Loading...
HomeMy WebLinkAboutNCD003200383_19950104_Koppers Co. Inc._FRBCERCLA RD_BCD Demonstration-OCRI I I I I I I I I I I I I I I I I I I January 4, 1995 Memorandum TO: File FROM: David J. Lown RE: Koppers BCD Demonstration The attached documents were given to me as handouts during a presentation on the Koppers BCD Demonstration on December 1, 1994. The presentation was made by Terry Lyons ofEPA's SITE program. Other SITE program people in attendance included Tim Oppelt and Bob Olxysey. EPA Region IV people included Beverly Hudson, Curt Fehn, Joe Fransmathes, Bob Jourden, and Beth Antley. On the conference telephone wer.e Matt Lofer, EPA Washington DC, and Richard Lasater, DEM Air Quality Section. -· I I I I I I I I I I I I I I I • 513 569 7620 DEC-05-1994 15=22 FROM US EPA RREL STDD TO 84043471695 P.01 u u EPA DATE: 12/5/94 Fax Transmittal Transmitted Fr011: Risk Reduction Engineering Laboratory Superfund Technology Demonstration Division 26 W. Hartin Luther King Drive HS 218 Cincinnati, Ohio 45268 Phone: (513) 569-7861 Fax: (513) 569-7620 PAGES TRANSMITTED: __ 4 ___ _ (Including cover) Curt Fehn/Beverly. Hudseor. TO: ------------------------ '-LOCATION: __ u_s_E_PA_-_R_e_g1_· o_n _1_v __________ _ FAX NUMBER: 404/347.·1695 _ _;_....:__;_ _______________ _ FROM: Robert A. Olexsey ONE NUMBER: 513/569-7861 COMMENTS: BEYi SEQ coey cc: T. Oppelt T. ons B. Blaney J. Martin E. Bates u "='=====-==11,===============adl D ·1 I I I I I I I I I I I I D D DEC-05-1994 16=22 FROM LIS EPA RREL STDD TO 84043471695 P.02 MEMORANDUM SUBJECT: FROM: TO: DRAFT Su111nary of Results from Base Catalyzed Decomposition Technology SITE Demonstration at Koppers Wood Preserving Facility in Morrisville, NC Terrence M. Lyons START Team Leader Regional Support Section Beverly Hudson Regional Project Manager Region 4 This preliminary data summary report provides information on the performance of the Base Catalyzed Decomposition (BCD) Technology evaluated under the Superfund Innovative Technology Evaluation (SITE) program in September ~3 on the subject site. The BCD process is a chemical and physical process that decomposes and detoxifies chlorinated organic compounds by removing the chlorine atoms from the atomic structure in each such compound. The BCD process was developed by EPA's Risk Reduction Engineering Laboratory (RREL). The demonstration was performed by ETG Environmental, Inc. (ETG). The BCD process as demonstrated by ETG consists of modified soil thermal desorption treatment (some BCD reagent is introduced with the soil prior to thermal desorption) which desorbs the contaminants in the soil into an oil phase with a hot oil vapor recovery system (YRS). The resultant contaminated oil 1s then treated in a BCD reactor. Approximately 15· tons of soil were treated during the technology demonstration. A total of seven soil test runs were conducted during the thermal desorption phase of the demonstration and three contaminated oil test runs were processed in the BCD reactor. The first three soil tests runs were conducted for the purpose of setting process parameters (test runs 1,2,and 3). During the remaining four test runs the retention time was approximately one hour at an operating temperature of soo°F. Two BCD oil reactor runs were successfully completed for the demonstration. Approximately 40 gallons· of VRS scrubber oil were treated during each test run. The BCD reactor was heated to 650°F for six hours, co~ overnight and sampled. MODIFIED THERMAL DESORPTION SOIL RESULTS Analytical results for the thermal desorption phase of the soil treatment for PCP fn untreated (input) and treated (output) soil samples collected for test runs 4, 5, 6, and 7 show PCP contaminant removal efficiencies (CREs) were 99.99% or better for each test run. For all test runs, treated soil met the target cleanup objective of below 95 parts per million (ppm). Analytical results of the output soil samples for all dioxin (PCDD) and Furan (PCDF) compounds from the thermal desorption unit indicate ., I I I I I 1. I I I I I I I I I I I TO 84043471695 P.03 that the concentrations of these compounds were at or near the detection limit (1 ug/kg) for all test runs. However, since input soil concentrations for 2,3,7,8 TCDD and TCDF were also at or near detection limits, it cannot be determined conclusively that the process effectively reduced the concentrations of these compounds. BCD REACTOR OIL RESULTS BCD reactor phase analytical results for PCP in the untreated (input) oil samples ranged from 170,000 to 180,000 ug/kg in the first untreated oil sample and 1,300,000 to 1,700,000 in the second untreated ofl sample. Output treated of~mple results ranged from non-detect to 15,000 ug/kg for a CRE of 96.92% in the first treated oil run, and 3,300 to 3,400 ug/kg for a CRE of 99.96% in.the second treated oil run. BCD reactor phase analytical results for all PCDD/PCDF compounds in the first oil sample test run resulted in a range of CREs of 99.84% to greater than or equal to 99.99%. The second oil sample test run CREs ranged from 99.98 to greater than or equal to 99.99%. The concentration of PCP and PCDO/PCDF materials in the treated oil indicates that the treated oil can be reused and may not have to be subjected to RCRA dioxin disposal regulations. AIR TREATMENT SYSTEM The results from the semi volatile organic compound (SVOC) analysis (specifically PCP) of the off-gas from test runs 1,2,4,5,6, and 7 of the soil reactor resulted in a inlet (prior to activated carbon filtration) concentration range of <27 to 6974 ug/dscm and an outlet (after activated carbon filtration) concentration range of 1.2 to 41.7 ug/dscm. The results from the analysis of the off-gases from the soil reactor and air treatment system for all PCDD and PCDF compounds for test runs 1,2,4,5,6, and 7 show~iations in the effectiveness of the configuration of t~e air treatment system. TCDD analysis resulted in inlet concentration ranges of 14.9 to 264 ng/dscm with outlet concentration ranges of 3.23 to 447 ng/dscm. I Since stack emissions were an issue of consideration. They were subjected to dispersion modeling (specifically the Industrial Source Complex Dispersion Model (ISCH)) to determine maximum ground level impact. The model found that the TCDD was the only emission of concern and its maximum annual concentration would be 4.5 x 10·10 mg/m at the point of maximum impact. For the six days of testing, this figure was well within9 the ~stabl ished North Carolina Toxic Air Pollutant Guidelines of 3.0 x 10· mg/nr'. Further, the point of maximum concentration was found to be 40 meters from the stack, well within the facility boundary. While emissions from the test were found to be within State Guidelines, the emissions were determined to be the result of an inadequate implementation of the air pollution control system, resulting in the activated carbon filtration phase of the system performing poorly. Utilization of a BCD system for actual site remediation will require redesign with utilization of a system which protects the carbon filters from moisture. Recolllllend treatability l I I I I I I I I I I I I I I I I I I L'C:."-' 1:,.1._.,~ .1. :;,:;r<-t .1.0 • .:::::-=, t'"KUl'l U::J t:.r'H l"':::l"':::t:.L ::J I LJLJ TO 84043471695 P.04 ....... testing be conducted with the redesigned system to ensure proper performance. ,. -~-~~~------------- c, KOPPERS BCD DEMONSTR-ATION ' " I!!!!!!!! l!!!!!I !!!!!!!I == == == liiiliiil iilil --- - - - - - - - - .. KOPPERS BCD DEMONSTRATION PRELIMINARY PLANNING • Initial Site Visit -RPM and PRP implore START to find innovative technology other than incineration (3/16/91) • PRP decides to excavate and off-site incinerate contaminated soil • Citizens Group reject ROD and r~quest EPA evaluate other technologies (1 /4/93) · • Region request START reopen prior innovative technology investigations (1 /4/93) • Koppers BCD accepted into SITE program (1 /22) • RREL and Region 4 notify State of N. Carolina of demonstration and desire for close participation and coordination (6/21) o .. 0 " II '\-·------=- •. .-?- I / ~--_ Alo I ! D) I I I • ! D-: / I ! ., I . I I ' PROPERTY Olf'NED BY BE, 'AZER £AST. ff10ffR • IM: TYONNE'O ' BY UVIT S . --. TRUCTUES. INC. IICAU! D"1!ETI 100 0 100 200 300 ·- 0 UNIT 9TAUC PROPERTY TURES LINE KOPPERS C · MORRISVILLE z~PANY, INC. • RTH CAROLINA FIGURE 1-1 FACILITY LA YOU Plr£ TMAP ENVIRONMENTA L MANAG EMENT, INC. I I I I I I I I I I I I I I I I g ' ~. --... , -~--: ··-,. - . ··._;;. '·' ----·-.._- -":"',./ .,,,.':-··--~_:;: Reference: _!_ U S G.S. 7.5 Min~e ;~i Photo Revised 19 · · N rth Carolina, raphic: Map 87 I Cary. o ~I• 1 • • 2000' ·1 I '"=" . • ·; :, . J -. PANY INC. KOPPERS co~RTH CAROLINA MORRISVILLE, N FIGURE 1-1 SITE LOCATION MAP . EMENT INC PR£ ENVIRONMENTAL MANAG KOPPERS BCD DEMONSTRATION NEGOTIATIONS • USI recinds prior verbal access agreement and prevents ADA trailers from entering site (7/28) • Agreement secured with help from region 4 GC. w vQ,~ ABA equipment enters site (8/3) ETG mobilizes to site (8/9) • Beazer recinds their agreement and requires EPA indemnification for waste generated, and community and visitor liability (8/5) • Agreement reached with help of HQ OGC No indemnification, visitors will be kept off of Beazer property USI allows visitors bused to their property (8/20) • N. Carolina DEHNR expresses reservation about level of air sampling (8/13) · • DEHNR verbally changes some of the initial requirements and adds additional requirements, which we scramble to meet (8/26) == I I 0 0 .. • "•""'""'=;::: w ..... • I ·•-~ I ., 6-,\ 1 / I 'L.JI • I I :D·: -/ I I . ·I _, I . I • . • -. I I ' ~-= .1&!1111 • ~ -rr-•r---- . ~ ---,,. 111111, ·---- ........ IDOOtaolDDNO CJ KOPPERS COMPANY. INC. MORRISVILLE, NORTH CAROLINA FIGURE 1-1 FACILITY LAYOUT MAP I 0 ~ENIIIRONMENTAL MANAGEMENT, INC. IS) .... IS) ~ ;ii n ~ H 'U N ' N - - - -l!!!!!!!I I!!!!! l!!!m == ;;;;a liiiii iilii - - - - - - - - SOIL PRETREATMENT Sodum Bicarbonate Soil ----1 eon111rnna1b--l I Scnten M bear I Feed Conveyor C' 0 V V MEOlUM TEMPERATURE THERMAL DESORPTION (MTTO) Nonoonlact Coo~Wate THERMAL DESORPTION Dull Supprnalon Water Spray On-site beckflD -------r--- or Off-alte OlapoAI To Dildlarge Figure 1: The BCD Process and SAREX9 THERM-O-DETox• System as demonstrated VAPOR RECOVERY Condensate Oedllorinallon Ra,.,_rn Donor 01 Ya BCD ReftUII L10.IIO L.-" COnderaer TANK REACTOR ,......_.__.., (LTR) T1Mlad OIMC LIQUID DECOMPOSITION @prtnted on Recycled Paper -I!!!!!!!!!! l!!!!!!!!!I I!!!!! ---liiiilii ----- - - - - - - - {{ . ''\ i ,; .. ;.,.,, . l!!!!5 == == mil liiiil -lliil --- - - - - - - - - - Runs· 1 2 3 4 5 6 BCD Test Parameters · Solid Reactor Temp °F Reagent 800 Bicarb (5%) I 800 Non-Bicarb 650 Bicarb (5%) 650 Non-Bicarb · 800 ? • 800 ? • Retention 30 min 30 min 30 min ·30 min 30 min 30 min ,c - - - -11!!1!!1 l!!l!!!I !!!!! l!!!!'m == --iliil -- - - - - ---✓ BCD Test Parameters Liquid Reactor Caustic Powder Reagent · Organic Catalyst Reagent (powder) High Boil Point Oil Waste Oil LTR Residence Time LTR Temperature 2 grams/gram PCP 0.1 % of waste oil volume 10-15% of waste oil volume Sunpar LWll0 4 to 6 hours 600 to 650 °F ,◄ - - - -l!!!!!!!I I!!!!!! 1!!!!!11 == ;;:;; liiiiiii -- - - - - - -_, , KOPPERS BCD DEMONSTRATION EXECUTION • Excavation, homogenization, sampling and analysis, 10% bicarb addition, drumming and weighing of contaminated soils (8/27) • First and second thermal desorption runs with 2 cu yds per run · with bicarbonated soils at 800 F (8/28 and 8/29) • Third thermal desorption run at 650 F cancelled when vendor -increases temperature to 800 F during run. Decide to increase retention time and maintain 800 F throughout demonstration (8/30) • Fourth thermal desorption run initiated. After that 70 of 11 0 gal contaminated scrubber oil pumped into BCD reactor for first BCD run. Reactor heated to 650 F for three hours (8/31) • Seventh thermal desorption run initiated with non-bicarb soil Second BCD reactor run begins with 70 gal scrubber oil (9/3) I I I I I I I I I I I n 0 0 u I CONTAMrNATEO SOIL SCREEN CD SCREENED CONTAMINATED SOIL •= 8CO SOU0S RCM:TOR l4EOIIJM T[MP. Tl-lERMAL DESORPTION ~ WATER SPRAY ,:::, " 0 COOUHC SCREW COIM'!1lA 0 ON-SITI: 8'CKF1LL OR ----1 Off -Sl'i'E DISPOSAL '-r.