Loading...
HomeMy WebLinkAbout20028_Alcatel Facility_2010 CMS AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com CORRECTIVE MEASURES STUDY FORMER ALCATEL FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 NCD 003-185-238 Prepared For: Alcatel-Lucent USA Inc. 2301 Sugar Bush Road Raleigh, North Carolina 27612-3382 Prepared by Consultant: AMEC Earth & Environmental, Inc. 2200 Gateway Centre Blvd., Suite 205 Morrisville, North Carolina 27560 September 16, 2010 ________________________________ ________________________________ Harold M. Thurston, L.G. Kathleen A. Roush, L.G. Senior Project Manager NC Environmental Group Manager AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com CORRECTIVE MEASURES STUDY FORMER ALCATEL FACILITY 2912 WAKE FOREST ROAD RALEIGH, NORTH CAROLINA 27609 NCD 003-185-238 Submitted to: North Carolina Department of Environment and Natural Resources Division of Waste Management, Hazardous Waste Section Prepared for: Alcatel-Lucent USA Inc. 2301 Sugar Bush Road Raleigh, NC 27612-3382 Submitted by: AMEC Earth & Environmental, Inc. Raleigh, North Carolina September 16, 2010 AMEC Project No. 559480000 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com EXECUTIVE SUMMARY AMEC Earth and Environmental, Inc (AMEC) has completed a Corrective Measures Study (CMS) of the former Alcatel Sourcing Facility located at 2912 Wake Forest Road, Raleigh, North Carolina. The purpose of this CMS is to develop and evaluate corrective action alternatives and to recommend the corrective measure(s) to be implemented at the facility. The CMS includes a summary of current site conditions, establishment of clean up objectives, identification and evaluation of corrective measure alternatives, and details on the recommended corrective measure. Alcatel began voluntarily assessing soil and groundwater impact on the property in 1989. Assessment results indicate an apparent release of tetrachloroethene (PCE) and 1,1,1-trichloroethane (TCA) which contained the stabilizer 1,4-dioxane, has occurred. Currently concentrations of TCA in the groundwater are below the North Carolina Administrative Code 15A Subtitle 2L Section .0202 (g) (2L Groundwater Standard) across the site; however, daughter products of this compound are present. Compounds currently present at concentrations in the groundwater above their respective 2L Standard include 1,4-dioxane, 1,1-dichloroethene (1,1-DCE), 1,1-dichloroethane (1,1-DCA), PCE, trichloroethene (TCE), and vinyl chloride. The PCE groundwater plume covers the largest area, extending from the subject property south to Six Forks Road in both the shallow and bedrock aquifer units. Other constituents of concern (COCs) targeted for corrective measure include 1,1-DCE and 1,4-dioxane. However, the distribution of the 1,1-DCE and the 1,4-dioxane are dissimilar from that of the PCE. Whereas the PCE plume extends to the south in both the shallow and bedrock aquifer, the 1,4-dioxane is found almost exclusively in the shallow aquifer and the plume trends toward the southwest, coinciding with current shallow groundwater flow directions. Similarly, the distribution of 1,1- DCE in the bedrock unit has a component trending to the southwest. Whereas higher concentrations of PCE can be encountered in the bedrock zone (MW-4d), higher concentrations of 1,1-DCE and 1,4-dioxane are encountered in the shallow saprolite aquifer. Several groundwater remedial methods have been employed at the site over the years. Of most significance, a pump and treat groundwater remediation system began operating in 1997. The system consisted of injection wells, recovery wells, containment recovery wells, and a treatment facility. Although the historical operation of the pump and treat groundwater remediation system has been successful and reduced the concentration of COCs in the groundwater, the removal rate has steadily decreased over the past several years leading to asymptotic conditions. There have also been two soil remedial efforts performed since the initial identification of COCs. The first removal action was conducted in 1990-1991, and the second in September 2009. A total of 437 tons of soil was excavated and disposed of offsite. The soil removal actions were successful in removing the majority of the impacted soil. The concentrations of COCs remaining in the soil are either below levels protective of groundwater, or can be addressed using institutional controls. Therefore, additional soil remedial action is not discussed in the CMS. The 2L Standard for each COC in the groundwater has been established as the corrective action performance goals for groundwater at this site. These performance goals have been established to determine the extent of groundwater to be addressed under the proposed action. The successful treatment of large dilute plumes is technically challenging, and as such the AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com treatment of the groundwater at the subject site to meet 2L Standards cannot be guaranteed with the active remedial methods currently available. Therefore, Alcatel Lucent USA, Inc. is seeking to move the site toward a monitored natural attenuation (MNA) alternative, allowing the physical processes of advection, dispersion, and adsorption to address the remaining downgradient low concentrations of COCs. To move to the MNA alternative, further reduction of contaminant mass in the shallow groundwater aquifer is warranted. With the previous removal of the impacted soils, the majority of the contaminant mass lies in the shallow aquifer material. Once source contaminant mass reduction has been achieved, MNA will be utilized for the dilute plume. Removing this remaining mass will have a positive impact to overall groundwater concentrations within the competent bedrock unit and in the shallow aquifer downgradient of the treatment area. Therefore, the focus of this CMS is to evaluate remedial alternatives which can be utilized for the source area and allow MNA to be utilized for the downgradient portion of the dilute plume. Through the analysis of alternatives to treat the shallow aquifer in the source area, AMEC recommends that the shallow source material be treated using in-situ chemical oxidation (ISCO) via soil blending. Under the MNA alternative, groundwater monitoring would be conducted for several years to evaluate the overall effectiveness of the source reduction. A trigger for additional corrective measure may occur if the contaminant plume does not reach steady state conditions or increases in size. AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................... 1 1.1 Property History ........................................................................................................ 1 1.2 Regulatory History .................................................................................................... 2 2.0 ADDITIONAL SITE ASSESSMENT AND REMEDIAL ACTIVITIES ................................ 4 2.1 Data Gaps ................................................................................................................ 4 2.2 Soil Assessment and Remediation ........................................................................... 4 2.2.1 Additional Soil Assessment/Source Identification .......................................... 4 2.2.2 Soil Remediation/Source Removal ................................................................ 5 2.3 Additional Groundwater Assessment ....................................................................... 5 2.3.1 Unconsolidated Aquifer/Source Area Groundwater Assessment .................. 5 2.3.2 Assessment of Partially Weathered Rock Unit .............................................. 6 3.0 SITE CONCEPTUAL MODEL ........................................................................................... 7 3.1 Lithologic Units ......................................................................................................... 7 3.2 Groundwater Flow .................................................................................................... 8 3.3 Distribution of COCs ................................................................................................. 9 4.0 INTERIM REMEDIAL MEASURES ................................................................................. 10 4.1 Pump and Treat ...................................................................................................... 10 4.2 Aggressive Fluid Vapor Recovery (AFVR) ............................................................. 11 4.3 Monitored Natural Attenuation ................................................................................ 12 4.4 In-Situ Chemical Oxidation ..................................................................................... 12 5.0 ESTBALISHMENT OF MEDIA CLEAN UP OBJECTIVES ............................................ 13 5.1 Soil Cleanup Objectives ......................................................................................... 13 5.2 Groundwater Clean Up Objectives ......................................................................... 14 6.0 IDENTIFICATION OF THE CORRECTIVE MEASURES ALTERNATIVES ................... 15 6.1 In-Situ Chemical Oxidation Via Direct Injection ...................................................... 16 6.2 In-Situ Chemical Oxidation via Soil Blending ......................................................... 17 6.3 Enhanced Biodegradation and Bioaugmentation ................................................... 18 6.4 Permeable Reactive Barrier ................................................................................... 19 6.5 Dig and Haul ........................................................................................................... 19 6.6 Monitored Natural Attenuation with Source Removal ............................................. 20 6.6.1 Primary Lines of Evidence ........................................................................... 20 6.6.2 Secondary Lines of Evidence ...................................................................... 21 6.6.3 Optional Lines of Evidence .......................................................................... 21 7.0 RECOMMENDED CORRECTIVE MEASURES .............................................................. 22 8.0 CORRECTIVE ACTION IMPLEMENTATION SCHEDULE ............................................ 23 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com TABLE OF CONTENTS (CONTINUED) FIGURES Figure 1 Site Location Map Figure 2 Site Layout Map Figure 3 AOC Areas Location Map Figure 4 Soil Excavation and Sample Location Map Figure 5 Temporary Well Location Map Figure 6 Total VOC Isoconcentration Map (Unconsolidated Aquifer) – October 2009 Figure 7 Total VOC Isoconcentration Map (Bedrock Aquifer) – October 2009 Figure 8 PCE Isoconcentration Map (Unconsolidated Aquifer) – October 2009 Figure 9 PCE Isoconcentration Map (Bedrock Aquifer) – October 2009 Figure 10 1,1-DCE Isoconcentration Map (Unconsolidated Aquifer) – October 2009 Figure 11 1,1-DCE Isoconcentration Map (Bedrock Aquifer) – October 2009 Figure 12 1,4-Dioxane Isoconcentration Map (Unconsolidated Aquifer) – October 2009 Figure 13 1,4-Dioxane Isoconcentration Map (Bedrock Aquifer) – October 2009 Figure 14 Cross Section Index Figure 15 Lithologic Cross Section A-A’ Figure 16 Lithologic Cross Section B-B’ Figure 17 Lithologic Cross Section C-C’ Figure 18 Groundwater Contour Map Shallow Aquifer – 10/26/99 Figure 19 Groundwater Contour Map Deep Aquifer – 10/26/99 Figure 20 Groundwater Contour Map Shallow Aquifer – 10/19/2004 Figure 21 Groundwater Contour Map Deep Aquifer – 10/19/2004 Figure 22 Groundwater Contour Map Shallow Aquifer – 10/06/2009 Figure 23 Groundwater Contour Map Deep Aquifer – 10/06/2009 Figure 24 Proposed Shallow Source Area Treatment Area TABLES Table 1 Post Excavation Soil Sampling Results Table 2 Groundwater Analytical Results – PWR Investigation Table 3 Well Completion Information Table 4 October 2009 Groundwater Analytical Results Table 5 Evaluation of Remedial Alternatives APPENDICES Appendix A Boring Logs and Well Completion Diagrams – PWR Investigation Appendix B Laboratory Analytical Data Appendix C Historical Analytical Data Tables and Graphs Appendix D BIOCHLOR Model Input Parameters and Results AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com 1.0 INTRODUCTION This Corrective Measures Study (CMS) has been prepared for the former Alcatel USA Sourcing, Inc. (Alcatel) facility located at 2912 Wake Forest Road, Raleigh, Wake County, North Carolina (Figure 1). The purpose of the CMS is to develop and evaluate corrective action alternatives and to recommend the corrective measure(s) to be implemented at the facility. This CMS includes a summary of current site conditions, establishment of clean up objectives, identification and evaluation of corrective measure alternatives, and details on the recommended corrective measure. 1.1 Property History The former Alcatel facility (Site) consists of approximately 24 acres with a 234,000 square foot building, storage and maintenance buildings, parking areas, and landscaped areas on the property (Figure 2). The Kellogg Corporation, a division of ITT, began operating at the facility in 1958, producing telecommunications equipment. Alcatel bought the facility in 1987 and performed electroplating operations as part of the manufacturing process until 1990. Alcatel obtained a Resource Conservation and Recovery Act (RCRA) permit to store hazardous wastes at the site, including wastes with the following waste codes: F001 F002, F005, F006, F008, D001, D002, and D008. Under the RCRA permit, Alcatel was authorized for the following: • Storage of the wastes described above in 55 gallon containers on two uncovered pads at the site; • Drying of dewatered wastewater treatment sludge by evaporation while stored in a roll- off container located on the former sludge treatment container storage pad; • Maintenance of in-ground holding tanks which received aqueous tin, lead, copper, chromium, nickel, mineral acid, caustics, and ammonium bifluoride wastes from the circuit board manufacturing processes; and, • Treatment of wastes and rinse water at the on-site waste water treatment plant (WWTP). The printed circuit board manufacturing operations at Alcatel ceased in 1990. At that time, all circuit board manufacturing equipment was decontaminated and sold. Structures associated with the manufacturing process, such as holding tanks and plating trenches, were decontaminated and decommissioned following the shut-down of manufacturing operations. The WWTP was also closed and decontaminated in 1991. The former WWTP equalization basin was converted into a chilled water storage tank unit, which was then used as part of the facility heating, ventilating, and air-conditioning (HVAC) system. The remaining WWTP equipment was dismantled. The area was decontaminated and a level concrete floor was poured over the existing floor. The area was converted for use as a maintenance area. The site was sold in July 2003 to ITB Holdings, LLC and the site is currently not occupied, however, ALU maintains ownership of the environmental liability. The Alcatel facility continues to operate under the RCRA Hazardous Waste Permit (NCD 003-185-238), which was reissued on August 31, 2007. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 2 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com 1.2 Regulatory History Alcatel began voluntarily assessing soil and groundwater impact on the property in 1989. Since that time several documents have been prepared that detail the environmental conditions and have been used in the preparation of this CMS. These documents include: • RCRA Facility Investigation for AOC#1 and AOC #2, National Environmental Technologies, Inc., February 1996. • Interim Corrective Measures Plan for AOC #1 and AOC #2, National Environmental Technologies, Inc., February 1996. • Phase II RCRA Facility Investigation, Triangle Environmental, Inc., November 1998. • Corrective Measures Study, TRC Environmental Corporation, January 2002. • Revised Corrective Measures Study, TRC Environmental Corporation, May 2003. • Interim Measures Progress Reports, Periods October 2001 through October 2009, TRC Environmental Corporation and AMEC Earth and Environmental, Inc. • Soil and Limited Groundwater Assessment Report and Soil Excavation Workplan, AMEC Earth and Environmental, Inc., July 2009. • Evaluation of Alcatel USA Sourcing, Inc. Status Under the RCRA Info Corrective Action Environmental Indicator Event Codes (CA725 and CA750), Techlaw, Inc. for USEPA, July 2009. • Soil Excavation Report, AMEC Earth & Environmental, Inc., April 2010 During the 1996 RCRA Facility Investigation (RFI), two major Areas of Concern (AOC) were identified in addition to the groundwater impact. Figure 3 illustrates the location of AOC #1 and AOC #2. AOC #1 was designated as the rear alleyway of the building and contained soils impacted with metals and volatile organic compounds (VOCs). The impacted soils were limited to four smaller areas labeled as Areas 1 through 4. Areas 1, 2, and 4 were impacted with metals. Areas 1 and 2 were located along the alleyway and contained soil impacted with lead and copper as a result of leaks from subsurface process piping. The impacted soil was excavated and transported off- site for disposal. Area 4 was located in the central portion of the alleyway and was the former location of a chemical processes shed. Soil and asphalt were sampled and concentrations of lead exceeded applicable goals. A total of 17.8 tons of soil was removed from the area and transported to a disposal facility in Michigan. Area 3 was located on the western end of the alleyway. This area reportedly contained soils impacted with VOCs, including 1,1,1-trichloroethane (TCA), 1,1,2-trichloroethane (1,1,2-TCA), 1,1-dichloroethane (1,1-DCA), 1,2-dichloroethane (1,2-DCA), 1,1-dichlroroethene (1,1-DCE), and tetrachloroethene (PCE). The RFI confirmed that a historic release occurred from a TCA aboveground storage tank (AST) in Area 3. Reportedly, approximately 92 tons of soil was removed from this area in 1990-1991. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 3 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com AOC #2 is the former printed circuit board manufacturing area, located on the northern end of the facility. During the manufacturing operations, electroplating and chemical plating processes were performed in this AOC. Soil and groundwater impact was present as a result of an apparent release of TCA and PCE at the former printed circuit board manufacturing area. The RFI revealed that the predominant constituents of concern (COC) at the site include 1,1- DCE, 1,1-DCA, 1,2-DCA, PCE, TCA, trichloroethene (TCE), vinyl chloride, and 1,4-dioxane. The groundwater plume of total VOCs extends approximately 1,000 feet downgradient from AOC #1, with an average width of approximately 300 feet. The VOCs are present in both the unconsolidated and the bedrock aquifers, and extends to a depth of approximately 80 feet below land surface (bls). Copper and lead were also identified as COCs in groundwater. However, no copper or lead groundwater plumes have ever been identified and concentrations of these metals are mostly below North Carolina 2L Groundwater Quality Standards (2L Standards). An Interim Corrective Measure (ICM) Plan was prepared in 1996 that outlined a proposed interim remedial alternative. The plan included the installation of an interim groundwater remediation system which was designed to create a hydraulic barrier to reduce the size and stop the downgradient progression of the impacted groundwater. The system included a series of groundwater extraction wells and the produced groundwater would be treated and re-injected on-site. The groundwater remediation system began operating in September of 1996. ALU discontinued the use of the injection wells in July 2002 and instead discharged the treated groundwater to the adjacent stream under a National Pollutant Discharge Elimination System (NPDES) permit. As a measure of the effectiveness of the groundwater pump and treat system operating at the Site, Interim Measure Progress Reports have been prepared on a semi-annual basis. These reports present the analytical results of groundwater samples collected from selected groundwater monitoring wells at the site, detail the direction of groundwater flow, and define the extent of the groundwater contaminant plume in the surficial and bedrock aquifer. Finally, historical data is tabulated to define trends in the reduction of contaminants in the groundwater. The latest report completed is the October 2009 Interim Measure Progress Report. Although samples were collected in April 2010, the April 2010 Interim Measures Progress Report was not submitted by publication time of this CMS Report. In 2001, ALU began to evaluate other remedial techniques to address in the site. TRC Environmental Corporation (TRC) submitted a Corrective Measures Study in January 2002. The CMS summarized the elements of the treatment system, its performance, and supplemental corrective measures that were employed to enhance the performance of the existing pump and treat system. A revised CMS was submitted by TRC in May 2003, and recommended using Monitored Natural Attenuation (MNA) as a remedial option for the groundwater. In March 2004, the North Carolina Department of Environment and Natural Resources (NCDENR) approved a year-long MNA pilot test that included shutting down the recovery well system and monitoring the aquifer conditions as conditions return to steady state following seven years of groundwater extraction activities. The pilot test began in April 2004 and lasted for approximately 13 months. On May 26, 2005, ALU voluntarily began operating the groundwater remediation system again. However, groundwater was only extracted from the three northern-most recovery wells (RW-1 Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 4 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com through RW-3). With the approval of NCDENR, Well RW-1 was shut down in May 2005, while well RW-2 was shut down in June 2008 due to pump mechanical failures. ALU has been utilizing well RW-3 to control the migration of the COCs. 2.0 ADDITIONAL SITE ASSESSMENT AND REMEDIAL ACTIVITIES The facility is currently vacant and in severe disrepair. Regardless, soil and groundwater assessment and remediation has continued. In fact, the abandonment and dilapidation of the building has provided opportunities to access areas of the site that would not ordinarily be available. Larger equipment was mobilized to delineate and remediate areas with residual source material within the facility. These activities were performed in conjunction with the operation of the pump and treat system that has served as the interim remedial measure. A summary of the additional assessment and remedial activities recently completed are provided below. 2.1 Data Gaps In 2007, ALU requested that AMEC determine if alternative remedial approaches could be utilized in place of the interim groundwater pump and treat system. AMEC evaluated various remedial techniques, most of which involved source reduction. In order to effectively implement these techniques, additional information was required to determine if a source of TCA and PCE was present which would continue to impact groundwater. As noted above, soil assessment activities were conducted as part of the RFI which indicated that there had been releases in both the circuit board manufacturing area (AOC #2) and in Area 3 of AOC #1 as a result of a release from the TCA AST. The soil data collected indicated that only low levels of COCs remained in the unsaturated zone. The RFI and subsequent reports indicated that these source areas had been addressed. However, AMEC noted a continued presence of 1,4-dioxane in the groundwater at the northern end of the parcel, near AOC #1. 1,4-Dioxane is an additive to the solvent TCA and is miscible in water with a very low retardation factor, so it is not readily absorbed to the soil matrix. Therefore, this compound is generally found near the leading edge of the plume. The continued detection of this compound in monitoring wells located at AOC #1 (Area 3) and AOC #2 indicated that COCs were likely present in the soil, providing an on-going source of COCs to the underlying groundwater. By delineating and addressing remaining source material in both the saturated and unsaturated zones, concentrations of COCs within the overall groundwater plume will ultimately decrease. 2.2 Soil Assessment and Remediation 2.2.1 Additional Soil Assessment/Source Identification AMEC performed additional soil and limited groundwater assessment activities in AOC #1 and AOC #2 according to the July 2008 Soil Sampling Workplan. Assessment activities were designed to identify remaining potential sources to groundwater impact in AOC #2, and to Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 5 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com further define the limits of impacted soil at Area 3 of AOC #1. Limited groundwater assessment activities were also conducted to further characterize shallow groundwater beneath the floor slab of the main building. The results of the soil assessment were included in the AMEC July 17, 2009 report entitled Assessment Report and Soil Excavation Workplan. As stated above, a release occurred from a TCA AST. In 1990-1991, approximately 92 tons of impacted soil was removed adjacent to the chiller room and along the alleyway. Additional soil could not be removed due to the presence of the chillers and the large fire line which runs through the center of the alleyway. Therefore, some impacted soil remained. With the presence of 1,4-dioxane in the groundwater, it was suspected that COCs could be present in this portion of the site. To provide access to this area, the chillers were moved and the chiller room structure was demolished. The assessment data collected confirmed the presence of COCs in soil beneath the former chiller room and concrete pad present on the north side of the building adjacent to the concrete alleyway. In addition, impact was also identified in an interior room of the main building at the former location of the TCA distiller. Soil contained TCA, PCE, DCA, and DCE. The highest concentrations were observed at the chiller room. The majority of impact was present in the soil interval at five to nine feet bls. Minimal detectable impact was present in the surficial soils above five feet bls. AMEC recommended the excavation and off-site disposal of impacted soil in both areas. In addition to the soil assessment activities, during this investigation phase AMEC also installed temporary groundwater monitoring wells to further define where the highest concentrations of COCs were present within the shallow aquifer unit. These results are summarized in Section 2.3. 