approxi- mately 68%. Whencomparing analytical results from the sample collected fromMW-24s to the results of the temporary well SB-5, a reduction of88%was observed in total VOCs and areduction of 93%wasobservedin 1,4- dioxane. Graph 3 shows a comparison of key constituents in the third well pair, SB-5 and MW-24s. 0 500 1000 1500 2000 2500 3000 Co n c e n t r a t i o n ( µg/ L ) Graph 2 Remediation Effectiveness Comparison: SB-19 & MW-24s RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 12 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 Graph 3 Remediation Effectiveness Comparison: SB-5 & MW-24s SB-5 (9/25/2008) The analytical results of the groundwater sample collected from the second well pair, SB-19 and MW-24s,reveals an overall reduction in total VOC concentration of 81%.Graph 2 shows acomparison of keyconstituents in temporary well SB-19and monitoring wellMW-24s.In particular, the concentration of1,4-dioxane was reduced by approxi- mately 68%. Whencomparing analytical results from the sample collected fromMW-24s to the results of the temporary well SB-5, a reduction of88%was observed in total VOCs and areduction of 93%wasobservedin 1,4- dioxane. Graph 3 shows a comparison of key constituents in the third well pair, SB-5 and MW-24s. Graph 2 Remediation Effectiveness Comparison: SB-19 & MW-24s SB-19 (9/25/2008) MW-24s (10/18/2013) RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 12 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 The analytical results of the groundwater sample collected from the second well pair, SB-19 and MW-24s,reveals an overall reduction in total VOC concentration of 81%.Graph 2 shows acomparison of keyconstituents in temporary well SB-19and monitoring wellMW-24s.In particular, the concentration of1,4-dioxane was reduced by approxi- mately 68%. Whencomparing analytical results from the sample collected fromMW-24s to the results of the temporary well SB-5, a reduction of88%was observed in total VOCs and areduction of 93%wasobservedin 1,4- dioxane. Graph 3 shows a comparison of key constituents in the third well pair, SB-5 and MW-24s. RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 13 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 0 200 400 600 800 1000 1200 Co n c e n t r a t i o n ( µg/ L ) Finally,the comparison of historical results from former monitoring well MW-13s and newly installed well MW-22s reveal little reduction of contaminants just outside the treatment area.Asan example,the total concentration of VOCs in the groundwater and 1,4-dioxane concentrationswere each reduced by 24% frombaseline to postremediation results. Graph 4 shows acomparison of key constituents in abandoned well MW-13s and monitoring well MW-22s over time.The datashown on Graph 4, from April 2009 to April 2012,werecollected from abandoned well MW-13s and the finaldata point shown on October 18, 2012,was collected frommonitoring well MW- 22s. Overall,the source area (i.e., treatment area)which previously contained concentrations of1,4-dioxane in the groundwater ranging from 120 µg/L to 5,100 µg/L,now has concentrations ranging from 110 µg/L to as high as 760 µg/L. PCE,previously detected at concentrations ranging from 48 µg/L to 480 µg/L,is now present at concentrations ranging from 5.3 µg/L to 34µg/L. Likewise,1,1,-DCE concentrations previously ranged from 210 µg/L to 2,600 µg/L in the groundwater treatment area prior to remedial efforts.Post-treatment, 1,1,-DCE was not present above the analytical method detection limit from samples collected from monitoring wells MW-23s and MW-24s.The reduction of these COCs in the treatment area indicates a reduction in concentration in the source area and treatment area. 4.5 Proposed Remedial System Monitoring As documented in the SAP (AMEC 2013),the groundwater monitoring program will includesamples from the unconsolidated and bedrock aquifers. The variety of sampling intervals will provide the most thorough data depicting the delineation of the contaminants. Refer to Figure 2for the location of the wells on-site. RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 13 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 0 200 400 600 800 1000 1200 04 / 1 6 / 0 9 10 / 0 8 / 0 9 04 / 1 4 / 1 0 10 / 0 6 / 1 0 04 / 1 3 / 1 1 10 / 2 6 / 1 1 10 / 1 8 / 2 0 1 2 MW-13s MW- 22s Graph 4 Remediation Effectiveness Comparison MW-13s & MW-22s Finally,the comparison of historical results from former monitoring well MW-13s and newly installed well MW-22s reveal little reduction of contaminants just outside the treatment area.Asan example,the total concentration of VOCs in the groundwater and 1,4-dioxane concentrationswere each reduced by 24% frombaseline to postremediation results. Graph 4 shows acomparison of key constituents in abandoned well MW-13s and monitoring well MW-22s over time.The datashown on Graph 4, from April 2009 to April 2012,werecollected from abandoned well MW-13s and the finaldata point shown on October 18, 2012,was collected frommonitoring well MW- 22s. Overall,the source area (i.e., treatment area)which previously contained concentrations of1,4-dioxane in the groundwater ranging from 120 µg/L to 5,100 µg/L,now has concentrations ranging from 110 µg/L to as high as 760 µg/L. PCE,previously detected at concentrations ranging from 48 µg/L to 480 µg/L,is now present at concentrations ranging from 5.3 µg/L to 34µg/L. Likewise,1,1,-DCE concentrations previously ranged from 210 µg/L to 2,600 µg/L in the groundwater treatment area prior to remedial efforts.Post-treatment, 1,1,-DCE was not present above the analytical method detection limit from samples collected from monitoring wells MW-23s and MW-24s.The reduction of these COCs in the treatment area indicates a reduction in concentration in the source area and treatment area. 4.5 Proposed Remedial System Monitoring As documented in the SAP (AMEC 2013),the groundwater monitoring program will includesamples from the unconsolidated and bedrock aquifers. The variety of sampling intervals will provide the most thorough data depicting the delineation of the contaminants. Refer to Figure 2for the location of the wells on-site. RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 13 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 10 / 1 8 / 2 0 1 2 MW- 22s Graph 4 Remediation Effectiveness Comparison MW-13s & MW-22s 1,1,1-TCA 1,1-DCE PCE 1,4-Dioxane Finally,the comparison of historical results from former monitoring well MW-13s and newly installed well MW-22s reveal little reduction of contaminants just outside the treatment area.Asan example,the total concentration of VOCs in the groundwater and 1,4-dioxane concentrationswere each reduced by 24% frombaseline to postremediation results. Graph 4 shows acomparison of key constituents in abandoned well MW-13s and monitoring well MW-22s over time.The datashown on Graph 4, from April 2009 to April 2012,werecollected from abandoned well MW-13s and the finaldata point shown on October 18, 2012,was collected frommonitoring well MW- 22s. Overall,the source area (i.e., treatment area)which previously contained concentrations of1,4-dioxane in the groundwater ranging from 120 µg/L to 5,100 µg/L,now has concentrations ranging from 110 µg/L to as high as 760 µg/L. PCE,previously detected at concentrations ranging from 48 µg/L to 480 µg/L,is now present at concentrations ranging from 5.3 µg/L to 34µg/L. Likewise,1,1,-DCE concentrations previously ranged from 210 µg/L to 2,600 µg/L in the groundwater treatment area prior to remedial efforts.Post-treatment, 1,1,-DCE was not present above the analytical method detection limit from samples collected from monitoring wells MW-23s and MW-24s.The reduction of these COCs in the treatment area indicates a reduction in concentration in the source area and treatment area. 4.5 Proposed Remedial System Monitoring As documented in the SAP (AMEC 2013),the groundwater monitoring program will includesamples from the unconsolidated and bedrock aquifers. The variety of sampling intervals will provide the most thorough data depicting the delineation of the contaminants. Refer to Figure 2for the location of the wells on-site. RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 14 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 Prior to collecting groundwater samples during each sampling event, water levels will be measured throughout the site. This will include gauging static water levels in the followingmonitoring wells: MW-2dr MW-12s MW-2s MW-12dk MW-2sk MW-16d MW-2ik MW-17i MW-3d MW-18i MW-3sk MW-19i MW-3dk MW-20i MW-4s MW-21i MW-4d MW-22s MW-5sk MW-23s MW-9sk MW-24s MW-9dk MW-24d MW-11 After the above listed monitoring wells have been gauged, 11 shallow monitoring wells and 6deep monitoring wells will be sampled. The monitoring wells will be sampled semi-annually until sufficient data are collected to support a change in the groundwater monitoring frequency.The following monitoring wells will be sampled during each monitoring event: MW-2dr MW-12dk MW-2s MW-18i MW-3d MW-19i MW-4s MW-21i MW-4d MW-22s MW-5sk MW-23s MW-9sk MW-9dk MW-12s MW-24s MW-24d The SAP provides the list of monitoring wells to be sampled, the depths at which the samples are to be taken,and the analytes of concern at each well.Groundwater will be withdrawn fromthe monitoring wells using a low-flow pump with the intake located near the center of the wellscreen.The depth to the center of the well screen will dictate the sample collection method. Deeper wells will be sampled using a submersible pump, while shallow wells will be sampledusing a peristaltic pump.The pump effluent will pass through a flow-through chamber containing probes to monitor water quality parameters. The monitored parameters will include temperature, pH, conductivity, ORP,DO and turbidity. With the exception of turbidity, these parameters willbe measured with a Hanna 9828 (or similar) water quality meter. Turbidity will be measured with a Hanna 98703 (or similar)turbidimeter. The pumping rate will be maintained between 100 to 300 milliliters per minute (mL/min) to maintain minimal drawdown effects and to limit suspension of any fine-grained sediments or aeration of the water being sampled. The water level in the well will be carefully monitored to RCRA Corrective Measures Implementation (CMI) Report