------,..---, LEGEND OECONTAWlNATtD SOIL COHTAINER OR ST0CICP1lL 6 -Sample Location Number TREAm> W•TER TO OISOW!CE @ CM80H IHf SUPPU)j[NT run. ..., DISPOSM. TO ATIIOSPHERE ® OECHl.ORl""TION ..:,co,rs ® ..,,.,.,, DILi'«: KOPPERS COMPANY, INC. MORRISVILLE, NORTH CAROLINA FIGURE 4-1 BCD PROCESS FLOW DIAGRAM SAMPLE LOCATIONS /¥IC ENVIRONMENTAL MANAGEME~. INC KOPPERS BCD DEMONSTRATION DECONTAMINATION • During decontamination and demobilization of equipment 3 inches of rainfall fill 70 •x 401 pad with PCP and dioxin contaminated decon water overnight (9/8) • Notified DEHNR of initiative to carbon filter contaminated water and release on site. State requires meeting 1.0 ppq level for dioxins (9/20) • Meet State's requirement and discharge 6,000 gallons of treated water to fire pond saving approximately $250,000 (10/1) KOPPERS BCD DEMONSTRATION OIL SAMPLE CLEANUP • Lab audits of Versar labs identifies potential matrix interference in some of the initial PCP in oil samples. Request investigation and recommendation for most appropriate clean-up method (9/17/93) • Received draft data for dioxins and semi-volatiles. Detection limits for PCP 1,200 ppm (10/24) • Results from acid-base/GPC clean-up bring detection limit down to 0.5 ppm for PCP in oil samples. Show BCD provide 99.99% reduction in oil (11 /17 /94) KOPPERS BCD DEMONSTRATION DIOXIN • Receive letter from Fred Striley of Times Beach Citizen's Group requesting information on BCD demonstration and prepare response (4/14) • T. LyQns and C. Brunner brief Region 7 Administrator on BCD demo (5/10) • Receive Hi Vol sampler results from BCD demo which show trace of dioxin in one down wind sampler (5/12) • Initiate investigation of Air Modeling of dioxin emissions from air treatment system (6/20) liiii iilii --- - -.. - - - - - - - - - - - SOIL PRETREATMENT ' ;WLJ ~ ~ · VAPOR RECOVERY f Cc1"~' r································································ ....................... To ....... , . 1. sci~ber s':i~'::er s':i~'::er ~~~; Atmosphere ,....:.V..;;;a,:.po.:cr...cD:ci.::.sc:c.hc:a__,r e.::e;,:;s _ _,__➔ r••••• .. ••••••••••• •••••u• .. ••••••••••••••••••••••••• ~::,., Feed cL:Y:~~TI _____ .....__, ... ·•···• ••···. •.... • .... MEDIUM TEMPERATURE THERMAL DESORPTION (MTTD) Dust Suppression Water Spray oo mg crew ........................................................ conveyor ............. . THERMAL DESORPTION On-site backfill +--------1 or Off-site Disposal ~-••• ••••n••n••••• ••••• ••••••••••••••• ••••••••••n•••••••••••••••••••••• ••••••••••••• Treated Water To Discharge Carbon Unit Condensate Dechlorination Rea ents Donor Oil BCD LIQUID Condenser TANK · ! REACTOR •L' (LTR) Treated To Oil/HG Disposal n••••••••••••• LIQUID DECOMPOSITION Figure 1: The BCD Process and SAREX® THERM-0-DETOX® System as demonstrated ------------------- KOPP.ERS BCD DEMONSTRATION DIOXIN (CONT) • . Results of SCREEN2 Air Model show a predicted concentration of 60% of N. Carolinais DEHNR Toxic Air Pollutant Guidelines for only 2, 3, 7, 8, TCDD • Notify N Carolina DEHNR. DEHNR concurs with results of SCREEN2 model (10/13) • RREL proceeds with the full scale Industrial Source Complex Model and request if DEHR has any additional modeling · requirements. They have none and await results (10/19) • Results of ISCMST shows a 15% level of State's annual emmission rate (11/18) --■---■------· --- - -~-- - - - --,----6 C 10 w I .... ~ A .... "' "" w "" .... .... .... A 'E' ~ A ~ ,, "" ':;j ' .r-. .. --)· i, -t!-c:=:i c::.J ; • ! . @ I.Ii-'.) So."'tl(. Lo C«.i,'o v· f 1-__ •a. I ·.:~ 0 I i'i"""--1\ 1 / . . . .A. -,t.J, . I ' : o·: / 1 I . ·I _,. I p I I • ' . ,,. L,, I j --I c:::J "~ .~ ·-0-Q, • n :o .. " "· ' ~ ''· 0. • ~ ' . ~ ,,.,.,,,, aMD ., .-.ua: as,; .RC. ~ ;iuc:u,CIMIJn..,~w, w nc. ...... ...., &GO a --.,a 21G MO I 0 \ a~ i~ /~~ 'IT STIUCT\IIES PRCFERIT LOE KOPPERS COMPANY. INC. MORRISVILLE. NORTH CAROLINA RGURE 1-1 FACILITY LAYOUT MAP IIIIC BMRONMENTAL MANAGEMENT, INC. -l < N w 'E. .... N ~ ~ SI H ~ :r, ,, ._, ~ I I I I I I I I I I I I I I I I I I I TOTAL MASS OF PCDDs AND PCDFs EMITTED TO THE ATMOSPHERE DURING OPERATION OF THE MTTD Run Number Average Sum or Total Total Amount and Sample Volumetric Duration or Total Gas PCDD and or PCDD and Location Flow Rate Run (min) Flow PCDF PCDF Emitted (dscmm) (dscm) Concentrations to Atmosphere (ng/dscm) (mg) Run I, Outlet 2.06 720 1,483 31,214 46.3 Run 2, Outlet 1.86 690 1,283 65,602 84.2 Assume 1.66 -Assume 38,583 - Run 3, Outlet Average of 660 1,096 Average or 42.3 Other Runs Other Runs (Outlet) (Outlet) Run 4, Outlet 1.36 510 693.6 737.7 0.51 Run 5, Outlet 1.88 570 1,071.6 96,112 103.0 Run 6, Outlet 1.3 I 570 746.7 18,572.2 13.9 Run 7, Outlet 1.47 540 793.8 19,260.1 15.3 TOTAL MA.SS OF PCDDs AND PCDFs EMITTED TO ATMOSPHERE DURING OPERATION OF MTTD = 305.51mg = 0.3g BCD/047-1127/TOTALDXN.TBL liil - - - - nondetectable quantities of 2,3,7,8-TCDD in 8,500 kg Soil (dry weight) --------------BCD-KOPPERS DEMONSTRATION 2,3,7,8-TCDD MASS BALANCE -<: ,.":, '\ '?f S'-' 'o· 0'if' O' 'l-· /)~ 0.04 g of 2,3,7,8-TCDD in 7,900 kg Soil (dry weight) 2,3,7,8-TCDD in contaminated soil -2.3.7.8-TCDD in treated soil = nondetectable quantity = 0.04 g -0.04g AL.---~O~il----.,~---,W.,,-at_e_r -----~w"'"a""te-r------,\ L Scwbber Scrubbers Filter Carbon Filler ) 0.001 g 2.J. 7.8-TCOO To Atmosphere nondetectable amounts of 2,3,7,8-TCDD in LTR ~-<:_ condensate emissions \/ ~- nondetectable amounts 11 / ot 2,3,7.8-TCDD in L_v_s:_· - treated oil -------- LTR 0.21 g 2,3,7,8- TCDD destro ed ;;;l ,7.8- 00 ~ :u· u 0.007 g 2.3,7.8- TCOO Water Scrubbers (installed prior to lest run 4) ------------------·--···------·---·-- 2,3,7,8-TCDD in oil scrubber + 2,3,7,8-TCDD in water scrubbers + 2,3,7,8-TCDD in water filler + 2,3,7,8-TCDD in residual off-gas stream = 0.21 g 0.007 g = 0.0006g = 0.0009 g = 0.2185g iiiii -liill ----- - - - - - - - - - - - 39,000 g PCP in 8,500 kg Soil (dry weight) nondetectable amounts of BCD-KOPPERS DEMONSTRATION PENTACHLOROPHENOL MASS BALANCE 60 g PCP in 7,900 kg Soil (dry weight) PCP in contaminated soil -PCP in treated soil 39,000 g 60g 38,940g A Carbon Filter LL----s-c,~~~~b-e-,-----Sc~~~ 1 b-1b-~-,s------,w~Fi-ll~-~r-----l';I :--,-5 0.1 ~To Atmosphere ~L J~L J~L Water Scrubbers PCP in oil scrubber PCP in L TR air and '\::'<:_ condensate emissions \J ~---- :rr LTR u Carbcn Fill:)_) -~ (installed prior lo test run 4/ + PCP in water scrubbers + PCP in water filter + PCP in residual off-gas stream 890g 600g 5g 15_g 1 g PCP remains /I/_ __ in treated oil / __ v <::," 889g PCP destroyed '----J ~ To Wastewater Treatment 1,510g I-.... __ ........... ___ ,, ___________ .... ----1 PCP boils at 590'f with decomposition. --•. -------------------· ---------------., -··· ------ - - - -- - -- - - - - --½r-- c:::::J c:::J c=:::J Po/Of Grid I a. I I /JJ I -_ _ D 1 :F--,1 l I 1-.J, I I 0 ·,; ~,L!@ELl-=· •'--='" ' o .. .. LE&e>«> ~ /WOPIERTY O.lil'ED 8Y «AJ'DI £.AST. INC. ES3 PROPERTr Oltlt£D 61' UIIT Si"RLC~~ INC. 0 Source Stock (0.0) Discrete Drawing Is reduced Not to scale Receptor Network Grid - - - - - oV '\_,,,/ ~ ' , ~ 1-q,, .., -. ' '~ ·,' EMETERY ~--. . . ·, . ' ' ' ·. ' '· ·, >-. 0 IMtT 5 HIJC~5 PROPERTY LIJ-E KOPPERS COMPANY. INC. MORRISVILLE, NORTH CAROLINA FIGURE 1-1 FACILITY LAYOUT MAP fl) Maximum Period Receptor (-40.7) Nole: Grid ~ Posllfve (+) Y In North D/rG<:Non RlJC ENVIRONMENTAL MANAGEMENT. INC. I I I I I I I I I I I I I I I I I I I TABLE 2 ANALYTICAL RESULTS FOR PENTACHLOROPBENOL lN SOIL SAMPLES (/le/ke) Test Run I Input Output Analyte TRI-CNI-TRI-CNID-TRI-CNI-TR1-CN2-TR!- SU SL2 SL3 SL3 CN3-SL3 Pentachlorophcnol 1,700,000' 6,800,000 8,600' 33,000 7,800' (2,000,000) (16,000) (10,000) Test Run 2 Input Output Aiialytc TR2-CNI-SL2 TR2-CN1-SL3 TR2-CN2-SL3 TR2-CN3-SL3 Pentachlorophenol 8,000,000' 11,000 4,400' 3,200' {8,100,000) (5,300) (11,000) Test Run 4 Input Output Analyte BAT1-CNI-SL2 TR4-CN I -SL3 TR4-CN2-SL3 TR4-CN3-SL3 Pcntachlorophenol 8,100,000 1,400' 1,300' 470' {5,200) (5,100) (3,400) Test Run 5 Input Output Analyte BAT2-CN1-SU TR5-CN1-SL3 TR5-CN2-SL3 TR5-CN3-SL3 Pentachlorophenol 5,200,000' 280' 330' 170' {8,000,000) (1,700) (6,000) (3,400) MAR-15-1994 15:32 01114045774070 P.009 I I I I I I I I I I I I I I I I I I I TABLE2 (continued) ANALYTICAL RESULTS FOR PENTACHLOROPHENOL IN SOIL SAMPLES (p'/kg) Analyte . Pentachlorophenol Analyte Pentachlorophenol Notes: TR• Test run CN • Composite number SL -Sample location BAT -Batch number Input BAT3-CN!-SL2 1,600,000' (2,600,000) Input BAT4-CN1-SL2 1,500,000' (3,200,000) Test Run 6 TR6-CNI-SL3 ISO' (3,600) Test Run 7 TR7-CN1-SL3 ND (3,600) ND • Not detected at the detection limit shown in parentheses Output TR6-CN2-SL3 ND (3,500) Output TR7-CN2-SL3 ND (3,500) • -Detected at a concenttation below the detection limit shown In parentheses MAR-15-1994 15:33 01114045774070 TR6-CN3-SL3 130' (1,600) TR7-CN3-SL3 ND (720) P.010 TABLE 1 ANALYTICAL RESULTS l'OR PCDD/F IN SOIL SAMPLES (pg/kg) TEST RUN I ~ JNPUT OlffPlIT VI :sl Allalytc TR1-CN I-SU TRl-CNlD-SU TRl-CN 1-Sl.3 TRI-CN2-SL3DUP · TRI-CN2-SL3 2,3,7,8-TCDD 0.38 u I.S u 7.4 20.6 8.7 Total TCDD 6.S J 7.0 u 87.3 298 99.3 2,3,7,8-TCDf 2.0 u 1.4 u 0.74 u 0.66 u 1.0 Total TCDf 31.4 J 25.9 J 2.6 u 4.7 J 2.3 TOIII PcCDD 2.3 u 2.S u 141 439 169 Total PeCDF 134 J 123 J 4.3 u 12.2 3.7 Total HxCDD 96.8 106 22S 658 265 TotalHxCDF 648 J 606 s.s J 27.8 4.6 Total HpCDD 2,190 J 1,850 J 21S 790 J 252 Total HpCDP 968 J 944 J 11.2 39.7 7.2 OCDD 11,60 J 13.100 J 646 J 1,980 J 359 OCDP 2.590 J 2,440 J 9.S J 25.2 4.1 ,, J u u u J J J TR:l-CN3-SL3 8.7 J 86.1 1.2 u 11.8 u 138 2.8 u 221 2.2 J 178 1.9 J 211 3.1 u r, -, r :i,: -< L ,, OJ ' ,. c., ------------------- TABLE 1 (contiavd) · ANALYTICAL RF.sUL'IS FOR PCDDl.f IN SOIL SAMPLES (Jig/kg) TESTRUN2 INPUT OlITPUT Amdyte TR2-CN I-SU TR2-CNI-SU TR2-CN I-SL3DUP TR2-CN2-SL3 2,3,7,8-TCDD 1.6 u 2.4 J 8.0 J 3.9 J Total TCDD 3.2 u U,7 383 466 J 2,3,7,8-TCDF I.S u 2.6 u 1.2 u 1.6 u Total TCDF 25.3 I 26.4 17.2 79.6 Tou!PeCDD 4.S u 419 661 637 Totall'tCDF 138 J 13_7 u 14-7 36.3 Total HxCDD 107 780 J 1,300 J 1,090 J Tot:ilHxCDF 561 J 17.7 24.9 49.4 Toal HpCDD 1,750 J 9SI J 1,270 J 1,110 I ToUIHpCDF 833 J 41.I 47.3 66.6 OCDD 11,200 J 1,250 J 1,660 J 1,530 J OCDF 2,190 I 22.0 . 25.6 385 .., TR2-CN3-SL3 2.4 J 307 1.4 u 42 409 20_9 r,79 27.1 632 37.0 759 17.7 '"' .. • - - - - - - - - - - - - - - - - ---------=.