2.2.2 Soil Remediation/Source Removal In August and September 2009, approximately 345 tons of impacted soil was excavated addressing areas that could not originally be accessed (Figure 4). The removal action reduced the potential that the source material present within the vadose zone would further degrade underlying groundwater. Analytical results of post excavation soil samples collected from the side walls and bottom of the excavations indicate that minimal VOC impacted soil remains (Table 1). Further details on the excavation of impacted soil can be found in the AMEC April 13, 2010 report entitled Soil Excavation Report. The soil removal action was successful in removing the majority of the impacted soil. Therefore, additional soil remedial action is not discussed in the CMS. The concentrations remaining are either below levels protective of groundwater, or can be addressed using institutional controls. 2.3 Additional Groundwater Assessment 2.3.1 Unconsolidated Aquifer/Source Area Groundwater Assessment In October 2008 during the soil assessment activities described in Section 2.2.1 above, groundwater samples were collected from selected soil boring locations in AOC #1 and AOC #2 Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 6 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com from the unconsolidated aquifer. The groundwater analytical results were used to identify areas beneath the floor slab of the building that may need to be addressed as part of the final groundwater remedial alternative. Groundwater samples were collected from temporary wells installed in borings SB-5, SB-8, SB-11, SB-12, SB-19, and SB-21 (Figure 5) from within the building footprint. The analytical results of groundwater samples collected from each of the temporary wells indicated the presence of VOCs. Concentrations of total VOCs ranged from 22.3 micrograms per liter (µg/L) to 6,436 µg/L in the sample collected immediately south of the chiller room. The majority of this sample consisted of 1,4-dioxane which was present at a concentration of approximately 5,100 µg/L. The greatest concentration of COCs in the unconsolidated aquifer exists beneath the former chiller room and extends south approximately 100 feet beneath the main building. The remaining VOC plume, which was previously defined, consists of much lower dilute concentrations of various VOCs and extends south and southwest beneath the main building and onto the adjoining property to the south. The groundwater analytical results gained from the installation of temporary wells collected in October 2008 were combined with the October 2009 unconsolidated aquifer groundwater analytical results to produce the isoconcentration maps presented as Figures 6, 8, 10, and 12. The analytical results of groundwater samples collected from temporary wells provided expanded detail on the location and concentration of COCs in the shallow groundwater of the source area. These results are graphically depicted in the detail boxes presented in the above mentioned figures. 2.3.2 Assessment of Partially Weathered Rock Unit As described above, elevated concentrations of VOCs were detected in the shallow unconsolidated saprolite aquifer unit. The saprolite material is underlain by partially weathered rock (PWR) material which can have higher transmissivities and provide a preferential pathway for the migration of COCs. Since higher concentrations of VOCs were detected in the shallow unconsolidated aquifer unit, AMEC believed that additional assessment of the PWR unit was warranted to determine if this aquifer zone also contained elevated concentrations of COCs, providing a continuing source of the VOCs to the underlying fractured bedrock material. During previous assessment activities, only shallow wells could be installed through the floor slab within the building area. This was primarily due to the limited height clearance available. With the dilapidation of the building, AMEC could now remove the ceiling tiles and overhead structures. This provided four to five feet of additional vertical clearance and allowed AMEC to utilize a small sonic rig which could reach the PWR unit. On November 16 through November 18 2009, AMEC supervised the installation of six groundwater monitoring wells screened within the PWR hydrogeologic unit. The wells were installed within the building using a mini sonic drill rig. Soil and rock cores were obtained using this drilling methodology and a description of the sample media was performed. To accurately Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 7 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com determine the composition of the PWR unit and the depth to competent bedrock, continuous cores of the unconsolidated overburden, PWR unit, and the competent bedrock were obtained during the installation of each boring. Once the competent rock unit was encountered, the borehole was completed with a Type II, groundwater monitoring well. Further details on the installation of PWR wells are included in Appendix A. Analytical results of groundwater samples collected from the newly installed PWR wells indicate the presence of VOCs. Groundwater analytical results are summarized on Table 2 and the laboratory analytical reports are included in Appendix B. AMEC has prepared isoconcentration maps for the primary COCs and these are included as Figures 6 through 13. The thickness of the PWR unit was found to range from approximately 6 to 16 feet. The concentrations of COCs observed within the PWR zone were found to be very similar to those observed within the overlying saprolite unit. Whereas at some sites the PWR can be more transmissive and form a preferential pathway for the migration of the COCs, at the former Alcatel site, the PWR is relatively thin and in some locations has hydraulic conductivities equally low as the saprolite material. The elevated concentrations of COCs identified within the shallow zone near the former chiller room are also likely reflected within the underlying PWR unit. Based on the data collected, AMEC believes that the PWR and saprolite act as one hydrogeologic unit as far as the vertical and lateral distribution of the COCs. 3.0 SITE CONCEPTUAL MODEL 3.1 Lithologic Units Since the inception of assessment activities at this site in 1989, 31 monitoring, 22 recovery, and 9 injection wells have been installed at the site. Many of the wells have since been abandoned. A summary of construction details of both the existing and abandoned wells are presented in Table 3. Stratigraphic information collected over the course of the various phases of investigation indicates that there are three lithologic units at the site. These units include the following: • Unconsolidated Saprolite • Partially Weathered Rock (PWR) • Competent Bedrock consisting of and Intrusive Felsic Granite into a Biotite Gneiss or Schist. Cross sections down the center of the plume (A-A’) and perpendicular to general groundwater flow (B-B’ and C’C’) are provided as Figures 15, 16, and 17, respectively. A cross section index is included as Figure 14. The saprolite consists of unconsolidated sands, silts and clays which extend from ground surface to 20 to 25 feet bls. The PWR serves as a gradational contact to the underlying competent rock and ranges from 6 to 16 feet thick. This unit grades from saprolite material with Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 8 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com some gravel size rock material, to less weathered chunks of either granite or gneiss with minimal clay. The underlying bedrock consists of an intrusive felsic granite into a biotite gneiss or schist. Massive, unfoliated rock types such as this tend to create thinner PWR units than other rock types such as slate or phyllite. The competent rock underlying the PWR unit is likely fractured. Although a fracture trace analysis or a geophysical study have not been conducted, based the migration of COCs and injection results, fractures appear to trend approximately N 60° W and N 30° E. Actual fracture directions have not been measured. Drilling logs indicate that there is significant fracturing in the upper 10 to 20 feet of the unit and the fracturing decreases significantly below this point. As part of the 1996 RFI, aquifer testing was performed on multiple wells to assess and characterize the hydrogeology. Slug test results confirmed that the silts and clays of the saprolite unit exhibited low hydraulic conductivities (3.99 ft/day). The PWR zone is by definition more weathered than the underlying competent rock unit. As such, it contains both clays and silts from the weathering process. In addition, remnant fractures are usually present which can increase the hydraulic conductivity of the unit. Therefore, the conductivities for the PWR unit would be expected to fall between those observed for the saprolite and competent rock. Significant testing was conducted on the fractured bedrock unit. Some of the lithologic zones tested may have also included some of the PWR zone. Based on a step-drawdown test and a 72-hour constant rate pumping test, the average hydraulic conductivity was determined to be 19.40 ft/day. Since water is transmitted through fracture flow, these conductivities would be expected. This is based on the following individual conductivities. Well Number Screen Depth (feet) Conductivity (ft/day) RW-1 ~15 19.89 RW-2 ~37 17.97 MW-2sk 15 12.60 MW-2ik 37 40.59 MW-4d 52 15.02 3.2 Groundwater Flow Groundwater elevations in the shallow wells measured in October 2009 indicate the overall direction of groundwater flow in both the water table and the bedrock aquifer is towards the southwest. Whereas the groundwater flow in the bedrock beneath the former Alcatel facility property is directed towards the west-southwest, flow on the properties to the southwest reveal a flow direction towards the south-southwest. The average groundwater gradient at the water table was approximately 0.01 ft/ft. During the October 2009 sampling event, an upward vertical gradient of approximately +0.03 ft/ft was measured in most of the groundwater monitoring wells. A downward gradient (-0.04 ft/ft) was measured at the MW-3sk/3dk and MW-9sk/9dk well nests. The MW-3sk/3dk well nest Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 9 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com is located near the only groundwater extraction well still operating. Well nest MW-9sk/9dk is located at the toe of the groundwater plume, near Six Forks Road. As would be expected, the operation of the pump and treat system has had a large impact on the overall groundwater flow directions in both the shallow saprolite material, and the fractured bedrock unit. AMEC prepared potentiometric maps showing groundwater flow in both these horizons for the following three time periods: • December 26, 1999 – The pump and treat system was in full operation (Figures 18 and 19), • October 19, 2004 – System had been operating under “pulsed pumping” for last several years (Figures 20 and 21), and, • October 6, 2009 – The system has been operating with only one to three recovery wells in operation for the last 5 years (Figures 22 and 23). The potentiometric maps demonstrate that the operation of the pump and treat system resulted in a groundwater gradient which flowed nearly north/south, along the line of groundwater extraction wells. Once the system was turned off and groundwater flow returned to natural conditions, the groundwater began to flow toward the southwest, toward the remnants of the stream (now culverted) which runs along Wake Forest Road. 3.3 Distribution of COCs A summary of the most recent analytical results obtained in October 2009 is included as Table 4. The release at the site apparently consisted of PCE and TCA which contained the stabilizer 1,4-dioxane. Concentrations of TCA are now below the 2L Groundwater Standard across the site. However, daughter products of this compound are present. Compounds now present at concentrations above their respective 2L Standard include 1,4-dioxane, 1,1-DCE, 1,1-DCA, PCE TCE, and vinyl chloride. Benzene has been detected in one well (MW-12s adjacent to the property boundary) but this compound was not historically used at the site. Isoconcentration maps have been prepared which detail site conditions as of the October 2009 groundwater sampling event. The isoconcentration maps show the distribution in the shallow saprolite unit and the bedrock aquifer unit for total VOCs (Figures 6 and 7), PCE (Figures 8 and 9), 1,1-DCE an anaerobic breakdown product of TCA (Figures 10 and 11), and 1,4-dioxane (Figures 12 and 13). AMEC has incorporated the shallow and PWR groundwater sampling results obtained in 2008 and 2009 (as described in Section 2 above). These maps provide a comprehensive view of the current distribution of the COCs. The PCE plume covers the largest area, extending to Six Forks Road in both the shallow and bedrock aquifer units. The highest concentrations of PCE are found in bedrock well MW-4d, located on the southern side of the former Alcatel facility. The shallow groundwater plume follows the groundwater flow directions which were induced as a result of the groundwater pump and treat system. The distribution of PCE in the bedrock follows this same trend. This is likely Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 10 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com because the plume has followed the trace of the fractures which trend in this direction and operation of the deep groundwater extraction wells. With the shut down of the pump and treat system, there has been little change in the vertical and lateral distribution of the PCE in either the shallow or bedrock aquifers. The distribution of the 1,1-DCE and the 1,4-dioxane are dissimilar from that of the PCE. Whereas higher concentrations of PCE can be encountered in the bedrock zone (MW-4d), higher concentrations of 1,1-DCE and 1,4-dioxane are encountered almost exclusively in the shallow saprolite aquifer. The 1,4-dioxane is in the shallow aquifer and the plume trends toward the southwest, coinciding with current shallow groundwater flow directions. The distribution of the 1,1-DCE in the bedrock unit trends toward the south, but also widens outward toward the west, in the same flow direction as the 1,4-dioxane. It is likely that with the operation of the full scale system, downward vertical gradients were greater resulting in more downward flow. With current groundwater flow conditions, the overall vertical gradient is upward, helping to lessen the overall downward movement of the COCs. 4.0 INTERIM REMEDIAL MEASURES Several groundwater remedial methods have been employed at the site over the years. The following section provides a summary of these technologies. 4.1 Pump and Treat The discovery of chlorinated solvents on site prompted the preparation of the Interim Corrective Measures (ICM) Plan that established the “Pump and Treat” system. After a three month trial of the treatment system, Alcatel began a groundwater remediation system in 1997. The system consisted of injection wells, recovery wells, containment recovery wells, and a treatment facility. Utilizing “pump and treat” methodology, the site pumped contaminated water from the recovery wells and directed it to the treatment facility. The facility employed an in-line 25 μm particle filter prior to entering an air stripper and granular activated carbon (GAC) beds to eliminate volatiles. From 1997 to July 2002, approximately twenty percent of the treated effluent was allowed to flow by gravity into a series of eight injection wells. The remaining treated water was discharged during the first year of operation to the City of Raleigh POTW. Following the first year of operation and subsequent to the acquisition of a NPDES permit, the overflow water from the treatment system was discharged to a Crabtree Creek tributary. In addition containment recovery wells were utilized as recovery wells and as a preventative measure. The containment recovery wells engineered a depression that could retain contaminated groundwater from moving farther south. In October 2001, three northern injection wells were turned off in an attempt to return the groundwater gradient to a more natural direction. The five remaining injection wells were shut down in July 2002. To further minimize drawdown (while maintaining efficacy), pulse pumping commenced in October 2002. While the recovery wells south of RW-5 were turned off Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 11 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com completely, the containment recovery wells (CRW wells) were turned on every other month. In April 2003, the CRW wells were shut down but the upgraded pumps in RW-3 and RW-5 allowed RW-1 through RW-5 to extract the same volume that all the recovery wells and containment recovery wells had previously performed. In addition to the operation of the recovery wells, groundwater was purged using a submersible pump, collected in a holding tank and discharged to Alcatel’s treatment system. Wells MW-2d, and MW-14d, each had impacted water directly removed approximately once a month from October 2001 to April 2003 using a small portable pump. From the October 2003 sampling event to April 2004, the scope was expanded to remove water from wells MW-2d, MW-14d, MW-4d, MW-3dk, and MW-13d. By April 2004, approximately 43,000 gallons of contaminated groundwater was pumped and treated in the Alcatel treatment system. In May 2004, the system was turned off to execute the yearlong Monitored Natural Attenuation pilot test. In May 2005, only recovery wells RW-2 and RW-3 could be restarted to collect groundwater and send to the on-site treatment facility. In June 2008, RW-2 was shut down due to mechanical problems. Currently, only recovery well RW-3 remains in operation. Total VOC concentration of influent to the treatment system has been decreasing since the system began operation. The average total VOC concentration during the last semi-annual period was 90 µg/L, with PCE comprising nearly 70% of the effluent. During the operation of the treatment system, approximately 207 pounds of VOCs have been removed by processing 148 million gallons of groundwater. Although the historical operation of the pump and treat groundwater remediation system has been successful and reduced the concentration of COCs in the groundwater, the removal rate has steadily decreased over the past several years leading to asymptotic conditions. 4.2 Aggressive Fluid Vapor Recovery (AFVR) In April 2001, supplemental methods were utilized to remediate the site more assertively. Aggressive Fluid Vapor Recovery (AFVR) was applied semi-annually to shallow wells closest to AOC #1, namely MW-2s, MW-13s and MW-13d. By using a vacuum truck, up to 3,000 gallons of groundwater was removed, along with any soil gas vapors present in the vicinity. Between October 2000 and October 2002 marked reductions in total VOCs were recorded at these wells located near the central mass of the plume. MW-2s experienced an 83% decrease (193 to 33 μg/L), MW-13s had an 86% decrease (2,703 to 380 μg/L) and MW-13d underwent a 90% decrease (902 to 87 μg/L). Due to the depth limitations involved with AFVR, this method was used on selected shallow groundwater monitoring wells. In addition to the AFVR, from July 5 to July 22, 2005, a Mobil Multi-phase Extraction (MMPE) unit was used to extract impacted vapor and groundwater from MW-13s under the building and MW-2d on the north side of the building. In all, approximately 65,000 gallons of water were removed and treated during the operation. Impacted groundwater removed was treated using the onsite treatment system. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 12 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com 4.3 Monitored Natural Attenuation In May 2004, all active treatment methods were discontinued so that a MNA pilot study could begin. The objectives of the study were to monitor aquifer conditions such as water table elevation, dissolved oxygen, oxidation/reduction potential (ORP), and COC concentrations under more natural conditions. Over the course of the pilot study, no noticeable changes were detected in water table elevations, dissolved oxygen, or ORP. Aerobic conditions are generally present throughout most of the aquifer. Therefore, reductions would rely on the physical processes of advection, dispersion, and adsorption. After a period of approximately one year, COC concentrations increased in wells closest to the plume. MW-2d had a pre-MNA PCE concentration of 250 µg/L and a post-MNA concentration of 480 µg/L. Similarly, MW-13d had a PCE increase from 4.4 µg/L to 18 µg/L. Meanwhile, wells MW-13s and MW-14d experienced decreases in 1,1-DCE and TCA, respectively. Wells down- gradient of the plume (RW-5 and RW-7) also experienced reductions in contaminant concentrations and the presence of degradation products (1,1-DCA, 1,2-DCA and 1,2-DCE). Based on the results obtained from the MNA pilot test, ALU decided that some source reduction would be required to move the site to an MNA alternative as the final remedial alternative. 4.4 In-Situ Chemical Oxidation In May 2007, an In-Situ Chemical Oxidation (ISCO) event was conducted by injecting sodium persulfate within the fractured bedrock and the PWR. Alcatel did not cease treatment system or recovery well operation during the ISCO treatment event. Five injection wells and one replacement monitoring well (MW-13sr) were installed to facilitate injection activities. The five injection wells comprised three shallow wells constructed of 2-inch PVC with a screen and riser. Additionally, two bedrock boreholes were drilled for use as injection points. The upper portion of the cased bedrock wells were constructed of PVC, and portion of the injection well in competent rock was left as open hole to have complete access to any fractures present. During the drilling of these bedrock injection wells, a large highly productive fracture was encountered between 20 to 25 feet bls. The two injection wells produced one vacuum truck full of groundwater during drilling activities. Per the approved Underground Injection Control (UIC) permit, 500 gallons of sodium persulfate with a caustic catalyst was injected into each of the five injection wells. The sodium persulfate solution was mixed before injection. Hydrated lime was added to the solution to increase the pH to between 9 and 10. The solution was injected into the bedrock unit at approximately 5-10 gallons per minute with an injection pressure of 75-100 pounds per square inch (psi), using a double diaphragm pump. The wells completed within the PWR unit would take the injectant at a very limited rate. Limited pressure was added and several of the wells had to be left over night to allow the persulfate to move into the aquifer material. Monitoring wells MW-2s, MW-2d, MW-4s, MW-4d, MW-13s, and MW-13d were sampled immediately prior to injection to develop a pre-injection baseline. Sampling was repeated on September 23, 2007, 45 days after the ISCO treatment event. There was a decrease in total VOC concentrations in wells MW-2d, MW-4d, and MW-13d, all completed within the fractured Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 13 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com bedrock (Figure 2). Wells MW-2d and MW-13d lie within approximately 20 to 25 feet of the injection wells. Well MW-4d is located on the southern side of the facility. Concentrations of total VOCs decreased from 736.2 μg/L to 161.7 μg/L in well MW-2d and from 1,051.17 μg/L to 692.49 μg/L in well MW-4d. A slight change was noted in well MW-13d, with a decrease from 76.7 μg/L to 20.4 μg/L. Approximately 60 days after injection, concentrations of total VOCs decreased to 126.5 μg/L in well MW-2d and 606 μg/L in well MW-4d. During this same sampling interval, VOCs were detected in MW-13d at 13.1 μg/L. After approximately three months of monitoring, total VOCs had decreased from 736.2 μg/L to 45.9 μg/L in well MW-2d, and from 76.7 μg/L to 9.3 μg/L in well MW-13d. During this same time period, an overall decrease from 1,051.2 μg/L to 818.61 μg/L was noted in well MW-4d. Although total VOC concentrations decreased, there was no associated spike in metals or sulfate concentrations observed in these monitoring wells, or any of the injection monitoring network. No definitive change in total VOC concentrations were observed in the monitoring wells completed within the PWR or shallow aquifer. This may be due to a limited radius of influence associated with PWR injection wells. In addition, during the October 2007 sampling event, no VOCs were detected in well MW-14d at concentrations at or exceeding laboratory PQLs. These are the lowest concentrations measured in these wells since samples were first collected over a decade ago. Similarly, the concentration of total VOCs in MW-2d continued to decrease until October 2008, when samples exhibited rebounding of concentrations. Based on the results observed in well MW-14d, it is likely that the highly productive fractures encountered in