Former Alcatel FacilityRaleigh, North Carolina April 22, 2013 AMEC Environment & Infrastructure, Inc.Page 15 Tel –(919) 381-99004021 Stirrup Creek Drive, Suite 100 Fax –(919) 381-9901Durham, NC 27703 www.amec.comLicensure: NC Engineering F-1253; NC Geology C-247 document that drawdown does not increase during purging. Drawdown and water quality parameters will be monitored and recorded approximately every three to five minutes. Waterquality parameters will be documented on AMEC groundwater sampling forms. Purge water will be collected in 5-gallon buckets and subsequently transferred to steel 55-gallon drums. Sampling will be performed by disconnecting the down-hole tubing, prior to the flow-through cell,and placing it into the appropriate certified-clean laboratory sample containers. New disposableor dedicated sample tubing will be used at each well. Samples will be obtained first from monitoring wells in the historically least-contaminated area,and progress toward the historicallymost-contaminated area. 5.0 CONCLUSIONS Based on the analytical results, the source area treatment was successful in reducing theoverall concentrations of VOCs.Figures 11a, 12a and 13a reveal the reduction of PCE, 1,1-DCE and 1,4-dioxane in the source area and treatment zone, with 1,1,-DCE reducing to a concentration below the 2L Standard in the treatment area. Immediately downgradient of thetreatment area,there is currently little reduction in the concentration of these COCs. Furthermore,the groundwater analytical results do not reveal an impact to the concentrations ofCOCs in the bedrock aquifer from the soil mixing remedial activities.As stated in the CMS, thegoal of the remedial activities was to reduce contaminant mass in the shallow aquifer material located in the source area,so that MNA can be utilized to address the remaining dilute plume.The remedial method employed has been successful in reducing the contaminant mass presentin the shallow aquifer in the source area.Additional monitoring,according to the SAP,will be performed to evaluate the natural attenuation of COCs in the groundwater. 6.0 REFERENCES AMEC Environment & Infrastructure,Corrective Measures Plan, Former Alcatel Facility, October 2010. AMEC Environment & Infrastructure,Groundwater Sampling and Analysis Plan, Former Alcatel Facility, March 2012. AMEC Environment & Infrastructure, Inc. Tel – (919) 381-9900 4021 Stirrup Creek Drive, Suite 100 Fax – (919) 381-9901 Durham, NC 27703 www.amec.com Licensure: NC Engineering F-1253; NC Geology C-247 FIGURES Site Parcel FIGURE: DR:CHK: DATE: SITE AREA MAP1CPM HWT 02/20/2013 TITLE: PROJ.:565280000 CLIENT:ALCATEL-LUCENT USA, INC RALEIGH, NORTH CAROLINA SCALE:1" = 1500' SITE:FORMER ALCATEL USA FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 AMEC Environmenta & Infrastructure, Inc. 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 !A !ÓH !ÓH !A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A!A !A !? !? !? !? !?!? SIX FORKS IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 IW-01 IW-03 MW-19I MW-17I MW-20I MW-21I MW-18I CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 MW-16D MW-03D MW-11S MW-12S MW-04DMW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DKMW-03SK Legend !?Recovery Well !ÓH Injection Well !A Monitoring Well !?Temporary Well Soil Blending Area Property Line100 050 Feet Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston SITE LAYOUT 2TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 AMEC Environment & Infrastructure, Inc. 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9909 1 '' = 100 'Date: February 20, 2013 !A A !A !A !A !A !? !? !? !? !?!? MW-22S MW-24S MW-24D MW-23S MW-22I SB-19 SB-08 SB-05 SB-21 SB-12 SB-11 ¥ Treatment Area @A @A @A @A @?H @A @?H@A@A@? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A (48.4) (128.4) (32.7) (156.3) (74.4) (84.7) (845.9) (15.2) (166.7) (453.1) (42.7) (9.1) (18.6) MW-18I MW-17I MW-13D IW-01 IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 IW-03 MW-19I MW-20I MW-21I MW-22I CRW-01 CRW-12 CRW-11 CRW-10 CRW-08 CRW-07 CRW-06 CRW-02 CRW-03 CRW-04 MW-16D MW-13S MW-03D MW-11S MW-12S MW-03S MW-14DMW-02D MW-02S MW-05SK MW-09SK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK MW-04DDMW-04S ³ Legend 10 µg/L (2L Standard) @?Recovery Well @?H Injection Well @A Monitoring Well > 10 µg/L > 100 µg/L > 1000 µg/L (100)Concentration (µg/L) (BQL)Below Quantitation Limit Structure Line Property Line 100 Feet Figure No. DRAWN BY: A. Kellogg CHECKED BY: H. Thurston DATE: Decenber 27, 2011TOTAL VOC CONCENTRATION UNCONSOLIDATED AQUIFER (OCTOBER 2011) 3TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 AMEC Environment & Infrastructure, Inc. 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 1 " = 100 ' IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 IW-03 CRW-03 MW-09DK IW-01 MW-16D MW-03D MW-11S MW-12S MW-04D MW-02D MW-02S MW-13S MW-05SK MW-12DK MW-03DK MW-03SK MW-04S MW-13D MW-18i MW-09SK MW-13SR MW-02SK MW-02IK CRW-04 CRW-05 CRW-01 CRW-02 MW-03S MW-14D MW-20i MW-17i MW-21i MW-19i @A @A @A @A @?H @A @?H@A@A@? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A W A K E F O R E S T SIX FORKS (191.5) (40.7) (27.9) (5.8) (1628.9) (184.2) (33.4) (181.8) ³ 100 Feet Legend 10 µg/L (2L Standard) @?Recovery Well @?H Injection Well @A Monitoring Well > 10 µg/L > 100 µg/L > 1000 µg/L (14.7)Concentration (µg/L) Structure Line Property Line Figure No. DRAWN BY: A. Kellogg CHECKED BY: H. Thurston DATE: December 27, 2011 4TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: 1" = 150' SITE LOCATION: P:\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 TOTAL VOC CONCENTRATION BEDROCK AQUIFER (OCTOBER 2011) AMEC Environment & Infrastructure, Inc. 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! J5 J4 J3 J2 J1 I6 I5 I4 I3 I2 I1 H7 H6 H5 H4 H3 H2 H1 G8 G7 G6 G5 G4 G3 G2 G1 F9 F1 F8 F7 F6 F5 F4 F3 F2 E9 E8 E7 E6 E5 E4 E3 E2 E1 D9 D8 D7 D6 D5 D4 D3 D2 C9 C8 C7 C6 C5 C4 C3 B9 B8 B7 B6 B5 B4 A9 A8 A7 A6 A5 E10 D11 D10 C12 C11 C10 B12 B11 B10 A12 A11 A10 ³ ! ! ! ! ! ! !! ! ! !!!! Soil Blending Treatment Area Excavation Limits30 Feet 5000 µg/L TOTAL VOC ISOCONCENTRATION LINE 1000 µg/L TOTAL VOC ISOCONCENTRATION LINE Figure No. DRAWN BY: A.Kellogg CHECKED BY: H. Thurston DATE: April 11, 2012TREATMENT CELL LAYOUT 5TITLE: PROJECT: CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: 1" = 20' SITE LOCATION: P:\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 AMEC Environment & Infrastructure, Inc. 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 !A !ÓH !ÓH !A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS 218 216 214 212 210 208 206 204 (211.60) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04DMW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (217.34) (218.50) (218.59) (216.90) (216.84) (217.92) (214.33) (217.31) (206.75) (209.55) (214.02) (215.44) (204.68) (205.51) (206.33) (204.86) (205.11) ³ 100 050 Feet Legend !?Recovery Well !ÓH Injection Well !A Monitoring Well Groundwater Contour Flow Direction Inferred Groundwater Contour Structure Line Elevation (ft.) Property Line (204.10) Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 2013POTENTIOMETRIC SURFACE MAP (OCTOBER 2012) 6TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' AMEC Environment & Infrastructure, Inc 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 !A !ÓH !ÓH !A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS (204.98) MW-04D (214.70) (210.45) 206 208 210 212 214 216 218 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (217.67) (162.69) (218.52) (217.84) (211.45) (213.43) (206.17) (207.05) (206.82) (207.69) (211.00) (211.46) (211.51) ³ Legend !?Recovery Well !ÓH Injection Well !A Monitoring Well Groundwater Contour Flow Direction Inferred Groundwater Contour (206.41)Elevation (ft.) Structure Line Property Line100 050 Feet Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 2012GROUNDWATER ELEVATION BEDROCK AQUIFER (OCTOBER 2012) 7TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: \\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 AMEC Environment & Infrastructure, Inc !A !ÓH !ÓH!A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04DMW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (5.10) (8.88) (6.81) (7.73) (94.40) (49.09) (44.90) (632.73) (111.06) (690.57) (114.60) (1527.35) (22926) ³ 100 050 Feet Legend !?Recovery Well !ÓH Injection Well !A Monitoring Well > 10 µg//L > 100 µg//L >1000 µg//L Structure Line VOC µg//L Property Line (204.10) DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 2013TOTAL VOC CONCENTRATION UNCONSOLIDATED AQUIFER (OCTOBER 2012) 8TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' AMEC Environment & Infrastructure, Inc 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 Figure No. !A !ÓH !ÓH !A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS MW-04D (536.69) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (0.63) (80.42) (49.72)(234.20) (224.70) (42.26) (1407.30) ³ 100 050 Feet Legend !?Recovery Well !ÓH Injection Well !A Monitoring Well > 10 µg/L > 100 µg/L > 1000 µg/L VOC µg/L Structure Line Property Line (204.10) DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 2013TOTAL VOC CONCENTRATION BEDROCK AQUIFER (OCTOBER 2012) 9TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' Figure No.AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 !A !ÓH !ÓH !A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS (5.3) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (22) (53) (110) (1.1) (3.5) (210) (BQL) MW-04D ³ 100 050 Feet Legend 200 ug/L (2L Standard) !?Recovery Well !ÓH Injection Well !A Monitoring Well > 200 µg/L 1,1,1-TCA Concentration (µg/L) Below Quantitation Limit Structure Line Property Line (1.6) (BQL) Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 20131,1,1-TCA CONCENTRATION BEDROCK AQUIFER (OCTOBER 2012) 10TITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 !A !ÓH !ÓH!A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS (21) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04DMW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (5.30) (1.80) (6.40) (34.00) (31.00) (12.00) (61.00) (38.00) (140.00) (560.00) (BQL) (BQL) ³ 100 050 Feet Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 2013PCE CONCENTRATION UNCONSOLIDATED AQUIFER (OCTOBER 2012) 11aTITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 Legend 0.7 µg/L (2L Standard) Historical > 70 µg/L Line !?Recovery Well !