-._.a Amlytc 2,3,7,&-TCDO TowTCDD 2,3,7,&-TCDF Total TCDF TotalPtCDD Total PcCDI' Tm!HxCDD Tola! HxCDF Total HpCDD Total Hp(DF OCDD OCDF TABLE l (ronthmed) ANALYIICAL RF.SULTS J'OR PCDD/F IN SOIL SAMPLES (pg/kg) TEST RUN 3 INPUT OUTPUT -CANCEUJID TR3-0ll-Sl2 1.0 u 3.9 u 0.9 u 29.2 J 7.1 u 113 J 102 550 J l,730 J 1,040 J 8,460 J 1,510 • J UJ ,,_ ------------------- ~ I .... "' I .... ~ .... \J1 w .... .,, TABLE 1 (coolinued) ANALYfICAL RESULTS FOR PCDD/F IN SOIL SAMPLES (pg/kg) TEST RUN 4 INPUT OUTPUT t Analytc BATI-CNL-Sl.2 TR4-CNJ-SL3 TR4-CN2-SL3 TR4-CN3-Sl.3 2,3,7 ,8-TCDD 2.1 u 0.74 u 1.4 u 1.6 u To1alTCDD 3.4 u 5.1 u 7.6 u 4.9 u 2,3,7,8-TCDF 1.2 u 1.4 u 1.0 u 0.96 U Total TCDF 22.0 J 2.1 u I.I u I.I u Tow PcCDD 7.2 u S.4 u 8.1 u 4.1 u Tow PeCDF 122 J 3.1 u 1.2 u 1.5 u Total HxCDD 117 15.4 u 4.2 u 11.9 u Total HxCDF (,IJ7 J 2.1 u 1.8 u 2.4 u Total HpCDD 2,000 J 23.1 u 12.2 u 13.9 u Total HpCDF 1,070 J 3.4 u 1.5 u 1.4 u OCDD 1s;ooo J 42.4 u 19.0 u 22.7 u OCDP 3,390 J 2.5 u 1.9 u 1.0 t; 'f!. :B r, D -< r :D :z -< :r, ------------------- .,, TABLE l (continued) ANALYTICAL RESULTS FOR PCDD/F IN SOIL SAMPL~ (pg/kg) TEST RUN6 .. INPUT OlITPITT Analyle BA T3-CNJ-SL2 BAT3-CNJD-SL2 TR6-CN 1-Sl.3 TR6--CN2-SL3 TR6-CN3-SL3 2,3,7,8-TCDD 0.37 u 0.60 u 1.7 u 3.1 u 0.92 u foul TCDD 6.6 3.4 u 1.9 u 1.7 u 2.2 u 2,3,7,8-TCDF 1.7 u 1.2 u 1.4 u 3,0 u 1.4 u Tot.al TCDP S5.I J 24.3 J 1.2 u 0.70 U 1.4 u Tot.al PeCDD 7.7 u 6.6 u 4.0 u 7.4 u 5.0 u Total PeCDP 125 J 155 J 1.5 u 2.i u 3.1 u Total HxCDD 135 141 6,7 u 7.2 u 7.2 u Total HxCDF 701 I 826 J I .4 u 1.3 u 2.3 u Totlll HpCDD 1,930 J 2,660 J 8,1 u 8.8 u 9.0 u Total HpCDF 1,260 J 1,540 J 1.9 u 3.7 u 1.3 u OCDD 9050 J 11,200 J 11.7 u 12.8 u 11.4 u OCDF 1,840 1 2.SSO 1 I.I u 1.9 u 2.3 u 0 w "1) ;o " ~ H T• -, r ~ --< 1, ~ ~------------------ ~ VI kl .,, i TABLE 1 (cootinned) ANALYITCAL RESULTS FOR PCDD/F IN SOIL SAMPLES (pg/kg) TEST RUN 7 INPUT OUTPUT Analyle BAT4-CNI-SL2 TR7-CNI-SL3 TR7-CN2-SL3 2,3,7 .8-TCDD 0.94 u 1.2 u Total TCDD 9.7 J 4,3 u . 2,3,7.8-TCDF 1.0 u 2.4 u Total TCDF 61.1 J 1.4 u Total PtCDD 21.1 3.2 u Total PtCDF 134 J 1.8 u Total HxCDD 278 9,0 u Total HxCDF 695 J 2.S u Tow HpCDD 3.690 J 9.7 u Total HpCDF 1,150 J 6,1 u OCDD 10,200 J IS.S u OCDF' 2,670 J 0,62 U Not<s: U -Not deleted al the level reported. J • Estimated ooly. Below ins!rummt calibmioo range. TCDD • Tetrachlorinalal dibeczo..JHlioxill TCDF -Tctrachlorinatcd dibenzofuran . HpCDD -Hcpiacl>lorinaled dibelrzo-p-dioxin HpCDF . Hcpiacl>lorinalcd dibcnrofwan HxCDD -HeuchlorillOlcd dibcow-p-dioxin HxCDP • Hcuchlorinalal dibcnmluran PeCDD -Pcntacblorilla!ed dibenz.o.-p-<lioxin PeCDF -Pent..:hlorinaled dibenmfuran OCDD -Octacltlorinaled dibcnzo-p-dioxill OCDF -Oct;,chlorinated dibcazofurm 1.4 u 3.0 J 1.9 u 1.9 u 8.1 u 3.0 u 16.2 1.9 u 18.9 u 2.7 u 22.2 u 1.6 u TR7-CN3-SL3 0.90 u 6.5 u 3.4 u 3.4 u 8.2 u 4.4 u 20.1 2.9 u 21.6 u 3.S u 28.S u 4.3 u -(J, 0 w llil - -- -- -- - -- --- - ---- Table 2-1 Summary or Analysis Results for Semivolatile Organic Compounds in Soil Reactor Off-Gas (µg/dscm) ,w.. ::!~:)} i~.{ ;F~!-:i~ili~~ ;~,: ~::• ; Ms' ;(:~:,\ :c:~'':a~ 11i~ ~~\i,~~i~ 1~,: 1a, 1fi::1 11:~'.Jjc 1,2-Dldllorob<nzJene 173 <0.2 7A7 <0.2 112 <0.2 203 <0.2 253 <0.2 300 <0.2 <0.2 <0.2 <0.2 1,2,4-Tricltlot _,m:ne T7.2 <0.2 165 <0.2 40.7 <0.2 46.6 <0.2 64 <0.2 109 c0.2 <0.2 <0.2 <0.2 1,3-Dlch-245 <0.2 542 <0.2 118 <0.2 225 <0.2 m <0.2 416 <0.2 <0.2 <0.2 <0.2 1,4-Dlchlu,vbe, ' 44 <0.2 12.6 <0.2 21.8 <0.2 47.4 <0.2 66.7 <0.2 85.1 <0.2 <0.2 <0.2 <0.2 2-Metbylnapluluilene 197 <0.1 143 <o.t 166 <0.1 240 <o.t 231 <0.1 611 <0.1 <0.1 <0.1 <Cl.I . j 2-Metbylphenol 2:5.7 <0.1 30.2 <o.ot <9.2 <0.1 <4.3 <0.1 <8.6 <0.1 <1.$ <0.1 <0.1 <0.1 <0.1 ..J 2,4-Dlchlonipllenol <3.7 <0.2 233 <0.2 <17 <0.2 <18 <0.2 <16 <0.2 <14 <0.2 <0.2 <0.2 <0.2 2,4,5-Trtcldocvp,'>enol <3.3 <0.2 59.9 <0.2 cu <0.2 <7.1 <0.2 <U <0.2 <13 <0.1 <0.2 <0.2 <0.2 2,4,6-Tnchloiopha,ol <3.3 <0.2 95.8 <0.2 <U <0.2 <7 <0.2 <U <0.2 <13 <o.t <0.2 <0.2 <0.2 4-Metbylphenol 32.91' <0.2 nSF <0.1 <14 <0.2 <6.4. <0.1 <13 <0.1 <12 <0.1 <0.1 <0.1 <0.1 Aanaplilhene <1.8 <0.1 9.5 <0.1 <8.1 <0.1 3.8 <0.1 <7.6 <0.1 18.8 <0.1 <0.1 <0.1 <0.1 Aallaplilliylene 98.3 <0.1 45.8 <0.1 <12 <0.1 8.3 <0.1 <12 <o.t 20.5 <0.1 <0.1 <0.1 <0.1 Anlhncene 4.0 <0.1 4.5 <0.1 <II <0.1 <5.1 <0.1 <II <0.1 203 <0.1 <0.1 c0.1 <0.1 Benzolcodd 19.U <13 <231 2J <114' 0.4.J <540 0.5J <1100 0.6 <940 1.3 <12 <12 <12 llenzo(b)lluonnthenc <5.9 0.5P c5.A <0.3 <%7 <2.3 <13 1.2F <26 I.A <22 <0.3 <0.3 <0.3 <0.3 Bcnzo(k)ffuon,nthcne <6.5 O.!SF <6 <0.3 <30 <0.3 <14 1.2F <28 1.4 <:15 <0.3 <0.3 <0.3 <o.3 llau:ylolcohol 18.5 <0.2 ·<3.7 <0.2 <18 <0.2 <8.5 <0.2 <17 <0.2 <15 <0.2 <0.2 <0.2 <0.2 11cm(. )uttltrlcene <U 1.0 2J <0.1 <13 <0.1 <6.2 0.9 <13 0.8 <12 1.9 <0.1 <0.1 <0.1 Bcm(•~ <3.4 o.u <3.1 <0.2 <16 <0.2 <7.2 0.2 <U 0.1 <13 co.t <0.2 <0.2 <0.2 bb(2-E!tbylhclyt)plitluilate 6.D 4.6 24.6 <0.2 <18 51.41! 7.5J 22.8 <17 63.6 <14 23.7 1.02 1-03 <0.2 - -- - --- - Butylbcmylplnhalate ,.a 3.3 25.2 <0.2 <19 Cbryome .<l.5 1.1 40.2 <0.2 <16 Dibenzofluu 2'A <o.2 38.9 <0.2 <16 Oielbytplllhallte Z18 :u <11 <0.2 <16 <U <0.1 1.61 <o.t <10 D1-a-t.itylpllthllate 4.1 0A 117 <0.1 <10 D1-t1.«tylpllthalate <2.3 <0.1 <2.l <0.l <11 Auonn1hcne 7.8 0.7 51.0 <0.1 <U Fl..,...,,., 11.3 <0.01 34.2 <0.1 <12 <2 <0.1 4U <0.1 <9.3 IIOphoiOIMt 17A <0.2 _cS.7 co.2 cl9 Naplllhalene 967 <0.2 7"8 o.u 629 495 u 6974 41.7 c27 PhcnanlhlalC 18.4 <0.2 36.5 <O.l <U Phenol 31M <o.3 521 <0.3 229 5.9 0.7 9.3 <0.1 <13 Sa. • Rwwalu C"') 2-Fluorobiphenyl 9' 91 94 NC 2-Fluoropbenol 96 100 92 NC - -- Table 2-1 (Continued) -- -- -- - :ti~.:,;.t·•··· :~t1l1i1 !11~~41i: ~~1\~~lil~'.~il~~i; >~· ••··•••l;C~·•·· ::::~~ :~:WI: ill1~i rl!'.~ i.~mi!f,f: 1.l::L 71':[";~ 0.7 &l 3.7 <18 2.0 <16 <0.2 <o.2 <0.2 <0.2 <0.2 <7.4 1.9 <15 u <13 u <0.2 <0.2 <o.2 <0.2 7.8 <o.2 12.61 <0.2 30.7 <0.1 <o.2 <o.2 <0.2 0.3 <7.2 o.u <15 0.2 <lZ <0.1 OJl17 0.212 <0.2 <0.1 <4.4 <0.1 <9.3 <0.1 cl.I <0.1 <0.1 co.t c0.1 0.3 <4.5 0.2 <9 0.3 <7.B <0.1 <0.1 <0.1 c0.1 <0.1 <4.9 0.1 <9.8 <0.1 <8.5 <O.l <0.1 <0.1 c0.1 <O.l 6.JJ 16.1 9.5 0.3 :z.u u <O.l <O.l <o.t <0.1 <5.3 <0.1 <11 <0.1 15.0 CO.I <o.t <0.1 <0.1 <o.l <4.4 <0.1 <8.7 <0.1 <7.6 <0.1 <0.1 <0.1 · C0.1 C0.2 cl.6 c0.2 c·1a c0.1 cu c0.1 co.2 co.2 co.2 o.u 730 <0.1 843 <0.1 282IS <O.l <O.l <0.1 <0.1 26.9 36.6 16.1 160 8.9 32115 24 176 176 c0.3 <0.1 <6.5 <0.1 9.4J <0.1 "·' o.t <0.1 <0.1 <0.1 <0.3 224 <0.3 306 <0.3 493 <0.3 <0.3 <0.3 <o.3 <0.1 5.9 0.4 lOJ 0.6 29.2 5.7 <0.1 <0.1 <0.1 92 99 94 NC 93 112 93. 93 91 9' 90 110 94 NC 88 124 90 93 88 94 - ----- - Niuc-t rz ,e-45 101 86 1C17 87 NC ' Pbenol-45 117 95 113 94 NC Torphen,t-<114 98 95 103 101 NC 2,4,6-Trlbiomophc,IOI " 81 76 82 NC -- Table 2-1 (Continued) 86 272 O,F 90 97 97 95 81 " --- 88 NC 83 94 NC 90 94 NC 90 79 NC 77 AU < ..i,_ are ........ 1on UmJta r ... ana1y1e1 ...,. drfe:1ed Raatta r ... om1y1a dr1eded below drfec11on um11a are reponec1 anc1 J-lJaaecl. ()uallllaa: I! • Aaalyle a>D<CDtnltlon callbntlon .._ P • lnleffcrmoc or codudon u,spec:1ed J • Rault ii lea tllan ... ted Detecllon lJmlL NC -Not calculable. --- - - - 264 82 88. 87 83 Q,F 1()2 89 96 93 93 104 87 100 98 96 di 81 79 76 ,. ------------------- Table 2-2 Summary of Analysis Results for Particulate and Anions in Soll Reactor Off-Gas Allolylc -OaOd HO• (mr,'docm) 0.197 0.113 6.l1Z7 0.1'3 0.232 0.067 0.169 0.052 0.-Cl.230 5.71 0.47 0.160 0.11 02• (mr,'docm) 0.094 0.089 0.184 0.406 O.G90 0.037 0.105 0.039 0.109 O.o73 0.361 OJ7214 0.016 0.005 HI' (m.-,m) PIA <0.01 PIA <0.01 PIA <0.01 PIA <0.01 PIA <0.01 PIA <0.01 PIA <0.01 Pank:ula1e (p1docf) 0.037 0.021 0-040 OJ721 0.001 0.0004 0.005 0.005 0.021 O.ot2 0.049 O.G28 PIA PIA Pank:ulale (1b,1,r) OJ724 0.013 OJ722 0.012 0.001 0.0002 0.000 0.003 0.009 0.005 0.023 0.013 PIA PIA • • Reported ·• dlJoride. N u, PIA -Pio< ON!yz,od. -liii -- --- - -- -- - - --- - - Table 2-3 Summary of Analysis Results for Volatile Organic Compounds in Soil Reactor OfT-Gas (ppbv) 1, 1, 1-Tridl loroethane <8 <0.7 <55 <3.1 <900 <5000 <280 <280 <60 <290 <190 <900 NA <0.5 <0.9 1,2-[);cldu,_,.w"' 18 <0.7 <55 <3.1 <900 <5000 <280 <280 <60 <290 <190 <900 NA <0.5 <0.9 1,l,4-Trichlorobcnzcnc 18 <0.7 <55 <3.1 <900 <5000 <280 <280 <60 410 <190 <900 NA <0.5 <0.9 1 ,l,4-'liimethyl-., 64 <0.7 58 <3.1 <900 <5000 3000 3000 <60 <290 <190 <900 NA <0.5 <0.9 1,3-Butad lcne 7<40 <0.7 2000 <3.1 62000 <5000 24000 2,4000 10000 10000 11000 ~ NA <0.5 <0.9 28 <0.7 <55 <3.1 <900 <5000 <280 <280 <60 <290 <190 <900 NA <0.5 <0.9 N 1,3,5-'liimethyl-., 22 <0.7 <55 <3.1 <900 <5000 1300 1300 <60 <290 <190 <900 NA <0.5 <0.9 °' Acetonltrile <80 <7 <550 <31 <9000 <50000 36000 36000 2000 9000 <1900 <9000 NA <5 <9 1200 <0.7 1600 <3.1 16000 <5000 <280 <280 <60 7-400 <190 38000 NA <0.5 <0.9 Bromomcthane 160 II 1000 8.9 <900 <5000 1-400 1200 <60 <290 <190 <900 NA <0.5 <0.9 63 <0.7 130 <3.1 <900 <5000 1500 1500 <60 <290 <190 <900 NA <0.5 <0.9 O,lon:,cthanc 200 <0.7 500 <3.1 <900 <5000 <280 <280 <60 <290 <190 <900 NA <0.5 <0.9 Olluro<nelhane 910 71 13000B 110 1100 <5000 12000 12000 600 . 980 500 10000 NA <0.5 I.I l!thylbeMene 130 o.a, 120 <3.1 1100 <5000 6500 6400 <60 820 <190 1600 NA <0.5 <0.9 81hyl luluenc 80 <7 <550 <31 <9000 <50000 3600 3600 <600 4<40 <1900 <9000 NA <5 <9 Methylene chloride 84 29 310 190 <900 <5000 <280 <280 <60 <290 <190 <900 NA <0.5 <0.9 m,p-Xylene 300 UI 350 <3.1 2500 <5000 14000 14000 <60 1700 <190 3100 NA <0.5 <0.9 200 <0.7 210 <3.1 2000 <5000 4000 3900 dO !:ZOO <190 <900 NA <0.5 <0.9 o-Xylene 150 1.5 1'0 <3.1 1100 <5000 7300 7200 <60 820 <190 1-400 NA <0.5 <O.f 3800B 2.5 7300 610 350000B 630000 1100008 1100008 220008 75000!! 31000 220000!! NA <0.5 1.9 l!!!!!I liiilll --- -- Tetroch..,._hcne <8 <55 <3.1 . <900 Toluene 870 3.3 1100 <3.1 Vin,lcblorlde <8 <0.7 JOO <3.J s. : Rwuwalao (") O<ta11uoro1oluene 96 100 99 Toluene-<18 100 95 96 94 4-Brocnolluorol><nune 102 104 93 104 • Rw, 7 outlet umple -loll due to Dow ..,.,troll-beooaifna doged. B -Baltmarcd value. rcsull ax::c,cds inatnament callbnUon ranee- 12000 <900 99 " 94 Table 2-J (Continued) <5000 <280 <5000 39000 <5000 <280 IOI 102 102 102 89 96 <280 39000_ <280 104 104 95 - -- -- - - - <60 <290 <190 <900 NA <0.5 <0.9 <60 5300 <190 18000 NA <0.5 <60 <290 <190 <900 NA <o.5 <o.t " " NA 99 99 IOI 95 98 "-NA 95 . 94 96 " 94 99 NA 106 106 ------------------------ Malyte .• 2.3,7,11-TCDD 2.3,7,8-TCDI' Sen ; e """'-Y ('!I,) IJC-2.3,7.8-TCDD tv IJC-2.3,7.S-TCDF ' 00 ,_,,.. Total TCDD 1,2,3, 7,11-PeCDD Total PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6. 7,8-HxCDD 1,2,3, 7,8,9-HxCDD Tocal HxCDD 1.2.3,4,6, 7,8-HpCDD Tocal Hp(DD OCDD Tocal TCDI' 1.2.3,7,8-PeCDP 2.3,4,7,11-PeCDF Table 2-4 Summary or Analysis Results ror Polychlorlnated Dibenzo-dloxlns and Dibenzorurans in Soil Reactor Off-Gas (ng/dscm) 1401! '18.28 131B 222B IUB 3.23 47.21! 447B 2164B 147B 179B 7.36C UJC 12.5c,B 30.7c,B UC 0~ 2.94C 29.38,C U.6C,B 7.o6C 29.5C,II 51 26 52 49 17 34 51 'l7 22 55 19 50 24 47 31 19 34 47 23 20 51 19 3490 8,1! 21208,B 37708,B 88408,B 61908,B 1458,1! 17208,B 11800B 7820B 38808 72508 509B,1! 3338,B 35811,1! 680B,B 33.99,1! 12.18,1! 346B,B 17501! 734B 4721! 4878 5390 8,1! 3,6008,B 5710B,I! 116008,B 525B,B 188B,B 3650B,B 243008 86501! Sl80B 8800!!,0 580 B,B 36211,B 4098,B 674B,B 21.98,I! 6.78 498B,1! 1060B 5068 3338 402B '702 B,B 44211,B 4038,B . 63811,B 25.88,B 8.298 5788,B 12'0!! 56!8 3'IOB 3638 1150B,I! 6699,B 88Sll,B 14308,B 50.78,B 16.28 9478,B 21501! 9311!. 59708 69111! 12,4008,B 7..-,S 87608,I! 14,7008,I! 55611,B 19'8,B 11200B,B 28!IOOB QIOB 40208 45608. 51008,B 3570ll,B 30908,B 51408,B 1638,B 388,B 38908,B 56401! 