the injection wells are interconnected with those present in MW-14d, located cross gradient to the injection wells. Although rebounding was subsequently observed in each of the bedrock wells, this was anticipated since the overlying source material had not been addressed. The overall results indicated that sodium persulfate can effectively treat the COCs present at the site, including the 1,4-dioxane. This remedial method is only effective if the injectant comes in direct contact with the COCs. In the saprolite unit and potentially in the PWR unit, the radius of influence will likely be limited. Success within the competent rock unit will be dependent upon intersecting the fractures which transmit the COCs downgradient from the source area. 5.0 ESTBALISHMENT OF MEDIA CLEAN UP OBJECTIVES 5.1 Soil Cleanup Objectives The soil assessment activities performed have been successful in identifying the location(s) of chlorinated solvents. The excavation of impacted soil has removed the remaining source material and greatly minimized the further degradation of groundwater. However, analytical results of post excavation soil samples indicate the presence of limited impacted soil remaining in the subsurface. To gain full closure under RCRA for unrestricted land use, additional soil remedial action will be necessary to reduce the concentration of COCs in the soil to below the North Carolina Hazardous Waste Section Soil Screening Levels. However, with approval of the Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 14 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com land owner, land use restrictions can be used to address any soil impact remaining. Since the soils can be addressed using engineering controls, soil will be not addressed further when considering the various remedial alternatives applicable to this site. 5.2 Groundwater Clean Up Objectives In support of the corrective action objectives, performance goals have been established to determine the extent of groundwater to be addressed under the proposed action. The performance goals for groundwater are the North Carolina Administrative Code 15A Subtitle 2L Section .0202 (g) (2L Groundwater Standard). The analytical results of samples collected as part of the October 2009 semi-annual sampling event are included in this CMS as a depiction of the current conditions in the unconsolidated and bedrock aquifer. Groundwater samples collected from temporary wells in October 2008 are included to provide evidence to the concentration of COCs near the source area within the unconsolidated aquifer. Finally, the analytical results of the groundwater samples collected from the PWR wells installed in November 2009 are included to depict the impact on the groundwater in this hydrogeologic unit. The results from these sampling events are depicted in the isoconcentration maps presented as Figures 6 through 13. These maps show the extent of COCs at concentrations exceeding their respective 2L Groundwater Standard. The successful treatment of large dilute plumes is technically challenging. Treatment of the plume at the former Alcatel site to meet 2L Standards cannot be guaranteed with the active remedial methods currently available. ALU is currently seeking to move the site toward an MNA alternative, allowing the physical processes of advection, dispersion, and adsorption to address the remaining downgradient low concentrations of COCs. The previous MNA pilot test revealed that the plume is close to steady state conditions at this time. However, for the plume to begin shrinking in size, additional source material will need to be addressed. For MNA to be a viable alternative, the method must be able to achieve remedial end goals. With source material remaining, these end goals cannot be achieved within a reasonable time frame. Therefore, the driver for this remedial action is to address the remaining source material and thereby make MNA a viable remedial alternative in which the plume achieves steady state conditions, and ultimately begins to shrink in size. As described in Section 3.0, the highest concentrations of COCs are present adjacent to the former chiller room in the shallow aquifer including the saprolite and underlying PWR unit. With the previous removal of the impacted soils, the majority of the mass remaining lies in this shallow aquifer material. Removing this remaining mass will have a positive impact to overall groundwater concentrations within the competent bedrock unit and in the shallow aquifer downgradient of the treatment area. Source area treatment can be implemented and positively impact the dilute dissolved phase plume. Therefore, the focus of this CMS is to evaluate remedial alternatives which can be utilized for the source area and allow MNA to be utilized for the downgradient portion of the dilute plume. The concentrations of VOCs present within the bedrock unit are much lower than within the upper source zone area. When evaluating the treatment area based on total mass to be removed, there is far less mass present in the fractured bedrock unit than within the upper Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 15 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com shallow aquifer zones. For the long term success of the MNA alternative, removal of mass material will promote the creation of a shrinking plume and decrease overall cleanup times and monitoring costs. Since significant mass removal likely cannot be achieved by addressing the bedrock material, remedial action will focus on addressing the shallow unit. As stated above, once source reduction has been achieved MNA will be utilized for the dilute plume. Under the MNA alternative groundwater monitoring would be conducted for several years to evaluate the overall effectiveness of the source reduction. 6.0 IDENTIFICATION OF THE CORRECTIVE MEASURES ALTERNATIVES AMEC evaluated the potential remedial alternatives in terms of the criteria described in the RCRA Corrective Action Plan (US EPA 1994) and the Advance Notice of Proposed Rulemaking (ANPR) (US EPA 1996). The evaluation criteria include threshold criteria and balancing criteria as subdivided below. Threshold Criteria: • Protection of Human Health • Attain Media Cleanup Values (2L Standards) • Control the Source of Release • Comply with Applicable Standards for Management of Wastes Balancing Criteria • Long-term Reliability and Effectiveness • Reduction in Toxicity, Mobility, and Volume of Wastes • Short-Term Effectiveness • Implementability • Cost The results of our evaluation are provided below and summarized on Table 5. There are various treatment options currently available to remediate sites impacted with PCE, TCA, and 1,4- dioxane. However, the options are limited by several factors. • 1,4-Dioxane is miscible in water and recalcitrant and thereby not biodegradable like the other COCs present. • The shallow aquifer consists of clays with low hydraulic conductivity. In addition, the PWR zone was found to have extremely low hydraulic conductivity in portions of the site. This aquifer characteristic will extremely limit the effectiveness of remedial alternatives such as air sparging, soil vapor extraction, direct injection of chemical oxidants, etc. • Vagrants frequent the site and machinery is often stolen or destroyed. Therefore, it is unlikely that a remedial alternative involving dedicated equipment could be successfully maintained on-site for a prolonged period. This makes implementing alternatives such as soil vapor extraction, air sparging, recirculation wells, etc. extremely difficult. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 16 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com As discussed above, ALU has historically utilized pump and treat technology as an interim measure. Although the historical operation of the pump and treat groundwater remediation system has been successful and reduced the concentration of COCs in the groundwater, the removal rate has steadily decreased over the past several years leading to asymptotic conditions. This technology has reached the limit of its effectiveness. In addition, as mentioned above, it will be difficult to maintain the system on an on-going basis without frequent repairs due to vandalism. Therefore, this technology will no longer be considered in this evaluation. Potential alternatives include the following: • In-Situ Chemical Oxidation (ISCO) via Direct Injection • ISCO via Soil Blending • Enhanced Bioremediation and Bioaugmentation • Permeable Reactive Barrier • Dig and Haul • Monitored Natural Attenuation with Source Removal 6.1 In-Situ Chemical Oxidation Via Direct Injection ISCO was previously used at the site and substantially decreased the concentrations of total VOCs. Although this method was successful in reducing total VOC concentrations in the bedrock, no definitive changes in total VOC concentrations were observed within the unconsolidated saprolite/upper PWR portion of the shallow aquifer. When considering ISCO, various oxidizers can be used including Fenton’s Reagent, sodium persulfate, or permanganate (potassium manganate - KMnO4). Due to the presence of 1,4- dioxane, a strong oxidizer is required, eliminating the potential of utilizing permanganate. Sodium persulfate was utilized at the site and successfully addressed each of the COCs present. Persulfate is a preferred oxidizer because it is easier to use and implement than Fenton’s Reagent. The key to a successful ISCO remediation is complete contact of the oxidizing compound with the VOCs. If the oxidant does not make contact with the VOCs, the VOCs are not destroyed. This means that the oxidant must be distributed equally through the impacted zone, including the tight clays of the saprolite material. Subsurface heterogeneities can cause uneven distribution of the oxidants, limiting its effectiveness. With this limitation, the technology is generally reserved for mass reduction, and not for attaining low 2L Standards across an entire plume. The saprolite/PRW zone which contains the highest concentrations of VOCs is up to 20 feet thick. In order to address this thickness, two nested injection wells would be required at each location. Assuming a radius of influence of five feet for the saprolite material, over 50 injection well nests (over 100 wells) would be required. However, even this tight placement of injection points does not guarantee that adequate contact will be made. As mentioned above, slight heterogeneities in the soil can have a large impact on the distribution of the oxidant. Therefore, there is the potential that only 50% of the mass would be addressed within the saprolite material using direct injection techniques. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 17 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com Based on previous testing, the hydraulic conductivity of the PWR zone is highly variable. In some portions of the site, fluid could be injected at rates over five gallons per minute. In other areas, the PWR is much tighter and very little fluid can be injected. Therefore, the success of the direct injection of the persulfate would be dependent upon the area and the characteristics of the PWR in that particular zone. Direct injection of persulfate within the bedrock zone has been shown to be highly effective. However, success is predicated on the injection wells intersecting the fractures which are transmitting the VOCs. The two injection wells previously installed (INJ-1 and INJ-2) intersect highly productive fractures which contain VOCs. In addition, well MW-14D also intersects a large productive fracture. These wells could be utilized following treatment of the unconsolidated/PWR unit to address a limited portion of the bedrock material immediately adjacent to the source material. The installation of additional injection wells does not guarantee that productive fractures will be encountered and treated. Wells would be installed more on a trial and error basis. 6.2 In-Situ Chemical Oxidation via Soil Blending Since effective use of oxidants requires direct contact with the target VOCs, ISCO is often limited by the ability to distribute the chemical amendments. By blending the material, the persulfate can be well distributed throughout the targeted zone. In-situ soil blending provides an alternative method to deliver oxidants to the subsurface where direct injection may not provide sufficient delivery. This method involves the use of an in-situ blender to effectively distribute chemical amendments, including persulfate, throughout the soil column. This includes both saturated and unsaturated soils. The material is not removed from the hole, so no waste material is generated. This alternative is less expensive than a standard dig and haul method when addressing saturated soils. The blender is mounted on a large excavator with a modified diesel engine and hydraulic power system. The mixer is capable of mixing dry soil as well as sludge material to depths of up to 24 feet bls. Deeper depths can be achieved if the excavation is benched. The 28-inch mixing drum with “teeth” is rotated at speeds up to 100 revolutions per minute with torque of 20,300 ft-lbs. This allows the blender to penetrate all soil types including saprolite and highly weathered PWR material. For larger treatment zones, the treatment area is subdivided into smaller cells of lifts of up to 5 feet thick. The limiting factor associated with this technology is the depth of the treatment zone and equipment access. By removing the upper 12 feet of unsaturated overburden, the excavation can be benched allowing the blender to reach the targeted depths of up to 32 feet bls. To provide adequate access for the operation, the portion of the building overlying the treatment area would have to be demolished and the debris removed. This would require prior approval of the land owner. The saprolite and upper portion of the PWR zone would be treated using the soil blending method. The blender is not capable of addressing large rocks because they will break off the “teeth” on the mixing drum. So the treatment cannot address bedrock or PWR with a high concentration of large rocks. The top of competent rock was encountered at depths ranging Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 18 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com from 27 to 33 feet bls. But, due to the larger concentration of rock material immediately above the competent rock, the blender will likely only be able to treat within approximately five feet of the top of the rock unit. This makes target depths approximately 22 to 31 feet bls. Although the less weathered PWR material cannot be treated directly using soil blending, a shadow zone area of treatment does occur immediately below the blended soils. Some of the persulfate and groundwater mixture within the treatment zone will percolate downward and into the underlying PWR unit, deepening the overall treatment area. The act of blending the soils can make subsequent compaction of the material difficult. However, since the overburden would be removed and later used to backfill the excavation, appropriate soil compaction should be obtained following the remedial process. With in-situ blending, the VOCs come in full contact with the oxidant. This results in more predictable outcome than with direct injection. The mass reduction associated with this delivery method, as compared to the direct injection will likely be significantly higher. 6.3 Enhanced Biodegradation and Bioaugmentation The compounds PCE and TCA can naturally biodegrade through the process of reductive dechlorination under anaerobic aquifer conditions. As stated above, aerobic conditions are present throughout a large portion the aquifer environment both on-site and off-site. Materials such as emulsified vegetable oil, lactate, molasses, etc can be injected into the aquifer thereby reducing the dissolved oxygen concentrations and providing the necessary electron donors to promote the reductive dechlorination of the COCs. However, this process will only be successful if the proper bacteria are present. Based on the historical data and lack of daughter products beyond cis-1,2-dichloroethene, these bacteria are likely not present in sufficient volumes. Therefore, in order for the biodegradation process to be successful, the aquifer would need to be augmented with the microbe Dehalococcoides (DHC). The DHC is added once reductive conditions have been established within the aquifer. This technology can treat dilute plumes and areas with more significant concentrations of COCs. Unlike ISCO methods, direct contact of the injectant with the VOCs at the time of injection is not required. An electron donor such as emulsified oil can be used which can last up to 18 months in the aquifer. Therefore, the material will naturally disperse through the aquifer material over time. The material can be emplaced along reactive barrier lines to address larger areas with faster moving groundwater, or through tightly spaced injection points to treat smaller areas consisting of tighter soils. As noted above, the presence of TCA can hamper the degradation of the PCE. As a result, the PCE will stall at the formation of trichloroethene (TCE) and 1,2-DCE. To overcome this, the site would need to be augmented with a specific blend of DHC cultures which can address both PCE and TCA. This remedial method has been shown to be highly effective under the proper conditions and would likely be effective in the downgradient plume consisting primarily of PCE and degradation products of TCA. However, this method will not address 1,4-dioxane since it is has been shown Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 19 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com to be recalcitrant. 1,4-Dioxane is a primary COC at the site and was found at concentrations exceeding 5,000 µg/L in the shallow groundwater at the source area. Although this remedial method could potentially be considered as needed for downgradient areas once the 1,4-dioxane has been addressed, it was not considered further as part of this evaluation to address the COCs present within the source area. 6.4 Permeable Reactive Barrier In lieu of an MNA alternative in conjunction with source removal, AMEC looked at the potential of using a remedial alternative such as a permeable reactive barrier (PRB) to prevent the further downgradient movement of the COCs. PRBs are installed in the subsurface to intercept a contaminant plume. The barrier consists of reactive materials such as zero valent iron (ZVI) which transform the VOCs into environmentally acceptable forms. The barriers are designed to provide a preferential flow to promote the movement of the groundwater through the treatment medium. The barriers are considered a passive method and are used to protect potential receptors and not to remove source material. The barrier is generally installed along the toe of the plume to prevent further movement downgradient of the COCs. The barrier is installed via a trench or as a slurry with ZVI which is emplaced using an auger drilling rig. At the toe of the plume at the former Alcatel site, the COCs are present within both the saprolite and the competent bedrock to depths exceeding 60 feet bls. Emplacement of a PRB to these depths and within the rock material is technically unfeasible. This alternative was thereby eliminated from further consideration. 6.5 Dig and Haul The shallow saprolitic soils and PWR material can be addressed by excavating the material and transporting it to a local landfill for disposal. Since the excavation will involve the removal of saturated soils, both soil and water will be generated during the process and will need to be addressed. Based on the concentrations of the COCs present, it is possible that at least a portion of the soil may require disposal at a RCRA Subtitle C facility. The majority of the soil may be disposed of at a RCRA Subtitle D facility in accordance with the NCDENR “Contained Out” Policy. The ultimate disposition of the water generated cannot be determined at this time. However, water containing VOCs less than approximately 1,000 µg/L total VOCs could potentially be accepted by the City of Raleigh for treatment by their waste water treatment plant. A limiting factor associated with this alternative is the depth of the treatment zone and equipment access. By removing the upper 12 feet of unsaturated overburden, the excavation can be benched allowing an excavator to easily reach the targeted depths of up to 25 feet bls. However, for adequate access, the portion of the building overlying the treatment area would have to be demolished and the debris removed. This would require prior approval of the land owner. Whereas this alternative involves a similar technique as the soil blending method, the final cost of this alternative is difficult to quantify at this time, and will be dependent upon the concentrations of the VOCs present in the soil once excavated. In addition, ALU will maintain liability for the soils once transported to the disposal facility. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 20 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com 6.6 Monitored Natural Attenuation with Source Removal Source removal of the vadose zone has been completed with the removal of 345 tons of impacted soil in 2009. Analytical results of post excavation soil samples collected from the side walls and bottom of the excavations indicate that minimal VOC impacted soil remains Dependent upon site conditions, groundwater may be monitored and the COCs allowed to naturally degrade and attenuate over time. In order to consider this option, the following conditions must apply: • The source of contamination must be controlled or remediated; • The COCs must have the capacity to degrade or attenuate at the site; • The time and direction of the contaminant travel must be able to be predicted; and, • The continued migration of the COCs may not impact any foreseeable receptor at concentrations above 2L Standards. AMEC evaluated if this option is viable for this site once the source material has been addressed. In addition, AMEC evaluated the volume of mass which need to be remediated to move to the MNA alternative. To examine the feasibility of using MNA, three lines of evidence can be examined. These include: • Primary lines of evidence - historic groundwater monitoring data; • Secondary lines of evidence - geochemical characteristics of the groundwater; and, • Optional lines of evidence - environmental fate modeling results. The sections below provide a summary of our evaluation of each. 6.6.1 Primary Lines of Evidence Groundwater monitoring activities have been nearly on-going at the site since approximately 1996, providing nearly 14 years of historical data. The data shows that the initial operation of the pump and treat system did result in the removal of mass material. However, over the last several years, with the pump and treat system operating at only minimal capacity (only one to three wells operating) concentrations have remained fairly steady or decreased in a large number of groundwater monitoring wells. Historical analytical data is included in Appendix C. AMEC compiled the historical data and developed graphs showing the changes in VOC concentrations over time (Appendix C). These graphs are updated after each sampling event and included in each Interim Measures Progress Report. The Coefficient of Determination, or r2 method is applied to each well evaluated. Where the data is statistically significant, the data indicates decreasing concentration trends in a majority of the wells. An upward trend was observed in wells MW-4d and MW-9sk. Therefore, despite the minimal operation of the interim remediation system, the plume has nearly reached steady state conditions. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 21 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com 6.6.2 Secondary Lines of Evidence Secondary lines of evidence consist of geochemical data used to evaluate if the conditions within the aquifer are suitable for the biodegradation of the COCs present. As stated above, the data previously collected indicates that biodegradation will play a negligible impact on the reduction of the total VOC concentrations at the site over time. Therefore, in order for MNA to be a viable option, physical processes will need to be sufficient. In accordance with both EPA and ASTM guidance, the most reliable line of evidence to determine if MNA is appropriate for a site, is actual groundwater monitoring data (primary lines of evidence). The primary lines of evidence at this site indicate that the plume has reached nearly steady state conditions without the removal of the additional source material. With the removal of the impacted soil at the former chiller room, and additional remedial activities to address shallow groundwater impact in this area, it is anticipated that the plume will reach steady state conditions and likely begin shrinking in size. 6.6.3 Optional Lines of Evidence To determine the concentrations of COCs which should be addressed in the source area to make MNA a viable alternative, AMEC utilized a one-dimensional screening groundwater contaminant transport model. A screening model can provide a simplified examination of the site and help determine if natural attenuation is a feasible remedial option. The one-dimensional model BIOCHLOR was selected. BIOCHLOR was developed by Groundwater Services, Inc. for the Air Force Center for Environmental Excellence. The model was developed to evaluate the feasibility of MNA. Information regarding the model, input parameters, aquifer characteristics, etc. is provided in Appendix D. The site conceptual model confirms that the former Alcatel site is quite complex. COCs are present within three aquifer zones each with their own respective hydraulic conductivities. Flow within the competent rock material occurs along fractures and the movement of groundwater within the PWR unit is also at least partially influenced by remnant fracture traces. In addition, the groundwater gradient in each zone varies depending upon the portion of the site being evaluated. These gradients have varied significantly with the operation of the pump and treat system. These factors make calibrating any model to historical VOC data difficult. To provide a more quantitative representation of the plume, a three-dimensional model would be required. However, as stated above, the most reliable lines of evidence are historical data and this data indicates that steady state conditions have nearly been reached without additional source treatment. Therefore, AMEC used a one-dimensional model to get a qualitative idea of the remedial end goals which may be appropriate for the source zone. AMEC ran the BIOCHLOR model using end goals with total VOC values of 100 µg/L, 500 µg/L, and 1,000 µg/L. Model results are included in Appendix D. The model was calibrated to current site conditions with existing groundwater gradients observed on the property. Based on the historical data, the 1,4-dioxane plume shape and direction likely represents current site conditions, without the influence of the pump and treat system. Based on the screening level Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 22 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com evaluation, AMEC decided to address concentrations of VOCs within the source zone which exceed 1,000 µg/L total VOCs. The model showed that additional treatment area will have minimal impact on the overall stability of the plume. 