ÓH Injection Well !A Monitoring Well > 0.7 µg/L > 7 µg/L > 70 µg/L PCE Concentration (µg/L) Below Quantitation Limit Structure Line Property Line (1.6) (BQL) !A !ÓH !ÓH !A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A!A !A W A K E F O R E S T SIX FORKS (430) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04DMW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DKMW-03SK (4.70)(20) (130) (14) (1100) (BQL) (BQL) ³ 100 050 Feet DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 2013PCE CONCENTRATION BEDROCK AQUIFER (OCTOBER 2012) 11bTITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' Figure No.AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 Legend 0.7 µg/L (2L Standard) !?Recovery Well !ÓH Injection Well !A Monitoring Well > 0.7 µg/L > 7 µg/L > 70 µg/L > 700 µg/L PCE Concentration (µg/L) Below Quantitation Limit Structure Line Property Line (1.6) (BQL) !A !ÓH !ÓH!A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS (BQL) (BQL) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (0.67) (2.1) (48) (35) (29) (10) (19) (34) (BQL) (BQL) MW-04D ³ 100 050 Feet Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 20131,1-DCE CONCENTRATION UNCONSOLIDATED AQUIFER (OCTOBER 2012) 12aTITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 Legend 7 µg/L (2L Standard) Historical > 7µg/L Line !?Recovery Well !ÓH Injection Well !A Monitoring Well > 7 µg/L 1,1-DCE Concentration (µg/L) Below Quantitation Limit Structure Line Property Line (1.6) (BQL) !A !ÓH !ÓH !A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS (65) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04DMW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (11) (27) (0.67) (28) (15) (80) (BQL) ³ 100 050 Feet Legend 7 µg/L (2L Standard) !?Recovery Well !ÓH Injection Well !A Monitoring Well > 7 µg/L > 70 µg/L 1,1-DCE Concentration (µg/L) Below Quantitation Limit Structure Line Property Line (1.6) (BQL) DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 20131,1-DCE CONCENTRATION BEDROCK AQUIFER (OCTOBER 2012) 12bTITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' Figure No.AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 !A !ÓH !ÓH!A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T (69) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04DMW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (46) (39) (20)(30) (760) (350) (110) (BQL) (BQL) (BQL) (BQL) (BQL) ³ 100 050 Feet Legend 3 µg/L (2L Standard) !?Recovery Well !ÓH Injection Well !A Monitoring Well > 3 µg/L > 30 µg/L > 300 µg/L 1,4-Dioxane Concentration (µg/L) Below Quantitation Limit Structure Line Property Line (1.6) (BQL) Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 20131,4-DIOXANE CONCENTRATION UNCONSOLIDATED AQUIFER (OCTOBER 2012) 13aTITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 1 " = 100 ' AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 !A !ÓH !ÓH!A !A !? !A !A !A !? !A !? !A !A !? !? !? !? !? !? !A!A !? !A !ÓH !A !A !A !? !? !? !? !? !A !A !A !A!A !A !A !A !A !A !A W A K E F O R E S T SIX FORKS (98) RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 CRW-01 CRW-02 CRW-03 CRW-04 CRW-05 IW-02IW-01 IW-03 MW-22S MW-24S MW-24D MW-23S MW-19I MW-17I MW-20I MW-21I MW-22I MW-18I MW-16D MW-03D MW-11S MW-12S MW-04D MW-04S MW-02S MW-02DR MW-05SK MW-09SK MW-09DK MW-12DK MW-02IK MW-02SK MW-03DK MW-03SK (16) (6.2) (30) (17) (BQL) (BQL) (BQL) ³ 100 050 Feet Legend 3 µg/L (2L Standard) !?Recovery Well !ÓH Injection Well !A Monitoring Well > 3 µg/L > 30 µg/L 1,4-Dioxane Concentration (µg/L) Below Quantitation Limit Structure Line Property Line (1.6) (BQL) Figure No. DRAWN BY: A. Crain CHECKED BY: H. Thurston DATE: February 20, 20131,4-DIOXANE CONCENTRATION BEDROCK AQUIFER (OCTOBER 2012) 13bTITLE: PROJECT: 565280000 CLIENT: ALCATEL LUCENT USA, INC. RALEIGH, NORTH CAROLINA SCALE: SITE LOCATION: P:\\dhm-fs1\projects\1RAL Projects\ProjectFiles\Alcatel-Lucent USA, Inc\565280000- Alcatel Lucent 2010-2011 Raleigh, NC\October 2012 Semi-Annual\GIS drawings 1 " = 100 ' AMEC Environment & Infrastructure 4021 Stirrup Creek Drive, Suite 100 Durham, NC 27703 (919) 381-9900 FORMER ALCATEL USA SOURCING FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 AMEC Environment & Infrastructure, Inc. Tel – (919) 381-9900 4021 Stirrup Creek Drive, Suite 100 Fax – (919) 381-9901 Durham, NC 27703 www.amec.com Licensure: NC Engineering F-1253; NC Geology C-247 TABLES Ta b l e 1 Hi s t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N o r t h C a r o l i n a 20 0 0 . 6 6 7 4 0 0 2 0 0 . 4 4 0 0 6 0 0 0 1 1 0 0 N E N E N E 7 0 N E 3 7 0 N E 1 0 0 0 6 0 0 4 0 0 0 4 0 4 0 0 0 1 0 0 5 6 5 0 0 7 0 0 . 7 3 6 0 0 6 0 2 , 0 0 0 0 . 0 3 3 04 / 2 4 / 0 8 1 2 B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 3.1 BDL B D L B D L N A N A B D L 10 / 1 5 / 0 8 2 6 B D L 2 . 2 3 4 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L 0 . 5 5 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 36 BDL B D L B D L N A < 0 . 2 8 B D L 04 / 1 6 / 0 9 1 2 B D L 1 . 6 2 7 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 19 BDL B D L B D L N A < 0 . 2 8 B D L 10 / 0 8 / 0 9 2 6 B D L 1 . 6 3 4 B D L N S B D L B D L N A 1. 0 BD L N S N A B D L B D L N S B D L 1 . 3 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 43 BDL B D L B D L B D L < 0 . 2 8 B D L 04 / 1 4 / 1 0 1 2 < 1 . 0 1 . 9 23 BD L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L < 1 . 0 N S B D L 0 . 8 9 J N S B D L B D L N S N S B D L N S N S B D L B D L B D L 26 <2.0 B D L < 2 . 0 < 5 . 0 < 0 . 0 6 8 < 3 . 0 10 / 0 6 / 1 0 3 6 < 0 . 0 6 8 9. 3 4 . 7 BD L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L 0 . 6 5 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 10 <0.044 B D L < 0 . 0 6 1 2 . 8 < 0 . 0 6 8 6.6 04 / 1 2 / 1 1 2 5 < 0 . 5 6. 9 3 2 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 19 <0.5 < 0 . 5 < 0 . 5 1 . 2 < 0 . 5 5.7 MW - 2 D R 10 / 2 2 / 1 2 1 . 1 < 0 . 5 0 0 . 6 5 0 . 6 7 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 8 2 J < 0 . 5 0 7 8 J < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 <1.0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 04 / 2 4 / 0 8 9 . 6 B D L 1 . 6 1 . 7 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 7.0 BDL B D L B D L N A N A B D L 10 / 1 3 / 0 8 1 1 . 0 B D L 2 . 2 2 . 4 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 7.8 BDL B D L B D L N A < 0 . 2 8 B D L 04 / 1 6 / 0 9 1 1 . 0 B D L 2 . 1 2 . 1 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 8.2 BDL B D L B D L N A < 0 . 2 8 B D L 10 / 0 8 / 0 9 8 . 0 B D L 1 . 5 1 . 2 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 6.6 BDL B D L B D L 0 . 8 5 < 0 . 2 8 B D L 04 / 1 4 / 1 0 1 6 . 0 < 1 . 0 2 . 8 1 . 9 B D L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L < 1 . 0 N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 16 <2.0 B D L < 2 . 0 1 . 2 J < 0 . 0 6 8 < 3 . 0 10 / 0 6 / 1 0 7 . 6 < 0 . 0 6 8 1 . 2 0 . 8 9 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 12 <0.044 B D L < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 7.1 04 / 1 2 / 1 1 6 . 0 < 0 . 5 0 . 6 1 0 . 5 6 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 9.4 <0.5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 3 . 0 10 / 2 5 / 1 1 5 . 9 < 0 . 5 0 0 . 6 8 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 12 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 04 / 2 5 / 0 8 B D L B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A N A B D L 10 / 1 4 / 0 8 1 . 8 0 B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A < 0 . 2 8 B D L 04 / 1 5 / 0 9 5 . 2 B D L 0 . 8 0 1 . 7 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 0.84 BDL B D L B D L N A < 0 . 2 8 B D L 10 / 0 8 / 0 9 4 . 5 B D L 1 . 1 2 . 3 B D L N S B D L B D L N A B D L B D L N S N A B D L 0 . 7 8 N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 1.8 BDL B D L B D L B D L < 0 . 2 8 B D L 04 / 1 3 / 1 0 1 4 < 0 . 5 0 5 . 4 12 BD L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L < 0 . 5 0 N S B D L < 0 . 5 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 3.6 <0.50 B D L < 0 . 5 0 0 . 5 8 < 0 . 0 6 8 < 3 . 0 10 / 0 5 / 1 0 1 5 < 0 . 0 6 8 3 . 5 7. 7 BD L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L 0 . 6 8 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.7 <0.044 B D L < 0 . 0 6 1 0 . 9 6 < 0 . 0 6 8 3.40 04 / 1 2 / 1 1 3 0 < 0 . 5 6. 8 1 7 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S 0 . 6 2 J B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 5.0 <0.5 < 0 . 5 < 0 . 5 2 . 7 < 0 . 5 4.40 10 / 2 5 / 1 1 1 3 < 0 . 5 0 3 . 6 6 . 7 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 0 . 5 4 N S < 0 . 5 0 < 0 . 5 0 N S 0 . 6 1 J < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 2.4 <0.50 < 0 . 5 0 < 0 . 5 0 1 . 6 < 0 . 5 0 < 3 . 0 10 / 1 8 / 1 2 2 2 < 0 . 5 0 8. 7 1 1 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 8 2 J < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 4.7 <0.50 < 0 . 5 0 < 0 . 5 0 2 . 5 < 0 . 5 0 < 3 . 0 04 / 2 5 / 0 8 B D L B D L 0 . 8 7 0 . 9 4 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L 3 . 0 B D L B D L N A N A 3.1 10 / 1 4 / 0 8 B D L B D L 1 . 0 1 . 3 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L 0 . 6 6 N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L 3 . 9 B D L B D L N A < 0 . 2 8 3.6 04 / 1 5 / 0 9 B D L B D L 0 . 6 9 0 . 6 9 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L 2 . 5 B D L B D L N A < 0 . 2 8 B D L 10 / 0 8 / 0 9 B D L B D L 0 . 7 0 0 . 6 6 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L 3 . 3 B D L B D L B D L < 0 . 2 8 B D L 04 / 1 3 / 1 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 B D L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L < 0 . 5 0 N S B D L < 0 . 5 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 5 0 0 . 8 2 B D L < 0 . 5 0 < 0 . 5 0 < 0 . 0 68 < 3 . 0 10 / 0 5 / 1 0 < 0 . 0 7 5 < 0 . 0 6 8 1 . 0 1 . 2 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 0 9 6 1 . 2 B D L < 0 . 0 6 1 <0.050 < 0 . 0 6 8 4.60 04 / 1 2 / 1 1 < 0 . 5 < 0 . 5 0 . 9 1 . 6 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L 0 . 6 9 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L < 0 . 5 3.4 0.53 < 0 . 5 < 0 . 5 < 0 . 