10708 '776B -lG,4008,B 74208,B 4!2208,B 10,2008,B '5188,B 99.28,B 7890B,B 119008 ZMOB 16708 WOB 1'600B,B 86308,B 54308,B 141008,B 4088,B 63.1111,B 99308,B 12'100B 1721111 15008 1568 ffl08,8,I 31611,B,l,O 7S7BJl,I .20'ZOB,ll,J 85.7B,1 14,71 3398,l ll90B,J 11108,I 4531 21408,I G.28,C 2418RJ -· '188.B.1 '3.611,B 2.5ZB,J OJIIIS8,1 21.98,C.S.1 1251 S7.JI SUI 27A 14.4C 8.41C,I '1~ 311.lC,S.I 1.111 0.25 7.791 46.9 11' 9.21 11' 1195 1.31 12.IC,I! O.IIC 41 21 " 21 51008 51311,B 306!! 1738 5900!! nos 2911! 1S]B 157 2.318 5'128 7.'711 3920 93311,S 4741! 17.1311,B 12108 5038,B 5651! 27AB,II 1240B,I 9.271 lU ue 7.91 0.1 ~ ...... ~ l!!!!!!!I l!!!!!!I ~ -== i:;:;;a liiliiiil -lili ........,.., Talat PeCDF 562B,B,~O 413B,B,1 1,2,3,4,7,8-HxCDF 39.8 29.7B,I 1,2,3,6, 7,8-HxCDF 38.7 29-'B,I 2,J,4,6,7,8-HxCDF 4.2 288 1,2,3,7,8,9-HxCDF 8.81 ,.21. To<al HxCDF 442B,B,I 6078,B,I 1,2,3,4,6, 7,8-HpCDF 1088 86.8B 1,2,3,4,7,8,9-HpCOP 30-'8 23.511,B Total HpCDF 3138,B,I 3278,1! OCDF 502B,B 3018,B 1JC2,J, 7,8-TCDD '6 23 lJC 123, 7,8-PeCDD 57 :z, lJCl .2.3.6. 7,8-HxCDD 58 31 lJCl,2,3,4,6,7,8-HpCDD 67 32 13COCDD :z, 10 IJC2,J, 7,8-TCDF " 22 llC-1,2,3,7,8-PeCDP . '6 )4 IJC-1,l,3,4, 7,11-ti.a>F 63 32 llC-1,l,3,4,6, 7,8-Hp(DP 64 28 1010B,B,I 17208,B,~O ,J.BE,I 8'.21!,I 3'8,1 SUB,I 4.41 7.810 4.42 7.22 7298,1!,I 11'08,E,l,O 85.98 1328 IS., 298,B 29811,1! 4808,E,I 251B,8 7928,B 68 68 72 58 69 6' 66 6' 14 6.9 71 75 59 57 74 71 61 60 Table 2-4 (Continued) '6.98,B,1 18.3B,1 2181 0.7'21 1.891 0.8881 0.2A9 0.0874 0.313 0.0917 :Z,.68,1 9.218,1 3.98 1.08 0.888 0-028B 148 3.'48 5.01B 0-09398 64 26 6' 29 80 41 88 48 63 32 63 '1:1 64 29 s, 39 80 46 -------- 383B,l!,I 24308 11601 7811 1290B,l 1681 10.171 .36.4E,I 89.91 38.11 31.81 41.18 30.1 0.41 3'.6E,I 86.81 26.4 22.8 JUI! 10.2 0.13 3.73 6.68 3.53 272 3.82 234 G..1211,J ,.s,8 128 6.77 ,.66 2.58 1.66 Cl.OS 4378,E,I 11601 '431 47'1 4721!,I 3161 92.48 143 71.7 56.6 SUB ~ 0MB 19.28,B 29.2 13.4 10.6 11.14 5.74 O.o9B 3488,B 5350 rn 224 1961! 122 1.78 7478,B ,ma ..... 89.l 38.7 19.1 .. • 57 40 62 69 87 71 29 " 29 71 a, 73 7S 41 63 36 60 72 75 Cl 40 64 43 68 70 85 80 ' 6.5 28 19 87 64 43 " D (11 75 70 62 32 '6 D 71 82 88 73 40 7' 44 69 69 81 63 66 42 G 6' 80 62 G --I!!!!!!!!!~ !!!!!!I == == MMlS.■ z t R. IJC-1,2,3.4-TCDF 71 71 58 Nole: Fldd Blanlt ..i-calculated mma • aomlaal -ol 3 diem. o...unen: ':-' -0 B • Aulyle found lo -■led labcnlOI)' .-llad blut. C • CodutJna loomcr prmcat. B • l!atlmalC only; .,..,..... iallnlmall c:alll,ntloo - I • Pooltlve polydlloriNled dlpi,m,t atller .....,__ J • &tlllMIIO only; below lnalntmanl oallbntloa ...,._ NA • No< IIMlyzed. 0 • Peat p,acnl outalde Ion rallo UmllL U • Nol detected II the ...... reponed. lililil liiiii Table 2-4 (Continued) n 74 -- 75 71 ----- - 79. 81 IO I I I I I I I I I I I I I I I I I I I RADIAN ' ....... ., ... Table 2-5 Summary of Analysis Results for Volatile and Semivolatile Organic Coml)Ounds in Liquid Reactor Off-Gas 1, 1, 1-Tricbloroethane 8700 1.2-Dichlorobenzene <3500 1,2,4-Trichlorobenze <3500 1,2,4-Trimethylbenze 14000 1.3-Butadiene <3500 1.3-Dichlorobenzene <3500 1,3,5-Trimethylbenze 6900 Acetonitrile <35000 Benzene <3500 Bromomethane <3500 Chlorobenzene <3500 Chloroethane <3500 Chloromethane <3500 Ethyl benzene 56000 Ethyl toluene 19000 Methylene chloride <3500 m,p-Xylene 120000 n-Octane 180000 ~Xylene 71000 Propylene llOOOOOE Tetrachloroethene <3500 Toluene 320000 Y-myl chloride <3500 Surrogate Recoveries (~) Octafluorotoluene 101 Toluene-dB 103 4-Bromofluorobenzene 86 2-11 I I I I I I I I I I I I I I I I •• I .1 1,2-Dichlorobenzene 1,2,4-Trichlorobenze 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Methylnapthalene 2-Methylphenol 2,4-Dichlorophenol 2,4-5-Trichlorophenol 2,4,6-Trichlorophenol 4-Methylphenol Acenapbthylene Anthracene Benzoic acid Benzo(b )fluoranthene Benzo(k)fluoranthene Benzel alcohol Benz(a)anthracene Benz(a)pyrene bis(2-Ethylhexyl)phtbalate Butylbenzylphthalate Cluyscne Dibenzofuran Diethylphthalate Table 2-S (Continued) 2-12 · <2050 <1900 <2310 <1900 28035 <1000 <1830 <1650 <1650 <1500 <1350 <1745 <12400 <2920 <3220 <1970 <1450 <1670 <1870 <2000 <1750 <1750 <1660 I I I I I I I I I I I I I I I I I I ~' Dimethylphathalate Di-n-butylpbthalate Di-n-octylpbthalate Auoranthene Fluorene Hexachlorobenzene Isopborone Napthalene Pentachlorophenol Pbenanthrene Phenol Pyrene Surrogate Recoveries (%) 2-Fluorobiphenyl 2-Fluorophenol Nitrobenzene-d5 Pbenol-d5 Terpbenyl-d.5 2,4,6-Tnbromopbenol Table laS (Continued) • ·s . •-.-.·v······ Ui;\(:;•;jt ~J/}1~1~1~~~!\'! <1080 44SJ <1140 1350J 3494 <1010 <1980 68740 <2860 10830 2840 1952 NC NC NC NC NC NC Note AD < vaJucs are Dettctioa Limits lot ....iytes not dct«l<d. Re<ulll le< scmiYolatilc orpruc analytcs dctcaed below detcc11oo timjtl -J.llagcd. Quali&n: E • R..ult a<eeda instnmcat catibntloa ranp. J • R=lt Is below sample J 'fie dclcctioG limiL NC • Noc calculated due 10 hip diluDOM. 2-13 I I I I I I I I I I I I I I I I I I , I November 23, 1994 Mr. Terry Lyons U.S. Environmental Protection Agency Office of Research and Development 26 W. Martin Luther King Drive, Mail Stop 485 Cincinnati, OH 45268 Subject: Contract NLDDber: 68-C0-0047 Work Assignment NLDDber: 047-1127 PRC Environmental Management, Inc. 644 Linn Street Suite 719 Cincinnati, Ohio 45203 513-241-0149 Fax 513-241-0354 PRC Limitations and AssLDDptions Regarding BCD-Koppers Demonstration Mass Balance Calculations Dear Mr. Lyons: Pursuant to your request, PRC Environmental Management, Inc., (PRC) is providing you with the results of the BCD-Koppers Demonstration mass balance calculations for pentachlorophenol (PCP) and 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD). Attached are schematic diagrams depicting the mass balance results for PCP and 2,3,7,8-TCDD (See Enclosure). Two schematics for 2,3,7,8- TCDD are provided per your request, each reflecting a different approach toward calculating the mass of 2,3,7,8-TCDD in the input and output soils. The objectives of the demonstration did not include quantitative tracking of the fate and transport of discrete contaminants or classes of contaminants through the soil treatment system. Hence, significant limitations exist in producing a credible mass balance result for any particular contaminant. The following bullets describe some of these limitations and the assumptions made to complete the mass balance calculations. • The analytical data for PCP and 2,3, 7,8-TCDD used in these mass balance calculations have not, as yet, been fully validated. Hence, the results of the mass balance calculations may not be as accurate as is possible. · • Soil samples and air samples were collected during each of the seven test runs of the soil treatment system. However, oil scrubber samples were collected only once close to the middle and at the end of the demonstration. Also, water scrubber samples were collected only at the end. Due to this sampling scheme, mass balance calculations could not be conducted for each test run. The results of the entire demonstration had to be taken as a whole in order to establish a mass balance result. This limitation led to many of the data gaps described in some of the following bullets. BC0/047-1127/MASSBAL. L TR I I I I I I I I I I I I I I I I I I Mr. Terry Lyons November 23, 1994 Page 2 • Seven test runs of the soil treatment system were conducted during this demonstration. • • • • During the third test run, numerous operating parameter adjustments were made. Consequently, it was decided that for this test run soil samples collected from the treated soil drums would not be submitted for analysis. Hence, no analytical results for PCP and 2,3,7,8-TCDD exist for the treated soils resulting from this test run. To fill this data gap, the PCP and 2,3,7,8-TCDD concentrations in the treated soil samples from the first test run were used for the PCP and 2,3,7,8-TCDD concentrations in the treated soils from the third test run. This approach was deemed satisfactory since both test runs used soil that was not supplemented with sodium bicarbonate prior to treatment. The exact quantities of oil used to fill the oil scrubber were not available. These quantities were estimated based on information provided in the field records and from personnel who participated in the demonstration. Three runs of the liquid tank reactor (LTR) were conducted to treat contaminated oil from the oil scrubber. The first and second runs of the L TR treated contaminated oil taken directly from the oil scrubber system. For the third run, oil and sludge resulting from steam cleaning · the oil scrubber and water scrubber system were treated. Samples of treated oil were not collected and analyzed after this run. An assumption was therefore made that results for the treated oil produced from this third run were similar to the results for treated oil produced during the first two runs. Also, the exact volumes of oil and sludge processed during the third run were not known; these volumes could only be estimated. Finally, the sludge density was not known. An assumption was made that its density was equal to that of the oil. Information concerning the PCP and 2,3,7,8-TCDD concentrations in the off-gas emissions and condensate emissions produced during the runs of the L TR is incomplete. Only two L TR off-gas samples and one LTR condensate sample were collected during the demonstration. The compound 2,3, 7,8-TCDD was not analyzed for in any of the LTR off-gas samples. Consequently, a full understanding of the quantities of PCP and 2,3,7,8-TCDD emitted in the LTR off-gases and condensate could not be achieved. The water volume in the water scrubber system at the end of the demonstration is not known . The volume was estimated by assuming the 1,000 gallon water scrubber tank was nearly full. BCD/047-1127/MASSBAL. l TR I I I I I I I I I I I I I I I a D • D ~u I ' J Mr. Terry Lyons November 23, 1994 Page 3 ·• • • • • • The water scrubber tank probably received contaminated water from other sources besides the water scrubbers during the demonstration. For example, the water scrubber tank probably received water from steam cleaning the oil scrubber and water scrubber systems after the demonstration was over. The water scrubber tank also probably received water from the water filter and from the L TR condensate tank. It is unknown whether or not the water samples collected from the water scrubber tank were collected before or after the addition of these water sources. These points make the results of the water scrubber portions of the mass balance calculations uncertain. The water volume in the water filter is not known. This volume was estimated by assuming the 55-gallon filter was approximately 80 percent full. The exact duration of each test run of the soil treatment system is not known. These durations had to be estimated based on field records indicating the approximate start and stop times for each test run. These duration values are used in the mass balance calculations to calculate the total volumes of off-gas flowing through the soil treatment system's granular activated carbon filter. Air samples collected during the third test run of the soil treatment system were not submitted for analysis. Hence, PCP and 2,3,7,8-TCDD concentrations in the off-gases of the third test run were not available. The results of the other six test runs