7.0 RECOMMENDED CORRECTIVE MEASURES The remedial action being proposed will be implemented to move the site toward a MNA alternative. As discussed in Section 6.0, with reductions in the concentrations of the COCs present in the former chiller room area, MNA will be a viable final remedial alternative. Based on the evaluation criteria and potential for success, AMEC recommends that the shallow source material be treated using ISCO via soil blending. To treat the shallow aquifer at the chiller room area, the saprolite and shallow PWR material will be blended with sodium persulfate with a caustic catalyst. The zone to be targeted includes shallow groundwater with concentrations of total VOCs exceeding approximately 1,000 µg/L. This encompasses a volume of approximately 1,900 cubic yards of soil (Figure 24). The building within the treatment area will have to be demolished and the material transported off-site. A structural engineer will be consulted to determine the appropriate area of the building which can be demolished while maintaining the integrity of the remaining structure. The precise limits of the treatment area will be dependent upon the removal of the structure and several load bearing features present in this zone. Once this determination has been made, the soil blending treatment area can be finalized. Since soil blending will be utilized and the treatment area will be wider than it is deep, it will not be necessary to obtain an injection permit from the NCDENR, Division of Water Quality, Aquifer Protection Section, UIC Group. Immediately prior to beginning the remedial activities, selected groundwater monitoring wells will be sampled to provide a snapshot of baseline VOC concentrations immediately prior to treatment. This baseline event will include wells INJ-3, INJ-4, INJ-5, MW-2s, MW-2d, MW-13s, MW-13sr, MW-13d, and MW-14d. After the sampling event, any groundwater monitoring and injection wells within the proposed treatment zone or those which could become damaged during demolition activities will be abandoned in accordance with North Carolina 2C Well Standards. At a minimum, this includes MW-13s, MW-13sr, and potentially wells MW-13d, INJ-3, INJ-4, and INJ-5. The concrete cover will be removed and the overburden material will be screened using field monitoring equipment. Soils not exhibiting any VOCs using field equipment will be stockpiled outside the excavation. With the overburden removed, the excavation can be benched so the equipment can reach to the total depth of the proposed treatment zone. The soil will be blended as deep as practicable based on the size of rocks present in the PWR zone. This depth will vary by location. As needed, the soil will be blended in 5-foot lifts and following the blending of each lift, the entire soil column blended together. Since the treatment area is large, the blending will be conducted in smaller treatment cells. Corrective Measures Study Former Alcatel Facility, Raleigh, North Carolina September 2010 Page 23 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com To monitor the success of the remedial action, following the soil blending two to three shallow groundwater monitoring well nests will be installed within or immediately adjacent to the treatment zone to determine the concentrations of COCs following treatment. The well nests will consist of a shallow well screened across the saprolite material and a deeper well screened within the lower portion of the PWR. This deeper well will be used to monitor any “shadowing effect” and the ultimate concentrations of VOCs present below the treatment zone, above the competent bedrock unit. Persulfate is reactive for up to 45 days in the subsurface. Whereas there can be significant rebounding with the direct injection of the oxidants, since the material is blended equally throughout the soil column this technology generally has less overall rebounding following the treatment. Following the completion of the source area treatment, MNA would be utilized to address the remaining portion of the plume. The existing pump and treat system will be shut down following approval of the proposed remedial method outlined above. 8.0 CORRECTIVE ACTION IMPLEMENTATION SCHEDULE Following the completion of public notice requirements and approval of the CMS by the NCDENR, Division of Waste Management, ALU will complete the tasks outlined above. A tentative schedule is provided below. Preliminary Completion Date Proposed Task November 1, 2010 Final Approval of CMS (following Public Comment Period) November 5, 2010 Pump and Treat System Permanently Shut Down November 15, 2010 Building Demolition Design December 1, 2010 Submittal of CMS Implementation Workplan January 1, 2011 Approval of Workplan by NCDENR January 8, 2011 Collection of Baseline Groundwater Data January 9, 2011 Building Demolition and Debris Removal (one week) January15, 2011 Soil Blending Begins (4 weeks) February 15, 2011 Installation of Monitoring Wells at Treatment Area 2011 Groundwater Monitoring of Treatment Areas 2012 Begin MNA Alternative AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com FIGURES DATE:05-27-2010 PROJ.:559480000SCALE:1" = 2,000' Figure1DR:CHK: SITE LOCATION MAP JWB HMT TITLE:CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINAAMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Parcel Boundary ³2,000 Feet SITE SB-19 SB-21 SB-12 SB-11 SB-05 IW-02 RW-10 RW-09 RW-08 MW-09DK MW-02SK MW-02IK MW-04D INJ-01B INJ-02B INJ-04S INJ-05S INJ-03S MW-19I RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 RW-01 IW-01 IW-03 MW-17I MW-20I MW-21I MW-22I MW-18I CRW-01 CRW-02CRW-03 CRW-04 CRW-05 MW-16D MW-13S MW-03D MW-11S MW-12S MW-04S MW-03S MW-14D MW-02D MW-13D MW-02S MW-05SK MW-12DK MW-03DKMW-03SK SB-08 MW-13SR MW-09SK @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? ")? ")? ")? ")? ")? @A @A @A @A @A@A @A ")? @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? ")? ")? ")? ")? ")? @A @A @A @A @A@A @A ")? @?H @?H @?H @?H @?H ³ Wells @?Recovery @?H Injection @A Monitoring ")?TemporaryStructure LinesProperty Boundary DATE:05-27-2010 PROJ.:559480000 SCALE:1" = 100' AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Figure2DR:CHK: SITE LAYOUT MAP JWB HMT TITLE:CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA Study Area Parcel Boundary Area of Interest Scale: 1' = 200' ChillerRoom ConcretePad Alleyway Storage Main Building Area of Interest ³ Scale: 1" = 30' AOC #1 AOC #2 Structure Line Figure DR:CHK:DATE: AOC AREAS LOCATION MAP 3W. Blaylock H. Thurston 05-27-2010 CLIENT: PROJ.:559480000 TITLE: SCALE:NotedSITE:FORMER ALCATEL USA FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 LOCATION:P:\ProjectFiles\559480000-Alcatel Remediation\GIS\Corrective_Measures_Report\Figure2_aoc.mxd ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA EXC 1 B3 EXC 1 SW2 EXC 1 B2 EXC 1 SW1 EXC 1 B1 EXC 2 B2 EXC 2 SW-2 EXC 2 B3 EXC 2 SW-3 EXC 2 B4 EXC 2 SW-4 EXC 2 B1 EXC 2 SW-1 EXC 1 SW4 EXC 1 SW3 !( !( !( !( !( !( !(!( !( !(!( !( !( !( !( (4) !(Soil Sample Location !(9 Excavation Total Depth (ft bls)Stucture LineProposed ExcavationPrevious ExcavationActual Excavation ³ < ExcavationArea #1 <ExcavationArea #2 Main Building ConcretePad Storage Alleyway !(12 !(12 < 12!(12 !(10 !(9 !(9 < 12!(9.5 DATE:05-27-2010 PROJECT:559480000CLIENT: SCALE:1" = 20'SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Figure4DR:CHK: SOIL EXCAVATION ANDSAMPLE LOCATION MAP JWB HMT TITLE:ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 20 Feet !>) !>) !>) !>) !>) !>) @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A SB-19 SB-08 SB-05 SB-21 SB-12 SB-11 MW-13S MW-14D MW-13D MW-13SR Asphalt Parking Asphalt Parking Main Building Main Building Chiller Room Storage Concrete Alley Hallway DATE:05-27-2010 PROJ.:559480000SCALE:1" = 20' Figure5DR:CHK: TEMPORARY WELLLOCATION MAP JWB HMT TITLE:CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINAAMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 $ $ @A Monitoring Well Location !>)Temporary Well Location Structure Lines Fence Exterior Wall ³ 20 Feet IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A (5) (5) (BQL) (6) (115) (79) (18) (790)(533) (13) (1.0) (38) (15)(32) (140) (72) (266) 1 0 1 0 0 1 0 0 0 5 0 0 0 W A K E F O R E S T SIX FORKS ³Total VOC(μg/L)1010010005000Wells @?Recovery @?H Injection @A Monitoring ")A Temporary (4)Concentration (μg/L) (BQL)Below Quantitation LimitProperty LineStructure Line @A @A @A @A @A @A @A @A ")A ")A ")A ")A ")A @A @A @A@A @A ")A MW-22I $MW-13S MW-13D SB-19 $ MW-13SR SB-08 SB-11 SB-21 SB-05 SB-12 $ MW-14D (71.9)(533) (3985) (6436.2) (3770.6) (902.54) (790) (22.3) 1 0 0 0 5 0 0 0 Source Area DATE:09-01-2010 MAP SCALE:1" = 100'CLIENT: SRCE AREA SCALE:1" = 30'SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Figure6 DR:CHK: TOTAL VOC CONCENTRATIONUNCONSOLIDATED AQUIFER(OCTOBER 2009)JWB HMT TITLE:ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA Project559480000 30 Feet 100 Feet NOTE: Groundwater analytical results of temporary wells from October 2008. Groundwater analytical results of monitoring wells from October 2009. Groundwater analytical results of PWR wells (I) from December 2009. IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A 1 0 5 0 1 0 0 (1) (13) (50) (11) (106) (12) (206) (907) (176) W A K E F O R E S T SIX FORKS ³Total VOC(μg/L)1050100Wells @?Recovery @?H Injection @A Monitoring(4)Concentration (μg/L) (BQL)Below Quantitation LimitProperty LineStructure Line DATE:09-01-2010 PROJ.:559480000CLIENT: SCALE:1" = 100'SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Figure7DR:CHK: TOTAL VOC CONCENTRATIONBEDROCK AQUIFER(OCTOBER 2009)JWB HMT TITLE:ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 100 FeetNOTE: Groundwater analytical results of monitoring wells from October 2009. @A @A @A @A @?H @A @?H@A@A @? @A @A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A 0 .7 7 0 7 1 0 0 (8.7) (BQL) (BQL) (BQL) (100) (72) (6.6) (2.5) (71) (BQL) (BQL) (14)(98) (1.5) (44) (1.9) (130)(130) IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I W A K E F O R E S T SIX FORKS ³PCE(μg/L)0.7 (2 L Standard)770100Wells @?Recovery @?H Injection @A Monitoring ")A Temporary (4)Concentration (μg/L) (BQL)Below Quantitation LimitProperty LineStructure Line @A @A @A @A @A @A @A @A ")A ")A ")A ")A ")A @A @A @A@A @A ")A MW-22I $MW-13S MW-13D SB-19 $ MW-13SR SB-08 SB-11 SB-21 SB-05 SB-12 $ MW-14D 1 0 0 (1.5)(71) (130) (110) (68) (48) (1.5) (480) (140) CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 DR:CHK: PCE CONCENTRATIONUNCONSOLIDATED AQUIFER(OCTOBER 2009)JWB HMT TITLE: DATE:08-01-2010 MAP SCALE:1" = 100' 1" = 30' Figure8 Project559480000 Source Area SRCE AREA SCALE: ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 100 Feet 30 Feet NOTE: Groundwater analytical results of temporary wells from October 2008. Groundwater analytical results of monitoring wells from October 2009. Groundwater analytical results of PWR wells (I) from December 2009. IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A @? @A @A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A 7 0 0 .7 7 (BQL) (32) (43) (140) (740) (1.8) (2.3) (3.1) W A K E F O R E S T SIX FORKS ³PCE(μg/L)0.7 (2 L Standard)770Wells @?Recovery @?H Injection @A Monitoring(4)Concentration (μg/L) (BQL)Below Quantitation LimitProperty LineStructure Line DATE:09-01-2010 PROJ.:559480000CLIENT: SCALE:1" = 100'SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Figure9DR:CHK: PCE CONCENTRATIONBEDROCK AQUIFER(OCTOBER 2009)JWB HMT TITLE:ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 100 FeetNOTE: Groundwater analytical results of monitoring wells from October 2009. IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A 7 7 0 1 0 0 0 (2.2) (BQL) (0.94) (1.3) (1.2) (0.63) (0.66) (4.1) (320) (BQL) (1.8) (7.4) (9.6) (3.3)(23) (530) (72) W A K E F O R E S T SIX FORKS ³1,1-DCE(μg/L)7701000Wells @?Recovery @?H Injection @A Monitoring ")A Temporary (4)Concentration (μg/L) (BQL)Below Quantitation LimitProperty LineStructure Line 1 0 0 0 MW-22I $MW-13S MW-13D SB-19 $ MW-13SR SB-08 SB-11 SB-21 SB-05 SB-12 $ MW-14D (9.6)(320) (530) (2600) (1000) (210) (4) (2300) (1400) @A @A @A @A @A @A @A @A ")A ")A ")A ")A ")A @A @A @A@A @A ")A CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 DR:CHK: 1,1-DCE CONCENTRATIONUNCONSOLIDATED AQUIFER(OCTOBER 2009)JWB HMT TITLE: DATE:09-01-2010 MAP SCALE:1" = 100' 1" = 30' Figure10 Project559480000 Source Area SRCE AREA SCALE: ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 100 Feet 30 Feet NOTE: Groundwater analytical results of temporary wells from October 2008. Groundwater analytical results of monitoring wells from October 2009. Groundwater analytical results of PWR wells (I) from December 2009. IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A 7 (BQL) (11) (13) (110) (34) (2.3) (2.6) (3.7) (14) W A K E F O R E S T SIX FORKS ³1,1-DCE(μg/L)7 (2 L Standard)Wells @?Recovery @?H Injection @A Monitoring(4)Concentration (μg/L) (BQL)Below Quantitation LimitProperty LineStructure Line DATE:09-01-2010 PROJ.:559480000CLIENT: SCALE:1" = 100'SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Figure11DR:CHK: 1,1-DCE CONCENTRATIONBEDROCK AQUIFER(OCTOBER 2009)JWB HMT TITLE:ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 100 FeetNOTE: Groundwater analytical results of monitoring wells from October 2009. IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-AS1 MW-BP6 MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A@? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @?@?@?@?@? @A @A @A @A @A@A @A7 70 700 5000 (BQL) (BQL) (BQL) (BQL) (BQL) (BQL) (BQL) (96) (1000)(690) (BQL) WAK E F O R E S T SIX FOR K S ³1,4-DIOXANE(μg/L)7 (2 L Standard)7070010005000Wells @?Recovery @?H Injection @A Monitoring ")A Temporary(4)Concentration (μg/L)(BQL)Below Quantitation LimitProperty LineStructure Line CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 DR:CHK: 1,4-DIOXANE CONCENTRATIONUNCONSOLIDATED AQUIFER(OCTOBER 2009)JWB HMT TITLE:ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA @A @A @A @A @A @A @A @A ")A ")A ")A ")A ")A @A @A @A@A @A ")A (690) (1100) (5100) (1100) (360) (1000) (4) (120)5000 700 MW-22I $MW-13S MW-13D SB-19 $ MW-13SR SB-08 SB-11 SB-21 SB-05 SB-12 $ MW-14D DATE:09-01-2010 MAP SCALE:1" = 100' 1" = 30' Figure12 Project559480000 Source Area SRCE AREA SCALE: 200 Feet 30 Feet NOTE: Groundwater analytical results of temporary wells from October 2008. Groundwater analytical results of monitoring wells from October 2009. Groundwater analytical results of PWR wells (I) from December 2009. IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A 7 (BQL) (BQL) (BQL) (BQL) (23) (6.9) (BQL) (BQL) (BQL) W A K E F O R E S T SIX FORKS ³1,4-DIOXANE(μg/L)7 (2 L Standard)Wells @?Recovery @?H Injection @A Monitoring(4)Concentration (μg/L) (BQL)Below Quantitation LimitProperty LineStructure Line DATE:09-01-2010 PROJ.:559480000CLIENT: SCALE:1" = 100'SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 Figure13DR:CHK: 1,4-DIOXANE CONCENTRATIONBEDROCK AQUIFER(OCTOBER 2009) JWB HMT TITLE:ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 100 FeetNOTE: Groundwater analytical results of monitoring wells from October 2009. IW-02 RW-10 RW-09 RW-08 RW-07 RW-06 RW-05 RW-04 RW-02 RW-03 IW-03 $ CRW-03 MW-18I CRW-02 $ MW-09DK $ IW-01 $ MW-03S $ MW-14D CRW-04 MW-16D MW-03D MW-11S MW-12S $ MW-04D MW-02D MW-02S MW-05SK MW-12DK MW-02IK MW-02SK $ CRW-01 MW-22I MW-21I $ MW-03DK $ MW-03SK $ MW-04S $ MW-09SK CRW-05 MW-20I $ RW-01 $ MW-13SR $MW-13D $MW-13S MW-17I MW-19I @A @A @A @A @?H @A @?H@A@A @? @A@A @A @? @A @? @A@A @? @? @? @? @? @? @A@A @? @A @?H @A @A @A @A @A @A @A @? @? @? @? @? @A @A @A @A @A@A @A ³Wells @?Recovery @?H Injection @A MonitoringCross SectionStructure LineProperty Boundary CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 AMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 DR:CHK: CROSS SECTION INDEX MAP JWB HMT TITLE: DATE:09-01-2010 PROJECT:559480000 1" = 100' Figure14SCALE: ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINA 100 Feet A A' B' B C C' ")? ")? ")? ")? ")? ")? @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A @A 1 0 0 0 SB-19 SB-08 SB-05 SB-21 SB-12 SB-11 MW-13S MW-14D MW-13D MW-13SR Asphalt Parking Asphalt Parking Main Building Main Building Chiller Room Storage Concrete Alley Hallway DATE:05-27-2010 PROJ.:559480000SCALE:1" = 20' Figure24DR:CHK: PROPOSED TREATMENTAREA MAP JWB HMT TITLE:CLIENT: SITE:FORMER ALCATEL USA SOURCING FACILITY2912 WAKE FOREST ROADRALEIGH, NORTH CAROLINA 27609 ALCATEL LUCENT USA, INCRALEIGH, NORTH CAROLINAAMEC Earth & Environmental2200 Gateway Centre Blvd., Suite 205Morrisville, NC 27560(919) 447-2750 $ $ ")?Temporary Well Location @A Monitoring Well Location Approximate Soil Blending Area 1,000 µg/L Total VOCs Structure Lines Fence Exterior Wall ³ 20 Feet AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com TABLES Ta b l e 1 Po s t E x c a v a t i o n S o i l S a m p l i n g R e s u l t s Vo l a t i l e O r g a n i c C o m p o u n d s Al c a t e l - L u c e n t U S A Ra l e i g h , N o r t h C a r o l i n a Se p t e m b e r - N o v e m b e r 2 0 0 9 1, 1 , 1 - Tr i c h l o r o - et h a n e 1, 1 , 2 - Tr i c h l o r o - et h a n e 1, 1 - Di c h l o r o - et h a n e 1, 1 - Di c h l o r o - et h e n e Ac e t o n e ci s - 1 , 2 - Di c h l o r o e t h e n e Te t r a c h l o r o - et h e n e Trichloro-etheneTrichlorofluoro-methane 1, 6 7 0 1 7 3 8 2 4 4 . 5 2 , 8 1 0 3 5 0 7 . 4 2 1 8 . 3 3 1 , 5 0 0 1. 2 x 1 0 6 1, 6 0 0 5. 1 x 1 0 5 1. 2 x 1 0 5 1. 4 x 1 0 7 NS 4 8 0 5 3 3.9 x 10 5 EX C 1 S W 1 9 9 / 4 / 2 0 0 9 < 6 . 8 < 6 . 8 3 5 56 <2 7 < 6 . 8 25 <6.8 3 6 0 E EX C 1 S W 2 7 9 / 9 / 2 0 0 9 < 5 . 4 < 5 . 4 1 2 2 9 < 2 2 4 0 40 <5.4 < 5 . 4 EX C 1 S W 3 1 0 1 1 / 1 6 / 2 0 0 9 2 . 8 J < 5 . 3 5 . 2 J 4 . 1 J < 2 1 < 5 . 3 2 . 5 J < 5 . 3 < 5 . 3 EX C 1 S W 4 1 0 1 1 / 1 6 / 2 0 0 9 1 2 < 7 . 5 8 . 8 4 . 8 J 2 4 J 4 . 3 J 11 J <7.5 5 . 5 J EX C 1 B 1 1 2 9 / 4 / 2 0 0 9 < 6 . 5 5 . 4 J 2 4 0 19 0 52 < 6 . 5 17 0 <6.5 3 2 0 EX C 1 B 2 1 2 9 / 8 / 2 0 0 9 < 5 . 7 < 5 . 7 < 5 . 7 4 . 3 J < 2 3 < 5 . 7 7. 9 J <5.7 1 1 EX C 1 B 3 1 2 9 / 9 / 2 0 0 9 < 5 . 4 < 5 . 4 1 2 2 7 < 2 2 8 6 4 . 0 J < 5 . 4 < 5 . 4 EX C 2 S W - 1 6 . 5 9 / 1 / 2 0 0 9 < 8 . 8 < 8 . 8 2 0 51 39 < 8 . 8 17 J <8.8 < 8 . 8 EX C 2 S W - 2 7 . 5 9 / 2 / 2 0 0 9 < 6 . 6 < 6 . 6 < 6 . 6 1 6 < 2 7 < 6 . 6 < 1 3 < 6 . 6 < 6 . 6 EX C 2 S W - 3 6 . 5 9 / 3 / 2 0 0 9 < 5 . 7 < 5 . 7 1 0 2 6 < 2 3 < 5 . 7 20 <5.7 < 5 . 7 EX C 2 S W - 4 6 9 / 3 / 2 0 0 9 < 6 . 1 < 6 . 1 1 3 46 <2 4 < 6 . 1 36 <6.1 < 6 . 1 EX C 2 B 1 9 9 / 1 / 2 0 0 9 < 6 . 8 < 6 . 8 2 9 88 <2 7 < 6 . 8 25 <6.8 < 6 . 8 EX C 2 B 2 1 0 9 / 2 / 2 0 0 9 < 6 . 3 < 6 . 3 2 1 81 28 < 6 . 3 18 <6.3 < 6 . 3 EX C 2 B 3 9 . 5 9 / 3 / 2 0 0 9 < 5 . 6 < 5 . 6 5 . 2 J 1 2 < 2 3 < 5 . 6 4 . 4 J < 5 . 6 < 5 . 6 EX C 2 B 4 9 9 / 3 / 2 0 0 9 < 6 . 9 < 6 . 9 1 8 52 35 < 6 . 9 29 <6.9 < 6 . 9 NO T E S : (u g / k g ) = m i c r o g r a m s p e r k i l o g r a m E = e s t i m a t e c o n c e n t r a t i o n , c a l i b r a t i o n r a n g e e x c e e d e d (f t b l s ) = f e e t b e l o w l a n d s u r f a c e J = a n a l y t e w a s p o s i t i v e l y i d e n t i f i e d b u t v a l u e i s b e l o w r e p o r t i n g l i m i t VO C = v o l a t i l e o r g a n i c c o m p o u n d s H W S S S L = N o r t h C a r o l i n a H a z a r d o u s W a s t e S e c t i o n S o i l S c r e e n i n g L e v e l s NS = n o s t a n d a r d R e g i o n 9 P R G s = U S E P A R e g i o n 9 P r e l i m i n a r y R e m e d i a t i o n G o a l s Bo l d v a l u e s e x c e e d t h e H W S S S L EX C A V A T I O N # 1 EX C A V A T I O N # 2 Re g i o n 9 P R G s Sa m p l e I D Nu m b e r Sa m p l e Da t e VO C 8 2 6 0 ( u g / k g ) HW S S S L Sa m p l e De p t h (f t b l s ) P: \ P r o j e c t F i l e s \ 5 5 9 4 8 0 0 0 0 - A l c a t e l R e m e d i a t i o n \ D e l i v e r a b l e s \ C M S 2 0 1 0 \ C M S R e p o r t - T A B L E S \ T a b l e 1 S o i l A n a l y t i c a l R e s u l t s - 2 . x l s Ta b l e 2 Gr o u n d w a t e r A n a l y t i c a l R e s u l t s - P W R W e l l s Al c a t e l - L u c e n t U S A R a l e i g h , N o r t h C a r o l i n a De c e m b e r 2 0 0 9 1, 1 , 1 - Tr i c h l o r o - et h a n e 1, 1 - Di c h l o r o - et h a n e 1, 1 - Di c h l o r o - et h e n e Ac e t o n e B e n z e n e Br o m o d i - ch l o r o - me t h a n e Ch l o r o - fo r m Te t r a - ch l o r o - et h e n e To l u e n e Trichloro-etheneTotal VOCs 20 0 6 7 6 , 0 0 0 1 0 . 6 7 0 0 . 7 6 0 0 3 N / A MW - 1 7 i 1 2 / 3 / 2 0 0 9 5 . 8 1 . 4 4 . 1 < 1 0 0 . 5 4 J < 1 . 0 0 . 8 5 J 1. 9 0. 7 6 J < 2 . 0 1 5 . 3 5 MW - 1 8 i 1 2 / 3 / 2 0 0 9 1 0 . 7 J 3 . 3 < 1 0 < 1 . 0 2 15 14 2 < 2 . 0 3 8 MW - 1 9 i 1 2 / 3 / 2 0 0 9 2 . 5 17 7 2 <1 0 0 . 5 1 J < 1 . 0 1 . 2 44 <1.0 2 . 6 1 3 9 . 8 1 MW - 2 0 i 1 2 / 3 / 2 0 0 9 2 0 2 . 4 7. 4 <1 0 < 1 . 0 < 1 . 0 < 1 . 0 2. 5 <1.0 < 2 . 0 3 2 . 3 MW - 2 1 i 1 2 / 3 / 2 0 0 9 1 2 0 < 1 . 0 23 21 < 1 . 0 0. 6 9 J 2. 9 98 <1.0 < 2 . 0 2 6 5 . 5 9 MW - 2 2 i 1 2 / 3 / 2 0 0 9 5 4 < 1 . 0 9. 6 <1 0 < 1 . 0 0. 9 6 J 5. 8 1. 5 <1.0 < 2 . 0 7 1 . 8 6 NO T E S : (µ g / L ) = M i c r o g r a m s p e r l i t e r 2L S t a n d a r d = N o r t h C a r o l i n a G r o u n d w a t e r Q u a l i t y S t a n d a r d s ( N C G W Q S ) Co n c e n t r a t i o n s w h i c h e x c e e d t h e N C G W Q S a r e h i g h l i g h t e d i n BO L D N/ A = n o t a p p l i c a b l e Vo l a t i l e O r g a n i c C o m p o u n d s ( µ g / L ) 2L S t a n d a r d Sa m p l e I D Nu m b e r Sa m p l e Da t e Ta b l e 3 We l l C o n s t r u c t i o n D e t a i l s Al c a t e l - L u c e n t U S A Ra l e i g h , N o r t h C a r o l i n a To p B o t t o m W e l l T y p e W e l l C a s i n g D i a m . S u r f . C a s i n g D i a m . MW - 1 s 22 8 . 4 0 2 2 9 . 2 5 1 9 . 0 0 9. 0 0 1 0 . 0 0 9 . 0 0 1 9 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 2 d 22 5 . 8 1 2 2 6 . 1 4 6 5 . 0 0 55 . 0 0 1 0 . 0 0 5 5 . 0 0 6 5 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 2 s 22 5 . 5 9 2 2 5 . 9 9 1 8 . 0 0 8. 0 0 1 0 . 0 0 8 . 0 0 1 8 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 3 d 22 8 . 4 8 2 2 8 . 6 4 7 0 . 0 0 55 . 0 0 1 5 . 0 0 5 5 . 0 0 7 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 3 s 22 8 . 5 5 2 2 8 . 7 4 2 0 . 5 0 10 . 5 0 1 0 . 0 0 1 0 . 5 0 2 0 . 5 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 4 d 22 7 . 2 0 2 2 7 . 4 2 6 7 . 0 0 37 . 0 0 3 0 . 0 0 3 7 . 0 0 6 7 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 4 d d 22 6 . 5 3 U n k n o w n 1 4 2 . 0 0 13 2 . 0 0 1 0 . 0 0 1 3 2 . 0 0 1 4 2 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 4 s 22 6 . 7 1 U n k n o w n 1 5 . 0 0 10 . 0 0 5 . 0 0 1 0 . 0 0 1 5 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 5 s 22 8 . 4 0 2 2 9 . 2 5 2 0 . 0 0 10 . 0 0 1 0 . 0 0 1 0 . 0 0 2 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 6 s 22 9 . 1 6 2 2 9 . 5 8 2 0 . 3 0 10 . 3 0 1 0 . 0 0 1 0 . 3 0 2 0 . 3 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 7 d 22 9 . 3 5 2 2 9 . 5 3 7 0 . 0 0 50 . 0 0 2 0 . 0 0 5 0 . 0 0 7 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 7 s 22 9 . 2 7 2 2 9 . 5 6 1 9 . 0 0 9. 0 0 1 0 . 0 0 9 . 0 0 1 9 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 8 s 22 9 . 3 4 2 2 9 . 4 6 2 0 . 0 0 10 . 0 0 1 0 . 0 0 1 0 . 0 0 2 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 9 s 24 3 . 1 7 2 4 3 . 4 2 1 8 . 0 0 8. 0 0 1 0 . 0 0 8 . 0 0 1 8 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 0 s 25 2 . 7 1 2 5 3 . 0 9 2 4 . 0 0 14 . 0 0 1 0 . 0 0 1 4 . 0 0 2 4 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A We l l I n f o r m a t i o n We l l To p o f Ca s i n g El e v a t i o n (f e e t ) Gr o u n d Su r f a c e El e v a t i o n (f e e t ) To t a l W e l l De p t h ( f e e t ) De p t h t o To p o f Sc r e e n (f e e t ) Sc r e e n Le n g t h (f e e t ) Sc r e e n e d I n t e r v a l g MW - 1 1 s 22 9 . 6 3 2 2 9 . 8 1 1 4 . 0 0 4. 0 0 1 0 . 0 0 4 . 0 0 1 4 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 2 s 22 7 . 0 5 2 2 7 . 3 2 2 0 . 0 0 10 . 0 0 1 0 . 0 0 1 0 . 0 0 2 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 3 d 22 9 . 4 2 U n k n o w n 3 5 . 0 0 Un k n o w n U n k n o w n U n k n o w n U n k n o w n M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 3 s 22 9 . 4 8 2 2 9 . 8 0 1 5 . 0 0 5. 0 0 1 0 . 0 0 5 . 0 0 1 5 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 4 d 22 7 . 4 0 U n k n o w n 5 6 . 0 0 36 . 0 0 2 0 . 0 0 3 6 . 