5 8.70 10 / 2 5 / 1 1 < 0 . 5 0 < 0 . 5 0 1 . 4 2 . 1 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 1. 0 NS < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 4.6 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 6.4 04 / 2 3 / 0 8 1 9 0 N A 6. 0 9 6 BD L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L N A N S B D L B D L N S N S B D L N S N S B D L B D L B D L 1300 BDL B D L N A N A N A 16 10 / 1 4 / 0 8 1 2 0 B D L 6. 9 1 3 0 BD L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 980 BDL B D L B D L N A < 2 . 8 11 04 / 1 6 / 0 9 4 4 B D L B D L 63 BD L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 530 BDL B D L B D L N A < 2 . 8 13 10 / 0 7 / 0 9 5 7 B D L B D L 11 0 BD L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 740 BDL B D L B D L B D L < 2 . 8 6.9 04 / 1 4 / 1 0 7 2 < 5 . 0 5 . 2 12 0 BD L N S < 5 . 0 B D L N A < 5 . 0 B D L N S N A B D L < 5 . 0 N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 870 <5.0 B D L < 5 . 0 < 5 . 0 < 2 . 8 5.4 10 / 0 6 / 1 0 7 8 < 0 . 0 6 8 7. 6 1 9 0 BD L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L 0 . 8 7 N S B D L 1 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 1000 5 . 6 BDL < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 14.0 04 / 1 2 / 1 1 1 8 0 < 5 . 0 < 5 . 0 94 BD L N S < 5 . 0 B D L < 1 0 0 < 5 . 0 B D L N S < 5 . 0 B D L < 5 . 0 N S B D L < 5 . 0 N S < 1 0 B D L N S N S < 5 0 N S N S < 1 0 < 5 . 0 B D L 1300 <5.0 < 5 . 0 < 5 . 0 < 5 . 0 < 5 . 0 9.5 10 / 2 6 / 1 1 2 1 0 8 . 6 8. 0 1 5 0 53 N S < 5 . 0 1 5 < 1 0 0 < 5 . 0 < 1 0 N S < 5 . 0 34 <5 . 0 N S < 5 . 0 1 1 N S < 1 0 1 3 N S N S < 5 0 N S N S 70 48 8 . 3 1000 <5.0 < 5 . 0 < 5 . 0 < 5 . 0 < 5 . 0 11 10 / 1 8 / 1 2 21 0 <2 . 5 8. 4 8 0 <2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 5 0 < 2 . 5 < 5 . 0 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 5 . 0 < 2 . 5 < 1 , 0 0 0 < 5 . 0 < 2 5 < 5 . 0 < 1 0 < 5 . 0 < 7 . 5 < 2 . 5 1,100 <2.5 < 2 . 5 < 2 . 5 8 . 9 < 2 . 5 6.2 04 / 2 3 / 0 8 3 . 3 B D L B D L 0 . 8 1 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 29 BDL B D L B D L N A N A 3.1 10 / 1 4 / 0 8 4 . 2 B D L B D L 1 . 3 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 31 BDL B D L B D L N A < 0 . 2 8 B D L 04 / 1 6 / 0 9 6 . 0 B D L B D L 1 . 8 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 64 BDL B D L B D L N A < 0 . 2 8 B D L 10 / 0 7 / 0 9 5 . 9 B D L B D L 1 . 3 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 72 BDL B D L B D L B D L < 0 . 2 8 B D L 04 / 1 4 / 1 0 5 . 7 < 0 . 5 0 < 0 . 5 0 1 . 2 B D L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L < 0 . 5 0 N S B D L < 0 . 5 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 75 <0.50 B D L < 0 . 5 0 < 0 . 5 0 < 0 . 2 8 < 3 . 0 10 / 0 6 / 1 0 1 2 < 0 . 0 6 8 < 0 . 0 3 8 4 . 0 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 140 <0.044 B D L < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 5.4 04 / 1 2 / 1 1 1 5 < 2 . 0 < 2 . 0 4 . 4 B D L N S < 2 . 0 B D L < 4 0 < 2 . 0 B D L N S < 2 . 0 B D L < 2 . 0 N S B D L < 2 . 0 N S < 4 . 0 B D L N S N S < 2 0 N S N S < 4 . 0 < 2 . 0 B D L 170 <2.0 < 2 . 0 < 2 . 0 < 2 . 0 < 2 . 0 < 3 . 0 10 / 2 6 / 1 1 1 3 < 2 . 0 < 2 . 0 3 . 7 < 2 . 0 N S < 2 . 0 < 2 . 0 < 4 0 < 2 . 0 < 4 . 0 N S < 2 . 0 < 2 . 0 < 2 . 0 N S < 2 . 0 < 2 . 0 N S < 4 . 0 < 2 . 0 N S N S < 2 0 N S N S < 4 . 0 < 6 . 0 < 2 . 0 150 <2.0 < 2 . 0 < 2 . 0 < 2 . 0 < 2 . 0 3.8 10 / 1 8 / 1 2 3 . 7 < 0 . 5 0 < 0 . 5 0 2 . 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 .0 < 1 . 5 < 0 . 5 0 38 <0.50 < 0 . 5 0 < 0 . 5 0 1 . 1 < 0 . 5 0 < 3 . 0 TCE (ug/l) C h l o r o f o r m ( u g / l ) C h l o r o e t h a n e ( u g / l ) Mo n i t o r i n g We l l 2-Butanone (ug/l)Total Xylenes (ug/l) D i b r o m o m e t h a n e ( u g / l ) B r o m o c h l o r o m e t h a n e ( u g / l ) Vinyl Chloride (ug/l) 1 , 2 - D C A ( u g / l ) 1 , 1 , 2 - T C A ( u g / l ) Trichlorofluoromethane (ug/l)PCE (ug/l)trans-1,2-DCE (ug/l)tert-Butylbenzene (ug/l) E t h y l b e n z e n e ( u g / l ) B r o m o m e t h a n e ( u g / l ) MW - 2 S MW - 4 S C a r b o n T e t r a c h l o r i d e ( u g / l ) 1 , 2 , 4 - T r i m e t h y l b e n z e n e ( u g / l ) MW - 4 D B e n z e n e ( u g / l ) MW - 3 S 1 , 1 , 1 - T C A ( u g / l ) MW - 2 D MW - 3 D A c e t o n e ( u g / l ) 1 , 1 - D C A ( u g / l ) 1 , 2 - D i c h l o r o b e n z e n e ( u g / l ) 1 , 1 - D C E ( u g / l ) Da t e Sa m p l e d 2L S t a n d a r d s Toluene (ug/l)1,4-Dioxane (ug/l) c i s - 1 , 2 - D C E ( u g / l ) C h l o r o m e t h a n e ( u g / l ) B r o m o d i c h l o r o m e t h a n e ( u g / l ) 2 - H e x a n o n e ( u g / l ) E t h a n o l ( u g / l ) Methyl Isobutyl Ketone (ug/l)Napthalene (ug/l) D i c h l o r o d i f l u o r o m e t h a n e ( u g / l ) Methylene Chloride (ug/l) 1 , 3 , 5 - T r i m e t h y l b e n z e n e ( u g / l ) Pa g e 1 o f 4 Ta b l e 1 Hi s t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N o r t h C a r o l i n a 20 0 0 . 6 6 7 4 0 0 2 0 0 . 4 4 0 0 6 0 0 0 1 1 0 0 N E N E N E 7 0 N E 3 7 0 N E 1 0 0 0 6 0 0 4 0 0 0 4 0 4 0 0 0 1 0 0 5 6 5 0 0 7 0 0 . 7 3 6 0 0 6 0 2 , 0 0 0 0 . 0 3 3 TCE (ug/l) C h l o r o f o r m ( u g / l ) C h l o r o e t h a n e ( u g / l ) Mo n i t o r i n g We l l 2-Butanone (ug/l)Total Xylenes (ug/l) D i b r o m o m e t h a n e ( u g / l ) B r o m o c h l o r o m e t h a n e ( u g / l ) Vinyl Chloride (ug/l) 1 , 2 - D C A ( u g / l ) 1 , 1 , 2 - T C A ( u g / l ) Trichlorofluoromethane (ug/l)PCE (ug/l)trans-1,2-DCE (ug/l)tert-Butylbenzene (ug/l) E t h y l b e n z e n e ( u g / l ) B r o m o m e t h a n e ( u g / l ) C a r b o n T e t r a c h l o r i d e ( u g / l ) 1 , 2 , 4 - T r i m e t h y l b e n z e n e ( u g / l ) B e n z e n e ( u g / l ) 1 , 1 , 1 - T C A ( u g / l ) A c e t o n e ( u g / l ) 1 , 1 - D C A ( u g / l ) 1 , 2 - D i c h l o r o b e n z e n e ( u g / l ) 1 , 1 - D C E ( u g / l ) Da t e Sa m p l e d 2L S t a n d a r d s Toluene (ug/l)1,4-Dioxane (ug/l) c i s - 1 , 2 - D C E ( u g / l ) C h l o r o m e t h a n e ( u g / l ) B r o m o d i c h l o r o m e t h a n e ( u g / l ) 2 - H e x a n o n e ( u g / l ) E t h a n o l ( u g / l ) Methyl Isobutyl Ketone (ug/l)Napthalene (ug/l) D i c h l o r o d i f l u o r o m e t h a n e ( u g / l ) Methylene Chloride (ug/l) 1 , 3 , 5 - T r i m e t h y l b e n z e n e ( u g / l ) 04 / 2 5 / 0 8 B D L B D L 11 6. 0 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L 6 . 5 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 0 . 6 0 0 . 5 3 B D L B D L N A N A 59 10 / 1 4 / 0 8 B D L B D L 9. 1 4. 5 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L 5 . 4 N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L 0 . 5 5 B D L B D L N A 1 . 2 36 04 / 1 6 / 0 9 B D L B D L 1 . 1 B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A < 0 . 2 8 34 10 / 0 8 / 0 9 B D L B D L 3 . 2 0 . 9 4 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L 0 . 9 7 N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L 1 . 1 B D L B D L B D L < 0 . 2 8 96 04 / 1 3 / 1 0 < 0 . 5 0 < 0 . 5 0 2 . 0 0 . 7 8 B D L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L < 0 . 5 0 N S B D L 1 . 7 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 5 0 0 . 5 1 B D L < 0 . 5 0 < 0 . 5 0 < 0 . 2 8 62.0 10 / 0 5 / 1 0 < 0 . 0 7 5 < 0 . 0 6 8 1 . 8 0 . 9 0 B D L N S < 0 . 0 5 4 B D L 1 8 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L 1 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 0 9 6 < 0 . 0 4 4 B D L < 0 . 0 6 1 < 0.050 < 0 . 0 6 8 18.0 04 / 1 1 / 1 1 < 0 . 5 < 0 . 5 4 . 4 2 . 1 B D L N S < 0 . 5 B D L < 1 0 1. 6 BD L N S < 0 . 5 B D L < 0 . 5 N S B D L 3 . 0 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S 2 . 6 0 . 8 3 B D L < 0 . 5 < 0 . 5 1 . 1 < 0 . 5 < 0 . 5 1.2 3 1 . 0 10 / 2 5 / 1 1 < 0 . 5 0 < 0 . 5 0 6. 0 2. 3 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 1. 5 <1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 2 . 9 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 0 . 7 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 1 . 7 32 10 / 1 8 / 1 2 2 . 3 < 0 . 5 0 1 . 4 0 . 6 7 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 1.8 <0.50 < 0 . 5 0 < 0 . 5 0 0 . 6 4 < 0 . 5 0 30 04 / 2 4 / 0 8 2 . 8 B D L 0 . 7 1 1 . 3 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 0 . 6 0 B D L B D L B D L N A N A 3.3 10 / 1 5 / 0 8 2 . 9 B D L 0 . 7 4 0 . 7 7 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 0.79 BDL B D L B D L N A < 0 . 2 8 B D L 04 / 1 6 / 0 9 2 . 1 B D L 0 . 6 2 2 . 1 0 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 0 . 6 7 B D L B D L B D L N A < 0 . 2 8 B D L 10 / 0 8 / 0 9 5 . 7 B D L 1 . 4 3 . 7 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 1.40 BDL B D L B D L B D L < 0 . 2 8 B D L 04 / 1 3 / 1 0 8 . 2 < 1 . 0 2 . 6 1 . 5 B D L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L < 1 . 0 N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.0 <2.0 B D L < 2 . 0 < 5 . 0 < 0 . 0 6 8 < 3 . 0 10 / 0 5 / 1 0 1 4 < 0 . 0 6 8 3 . 8 4 . 5 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 3.5 <0.044 B D L < 0 . 0 6 1 1 . 1 < 0 . 0 6 8 4.20 04 / 1 3 / 1 1 9 . 6 < 0 . 5 2 . 1 5 . 7 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 2.1 <0.5 < 0 . 5 < 0 . 5 0 . 8 4 < 0 . 5 3.10 10 / 2 6 / 1 1 1 8 < 0 . 5 0 5 . 4 10 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S 0 . 8 8 J < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 4.4 <0.50 < 0 . 5 0 < 0 . 5 0 2 . 0 < 0 . 5 0 3.0 04 / 1 6 / 0 9 1 1 3 . 0 85 4 6 0 BD L N S 5. 6 BD L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 110 2 . 8 BDL B D L N A < 1 . 1 980 10 / 0 8 / 0 9 1 4 4 . 2 86 5 3 0 BD L N S 8. 5 BD L N A B D L B D L N S N A B D L 1 2 N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 130 4 . 9 BDL B D L B D L < 1 . 1 1000 04 / 1 4 / 1 0 1 3 3 . 2 80 3 8 0 BD L N S 6. 4 BD L N A < 1 . 0 B D L N S N A B D L 1 1 N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 100 2.8 B D L < 2 . 0 < 5 . 0 < 0 . 0 6 8 460 10 / 0 6 / 1 0 1 2 3 . 6 88 6 3 0 BD L N S 7. 3 BD L < 1 . 5 < 0 . 0 5 4 B D L N S 0 . 6 5 B D L 1 1 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 120 2.3 B D L < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 1000 04 / 1 3 / 1 1 1 3 4 . 2 10 0 5 6 0 BD L N S 7. 7 BD L < 1 0 < 0 . 5 B D L N S 0 . 6 2 B D L 1 0 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S 1 4 N S N S < 1 . 