were averaged to provide estimated PCP and 2,3,7,8-TCDD concentrations for the off-gases of the third test run. Flow rates were recorded for the off-gases produced during each of the seven test runs of the soil treatment system. In order to calculate the total masses of PCP and 2,3, 7 ,8-TCDD emitted to the granular activated carbon filter and to the atmosphere during each of the test runs; the assumption was made that the off-gas flow rate was constant during the entirety of each test ni.n. The flow rates may not have been monitored throughout each test run, so the correctness of this assumption is not known. Numerical results provided in the mass balance schematic diagrams have been rounded off to, at most, two significant figures such that they better refl_ect the accuracy of the data (sum and difference calculations shown on the schematics, however, were not rounded off). BCD/047-1127/MASSBAL.L TR I I I I I I I I Mr. Terry Lyons .November 23, 1994 Page 4 The above list of limitations and assumptions is not exhaustive, though it covers some of the more significant issues that required addressing. These limitations and assumptions must be taken into account when considering the meaning and significance of the mass balance results. In summary, the mass balance results presented in the enclosure should be used with caution on a qualitative basis and only after considering the issues discussed in this letter. If you have any questions or comments regarding this letter or the mass balance results, please call me at (404) 522-2867. Sincerely, I ~1 ~~ to1 I I I I I I I D John Schendel Chemist Enclosure cc: Ben Blaney, U.S. Environmental Protection Agency Robert Hutcheson, PRC SITE Project Manager Ken Partymiller, PRC SITE QA Manager Robert Foster, PRC SITE Program Manager BCD/047-1 \V!MASSBALL TR I I 1r Table G-2 I Summary of PCDD/PCDF Results for Ambient Hi-Volume Filter Samples . ., .. " .......... _ ., I I 2,3,7,8-TCDF 8.39e-06 8.13e·07 Surrogat~ Recover.,' (%) I 13C-2,3,7,8-TCDD 69 65 13C-2,3;7,S.TCDF 74 71 Analyte I Total TCDD 1.730-03 B S,14e-05 B,Q 1,2,3,7,8-PeCDD · ' . 1,23c-03 B 4,63e--06 B,J,Q Total PeCDD 8.03e-03 B S.08e-05 B,Q I 1,2,3,4,7,8-HxCDD 2.91e-03 B 3.6~ B,J 1,2,3,6,7,8-HxCDD 4.27e-03 B 3.S0e--06 B 1<~-1,2,3,7,8,9-HxCDD 7.79e-03 B 7.81e-06 B,J· Tota!HxCDD 5.78e-02 B 6.56e-05 B· 1,2,3,4,6, 7,8-HpCDD · • 5.78e-02 B,E 2.33..05 B Total HpCDD i.18e-01 B,B 5.44e-OS B I OCDO l.23e-Ol B,E,S 9.l9e--OS B Total TCDF l.77e-04 I 5.S0e-06 J,Q 1,2,3,7,8-PeCDF · 4.82e-OS • 1. 75e-06 u I 2,3,4,7,8-PeCDF l.95e-05 J 1.06e-06 u Total PeCDF 6.76e-04 l,Q 3.94e-06 J,Q I 1,2,3,4,7,8-HxCDF 1.64e.{)4 I 9.38e-0'7 u 1,2,3,6,7,8-HxCDF 8.94e-05 s · 1.19e-06 u 2,3,4,6,?,8-HxCDF 9.78e-05 9.38e-07 B,J I 1,2,3,7,8,9-HxCDF 5.89e-05 8.75e-07 u TotalHxCDF l.55e-03 B,l 4.69e-06 J,Q 1,2,3,4;6,?,8-HpCDF. 1.58e-03 B l.56e-06 B,J. I 1,2,3,4,7,8,9-HpCD F 4.20e-04 B 1.13e-06 u Total HpCDF 7.85e-03 B 4.38c-06 B,J OCDF 5.75e-03 B,S 5.38e-06 B,J I Surrogate Recovery (%) 13C-2,3,7,8-TCDD 68 69 1-(:A J.3C-1,2,3,7,8-PcC[iD 93 96 Bc-1,2,3,6,?,s-,Hx<:oo 90 90 13C-l,2,3,4,6,7,8-HpCDD 113 91 13C-OCDD 113' 68 I 13C-2,3,7,8-TCDF 78 77 ~- I I I I I I I I I I I I D D 13C-1.Z,3,7,8-Pecr>F 13C-l,2,3,4, 7,S..HxCDF Table G-2 (Continued) 13C-1,2,3,4,6,7,8-l-ipCDF 85 MMS Surrogate Rcco,'et}' (%) l3C-1,2,3,4-TCDF NA Quolllicr<: a. Analyt:c found 1: ~.1tc4 tabOrttoty method blsnk. C , ~ uting lscine.r p,-cs.caL E -E.$dmarc only. eJteed.$ Jnttu.ment ca1Jbr.1rlon range. I -PossWJc ~ycb.JQrlnated dipher.yJ ether interfcnco, J. Estinuue onlyi t,,e.J.c,,;i, im:ru.meDt cafibradon range. NA -Nol analyzed. O -l'e.ak present outside io11 ratlo Umits.. U • Not detei;te:d at the Im I reported. HI-Vof F1Her Blar1k Wlocs c..1Jcul.1tod Ui~ng :1 11omlnal wlumc of 1600 i.1san. 89 96 NA NOV 17 '34 05: 44PI· PRC EMI ATLAl,TA P,2/28 I I I DRAFT REPORT I AIR DISPERSION MODELLING RESULTS BASE CATALYZED DEC01\1POSITION I SITE DEMONSTRATION KOPPERS, INC. I MORRISVILLE, NC I I I Prepared by PRC Environmental Management, Inc, For Terrence Lyons U.S. Environmental Protection Agency I I DRAFT REPORT NOVEMBER 17, 1994 I Prepared By: Andy Moser I I I I I DRAFT I l·IOV-17-19'34 15: 48 01114045774070 P.002 1• NOV 17 '~~ 05: 44PI· PRC El'II ATLANTA P.3/28 I I Table of ContC'nts I List of Tables and T'igures Ii 1.0 Introductior. l I 2.0 Air Dispersion Model Preparation 2 3.0 Modelling Results 5 I 4.0 Conclusiom 6 I Appencti.,; A -Sampling Data Sheet Appendix B -ISCS'f2 Output I I I I I I I I I I I I DRAFT HDV-:7-1994 15:49 01114045774070 P.003 I I I I I I I I I I I I I I I I I I I I NOV 17 '94 05: 44PI· PRC 011 RTLrl/ !TA List of Tables and Figures Table 1. TEQ Dete:mination and Calculation Table 2. Modelling Results of lSCST2 Figure 1. Location .,f Maximum Period Receptor ii DRAFT l•IOV-17-1994 15!48 01114045774070 3 6 7 P,,:-i/28 P.004 ~· I I I I I I I I I I I I I NOV 17 '94 05: 44PI· PRC E/'II t=lTLRt1TA 1.0 Introduction PRC Envirorunenta: Management Incorporated (PRC) conducted refined air modelling to detennine the Impact of stationary sources on air quality at the Superfund Innovative Technology Evaluation (SITE) demonstration of the Base Catalyzed Decomposi!lon (BCD) and Thermo-Detox technologies. These technologies were developed by ETG Environmenul, Inc. (ETG) and Separation and Recovery Systems, Inc .. (SRS:, and demonstrated during August and September , 1993, at Koppers Company in Morrisville, North ::arolina. During this demonstration Radian Corporation collected gaseous samples to be analyzed for volatile and semivolatile organic compounds (VOC and SVOC ), polychlorinated dibcn2odiox.ins and dibenzofurans (PCDD/PCDF), hydrogen chloride (HCl) and chlorine (Cl,), and ;larticulate loading. PRC had previously conducted unrefined modelling of the SITE demonstratior: using SCREEN2, which showed a potential adverse impact of 2,3,7,8-TCDD (TEP Value). This modelling ana' ysis was conducted in accordance with the U.S. Environmental Protection Agency (EPA) Guideline or Air Quality Models (Revised), February 1993; User's Gujde for the lndumM Source Coroplex (ISC2) Dispersion Models, March 1992; User's Guide to the Building Profile Input Program, October )993; and PCRAMMET User's Guide, April 1993.This submittal represents five lndustrial Source Clmplex Short-Term (1SCST2) modelling runs incorporating five years off-site surface meteorologi ~al data from the Raleigh-Durban1 National Weather Service Station and upper' air meteorological data from the Greensboro-High Point National Weather Service Station. This report is divided into four sections. The first section is an introduction to the study and section 2.0 discusses the development of the modelling study and the model inputs. Section 3,0 provides a review of the mode'.ling results and section 4.0 presents the conclusion of the modelling analysis. I DRAFT NOV-17-1994 15:49 01114045774070 P.005 I I I I I I I I I I I I I I I I I I NOY 17 '94 05: 44PI•· PRC Ei'II HTLAl'lTA 2.0 Air Dispersion !Vlodel Preparation 1l1e JSCS'T2 model requires an input file describing source emission parameters, receptor network design, surface and upper air meteorological data file, and other variables affecting processing options and desired output. The basic options set for this modelling analysis included the regulatory default option, rural dispersion coefficients, flat terrain, and concentration values. Deposition values were / desired, but the lac!-: of data on the l'art.i~ul~.~-beipg_e~itted from the source; spe<:ifically the ---------·--·· -------·-. . . . ...... . . . ··-·· ···-·--- particulate siRdimibution and the density of the parti_culates emitted, precluded the calculation of ·-----·--· --------·--------···--· --··· ------· . -.. ___ .... ---------------- deposition values. iSCST2 was set to calculate I-hour, 24-hour, and period concentrations. The ,_________ . period concemratim, for this srudy is an annual concentration since one full year of meteorological · data was used for es.ch model run. The use of a short term model to develop a long term average is an acceptable practice as stated in the Guideline on Air Quality Models (Revised). The source emission parameters were developed from the sampling data sheets contained in the draft report "Sampling and Analysis Results for Gaseous Samples from the Base Catalyzed Decomposition Technology Site De:nonstration at Koppers Company, Inc. Morrisville, North Carolina" Volum~s l and 2, November E193, Radian Corporation. All of the required data could be obtained from this report with the exce?tion of the stack height which was estimated at IO meters based on direct observation and vid"otape. The temperarure at exit was taken directly from the sampling data sheets as well as the exit v-,locity. The stack diWJeter was calculated from the area of the stack in square inches from 1he Sart?ling data sheets. The sampling data sheet used for this modelling study is attached at the end r•f this report as Appendix A. The emission rate was calculated from the sample concentrations for chlorinated dibenzo-p-oioxlns (CDDs) and chlorin.ited dibenzo-p-furans (CDFs) on the outlet side of the carbon beds and the flow 2 DRAFT NOV-17-1994 15:49 01114045774070 P.006 I I I I I I I I I I I I I I I I I I I lii.,.1 I,ov 17 '94. 05:45pI, PRC Ei'II ATLANTA rate of the stack at :he sampling point. These cogener concentrations were multlplied by the To;,;!city Equivalency Factors (1'EFs) to express the concentration in terms of 2,3,7,8-tetrachlorodibenzo-p• dioxin (2,3,7,8-TCIJO) equivalents (TEQs) The TEFs used for this calculation were the l-TEFs/89 ~_,,;/-~-7 /' 7tCY'~ ~ that EPA has adoptc-d as an interim procedure for assessing the risks associated with exposures to complex mixtures of CDDs and CDFs, The nonzero TEFs, sample concenlrationS, and associated calculations performed to develop the TEQ are shown in Table l, The units for the sample concentrations are nanograms per dry standard cubic meter (ng/dscm). This value was multiplied by the flow rate of 1.88 dry standard meters per minute divided by 60 to convert minutes to seconds and then convened from nanograins per second to grams per second for inpu· to ISCST2. Table 1. TEQ Detecrnination and Calculation Compound TEF Sample Concentration Value (ng/dscm) 2,3,7,8-TCDD I 447 447.00 2,3,7,8-PeCDD 0.5 1750 875.00 2,3,7,8-HxCDD 0.1 44i0 447.00 2,3,7 ,8-HpCDD 0 01 5640 56.40 OCDD 0.001 12700 12.70 2,3,7,8-TCDF 0.1 29.3 2.93 1,2,3,7,8-PeCDF 0.05 125 6.25 2,3,4,7,8-PeCDF 0.5 46.9 23.45 2,3,7,8-HxCDF 0.1 196.18 19.62 2,3,7.8-HpCDF 0.01 172.2 1.72 OCDF 0.001 497 0.50 TEQ value (ng/dscm) l,892.07 3 DRAFT l·IOlJ-17-1994 ·15:49 011140457741370 P.1307 I I I I I I I I I I I I I I I I I MOY 17 '9~ (15: 45PI· PRC El-II ATLH11TA The model was set '.O limit the emissions to only the month of August to simulate the time the demonstration actuidly occurred. The actual time of the demonstration was from August 28 thru September 3, but tt.