0 0 5 6 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 5 d 21 0 . 8 2 U n k n o w n 7 7 . 0 0 62 . 0 0 1 5 . 0 0 6 2 . 0 0 7 7 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 5 s 21 0 . 4 7 U n k n o w n 2 2 . 8 0 5. 0 0 1 8 . 0 0 5 . 0 0 2 3 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 s k Un k n o w n U n k n o w n 2 0 . 0 0 10 . 0 0 1 0 . 0 0 1 0 . 0 0 2 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A Mw - 1 i k Un k n o w n U n k n o w n 4 2 . 5 0 37 . 5 0 5 . 0 0 3 7 . 5 0 4 2 . 5 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 2 i k 22 3 . 3 6 2 2 6 . 2 0 4 0 . 9 0 32 . 0 0 1 0 . 0 0 3 2 . 0 0 4 2 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 2 s k 22 3 . 4 7 2 2 6 . 3 9 2 0 . 0 0 10 . 0 0 1 0 . 0 0 1 0 . 0 0 2 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 3 d k 22 5 . 9 0 U n k n o w n 3 3 . 2 3 Un k n o w n U n k n o w n U n k n o w n U n k n o w n M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A Ta b l e 3 We l l C o n s t r u c t i o n D e t a i l s Al c a t e l - L u c e n t U S A Ra l e i g h , N o r t h C a r o l i n a To p B o t t o m W e l l T y p e W e l l C a s i n g D i a m . S u r f . C a s i n g D i a m . We l l I n f o r m a t i o n We l l To p o f Ca s i n g El e v a t i o n (f e e t ) Gr o u n d Su r f a c e El e v a t i o n (f e e t ) To t a l W e l l De p t h ( f e e t ) De p t h t o To p o f Sc r e e n (f e e t ) Sc r e e n Le n g t h (f e e t ) Sc r e e n e d I n t e r v a l MW - 3 s k 22 5 . 5 1 2 2 5 . 9 2 1 7 . 0 0 7. 0 0 1 0 . 0 0 7 . 0 0 1 7 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 4 s k Un k n o w n 2 2 7 . 1 0 1 9 . 0 0 9. 0 0 1 0 . 0 0 9 . 0 0 1 9 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 5 s k 21 5 . 2 8 2 2 0 . 9 5 2 4 . 0 0 14 . 0 0 1 0 . 0 0 1 4 . 0 0 2 4 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 6 s k Un k n o w n 2 2 6 . 9 3 2 3 . 0 0 13 . 0 0 1 0 . 0 0 1 3 . 0 0 2 3 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A Mw - 6 i k Un k n o w n 2 2 6 . 9 4 5 8 . 0 0 53 . 0 0 5 . 0 0 5 3 . 0 0 5 8 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C Mw - 7 s k Un k n o w n 2 2 6 . 9 9 2 3 . 0 0 13 . 0 0 1 0 . 0 0 1 3 . 0 0 2 3 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 7 i k Un k n o w n 2 2 7 . 0 1 7 3 . 0 0 58 . 0 0 1 5 . 0 0 5 8 . 0 0 7 3 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C Mw - 8 s k Un k n o w n 2 2 5 . 3 7 2 0 . 0 0 10 . 0 0 1 0 . 0 0 1 0 . 0 0 2 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A Mw - 8 i k Un k n o w n U n k n o w n U n k n o w n U n k n o w n U n k n o w n Un k n o w n U n k n o w n M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 8 d k 22 5 . 3 1 2 2 5 . 7 5 8 0 . 0 0 50 . 0 0 3 0 . 0 0 5 0 . 0 0 8 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 9 d k 21 6 . 9 5 2 1 6 . 4 2 7 0 . 0 0 55 . 0 0 1 5 . 0 0 5 5 . 0 0 7 0 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C MW - 9 s k 21 7 . 0 4 2 1 6 . 3 4 4 6 . 0 0 6. 0 0 4 0 . 0 0 6 . 0 0 4 6 . 0 0 M o n i t o r i n g 2 - i n c h S c h . 4 0 P V C N / A MW - 1 2 d k 22 1 . 8 5 2 2 1 . 8 4 6 5 . 0 0 Un k n o w n U n k n o w n U n k n o w n U n k n o w n M o n i t o r i n g 2 - in c h S c h . 4 0 P V C 6 - i n c h S c h . 4 0 P V C RW - 1 22 3 . 8 0 2 2 7 . 1 2 2 4 . 0 0 9. 0 0 9 . 0 0 9 . 0 0 1 8 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 2 22 0 . 6 1 2 2 5 . 2 7 4 0 . 0 0 15 . 0 0 2 5 . 0 0 1 5 . 0 0 4 0 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW 2 R Un k n o w n Un k n o w n 85 0 0 10 0 0 75 0 0 10 0 0 85 0 0 Re c o v e r y 6 i n c h S c h 4 0 P V C N/A RW -2R U n k no w n U n k no w n 85 .00 10 .00 75 .00 10 .00 85 .00 R ec o v e r y 6 -i nc h S c h . 40 PVC N/A RW - 3 22 1 . 5 0 U n k n o w n 8 5 . 0 0 10 . 0 0 7 5 . 0 0 1 0 . 0 0 8 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 4 22 1 . 1 8 U n k n o w n 8 5 . 0 0 10 . 0 0 6 5 . 0 0 1 0 . 0 0 7 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 5 22 0 . 8 3 U n k n o w n 8 8 . 0 0 7. 0 0 6 5 . 0 0 7 . 0 0 7 2 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 6 22 0 . 9 8 U n k n o w n 7 4 . 0 0 13 . 0 0 4 0 . 0 0 1 3 . 0 0 5 3 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 7 22 0 . 2 9 U n k n o w n 8 5 . 0 0 10 . 0 0 7 5 . 0 0 1 0 . 0 0 8 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 8 21 9 . 1 8 U n k n o w n 4 8 . 0 0 10 . 0 0 3 8 . 0 0 1 0 . 0 0 4 8 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 9 21 7 . 9 7 U n k n o w n 4 8 . 0 0 13 . 0 0 3 5 . 0 0 1 3 . 0 0 4 8 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A RW - 1 0 21 5 . 3 5 U n k n o w n 5 2 . 0 0 10 . 0 0 4 2 . 0 0 1 0 . 0 0 5 2 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 1 21 1 . 7 4 U n k n o w n 3 5 . 0 0 6. 0 0 2 9 . 0 0 6 . 0 0 3 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 2 21 2 . 1 0 U n k n o w n 3 2 . 0 0 7. 0 0 2 5 . 0 0 7 . 0 0 3 2 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 3 21 2 . 4 4 U n k n o w n 3 3 . 0 0 8. 0 0 2 5 . 0 0 8 . 0 0 3 3 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 4 21 1 . 6 4 U n k n o w n 3 5 . 0 0 10 . 0 0 2 5 . 0 0 1 0 . 0 0 3 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A Ta b l e 3 We l l C o n s t r u c t i o n D e t a i l s Al c a t e l - L u c e n t U S A Ra l e i g h , N o r t h C a r o l i n a To p B o t t o m W e l l T y p e W e l l C a s i n g D i a m . S u r f . C a s i n g D i a m . We l l I n f o r m a t i o n We l l To p o f Ca s i n g El e v a t i o n (f e e t ) Gr o u n d Su r f a c e El e v a t i o n (f e e t ) To t a l W e l l De p t h ( f e e t ) De p t h t o To p o f Sc r e e n (f e e t ) Sc r e e n Le n g t h (f e e t ) Sc r e e n e d I n t e r v a l CR W - 5 21 3 . 8 7 U n k n o w n 4 4 . 0 0 9. 0 0 3 5 . 0 0 9 . 0 0 4 4 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 6 21 4 . 7 7 U n k n o w n 4 5 . 0 0 35 . 0 0 1 0 . 0 0 3 5 . 0 0 4 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 7 21 5 . 9 0 U n k n o w n 8 5 . 0 0 10 . 0 0 7 5 . 0 0 1 0 . 0 0 8 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 8 21 6 . 6 1 U n k n o w n 8 0 . 0 0 10 . 0 0 7 0 . 0 0 1 0 . 0 0 8 0 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 9 21 6 . 7 8 U n k n o w n 7 5 . 0 0 7. 0 0 6 8 . 0 0 7 . 0 0 7 5 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 1 0 21 6 . 9 7 U n k n o w n 8 3 . 0 0 10 . 0 0 7 3 . 0 0 1 0 . 0 0 8 3 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 1 1 21 7 . 1 2 U n k n o w n 8 0 . 0 0 10 . 0 0 7 0 . 0 0 1 0 . 0 0 8 0 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A CR W - 1 2 21 7 . 4 6 U n k n o w n 8 0 . 0 0 10 . 0 0 7 0 . 0 0 1 0 . 0 0 8 0 . 0 0 R e c o v e r y 6 - i n c h S c h . 4 0 P V C N / A IW - 1 22 3 . 8 7 U n k n o w n 3 1 . 0 0 5. 5 0 2 5 . 0 0 5 . 5 0 3 0 . 5 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IW - 2 22 8 . 8 0 U n k n o w n 2 9 . 0 0 4. 0 0 2 5 . 0 0 4 . 0 0 2 9 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IW - 3 22 4 . 5 0 U n k n o w n 3 0 . 0 0 8. 0 0 2 2 . 0 0 8 . 0 0 3 0 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IW - 4 22 5 . 2 8 U n k n o w n 3 0 . 0 0 10 . 0 0 2 0 . 0 0 1 0 . 0 0 3 0 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IW - 5 22 8 . 6 8 U n k n o w n 2 7 . 0 0 7. 0 0 2 0 . 0 0 7 . 0 0 2 7 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IW - 6 22 5 . 6 6 U n k n o w n 2 8 . 0 0 8. 0 0 2 0 . 0 0 8 . 0 0 2 8 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IW - 7 22 5 . 1 1 U n k n o w n 2 5 . 0 0 5. 0 0 2 0 . 0 0 5 . 0 0 2 5 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IW - 8 22 5 . 8 6 U n k n o w n 2 9 . 0 0 4. 0 0 2 5 . 0 0 4 . 0 0 2 9 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IN J -1b NM NM 61 0 0 Un k n o w n No n e In j e c t i o n Un k n o w n Groundwater I n j e c t i o n Op e n H o l e 1 8 t o 6 1 IN J - 1 b NM NM 61 .00 Un k n o w n No n e In j e c t i o n Un k n o w n Groundwater Injection IN J - 2 b NM N M 6 1 . 0 0 Un k n o w n N o n e I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IN J - 3 s NM N M 2 2 . 0 0 Un k n o w n 5 . 0 0 1 7 . 0 0 2 2 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IN J - 4 s NM N M 2 1 . 0 0 Un k n o w n 5 . 0 0 1 6 . 0 0 2 1 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n IN J - 5 s NM N M 2 5 . 0 0 Un k n o w n 5 . 0 0 2 0 . 0 0 2 5 . 0 0 I n j e c t i o n U n k n o w n G r o u n d w a t e r I n j e c t i o n MW - 1 7 i 22 9 . 7 2 U n k n o w n 3 1 . 0 0 Un k n o w n U n k n o w n 2 6 . 0 0 3 1 . 0 0 P W R 2 - i n c h S c h . 4 0 P V C N / A MW - 1 8 i 22 9 . 7 4 U n k n o w n 2 7 . 0 0 Un k n o w n U n k n o w n 2 2 . 0 0 2 7 . 0 0 P W R 2 - i n c h S c h . 4 0 P V C N / A MW - 1 9 i 22 9 . 7 8 U n k n o w n 3 2 . 0 0 Un k n o w n U n k n o w n 2 7 . 0 0 3 2 . 0 0 P W R 2 - i n c h S c h . 4 0 P V C N / A MW - 2 0 i 22 9 . 7 4 U n k n o w n 3 1 . 0 0 Un k n o w n U n k n o w n 2 6 . 0 0 3 1 . 0 0 P W R 2 - i n c h S c h . 4 0 P V C N / A MW - 2 1 i 22 9 . 7 0 U n k n o w n 3 7 . 0 0 Un k n o w n U n k n o w n 3 2 . 0 0 3 7 . 0 0 P W R 2 - i n c h S c h . 4 0 P V C N / A MW - 2 2 i 22 9 . 8 8 U n k n o w n 3 2 . 0 0 Un k n o w n U n k n o w n 2 7 . 0 0 3 2 . 0 0 P W R 2 - i n c h S c h . 4 0 P V C N / A No t e s : Gr e e n s h a d i n g i n d i c a t e s w e l l h a s b e e n a b a n d o n e d . Op e n Ho l e 18 to 61 Op e n H o l e 1 8 . 1 t o 6 1 NM = N o t M e a s u r e d N/ A = N o t A p p l i c a b l e Ta b l e 4 Su m m a r y o f O c t o b e r 2 0 0 9 G r o u n d w a t e r A n a l y t i c a l R e s u l t s Vo l a t i l e O r g a n i c C o m p o u n d s a n d M e t a l s Al c a t e l - L u c e n t U S A R a l e i g h , N o r t h C a r o l i n a 1, 1 , 1 - Tr i c h l o r o - et h a n e 1, 1 , 2 - Tr i c h l o r o - et h a n e 1, 1 - Di c h l o r o - et h a n e 1, 1 - Di c h l o r o - et h e n e 1, 2 - Di c h l o r o - et h a n e Ch l o r o - fo r m ci s - 1 , 2 - Di c h l o r o - et h e n e Te t r a - ch l o r o - et h e n e Tr i c h l o r o - et h e n e Tr i c h l o r o - fl u o r o - me t h a n e Vi n y l Ch l o r i d e 1,4-DioxaneTotal VOCs Copper L e a d 20 0 2 1 0 , 0 0 0 2 0 7 0 . 3 8 7 0 7 0 0 . 7 2 . 8 2 , 1 0 0 0 . 0 1 5 7 N / A 1 , 0 0 0 1 5 MW - 2 D * 1 0 / 8 / 2 0 0 9 2 6 < 0 . 5 0 1 . 6 34 <0 . 5 0 < 0 . 5 0 1 . 3 43 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 1 0 5 . 9 * 3 0 4 . 8 J MW - 2 S 1 0 / 8 / 2 0 0 9 8 . 0 < 0 . 5 0 1 . 5 1 . 2 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 6. 6 <0 . 5 0 0 . 8 5 < 0 . 5 0 < 1 . 0 1 8 . 1 5 1 . 7 J 1 . 9 J MW - 3 S 1 0 / 8 / 2 0 0 9 < 0 . 5 0 < 0 . 5 0 0 . 7 0 0 . 6 6 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 3. 3 <0 . 5 0 < 0 . 5 0 < 1 . 0 4 . 6 6 2 . 7 J < 5 . 0 MW - 3 D 1 0 / 8 / 2 0 0 9 4 . 5 < 0 . 5 0 1 . 1 2 . 3 < 0 . 5 0 0 . 7 8 < 0 . 5 0 1. 8 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 9 . 7 0 < 1 0 < 5 . 0 MW - 3 S K 1 0 / 7 / 2 0 0 9 1 3 < 0 . 5 0 < 0 . 5 0 1 . 8 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 10 0 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 1 1 4 . 8 6 . 6 J 5 . 9 J MW - 3 D K 1 0 / 7 / 2 0 0 9 4 7 < 0 . 5 0 5 . 1 13 <0 . 5 0 0 . 5 7 < 0 . 5 0 14 0 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 23 228.67 1 . 5 J < 5 . 0 MW - 4 S 1 0 / 7 / 2 0 0 9 5 . 9 < 0 . 5 0 < 0 . 5 0 1 . 3 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 72 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 7 9 . 2 2 3 7 . 1 MW - 4 D 1 0 / 7 / 2 0 0 9 5 7 < 5 . 0 < 5 . 0 11 0 <5 . 0 < 5 . 0 < 5 . 0 74 0 <5 . 0 < 5 . 0 < 5 . 0 6.9 914 < 1 0 < 5 . 0 MW - 5 S K 1 0 / 7 / 2 0 0 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0 . 6 3 < 0 . 5 0 < 0 . 5 0 3 . 3 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 0. 5 7 <1.0 4 . 5 1 . 8 J 1 . 2 J MW - 9 S K 1 0 / 6 / 2 0 0 9 0 . 7 6 < 0 . 5 0 < 0 . 5 0 2 . 2 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 8. 7 0. 8 7 < 0 . 5 0 < 0 . 5 0 < 1 . 0 1 2 . 5 < 1 0 < 5 . 0 MW - 9 D K 1 0 / 6 / 2 0 0 9 0 . 6 0 < 0 . 5 0 < 0 . 5 0 2 . 6 < 0 . 5 0 0 . 9 2 < 0 . 5 0 3. 1 5 . 6 <0 . 5 0 < 0 . 5 0 < 1 . 0 1 2 . 8 < 1 0 < 5 . 0 MW - 1 2 S 1 0 / 8 / 2 0 0 9 < 0 . 5 0 < 0 . 5 0 3 . 2 0 . 9 4 < 0 . 5 0 < 0 . 5 0 0 . 9 7 < 0 . 5 0 1 . 1 < 0 . 5 0 < 0 . 5 0 96 102.2 2 . 6 J 1 . 6 J MW - 1 2 D K 1 0 / 7 / 2 0 0 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 1 . 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 1 . 1 < 1 0 < 5 . 0 MW - 1 3 S 1 0 / 8 / 2 0 0 9 1 4 4 . 2 86 5 3 0 8 . 5 12 < 2 . 0 13 0 4 . 9 <2 . 0 < 2 . 0 1000 1789.6 3 . 2 J < 5 . 0 MW - 1 3 S R 1 0 / 8 / 2 0 0 9 4 9 1 . 5 82 3 2 0 3 . 4 1. 8 < 0 . 5 0 71 3 . 9 <0 . 5 0 < 0 . 5 0 690 1222.6 1 . 5 J < 5 . 0 MW - 1 3 D 1 0 / 8 / 2 0 0 9 5 . 7 < 0 . 5 0 1 . 4 3 . 7 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 1. 4 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 1 2 . 2 0 3 5 0 < 5 . 0 MW - 1 4 D 1 0 / 7 / 2 0 0 9 1 6 0 < 0 . 5 0 < 0 . 5 0 14 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 2. 3 <0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 1 7 6 . 3 1 4 0 1 . 9 J DU P - 0 1 1 0 / 7 / 2 0 0 9 6 4 < 5 . 0 < 5 . 0 11 0 <5 . 0 < 5 . 0 < 5 . 0 73 0 <5 . 0 < 5 . 0 < 5 . 0 13 917 < 1 0 < 5 . 0 DU P - 0 2 1 0 / 8 / 2 0 0 9 7 . 4 < 0 . 5 0 1 . 3 1 . 1 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 5. 7 <0 . 5 0 0 . 8 1 < 0 . 5 0 < 1 . 0 1 6 1 . 4 J 1 . 7 J CR W - 1 1 0 / 7 / 2 0 0 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 1 . 1 < 0 . 5 0 < 0 . 5 0 < 1 . 0 1 . 1 < 1 0 < 5 . 0 CR W - 5 1 0 / 7 / 2 0 0 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 1 . 8 J < 5 . 0 RW - 5 1 0 / 7 / 2 0 0 9 0 . 6 0 < 0 . 5 0 1 . 0 11 <0 . 5 0 1 . 9 < 0 . 5 0 32 3 . 1 <0 . 5 0 < 0 . 5 0 < 1 . 0 4 9 . 6 1 . 1 J 1 . 3 J EQ - 1 1 0 / 8 / 2 0 0 9 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 0 . 5 0 < 1 . 0 < 0 . 5 0 2 . 2 J 1 . 2 J NO T E S : (µ g / L ) = M i c r o g r a m s p e r l i t e r 2L S t a n d a r d = N o r t h C a r o l i n a G r o u n d w a t e r Q u a l i t y S t a n d a r d s ( N C G W Q S ) Co n c e n t r a t i o n s w h i c h e x c e e d t h e N C G W Q S a r e h i g h l i g h t e d i n BO L D *S a m p l e M W - 2 D a l s o c o n t a i n e d 1 . 0 µ g / L o f b e n z e n e Metals (µg/L) Vo l a t i l e O r g a n i c C o m p o u n d s ( µ g / L ) 2L S t a n d a r d Sa m p l e I D Nu m b e r Sa m p l e Da t e Ta b l e 5 Ev a l u a t i o n o f R e m e d i a l A l t e r n a t i v e s Al c a t e l - L u c e n t U S A Ra l e i g h , N o r t h C a r o l i n a GR O U N D W A T E R RE M E D I A L A L T E R N A T I V E AT T A I N M E N T O F R E M E D I A L EN D G O A L S CO M P L I A N C E W I T H RE G U L A T I O N S LO N G T E R M PE R M A N E N C E SH O R T - T E R M EF F E C T I V E N E S S IMPLEMENTABILITY C O S T C L E A N U P T I M E IS C O v i a D i r e c t I n j e c t i o n Me d i u m . C o n t a c t w i t h V O C s r e q u i r e d . Ti g h t s o i l s w i t h i n t h e s h a l l o w u n i t m a k e at t a i n i n g g o a l s d i f f i c u l t . W i t h b e d r o c k , id e n t i f i n g t h e V O C b e a r i n g f r a c t u r e s i s li m i t i n g f a c t o r . Wi l l r e q u i r e U I C P e r m i t fr o m D W Q Hi g h . A f t e r i n i t i a l r e b o u n d i n g , co n c e n t r a t i o n s r e m a i n i n g w i l l be s u s t a i n e d . Mo d e r a t e . S o m e r e b o u n d i n g fo l l o w i n g i n j e c t i o n i s l i k e l y . Moderate. Potential difficulty installing bedrock wells within building area due to limited height clearance.Saprolite/PWR - $360K Bedrock - $115KPersulfate reactive for approximately 45 days. Further injections could be required over course of a year. IS C O v i a S o i l B l e n d i n g So u r c e c a n b e a d d r e s s e d i n t h e sh a l l o w s a p r o l i t e a n d u p p e r P W R . T h e bl e n d i n g p r o v i d e s c o m p l e t e c o n t a c t wi t h o x i d a n t . T r e a t m e n t i n l o w e r P W R zo n e b y p e r c o l a t i o n o n l y . Ye s Hi g h . A f t e r i n i t i a l r e b o u n d i n g , co n c e n t r a t i o n s r e m a i n i n g w i l l be s u s t a i n e d s i n c e C O C s ha v e b e e n d e s t r o y e d . Hi g h . D u e t o c o m p l e t e di s t r i b u t i o n o f o x i d a n t , l i t t l e re b o u n d i n g e x p e c t e d . Will require demoliton of a portion of the building to allow equipment access. Equipment can reach required depths. $200KPersulfate reactive for approximately 45 days. Further injections could be required over course of a year. En h a n c e d B i o d e g r a d a t i o n an d B i o a u g m e n t a t i o n Do e s n o t a d d r e s s 1 , 4 - D i o x a n e . F o r ot h e r C O C s , n a t u r a l b i o d e g r a d a t i o n pr o c e s s e s a r e i n c r e a s e d w i t h t h e in j e c t i o n o f e l e c t r o n d o n o r a n d D H C mi c r o b e s . L o w c o n c e n t r a t i o n s o f C O C s ca n b e a c h i e v e d . L i m i t i n g f a c t o r i s di s t r i b u t i o n o f d o n o r m a t e r i a l . Wi l l r e q u i r e U I C P e r m i t fr o m D W Q On c e C O C s a r e b r o k e n do w n t o C O 2 a n d w a t e r , t h e re a c t i o n i s n o t r e v e r s i b l e . Di o x a n e n o t a d d r e s s e d . Re m e d i a l s u c c e s s d e p e n d e n t up o n c o m p l e t e d i s t r i b u t i o n o f el e c t r o n d o n o r a n d D H C mi c r o b e s . T h e l o w l e v e l s o f D O in t h e g r o u n d w a t e r m u s t b e ma i n t a i n e d u n t i l r e m e d i a l g o a l s ac h i e v e d . Distribution of electron donor and DHC will be difficult in tight saprolite material. This will require large number of injection points or establishment of reactive zones.$145K Slower process than ISCO requiring up to 2 to 3 years to attain goals in source area. Pe r m e a b l e R e a c t i v e Ba r r i e r Pr o t e c t i o n o f d o w n g r a d i e n t r e c e p t o r s on l y . D o e s n o t a d d r e s s s o u r c e m a t e r i a l or a d d r e s s C O C s w i t h i n p l u m e a r e a . Ye s Th e e f f e c t i v e l i f e o f t h e P R B de p e n e n t u p o n t h e t y p e ut i l i z e d b u t c a n b e a s l o n g a s 30 y e a r s . Hi g h l i k e l y h o o d o f s u c c e s s i f ca n b e e m p l a c e d . B u t d e p t h re q u i r e d b e y o n d a b i l i t y o f t h e eq u i p m e n t . Low. Altnerative will not address fractured bedrock impact and depth of impact is beyond limits of emplacement methods.Not DeterminedInstallation within several months. Indefinate overall cleanup time since alternative does not address source or interior of plume area. Di g a n d H a u l So u r c e c a n b e a d d r e s s e d i n t h e sh a l l o w s a p r o l i t e a n d u p p e r P W R z o n e . Th e s o i l a n d g e n e r a t e d w a t e r tr a n s p o r t e d o f f - s i t e f o r d i s p o s a l Ma t e r i a l m u s t b e s e n t t o pe r m i t t e d f a c i l i t y a n d i f co n c e n t r a t i o n s a r e su i t a b l e , h a n d l e d i n ac c o r d a n c e w i t h "c o n t a i n e d o u t " p o l i c y Hi g h . C O C s r e m o v e d f r o m th e s i t e b u t A L U m a i n t a i n s li a b i l i t y f o r t h e m a t e r i a l f r o m cr a d l e t o g r a v e . Hi g h . C O C s r e m o v e d f r o m t h e si t e . Will require demoliton of a portion of the building to allow equipment access. Equipment can reach required depths.$470K Source can be addressed within a period of several months. Mo n i t o r e d N a t u r a l At t e n u a t i o n w i t h S o u r c e Re m o v a l Hi s t o r i c a l g r o u n d w a t e r d a t a i n d i c a t e s th e n e a r l y s t e a d y s t a t e l e v e l s h a v e be e n a c h i e v e d . W i t h a d d i t i o n a l s o u r c e re m o v a l , t h e p l u m e w i l l b e a t s t e a d y st a t e a n d l i k e l y b e g i n t o s h r i n k i n s i z e . Ye s On c e p h y s i c a l p r o c e s s e s ad d r e s s t h e C O C s , t h e pr o c e s s i s g e n e r a l l y n o t re v e r s i b l e . L i t t l e t o n o re b o u n d i n g e x p e c t e d . Re m e d i a l m e t h o d a l l o w s f o r st e a d y p r o g r e s s i o n t o w a r d go a l s . Remedial method allows for steady progression toward goals.$15K/year after source reductionOverall cleanup time following removal of source material dependent upon success of source area reduction activities. However, dilute plume will be present for 10+ years. AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com APPENDIX A BORING LOGS AND WELL COMPLETION DIAGRAMS – PWR INVESTIGATION Appendix A Investigation Methods Partially Weathered Rock Unit On November 16 through November 18 2009, AMEC supervised the installation of six groundwater monitoring wells screened within the partially weathered rock (PWR) hydrogeologic unit. The wells were installed within the building using a mini sonic drill rig. Soil and rock cores were obtained using this drilling methodology and a description of the sample media was performed. To accurately determine the composition of the PWR unit and the depth to competent bedrock, continuous cores of the unconsolidated overburden, PWR unit, and the competent bedrock were obtained during the installation of each boring. Once the competent rock unit was encountered, the borehole was completed with a Type II, groundwater monitoring well. Monitoring wells MW-17i, MW-18i, MW-19i, MW-20i, MW-21i, and MW-22i were installed within the lower portion of the PWR unit, immediately above the competent rock (Figure 2). The construction of these wells includes a 5-foot section of 0.01-inch slotted, 2.0-inch diameter, PVC well screen, completed to the surface with PVC casing and finished with a lockable, flush mounted, manhole cover. The following table is a summary of the well construction details. Boring logs and well construction details are included in Appendix A. Well Development Upon completion, each newly installed well was developed with a decontaminated submersible pump using dedicated, disposable tubing. Development was performed by removing groundwater from each well in order to remove fines and hydraulically connect the well to the surrounding aquifer. Observations of purge water were made throughout the development process to evaluate the turbidity of the water to gauge the necessity for continued development. Development was halted once water removed from the well appeared free of sediment. Water produced during development was placed in drums, labeled and staged on the property awaiting analytical results of groundwater samples to determine disposal requirements. PWR Well Construction Details Well ID Casing Interval (ft bls) Total Depth (ft bls) Screen Interval (ft bls) Base of Saprolite (ft bls) Thickness of PWR (ft) Top of Competent Rock (ft bls) MW-17i 0-26 31 26-31 20 11 31 MW-18i 0-22 27 22-27 21 14 35 MW-19i 0-27 32 27-32 26 7 33 MW-20i 0-26 31 26-31 25 6 31 MW-21i 0-32 37 32-37 21 16 37 MW-22i 0-27 32 27-32 Not logged Not logged 33 Groundwater Sampling AMEC personnel mobilized to the site on December 3, 2009, to collect groundwater samples from newly installed wells. Prior to sampling, the depth-to-groundwater was measured from the top of casing in each well. Groundwater samples were collected using low-flow sampling techniques to allow measurement of stabilized water quality parameters including conductivity, dissolved oxygen, pH, oxidation reduction potential, temperature and turbidity. These measurements are necessary to insure collection of representative samples. Low-flow purging and sampling procedures were conducted in accordance with the Groundwater Sampling Operating Procedure included in the EPA Region 4 Field Branches Quality System and Technical Procedures (SESDPROC-301-R1). Water quality parameters were measured using a Hanna HI 9828 water quality meter and flow-through cell assembly. Groundwater samples were placed in pre-labeled, laboratory-supplied containers, placed on ice, and transported under chain-of-custody for analysis by the laboratory. The groundwater samples were submitted to Prism Laboratories, Inc. of Charlotte, North Carolina and analyzed for the presence of VOCs according to EPA Method 8260B. Investigation Derived Waste Material Soil/rock cuttings, as well as water produced during drilling, were placed in drums, labeled, and staged on the property awaiting disposal. Upon receipt of the final laboratory analytical data collected from the waste material, the soil and water was disposed of in accordance with local, state, and federal requirements. Site Name: Alcatel - Lucent Wake Forest Road Location: Raleigh, NC Sample Method: Drilling Equipment: Mini-Sonic Depth (ft BLS) FID Reading (ppm) Blow Counts Soil/Lithologic Description 0 - 0.3 0-2' = 2.4 Concrete 0.3 - 5 2'-4' = 1.7 Yellow brown sandy CLAY - Saprolite 5 - 10 4'-6' = 5.2 Yellow brown silty CLAY - Saprolite 10 - 15 6'-8' = 6.1 Yellow brown sandy CLAY - Saprolite 15 - 20 8'-10' = 4.2 Red brown SILT- Saprolite 20 10'-12' = 10.5 Gray to tan partially weathered rock 31 12'-14' = 7.0 Terminated at top of bedrock 14'-16' = 14.2 16'-18' = 16.5 18'-20' = 5.0 20'-22' = 5.2 22'-24' = 301 24'-26' = 7.4 26'-28' = 8.1 AMEC Earth & Environmental, Inc. BORING LOG Remarks: PWR Well Installation beneath building Boring/Well No.: MW-17I Date: 11/16/09 Job No.: 559480000.4000.0006 AMEC Rep: David Treadway Outer Casing Interval:Outer Casing Diameter:Bentonite Interval: 22-24' bgsSlot Size: 0.01"Static Water Level: 15.83' BTOCSand Interval: 24-31' bgsGrout Interval: 0.5-22' bgs Well Type/Diameter:Flush mount PVC / 2"WELL CONSTRUCTION DETAILS (If Applicable) Total Depth: 31' bgsScreen Interval: 26-31' bgs Site Name: Alcatel - Lucent Wake Forest Road Location: Raleigh, NC Sample Method: Drilling Equipment: Mini-Sonic Depth (ft BLS) FID Reading (ppm) Blow Counts Soil/Lithologic Description 0 - 0.3 0-2' = Concrete 0.3 - 4 2'-4' = Brown red silty CLAY, micaceous 4 - 21 4'-6' = Tan and yellow brown silty SAND - Saprolite 21 - 24 6'-8' = Tan, dry partially weathered rock 24 - 27 8'-10' = Mixed tan, gray, and red brown partially weathered rock 10'-12' = <0.1 0.5' thick clay lense at 24' and 26' 27 - 35 12'-14' = <0.1 Bedrock -Biotite Gneiss 14'-16' = <0.1 16'-18' = 1.1 18'-20' = <0.1 20'-22' = 3.0 22'-24' = 0.1 24'-25' = <0.1 AMEC Earth & Environmental, Inc. BORING LOG Remarks: PWR Well Installation beneath building Boring/Well No.: MW-18I Date: 11/17/09 Job No.: 559480000.4000.0006 AMEC Rep: David Treadway Outer Casing Interval:Outer Casing Diameter:Bentonite Interval: 18-20' bgsSlot Size: 0.01 "Static Water Level: 16.36' BTOC Total Depth: 27' bgsScreen Interval: 22-27' bgsSand Interval: 20-27' bgsGrout Interval: 0.5-18' bgs Well Type/Diameter:Flush Mount PVC / 2"WELL CONSTRUCTION DETAILS (If Applicable) Site Name: Alcatel - Lucent Wake Forest Road Location: Raleigh, NC Sample Method: Drilling Equipment: Mini-Sonic Depth (ft BLS) FID Reading (ppm) Blow Counts Soil/Lithologic Description 0 - 0.3 0-2' = 2.5 Concrete 0.3 - 10 2'-4' = 4.7 Red brown silty CLAY, micaceous, very stiff 10 - 19 4'-6' = 3.2 Yellow brown sandy CLAY, stiff - Saprolite 19 - 26 6'-8' = 2.8 Dark brown sandy SILT with wood debris 26 - 33 8'-10' = 1.4 Mixed gray, yellow brown, and and red brown partially weathered rock 10'-12' = 2.9 33 12'-14' = 7.1 Terminate at top of bedrock 14'-16' = 5.7 16'-18' = 5.4 18'-20' = 86 20'-22' = 189 22'-24' = 482 24'-26' = 225 26'-28' = 7.6 28'-30' = 10 AMEC Earth & Environmental, Inc. BORING LOG Remarks: PWR Well Installation beneath building Boring/Well No.: MW-19I Date: 11/17/09 Job No.: 559480000.4000.0006 AMEC Rep: David Treadway 28 30 10 30'-32' = 43 32'-33' = 28 Outer Casing Interval:Outer Casing Diameter:Bentonite Interval: 23-25' bgsSlot Size: 0.01"Static Water Level: 13.96' BTOCSand Interval: 25-33' bgsGrout Interval: 0.5-23' bgs Well Type/Diameter:Flush Mount PVC / 2"WELL CONSTRUCTION DETAILS (If Applicable) Total Depth: 32' bgsScreen Interval: 27-32' bgs Site Name: Alcatel - Lucent Wake Forest Road Location: Raleigh, NC Sample Method: Drilling Equipment: Mini-Sonic Depth (ft BLS) FID Reading (ppm) Blow Counts Soil/Lithologic Description 0 - 0.3 0-2' = <0.1 Concrete 0.3 - 4 2'-4' = 1.5 Yellow red silty CLAY 4 - 25 4'-6' = 3.1 Yellow brown to light brown calyey SILT, micaceous - Saprolite 25 - 31 6'-8' = 3.1 Mix tan, brown and gray partially weathered rock 31 - 34 8'-10' = 1.8 Bedrock - Granite 10'-12' = 1.7 12'-14' = <0.1 14'-16' = 14 16'-18' = 23 18'-20' = 21 20'-22' = 44 22'-24' = 27 24'-26' = 24 26'-28' = 3.9 28'-30' = 8.8 AMEC Earth & Environmental, Inc. BORING LOG Remarks: PWR Well Installation beneath building Boring/Well No.: MW-20I Date: 11/17/09 Job No.: 559480000.4000.0006 AMEC Rep: David Treadway Outer Casing Interval:Outer Casing Diameter:Bentonite Interval: 22-24' bgsSlot Size: 0.01"Static Water Level: 14.53' BTOC Total Depth: 31' bgsScreen Interval: 26-31' bgsSand Interval: 24-31' bgsGrout Interval: 0.5-22' bgs Well Type/Diameter:Flush Mount PVC / 2"WELL CONSTRUCTION DETAILS (If Applicable) Site Name: Alcatel - Lucent Wake Forest Road Location: Raleigh, NC Sample Method: Drilling Equipment: Mini-Sonic Depth (ft BLS) FID Reading (ppm) Blow Counts Soil/Lithologic Description 0 - 0.3 0-2' = 6.1 Concrete 0.3 - 37 2'-4' = 9.5 White and brown partially weatehred rock, micaceous 4'-6' = 9.6 tan and white below 8' 37 - 40 6'-8' = 7.9 Bedrock - Granite, fracture at 39-39.5' bgs 8'-10' = 6.4 10'-12' = 6.8 12'-14' = 7.0 14'-16' = 9.4 16'-18' = 5.4 18'-20' = 7.5 20'-22' = 40 22'-24' = 38 24'-26' = 31 26'-28' = 26 28'-30' = 51 30' 32' 39 AMEC Earth & Environmental, Inc. BORING LOG Remarks: PWR Well Installation beneath building Boring/Well No.: MW-21I Date: 11/18/09 Job No.: 559480000.4000.0006 AMEC Rep: David Treadway 30'-32' = 39 32'-34' = 5.8 34'-36' = 68 36'-38' = 34 38'-40' = 56 Outer Casing Interval:Outer Casing Diameter:Bentonite Interval: 37-40' bgsSlot Size: 0.01"Static Water Level: 13.37' BTOCSand Interval: 30-37' bgsGrout Interval: 0.5-28' bgs Well Type/Diameter:Flush Mount PVC / 2"WELL CONSTRUCTION DETAILS (If Applicable) Total Depth: 37' bgsScreen Interval: 32-37' bgs Site Name: Alcatel - Lucent Wake Forest Road Location: Raleigh, NC Sample Method: Drilling Equipment: Mini-Sonic Depth (ft BLS) FID Reading (ppm) Blow Counts Soil/Lithologic Description 0 - 0.3 Concrete 0.3 - 31 Saprolite or partially weathered rock 31 - 33 Bedrock - Granite Note: soil cutting/samples were not retrieved or logged due to time constraints. AMEC Earth & Environmental, Inc. BORING LOG Remarks: PWR Well Installation beneath building Boring/Well No.: MW-22I Date: 11/18/09 Job No.: 559480000.4000.0006 AMEC Rep: David Treadway Outer Casing Interval:Outer Casing Diameter:Bentonite Interval: 23-25' bgsSlot Size: 0.01"Static Water Level: 12.26' BTOC Total Depth: 32' bgsScreen Interval: 27-32" bgsSand Interval: 25-33' bgsGrout Interval: 0.5-23' bgs Well Type/Diameter:Flush Mount PVC / 2"WELL CONSTRUCTION DETAILS (If Applicable) AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com APPENDIX B LABORATORY ANALYTICAL DATA AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com APPENDIX C HISTORICAL ANALYTICAL DATA TABLES AND GRAPHS Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 08 / 2 1 / 9 0 1 1 B D L B D L B D L B D L N A N A BD L 2 BD L B D L N A N A N A 13 1 2 0 0 BDL 02 / 0 8 / 9 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 6 6 7 1 4 09 / 1 9 / 9 3 B D L B D L B D L B D L B D L N A N A N A BD L B D L B D L N A N A N A BDL 1150 3 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL 8 7 7 B D L 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL 8 5 6 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 3 3 1 5 04 / 1 0 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 4 1 B D L 10 / 3 1 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 4 2 8 B D L 04 / 2 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 0 8 B D L 10 / 0 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 3 0 B D L 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A BD L B D L 0 . 5 8 B D L N A N A N A 0.58 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 7 1 B D L 10 / 1 1 / 0 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 3 6 04 / 2 5 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 4 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 2 1 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A NS B D L 5 5 B D L 04 / 0 7 / 0 5 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A NS B D L 3 6 B D L 11 / 3 0 / 9 4 28 0 0 BD L B D L 16 0 0 BD L N A N A N A 54 0 BD L N A N A N A N A 4940 BDL B D L 09 / 1 3 / 9 6 82 8 BD L 8 . 1 3 41 8 BD L N A N A BD L 72 9 2. 1 8 B D L N A N A N A 1985.31 26 B D L 04 / 1 0 / 9 7 14 6 0 2. 3 1 2 3 89 3 BD L N A N A 1. 5 2 10 9 0 3 . 3 2 BD L N A N A N A 3473.15 13 B D L 10 / 3 0 / 9 7 35 0 0 BD L 27 0 1 4 0 0 BD L N A N A BD L 65 0 0 BD L B D L N A N A N A 11670 BDL B D L 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) MW - 1 S PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 10 / 3 0 / 9 7 35 0 0 BD L 27 0 14 0 0 BD L NA NA BD L 65 0 0 BD L BD L NA NA NA 11670 BDL BDL 04 / 2 8 / 9 8 26 0 0 BD L B D L 10 0 0 BD L N A N A BD L 43 0 0 BD L B D L N A N A N A 7900 BDL B D L 10 / 0 8 / 9 8 B D L B D L 18 0 0 4 4 0 BD L N A N A BD L 32 0 0 BD L B D L N A N A N A 5440 15 B D L 04 / 2 8 / 9 9 26 0 0 BD L 2 0 56 0 BD L N A N A 1.3 28 0 0 6 1 0. 9 7 N A N A N A 6043.27 BDL B D L 10 / 2 8 / 9 9 25 8 0 3 1 2 . 7 92 8 BD L N A N A 1.8 14 6 0 2. 6 2 . 5 N A N A N A 4990.6 16 B D L 10 / 1 2 / 0 0 47 0 0 BD L B D L 13 0 0 BD L N A N A BD L 14 0 0 BD L B D L N A N A N A 7400 18 B D L 04 / 2 5 / 0 1 31 0 0 BD L B D L 78 0 BD L N A N A BD L 12 0 0 BD L B D L N A N A N A 5080 BDL B D L 10 / 2 4 / 0 1 67 0 BD L B D L 29 0 BD L N A N A BD L 20 0 BD L B D L N A N A N A 1160 BDL B D L 04 / 1 8 / 0 2 1 6 0 B D L 9 . 2 75 BD L N A N A BD L 99 BD L 1 . 5 N A N A N A 344.7 BDL B D L 10 / 0 1 / 0 2 16 0 0 BD L 8 51 0 BD L N A N A BD L 39 0 BD L B D L N A N A N A 2508 BDL B D L 11 / 0 1 / 0 2 56 0 BD L B D L 40 0 BD L N A N A BD L 19 0 BD L B D L N A N A N A 1150 NM N M 04 / 2 3 / 0 3 20 0 0 BD L 8 . 5 56 0 BD L N A N A BD L 45 0 BD L B D L N A N A N A 3018.5 BDL B D L 10 / 2 9 / 0 3 83 0 BD L 5 . 7 39 0 BD L N A N A BD L 29 0 BD L B D L N A N A N A 1515.7 BDL B D L 04 / 0 7 / 0 4 14 0 0 BD L B D L 35 0 BD L N A N A BD L 25 0 BD L B D L N A N A N A 2000 BDL B D L 10 / 2 1 / 0 4 26 0 E BD L 2 . 6 12 0 E BD L N A N A BD L B D L 17 0 E BD L N A N A N A 552.6 12 1 . 4 J 04 / 0 7 / 0 5 18 0 0 BD L 8 . 0 47 0 BD L N A N A BD L 48 0 BD L B D L N A N A 12 2 7 5 8 16 B D L 10 / 1 2 / 0 5 1 8 0 B D L B D L 89 BD L N A N A BD L 28 0 BD L B D L N A N A BD L 549 BDL B D L 04 / 1 2 / 0 6 37 0 BD L B D L 12 0 BD L N A N A BD L 13 0 BD L B D L N A N A 12 6 2 0 7.1J 2 . 1 J 10 / 0 5 / 0 6 55 0 BD L B D L 24 0 BD L N A N A BD L 19 0 BD L B D L N A N A 17 9 8 0 5.8J B D L 04 / 2 5 / 0 7 34 0 BD L 4 . 0 18 0 BD L N A N A 2.5 20 0 0. 6 9 B D L N A N A 9 7 2 7 . 1 9 61 50 06 / 1 3 / 0 7 7 5 B D L 3 . 1 17 BD L N A N A 2.1 63 1. 5 B D L N A N A BD L 161.7 35 8 . 8 10 / 2 3 / 0 7 2 0 B D L 1 . 4 B D L B D L N A N A BD L 6. 4 BD L B D L N A N A BD L 27.8 5.6 J 2 . 0 J 04 / 2 4 / 0 8 1 2 B D L B D L B D L B D L N A N A BD L 3. 1 BD L B D L N A N A BD L 15.1 4.6 J B D L 10 / 1 5 / 0 8 2 6 B D L 2 . 2 34 BD L N A N A 0. 5 5 36 BD L B D L N A N A BD L 98.75 19 18 04 / 1 6 / 0 9 1 2 B D L 1 . 6 27 BD L N A N A BD L 19 BD L B D L N A N A BD L 59.6 32 26 10 / 0 8 / 0 9 2 6 B D L 1 . 6 34 BD L 1. 0 BD L 1 . 3 43 BD L B D L B D L B D L B D L 105.9 0.030 0 . 0 0 4 8 J MW - 2 D Pa g e 1 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 08 / 2 1 / 9 0 1 2 0 1 7 16 BD L N A N A BD L 9 BD L B D L N A N A N A 153 BDL B D L 02 / 0 8 / 9 3 1 3 0 B D L 9 19 BD L N A N A BD L 9 BD L B D L N A N A N A 167 10.3 6 . 8 09 / 1 9 / 9 3 9 4 B D L 6 . 9 B D L B D L N A N A N A 8. 9 BD L B D L N A N A N A 109.8 30 5 08 / 3 0 / 9 4 1 4 0 B D L B D L 20 BD L N A N A N A 18 BD L N A N A N A N A 178 BDL B D L 11 / 3 0 / 9 4 4 3 B D L B D L 16 BD L N A N A N A 6. 4 BD L N A N A N A N A 65.4 BDL B D L 09 / 1 3 / 9 6 31 9 BD L 1 5 . 8 21 . 7 BD L N A N A BD L 74 . 3 BD L B D L N A N A N A 430.8 BDL B D L 04 / 0 9 / 9 7 B D L B D L B D L 2 . 2 6 B D L N A N A BD L 1. 3 7 BD L B D L N A N A N A 3.63 BDL B D L 10 / 3 0 / 9 7 40 0 BD L 4 4 49 0 BD L N A N A BD L 71 BD L B D L N A N A N A 1005 BDL B D L 04 / 2 8 / 9 8 31 0 BD L 5 4 29 0 BD L N A N A BD L 59 BD L B D L N A N A N A 713 BDL B D L 10 / 0 8 / 9 8 31 0 BD L 4 2 86 BD L N A N A BD L 41 BD L B D L N A N A N A 479 BDL B D L 04 / 2 8 / 9 9 29 0 BD L 2 9 88 BD L N A N A BD L 48 5 BD L N A N A N A 460 BDL B D L 10 / 2 8 / 9 9 1 1 6 0 . 3 1 5 . 8 70 . 8 1 6 . 8 N A N A 0.4 B D L B D L B D L N A N A N A 220.1 BDL B D L 10 / 1 2 / 0 0 1 0 0 B D L 1 1 69 0 . 9 1 N A N A BD L 12 BD L B D L N A N A N A 192.91 BDL B D L 04 / 2 5 / 0 1 1 1 0 B D L 1 8 63 0 . 9 5 N A N A BD L 15 BD L B D L N A N A N A 206.95 BDL B D L 10 / 2 4 / 0 1 4 7 B D L 6 . 1 44 0 . 6 3 N A N A BD L 5. 5 BD l B D L N A N A N A 103.23 BDL B D L 04 / 1 8 / 0 2 4 8 B D L 2 . 3 6 . 0 0. 9 5 N A N A BD L 2. 3 BD L B D L N A N A N A 59.55 BDL B D L 10 / 0 1 / 0 2 1 9 B D L 2 . 6 8. 6 BD L N A N A BD L 2. 5 BD L B D L N A N A N A 32.7 BDL B D L 04 / 2 3 / 0 3 7 . 7 B D L 0 . 8 5 5 . 3 B D L N A N A BD L 1. 9 BD L B D L N A N A N A 15.75 BDL B D L 10 / 2 9 / 0 3 4 . 2 B D L 0 . 5 3 2 . 6 B D L N A N A BD L 1. 6 BD L B D L N A N A N A 8.93 BDL B D L 04 / 0 7 / 0 4 2 . 8 B D L B D L 1 . 6 B D L N A N A BD L 2. 2 BD L B D L N A N A N A 6.6 BDL B D L 10 / 2 1 / 0 4 1 5 B D L 1 . 7 3 . 7 B D L N A N A BD L 6. 9 BD L B D L N A N A N A 27.3 24 B D L 04 / 0 7 / 0 5 3 3 B D L 4 . 2 9. 3 BD L N A N A BD L 17 BD L B D L N A N A BD L 63.5 24 B D L 10 / 1 2 / 0 5 2 6 B D L 2 . 4 5 . 9 B D L N A N A BD L 13 BD L B D L N A N A BD L 47.3 BDL B D L 04 / 1 2 / 0 6 3 . 3 B D L 0 . 5 4 1 . 0 B D L N A N A BD L 2. 5 BD L B D L N A N A BD L 7.34 2.9J 1 . 6 J 10 / 0 5 / 0 6 4 . 9 B D L 0 . 6 4 1 . 2 B D L N A N A BD L 3. 1 BD L B D L N A N A BD L 9.84 2.0J B D L 04 / 2 5 / 0 7 5 . 5 B D L 0 . 8 0 1 . 4 B D L N A N A BD L 4. 0 BD L B D L N A N A BD L 11.7 1.2J B D L 06 / 1 3 / 0 7 6 . 7 B D L 1 . 1 1 . 6 B D L N A N A BD L 4. 6 BD L B D L N A N A BD L 14 1.4J B D L 10 / 2 3 / 0 7 8 B D L 1 . 6 1 . 8 B D L N A N A BD L 4. 8 BD L B D L N A N A BD L 16.2 0.5 J B D L 04 / 2 4 / 0 8 9 . 6 B D L 1 . 6 1 . 7 B D L N A N A BD L 7. 0 BD L B D L N A N A BD L 19.9 1.0 J 1 . 9 J 10 / 1 3 / 0 8 1 1 . 0 B D L 2 . 2 2 . 4 B D L N A N A BD L 7. 8 BD L B D L N A N A BD L 23.4 BDL B D L 04 / 1 6 / 0 9 1 1 . 0 B D L 2 . 1 2 . 1 B D L N A N A BD L 8. 2 BD L B D L N A N A BD L 23.4 1.4 J B D L MW - 2 S 04 / 1 6 / 0 9 11 .0 BD L 2 .1 2 .1 BD L NA NA BD L 8. 2 BD L BD L NA NA BD L 23.4 1 .4 J BDL 10 / 0 8 / 0 9 8 . 0 B D L 1 . 5 1 . 2 B D L B D L B D L B D L 6. 6 BD L B D L 0 . 8 5 B D L B D L 18.15 0.0017 J 0 . 0 0 1 9 J 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L 2 04 / 1 0 / 9 7 20 5 BD L 3 . 3 5 49 . 9 BD L N A N A BD L 5. 0 3 BD L B D L N A N A N A 263.3 BDL B D L 10 / 3 0 / 9 7 47 0 BD L 2 9 12 0 BD L N A N A BD L B D L B D L B D L N A N A N A 619 BDL B D L 04 / 2 8 / 9 8 22 0 BD L B D L 32 BD L N A N A BD L B D L B D L B D L N A N A N A 252 BDL B D L 10 / 0 8 / 9 8 1 6 0 B D L B D L 6 . 9 B D L N A N A BD L 1. 1 BD L B D L N A N A N A 168 BDL B D L 04 / 2 8 / 9 9 6 6 B D L B D L 9. 7 BD L N A N A BD L 8. 3 4 . 8 BD L N A N A N A 88.8 BDL B D L 10 / 2 7 / 9 9 2 0 . 3 B D L B D L 3 . 9 1. 1 N A N A BD L B D L B D L B D L N A N A N A 25.3 BDL B D L 10 / 1 2 / 0 0 2 . 7 B D L 1 . 2 B D L B D L N A N A BD L B D L B D L B D L N A N A N A 3.9 BDL B D L 04 / 2 5 / 0 1 B D L B D L 1 . 2 B D L B D L N A N A 0. 6 9 B D L B D L B D L N A N A N A 1.9 BDL B D L 10 / 2 4 / 0 1 0 . 6 1 B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A 0.6 BDL B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 3 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 1 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 5 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 1 2 / 0 5 2 . 0 B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L 2.0 BDL B D L 04 / 1 2 / 0 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 4 . 0 J B D L 10 / 0 5 / 0 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 3 . 0 J B D L 04 / 2 5 / 0 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 3 . 1 J B D L 06 / 1 3 / 0 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 8 . 5 J B D L 10 / 2 5 / 0 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 2 . 3 J B D L 04 / 2 5 / 0 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 1 4 / 0 8 1 . 8 0 B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L 1.8 1.2 J B D L 04 / 1 5 / 0 9 5 . 2 B D L 0 . 8 0 1 . 7 B D L N A N A BD L 0. 8 4 BD L B D L N A N A BD L 8.5 3.9 J B D L 10 / 0 8 / 0 9 4 . 5 B D L 1 . 1 2 . 3 B D L B D L 0 . 7 8 B D L 1. 8 BD L B D L B D L B D L B D L 10.48 BDL B D L MW - 3 D Pa g e 2 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 08 / 2 1 / 9 0 1 B D L 2 2 B D L N A N A BD L B D L 5 BD L N A N A N A 10 NM B D L 02 / 0 8 / 9 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L 30 09 / 1 9 / 9 3 B D L B D L 1 . 2 1 . 7 B D L N A N A N A BD L 9. 3 BD L N A N A N A 12.2 BDL 30 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L 20 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L 2 . 7 N A N A N A N A 2.7 BDL B D L 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A BD L B D L 4. 7 5 BD L N A N A N A 4.75 15 B D L 04 / 0 9 / 9 7 B D L B D L B D L 1 . 1 6 B D L N A N A BD L B D L 4. 1 2 BD L N A N A N A 5.28 BDL B D L 10 / 3 0 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L 2 B D L N A N A N A 2 BDL B D L 04 / 2 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L 3 BD L N A N A N A 3 BDL B D L 10 / 0 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L 1 . 2 B D L N A N A N A 1.2 BDL B D L 04 / 2 8 / 9 9 B D L B D L 1 . 1 2 . 1 B D L N A N A 0. 7 1 2. 2 8 . 1 BD L N A N A N A 14.21 BDL B D L 10 / 2 8 / 9 9 B D L B D L 0 . 8 0 . 8 B D L N A N A 0.5 0 . 1 2 . 6 B D L N A N A N A 4.8 BDL B D L 10 / 1 2 / 0 0 1 8 B D L B D L B D L B D L N A N A 0. 8 5 B D L 4. 3 BD L N A N A N A 23.15 BDL B D L 04 / 2 5 / 0 1 1 8 B D L B D L 1 . 4 B D L N A N A BD L 0. 9 9 BD L B D L N A N A N A 20.39 BDL B D L 10 / 2 4 / 0 1 B D L B D L 1 . 3 1 . 1 B D L N A N A 1.2 B D L 4. 2 BD L N A N A N A 7.8 BDL B D L 04 / 1 8 / 0 2 B D L B D L 0 . 8 5 B D L B D L N A N A BD L B D L 1 B D L N A N A N A 1.85 BDL B D L 10 / 0 3 / 0 2 B D L B D L 1 . 9 1 . 3 B D L N A N A 0. 9 8 B D L 3. 9 BD L N A N A N A 8.08 BDL B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L 0 . 9 4 B D L N A N A N A 0.94 BDL B D L 10 / 2 9 / 0 3 B D L B D L 0 . 7 1 . 2 B D L N A N A 0. 8 2 B D L 3. 3 BD L N A N A N A 6.03 BDL B D L 04 / 0 7 / 0 4 B D L B D L B D L 0 . 8 3 B D L N A N A 1.1 B D L 3 BD L N A N A N A 4.93 BDL B D L 10 / 2 1 / 0 4 B D L B D L 0 . 8 7 0 . 9 8 B D L N A N A 0. 7 6 B D L 2 . 4 B D L N A N A N A 5.01 BDL B D L 04 / 0 7 / 0 5 B D L B D L 0 . 7 4 1 . 2 B D L N A N A 1.4 B D L 4. 1 BD L N A N A 97.44 BDL B D L 10 / 1 2 / 0 5 B D L B D L 1 . 3 2 . 4 B D L N A N A 0. 7 4 B D L 3. 7 BD L N A N A BD L 8.14 BDL B D L 04 / 1 2 / 0 6 B D L B D L 0 . 9 4 0 . 9 1 B D L N A N A 0. 6 7 B D L 4. 0 BD L N A N A BD L 6.52 BDL B D L 10 / 0 5 / 0 6 B D L B D L 1 . 1 1 . 1 B D L N A N A 0. 7 0 B D L 3. 6 BD L N A N A 2. 8 6.5 1.9J B D L 04 / 2 5 / 0 7 B D L B D L 0 . 5 4 B D L B D L N A N A 1.1 3. 1 0 BD L B D L N A N A BD L 4.74 2.0J B D L 06 / 1 3 / 0 7 B D L B D L 0 . 8 8 0 . 7 3 B D L N A N A 0. 5 6 B D L 3. 1 BD L N A N A 3. 9 5.27 1.7J B D L 10 / 2 5 / 0 7 B D L B D L 1 . 1 1 . 0 B D L N A N A 0. 5 5 B D L 4. 2 BD L N A N A 3. 4 6.85 3.0 J B D L 04 / 2 5 / 0 8 BD L BD L 08 7 09 4 BD L NA NA BD L BD L 30 BD L NA NA 31 481 BDL BDL MW - 3 S 04 / 2 5 / 0 8 BD L BD L 0 .87 0 .94 BD L NA NA BD L BD L 3 .0 BD L NA NA 3 .1 4 .81 BDL BDL 10 / 1 4 / 0 8 B D L B D L 1 . 0 1 . 3 B D L N A N A 0. 6 6 B D L 3. 9 BD L N A N A 3. 6 6.86 BDL B D L 04 / 1 5 / 0 9 B D L B D L 0 . 6 9 0 . 6 9 B D L N A N A BD L B D L 2 . 5 B D L N A N A BD L 3.88 2.2 J B D L 10 / 0 8 / 0 9 B D L B D L 0 . 7 0 0 . 6 6 B D L B D L B D L B D L B D L 3. 3 BD L B D L B D L B D L 4.66 0.0027 J B D L 11 / 3 0 / 9 4 1 3 0 B D L B D L 23 0 BD L N A N A N A 24 0 BD L N A N A N A N A 600 BDL B D L 10 / 2 7 / 9 9 1 0 B D L B D L 55 BD L N A N A BD L 29 5 BD L B D L N A N A N A 360 BDL B D L 10 / 1 2 / 0 0 32 0 1. 2 1 2 22 0 3 . 8 N A N A BD L 60 0 5 . 4 BD L N A N A N A 1162.4 BDL B D L 04 / 2 5 / 0 1 1 5 0 B D L 5 . 3 11 0 BD L N A N A BD L 15 0 BD L B D L N A N A N A 415.3 BDL B D L 10 / 2 4 / 0 1 26 0 BD L 1 1 18 0 0 . 6 4 N A N A BD L 41 0 1. 9 0 . 5 1 N A N A N A 864.05 BDL B D L 04 / 1 8 / 0 2 1 3 0 B D L 8 . 2 70 1 . 0 N A N A BD L 32 0 0. 7 7 B D L N A N A N A 529.97 BDL B D L 10 / 0 2 / 0 2 1 0 0 B D L 6 . 9 74 BD L N A N A BD L 31 0 BD L B D L N A N A N A 490.9 BDL B D L 11 / 0 1 / 0 2 1 7 0 B D L 9 . 6 30 0 BD L N A N A BD L 32 0 1. 6 B D L N A N A N A 801.2 NM N M 04 / 2 3 / 0 3 1 4 0 B D L 9 . 5 10 0 BD L N A N A BD L 38 0 1. 7 B D L N A N A N A 631.2 BDL B D L 10 / 2 9 / 0 3 1 3 0 B D L 7 . 9 13 0 BD L N A N A BD L 27 0 0. 8 B D L N A N A N A 538.7 BDL B D L 04 / 0 7 / 0 4 6 9 B D L 5 . 8 70 BD L N A N A BD L 16 0 1. 3 B D L N A N A N A 306.1 BDL B D L 10 / 2 1 / 0 4 B D L B D L 9 . 4 10 0 BD L N A N A BD L 27 0 1. 9 B D L N A N A N A 381.3 2.3 J B D L 04 / 0 7 / 0 5 1 0 0 B D L 1 1 19 0 1 . 5 N A N A 0. 7 5 55 0 2. 6 B D L N A N A 19 8 5 5 . 8 5 BDL B D L 10 / 1 2 / 0 5 1 4 0 B D L 1 4 16 0 BD L N A N A 1.9 47 0 4 . 0 BD L N A N A 29 7 8 9 . 9 BDL B D L 04 / 1 2 / 0 6 1 2 B D L 1 . 1 20 BD L N A N A BD L 11 0 1. 3 B D L N A N A 13 1 4 4 . 4 5.0J 1 . 6 J 10 / 0 5 / 0 6 2 0 B D L 2 . 3 37 BD L N A N A BD L 17 0 0. 8 1 B D L N A N A 13 2 3 0 . 1 1 5.6J B D L 04 / 2 5 / 0 7 1 0 0 B D L 7 . 2 11 0 BD L N A N A 1.2 82 0 2. 5 B D L N A N A 9. 7 1 0 4 0 . 9 3.6J B D L 06 / 1 3 / 0 7 7 9 B D L 6 . 3 93 0 . 8 6 N A N A 0. 7 9 51 0 2. 5 B D L N A N A 15 . 0 6 9 2 . 4 5 12.00 B D L 10 / 2 3 / 0 7 1 0 0 B D L 7 . 5 14 0 BD L N A N A BD L 57 0 2. 5 B D L N A N A 20 8 2 0 4.3 J 2 . 1 J 04 / 2 3 / 0 8 1 9 0 N A 6. 0 96 BD L N A N A N A 13 0 0 BD L N A N A N A 16 1 5 9 2 BDL 1 . 4 J 10 / 1 4 / 0 8 1 2 0 B D L 6 . 9 13 0 BD L N A N A BD L 98 0 BD L B D L N A N A 11 1 2 3 6 . 9 BDL B D L 04 / 1 6 / 0 9 4 4 B D L B D L 63 BD L N A N A BD L 53 0 BD L B D L N A N A 13 6 3 7 1.8 J B D L 10 / 0 7 / 0 9 5 7 B D L B D L 11 0 BD L B D L B D L B D L 74 0 BD L B D L B D L B D L 6. 9 9 0 7 BDL B D L MW - 4 D Pa g e 3 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 10 / 3 1 / 9 7 B D L B D L B D L B D L B D L N A N A BD L 11 0 0 2 7 BD L N A N A N A 1127 BDL B D L 04 / 2 8 / 9 8 B D L B D L B D L 75 BD L N A N A BD L 74 0 5 9 BD L N A N A N A 874 BDL B D L 10 / 0 8 / 9 8 B D L B D L B D L 20 6 6 0 N A N A BD L B D L 46 BD L N A N A N A 726 10 B D L 04 / 2 8 / 9 9 6 . 2 B D L 1 4 82 BD L N A N A 2.9 92 0 9 1 0 60 N A N A N A 1995.1 BDL B D L 10 / 2 7 / 9 9 B D L B D L 2 0 20 5 BD L N A N A BD L 91 5 1 3 0 0 2 1 0 N A N A N A 2650 13 B D L 10 / 1 2 / 0 0 6 . 5 B D L 2 4 67 BD L N A N A 6.7 55 0 4 9 0 88 N A N A N A 1232.2 18 B D L 04 / 2 5 / 0 1 4 1 B D L 1 7 12 BD L N A N A 3.7 55 0 0 3 2 0 71 N A N A N A 5964.7 18 B D L 06 / 1 5 / 0 1 3 . 6 B D L 6 . 6 48 BD L N A N A 2.0 14 0 0 2 4 0 11 N A N A N A 1711.2 NM N M 10 / 2 4 / 0 1 1 4 B D L 8 . 4 13 0 BD L N A N A BD L 13 0 0 1 2 0 24 N A N A N A 1596.4 BDL B D L 04 / 1 8 / 0 2 1 4 B D L 9 . 3 22 BD L N A N A BD L 71 0 4 4 8. 5 N A N A N A 807.8 BDL B D L 08 / 2 1 / 9 0 1 4 0 B D L B D L 23 BD L N A N A BD L 21 0 BD L B D L N A N A N A 373 BDL B D L 02 / 0 8 / 9 3 3 6 B D L B D L 17 BD L N A N A BD L 17 0 BD L B D L N A N A N A 223 26.6 15.4 09 / 1 9 / 9 3 2 2 B D L B D L 10 BD L N A N A N A 12 0 BD L B D L N A N A N A 152 40 4 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A 39 BD L N A N A N A N A 39 BDL B D L 11 / 3 0 / 9 4 8 . 3 B D L B D L B D L B D L N A N A N A 54 BD L N A N A N A N A 62.3 N/A 9 10 / 2 1 / 0 4 B D L B D L B D L 2 . 3 B D L N A N A BD L 55 BD L B D L N A N A N A 57.3 2.4 J B D L 04 / 0 7 / 0 5 3 . 9 B D L B D L 1 . 8 B D L N A N A BD L 56 BD L B D L N A N A 20 6 1 . 7 BDL B D L 04 / 1 2 / 0 6 0 . 6 3 B D L B D L B D L B D L N A N A BD L 13 BD L B D L N A N A 11 1 3 . 6 3 12 5 . 3 10 / 0 5 / 0 6 2 . 3 B D L B D L 0 . 5 9 B D L N A N A BD L 23 BD L B D L N A N A 3 25.89 13 2 . 1 J 04 / 2 5 / 0 7 2 . 5 B D L B D L 0 . 7 0 B D L N A N A BD L 35 BD L B D L N A N A BD L 38.2 8.7J B D L 06 / 1 3 / 0 7 1 . 9 B D L B D L 0 . 9 3 B D L N A N A BD L 27 BD L B D L N A N A BD L 29.83 4.2J B D L 10 / 2 3 / 0 7 3 . 3 B D L B D L 1 . 2 B D L N A N A BD L 30 BD L B D L N A N A 4. 6 34.5 300 60 04 / 2 3 / 0 8 3 . 3 B D L B D L 0 . 8 1 B D L N A N A BD L 29 BD L B D L N A N A 3. 1 33.11 BDL B D L 10 / 1 4 / 0 8 4 . 2 B D L B D L 1 . 3 B D L N A N A BD L 31 BD L B D L N A N A BD L 36.5 BDL B D L 04 / 1 6 / 0 9 6 . 0 B D L B D L 1 . 8 B D L N A N A BD L 64 BD L B D L N A N A BD L 71.8 3.5 J B D L 10 / 0 7 / 0 9 5 . 9 B D L B D L 1 . 3 B D L B D L B D L B D L 72 BD L B D L B D L B D L B D L 79.2 0.0230 0 . 0 0 7 1 08 / 2 1 / 9 0 1 BD L BD L BD L BD L NA NA BD L BD L BD L BD L NA NA NA 1 BDL BDL MW - 4 S MW - 4 D D 08 / 2 1 / 9 0 1 B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A 1 BDL B D L 02 / 0 8 / 9 3 B D L B D L B D L B D L B D L N A N A BD L 7 BD L B D L N A N A N A 7 66.6 28.4 09 / 1 9 / 9 3 1 . 8 2 1 . 8 B D L B D L N A N A N A 6. 8 BD L B D L N A N A N A 12.4 BDL 4 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 11 / 3 0 / 9 4 B D L B D L 3 B D L B D L N A N A BD L B D L B D L B D L N A N A N A 3 BDL B D L 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 3 1 04 / 0 9 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 3 1 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 0 . 2 B D L B D L N A N A N A 0.2 BDL B D L 10 / 1 1 / 0 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 5 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 3 B D L 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 1 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L 1. 2 BD L B D L N A N A N A 1.2 BDL B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 1 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 5 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 1 7 / 9 0 1 B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A 1 30 B D L 02 / 0 8 / 9 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 2 8 . 3 9 09 / 1 9 / 9 3 B D L B D L B D L B D L B D L N A N A N A BD L B D L B D L N A N A N A BDL N M N M MW - 5 S MW - 6 S MW - 5 D Pa g e 4 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 3 B D L 04 / 1 0 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 3 1 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 2. 5 0. 7 B D L N A N A N A 3.2 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 1 1 / 0 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 1 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 1 7 / 9 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L 5 02 / 0 8 / 9 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 2 2 1 25.1 09 / 1 9 / 9 3 B D L B D L B D L B D L B D L N A N A N A BD L B D L B D L N A N A N A BDL 2 0 3 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A BD L 1. 1 1 BD L B D L N A N A N A 1.11 10 1 04 / 1 0 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 3 1 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 8 / 9 8 BD L BD L BD L BD L BD L NA NA BD L BD L BD L BD L NA NA NA BDL 15 BDL MW - 7 D 10 / 0 8 / 9 8 BD L BD L BD L BD L BD L NA NA BD L BD L BD L BD L NA NA NA BDL 15 BDL 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A BD L B D L 0 . 5 5 B D L N A N A N A 0.55 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 3 B D L 10 / 1 1 / 0 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 8 B D L 04 / 2 5 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 8 B D L 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 1 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 1 7 / 9 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 3 0 B D L 02 / 0 8 / 9 3 B D L B D L 1 1 B D L B D L N A N A BD L B D L 3 BD L N A N A N A 14 17.4 6 . 5 10 / 1 8 / 9 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 4 0 1 0 02 / 0 8 / 9 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 5 6 . 