0 < 0 . 5 B D L 110 2.5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 1200 10 / 2 6 / 1 1 1 1 < 5 . 0 94 5 2 0 9. 2 N S 7. 2 <5 . 0 < 1 0 0 < 5 . 0 < 1 0 N S < 5 . 0 < 5 . 0 8 . 9 N S < 5 . 0 < 5 . 0 N S < 1 0 < 5 . 0 N S N S 6 7 N S N S 10 8.6 J < 5 . 0 110 <5.0 < 5 . 0 < 5 . 0 < 5 . 0 < 5 . 0 1000 04 / 2 3 / 0 8 1 8 0 B D L B D L 2 7 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 3.5 BDL B D L B D L N A N A B D L 10 / 1 5 / 0 8 2 8 0 B D L 0 . 5 5 3 4 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 3.4 BDL B D L B D L N A < 0 . 2 8 B D L 04 / 1 6 / 0 9 1 2 0 B D L 1 . 2 0 1 5 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.5 BDL B D L B D L N A < 0 . 2 8 B D L 10 / 0 7 / 0 9 1 6 0 B D L B D L 1 4 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.3 BDL B D L B D L B D L < 0 . 2 8 B D L 04 / 1 4 / 1 0 21 0 <1 . 0 < 1 . 0 18 BD L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L < 1 . 0 N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 3.2 <2.0 B D L < 2 . 0 < 5 . 0 < 0 . 0 6 8 < 3 . 0 10 / 0 5 / 1 0 27 0 <0 . 0 6 8 0 . 9 3 27 BD L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 4.7 <0.044 B D L < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 4.7 04 / 1 2 / 1 1 1 9 0 < 2 . 0 6. 2 2 4 BD L N S < 2 . 0 B D L < 4 0 < 2 . 0 B D L N S < 2 . 0 B D L < 2 . 0 N S B D L < 2 . 0 N S < 4 . 0 B D L N S N S < 2 0 N S N S < 4 . 0 < 2 . 0 B D L 3.3 <2.0 < 2 . 0 < 2 . 0 < 2 . 0 < 2 . 0 < 3 . 0 10 / 2 6 / 1 1 1 7 0 < 2 . 0 < 2 . 0 19 <2 . 0 N S < 2 . 0 < 2 . 0 < 4 0 < 2 . 0 < 4 . 0 N S < 2 . 0 < 2 . 0 < 2 . 0 N S < 2 . 0 < 2 . 0 N S < 4 . 0 < 2 . 0 N S N S < 2 0 N S N S < 4 . 0 < 6 . 0 < 2 . 0 2.5 <2.0 < 2 . 0 < 2 . 0 < 2 . 0 < 2 . 0 < 3 . 0 04 / 1 4 / 1 0 0 . 7 3 J < 1 . 0 1 . 2 29 BD L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L < 1 . 0 N S B D L 5 . 4 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 27 1 8 BDL < 2 . 0 < 5 . 0 0.78 J 1 1 . 0 10 / 0 6 / 1 0 0 . 8 7 < 0 . 0 6 8 1 . 7 22 BD L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L 0 . 7 4 N S B D L 3 . 6 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 42 2 1 BDL < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 11.0 04 / 1 2 / 1 1 0 . 7 8 < 0 . 5 1 . 1 26 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L 0 . 8 6 N S B D L 1 . 2 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 67 1 7 <0.5 < 0 . 5 < 0 . 5 < 0 . 5 13.0 10 / 2 5 / 1 1 4 . 4 < 0 . 5 0 2 . 8 47 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 1 . 1 N S < 0 . 5 0 3 . 9 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 100 2 5 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 9.3 10 / 2 2 / 1 2 5 . 3 < 0 . 5 0 2 . 7 65 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 9 9 < 0 . 5 0 < 0 . 5 0 2 . 7 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 430 3 0 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 98 04 / 1 3 / 1 0 1 . 7 < 0 . 5 0 2 . 6 1 . 9 B D L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L 0 . 7 4 N S B D L < 0 . 5 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 11 0.79 B D L < 0 . 5 0 < 0 . 5 0 < 0 . 2 8 22 10 / 0 5 / 1 0 2 . 9 < 0 . 0 6 8 3 . 0 7. 1 BD L N S < 0 . 0 5 4 B D L 2 3 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L 0 . 6 6 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 16 1.1 B D L < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 35 04 / 1 2 / 1 1 2 . 0 < 0 . 5 2 . 7 11 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L 0 . 6 6 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 16 0.87 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 31 10 / 2 5 / 1 1 2 . 9 < 0 . 5 0 4 . 3 17 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 0 . 7 8 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 22 1.4 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 30 10 / 2 2 / 1 2 2 . 8 < 0 . 5 0 4 . 2 19 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 6 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 21 1.4 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 69 04 / 2 4 / 0 8 5 6 B D L 5 . 7 11 BD L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 110 BDL B D L B D L N A N A 15 10 / 1 4 / 0 8 6 7 B D L 8. 8 3 0 BD L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 140 BDL B D L B D L N A < 0 . 2 8 12 04 / 1 5 / 0 9 6 5 B D L 6. 5 2 6 BD L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 160 BDL B D L B D L N A < 0 . 2 8 13 10 / 0 7 / 0 9 4 7 B D L 5 . 1 13 BD L N S B D L B D L N A B D L B D L N S N A B D L 0 . 5 7 N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 140 BDL B D L B D L B D L < 0 . 2 8 23 04 / 1 4 / 1 0 7 6 < 0 . 5 0 3 8. 6 BD L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L 0 . 5 2 N S B D L < 0 . 5 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 190 <0.50 B D L < 0 . 5 0 < 0 . 5 0 < 0 . 2 8 14 10 / 0 6 / 1 0 7 3 < 0 . 0 6 8 4 . 4 25 BD L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L 0 . 5 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 220 <0.044 B D L < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 16 04 / 1 2 / 1 1 5 3 < 0 . 5 5 . 2 25 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L 0 . 9 6 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 91 <0.5 < 0 . 5 < 0 . 5 0 . 5 7 < 0 . 5 11 10 / 2 6 / 1 1 5 1 < 0 . 5 0 8. 2 2 1 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 100 <0.50 < 0 . 5 0 < 0 . 5 0 1 . 6 < 0 . 5 0 16 10 / 2 2 / 1 2 5 3 < 0 . 5 0 6. 6 2 7 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 130 <0.50 < 0 . 5 0 < 0 . 5 0 8 . 1 < 0 . 5 0 16 MW - 1 3 D MW - 1 3 S MW - 2 I K MW - 2 S K MW - 3 D K MW - 1 2 S MW - 1 4 D Pa g e 2 o f 4 Ta b l e 1 Hi s t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N o r t h C a r o l i n a 20 0 0 . 6 6 7 4 0 0 2 0 0 . 4 4 0 0 6 0 0 0 1 1 0 0 N E N E N E 7 0 N E 3 7 0 N E 1 0 0 0 6 0 0 4 0 0 0 4 0 4 0 0 0 1 0 0 5 6 5 0 0 7 0 0 . 7 3 6 0 0 6 0 2 , 0 0 0 0 . 0 3 3 TCE (ug/l) C h l o r o f o r m ( u g / l ) C h l o r o e t h a n e ( u g / l ) Mo n i t o r i n g We l l 2-Butanone (ug/l)Total Xylenes (ug/l) D i b r o m o m e t h a n e ( u g / l ) B r o m o c h l o r o m e t h a n e ( u g / l ) Vinyl Chloride (ug/l) 1 , 2 - D C A ( u g / l ) 1 , 1 , 2 - T C A ( u g / l ) Trichlorofluoromethane (ug/l)PCE (ug/l)trans-1,2-DCE (ug/l)tert-Butylbenzene (ug/l) E t h y l b e n z e n e ( u g / l ) B r o m o m e t h a n e ( u g / l ) C a r b o n T e t r a c h l o r i d e ( u g / l ) 1 , 2 , 4 - T r i m e t h y l b e n z e n e ( u g / l ) B e n z e n e ( u g / l ) 1 , 1 , 1 - T C A ( u g / l ) A c e t o n e ( u g / l ) 1 , 1 - D C A ( u g / l ) 1 , 2 - D i c h l o r o b e n z e n e ( u g / l ) 1 , 1 - D C E ( u g / l ) Da t e Sa m p l e d 2L S t a n d a r d s Toluene (ug/l)1,4-Dioxane (ug/l) c i s - 1 , 2 - D C E ( u g / l ) C h l o r o m e t h a n e ( u g / l ) B r o m o d i c h l o r o m e t h a n e ( u g / l ) 2 - H e x a n o n e ( u g / l ) E t h a n o l ( u g / l ) Methyl Isobutyl Ketone (ug/l)Napthalene (ug/l) D i c h l o r o d i f l u o r o m e t h a n e ( u g / l ) Methylene Chloride (ug/l) 1 , 3 , 5 - T r i m e t h y l b e n z e n e ( u g / l ) 04 / 2 4 / 0 8 8 . 7 B D L B D L 0 . 6 2 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 55 BDL B D L B D L N A N A 5.2 10 / 1 4 / 0 8 1 2 B D L B D L 1 . 5 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 61 BDL B D L B D L N A < 0 . 2 8 B D L 04 / 1 5 / 0 9 1 1 B D L B D L 1 . 2 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 71 BDL B D L B D L N A < 0 . 2 8 B D L 10 / 0 7 / 0 9 1 3 B D L B D L 1 . 8 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 100 BDL B D L B D L B D L < 0 . 2 8 B D L 04 / 1 4 / 1 0 1 . 6 < 1 . 0 < 1 . 0 < 1 . 0 B D L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L < 1 . 0 N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 13 <2.0 B D L < 2 . 0 < 5 . 0 < 0 . 0 6 8 2 . 8 J 10 / 0 6 / 1 0 1 1 < 0 . 0 6 8 < 0 . 0 3 8 3 . 0 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 100 <0.044 B D L < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 5.5 04 / 1 2 / 1 1 1 9 < 0 . 5 < 0 . 5 5 . 2 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 140 <0.5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 3.1 10 / 2 6 / 1 1 1 4 < 0 . 5 0 0 . 5 2 3 . 9 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 110 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 10 / 2 2 / 1 2 0 . 9 7 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 6.4 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 04 / 2 3 / 0 8 B D L B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L 2 . 3 N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A N A 3.1 10 / 1 4 / 0 8 B D L B D L 0 . 5 2 0 . 5 5 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L 3 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A < 0 . 2 8 B D L 04 / 1 5 / 0 9 B D L B D L 0 . 7 0 0 . 9 4 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L 3 . 4 N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L 1 . 1 B D L B D L N A < 0 . 2 8 B D L 10 / 0 7 / 0 9 B D L B D L B D L 0 . 6 3 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L 3 . 3 N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L B D L 0.57 BDL 04 / 1 2 / 1 0 < 0 . 5 0 < 0 . 5 0 0 . 6 6 1 . 2 B D L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L < 0 . 5 0 N S B D L 5 . 7 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 5 0 1 . 4 B D L < 0 . 5 0 < 0 . 5 0 < 0 . 2 8 < 3 . 0 10 / 0 5 / 1 0 < 0 . 0 7 5 < 0 . 0 6 8 0 . 6 5 0 . 9 0 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L 5 . 2 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 0 9 6 < 0 . 0 4 4 B D L < 0 . 0 61 < 0 . 0 5 0 < 0 . 0 6 8 < 1 . 5 04 / 1 2 / 1 1 < 0 . 5 < 0 . 5 0 . 5 0 . 7 4 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L 3 . 6 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 4.0 10 / 2 5 / 1 1 < 0 . 5 0 < 0 . 5 0 0 . 5 7 0 . 8 2 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 1 . 8 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S 76 4. 9 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0.63 <3.0 10 / 2 2 / 1 2 < 0 . 5 0 < 0 . 5 0 0 . 6 3 1 . 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 5 . 6 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0.55 <3.0 04 / 2 3 / 0 8 B D L B D L B D L 2 . 9 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.7 4.1 B D L B D L N A N A B D L 10 / 1 4 / 0 8 B D L B D L B D L 2 . 