~ ISCST2 model is able to limit emissions by month or hour of day, so one month of emissions was sdected as best representative of the demonstration. The emission units of the model were change.! to calculate concemratioos in nanograms per cubic meter rather than the default units of microgram, per cubic meter, since ISCST2 reports concentrations out to five decimal places concentrations in rr-,crograms per cubic meter would be reponed as 0.00000. !SCST2 was set to ,)etiorm calculations on the effects of building downwash. The direction specific building heights and building widths were calculated using the Building Profile Input Program (BPlP) version 94074. Th,ee buildings were input to this program with the soun;e location using a ca·rtesian coordinate system. The BPIP results showed that only ooe of the three buildings produced a Good Engineering Practice (GBP) SL area of influence which contained the source stack. The output of the BPIP program was ·JSed as input for the ISCST2 model. Three receptor networks were designed for the modelling srudy. A receptor network for the property -----------·--------·--·----------.. -_. -···---------··-----·· ·-----·--·--··-- ~-~~~!:5~•:,:_e;,Qp~(j_\lSJl)g _the BOUNJ:>~l'. optJo!,1_ of ISCSJ'.?. This option d:Jaces a receptor every ten degrees a: a user specified location for 360 degrees around the source. The user specified , (~ location is the dista ,ce measured from the source to the property boundary~e second receptor network was a pola:· grid centered on the s011rce stack with six rings at 75, 100,_125,_1_5_9_, 200 aod ~-(j) -- 250 meters from the source and a receptor placed every ten degrees for 360 degrees. The third ---~ ---___ _______,_:----e:_ ____ _c.-__ receptor network cc,nsisted of ten discrete canesian coordinates placed on Highway 54 adjacent to the property boundary. These three receptor networks provided a totaLof 262 receptoi:s..around.the __ source stack. 4 DRAFT l·IOV-17-1994 15: 50 01114045774070 P.008 I I I I I I I I I I I I I I I I I I I 1,ov 17 '94 05'45Pt PRC Ei'II ATLAiiTA The meteorological data chosen for this study included surface data from the Raleigh-Durham National Weather Service Station and upper air data from the Greensboro-High Point National Weather Service Sta:ion. The time period for the data used was 1986 thru 1991, excluding 1988. The upper air data f:·om the Greensboro-High Point Station was missing for 1988. The meteorological data was downloadeJ from the Support Center for Regulatory Air Models (SCRAM) and processed first using MET144 to the expand the surface data to CD144 format and then with PCRAMMET to prepare the data for ·.ise by ISCST2. 3.0 Modelling Hesults The modelling resul:s for the five years of meteorological are presented in Table 2. This table reports the year processed, the maximum predicted concentration, the loc;ition of the maJCimum, and the date of oceurren :e for the one hour and twenty-four hour short term maJCimums. Since the period maximum is averaged over the duration of the meteorological data, there is no data of occurrence reported. The date Jf occurrence is in the form of YYMMDDHH. where YY is the year, MM is the month, DD is the dsy, and HH is the hour. The results of the fl";e ISCST2 model runs show that a predicted{ maJCimum per!odTiimu:il} f~~~;;;;i~ionoi'-:00)45ng/m1 occurs-during tiieT990~ociel year at receptor location -73.86~1:Dl2· . . \ ----------' . This location of thi, receptor is shown in Figure I. The Nonh carolina Toxic Air Pollutant Guidelines lists an ,'11\ual guideline for tetrchlorodibellZo-p-diox.in of 3.0E-09 milligrams per cubic meter. The maximun predicted period (annual) con~)l!ration from J.S.CST2 is 4.5_:l~:lQ.p:iilligrams, ,-------------------------·-~-..., per cubic meter or ':'5 % of the annual Toxic Air Pollutant Guideline. I -----•---.-· -----'----------------- 5 DRAFT l·IOU-17-1994 15: 50 01114045774070 P.009 I I I I I I I I I I I I I I I I I I NOY 17 '94 05: 46PI· PRC EMI ATLANTA Table l. Modellinf Results of JSCSTI. Maximum ·x· Location (ng/m3) (meiers) 1986 '.: ,.d,, ' . : ~ . ' ,:.J:' : 1 Hour Max .06401 70.48 24 Hour Max .00752 -73.86 Period Max ,00018 -73.86 1 Hour Max ,05469 73,86 24 Hour Max ,00935 -48.21 Period Max .00019 -57,45 1 Hour Ma.-: .04729 24 Hour Max ,00930 -64.95 Period Max .00018 -70.48 1 Hour Max .07132 70.48 24 Hour Max ,01620 -73.86 Period Max .00045 -73.86 l Hour Max .06151 70.48 24 Hour Max .01243 -73.86 Period Max .00029 -64.95 4.0 Conclusions ·)°'- 'Y' Location (meters) 25,65 13.02 13.02 13,02 57.45 48.21 25,65 37.50 25,65 25.65 13.02 13.02 25.65 13,02 37,50 Date of Occurrence 86082802 86080524 . ' NA 87082907 97080824 NA 89080408 89081324 NA 90081503 90082224 NA 91080308 91082324 NA The previous screen,ng results showed that only Run 5 TEQs produced a potential adverse impact on Air Quality from the: SITE BCD Demonstration. This refined modelling analysis using !SCSTI show 6 DRAFT l·IOlJ-17-1934 15:50 01114045774070 P.010 I I I I I I I I I I I I I I I I I • I NOY 17 '34 05:47PI· PRC El1I ATLAliTA P.12/28 that the North Car,ilina Toxic Air Pollutant Annual Guideline for tertrachlorodibcnzo-p-dioxin was not violated and R.m 5 produced an average annual concentration that was IS % of the annual guideline. 8 DRAFT NOV-17-1'3'34 15:51 01114045774070 P.012 I I I I I I I I I I I I I I I I I I I NOY 17 '94 05: 47PI· PRC E!'II ATLAl,TA Facility: Date: Location: Run Numbe:-: BCD 9/01/93 outlet !i CDD/CDF Sainpl_e Type: =,-o==ame~i==~==-===~=--===--====== ---I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I Total S3.lllpling Time (min) Corrected Barometric Pressure (in Hg) Absolute stack Pressure (in H20) Stack Static Pressure (in H20) Average St.ack Temperature ('F) stack Are~ (sq in) Actual Meter Volume (cu ft) Average Meter Pressure (in H20) Average Meter Tei:iperature ('F) Moisture C~llected (g) Carbon .Dio~ide Concentration (%V) Oxygen concentration (\V) . Nitrogen C~ncentration (%V) Ocy Gas Me~er Factor Nozzle Dia~eter (in) Pitot Constant Average Sai.1pling Rate (dsc!m) Standard Metered Volwne (dscf) Standard Metered Volume (dsCln) Stack Moisture (%VJ · Mole Fraction Dry stack Gas Dcy MoleouJ..ar weight Wet Molecular Weight Stack Gas Velocity (fpm) stack Gas Velocity (mpm) Volumetric Flow ~ate (acfm) Volumetric Flow Rate (aCl!llll) Volumetric Flow Rate (dscfm) Volumetric Flow Rate (dsCllllll) Percent Isc:<l.netic Percent Excess Air Fuel Factor Ultimate CO2 ·DRAFT fl□V-17-1994 15: 52 01114045774070 P.13/28 = : JJ..e 240.0 29.69 29,71 0,24 100.81 ,7. 07 125,186 o.eo 85,18 8.?. 50 1.0 20,0 79,0 0,9928 0.257 0.84 =---==- 0,499 119,742 3,391 3.15 0,969 28.96 28.62 1497.00 456,29 . 73. 48 2,08 .66.53 1.88 102, 19 2294', 10 0,900 23,2 .. P.013 -- ---- - - - - -- z ••• ISCST2 -VERSIOH 93109 ••• 0 ... BCD-Koppers, Int. Oemon.s.tratlon Horrisvltle, HC •tt Sarrple Run Nllli:Jer 5 i986 .HET DATA ••• C I ~ -;-1 ••• MCOELlWG OPTIOOS USED: CONC ~ ~ " RURAL FLAT DFAULT *"'* TUE SUMMARY OF riAXIKUM PERIDO C 6760 HRS) ~ESUlTS .,.,. •• CONC OF TEFVALUE IN,HANOGRAMS/H-3 •• GllOOP !D AVERAGE OOHC . RECEPTOR CX2, YR, ZELEV, ZFLAG) OF TYPE GRID-ID " IS) ~ A All 1ST RIG!fEST VALUE IS 1•0 HIGHEST VALUE IS 3RO HCGHEST VAlUE JS 4IH 11IGHEST VALUE JS 5TH HIGUEST VALUE IS 6TK HJGREST VALUE IS ••• RECEPTOR T1PES: GC • GRIDCART GP = GRIDP0L2 DC = DISCCART OP = DISCf)OlR BO = BOONDARY ,00018 AT .00018 AT .0001B AT ( .00016 Al ( .00016 AT ( ,00015 AT C -73-86, 13.02, -75.00, .00, -70 .46, 25.65, -64.95, 37.50, • 73 .86. ·B.02, -57.45, 4B.11, .00, .oo, .00, .00, .oo, .oa. .00) .00) .00) .00) .00) .OD) GP GP GP GP GP GP DRAFT POLARl POLAR1 POlMZ1 POLAR1 P0LAR1 POLAR1. - 11/16/94 10:51,15 PAGE 33 - ---- w , .. l) --1 r l) :z --1 D - - - - 2 ••• ISCST2 -VERS!OH 93109 *** I - --- -- ••+ BCD-Kopper5; 2nc. Decionstration Horrisville, RC *** Smrple Run Wurbc-r 5 1986 MET DATA - 1 ••• ~OOELING OPJIOHS USfD: CONC RURAL flAT DFAUU -<D <J) .c. **• THE Sll04ARY OF HIGHEST 1-RR RESULJS -• ** COSC OF TEFVAlUE IN NANCKiRAKS/M1*3 - .. GRCIJP ID AVERAGE CONI:: [!AT[ (YT.H.liDOllll) RECEPTOR (XR; YR, ZELEV; ZFLAG) 7J "' -\/1 ALI. HICll 1ST HIGH VAlUE IS KJG.H 2UD HIGH VAllJE IS ••• RECEPTOR TYPES: GC = CRIDCART GP = CRZDPCJlR DC = OISCCART OP • DtSc:POLR SD s 8a..JlroARY .06,01 ON 86DB2802: AT ,03963 OU 86082802: Al 70.48, 25.6:>, .DO, ?J.86, 13.02, .oo, DRAFT -... ••• Of .OOJ .00) lYPE GP GP - 11/16/94 10:51:25 PAGE 34 1;c";"";r::F:r: GRID-ID POLAR:1 POLAR1 - - -- - D -, r ]) :z --< D 7J .. liiii l!!!!!!!!!!!I I!!!!!! 0 C I ,. ·l ' p \Q w L ••• ISCSJ2 -VERSIOn 93109 ••• .. •• KCOElING OPTIOOS USED: co"c !!!!!! == llliil lilii ...,._. &CD-Koppers, Inc. Demonstration Morrisville. flC utr Sarrple Run HL.r.i:ier 5 19.U MET OATA RUstAL flAT DFAULT ••• THE SUl'1MARY OF HIGHEST Z~·HR RESULTS••~ •~ CDNC Of TEFVALUE IH NANOGRAMS/H*•3 - •• C.ROOP ID AVERAGE cm,~ DATE (YYMiiDOHH} RECEPTOR (XR, '"· ZELEV, ZFLAG) All HIGH 1ST HIGH IJALUE [S 3IGM 2WO HIGH VALUE IS ••• RECEPTOR lYPES: GC ~ GRIDCART GP = GR I DPOLR DC • DI iCClU DP= DISCPOLR BO Ill SCUIDAR'( .D0752c OH 86080524: Al .00728c ON 86081524, Al -73.tl6, 13.02, .oo, -73.86, 13.02, .00, DRAFT -••• ••• OF .OD) .00) TYP.E GP GP - 11/16/94 10:51,25 PAGE 35 ~;::r',-,'C.:::K GRID-ID POlA.R1 POlAR1 - --- - D ; .... D lilllil liiiii --- -- --- -O'o U1 "' Gl ---... Gl <,. U1 "" "" <,. 0 isl 7J (S) -"" ••• lSCST2 -VERSIO~ 93109 ••• ••• HOOELING OPTIONS USED: cone ••• BCO-Ko,ppers, Inc. Demonstration Harrisville, ~C ••• Sample R~n Nlllbcr S 1987 HEJ D~TA RURAL FLAT OFAULT ••• THE SUMMARY Of HAXIHUM PERIOO ( 8760 HRS) RESULTS••• -CONC OF fEFVALUE HI NAHo:ilW!S/H**3 ••• ••• •• GROJP 1D AVE RAGE OOHC \JFT\Y.ll)Y RECEPTOR (XR, YR,. ZELEV, ZFlAG) Of JYPE GRID-ID ALL ISf NIGHEST VALUE IS .00019 AT ( ·57.45, 48.21, .00, .00) GP POLAR1 2ND HIGHEST VALUE IS .00019 A! ( -r.8.21, 57.45, .DO, .DO) GP POLAR1 3'tD tllGHEST VAlUE rs ,(10018 Al -64j}S,. 37.SO,. .00, .DO) CJ> POLAR.1 ~TH HIGHEST VALUE IS .00018 Al -17.50, M.95,. .oo, ,00) CJ> POLAR'\ 5TH HIGHEST VALUE 1S .00016 AI -70.48, 25.65, .oo, .OD) CJ> POUR1 6TH HIGHEST VALUE [S .0001S AT -73.86, 13.02, .oo, .00) CJ> POURl ... RECEPTCII: TYPE.S: GC '" 611:JDCART CP .:: G.11:IO:POLR. DC = OlSCCARJ DP = DI SCPOLR BD = 90.JHOARY DRAFT -11/16/94 10:55:16 PAGE :33 - ---- 7J p; ~ H D i D 7J liiil I!!!!!! ••• ISCST2 -VERSJc»I 93109 ••• l!!!!!!!!I == •0 ecD-l(oppers, Inc. Ota10nstrution Korrisville, NC ••• Sa~le Run l-n..liher 5 1987 HET OATA ••• HOOELJnG OPllOUS USED: CONC -RURAL FlAT OFAULT ••• THE SUHMARY OF HIGHEST 1·HR RESULTS••• •• GRC.UP IO AVERAGE CO>,!C DATE (Y'fMMDOHH} RECEPlOR (XR, YR, 2ELEV, ZFLAG) 1J co -CD All HIG~ 1ST HIGH VAllJE lS HI GIi 2NO tUG11 VAlUE IS •~• RECEPTOR TYPES: GC • G~lOCART GP= O.RfD?OLR DC • DI SCC::AA:T DP • DI 5CPOLR BO • SOONDAAY .05469 0~ 87082907: AT ( .04S05 ON 87080810: ATC 73.86, 70.46, DRAFT .00, .00, -••• ... -11/16/94 I0,55,16 PAGE 34 NF.TUORK Of TYPE" GUO· ID .00) GP .00) GP POLARl POLAR1 -- --- 7J a, n SJ H D -a !£ =, D 7J - ---- •t• HOOELIUG OPTIONS USED: com: -l!!!!!!I l!!!!I . !!!IS == ••• BCD-Koppers, Inc. Demonstration Morrisville, WC ••• Sarrple R~n ~urber 5 19B7 MET DATA RURAL FLAT DFAULT ••• TKE SUMMARY OF HIGHEST 24-"R RESULTS••• liiiiiiil •• G!:ctlP ID AVERAGE COUC Cl.~TE" (YYMMDDHH) RECEPTOR (XR, YR~ 2ELEV, 2FLA~) 7J G) -"' All RICH lSJ HIGH VALYE IS HIGH 2ND HlGH VAtU£ IS ••• RECEPTOR TYPES: GC = GRIDCART GP = GRIOPOt.R DC = CISC:r.ART OP :: CISCPOLR 8D = BOJNOARY ,00935c ON 87080824: AT ( , 00798.c Oil 37080824: AT ( -48.21, ·57.4S, 5'7 .4'5, 48.21, DRAFT .oo, .00, -••• ... - 11/16/94 10:55:16 PAGE 35 S"~T'..VJkt'. OF TYPE GRID-1D .GO) GP .0-0) GP POli\R1 POLAA1 -- --- :z 0 < 7J - - - - - ••• ISCST2 -VERSlO.