5 15.3 09 / 1 9 / 9 3 B D L B D L B D L B D L B D L N A N A N A BD L B D L B D L N A N A N A BDL 5 0 15 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N M N A N A N A BDL B D L B D L 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL 1 5 7 53 06 / 2 7 / 9 3 1 . 9 B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A 1.9 BDL B D L 09 / 1 9 / 9 3 B D L B D L B D L B D L B D L N A N A N A BD L B D L B D L N A N A N A BDL 3 0 2 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L 15 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L MW - 7 S MW - 8 S MW - 9 S MW - 1 0 S Pa g e 5 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 06 / 2 7 / 9 3 B D L B D L B D L B D L B D L N A N A N A 27 0 BD L B D L N A N A N A 270 BDL B D L 09 / 1 9 / 9 3 4 . 3 B D L 3 . 1 B D L B D L N A N A N A 23 0 BD L B D L N A N A N A 237.4 20 2 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A 13 0 BD L N A N A N A N A 130 BDL 38 11 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A 12 0 BD L N A N A N A N A 120 BDL 1 2 09 / 1 3 / 9 6 B D L B D L B D L 1 . 1 3 B D L N A N A BD L 11 9 BD L B D L N A N A N A 120.13 BDL B D L 04 / 1 0 / 9 7 B D L B D L B D L B D L B D L N A N A BD L 7. 7 8 BD L B D L N A N A N A 7.78 BDL B D L 10 / 3 1 / 9 7 B D L B D L B D L B D L B D L N A N A BD L 25 BD L B D L N A N A N A 25 BDL B D L 04 / 2 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L 16 BD L B D L N A N A N A 16 BDL B D L 10 / 0 7 / 9 8 B D L B D L B D L B D L B D L N A N A BD L 12 BD L B D L N A N A N A 12 12 1 0 04 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 16 BD L B D L N A N A N A 16 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 9. 6 BD L B D L N A N A N A 9.6 BDL B D L 04 / 2 5 / 0 1 0 . 5 1 B D L B D L 0 . 6 B D L N A N A BD L B D L 45 BD L N A N A N A 46.11 BDL B D L 10 / 2 1 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 6 / 0 5 B D L B D L B D L B D L B D L N A N A BD L 28 BD L B D L N A N A BD L 28 3.2 0 . 7 6 J 04 / 1 2 / 0 6 0 . 6 9 B D L B D L 1 . 2 B D L N A N A BD L 40 BD L B D L N A N A NS 41.89 NS N S 04 / 2 5 / 0 7 B D L B D L B D L 0 . 7 7 B D L N A N A BD L 21 BD L B D L N A N A BD L 21.77 11 B D L 09 / 1 9 / 9 3 B D L B D L 6 . 6 7. 3 BDL N A N A N A 23 . 7 BD L N A N A N A 19.6 40 2 . 1 08 / 3 0 / 9 4 B D L B D L B D L B D L B D L N A N A N A B D L B D L N A N A N A N A B D L B D L B D L 11 / 3 0 / 9 4 3 . 1 B D L 1 1 11 BDL N A N A N A 2. 6 BD L N A N A N A N A 27.7 BDL 18 09 / 1 3 / 9 6 B D L B D L 1 . 1 1 B D L B D L N A N A B D L B D L B D L B D L N A N A N A 1.11 BDL B D L 04 / 0 9 / 9 7 B D L B D L 5 . 8 2 3 . 2 8 B D L N A N A B D L B D L B D L B D L N A N A N A 9.1 BDL B D L 10 / 3 0 / 9 7 B D L B D L 2 1 B D L N A N A B D L B D L B D L B D L N A N A N A 3 BDL B D L 04 / 2 8 / 9 8 B D L B D L 0 . 6 1 B D L N A N A BD L B D L B D L B D L N A N A N A 1.6 BDL B D L MW - 1 1 S 04 / 2 8 / 9 8 BD L BD L 0. 6 1 BD L NA NA BD L BD L BD L BD L NA NA NA 1.6 BDL BDL 10 / 0 8 / 9 8 0 . 5 4 B D L 3 . 4 0 . 7 B D L N A N A 0 . 6 8 2. 1 0. 5 1 B D L N A N A N A 7.93 BDL B D L 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A B D L 1. 6 BD L B D L N A N A N A 1.6 BDL B D L 10 / 2 8 / 9 9 B D L B D L 2 . 8 1 . 8 B D L N A N A 1 . 0 0 . 6 0 . 2 B D L N A N A N A 6.4 BDL B D L 10 / 1 2 / 0 0 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L 2 7 30 04 / 2 5 / 0 1 B D L B D L 0 . 6 5 B D L B D L N A N A B D L B D L B D L B D L N A N A N A 0.65 27 30 10 / 2 4 / 0 1 B D L B D L 3 . 5 1 . 4 B D L N A N A 1 . 6 0. 7 0. 6 6 B D L N A N A N A 7.86 BDL B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 10 / 0 1 / 0 2 B D L B D L 4 . 7 2 . 6 B D L N A N A 1 . 8 0. 7 1 1. 1 0 B D L N A N A N A 10.91 BDL B D L 04 / 2 3 / 0 3 B D L B D L 3 . 7 1 . 4 B D L N A N A 0 . 8 0 0. 7 7 0. 7 3 B D L N A N A N A 7.4 BDL B D L 10 / 2 9 / 0 3 B D L B D L 5 . 8 3 . 2 B D L N A N A 2 . 1 0 0. 8 5 BD L B D L N A N A N A 11.95 BDL B D L 04 / 0 7 / 0 4 B D L B D L 4 . 8 2 . 6 B D L N A N A 2 B D L 1 . 3 B D L N A N A N A 10.7 BDL B D L 10 / 2 1 / 0 4 B D L B D L 6 . 5 3 . 1 B D L N A N A 2 . 9 B D L 1 . 5 B D L N A N A N A 14 1.7 J 1 . 2 J 04 / 0 7 / 0 5 B D L B D L 5 . 1 4 . 3 B D L N A N A 2 . 6 1. 1 1. 6 B D L N A N A 15 1 4 . 7 BDL B D L 10 / 1 2 / 0 5 B D L B D L 5 . 4 3 . 4 B D L N A N A 1 . 5 0. 7 8 1. 8 B D L N A N A 21 1 2 . 8 8 BDL B D L 04 / 1 2 / 0 6 B D L B D L 6 . 6 2 . 2 B D L N A N A 1 . 9 0. 8 2 1. 8 B D L N A N A 32 1 3 . 3 2 5.7J 7 . 2 10 / 0 5 / 0 6 B D L B D L 9 . 8 5 . 4 B D L N A N A 5 . 2 0 . 5 9 0 . 5 B D L N A N A 37 2 1 . 4 9 6.2J 6 . 4 04 / 2 5 / 0 7 B D L B D L 9 . 5 5 . 5 B D L N A N A 4 . 5 0 . 5 7 0 . 6 9 B D L N A N A 40 2 0 . 7 6 2.4J B D L 10 / 2 3 / 0 7 B D L B D L 1 4 5 . 9 B D L N A N A 7 . 1 B D L 0 . 5 9 B D L N A N A 53 2 7 . 5 9 BDL 1 . 5 J 04 / 2 5 / 0 8 B D L B D L 1 1 6 . 0 B D L N A N A 6 . 5 0 . 6 0 0 . 5 3 B D L N A N A 59 2 4 . 6 3 BDL 2 . 3 J 10 / 1 4 / 0 8 B D L B D L 9 . 1 4 . 5 B D L N A N A 5 . 4 B D L 0 . 5 5 B D L N A N A 36 1 9 . 5 5 BDL 1 . 5 J 04 / 1 6 / 0 9 B D L B D L 1 . 1 B D L B D L N A N A B D L B D L B D L B D L N A N A 34 1 . 1 1.1 J B D L 10 / 0 8 / 0 9 B D L B D L 3 . 2 0 . 9 4 B D L B D L B D L 0 . 9 7 B D L 1 . 1 B D L B D L B D L 96 6 . 2 1 0.0026 J 0 . 0 0 1 6 J MW - 1 2 S Pa g e 6 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 10 / 3 1 / 9 7 13 0 0 BD L 4 2 46 0 BD L N A N A BD L 10 0 BD L B D L N A N A N A 1902 169 B D L 04 / 2 7 / 9 8 20 0 0 BD L B D L 36 0 BD L N A N A BD L 59 BD L B D L N A N A N A 2419 278 B D L 10 / 0 7 / 9 8 47 0 BD L 6 9 20 0 2 . 2 N A N A BD L 79 BD L B D L N A N A N A 820.2 93 B D L 04 / 2 7 / 9 9 20 0 0 BD L 3 9 12 0 BD L N A N A BD L 45 4 2 BD L N A N A N A 2246 BDL B D L 10 / 2 7 / 9 9 > 5 0 B D L 3 2 B D L 19 . 5 N A N A 0.7 B D L 1 . 2 0 . 9 N A N A N A 54.3 24 B D L 12 / 1 4 / 9 9 12 7 0 BD L 1 6 . 7 13 5 BD L N A N A BD L 16 . 7 BD L B D L N A N A N A 1438.4 240 B D L 10 / 1 1 / 0 0 67 0 2. 4 3 0 12 0 3 . 3 N A N A BD L 73 3 . 4 BD L N A N A N A 902.1 710 B D L 04 / 2 5 / 0 1 45 0 BD L 1 1 93 BD L N A N A BD L 6. 2 BD L B D L N A N A N A 560.2 BDL B D L 10 / 2 4 / 0 1 30 0 BD L 1 5 92 0 . 7 5 N A N A BD L 17 BD L B D L N A N A N A 424.75 BDL B D L 04 / 1 8 / 0 2 25 0 BD L 1 6 20 0 2 . 5 N A N A BD L 13 BD L B D L N A N A N A 481.5 BDL B D L 10 / 0 2 / 0 2 7 3 B D L 5 26 BD L N A N A BD L 4. 6 BD L B D L N A N A N A 108.4 BDL B D L 11 / 0 1 / 0 2 4 0 B D L 2 . 8 41 BD L N A N A BD L 3. 3 BD L B D L N A N A N A 87.1 NM N M 04 / 2 3 / 0 3 5 8 B D L 6 . 1 29 BD L N A N A BD L 6. 3 BD L B D L N A N A N A 99.4 BDL B D L 10 / 2 9 / 0 3 5 8 B D L 1 0 41 BD L N A N A BD L 6. 8 BD L B D L N A N A N A 115.8 BDL B D L 04 / 0 7 / 0 4 2 8 B D L 4 . 9 19 BD L N A N A BD L 4. 4 BD L B D L N A N A N A 56.3 BDL B D L 10 / 2 1 / 0 4 3 0 B D L 5 . 2 20 BD L N A N A BD L 3. 8 BD L B D L N A N A N A 59 120 B D L 04 / 0 6 / 0 5 21 0 BD L 2 0 95 1 . 8 N A N A BD L 18 BD L B D L N A N A 20 3 4 4 . 8 57 0 . 2 8 J 10 / 1 2 / 0 5 1 1 B D L 1 . 7 7. 0 BD L N A N A BD L 1. 9 BD L B D L N A N A BD L 21.6 48 B D L 04 / 1 2 / 0 6 8 . 3 B D L 2 . 5 8. 2 BD L N A N A BD L 2. 4 BD L B D L N A N A 21 2 1 . 4 76 B D L 10 / 0 5 / 0 6 9 . 8 B D L 3 . 2 11 BD L N A N A BD L 2. 6 BD L B D L N A N A 24 2 6 . 6 87 B D L 04 / 2 5 / 0 7 3 2 B D L 6 . 9 23 BD L N A N A BD L 5. 7 BD L B D L N A N A 9. 1 6 7 . 6 120 B D L 06 / 1 3 / 0 7 1 1 B D L 1 . 8 B D L B D L N A N A BD L 1. 8 BD L B D L N A N A 5. 8 14.6 60 B D L 10 / 2 5 / 0 7 2 . 2 B D L B D L 0 . 6 0 B D L N A N A BD L 0 . 5 6 B D L B D L N A N A BD L 3.36 39 B D L 04 / 2 4 / 0 8 2 . 8 B D L 0 . 7 1 1 . 3 B D L N A N A BD L 0 . 6 0 B D L B D L N A N A 3. 3 5.41 1.4 B D L 10 / 1 5 / 0 8 2 . 9 B D L 0 . 7 4 0 . 7 7 B D L N A N A BD L 0. 7 9 BD L B D L N A N A BD L 5.2 29.0 B D L 04 / 1 6 / 0 9 2 . 1 B D L 0 . 6 2 2 . 1 0 B D L N A N A BD L 0 . 6 7 B D L B D L N A N A BD L 5.49 1.4 J B D L 10 / 0 8 / 0 9 5 . 7 B D L 1 . 4 3 . 7 B D L B D L B D L B D L 1. 4 0 BD L B D L B D L B D L B D L 12.20 0.35 B D L 05 / 2 8 / 9 5 39 0 BD L B D L 20 0 0 BD L N A N A BD L B D L B D L B D L N A N A N A 2390 BDL 6 . 6 09 / 1 3 / 9 6 56 2 BD L 18 2 26 1 0 10 . 4 NA NA BD L 24 2 3. 3 5 BD L NA NA NA 3609.75 9 8 MW - 1 3 D 09 / 1 3 / 9 6 56 2 BD L 18 2 26 1 0 10 .4 NA NA BD L 24 2 3 .35 BD L NA NA NA 3609 .75 9 8 04 / 1 0 / 9 7 30 6 5. 1 9 2 3 3 23 7 0 1 3 . 8 N A N A BD L 40 3 3 . 6 1 BD L N A N A N A 3334.6 BDL B D L 10 / 3 1 / 9 7 1 6 0 B D L B D L 15 0 0 BD L N A N A BD L 25 0 0 BD L B D L N A N A N A 4160 BDL B D L 04 / 2 7 / 9 8 9 0 B D L 6 5 19 0 0 BD L N A N A BD L 17 0 0 BD L B D L N A N A N A 3755 BDL B D L 10 / 0 7 / 9 8 8 5 B D L 5 3 78 0 BD L N A N A BD L 24 0 0 BD L B D L N A N A N A 3318 13 17 04 / 2 7 / 9 9 9 8 B D L 7 2 13 0 0 8 . 1 N A N A BD L 13 0 0 3 . 7 BD L N A N A N A 2781.8 BDL B D L 10 / 2 7 / 9 9 5 9 . 5 4 . 3 5 6 . 0 >5 0 7 . 0 N A N A 1.3 65 . 8 3 . 0 1. 6 N A N A N A 198.5 BDL B D L 12 / 1 4 / 9 9 6 8 B D L 6 8 17 4 0 BD L N A N A BD L 95 7 BD L B D L N A N A N A 2833 BDL B D L 10 / 1 1 / 0 0 3 8 B D L 6 9 22 0 0 6 . 5 N A N A BD L 39 0 BD L B D L N A N A N A 2703.5 42 B D L 04 / 2 5 / 0 1 6 . 8 B D L 1 9 52 0 BD L N A N A BD L B D L B D L B D L N A N A N A 545.8 BDL B D L 04 / 1 8 / 0 2 7 . 1 B D L 2 3 23 0 BD L N A N A BD L 12 0 BD L B D L N A N A N A 380.1 BDL B D L 04 / 2 3 / 0 3 9 2 . 2 4 5 44 0 4 . 7 N A N A BD L 23 0 1. 3 B D L N A N A N A 732.2 BDL B D L 10 / 2 9 / 0 3 7 2 . 4 8 2 11 0 0 9 . 2 N A N A BD L 30 0 2. 0 B D L N A N A N A 1503 NM N M 10 / 2 1 / 0 4 4 . 6 3 . 5 6 9 65 0 8 . 4 N A N A BD L 26 0 1. 4 B D L N A N A N A 996.9 BDL B D L 04 / 0 6 / 0 5 3 . 9 3 . 2 5 2 60 0 7 . 3 N A N A BD L 29 0 2. 3 B D L N A N A 23 0 9 5 8 . 7 2.6 1 . 1 10 / 1 2 / 0 5 D r y Dr y Dr y Dr y Dr y N A N A Dr y Dr y Dr y Dr y N A N A Dr y Dr y Dr y Dr y 04 / 1 2 / 0 6 D r y Dr y Dr y Dr y Dr y N A N A Dr y Dr y Dr y Dr y N A N A Dr y Dr y Dr y Dr y 10 / 0 3 / 0 6 D r y Dr y Dr y Dr y Dr y N A N A Dr y Dr y Dr y Dr y N A N A Dr y Dr y Dr y Dr y 04 / 2 5 / 0 7 4 . 9 3 . 9 6 6 57 0 7 . 1 N A N A 0. 8 3 14 0 2. 7 B D L N A N A 36 0 7 9 5 . 4 3 6.1J 0 . 9 J 06 / 1 3 / 0 7 5 . 0 3 . 5 73 5 1 0 6 . 3 N A N A BD L 93 3 . 8 BD L N A N A 72 0 6 9 4 . 6 1.4J B D L 04 / 1 6 / 0 9 1 1 3 . 0 85 4 6 0 5 . 6 N A N A BD L 11 0 2 . 8 BD L N A N A 98 0 6 7 7 . 4 1.4 J B D L 10 / 0 8 / 0 9 1 4 4 . 2 86 5 3 0 8 . 5 BD L 1 2 B D L 13 0 4 . 9 BD L B D L B D L 10 0 0 7 8 9 . 6 0.0032 J B D L 06 / 1 3 / 0 7 6 4 1 . 9 15 0 3 7 0 4 . 7 NA N A B D L 67 4 . 4 BD L N A N A 32 0 6 6 2 1.5J B D L 10 / 2 5 / 0 7 6 1 B D L 1 1 0 49 0 BD L N A N A B D L 67 BD L B D L N A N A 71 0 7 2 8 14 2 . 4 J 04 / 2 4 / 0 8 5 6 B D L 1 0 0 43 0 BD L N A N A B D L 67 BD L B D L N A N A 68 0 6 5 3 BDL B D L 10 / 1 5 / 0 8 8 1 B D L 1 2 0 64 0 BD L N A N A B D L 80 BD L B D L N A N A 41 0 9 2 1 BDL B D L 04 / 1 6 / 0 9 3 5 1 . 3 74 1 6 0 2 . 6 NA N A B D L 59 4 . 1 BD L N A N A 44 0 3 3 6 1.1 J B D L 10 / 0 8 / 0 9 4 9 1 . 5 82 3 2 0 3 . 4 BD L 1 . 8 B D L 71 3 . 9 BD L B D L B D L 69 0 5 3 2 . 6 0.0015 J B D L MW - 1 3 S MW - 1 3 S r Pa g e 7 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 10 / 3 1 / 9 7 16 0 0 0 BD L B D L 81 0 BD L N A N A BD L B D L B D L B D L N A N A N A 16810 2 7 2 BDL 04 / 2 8 / 9 8 97 0 0 BD L B D L 68 0 BD L N A N A BD L B D L B D L B D L N A N A N A 10380 209 B D L 10 / 0 8 / 9 8 85 0 0 BD L B D L 38 0 BD L N A N A BD L 82 BD L B D L N A N A N A 8962 320 B D L 04 / 2 8 / 9 9 36 0 0 BD L 3 . 6 19 0 BD L N A N A BD L 74 5 . 5 BD L N A N A N A 3873.1 BDL B D L 10 / 2 7 / 9 9 4 . 0 B D L B D L B D L B D L N A N A 1.5 B D L 3. 0 3. 1 N A N A N A 11.6 62 B D L 12 / 1 4 / 9 9 44 2 0 BD L 1 6 . 4 23 7 BD L N A N A BD L 22 BD L B D L N A N A N A 4695.4 620 B D L 10 / 1 1 / 0 0 34 0 0 BD L 5 . 2 55 0 BD L N A N A BD L 93 0. 6 B D L N A N A N A 4048.8 250 6 04 / 2 5 / 0 1 41 0 BD L B D L 28 BD L N A N A BD L 2. 6 0. 5 8 B D L N A N A N A 441.18 BDL 6 10 / 2 4 / 0 1 15 0 0 BD L 1 . 2 98 0 . 6 6 N A N A BD L 18 0. 6 8 B D L N A N A N A 1618.54 BDL B D L 04 / 1 8 / 0 2 50 0 BD L 3 . 0 33 BD L N A N A BD L 4. 7 BD L B D L N A N A N A 540.7 BDL B D L 10 / 0 2 / 0 2 60 0 BD L 1 . 8 85 BD L N A N A BD L 12 . 0 0. 8 7 B D L N A N A N A 699.67 BDL B D L 11 / 0 1 / 0 2 1 7 0 B D L 5 . 9 56 0 . 7 6 N A N A BD L 3. 5 0. 8 7 B D L N A N A N A 237.03 NM N M 04 / 2 3 / 0 3 68 0 BD L 1 63 BD L N A N A BD L 12 BD L B D L N A N A N A 756 BDL B D L 10 / 2 9 / 0 3 32 0 BD L 6 0 29 BD L N A N A BD L 7 BD L B D L N A N A N A 415.6 BDL B D L 04 / 0 7 / 0 4 23 0 BD L B D L 27 BD L N A N A BD L 4. 5 BD L B D L N A N A N A 261.5 BDL B D L 10 / 2 1 / 0 4 38 0 BD L 5 7 38 BD L N A N A BD L 7. 5 BD L B D L N A N A N A 482.5 54 B D L 04 / 0 7 / 0 5 22 0 BD L 2 . 1 16 BD L N A N A BD L 4. 4 BD L B D L N A N A BD L 242.5 120 B D L 10 / 1 2 / 0 5 37 0 BD L 1 . 3 43 BD L N A N A BD L 8. 8 BD L B D L N A N A BD L 423.1 56 B D L 04 / 1 2 / 0 6 6 2 B D L 1 . 4 11 BD L N A N A BD L 2. 5 BD L B D L N A N A BD L 76.9 91 3 . 9 J 10 / 0 5 / 0 6 1 7 0 B D L 2 8 29 BD L N A N A BD L 4. 1 BD L B D L N A N A 5. 8 231.1 50 B D L 04 / 2 5 / 0 7 35 0 BD L B D L 38 BD L N A N A BD L 5. 1 BD L B D L N A N A BD L 393.1 89 B D L 10 / 2 4 / 0 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 2 6 0 2 . 1 J 04 / 2 3 / 0 8 1 8 0 B D L B D L 27 BD L N A N A BD L 3. 5 BD L B D L N A N A BD L 210.5 220 B D L 10 / 1 5 / 0 8 28 0 BD L 0 . 5 5 34 BD L N A N A BD L 3. 4 BD L B D L N A N A BD L 317.95 190 1 . 4 J 04 / 1 6 / 0 9 1 2 0 B D L 1 . 2 0 15 BD L N A N A BD L 2. 5 BD L B D L N A N A BD L 138.7 190 1 . 8 J 10 / 0 7 / 0 9 1 6 0 B D L B D L 14 BD L B D L B D L B D L 2. 3 BD L B D L B D L B D L B D L 176.3 0.14 0 . 0 0 1 9 J 10 / 0 8 / 9 8 3 . 9 B D L 1 . 6 27 BD L N A N A BD L 28 1 7 BD L N A N A N A 77.5 BDL B D L 04 / 2 8 / 9 9 2 . 4 B D L B D L 19 BD L N A N A 0.7 B D L 18 1. 4 N A N A N A 41.48 BDL B D L 10 / 2 7 / 9 9 B D L 1 B D L 39 4 N A N A BD L 15 8 BD L N A N A N A 67 10 B D L 10 / 1 2 / 0 0 BD L BD L 09 7 45 BD L NA NA BD L 11 11 BD L NA NA NA 67 9 7 13 BDL MW - 1 4 D 10 / 1 2 / 0 0 BD L BD L 0 .97 45 BD L NA NA BD L 11 11 BD L NA NA NA 67 .97 13 BDL 04 / 2 5 / 0 1 B D L B D L 0 . 9 7 34 BD L N A N A BD L 13 1 1 BD L N A N A N A 58.97 BDL B D L 10 / 2 4 / 0 1 0 . 6 1 B D L 0 . 9 35 BD L N A N A BD L 8. 4 8 . 6 BD L N A N A N A 53.51 BDL B D L 04 / 1 8 / 0 2 B D L B D L 0 . 8 3 B D L N A N A BD L 5. 4 4 . 7 BD L N A N A N A 14.29 BDL B D L 10 / 2 1 / 0 4 B D L B D L B D L 13 BD L N A N A BD L 5. 3 4 . 8 BD L N A N A N A 23.1 3.5 J B D L 10 / 0 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 9 0 170 04 / 2 8 / 9 9 1 0 B D L B D L 2 . 1 B D L N A N A BD L 35 BD L B D L N A N A N A 47.1 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 3 7 1 2 10 / 1 2 / 0 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 4 0 B D L 04 / 2 7 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 1 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 05 / 3 1 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 4 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L 1 . 5 0 B D L N A N A N A BDL B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L MW - 1 I K 12 / 0 1 / 9 4 B D L B D L B D L B D L B D L N A N A N A B D L B D L N A N A N A N A B D L B D L B D L MW - 1 S K 12 / 0 1 / 9 4 B D L B D L B D L B D L B D L N A N A N A B D L B D L N A N A N A N A B D L B D L 8 09 / 2 1 / 9 4 30 0 BD L 6 3 18 0 0 BD L N A N A BD L 34 0 4 1 BD L N A N A N A 2544 BDL 26 12 / 0 1 / 9 4 22 0 BD L B D L 15 0 0 BD L N A N A N A 26 0 BD L N A N A N A N A 1980 BDL B D L 09 / 2 1 / 9 4 26 0 BD L 4 7 10 0 0 BD L N A N A BD L 27 0 8 BD L N A N A N A 1585 14 24 12 / 0 1 / 9 4 B D L B D L B D L 94 0 BD L N A N A N A 24 0 BD L N A N A N A N A 1180 BDL B D L 09 / 1 3 / 9 6 5 6 . 8 B D L 1 5 . 5 43 4 BD L N A N A BD L 12 1 7 . 2 7 BD L N A N A N A 634.57 83 MW - 1 5 D MW - 1 5 S MW - 1 6 D MW - 2 I K MW - 2 S K Pa g e 8 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 10 / 0 8 / 9 8 2 . 7 B D L B D L B D L B D L N A N A BD L 54 BD L B D L N A N A N A 56.7 26 29 04 / 2 8 / 9 9 1 0 B D L B D L 2 . 1 B D L N A N A BD L 35 BD L B D L N A N A N A 47.1 BDL B D L 10 / 2 7 / 9 9 2 . 8 B D L B D L 0 . 9 B D L N A N A BD L 7. 4 BD L B D L N A N A N A 11.1 17 1 2 10 / 1 2 / 0 0 9 2 B D L 7 . 6 64 BD L N A N A 0. 5 8 81 BD L B D L N A N A N A 245.18 19 16 04 / 2 5 / 0 1 7 . 5 B D L B D L 3 . 2 B D L N A N A BD L 30 BD L B D L N A N A N A 40.7 19 16 10 / 2 4 / 0 1 8 7 B D L 1 3 73 0 . 8 6 N A N A 0. 6 6 70 BD L B D L N A N A N A 244.52 BDL B D L 04 / 1 8 / 0 2 5 5 B D L 5 . 8 58 1 . 4 N A N A 0. 5 8 10 0 BD L B D L N A N A N A 220.78 BDL B D L 10 / 0 2 / 0 2 7 8 B D L B D L 87 BD L N A N A BD L 16 0 BD L B D L N A N A N A 325 BDL B D L 11 / 0 1 / 0 2 3 5 B D L 5 . 7 83 BD L N A N A BD L 86 BD L B D L N A N A N A 209.7 NM N M 04 / 2 3 / 0 3 6 4 B D L 8 . 6 75 BD L N A N A BD L 11 0 0. 9 5 B D L N A N A N A 258.55 BDL B D L 10 / 2 9 / 0 3 3 1 B D L 6 . 8 11 0 BD L N A N A BD L 90 0. 8 5 B D L N A N A N A 238.65 BDL B D L 04 / 0 7 / 0 4 3 6 B D L 8 . 8 78 BD L N A N A BD L 87 0. 9 4 B D L N A N A N A 210.74 BDL B D L 10 / 2 1 / 0 4 2 9 B D L 2 . 2 15 BD L N A N A BD L 48 BD L B D L N A N A N A 94.2 5 J B D L 04 / 0 7 / 0 5 4 3 B D L 1 . 8 25 BD L N A N A BD L 33 0 BD L B D L N A N A 12 3 9 9 . 8 2.3 0 . 4 6 J 10 / 1 2 / 0 5 3 2 B D L 9 . 4 69 BD L N A N A BD L 83 BD L B D L N A N A 33 1 9 3 . 4 BDL B D L 04 / 1 2 / 0 6 1 6 B D L 5 . 1 43 BD L N A N A BD L 51 1. 5 B D L N A N A 31 1 1 6 . 6 2.2J 1 . 5 J 10 / 0 5 / 0 6 6 0 B D L 5 . 5 42 BD L N A N A BD L 16 0 BD L B D L N A N A 14 2 6 7 . 5 BDL B D L 04 / 2 5 / 0 7 4 7 B D L 3 . 7 22 BD L N A N A BD L 99 BD L B D L N A N A 3. 2 171.7 2.3J B D L 10 / 2 3 / 0 7 5 4 B D L 3 . 8 23 BD L N A N A BD L 12 0 BD L B D L N A N A 11 2 0 0 . 8 1.3 J 2 . 2 J 04 / 2 4 / 0 8 5 6 B D L 5 . 7 11 BD L N A N A BD L 11 0 BD L B D L N A N A 15 1 8 2 . 7 BDL 1 . 5 J 10 / 1 4 / 0 8 6 7 B D L 8 . 8 30 BD L N A N A BD L 14 0 BD L B D L N A N A 12 2 4 5 . 8 BDL B D L 04 / 1 5 / 0 9 6 5 B D L 6 . 5 26 BD L N A N A BD L 16 0 BD L B D L N A N A 13 2 5 7 . 5 2.0 J B D L 10 / 0 7 / 0 9 4 7 B D L 5 . 1 13 BD L B D L 0 . 5 7 B D L 14 0 BD L B D L B D L B D L 23 2 0 5 . 6 7 0.0015 J B D L 09 / 2 1 / 9 4 5 8 B D L B D L 28 BD L N A N A BD L 36 0 BD L B D L N A N A N A 446 18 12 / 0 1 / 9 4 6 5 2 0 B D L 38 BD L N A N A N A 30 0 BD L N A N A N A N A 423 55 57 10 / 2 1 / 0 4 4 . 1 B D L B D L 1 . 4 B D L N A N A BD L 19 BD L B D L N A N A N A 24.5 21 1 4 04 / 0 7 / 0 5 2 . 1 B D L B D L 1 . 1 B D L N A N A BD L 19 BD L B D L N A N A 8. 2 2 2 . 2 1.7J 0 . 4 3 J 04 / 1 2 / 0 6 B D L B D L B D L B D L B D L N A N A BD L 4. 1 BD L B D L N A N A NS 4.1 NS N S 10 / 0 5 / 0 6 4 . 2 B D L B D L 1 . 3 B D L N A N A BD L 22 BD L B D L N A N A 7. 1 2 7 . 5 3.1J 7 . 9 04 / 2 4 / 0 8 8 . 7 B D L B D L 0 . 6 2 B D L N A N A BD L 55 BD L B D L N A N A 5. 2 64.32 2.1 J 5 . 6 10 / 1 4 / 0 8 1 2 B D L B D L 1 . 5 B D L N A N A BD L 61 BD L B D L N A N A BD L 74.5 BDL B D L 04 / 1 5 / 0 9 11 BD L BD L 12 BD L NA NA BD L 71 BD L BD L NA NA BD L 83.2 39J 10J MW - 3 S K MW - 3 D K 04 / 1 5 / 0 9 11 BD L BD L 1 .2 BD L NA NA BD L 71 BD L BD L NA NA BD L 83 .2 3 .9 J 1 .0 J 10 / 0 7 / 0 9 1 3 B D L B D L 1 . 8 B D L B D L B D L B D L 10 0 BD L B D L B D L B D L B D L 114.8 0.0066 J 0 . 0 0 5 9 09 / 2 1 / 9 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 3 2 B D L 12 / 0 1 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 12 / 0 1 / 9 4 B D L B D L 2 . 5 2 . 5 B D L N A N A N A BD L 3. 1 N A N A N A N A 8.1 BDL 1 1 09 / 1 3 / 9 6 B D L B D L 3 . 6 7 28 . 7 BD L N A N A 33 . 4 6. 4 9 8 3 . 7 BD L N A N A N A 155.96 2BDL 04 / 0 9 / 9 7 B D L B D L 2 . 4 8. 2 2 BD L N A N A 1.8 B D L 5. 4 1 BD L N A N A N A 17.83 BDL B D L 10 / 3 0 / 9 7 B D L B D L 2 1 B D L N A N A 6 B D L 0 . 5 B D L N A N A N A 9.5 BDL B D L 04 / 2 7 / 9 8 B D L B D L 0 . 8 2 B D L N A N A BD L B D L 2 B D L N A N A N A 4.8 BDL B D L 10 / 0 8 / 9 8 B D L B D L B D L 0 . 6 6 B D L N A N A 1.9 B D L B D L B D L N A N A N A 2.56 14 8 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 1. 2 1. 3 B D L N A N A N A 2.5 BDL B D L 10 / 2 7 / 9 9 B D L B D L 0 . 3 0 . 6 0. 4 N A N A 1.4 B D L B D L B D L N A N A N A 2.7 10 B D L 10 / 1 2 / 0 0 B D L B D L 0 . 7 2 B D L B D L N A N A 3.3 B D L 0 . 6 6 B D L N A N A N A 4.68 BDL B D L 04 / 2 5 / 0 1 B D L B D L 1 3 . 5 B D L N A N A 3.1 B D L 4. 3 BD L N A N A N A 11.9 BDL B D L 10 / 2 4 / 0 1 B D L B D L 0 . 5 9 0 . 7 B D L N A N A 2.6 B D L B D L B D L N A N A N A 3.89 BDL B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A 1.6 B D L B D L B D L N A N A N A 1.6 BDL B D L 10 / 0 1 / 0 2 B D L B D L B D L B D L B D L N A N A 1.8 B D L B D L B D L N A N A N A 1.8 BDL B D L 04 / 2 3 / 0 3 B D L B D L 0 . 5 6 B D L B D L N A N A 3.6 B D L B D L B D L N A N A N A 4.16 BDL B D L 10 / 2 9 / 0 3 B D L B D L 0 . 7 7 1 . 3 B D L N A N A BD L B D L B D L B D L N A N A N A 2.07 BDL B D L 04 / 0 7 / 0 4 B D L B D L 0 . 5 7 1 . 9 B D L N A N A 4.6 B D L B D L B D L N A N A N A 7.07 BDL B D L 10 / 2 1 / 0 4 B D L B D L B D L 1 . 5 B D L N A N A 5.8 B D L B D L B D L N A N A N A 7.3 BDL B D L 04 / 0 7 / 0 5 B D L B D L 0 . 7 8 2 . 1 B D L N A N A 7.0 B D L 1 . 0 B D L N A N A 14 1 0 . 8 8 BDL B D L 10 / 1 2 / 0 5 B D L B D L 1 . 1 2 . 9 B D L N A N A 6.6 B D L B D L B D L N A N A BD L 10.6 BDL B D L 04 / 1 2 / 0 6 B D L B D L 0 . 7 4 1 . 4 B D L N A N A 4.6 B D L B D L B D L N A N A 16 6 . 7 4 BDL B D L 10 / 0 5 / 0 6 B D L B D L 0 . 7 4 1 . 4 B D L N A N A 4.7 B D L B D L B D L N A N A 5. 6 6.84 BDL B D L 04 / 2 5 / 0 7 B D L B D L 0 . 8 4 1 . 7 B D L N A N A 4.9 B D L 0 . 9 1 B D L N A N A 2. 5 8.35 1.4J B D L 10 / 2 5 / 0 7 B D L B D L 0 . 5 6 0 . 8 1 B D L N A N A 3.6 B D L B D L B D L N A N A 3. 8 4.97 2.0 J 3 . 8 J 04 / 2 3 / 0 8 B D L B D L B D L B D L B D L N A N A 2.3 B D L B D L B D L N A N A 3. 1 2.3 2.6 J 4 . 8 J 10 / 1 4 / 0 8 B D L B D L 0 . 5 2 0 . 5 5 B D L N A N A 3.0 B D L B D L B D L N A N A BD L 4.07 4.3 J 1 . 2 J 04 / 1 5 / 0 9 B D L B D L 0 . 7 0 0 . 9 4 B D L N A N A 3.4 B D L 1 . 1 B D L N A N A BD L 6.14 BDL B D L 10 / 0 7 / 0 9 B D L B D L B D L 0 . 6 3 B D L B D L B D L 3 . 3 B D L B D L B D L B D L 0. 5 7 BD L 4.50 0.0018 J 0 . 0 0 1 2 J MW - 5 S K MW - 4 S K Pa g e 9 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) MW - 6 I K 12 / 0 1 / 9 4 2 B D L B D L 15 BD L N A N A N A 5. 8 4 . 6 N A N A N A N A 27.4 BDL B D L MW - 6 S K 12 / 0 1 / 9 4 5 . 4 B D L 6 . 8 58 BD L N A N A N A 19 3 4 N A N A N A N A 123.2 BDL B D L MW - 7 I K 12 / 0 1 / 9 4 23 0 BD L B D L 40 0 BD L N A N A N A 32 0 0 BD L N A N A N A N A 3830 BDL B D L MW - 7 S K 12 / 0 1 / 9 4 2 8 7 . 1 B D L 79 BD L N A N A N A 11 0 BD L N A N A N A N A 224.1 BDL 8 MW - 8 D K 12 / 0 1 / 9 4 1 3 B D L B D L 32 BD L N A N A N A 76 BD L N A N A N A N A 121 BDL B D L MW - 8 S K 12 / 0 1 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 12 / 0 1 / 9 4 2 7 B D L B D L 18 0 BD L N A N A N A 41 BD L N A N A N A N A 248 BDL B D L 09 / 1 3 / 9 6 3 6 . 6 B D L 7 . 2 7 22 5 BD L N A N A BD L 81 8 . 5 8 BD L N A N A N A 358.45 BDL B D L 01 / 1 4 / 9 7 9 . 4 3 B D L B D L B D L B D L N A N A BD L 22 . 3 5 . 5 3 BD L N A N A N A 37.26 BDL B D L 04 / 0 9 / 9 7 2 . 7 9 B D L B D L 39 . 7 BD L N A N A BD L 10 . 5 5 . 6 9 BD L N A N A N A 58.68 BDL B D L 10 / 3 0 / 9 7 B D L B D L 2 28 BD L N A N A BD L 85 BD L N A N A N A 43 BDL B D L 04 / 2 7 / 9 8 0 . 6 B D L B D L 19 BD L N A N A BD L 53 BD L N A N A N A 27.6 BDL B D L 10 / 0 8 / 9 8 0 . 6 5 B D L 0 . 5 3 4 . 2 B D L N A N A BD L 3. 7 2. 5 B D L N A N A N A 11.58 BDL B D L 04 / 2 8 / 9 9 0 . 5 1 B D L B D L 3 . 2 B D L N A N A BD L 2. 1 1. 2 B D L N A N A N A 7.01 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L 3 B D L N A N A BD L 1 1. 4 B D L N A N A N A 5.4 20 B D L 10 / 1 2 / 0 0 B D L B D L B D L 0 . 6 5 B D L N A N A BD L 1. 2 1. 6 B D L N A N A N A 3.45 22 B D L 04 / 2 5 / 0 1 B D L B D L B D L 3 . 1 B D L N A N A BD L 1. 8 3 . 4 BD L N A N A N A 8.3 22 B D L 10 / 2 4 / 0 1 B D L B D L B D L 1 . 8 B D L N A N A BD L 0 . 6 8 1 . 5 0 B D L N A N A N A 3.98 BDL B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 1 / 0 2 B D L B D L B D L 2 . 6 B D L N A N A BD L 1. 0 2. 0 B D L N A N A N A 5.6 BDL B D L 04 / 2 3 / 0 3 B D L B D L B D L 1 . 5 B D L N A N A BD L 0. 8 8 1. 1 B D L N A N A N A 3.48 BDL B D L 10 / 2 9 / 0 3 B D L B D L B D L 3 . 7 B D L N A N A BD L 1. 4 0 0. 7 B D L N A N A N A 5.8 BDL B D L 04 / 0 7 / 0 4 B D L B D L B D L 4 . 3 B D L N A N A BD L 1. 3 1. 7 B D L N A N A N A 7.3 BDL B D L 10 / 2 1 / 0 4 1 . 8 B D L B D L 5 . 9 B D L N A N A BD L 2. 9 2 . 8 BD L N A N A N A 13.4 21 J B D L 04 / 0 7 / 0 5 2 . 7 B D L B D L 8. 3 BD L N A N A BD L 7. 1 3 . 6 BD L N A N A BD L 21.7 BDL B D L 10 / 1 2 / 0 5 4 . 2 B D L 0 . 7 3 8. 8 BD L N A N A BD L 6. 3 4 . 7 BD L N A N A BD L 24.73 BDL B D L 04 / 1 2 / 0 6 0 . 6 4 B D L B D L 3 . 8 B D L N A N A BD L 2. 8 3 . 3 BD L N A N A BD L 10.54 BDL 2 . 0 J 10 / 0 5 / 0 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 1 . 9 J B D L 04 / 2 4 / 0 7 B D L B D L B D L 2 . 5 B D L N A N A BD L 1. 4 2. 1 B D L N A N A BD L 6 2.9J B D L 10 / 2 3 / 0 7 B D L B D L B D L 2 . 9 B D L N A N A BD L 1. 8 3 . 5 BD L N A N A 3. 3 8.2 1.3 J 1 . 7 J 04 / 2 3 / 0 8 B D L B D L B D L 2 . 9 B D L N A N A BD L 2. 7 4 . 1 BD L N A N A BD L 9.7 8.4 J B D L // MW - 9 D K 10 / 1 4 / 0 8 B D L B D L B D L 2 . 7 B D L N A N A BD L 2. 8 4 . 8 BD L N A N A BD L 10.3 1.0 J B D L 04 / 1 4 / 0 9 B D L B D L B D L 3 . 1 B D L N A N A BD L 2. 8 4 . 9 BD L N A N A BD L 10.8 BDL B D L 10 / 0 6 / 0 9 0 . 6 0 B D L B D L 2 . 6 B D L B D L 0. 9 2 BD L 3. 1 5 . 6 BD L B D L B D L B D L 12.82 BDL B D L 12 / 0 1 / 9 4 B D L B D L B D L B D L B D L N A N A N A BD L B D L N A N A N A N A BDL B D L B D L 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 3 B D L 01 / 1 4 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L N N A N A N A BDL 2 3 B D L 04 / 1 0 / 9 7 27 1 BD L 3 2 . 7 18 1 BD L N A N A BD L 24 . 1 BD L B D L N A N A N A 508.8 BDL B D L 10 / 3 0 / 9 7 B D L B D L 1 2 B D L N A N A BD L 0. 8 BD L B D L N A N A N A 3.8 BDL B D L 04 / 2 7 / 9 8 B D L B D L B D L 0 . 