7 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.8 4.8 B D L B D L N A < 0 . 2 8 B D L 04 / 1 4 / 0 9 B D L B D L B D L 3 . 1 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.8 4.9 B D L B D L N A < 0 . 2 8 B D L 10 / 0 6 / 0 9 0 . 6 0 B D L B D L 2 . 6 B D L N S B D L B D L N A B D L B D L N S N A B D L 0 . 9 2 N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 3.1 5 . 6 BDL B D L B D L < 0 . 2 8 B D L 04 / 1 3 / 1 0 0 . 8 0 J < 1 . 0 < 1 . 0 3 . 7 B D L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L 0 . 6 2 J N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 4.0 5 . 6 BDL < 2 . 0 < 5 . 0 < 0 . 0 6 8 < 3 . 0 10 / 0 6 / 1 0 1 . 2 < 0 . 0 6 8 0 . 6 5 3 . 8 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L 0 . 9 8 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L 4.3 6 . 4 BDL < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 6.1 04 / 1 1 / 1 1 1 . 6 < 0 . 5 0 . 7 7 5 . 0 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L 0 . 9 8 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 5.0 5 . 6 <0.5 < 0 . 5 < 0 . 5 < 0 . 5 6.3 10 / 2 5 / 1 1 2 . 9 < 0 . 5 0 1 . 6 1 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 1 . 1 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 10 8 . 3 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 6.9 10 / 2 2 / 1 2 3 . 5 < 0 . 5 0 2 . 0 15 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 7 6 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 14 7 . 0 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 17 04 / 2 3 / 0 8 B D L B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A N A B D L 10 / 1 3 / 0 8 B D L B D L B D L 1 . 4 B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 2.5 BDL B D L B D L N A < 0 . 2 8 B D L 04 / 1 4 / 0 9 B D L B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A < 0 . 2 8 B D L 10 / 0 6 / 0 9 0 . 7 6 B D L B D L 2 . 2 B D L N S B D L B D L N A B D L B D L N S N A B D L B D L N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L 8.7 0.87 B D L B D L B D L < 0 . 2 8 B D L 04 / 1 3 / 1 0 < 1 . 0 < 1 . 0 < 1 . 0 < 1 . 0 B D L N S < 1 . 0 B D L N A < 1 . 0 B D L N S N A B D L < 1 . 0 N S B D L < 5 . 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 1 . 0 < 2 . 0 B D L < 2 . 0 < 5 . 0 < 0 . 0 6 8 < 3 . 0 10 / 0 5 / 1 0 < 0 . 0 7 5 < 0 . 0 6 8 < 0 . 0 3 8 < 0 . 0 5 7 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L < 0 . 0 5 3 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 0 9 6 < 0 . 0 4 4 BDL < 0 . 0 6 1 < 0 . 0 5 0 < 0 . 0 6 8 < 1 . 5 04 / 1 1 / 1 1 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 3 . 0 10 / 2 4 / 1 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 10 / 2 2 / 1 2 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 .0 < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 04 / 2 5 / 0 8 B D L B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A N A B D L 10 / 1 5 / 0 8 B D L B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A < 0 . 2 8 B D L 04 / 1 5 / 0 9 B D L B D L B D L B D L B D L N S B D L B D L N A N A B D L N S N A B D L N A N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L N A < 0 . 2 8 B D L 10 / 0 7 / 0 9 B D L B D L B D L B D L B D L N S B D L B D L N A B D L B D L N S N A B D L 1 . 1 N S B D L B D L N S B D L B D L N S N S B D L N S N S B D L B D L B D L B D L B D L B D L B D L B D L < 0 . 2 8 B D L 04 / 1 3 / 1 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 B D L N S < 0 . 5 0 B D L N A < 0 . 5 0 B D L N S N A B D L 1 . 4 N S B D L < 0 . 5 0 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 5 0 < 0 . 5 0 B D L < 0 . 5 0 < 0 . 5 0 < 0 . 2 8 <3.0 10 / 0 5 / 1 0 < 0 . 0 7 5 < 0 . 0 6 8 < 0 . 0 3 8 < 0 . 0 5 7 B D L N S < 0 . 0 5 4 B D L < 1 . 5 < 0 . 0 5 4 B D L N S < 0 . 0 3 1 B D L 1 . 2 N S B D L < 0 . 0 6 1 N S B D L B D L N S N S B D L N S N S B D L B D L B D L < 0 . 0 9 6 < 0 . 0 4 4 B D L <0.061 < 0 . 0 5 0 < 0 . 0 6 8 < 1 . 5 04 / 1 1 / 1 1 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L 1 . 1 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 < 3 . 0 10 / 2 4 / 1 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 4. 6 <1 . 0 N S < 0 . 5 0 < 0 . 5 0 1 . 2 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 10 / 2 2 / 1 2 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 .0 < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 6 3 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 3 . 0 04 / 1 3 / 1 1 1 8 < 0 . 5 5 . 1 13 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 4.6 <0.5 < 0 . 5 < 0 . 5 1 . 0 < 0 . 5 8.7 10 / 2 6 / 1 1 1 5 < 0 . 5 0 3 . 4 8. 8 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 4.1 <0.50 < 0 . 5 0 < 0 . 5 0 1 . 4 < 0 . 5 0 5.1 04 / 1 2 / 1 1 1 3 < 0 . 5 3 . 5 22 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L 0 . 6 9 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 120 E 0.51 < 0 . 5 < 0 . 5 < 0 . 5 < 0 . 5 12.0 10 / 2 6 / 1 1 1 1 < 0 . 5 0 3 . 6 21 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 0 . 6 7 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 120 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 14.0 10 / 2 2 / 1 2 7 . 3 < 0 . 5 0 1 . 3 10 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 61 <0.50 < 0 . 5 0 < 0 . 5 0 3 5 < 0 . 5 0 20 MW - 1 2 D K MW - 1 7 I MW - 1 8 I MW - 3 S K MW - 5 S K MW - 9 S K MW - 9 D K Pa g e 3 o f 4 Ta b l e 1 Hi s t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N o r t h C a r o l i n a 20 0 0 . 6 6 7 4 0 0 2 0 0 . 4 4 0 0 6 0 0 0 1 1 0 0 N E N E N E 7 0 N E 3 7 0 N E 1 0 0 0 6 0 0 4 0 0 0 4 0 4 0 0 0 1 0 0 5 6 5 0 0 7 0 0 . 7 3 6 0 0 6 0 2 , 0 0 0 0 . 0 3 3 TCE (ug/l) C h l o r o f o r m ( u g / l ) C h l o r o e t h a n e ( u g / l ) Mo n i t o r i n g We l l 2-Butanone (ug/l)Total Xylenes (ug/l) D i b r o m o m e t h a n e ( u g / l ) B r o m o c h l o r o m e t h a n e ( u g / l ) Vinyl Chloride (ug/l) 1 , 2 - D C A ( u g / l ) 1 , 1 , 2 - T C A ( u g / l ) Trichlorofluoromethane (ug/l)PCE (ug/l)trans-1,2-DCE (ug/l)tert-Butylbenzene (ug/l) E t h y l b e n z e n e ( u g / l ) B r o m o m e t h a n e ( u g / l ) C a r b o n T e t r a c h l o r i d e ( u g / l ) 1 , 2 , 4 - T r i m e t h y l b e n z e n e ( u g / l ) B e n z e n e ( u g / l ) 1 , 1 , 1 - T C A ( u g / l ) A c e t o n e ( u g / l ) 1 , 1 - D C A ( u g / l ) 1 , 2 - D i c h l o r o b e n z e n e ( u g / l ) 1 , 1 - D C E ( u g / l ) Da t e Sa m p l e d 2L S t a n d a r d s Toluene (ug/l)1,4-Dioxane (ug/l) c i s - 1 , 2 - D C E ( u g / l ) C h l o r o m e t h a n e ( u g / l ) B r o m o d i c h l o r o m e t h a n e ( u g / l ) 2 - H e x a n o n e ( u g / l ) E t h a n o l ( u g / l ) Methyl Isobutyl Ketone (ug/l)Napthalene (ug/l) D i c h l o r o d i f l u o r o m e t h a n e ( u g / l ) Methylene Chloride (ug/l) 1 , 3 , 5 - T r i m e t h y l b e n z e n e ( u g / l ) 04 / 1 3 / 1 1 6 . 2 < 0 . 5 1 3 57 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L 0 . 5 3 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 0 . 5 < 0 . 5 B D L 33 2.0 < 0 . 5 < 0 . 5 0 . 5 6 < 0 . 5 37.0 10 / 2 6 / 1 1 5 . 5 < 0 . 5 0 8. 1 3 1 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 27 1.6 < 0 . 5 0 < 0 . 5 0 1 . 2 < 0 . 5 0 19 10 / 1 8 / 1 2 2 . 6 < 0 . 5 0 10 4 9 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 31 1.8 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 46 04 / 1 2 / 1 1 4 5 < 0 . 5 8. 8 1 1 BD L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S 0 . 5 8 J B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 6.6 <0.5 < 0 . 5 < 0 . 5 3 . 2 < 0 . 5 5.3 10 / 2 2 / 1 2 4 2 < 0 . 5 0 14 3 5 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 9 6 J < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 12 <0.50 < 0 . 5 0 < 0 . 5 0 7 . 1 < 0 . 5 0 39 04 / 1 2 / 1 1 23 0 <2 . 0 < 2 . 0 48 BD L N S < 2 . 0 B D L < 4 0 < 2 . 0 B D L N S < 4 . 0 B D L < 2 . 0 N S B D L < 2 . 0 N S < 4 . 0 B D L N S N S < 2 0 N S N S < 4 . 0 < 2 . 0 B D L 180 <2.0 < 2 . 0 < 2 . 0 < 2 . 0 < 2 . 0 < 3 . 0 10 / 2 6 / 1 1 26 0 <2 . 0 < 2 . 0 48 <2 . 0 N S < 2 . 0 < 2 . 0 < 4 0 < 2 . 0 < 4 . 0 N S < 2 . 0 < 2 . 0 < 2 . 0 N S < 2 . 0 < 2 . 0 N S < 4 . 0 < 2 . 0 N S N S < 2 0 N S N S < 4 . 0 < 6 . 0 < 2 . 0 140 <2.0 < 2 . 0 < 2 . 0 5 . 1 < 2 . 0 < 3 . 0 10 / 2 2 / 1 2 9 9 < 0 . 5 0 0 . 6 7 29 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 560 <0.50 < 0 . 5 0 < 0 . 5 0 1 . 9 < 0 . 5 0 < 3 . 0 04 / 1 3 / 1 1 1 9 < 0 . 5 < 0 . 5 2 . 4 B D L N S < 0 . 5 B D L < 1 0 < 0 . 5 B D L N S < 0 . 5 B D L < 0 . 5 N S B D L < 0 . 5 N S < 1 . 0 B D L N S N S < 5 . 0 N S N S < 1 . 0 < 0 . 5 B D L 1.8 <0.5 < 0 . 5 < 0 . 5 3 . 9 < 0 . 5 < 3 . 0 10 / 2 6 / 1 1 3 5 < 0 . 5 0 < 0 . 5 0 4. 0 <0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 N S < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 N S < 0 . 5 0 < 0 . 5 0 N S < 1 . 0 < 0 . 5 0 N S N S < 5 . 0 N S N S < 1 . 0 < 1 . 5 < 0 . 5 0 0.94 <0.50 < 0 . 5 0 < 0 . 5 0 2 . 8 < 0 . 5 0 < 3 . 0 MW - 2 2 S 10 / 1 8 / 1 2 3 4 2. 2 1 0 0 3 4 0 <0 . 5 0 0 . 5 8 2. 6 <0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 4 . 6 < 0 . 5 0 < 0 . 5 0 0 . 9 5 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 140 2.2 < 0 . 5 0 < 0 . 5 0 5 . 6 < 0 . 5 0 760 MW - 2 3 S 10 / 1 8 / 1 2 5 4 < 2 5 26 0 <2 5 < 2 5 < 2 5 < 2 5 < 2 5 5 2 0 < 2 5 29 0 <2 5 < 2 5 < 2 5 < 2 5 < 2 5 1, 7 0 0 <2 5 < 2 5 < 5 0 < 2 5 20 , 0 0 0 <5 0 < 2 5 0 < 5 0 < 1 0 0 < 5 0 < 7 5 < 2 5 34 <25 < 2 5 < 2 5 6 8 < 2 5 110 MW - 2 4 D 10 / 1 8 / 1 2 1 1 0 < 0 . 5 0 50 2 8 <0 . 5 0 < 0 . 5 0 0. 5 9 <0 . 5 0 4 . 3 J < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 7. 2 0. 8 9 < 0 . 5 0 3 . 2 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 20 <0.50 < 0 . 5 0 < 0 . 5 0 1 0 < 0 . 5 0 30 MW - 2 4 S 10 / 1 8 / 1 2 3 5 2. 6 1 1 0 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 4. 1 <0 . 5 0 1 9 0 1. 2 83 2 . 5 < 0 . 5 0 < 0 . 5 0 8 . 2 1 . 0 12 0 <0 . 5 0 4 . 5 1 . 5 < 0 . 5 0 9 3 0 2 . 0 6 . 3 0 . 7 5 J 1 . 4 J < 1 . 0 < 1 . 5 < 0 . 5 0 5.3 <0.50 < 0 . 5 0 < 0 . 5 0 1 8 < 0 . 