~ 93109 ••• ---!!!!!!I ••• SCO·Koppers. ln~. DeIIW.)nstration Horrfsvlltc, NC ••• Sarrple Run NLJlber 5 1989 KET DATA RURAL FLAT DFAULT z 0 C I ~ --J I ~ '1) '1) h ••• THE SUMMARY OF MAXlKUM PERICO ( 6760 HRS) RESULTS••• •• CONC Of TEFVAlUE IN NANOGRAXS/M**3 GROOP IO AVERAGE CONC . ALL 1ST JllrJlEST VALUE IS 2110 HlG~fST VAlUE IS 3kD HIGIIEST VAtUE IS 4Tfl HIGJlEST VAlLIE IS 5TH HIG~[ST VAtLIE JS 61H HIGJ!EST VALUE IS ••~ REC£PJOR TYPES: GC = GRlDCART GP = G1UOPOLR DC= DISCCART DP = DI SCPOLR SD • 80.lh!OARY .000\8 Al .00018 AT ,00016 P.T .00015 Al • 00015 AT .00014 Al RECEPTOR ·70.48, ·7.l.86, -6'.95, -75.00, 3-6.02, -57.45, OR, YR, ZELfV, :ZFLAG) 25.65, .00, 13.02, .oo. 37.50, .00, .00, .00, -6.15, .oo • 48.2'1, .00, DRAFT OF Tl'P-E .00) GP .00) GP .00) GP .00) GP .00) BO ,00) GP -... ... •• ..ir.n .. ~~r 6RID-ID - 11/16/94 10:59,11 PAGE 33 ---- - POLAR1 POLAR1 POLAR1 POLAR1 POLAR1 - -- - - I> --j r ~ :.'.j I> "1) OJ IS) ~ a, - - - -- ••A KOOELIN6 OPJIONS USEO: COOC ~ (J) Ul l,J l!!!!!I !!!!!I •~• BCD-Koppers, lr.c. Oemc>Ji&traticn Harrisville, RC ••• Sairple Run Nurber 5 1989 MET DATA RURAL FLAT DFAULT r;a ••• THE SUHJ,IIART OF KIG~EST 1-HR RESULTS••• ** CONC Of lEFVALUf IN NAHOGRAHSJM••3 •• ljRC:UP ID AV.ERAGE COHC (YYMMDDHII) RECEPTOR (XR, YR, 1ElEV, ZflAG) A.Lt IIGH isT HIGH VALUE IS IIGH 2ND HIGH VALUE IS ••• RECEPTOR fl?ES: GC = CRIDCART Gf ,,. GR I DPOlR DC .. Dl SCCART OP = DrSCPOlR BD :: BCU.WOAR 'I' .04729 °" 89oao,oa, AT .( .04488 ON 89080522: AT DRAFT .00~ .00~ ••• - 11/16/94 10:59: 11 PAGE ::54 OF TYPE GRl0-10 .00) OP .00) 6P POLAR1 POLARi - -- -- I· _, r J:.• :'.'i D --I!!!!!!!! I!!!! . I!!!! en Ul lJ ••• ISCST2 -VERSlON 93109 ••• ••• HCEELING OPTlc»IS US[O: COHC == liiiiil *** BCD-Koppers, Inc. Demon~tration Morrisville, NC ••• Sa!Jl=lle RI.Sl Nutber S 1969 MET DATA RURAL flAT DfAULT - *0 TllE SUMMARY Of HIGHEST 24-HR RESUL1S •n ** COHC OF lEFVALUE IH RAHOGRAMSJM••3 •• GROUP IO .AVERAGE CO!~t l)<'HF. (YYiQIDDHH) RECEPJOR (XR, YR, ZELEV~ ZFLAG) 7J 0 ~ All HIGH 1ST RIG~ VAlUE IS HIGH 2NO HIGH VALUE lS *•• RE.Cc.PTOR TYPES: GC ~ GRIDCART GP= GRJDPOlR DC• DlSCCART OP : DISCPOLR BO = 8CUNDAR.Y .009ltlc ON 890S272~: AT .OD773 OH 8908132~: AT -64.95, -73.86, 37.50, 13.02, DRAFT .DO, .00, -••• ... - 11/16/94 10,59; 11 PAGE 35 OF TYPE GRID-10 .00) CP .00) CP POLAR1 POLAR] - - - -- 0 UI L 'J) ~ 7J Pl ~ H ]) -< r I• :z -< ]) 7J "' "' ~ - -- - l!!!!!!I z D C I ~ -J I ~ V) u) " ~ er, Ul " ••• ISCST2 -VERSION 93109 ••• ••• HCOELING O?TJf»,iS USED: CONC l!!!!!!I l!!!!!!!I == ••• BCD-Koppers, Inc. Oeioonstr~t1on Mo~risville, HC ••* Sarrple Run ~urber 5 1990 HET DATA RURAL flAT DFAUL 1 *•• THE Sl.»QiARY OF MAXIMUM PERIOO ( 8760 HRS) RESULTS••• ** CONC Of TEFVAlUE IH HANOGRAHS/K**3 •• -••• ••• <iROOP JO AVERAGE CONC IJ~!"'.JOC!t' RECEPTOR (XR, YR., ZELEV, ZFlAG) OF TYPE GRID-10 All 1ST fllCHEST VALUE IS .00045 AT -73.86., 13.02. .oo, .00) GP POtARl 2ND ~IGHESJ VALUf IS .00-041 AT ( -75.00., .oo. .00, .00) GP POLAR:1 "' ~ :SRD HI G.tlES'l' VAlUI! IS .00038 AT ( ·9B.U!.., 17 .36. .'10, .DO) GP POL.AIU ~ '" 41K UlGHEST VALUE IS .00037 AT ( -7(].l;B, 25.6'S., .oo. .CO) GP POLA'R1 " 0 STH HIGHEST VALUE IS .00033 AT ( -100.00. .00., ,00., ,00) GP POlAR1 " ~ 61K HIGHEST VALUi 15 .00031 AT ( ·125.10, <!1.71, .oo, .00) GP POtAR1 " 0 -J "' ••• RECE"PTOR TTPES: Ge ,. GRIDC:ARJ GP -= GRIDPOLR. DC= DISCCART DP = 01 SCPOLR BO = 80.J:IIOART DRAFT -11/1~/94 11,03:00 PAGE 33 - - -- - :z C, < U) L -,, I\) w ~ - 0 C I ~ -J I ~ VJ VJ A . (J\ ,. - - I!!!!!!! ••• 1scsr2 -VERSIO.~ 93109 ••• ••• HCOELING O~fJO"S USED: ccmc I!!!!!!! l!!!!J == ~•• BCD-Koppers, Inc. Oer.ionstrotion Morrisviiler NC ••• Sa,rple RU\ Ruiber S i990 MET DATA RURAL fLAT *** lHt SUM!iARY OF fflGllEST 1-HR RE'SULTS -ro ..,., C011C OF TE FVAlUE IN NAHOGRAMS/)1,HJ - •• GROOP ID AVERAGE COHC (YYMl<DDHH) RECtPTOR CXR, YR, 2ELEV, ZFLAG) ALL HIGH 1ST HIGH VALUE IS ~]GIi 2RD IUGH VALU1: IS ••• RECEPTCR TYPES: GC = GRIDCAIT CiP .:: GRJ[lPOLR DC • DISCCARl DP., DISCPOLR SD= BWNDARl' .07132 ON 9ooa1SD3: AT .0~247 ON 90082605: AT 70,4B, 70.48, 25.65, 25.65, DRAFT .OD, .00, -••• ... -11/16/94 11:03:00 eAGE 34 OF rme GRID-ID .DO} Ge .00) Ge POLAR1 POLAR! --- -- 5 < <D A 0 Ul ,.. l :B '' SI H L -i r D :z -i D "lJ N .c. ~J 0) -- --l!!!!!!!I ~ a> U1 A ••• ISCSJ2 · VERSJCW 93109 ••* ~•• XOOELl~G CFTIOHS USED: cc»JC l!!!!!!!I !!!!!I l!!l!I == ;;a ••• BCO-koppers, Inc. Demonstration Morrl$Vilte NC ••• Sanp\e Run NinL,c,r S 1990 MET DAJA , RURAL FLAT DF.llJLT ••• THE SUMMARY OF HIG~EST 24-HR RESULTS••• •• COGC OF 1E"FVALUE IN WOGRAMS/M•-J. •• GROOP lD AVERAGE COUC tAJC (YYIOODHU) RECEPTOR (XR, Y8i ZELEV, ZfLAG) 7J GI I\J U1 ALL ~lGH 1ST HIGK VALUE IS HIGH 2~0 HIGH VALUE IS ••• RECEPTOR TYPES: GC • GRlOCARl GP • GR ID POLR OC ci: DI SC CART DP = DJSCPOLR 80 "' BOURDA'RT .01620c ON 90oa222,: AT ,01l17c OU 900B222~; AT 13.02, .00, DRAFT .00, .no, -... ... - - l1/1b/94 11:03:00 PAGE 35 NCTl.lOJl.K OF IYPE GRID-ID .DO) GP .DD) GP POLAR1 POLAA.1 - - - - ;ii ,, 7J N U1 ~ ----••• ISCSJ2 -VERSION 93~09 ••• z ~ I -1 ••,.. MOO El 1 HG OPT I C»lS USEO: CO!lC -\D <D A -"' U1 A I!!!!!!! !!!!!I == ••• BCD-Koppers, Inc. Demonstr-ntion Morri$vllle~ ~C ••• Sarrpte Ri.n N'ud>er 5 1991 KEY DATA RURAL fLAT DFAULT liiiiia ••• JHE SUMMARY OF-MAXJMUt\ PERIOD C 3760 HRS) RESULTS••• • • cot.IC OF TEfVALUE IN NAUDGRAM.S/M**3 •• -... ••• J:E:T'..W.Y. C.ROJP IO AVERAGE CONC • RECEPTOR (X~1 YR, 2ELEV,, ZFLAG) Of TYPE GRID·IO (S) ---A Q A VT --J --J " Q --J (S) "D "' I\) "' All 1ST HlbH[ST VALUE IS 2ND ~IG~tST ~AlUE IS 3RD ~lG~EST VALUE IS '™ HIGIIEsr VALUE IS 5TH HIG~EST VAlUE IS 6TH HIC~EST VAlUf IS ••• RECEPTOR TTPES: tiC = GRIOCART c;,p,. C.RIDPOLR DC = DlSCCART DP = OISCPOLR BO • BClJNOARY .00029 A.I -64.95, 37.501 .OD, .00) G? P□LAR1 .00028 AT -70.48, 25-.65, .oo, ,00} . GP POUI.R1 • 00027 AT I -57.45 • 48.21,, .00,, .00) GP POLARl • 00025 AT ( ·48.21 . ~7.45, .00,, .00) GP POUR~ • 00024 Al C -73.86, 13.02, .OD, .00) GP POLAR! .00022 Al ( -86.60, 50.00, .001 .00) G? POUR1 DRAFT - 11/1619• 11'06,47 PACE 33 - - --- 0 < :r--i r I• :z -i :r- - z 0 C I p __, I p :£ " 7J Q ":l ---- .... 1«DELING OPTr~s USEO: COMC 11!!!!1 l!!!!!I l!!!!!!9 c::i;;i ••• BCO·koppers, lnc. Dem::instratioo Horrisvflle, NC ••• Sazrple RI.al H'tnber '5 1991 MET DATA RURAL FLAT DFAULT Ciiilll ••• THE SUMMARY Of.HIGHEST 1·HR RESULTS••* u CDUC OF TEFVAlUE IN UAilOGRAMS/Wi•J liliii •• GROJP JD AVERAGE COHC Otl.lF (YYMHDDHH) RECEPTOR (XR, YR, ZELEV, ZFLAG) All HIGH 1ST HIGH VAlUE IS HIGH 2~D HIGH VAlUE IS ••• RECEPTOR TTPfS: GC = GRIDCART GP• GRJDPOLR DC 11 DI SC CART DP = 01 SCPOLR BO ::a ~DARY .06151 ON 9~080JOa: AT ( .05247 Off 9108152:l: AT ( 25 .65, 2S.6S, .oo, .00, DRAFT -••• ••• - 11/16/94 11 :06:47 PAGE ~ .00) GP PotAR1 .00) GP POlAR1 - - - -- D ---< r D :z i:! 7J OJ .,, N OJ --l!!!!!!!!!!I l!!!!!I I!!!!! !!!!!I iiiilil Z ••• ISCST2 -VERSJOH 93109 •~• 0 C I p -J I p uJ uJ !'- p "' Ul Ul ••• MCOELlllG OPTIONS USEO: COHC ••• BCD-toppers, ?nc. Demonstration Horrisvi\le, NC ••• Sarrple Run ~urber 5 1991 KfT DATA RURAL FLAT DFAULT *** THE SI.JMJ,IAIY 'of HJGHEST 24-tLR RESULTS••• •• co~c OF TEFVALUE IN ~AROGRAMS/M-3 - •• GROUP ID AVERAGE CON'C '}AT!: (YYHHODHH) RECEPTOR (~R, YR, 2ELEV, ZFLAG) -0 CJ "' OJ All HJGH 1ST RIG~ VAlUE JS HIGK 2ND HIGH VALUE IS ••• RECfPlOR TYPES: GC = G~IDCARi GP • GR J DPOLR DC = DI SCCART DP = DI SCPOlR 8D II BOOHOAR'I' .01243c Oil 91082324: Al ( .01067c 1»l 91082124: Al'( DRAFT .oo, .00, - ••• ••• - 11/16/94 11:06,U PAGE 35 t,c.1:..u.u, OF TYPE GRID-10 .00) CP .00) BD POLAA1 - -- - uJ -" 0 (J1 (J1 0 ~ -0 ro OJ ~ OJ -t- o .. " - -- Polar Grld I ' ~ ~ /IRtlPOITT DIIN£D 6Y IJEArER EA.ST, INC, Discrete RecepfDf ~ PROPERTY 0"'61 6Y Uf/T STRIXTLRES. JIIC. Drawt,g Is reduced Not to scale 0 Source Stack (0.0) Receptor Network Grid • Maximum Period Receptor (-40.7) Note: Grld Is Positive (+) Y In North Direction - -- -- --- - oV ' ~ 0 UH IT S U:IJCTI.A!:S PAOPEATY Lt,E KOPPERS COMPANY, INC. MORRISVILLE, NORTH CAROLINA FIGURE 1-1 FACILITY LAYOUT MAP ._ /"IIC ENVIRONMENTAL MANAGEMENT, INC. -- -◄ ' I I I I I I I I D D I I I October 24, 1994 Terrence M. Lyons U.S. Environmental Protection Agency Risk Reduction Engineering Laboratory 26 West Martin Luther King Drive Cincinnati, OH 45268 Subject: Contract 68-C0--0047, SITE A Work Assignment No.0-61, Task 12 Screening Model Results Dear Mr: Lyons: PAC Environmental Management, Inc. Marquis Two Tower 285 Peachtree Center Avenue Suite 900 . Atlanta, GA 30303 404-522-2867 Fax 404-577-4070 PRC PRC Environmental Management, Inc. (PRC) received assignment approval on October 10, 1994 from U.S. Environmental Protection Agency (EPA) for Task 12 under Work Assignment No. 0-61 to provide computer modeled results_ of air pollution concentrations from the Koppers Superfund site in Morrisville, North Carolina. PRC presents the results of the screening model in this letter report to EPA. PRC conducted unrefined air modelling of air emission data from the Base Catalyzed Decomposition Site Demonstration at Koppers Company, Inc. Morrisville, North Carolina. The modelling used the SCREEN2 (version 92245) with simple terrain inputs, rural option, no building downwash, and one gram per second (g/s) emission rate. Using the 1 g/s emission rate allows the results of one model run to be used for multiple pollutants by multiplying the model's maximum predicted concentration by the actual emission rate for each pollutant. One model run was performed for each of the six sampling I runs performed, since each sampling run bad slightly different operating characteristics. I I ~ I I I I 0 I I I I I I .1 I I I I I Terrence M. Lyons October 24, 1994 Page 2 The SCREEN2 model was used to predict I hour, 24 hour, and· annual maximum :;:t.~for pentachlorophenol, phenol, and the Toxicity Equivalency Factor (TEF) value forj,3 7,B-. '4-r sampling run using EPA current recommended factors. The actual emission rates for each compound were determined from sampling results at the carbon bed's outlet side prior to discharging into the atmosphere. Operating characteristics, stack exit velocity, stack exit temperature, and ambient temperature were obtained from the sampling data sheets. The screening model results demonstrate that of the three compounds modelled, only 2,3,7,8-TCDD had a predicted concentration exceeding half the North Carolina Department of Environment, Health and Natural Resources Toxic Air Pollutant Guidelines. The SCREEN2 model predicted an annual concentration of l.78x!0 .. uglm', which is 59.45 % of the 3.0xlO--uglm' annual guideline. The screening results for Pentachlorophenol predicted a I hour maximum of l.31x10·' uglm' located 112 meters from the stack and a 24 hour maximum of 5.24x!0"' uglm'. These maximums are .01 % and .02 %-of the respective toxic guidelines of 25 uglm' and 3.0 uglm'. Phenol results were negligible since the sampled concentrations were less than the detection limit. Attached to this report are the model output files for each of the six sampling runs and three tables for the results of each compound modelled using the SCREEN2 model. The predicted maximum 1 hour, 24 hour, and annual concentrations for each modelled compound are in bold print in each table. All predicted concentrations are compared to the toxic guidelines, if one existed. The toxic guidelines were obtained from the North Carolina Administrative Code Title 15A Department of Environment, L I I I I I I I I n D I I I I I I I Terrence M. Lyons October 24, 1994 Page 3 Health and Natural Resources, Chapter 2 Environmental Management Subchapter 2D Air Pollution Control Requirements, Section . l 104(b) Toxic Air Pollutants Guidelines. These guidelines are the maximum concentrations for toxic air pollu_tants at the facility boundary. PRC recommends that the Industrial Source Complex (ISC2) be used to model the air emission data based on the SCREEN2 results for 2,3,7,8-TEF TCDD. This refined model is appropriate for level terrain, uses local meteorological data in the dispersion calculations, and may reduce some uncertainty and improve the confidence level of the modelled concentration. If there are any technical questions regarding this screening, please contact me or Robert Hutcheson at (404) 522-2867. Sincerely, ~ Air Quality Scientist/Policy Analyst Enclosure cc: James D. Romine, PRC START Project Manager Randy Fox, PRC Air Quality Specialist Robert Hutcheson, PRC Technical Lead Rob Foster, PRC SITE Program Manager Jonathan Lewis, PRC SITE Coordinator I I I I I I D • I I I I I I I I I I 11125/9-1 09:12 0202 260 li22 OHB;EAG S01 ICCA Columbus MWI Average MWI Average Hez Waste Inc. Koppers Site Notes: fl1ti.:lf i o.fev EMISSIONS COMPARISONS (,2,02-) J."