6 B D L N A N A BD L B D L 0 . 7 B D L N A N A N A 1.3 BDL B D L 10 / 0 8 / 9 8 B D L B D L B D L B D L B D L N A N A BD L 1. 1 BD L B D L N A N A N A 1.1 93 22 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 1. 9 2. 2 B D L N A N A N A 4.1 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L 0 . 6 B D L N A N A BD L 0 . 4 0 . 6 B D L N A N A N A 1.6 12 B D L 10 / 1 2 / 0 0 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 0 B D L 04 / 2 5 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 0 B D L 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 3 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 2 1 / 0 4 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 5 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 1 2 / 0 5 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 04 / 1 2 / 0 6 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 0 5 / 0 6 B D L B D L B D L 3 . 3 0 B D L N A N A BD L 2. 1 2. 6 B D L N A N A BD L 8.0 2.7J B D L 04 / 2 4 / 0 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 2 3 / 0 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A 1. 2 B D L 2 . 0 J 1 . 9 J 04 / 2 3 / 0 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 1 . 8 J 3 . 8 J 10 / 1 3 / 0 8 B D L B D L B D L 1 . 4 B D L N A N A BD L 2. 5 BD L B D L N A N A BD L 3.9 BDL B D L 04 / 1 4 / 0 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 6 . 6 J B D L 10 / 0 6 / 0 9 0 . 7 6 B D L B D L 2 . 2 B D L B D L B D L B D L 8. 7 0. 8 7 B D L B D L B D L B D L 12.53 BDL B D L MW - 9 S K Pa g e 1 0 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 12 / 0 1 / 9 4 B D L B D L B D L B D L B D L N A N A N A B D L B D L N A N A N A N A B D L B D L B D L 09 / 1 3 / 9 6 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L 2 2 04 / 0 9 / 9 7 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 10 / 3 1 / 9 7 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 04 / 2 7 / 9 8 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 10 / 0 8 / 9 8 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L 2 0 27 04 / 2 8 / 9 9 B D L B D L B D L B D L B D L N A N A B D L B D L 0 . 5 6 B D L N A N A N A 0.56 BDL B D L 10 / 2 7 / 9 9 B D L B D L B D L B D L 0. 4 NA N A B D L B D L B D L B D L N A N A N A 0.4 39 B D L 10 / 1 2 / 0 0 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 04 / 2 5 / 0 1 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 10 / 0 1 / 0 2 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 04 / 0 7 / 0 4 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L B D L B D L 10 / 2 1 / 0 4 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A N A B D L 6 . 7 J B D L 04 / 0 7 / 0 5 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L B D L B D L 10 / 1 2 / 0 5 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L B D L B D L 04 / 1 2 / 0 6 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L 2 . 2 J 1 . 9 J 10 / 0 5 / 0 6 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L 2 . 2 J B D L 04 / 2 5 / 0 7 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L 1 . 9 J B D L 10 / 2 5 / 0 7 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L 3 . 4 J 0 . 9 J 04 / 2 5 / 0 8 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L B D L B D L 10 / 1 5 / 0 8 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L B D L B D L 04 / 1 5 / 0 9 B D L B D L B D L B D L B D L N A N A B D L B D L B D L B D L N A N A B D L B D L B D L B D L 10 / 0 7 / 0 9 B D L B D L B D L B D L B D L B D L 1 . 1 B D L B D L B D L B D L B D L B D L B D L 1.1 BDL B D L 04 / 1 5 / 0 9 B D L B D L B D L B D L B D L N A N A B D L 3. 5 BD L B D L N A N A B D L 3.5 BDL B D L 10 / 0 8 / 0 9 B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L 0 . 0 0 2 2 J 0 . 0 0 1 2 J MW - 1 2 D K EQ - 1 11 / 1 0 / 9 4 4 3 B D L B D L B D L 12 N A N A BD L 16 4 BD L B D L N A N A N A 219 9BDL 11 / 3 0 / 9 4 3 0 1 0 B D L 12 BD L N A N A N A 16 0 BD L N A N A N A N A 212 BDL B D L 10 / 0 4 / 0 2 6 4 B D L 2 20 0 . 5 6 N A N A BD L 29 0 BD L B D L N A N A N A 376.56 BDL B D L RW - 2 11 / 3 0 / 9 4 20 0 BD L B D L 50 0 BD L N A N A N M 22 0 BD L N M N A N A N A 920 BDL B D L 10 / 0 3 / 0 2 3 . 6 B D L 0 . 6 9 8. 4 BD L N A N A B D L 9. 6 3 . 4 BD L N A N A N A 25.69 BDL B D L 10 / 2 1 / 0 4 1 4 B D L 1 . 7 23 BD L N A N A 5 8 15 0 2. 6 B D L N A N A N A 249.3 4.1 J B D L 04 / 0 6 / 0 5 1 4 B D L 2 . 8 34 BD L N A N A 0 . 6 8 41 1. 4 B D L N A N A 26 9 3 . 8 8 0.76J 0 . 4 5 J 10 / 1 2 / 0 5 6 . 5 B D L 1 . 2 12 BD L N A N A 0 . 8 5 18 3 . 7 BD L N A N A 8 4 2 . 2 5 BDL B D L 04 / 1 2 / 0 6 0 . 6 3 B D L B D L 3 . 2 B D L N A N A B D L 3. 9 2. 7 B D L N A N A B D L 10.43 BDL B D L 10 / 0 5 / 0 6 2 . 0 B D L B D L 5 . 2 B D L N A N A 0 . 5 4 5. 8 2. 3 B D L N A N A 1 . 8 15.84 BDL B D L 04 / 2 5 / 0 7 B D L B D L B D L 4 . 0 B D L N A N A 1 . 1 5. 6 1. 8 B D L N A N A B D L 12.5 1.0J B D L 10 / 2 4 / 0 7 1 . 8 B D L 1 . 2 13 BD L N A N A B D L 23 1. 6 B D L N A N A 8. 4 4 0 . 6 BDL B D L 04 / 2 5 / 0 8 0 . 7 0 B D L B D L 3 . 4 B D L N A N A B D L 3. 6 5 . 3 BD L N A N A B D L 13 BDL B D L 10 / 1 5 / 0 8 2 . 2 B D L 1 . 8 21 BD L N A N A B D L 47 2. 5 B D L N A N A 7 . 4 74.5 BDL B D L 04 / 1 5 / 0 9 1 . 8 B D L 1 . 4 13 BD L N A N A B D L 41 2. 1 B D L N A N A 8. 7 5 9 . 3 BDL B D L 10 / 0 7 / 0 9 0 . 6 B D L 1 . 0 11 BD L B D L 1 . 9 B D L 32 3 . 1 BD L B D L B D L B D L 49.6 0.0011 J 0 . 0 0 1 3 J 11 / 1 9 / 0 4 8 . 8 B D L 1 . 6 18 BD L N A N A 1 5 97 2. 7 B D L N A N A N A 143.1 NM N M 04 / 0 6 / 0 5 4 B D L 0 . 8 1 9. 5 BD L N A N A 0 . 7 6 7. 6 3 . 1 BD L N A N A 16 2 5 . 7 7 1.1J 0 . 8 7 J 10 / 1 2 / 0 5 2 . 7 B D L 0 . 8 5 6 . 7 B D L N A N A B D L 6. 7 4 . 6 BD L N A N A B D L 21.55 BDL 68 04 / 1 2 / 0 6 B D L B D L B D L 2 . 8 B D L N A N A B D L 3. 0 3 . 2 BD L N A N A B D L 9 3.3J 1 . 6 J 10 / 0 5 / 0 6 1 . 7 B D L B D L 3 . 6 B D L N A N A 1 . 8 4. 5 3 . 2 BD L N A N A 1 . 7 14.8 BDL B D L 04 / 2 5 / 0 7 B D L B D L B D L 2 . 6 B D L N A N A 0 . 9 3 2. 3 2. 5 B D L N A N A B D L 8.33 2.6J B D L 10 / 2 4 / 0 7 1 . 0 B D L B D L 4 . 7 B D L N A N A B D L 3. 5 5 . 3 BD L N A N A 4 . 2 14.5 BDL B D L 04 / 2 4 / 0 8 1 . 9 B D L 1 . 5 17 BD L N A N A B D L 43 2. 1 B D L N A N A 11 6 5 . 5 BDL B D L 10 / 1 5 / 0 8 0 . 9 1 B D L 0 . 5 4 . 4 B D L N A N A 0. 9 1 4. 7 6 . 6 BD L N A N A BD L 18.02 BDL 0 . 9 J RW - 9 11 / 1 9 / 0 4 4 . 8 B D L 2 . 4 16 BD L N A N A 5 . 8 34 7 . 5 BD L N A N A N A 70.5 NM N M RW - 7 RW - 1 RW - 5 Pa g e 1 1 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 01 / 1 4 / 9 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL 1 5 1 4 04 / 0 9 / 9 7 B D L B D L B D L B D L B D L N A N A BD L 2. 3 9 1 0 . 7 BD L N A N A N A 13.09 BDL B D L 10 / 2 9 / 9 7 B D L B D L B D L 4 B D L N A N A BD L 17 5 2 BD L N A N A N A 73 BDL B D L 04 / 2 7 / 9 8 B D L B D L B D L 3 B D L N A N A BD L 13 3 6 BD L N A N A N A 52 BDL 1 0 . 4 10 / 0 7 / 9 8 B D L B D L B D L 0 . 7 2 B D L N A N A 14 3. 2 6 . 4 BD L N A N A N A 24.32 22 20 04 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 4. 1 1 5 BD L N A N A N A 19.1 BDL B D L 10 / 2 6 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 5. 0 2 0 . 0 BD L N A N A N A 25 60 6 12 / 1 4 / 9 9 B D L B D L 0 . 5 2 . 8 B D L N A N A BD L 7. 0 9 . 8 BD L N A N A N A 20.1 60 6 . 0 10 / 2 3 / 0 0 B D L B D L B D L 0 . 7 4 B D L N A N A BD L 4. 3 2 0 BD L N A N A N A 25.04 16 15 04 / 2 5 / 0 1 B D L B D L B D L 0 . 7 B D L N A N A BD L 1. 2 4 . 5 BD L N A N A N A 6.44 16 15 10 / 2 4 / 0 1 B D L B D L B D L B D L B D L N A N A BD L 0 . 6 5 4. 3 BD L N A N A N A 4.95 BDL B D L 04 / 1 8 / 0 2 2 . 5 0 B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A 2.5 BDL 40 10 / 0 3 / 0 2 B D L B D L B D L 1 . 6 B D L N A N A BD L 2. 5 1 4 BD L N A N A N A 18.1 1 2 0 0 3 7 0 04 / 2 3 / 0 3 B D L B D L B D L 0 . 6 6 B D L N A N A BD L 1. 5 7 . 0 BD L N A N A N A 9.16 BDL B D L 10 / 2 9 / 0 3 B D L B D L B D L 0 . 9 9 B D L N A N A BD L 1. 6 6 . 8 BD L N A N A N A 9.39 BDL B D L 04 / 0 7 / 0 4 B D L B D L B D L 1 . 2 B D L N A N A 1.3 1. 1 4 BD L N A N A N A 7.6 BDL B D L 10 / 2 1 / 0 4 6 . 8 B D L B D L 3 . 5 B D L N A N A 0. 8 5 39 0. 7 4 B D L N A N A N A 50.89 10 3 . 3 J 04 / 0 7 / 0 5 3 . 0 B D L B D L 4 . 3 B D L N A N A 1.1 20 1. 9 B D L N A N A BD L 30.3 4.0 0 . 7 5 J 10 / 1 2 / 0 5 4 . 1 B D L B D L 3 . 3 B D L N A N A 1.3 32 2. 4 B D L N A N A BD L 43.1 15 B D L 04 / 1 2 / 0 6 B D L B D L B D L 2 . 1 B D L N A N A 0. 5 7 2. 6 1 2 BD L N A N A BD L 17.27 BDL B D L 10 / 0 5 / 0 6 B D L B D L B D L 2 . 4 B D L N A N A 0. 5 9 2. 1 1 5 BD L N A N A BD L 20.09 BDL 3 . 4 J 04 / 2 5 / 0 7 B D L B D L B D L 2 . 5 B D L N A N A 1.1 2. 1 1 4 BD L N A N A BD L 19.7 3.1J B D L 10 / 2 5 / 0 7 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 8 . 1 J 1 . 8 J 04 / 2 4 / 0 8 B D L B D L B D L B D L B D L N A N A BD L B D L 1 . 8 B D L N A N A BD L 1.8 BDL B D L 10 / 1 5 / 0 8 B D L B D L B D L 3 . 0 B D L N A N A 0. 7 5 1. 1 1 6 BD L N A N A BD L 20.85 1.1 J B D L 04 / 1 5 / 0 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 0 7 / 0 9 B D L B D L B D L B D L B D L B D L B D L B D L B D L 1 . 1 B D L B D L B D L B D L 1.1 BDL B D L 01 / 1 4 / 9 7 11 4 BD L BD L 12 0 BD L NA NA BD L 48 3 59 2 BD L NA NA NA 185 6 2 14 23 CR W - 1 01 / 1 4 / 9 7 11 .4 BD L BD L 12 0 BD L NA NA BD L 48 .3 5 .92 BD L NA NA NA 185 .62 14 23 04 / 1 0 / 9 7 6 . 3 8 B D L 1 . 8 9 81 BD L N A N A BD L 26 5 . 3 9 BD L N A N A N A 120.66 BDL B D L 10 / 2 9 / 9 7 B D L B D L B D L 2 B D L N A N A BD L 5 2B D L N A N A N A 9 83 B D L 04 / 2 8 / 9 8 B D L B D L B D L 2 B D L N A N A BD L 0. 9 1B D L N A N A N A 3.9 52.3 25.3 10 / 0 7 / 9 8 B D L B D L B D L 0 . 7 5 B D L N A N A BD L 1. 9 1. 2 B D L N A N A N A 3.85 240 21 04 / 2 7 / 9 9 B D L B D L B D L 0 . 9 8 B D L N A N A BD L 2. 6 2. 4 B D L N A N A N A 5.98 BDL B D L 10 / 2 6 / 9 9 B D L B D L B D L 1 . 3 B D L N A N A BD L 0. 8 1. 2 B D L N A N A N A 3.3 48 B D L 12 / 1 4 / 9 9 B D L B D L B D L 0 . 5 B D L N A N A BD L B D L B D L B D L N A N A N A 0.5 48 B D L 10 / 1 1 / 0 0 B D L B D L B D L 0 . 9 7 B D L N A N A BD L 2. 1 3 . 2 BD L N A N A N A 6.27 74 B D L 04 / 2 5 / 0 1 B D L B D L B D L 0 . 8 6 B D L N A N A BD L 3. 6 1 4 BD L N A N A N A 18.46 BDL B D L 10 / 2 4 / 0 1 B D L B D L B D L 0 . 6 9 B D L N A N A BD L 0. 7 9 3 . 5 BD L N A N A N A 4.98 BDL B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L 0 . 6 0 1 . 9 B D L N A N A N A 2.5 BDL B D L 10 / 0 3 / 0 2 4 . 1 B D L B D L 4 . 4 B D L N A N A BD L 31 0. 6 5 B D L N A N A N A 40.15 BDL 25 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A BD L 1. 6 6 . 6 BD L N A N A N A 8.2 BDL B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 04 / 0 7 / 0 4 4 . 2 B D L B D L 4 . 6 B D L N A N A 2 20 0. 8 5 B D L N A N A N A 31.65 BDL B D L 10 / 2 1 / 0 4 7 . 1 B D L B D L 3 . 3 B D L N A N A BD L 43 BD L B D L N A N A N A 53.4 68 2 . 2 J 04 / 0 6 / 0 5 1 . 1 B D L B D L 2 . 5 B D L N A N A BD L 5. 4 0. 8 5 B D L N A N A BD L 9.85 5.8 0 . 8 3 J 10 / 1 2 / 0 5 4 . 2 B D L B D L 3 . 1 B D L N A N A BD L 37 BD L B D L N A N A BD L 44.3 BDL B D L 04 / 1 2 / 0 6 1 . 5 B D L 0 . 5 2 5 . 7 B D L N A N A BD L 9. 4 2. 1 B D L N A N A BD L 19.22 11 1 . 3 J 10 / 0 5 / 0 6 2 . 6 B D L 0 . 6 0 7. 7 BD L N A N A BD L 8. 9 1. 5 B D L N A N A 1. 8 0 21.3 2.8J B D L 04 / 2 5 / 0 7 1 . 5 B D L 0 . 5 9 8. 0 BD L N A N A 0. 8 2 9. 9 1. 5 B D L N A N A BD L 22.31 2.9J B D L 10 / 2 4 / 0 7 B D L B D L B D L B D L B D L N A N A 0. 5 7 B D L B D L B D L N A N A BD L 0.57 2.6 J B D L 04 / 2 4 / 0 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 10 / 1 5 / 0 8 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L B D L B D L 04 / 1 5 / 0 9 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A BD L B D L 2 . 6 J B D L 10 / 0 7 / 0 9 B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L B D L 0 . 0 0 1 8 J B D L CR W - 5 Pa g e 1 2 o f 1 3 Ta b l e 3 His t o r i c G r o u n d w a t e r A n a l y t i c a l R e s u l t s Fo r m e r A l c a t e l F a c i l i t y Ra l e i g h , N C 20 0 2 1 0 , 0 0 0 7 0 7 0 . 3 8 1 7 0 7 0 0 . 7 2 . 8 1 0 0 2 . 1 0 . 0 1 5 7 N A 1 0 0 0 1 5 1, 2 - D C A (u g / l ) Lead (mg/l) tr a n s - 1 , 2 - DC E ( u g / l ) 1, 4 - Di o x a n e (u g / l ) Total Chlorinated VOCs (ug/l)Copper (mg/l) TC E (u g / l ) Tr i c h l o r o - fl u o r o - me t h a n e (u g / l ) Vi n y l Ch l o r i d e (u g / l ) PC E (u g / l ) 2L S t a n d a r d s Da t e Sa m p l e d Mo n i t o r i n g We l l 1, 1 - D C E (u g / l ) Ch l o r o f o r m (u g / l ) ci s - 1 , 2 - DC E (u g / l ) 1,1 , 1 - T C A (u g / l ) 1,1 , 2 - T C A (u g / l ) 1, 1 - D C A (u g / l ) Be n z e n e (u g / l ) 09 / 1 3 / 9 6 2 0 4 . 1 1 1 . 3 2 15 . 7 BD L N A N A BD L 97 . 2 BD L B D L N A N A N A 138.33 3BDL 01 / 1 4 / 9 7 2 7 . 6 B D L B D L 28 . 4 BD L N A N A BD L 28 2 BD L B D L N A N A N A 338 BDL 27 04 / 1 0 / 9 7 1 2 B D L B D L 12 . 5 BD L N A N A BD L 10 8 BD L B D L N A N A N A 132.5 BDL 1 3 10 / 2 9 / 9 7 4 B D L B D L 4 B D L N A N A BD L 61 BD L B D L N A N A N A 69 BDL B D L 04 / 2 7 / 9 8 2 B D L B D L 5 B D L N A N A BD L 40 BD L B D L N A N A N A 47 BDL B D L 10 / 0 7 / 9 8 1 . 9 B D L 0 . 5 5 2 . 3 B D L N A N A BD L 24 BD L B D L N A N A N A 28.75 97 1 4 12 / 1 4 / 9 9 1 . 4 B D L B D L 1 . 5 B D L N A N A 1.2 11 . 2 BD L B D L N A N A N A 15.3 NS N S 01 / 1 4 / 9 7 B D L B D L B D L B D L B D L N A N A BD L 19 BD L B D L N A N A N A 19 61 66 04 / 2 7 / 9 8 B D L B D L B D L B D L B D L N A N A BD L 2 BD L B D L N A N A N A 2 BDL B D L 10 / 0 7 / 9 8 B D L B D L B D L B D L B D L N A N A BD L 6. 8 BD L B D L N A N A N A 6.8 10 B D L 04 / 2 7 / 9 9 B D L B D L B D L B D L B D L N A N A BD L 2 BD L B D L N A N A N A 2 BDL B D L 10 / 2 6 / 9 9 B D L B D L B D L B D L B D L N A N A 5.6 0 . 2 B D L B D L N A N A N A 5.8 30 B D L 12 / 1 4 / 9 9 B D L B D L B D L B D L B D L N A N A 9.3 B D L B D L B D L N A N A N A 9.3 30 B D L 10 / 1 1 / 0 0 B D L B D L B D L B D L B D L N A N A BD L 0. 9 5 BD L B D L N A N A N A 0.95 12 B D L 04 / 2 5 / 0 1 B D L B D L B D L 6 . 5 B D L N A N A 6.5 1. 1 1. 2 B D L N A N A N A 15.3 12 B D L 10 / 2 4 / 0 1 B D L B D L B D L 0 . 6 9 B D L N A N A BD L 0. 8 BD L B D L N A N A N A 1.48 BDL B D L 04 / 1 8 / 0 2 B D L B D L B D L B D L B D L N A N A BD L B D L B D L B D L N A N A N A BDL B D L B D L 10 / 0 3 / 0 2 B D L B D L B D L B D L B D L N A N A BD L 1. 4 BD L B D L N A N A N A 1.4 BDL B D L 04 / 2 3 / 0 3 BD L BD L BD L BD L BD L NA NA BD L 3. 3 BD L BD L NA NA NA 3.3 BDL BDL CR W - 9 CR W - 1 1 04 / 2 3 / 0 3 BD L BD L BD L BD L BD L NA NA BD L 3 .3 BD L BD L NA NA NA 3 .3 BDL BDL 10 / 2 9 / 0 3 1 . 3 0 B D L B D L 1 . 5 0 B D L N A N A BD L 8. 0 BD L B D L N A N A N A 10.8 BDL B D L 04 / 0 7 / 0 4 0 . 9 3 B D L B D L B D L B D L N A N A BD L 4 BD L B D L N A N A N A 4.93 BDL B D L 10 / 2 1 / 0 4 4 . 5 B D L B D L 1 . 7 B D L N A N A BD L 26 BD L B D L N A N A N A 32.2 3.4 J B D L 04 / 0 6 / 0 5 3 . 5 B D L B D L 1 . 9 B D L N A N A BD L 22 BD L B D L N A N A BD L 27.4 0.89J 0 . 2 4 J 10 / 1 2 / 0 5 3 . 4 B D L B D L 2 . 4 B D L N A N A BD L 13 BD L B D L N A N A BD L 18.8 BDL B D L 04 / 2 3 / 0 3 B D L B D L B D L B D L B D L N A N A B D L 7. 5 BD L B D L N A N A N A 7.5 BDL B D L 10 / 2 9 / 0 3 B D L B D L B D L B D L B D L N A N A B D L 8. 8 BD L B D L N A N A N A 8.8 BDL B D L No t e s : ug / l - m i c r o g r a m s p e r l i t e r mg / l - m i l l i g r a m s p e r l i t e r BD L - A n a l y t e n o t d e t e c t e d a t o r a b o v e l a b o r a t o r y p r a c t i c a l q u a n t i t a t i o n l i m i t ( P Q L ) . NA - N o t a n a l y z e d f o r c o n s t i t u e n t NS - N o t s a m p l e d E - E s t i m a t e v a l u e , c a l i b . R a n g e w a s e x c e e d e d J - E s t i m a t e d v a l u e b e l o w l a b o r a t o r y P Q L . 1,4 - D i o x a n e n o t i n c l u d e d i n V O C t o t a l IW - 1 Pa g e 1 3 o f 1 3 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)Concentration MW-2d 11/29/94 0 4940.009/13/96 644 1985.304/10/97 851 3471.610/30/97 0 11670.004/28/98 178 7900.010/08/98 338 5440.004/28/99 538 6041.010/28/99 718 4986.310/12/00 1062 740004/25/01 1255 508010/24/01 1434 116004/18/02 1608 343.211/01/02 1801 115004/23/03 1973 3018.510/29/03 2159 1515.704/07/04 2317 200010/21/04 2511 552.604/06/05 2676 277010/12/05 2862 54904/12/06 3042 62010/05/06 3215 98004/25/07 3415 727.210/23/07 3593 27.804/24/08 3774 15.110/15/2008 3945 98.7510/8/2009 4298 105.90 MW-2s 08/21/90 0 153.002/08/93 887 167.009/19/93 1108 109.8 Well Trend and Coefficient y = 1E-10x4 - 1E-06x 3 + 0.0046x2 - 9.8348x + 10275R² = 0.8352 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 0 1000 2000 3000 4000 5000 1,200 09/19/93 1108 109.808/30/94 1449 178.011/30/94 1539 65.409/13/96 2182 430.804/10/97 2389 3.610/30/97 0 1005.004/28/98 178 713.010/08/98 338 479.004/28/99 538 460.010/28/99 718 219.710/12/00 1062 192.9104/25/01 1255 20710/24/01 1434 103.2304/18/02 1608 59.5510/01/02 1771 32.704/23/03 1973 15.7510/29/03 2159 8.9304/07/04 2317 6.610/21/04 2511 27.304/07/05 2677 6410/12/05 2862 4704/12/06 3042 7.310/05/06 3215 9.804/25/07 3415 11.710/23/07 3593 16.204/24/08 3774 19.910/13/2008 3943 23.410/8/2009 4298 18.15 y = 1E-10x4 - 1E-06x 3 + 0.0046x2 - 9.8348x + 10275R² = 0.8352 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 0 1000 2000 3000 4000 5000 y = 2E-11x4 -2E-07x3 + 0.0007x2 - 1.352x + 948.1R² = 0.9754 0 200 400 600 800 1,000 1,200 0 1000 2000 3000 4000 5000 Page 1 of 8 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)ConcentrationWell Trend and Coefficient MW-3d 11/30/94 0 BDL09/13/96 643 BDL04/10/97 850 263.310/30/97 0 619.004/28/98 178 252.010/08/98 338 168.004/28/99 538 88.810/27/99 717 25.310/12/00 1062 2.704/25/01 1255 1.210/24/01 1434 0.6104/18/02 1608 BDL10/03/02 1773 BDL04/23/03 1973 BDL10/29/03 2159 BDL04/07/04 2317 BDL10/21/04 2511 BDL05/07/05 2707 BDL10/12/05 2862 204/12/06 3042 BDL10/05/06 3215 BDL04/25/07 3415 BDL10/25/07 3595 BDL04/24/08 3774 BDL10/14/2008 3944 1.810/8/2009 4298 10.48 MW-3s 08/21/90 0 10.002/08/93 887 BDL09/19/93 1108 12 2 y = 7E-18x6 -1E-13x5 + 6E-10x4 -2E-06x3 + 0.0026x2 - 1.9991x + 592.39R² = 0.9861 -100 0 100 200 300 400 500 600 700 0 1000 2000 3000 4000 5000 25.0 09/19/93 1108 12.208/30/94 1449 BDL11/30/94 1539 2.709/13/96 2182 4.804/10/97 2389 5.310/30/97 0 2.004/28/98 178 3.010/08/98 338 1.204/28/99 538 13.510/28/99 718 4.310/12/00 1062 5.104/25/01 1255 20.410/24/01 1434 6.604/18/02 1608 1.8510/03/02 1773 8.0804/23/03 1973 0.9410/29/03 2159 6.0304/07/04 2317 4.9310/21/04 2511 5.0104/07/05 2677 7.410/12/05 2862 8.104/12/06 3042 6.510/05/06 3215 6.504/25/07 3415 4.710/25/07 3595 6.8504/24/08 3774 4.8110/14/08 3944 6.8610/08/09 4298 4.66 y = 4E-19x6 - 5E-15x 5 + 2E-11x4 -5E-08x3 + 4E-05x2 + 0.0016x + 1.585R² = 0.2216 0.0 5.0 10.0 15.0 20.0 0 1000 2000 3000 4000 5000Page 2 of 8 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)ConcentrationWell Trend and Coefficient MW-4d 10/12/00 0 1162.404/25/01 193 415.310/24/01 372 864.104/18/02 546 531.510/02/02 710 490.911/01/02 739 799.604/23/03 911 631.210/29/03 1097 538.704/07/04 1255 306.110/21/04 1449 381.304/07/05 1615 855.910/12/05 1800 789.904/12/06 1980 144.410/05/06 2153 23004/25/07 2353 1040.910/23/07 2531 82004/23/08 2711 159210/14/08 2882 1236.910/07/09 3235 907 MW-12s 09/19/93 0 19.608/30/94 341 BDL11/30/94 431 27.709/13/96 1074 1.104/10/97 1281 9.110/30/97 0 37 y = -3E-17x6 -2E-14x5 + 1E-09x4 - 4E-06x 3 + 0.0053x2 - 2.7544x + 1077.1R² = 0.5736 0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 0 500 1000 1500 2000 2500 3000 3500 y = -6E-19x6 + 7E-15x5 -3E-11x4 + 7E-08x3 -7E-05x2 + 0.0214x + 2.724R² = 0.8794 30.0 35.0 10/30/97 0 3.704/28/98 178 1.610/08/98 338 7.304/28/99 538 1.610/28/99 718 5.410/12/00 1062 BDL04/25/01 1255 0.710/24/01 1434 5.604/18/02 1608 BDL10/01/02 1771 10.904/23/03 1973 7.410/29/03 2159 11.9504/07/04 2317 10.710/21/04 2511 14.004/07/05 2677 14.710/12/05 2862 12.904/12/06 3042 13.310/05/06 3215 21.504/25/07 3415 20.810/23/07 3593 31.504/24/08 3774 24.610/14/08 3944 19.610/08/09 4298 6.2 0.0 5.0 10.0 15.0 20.0 25.0 30.0 0 1000 2000 3000 4000 5000 Page 3 of 8 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)ConcentrationWell Trend and Coefficient MW-13d 10/31/97 0 1902.004/27/98 177 2419.010/07/98 337 820.204/27/99 537 2246.012/14/99 764 1438.410/11/00 1061 902.104/25/01 1255 560.210/24/01 1434 424.7504/18/02 1608 481.511/01/02 1801 87.104/23/03 1973 99.410/29/03 2159 115.804/07/04 2317 56.310/21/04 2511 59.004/07/05 2677 344.810/12/05 2862 21.604/12/06 3042 21.410/05/06 3215 26.604/25/07 3415 67.610/25/07 3595 3.404/24/08 3774 5.410/15/08 3945 5.210/08/09 4298 12.2 MW 13s 05/28/95 0 2390 0 y = -4E-11x4 + 3E-07x3 - 0.0006x 2 - 0.7347x + 2057R² = 0.8459 -500 0 500 1,000 1,500 2,000 2,500 3,000 0 1000 2000 3000 4000 5000 4500.0MW-13s 05/28/95 0 2390.009/13/96 465 3609.804/10/97 672 3334.610/31/97 0 4160.004/27/98 177 3755.010/07/98 337 3318.004/27/99 537 2781.812/14/99 764 2833.010/11/00 1061 2703.504/25/01 1255 545.804/18/02 1608 380.104/23/03 1973 732.210/29/03 2159 150310/21/04 2511 996.904/07/05 2677 96004/25/07 3415 795.6 MW-13sr 10/25/07 3595 72804/24/08 3774 653.0010/15/08 3945 921.00 MW-13s 10/08/09 4298 789.60 y = -2E-11x4 + 4E-08x3 + 0.0007x2 - 3.043x + 4277.5R² = 0.8729 0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0 3500.0 4000.0 4500.0 0 1000 2000 3000 4000 5000 Page 4 of 8 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)ConcentrationWell Trend and Coefficient MW-14d 10/31/97 0 16810.004/28/98 178 10380.010/08/98 338 8962.004/28/99 538 3873.112/14/99 764 4695.710/11/00 1061 4048.204/25/01 1255 441.210/24/01 1434 1618.5404/18/02 1608 540.711/01/02 1801 236.304/23/03 1973 75610/29/03 2159 41604/07/04 2317 261.510/21/04 2511 482.504/07/05 2677 242.510/12/05 2862 423.104/12/06 3042 76.910/05/06 3215 231.104/25/07 3415 393.110/24/07 3594 0.104/23/08 3773 210.5010/15/08 3945 318.0010/07/09 4297 176.30 MW-3dk 10/08/98 0 56.704/28/99 200 47.1 y = -2E-13x5 + 2E-09x4 -1E-05x3 + 0.0248x2 - 30.192x + 16102R² = 0.9683 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 0 1000 2000 3000 4000 5000 45004/28/99 200 47.110/27/99 379 11.110/12/00 724 244.604/25/01 917 40.710/24/01 1096 243.8604/18/02 1270 220.811/01/02 1463 20404/23/03 1635 258.5510/29/03 1821 238.6504/07/04 1979 210.7410/21/04 2173 94.204/07/05 2339 399.810/12/05 2524 193.404/12/06 2704 116.610/05/06 2877 267.504/25/07 3077 171.710/23/07 3255 200.804/24/08 3436 182.710/14/08 3606 245.810/07/09 3959 205.67 y = -9E-15x5 + 1E-10x4 -4E-07x3 + 0.0005x2 - 0.1036x + 47.488R² = 0.4192 0 50 100 150 200 250 300 350 400 0 1000 2000 3000 4000 5000 Page 5 of 8 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)ConcentrationWell Trend and Coefficient MW-5sk 12/01/94 0 8.109/13/96 642 122.604/10/97 0 16.010/30/97 200 3.504/27/98 377 4.810/08/98 338 0.704/28/99 538 2.510/12/00 1062 1.404/25/01 1255 8.810/24/01 1434 1.2904/18/02 1608 1.610/01/02 1771 1.804/23/03 1973 4.1610/29/03 2159 2.0704/07/04 2317 7.0710/21/04 2511 7.304/07/05 2677 10.910/12/05 2862 10.604/12/06 3042 6.710/05/06 3215 6.804/25/07 3415 8.410/25/07 3595 5.8804/23/08 3773 2.310/14/08 3944 4.0710/07/09 4297 4.5 MW-9dk 12/01/94 0 248.009/13/96 0 358.501/14/97 121 37.304/10/97 207 58 7 y = 2E-13x4 - 3E-09x 3 + 1E-05x2 - 0.0118x + 5.8953R² = 0.3923 0.0 2.0 4.0 6.0 8.0 10.0 12.0 200 1200 2200 3200 4200 5200 45.0 50.0 04/10/97 207 58.710/30/97 407 43.004/27/98 584 27.610/08/98 745 11.604/28/99 945 7.010/27/99 1124 5.410/12/00 1469 3.4504/25/01 1662 8.310/24/01 1841 3.9804/18/02 2015 0.8010/01/02 2178 5.6004/23/03 2380 3.4810/29/03 2566 5.1004/07/04 2724 7.310/21/04 2918 13.404/07/05 3084 21.710/12/05 3269 24.704/12/06 3449 10.510/05/06 3622 BDL04/24/07 3821 6.010/23/07 4000 8.204/23/08 4180 9.710/14/08 4351 10.310/06/09 4703 12.8 y = 6E-17x5 + 1E-12x4 -2E-08x3 + 1E-04x2 - 0.161x + 92.085R² = 0.7462 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 0 1000 2000 3000 4000 5000 Page 6 of 8 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)ConcentrationWell Trend and Coefficient MW-9sk 12/01/94 0 BDL09/13/96 642 BDL01/14/97 763 BDL04/10/97 849 508.810/30/97 0 3.804/27/98 177 1.310/08/98 338 1.104/28/99 538 4.110/27/99 717 1.610/12/00 1062 3.4504/25/01 1255 010/24/01 1434 004/18/02 1608 010/03/02 1773 004/23/03 1973 010/29/03 2159 004/07/04 2317 010/21/04 2511 004/07/05 2677 010/12/05 2862 004/12/06 3042 010/05/06 3215 4.704/24/07 3414 010/23/07 3593 BDL04/23/08 3773 BDL10/13/08 3943 3.910/06/09 4296 12.53 CRW-1 01/14/97 0 BDL04/10/97 86 13 1 y = 3E-16x5 - 3E-12x 4 + 1E-08x3 - 2E-05x 2 + 0.0068x + 2.1914R² = 0.7627 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 0 1000 2000 3000 4000 5000 80.004/10/97 86 13.110/29/97 0 73.004/27/98 178 52.010/07/98 338 10.304/27/99 538 19.112/14/99 765 20.110/23/00 1074 25.0404/25/01 1256 5.710/24/01 1435 4.9504/18/02 1609 2.510/03/02 1774 18.104/23/03 1974 9.1610/29/03 2160 9.3904/07/04 2318 7.610/21/04 2512 50.904/07/05 2678 30.310/12/05 2863 43.104/12/06 3043 17.310/05/06 3216 20.104/25/07 3416 19.710/25/07 3596 BDL04/24/08 3775 BDL10/15/08 3946 20.8510/07/09 4298 1.10 y = 3E-12x4 -3E-08x3 + 0.0001x2 - 0.144x + 69.19R² = 0.6013 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 0 1000 2000 3000 4000 5000 Page 7 of 8 APPENDIX C Coefficient of Determination Trend Results Date Time Influent Sampled (days)ConcentrationWell Trend and Coefficient CRW-5 01/14/97 0 185.604/10/97 86 120.710/29/97 285 9.004/28/98 464 3.910/07/98 623 3.904/27/99 823 6.012/14/99 1050 0.510/11/00 1347 6.304/25/01 1541 18.510/24/01 1720 4.9804/18/02 1894 2.510/03/02 2059 40.204/23/03 2259 8.210/29/03 2445 004/07/04 2603 31.6510/21/04 2797 53.404/07/05 2963 9.910/12/05 3148 44.304/12/06 3328 19.210/05/06 3501 21.304/25/07 3701 22.310/24/07 3880 0.5704/24/08 4060 BDL10/15/08 4231 BDL10/07/09 4583 BDL y = 2E-12x4 -2E-08x3 + 7E-05x2 - 0.0782x + 28.824R² = 0.3891 0.0 10.0 20.0 30.0 40.0 50.0 60.0 600 1600 2600 3600 4600 560010/07/09 4583 BDL 600 1600 2600 3600 4600 5600 Page 8 of 8 AMEC Earth & Environmental, Inc. Tel – (919) 447-2750 2200 Gateway Centre Boulevard, Suite 205 Fax – (919) 447-2751 Morrisville, NC 27560 www.amec.com APPENDIX D BIOCHLOR MODEL INPUT PARAMETERS AND RESULTS