5 0 350 No t e s : ug / l - m i c r o g r a m s p e r l i t e r BD L - A n a l y t e n o t d e t e c t e d a t o r a b o v e l a b o r a t o r y p r a c t i c a l q u a n t i t a t i o n l i m i t ( P Q L ) . NA - N o t a n a l y z e d f o r c o n s t i t u e n t NS - N o t s a m p l e d E - E s t i m a t e v a l u e , c a l i b . R a n g e w a s e x c e e d e d J - E s t i m a t e d v a l u e b e l o w l a b o r a t o r y P Q L . MW - 2 1 I MW - 1 9 I MW - 2 0 I MW - 2 2 I Pa g e 4 o f 4 Table 2 Groundwater Analytical Results - Temporary Wells Former Alcatel Facility Raleigh, North Carolina 1, 4 - D i o x a n e 1, 1 , 1 - T r i c h l o r o e t h a n e 1, 1 , 2 - T r i c h l o r o e t h a n e 1, 1 - D i c h l o r o e t h a n e 1, 1 - D i c h l o r o e t h e n e 1, 2 - D i c h l o r o e t h a n e Ch l o r o f o r m ci s - 1 , 2 - D i c h l o r o e t h e n e Te t r a c h l o r o e t h e n e Tr i c h l o r o e t h e n e Tr i c h l o r o f l u o r o m e t h a n e 7 200 210,000 70 7 0.38 70 70 0.7 2.8 2,100 3 200 0.6*6 7 0.4 70 70 0.7 3 2,000 SB-5 9/25/2008 5,100 9.3 9.7 220 1,000 9.3 17 <2.0 68 2.9 <2.0 6436.2 SB-8 9/25/2008 360 170 2.2 110 210 <0.5 1.5 <0.5 48 0.84 <0.5 902.54 SB-11 9/25/2008 120 2,300 7.4 530 2,300 12 <0.5 2.3 480 5.3 5.6 5762.6 SB-12 9/25/2008 1,100 110 <5.0 1,000 1,400 8.6 <5.0 12 140 <5.0 <5.0 3770.6 SB-19 9/25/2008 1,100 <5.0 <5.0 130 2,600 12 17 <5.0 110 16 <5.0 3985 NC 2L Groundwater Standards Sample ID Sample Date VOC 8260 (ug/L) Total VOCs NC Groundwater Quality Standard (NCGQS) SB-19 9/25/2008 1,100 <5.0 <5.0 130 2,600 12 17 <5.0 110 16 <5.0 3985 SB-21 9/25/2008 4 4.4 <5.0 8.4 4 <0.5 <0.5 <0.5 1.5 <0.5 <0.5 22.3 DUP 01 9/25/2008 280 180 2.2 110 220 <0.5 1.5 <0.5 51 0.9 <0.5 845.6 NOTES:NC Groundwater Quality Standard (NCGQS) - Groundwater standards established prior to 2010. NC 2L Groundwater Standards - Groundwater standards established under 15A NCAC 2L .0202. Effective January 1, 2010. *Interim Maximum Allowable Concentation (IMAC) established under 15A NCAC 2L .0202. Effective August 1, 2010. (ug/L) = Micrograms per liter VOC = Volatile Organic Compounds NA - not applicable Concentrations which exceed the NCGQS are highlighted in BOLD Table 3 Groundwater Elevations Former Alcatel Facility Raleigh, North Carolina Top Bottom Oct-11 225.81 217.10 8.71 65.0 55.0 65.0 Oct-12 225.81 65.0 55.0 65.0 MW-2DR Oct-12 224.29 162.69 61.60 73.0 58.0 73.0 Oct-11 225.59 217.00 8.59 18.0 8.0 18.0 Oct-12 225.59 18.0 8.0 18.0 Oct-11 228.48 216.79 11.69 70.0 55.0 70.0 Oct-12 228.48 217.84 10.64 70.0 55.0 70.0 Oct-11 228.55 214.43 14.12 20.5 10.5 20.5 Oct-12 228.55 20.5 10.5 20.5 Oct-11 227.20 213.71 13.49 67.0 37.0 67.0 Oct-12 226.44 214.70 11.74 67.0 37.0 67.0 Oct-11 226.71 214.15 12.56 15.0 10.0 15.0 Oct-12 226.17 215.44 10.73 15.0 10.0 15.0 Oct-11 229.63 NM NM 14.0 4.0 14.0 Oct-12 228.84 217.31 11.53 14.0 4.0 14.0 Oct-11 227.05 208.76 18.29 20.0 10.0 20.0 Oct-12 228.39 209.55 18.84 20.0 10.0 20.0 Oct-11 221.85 210.11 11.74 65.0 Unknown Unknown Oct-12 221.85 211.45 10.40 65.0 Unknown Unknown Oct-11 229.42 216.68 12.74 35.0 Unknown Unknown Oct-12 229.42 35.0 Unknown Unknown Oct-11 229.48 215.97 13.51 15.0 5.0 15.0 Oct-12 229.48 15.0 5.0 15.0 Oct-11 NM NM 13.36 Unknown Unknown Unknown Oct-12 Unknown Unknown Unknown Unknown Oct-11 227.40 217.10 10.30 56.0 36.0 56.0 Oct-12 227.40 56.0 36.0 56.0 Oct-11 232.34 217.93 14.41 80.0 Unknown Unknown Oct-12 231.89 218.52 13.37 80.0 Unknown Unknown Inaccessible MW-2D* MW-2S MW-3D* Inaccessible MW-4D* MW-3S Monitoring Well Top of Casing Elevation (feet) Depth to Water (feet) Total Well Depth (feet) Groundwater Elevation (feet) Screen Interval (feet) Replaced by MW-2DR Date MW-14D* MW-4S MW-11S MW-12S MW-12DK* AbandonedMW-13D* MW-16D* MW-2IK AbandonedMW-13S AbandonedMW-13Sr Abandoned Page 1 of 2 Oct-12 231.89 218.52 13.37 80.0 Unknown Unknown Oct-11 223.36 210.32 13.04 40.9 32.0 42.0 Oct-12 223.36 210.45 12.91 40.9 32.0 42.0 Oct-11 223.47 210.22 13.25 20.0 10.0 20.0 Oct-12 223.47 211.60 11.87 20.0 10.0 20.0 Oct-11 225.90 211.63 14.27 33.2 Unknown Unknown Oct-12 225.90 213.43 12.47 33.2 Unknown Unknown Oct-11 225.51 211.90 13.61 17.0 7.0 17.0 Oct-12 225.51 214.02 11.49 17.0 7.0 17.0 Oct-11 215.28 206.47 8.81 24.0 14.0 24.0 Oct-12 215.28 206.75 8.53 24.0 14.0 24.0 Oct-11 216.95 204.10 12.85 70.0 55.0 70.0 Oct-12 216.95 204.98 11.97 70.0 55.0 70.0 Oct-11 217.04 205.29 11.75 46.0 6.0 46.0 Oct-12 217.04 206.37 10.67 46.0 6.0 46.0 Oct-11 223.80 NM NM 24.0 9.0 18.0 Oct-12 223.80 24.0 9.0 18.0 Oct-11 220.61 210.24 10.37 40.0 15.0 40.0 Oct-12 220.61 40.0 15.0 40.0 Oct-11 221.50 210.07 11.43 85.0 10.0 85.0 Oct-12 221.50 211.51 9.99 85.0 10.0 85.0 Oct-11 221.18 210.03 11.15 85.0 10.0 75.0 Oct-12 221.18 211.46 9.72 85.0 10.0 75.0 MW-16D* MW-2IK MW-2SK MW-3DK* MW-3SK MW-5SK MW-9DK* MW-9SK Inaccessible RW-2*Inaccessible RW-1* RW-3* RW-4* Page 1 of 2 Table 3 Groundwater Elevations Former Alcatel Facility Raleigh, North Carolina Top Bottom Monitoring Well Top of Casing Elevation (feet) Depth to Water (feet) Total Well Depth (feet) Groundwater Elevation (feet) Screen Interval (feet) Date Oct-11 220.83 209.84 10.99 88.0 7.0 72.0 Oct-12 220.83 88.0 7.0 72.0 Oct-11 220.98 209.58 11.40 74.0 13.0 53.0 Oct-12 220.98 211.00 9.98 74.0 13.0 53.0 Oct-11 220.29 206.59 13.70 85.0 10.0 85.0 Oct-12 220.29 207.69 12.60 85.0 10.0 85.0 Oct-11 219.18 205.76 13.42 48.0 10.0 48.0 Oct-12 219.18 206.82 12.36 48.0 10.0 48.0 Oct-11 217.97 205.60 12.37 48.0 13.0 48.0Oct-12 217.97 207.05 10.92 48.0 13.0 48.0 Oct-11 215.35 205.01 10.34 52.0 10.0 52.0 Oct-12 215.35 206.17 9.18 52.0 10.0 52.0 Oct-11 211.74 203.83 7.91 35.0 6.0 35.0 Oct-12 211.74 204.68 7.06 35.0 6.0 35.0 Oct-11 212.10 204.43 7.67 32.0 7.0 32.0 Oct-12 212.10 205.51 6.59 32.0 7.0 32.0 Oct-11 212.44 205.02 7.42 33.0 8.0 33.0 Oct-12 212.44 206.33 6.11 33.0 8.0 33.0Oct-11 211.64 203.98 7.66 35.0 10.0 35.0 Oct-12 211.64 204.86 6.78 35.0 10.0 35.0 Oct-11 213.87 204.14 9.73 44.0 9.0 44.0 Oct-12 213.87 205.11 8.76 44.0 9.0 44.0 Oct-11 229.72 214.49 15.23 31.0 26.0 31.0 Oct-12 229.72 31.0 26.0 31.0 Oct-11 229.74 214.16 15.58 27.0 22.0 27.0Oct-12 228.88 214.33 14.55 27.0 22.0 27.0 Oct-11 229.78 214.18 15.60 32.0 27.0 32.0 Oct-12 228.83 216.90 11.93 32.0 27.0 32.0 Oct-11 229.74 215.60 14.14 31.0 26.0 31.0 Oct-12 228.95 216.84 12.11 31.0 26.0 31.0 Oct-11 229.70 216.51 13.19 37.0 32.0 37.0 InaccessibleRW-5* RW-6* RW-7* RW-8* RW-9* RW-10* CRW-1 CRW-2 CRW-3 CRW-4 CRW-5 Not locatedMW-17I MW-18I MW-19I MW-20I MW-21I Page 2 of 2 Oct-11 229.70 216.51 13.19 37.0 32.0 37.0 Oct-12 228.95 217.92 11.03 37.0 32.0 37.0 Oct-11 229.88 217.51 12.37 32.0 27.0 32.0 Oct-12 229.88 32.0 27.0 32.0 MW-22S Oct-12 228.85 217.34 11.51 20.0 10.0 20.0 MW-23S Oct-12 227.07 218.59 8.48 18.0 8.0 18.0 MW-24S Oct-12 229.45 218.50 10.95 20.0 10.0 20.0 MW-24D Oct-12 228.99 217.67 11.32 43.0 38.0 43.0 Oct-11 223.87 215.11 8.76 31.0 5.5 30.5 Oct-12 223.87 31.0 5.5 30.5 Oct-11 228.80 220.90 7.90 29.0 4.0 29.0 Oct-12 228.80 29.0 4.0 29.0Oct-11 224.50 216.20 8.30 30.0 8.0 30.0 Oct-12 224.50 30.0 8.0 30.0Notes: NM-Not Measured * - Bedrock well Inaccessible - Wells labeled as inaccessible were covered in building demolition debris. MW-21I Not locatedMW-22I InaccessibleIW-1* InaccessibleIW-2* InaccessibleIW-3* Page 2 of 2 Ta b l e 4 Oc t o b e r 2 0 1 2 G r o u n d w a t e r A n a l y t i c a l D a t a Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N o r t h C a r o l i n a 20 0 0 . 6 6 7 4 0 0 2 0 0 . 4 4 0 0 6 0 0 0 1 1 0 0 N E N E N E 7 0 N E 3 7 0 N E 1 0 0 0 6 0 0 4 0 0 0 4 0 4 0 0 0 1 0 0 5 6 5 0 0 7 0 0 . 7 3 6 0 0 6 0 2 , 0 0 0 0 . 0 3 N A 3 MW - 2 D R 1 0 / 2 2 / 1 2 1 . 1 < 0 . 5 0 0 . 6 5 0 . 6 7 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 8 2 J < 0 . 5 0 7 8 J < 1 . 0 < 5 . 0 < 1 .0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 8 0 . 4 2 < 3 . 0 MW - 3 D 1 0 / 1 8 / 1 2 2 2 < 0 . 5 0 8. 7 1 1 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 8 2 J < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 4.7 <0.50 < 0 . 5 0 < 0 . 5 0 2 . 5 < 0 . 5 0 4 9 . 7 2 < 3 . 0 MW - 4 D 1 0 / 1 8 / 1 2 21 0 <2 . 5 8. 4 8 0 <2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 5 0 < 2 . 5 < 5 . 0 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 2 . 5 < 5 . 0 < 2 . 5 < 1 , 0 0 0 < 5 . 0 < 2 5 < 5 . 0 < 1 0 < 5 . 0 < 7 . 5 < 2 . 5 1,100 <2.5 < 2 . 5 < 2 . 5 8 . 9 < 2 . 5 1 , 4 0 7 . 3 6.2 MW - 4 S 1 0 / 1 8 / 1 2 3 . 7 < 0 . 5 0 < 0 . 5 0 2 . 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2.0 < 1 . 0 < 1 . 5 < 0 . 5 0 38 <0.50 < 0 . 5 0 < 0 . 5 0 1 . 1 < 0 . 5 0 4 4 . 9 < 3 . 0 MW - 1 2 S 1 0 / 1 8 / 1 2 2 . 3 < 0 . 5 0 1 . 4 0 . 6 7 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2.0 < 1 . 0 < 1 . 5 < 0 . 5 0 1.8 <0.50 < 0 . 5 0 < 0 . 5 0 0 . 6 4 < 0 . 5 0 6 . 8 1 30 MW - 2 S K 1 0 / 2 2 / 1 2 2 . 8 < 0 . 5 0 4 . 2 19 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 6 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 21 1.4 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 4 9 . 0 9 69 MW - 2 I K 1 0 / 2 2 / 1 2 5 . 3 < 0 . 5 0 2 . 7 65 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 9 9 < 0 . 5 0 < 0 . 5 0 2 . 7 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 430 3 0 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 5 3 6 . 6 9 98 MW - 3 D K 1 0 / 2 2 / 1 2 5 3 < 0 . 5 0 6. 6 2 7 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 130 <0.50 < 0 . 5 0 < 0 . 5 0 8 . 1 < 0 . 5 0 2 2 4 . 7 16 MW - 3 S K 1 0 / 2 2 / 1 2 0 . 9 7 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1.0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 6.4 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 7 . 3 7 < 3 . 0 MW - 5 S K 1 0 / 2 2 / 1 2 < 0 . 5 0 < 0 . 5 0 0 . 6 3 1 . 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 5 . 6 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2.0 < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0.55 8.88 < 3 . 0 MW - 9 D K 1 0 / 2 2 / 1 2 3 . 5 < 0 . 5 0 2 . 0 15 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 7 6 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 14 7 . 0 <0.50 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 4 2 . 2 6 17 MW - 9 S K 1 0 / 2 2 / 1 2 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 <1.0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 0 < 3 . 0 MW - 1 2 D K 1 0 / 2 2 / 1 2 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 6 3 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 6 3 < 3 . 0 MW - 1 8 I 1 0 / 2 2 / 1 2 7 . 3 < 0 . 5 0 1 . 3 10 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 61 <0.50 < 0 . 5 0 < 0 . 5 0 3 5 < 0 . 5 0 1 1 4 . 6 20 MW - 1 9 I 1 0 / 1 8 / 1 2 2 . 6 < 0 . 5 0 10 4 9 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 31 1.8 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 9 4 . 4 46 MW - 2 0 I 1 0 / 2 2 / 1 2 4 2 < 0 . 5 0 14 3 5 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 9 6 J < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 12 <0.50 < 0 . 5 0 < 0 . 5 0 7 . 1 < 0 . 5 0 1 1 1 . 0 6 39 MW - 2 1 I 1 0 / 2 2 / 1 2 9 9 < 0 . 5 0 0 . 6 7 29 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 560 <0.50 < 0 . 5 0 < 0 . 5 0 1 . 9 < 0 . 5 0 6 9 0 . 5 7 < 3 . 0 MW - 2 2 S 1 0 / 1 8 / 1 2 3 4 2. 2 1 0 0 3 4 0 <0 . 5 0 0 . 5 8 2. 6 <0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 4 . 6 < 0 . 5 0 < 0 . 5 0 0 . 9 5 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 140 2.2 < 0 . 5 0 < 0 . 5 0 5 . 6 < 0 . 5 0 6 3 2 . 7 3 760 MW - 2 3 S 1 0 / 1 8 / 1 2 5 4 < 2 5 26 0 <2 5 < 2 5 < 2 5 < 2 5 < 2 5 5 2 0 < 2 5 29 0 <2 5 < 2 5 < 2 5 < 2 5 < 2 5 1, 7 0 0 <2 5 < 2 5 < 5 0 < 2 5 20 , 0 0 0 <5 0 < 2 5 0 < 5 0 < 1 0 0 < 5 0 < 7 5 < 2 5 34 <25 < 2 5 < 2 5 6 8 < 2 5 2 2 , 9 2 6 110 MW - 2 4 D 1 0 / 1 8 / 1 2 1 1 0 < 0 . 5 0 50 2 8 <0 . 5 0 < 0 . 5 0 0. 5 9 <0 . 5 0 4 . 3 J < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 7. 2 0. 8 9 < 0 . 5 0 3 . 2 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 20 <0.50 < 0 . 5 0 < 0 . 5 0 1 0 < 0 . 5 0 2 3 4 . 2 30 MW - 2 4 S 1 0 / 1 8 / 1 2 3 5 2. 6 1 1 0 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 4. 1 <0 . 5 0 1 9 0 1. 2 83 2 . 5 < 0 . 5 0 < 0 . 5 0 8 . 2 1 . 0 12 0 <0 . 5 0 4 . 5 1 . 5 < 0 . 5 0 9 3 0 2 . 0 6 . 3 0 . 7 5 J 1 . 4 J < 1 . 0 < 1 . 5 < 0 . 5 0 5.3 <0.50 < 0 . 5 0 < 0 . 5 0 1 8 < 0 . 5 0 1 , 5 2 7 . 3 5 350 DU P 0 1 (M W - 1 9 I ) 10 / 1 8 / 1 2 2 . 9 < 0 . 5 0 11 4 7 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 35 2.1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 9 8 62 DU P 0 2 (M W - 2 0 I ) 10 / 2 2 / 1 2 4 2 < 0 . 5 0 14 3 1 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 1 . 6 < 0 . 5 0 < 2 0 0 < 1 . 0 < 5 . 0 < 1 . 0 < 2 . 0 < 1 . 0 < 1 . 5 < 0 . 5 0 13 <0.50 < 0 . 5 0 < 0 . 5 0 6 . 8 < 0 . 5 0 1 0 8 . 4 31 No t e s : ug / l - m i c r o g r a m s p e r l i t e r E - E s t i m a t e v a l u e , c a l i b . R a n g e w a s e x c e e d e d NA - N o t a n a l y z e d f o r c o n s t i t u e n t J - E s t i m a t e d v a l u e b e l o w l a b o r a t o r y P Q L . NS - N o t s a m p l e d 1 , 4 - D i o x a n e n o t i n c l u d e d i n V O C t o t a l Total Chlorinated VOCs (ug/l) 2L S t a n d a r d s TCE (ug/l)Toluene (ug/l)trans-1,2-DCE (ug/l)Trichlorofluoromethane (ug/l)Vinyl Chloride (ug/l) 1 , 3 , 5 - T r i m e t h y l b e n z e n e ( u g / l ) 1,4-Dioxane (ug/l)PCE (ug/l) A c e t o n e ( u g / l ) B e n z e n e ( u g / l ) B r o m o d i c h l o r o m e t h a n e ( u g / l ) C h l o r o f o r m ( u g / l ) c i s - 1 , 2 - D C E ( u g / l ) D i c h l o r o d i f l u o r o m e t h a n e ( u g / l ) 2-Butanone (ug/l) C a r b o n T e t r a c h l o r i d e ( u g / l ) Mo n i t o r i n g We l l Da t e Sa m p l e d 1 , 1 , 1 - T C A ( u g / l ) 1 , 1 - D C A ( u g / l ) 1 , 1 - D C E ( u g / l ) 1 , 2 , 4 - T r i m e t h y l b e n z e n e ( u g / l ) E t h a n o l ( u g / l ) B r o m o c h l o r o m e t h a n e ( u g / l ) C h l o r o m e t h a n e ( u g / l ) D i b r o m o m e t h a n e ( u g / l ) 1 , 2 - D C A ( u g / l ) 1 , 1 , 2 - T C A ( u g / l ) 2 - H e x a n o n e ( u g / l ) Methyl Isobutyl Ketone (ug/l)Methylene Chloride (ug/l) 1 , 2 - D i c h l o r o b e n z e n e ( u g / l ) E t h y l b e n z e n e ( u g / l ) tert-Butylbenzene (ug/l) B r o m o m e t h a n e ( u g / l ) C h l o r o e t h a n e ( u g / l ) Total Xylenes (ug/l)Napthalene (ug/l) AMEC Environment & Infrastructure, Inc. Tel – (919) 381-9900 4021 Stirrup Creek Drive, Suite 100 Fax – (919) 381-9901 Durham, NC 27703 www.amec.com Licensure: NC Engineering F-1253; NC Geology C-247 APPENDIX A Photographic Log Photo 1 Excavated treatment area, facing northeast. Photo 2 Truck-mounted solution mixing equipment and track- mounted soil blending equipment. 4021 Stirrup Creek Drive, Suite 100Durham, North Carolina 27703 W.O. PROCESSED Beth Espitia DATE April 10-17, 2012 PAGE PHOTOGRAPHIC LOG Remediation/Soil Blending Alcatel Site Raleigh, North Carolina1 Photo 3 First row of treatment area just prior to blending operation. Photo 4 Solution mixing operation and solution delivery hoses leading to soil blending equipment. 4021 Stirrup Creek Drive, Suite 100Durham, North Carolina 27703 W.O. PROCESSED Beth Espitia DATE April 10-17, 2012 PAGE PHOTOGRAPHIC LOG Remediation/Soil Blending Alcatel Site Raleigh, North Carolina2 Photo 5 Soil blending first cell. Photo 6 Soil blending operations in first row. 4021 Stirrup Creek Drive, Suite 100Durham, North Carolina 27703 W.O. PROCESSED Beth Espitia DATE April 10-17, 2012 PAGE PHOTOGRAPHIC LOG Remediation/Soil Blending Alcatel Site Raleigh, North Carolina3 Photo 7 Starting Day 2. Evidence of oxidization visible on water surface. Photo 8 Soil blending activities. 4021 Stirrup Creek Drive, Suite 100Durham, North Carolina 27703 W.O. PROCESSED Beth Espitia DATE April 10-17, 2012 PAGE PHOTOGRAPHIC LOG Remediation/Soil Blending Alcatel Site Raleigh, North Carolina4 Photo 9 Close-up of soil blending arm and solution delivery. Photo 10 Soil blending operations – final cells. 4021 Stirrup Creek Drive, Suite 100Durham, North Carolina 27703 W.O. PROCESSED Beth Espitia DATE April 10-17, 2012 PAGE PHOTOGRAPHIC LOG Remediation/Soil Blending Alcatel Site Raleigh, North Carolina5 Photo 11 Adding geotechnical fabric and backfilling. Photo 12 Adding geotechnical fabric and backfilling. 4021 Stirrup Creek Drive, Suite 100Durham, North Carolina 27703 W.O. PROCESSED Beth Espitia DATE April 10-17, 2012 PAGE PHOTOGRAPHIC LOG Remediation/Soil Blending Alcatel Site Raleigh, North Carolina6 Photo 13 Treatment Area after backfill is complete. 4021 Stirrup Creek Drive, Suite 100Durham, North Carolina 27703 W.O. PROCESSED Beth Espitia DATE April 10-17, 2012 PAGE PHOTOGRAPHIC LOG Remediation/Soil Blending Alcatel Site Raleigh, North Carolina7 AMEC Environment & Infrastructure, Inc. Tel – (919) 381-9900 4021 Stirrup Creek Drive, Suite 100 Fax – (919) 381-9901 Durham, NC 27703 www.amec.com Licensure: NC Engineering F-1253; NC Geology C-247 APPENDIX B Well Construction Records and Schematics 2675 Robert Miller SAEDACCO Inc 9088 Northfield Dr. Ft. Mill s.c.29707 (704) 634-4589 MW-2DR X 9-25-12 & 9-26-12 & 9-27-12 Raleigh Wake 2912 Wake Forst Road X X 35.82215 78.62287 X Alcatel 2912 Wake Forst Road Raleigh N.C.27609 AMEC-Durham (Mike McKenna) 4021 Stirrup Creek Drive( Suite 100) Durham N.C.27703 609 977-3437 88' X 0 0 73'2''sch40 pvc 0 23'6"sch40 pvc 0 69'portland trimi 0 23'portland trimi 73'88'2".010 pvc 71'88'20/30 silica sand 0 23'orange silt 23'28'sand stone 28'88'rock 28' 2' bentonite seal from 69'to 71' 9-29-12 Robert Miller 2675 Robert Miller SAEDACCO Inc 9088 Northfield Dr. Ft. Mill s.c.29707 (704) 634-4589 MW-22S X 9-26-12 Raleigh Wake 2912 Wake Forst Road X 35.82215 78.62287 X Alcatel 2912 Wake Forst Road Raleigh N.C.27609 AMEC-Durham (Mike McKenna) 4021 Stirrup Creek Drive( Suite 100) Durham N.C.27703 609 977-3437 20' X 0 0 10'2''sch40 pvc 0 6'portland pour 10'20'2".010 pvc 8'20'20/30 silica sand 0 20'orange silt 2' bentonite seal from 6'to 8' 9-29-12 Robert Miller 2675 Robert Miller SAEDACCO Inc 9088 Northfield Dr. Ft. Mill s.c.29707 (704) 634-4589 MW-23S X 9-26-12 Raleigh Wake 2912 Wake Forst Road X 35.82215 78.62287 X Alcatel 2912 Wake Forst Road Raleigh N.C.27609 AMEC-Durham (Mike McKenna) 4021 Stirrup Creek Drive( Suite 100) Durham N.C.27703 609 977-3437 18' X 0 0 8'2''sch40 pvc 0 4'portland pour 8'18'2".010 pvc 6'18'20/30 silica sand 0 18'orange silt 2' bentonite seal from 4'to 6' 9-29-12 Robert Miller 2675 Robert Miller SAEDACCO Inc 9088 Northfield Dr. Ft. Mill s.c.29707 (704) 634-4589 MW-24S X 9-26-12 Raleigh Wake 2912 Wake Forst Road X 35.82215 78.62287 X Alcatel 2912 Wake Forst Road Raleigh N.C.27609 AMEC-Durham (Mike McKenna) 4021 Stirrup Creek Drive( Suite 100) Durham N.C.27703 609 977-3437 20' X 0 0 10'2''sch40 pvc 0 6'portland pour 10'20'2".010 pvc 8'20'20/30 silica sand 0 20'orange silt 2' bentonite seal from 6'to 8' 9-29-12 Robert Miller 2675 Robert Miller SAEDACCO Inc 9088 Northfield Dr. Ft. Mill s.c.29707 (704) 634-4589 MW-24D X 9-25-12 & 9-26-12 Raleigh Wake 2912 Wake Forst Road X 35.82215 78.62287 X Alcatel 2912 Wake Forst Road Raleigh N.C.27609 AMEC-Durham (Mike McKenna) 4021 Stirrup Creek Drive( Suite 100) Durham N.C.27703 609 977-3437 44' X 0 0 39'2''sch40 pvc 0 34'6"sch40 pvc 0 35'portland trimi 0 34'portland trimi 39'44'2".010 pvc 37'44'20/30 silica sand 0 29'orange silt 29'44'rock 44' 2' bentonite seal from 35'to 37' 9-29-12 Robert Miller AMEC Environment & Infrastructure, Inc. Tel – (919) 381-9900 4021 Stirrup Creek Drive, Suite 100 Fax – (919) 381-9901 Durham, NC 27703 www.amec.com Licensure: NC Engineering F-1253; NC Geology C-247 APPENDIX C October 2012 Analytical Data Page 1 of 43 Page 2 of 43 Page 3 of 43 Page 4 of 43 Page 5 of 43 Page 6 of 43 Page 7 of 43 Page 8 of 43 Page 9 of 43 Page 10 of 43 Page 11 of 43 Page 12 of 43 Page 13 of 43 Page 14 of 43 Page 15 of 43 Page 16 of 43 Page 17 of 43 Page 18 of 43 Page 19 of 43 Page 20 of 43 Page 21 of 43 Page 22 of 43 Page 23 of 43 Page 24 of 43 Page 25 of 43 Page 26 of 43 Page 27 of 43 Page 28 of 43 Page 29 of 43 Page 30 of 43 Page 31 of 43 Page 32 of 43 Page 33 of 43 Page 34 of 43 Page 35 of 43 Page 36 of 43 Page 37 of 43 Page 38 of 43 Page 39 of 43 Page 40 of 43 Page 41 of 43 Page 42 of 43 Page 43 of 43 Page 1 of 54 Page 2 of 54 Page 3 of 54 Page 4 of 54 Page 5 of 54 Page 6 of 54 Page 7 of 54 Page 8 of 54 Page 9 of 54 Page 10 of 54 Page 11 of 54 Page 12 of 54 Page 13 of 54 Page 14 of 54 Page 15 of 54 Page 16 of 54 Page 17 of 54 Page 18 of 54 Page 19 of 54 Page 20 of 54 Page 21 of 54 Page 22 of 54 Page 23 of 54 Page 24 of 54 Page 25 of 54 Page 26 of 54 Page 27 of 54 Page 28 of 54 Page 29 of 54 Page 30 of 54 Page 31 of 54 Page 32 of 54 Page 33 of 54 Page 34 of 54 Page 35 of 54 Page 36 of 54 Page 37 of 54 Page 38 of 54 Page 39 of 54 Page 40 of 54 Page 41 of 54 Page 42 of 54 Page 43 of 54 Page 44 of 54 Page 45 of 54 Page 46 of 54 Page 47 of 54 Page 48 of 54 Page 49 of 54 Page 50 of 54 Page 51 of 54 Page 52 of 54 Page 53 of 54 Page 54 of 54