-o-<J9'2.... ~ Emissions of Dioxin Toxic Equivalents, TEOs Q1s.ec gtyeac 9E-6 -3E-5 6E-7 5E-9 2E-8 300 -800 17 0.2 <0.01 ~002 · 1) The Columbus Municipal Waste Incinerator is the highest single source. known to EPA. It is urv:lear whether emissions from this single source are appropriately included In EPA's Inventory of sources, which is described In the. recently released, "Estimating Exposures to Dioxin-Like Compounds". A range is presented above since a precise estimate of average emissions during its lifetime (it opened in 1981 l is being cebated. 2) The average emissions from municipal waste incinerators and hazardous waste incinerators are taken from EPA's dioxin exposure document. There, It lists a .total annual emission of 3000 g TEO/year from 171 municipal incinerators nationally, and 35 g TEO/yoar emitted from 190 hazardous waste incinerators nationally. 3) The 2E-8 g/sec TEO emission rate at ,he Koppers site is the average emission rate from the six tests. Thl;l 0.01 g TEO/yr was estimated as the product of this emission rate ar.d 518,400 second_s in six days; the "yearly" total is actually the estimate of emissions only over six days. This "yearly" emission total for the Koppers site is an overestimate because the demonstration unit was not emitting dioxins 24 hrs/day. it was known to be emitting during the tests when soil was inside the unit. While the unit was kept hot inbetween tests, soil was not present and emissions of dioxins may not have been occurring at all, or at least at much lower levels than when the unit was being tested. · 202 260 ,722 P.002 I I I I I n 0 I I I I I I I I I I I I ll/25/9"' 09:13 '(]202 260 li22 OHE.VEAG CONCENTRATION COMPARISONS 1. Average urban concentration of diox·1n TEQs: 2. Average rural air concentration of dioxin TEOs: 0.1 pg/m3 0.02 pg/m3 3, Average anr,ual air concentration of dioxin 'fEQs predicted to· occur from ,he Columbus MWI, at the point of predicted maximum impact, assuming 3E-5 g/sec (800 g/year) TEO emitted · 1 . 7 pg/m' 4. Average air concentration of dioxin TEQs predicted to occur from ,he Koppers site, at the point of predicted maximum impact, over the six day testing period, assuming 2E-8 g/sec emitted: · 1,6 pg/m3 5. Ambient air monitored concentration of dioxin .'fEOs which was measured on August 28, the day of the first test; the air sample was taken on the edge of the highly contaminated lagoon area: 3.0 pg/m3 Notes: li1J U03 1 l The average urban and rural air concentrations no·ted above are from the dioxin . exposure document. They were derived based on measurements, mostly from urban centers. All monitoring used here was carefully screened to only include ambient measurnments, not those taken specifically to evaluate a specific known source. 2) The Columbt,s model prediction used the COMPDEP model, whose air dispersion modeling equations are essentially the same as those in the ISCST used to predict concer1trations at the Koppers site. 3) Despite much higher emissions at the Columbus site, the predicted air · concentrations at the point of maximum Impact are similar for the Columbus and the Koppers site. This Is mainly because the stack heights are very different. The Columbus stack height was 30 meters, and the BCD unit's heighfwas 10 meters. The point of maximum impact at Columbus was about 1000 meters from the stack; whereas the point of maximum impact at Koppers was about 40 meters from the stack. The other key modeling difference was that the exit velocity was much higher at Columbus, 15 mis vs. 8 m/sec. A higher exit velocity at Columbus resulted in more dispersion and lower air concentrations, . t·ICIV-25-i334 09: i3 :::02 260 1722 P.003 I I I I I D 0 I I I I I I I I I I I 11,25,9~ 09:13 ~6'202_ 260 1 i22 OHEA1EAG THE AMBIENT AIR MONITORING DATA POINT ISSUE: To what extent does the measured 3,0 pg TEQ/m3 reflect emissions from the BCD unit? . . in"": ""¾-J.. 1. Since only tne particle filter was measured from the 24-hour high volume ll""h~""' sampler, this cCJncentration reflects particle-bound dioxins only. Based on ambient v~ air vapot/partlc;e partitioning theory as applied to dioxins, It Is speculated that the total (vapor + particle) concentration of dioxins would be around 4.0 pg TEO/m3• 2, Historically, the predominant wind direction is from the air monitoring data station to the BCD unit, rnther than from the unit to the air station. Therefore, if the wind patterns during the 6-day trial matched the historical pattern, then the emitted dioxins would mostly be transported away from the air monitoring station, rather than towards the station, 3. The air disporsion modeling using the ISCST model used a 5-year historical weather record 3nd predicted impacts in all directions around the BCD unit, including the pc-int of maximum impact and the Site 1. air monitoring station which measured' dioxir.s in the air. If air patterns .obeyed historical averages on August 28, and using tile emissions measured from the BCD on .that day, than the concentrations of dioxins reaching the air monitor would be predicted to be < 0.1 pg/m3• if, on tt.e other hand, the wind was blowing predominantly in the direction of the Site 1 air monitor, than the modeling suggests that dioxin TEQs at that point could hawi been > •1 .0 pg/m3 due to the BCD.unit Information on wind patterns for the August and September of 1993 is being obtained, 4. This air monitoring station was location .. at the edge of the lagoon area of the Koppers site. T1is is the area of t11e highest dioxin TEO. soil concentrations. Four soil samples from that area had TEO concentrations of 630, 2200, 2700, and 270000 ng/kg (opt). The area of high soil contamination is about 1 ha and __ the average soil cor,centratlon of dioxin TEQs, if the average of those foui points · represents the average for the hectare, is 70000 ng/kg (ppt), or 70 ppb, This contrasts backg ·ound soil concentration of TEOs as described in the dioxin· exposure document of 8 ng/kg. 5. Using wind erosion (for suspension of particle bound dioxins) and volatilization (for emission of vapor phase dioxins) models, and air dispersion models, it is estimated that t:1e total concentration of TEQs over a 1 ha area with soil concentrations {lf 70000 ppt would be about 2 pg TEQJm3• CONCLUSIONS/HYPOTHESES: The air monitor data point was Influenced by emissions from 1he contaminated soil. Preliminary calculations suggest that the measurement was dominated by the soil rather than emissions from the BCD unit. I-IO'J-25-1994 0g: 14 202 260 .1722 P.0134 I I I I I I n m I I I I I I I I I f:.1202 .260 1722 OHE.-11EAG • HEALTH AND ENVIRONMENTAL IMPACTS FROM BCD EMISSION,S OF TEQS KEY POINrs TO CONSIDER: 1, Fro_m modeling and monitoring as described above, It would appear that the average air coni;entration of TEQs at a point of maximum imp.act during the six days is, at mos1, In the range of 1 to 5 pg TEO/m3• 2. Further modeling also sugg~sts that 24-hour maximum concentration at a point of maximum im;)act could be as high as 10-20 pg TEO/m3, and that a 1-hour maximum concentration could exceed 50 pg TEO/m3• rhese higher concentrations would result from unusually calm wind conditions. (I have absolutely no Idea of how these concentrations can be interpreted from a human health perspective.) 3. Soil impact modeling and biota Impact modeling suggests that these emissions will have an ins,gnificant long-term impact. 4. The dioxin exposure document estimates that a background exposure to dioxin- like compounds is 119 pg TEO/day. This is mostly from consumption of food products of high fat content (meat, dairy, fish). This daily exposure was based on measured concentrations in exposure media coupled with average consumption/contact rates, It included inhalation, but this was a small part of the total, only 2 pg TEO/day. This was calculated assuming 20 rri3/day at 0.1 pg TEQ/m3 (this air concentration described earlier). 5, If the "actu;;I" air concentration of TEQs is In the range of 1·5 pg/m3, and it was assumed that an individual breathed 20 m3/day at this level (a very unlikely combination given the loca_tion of the maximum Impact point, the fact that the unit was not oporoting 24 hours/day, etc.), the incrementc1I exposure above background would be 20-100 pg/day. At the very most, a person's total dose, background plus the increment due to Inhalation of emissions, would be double . that of backgro1md for the 6-day period. More realistically, the daily dose due to inhalation of dioxins from emissions of the BCD unit wlll be less than 20% of background, 6. The dally background dose of TEQs itself corresponds to an estimated excess cancer risk of 1 o·• (given other appropriate assumptions in cancer risk estimat_ion such as 30 year~ exposure, 70 kg body weight, 70 year lifetime, etc.). Therefore, a· relatively sma!I incremental increase in background dose over a 6-day period will have no Impact <Jn cancer risk estimation. 7. The dioxin document does noi: include health benchmarks, such as Reference Doses, for effec,s other than cancer. For sub-chronic effects, the following conclusions are Jffered: 14) 005 HOV-25-1994 09: 15 202 260 1722 P.005 it I I I I I D H I I I I I I I 09:1~ '5'202 260 1 i 22 OHE.VEAG "There Is adequate evidence based on all available information, including studies ir I human populations as well as in laboratory animals end .from ancillary experimental data, to support the ·Inference t.hat humans are likely to respond with a broad spectrum of effects from exposure to dioxin and related cr)mpounds, if exposures are high enough. These effects will likely range frc,m adaptive changes at or near background levels of exposure to adverse ,ittects with increasing severity as exposure increases above backgrot.nd levels." "Given the assumption that TEQ intake values represent a valid comparison with TCDD exposure, some of these adverse impacts (sic, impacts on ~006 human n·etabolism, developmental and/or reproductive biology, and possibly_ other eft,icts/ may be occurring at or within one order of magnitude of average background TEQ intake or body burden levels." f,-,. W,,, ·la.,,(l1,\ (l~t, i ko.,i cJ-»iu,.J;.., +w ifcJ· ,c,J ,O,ll'l i l«Ji.i., . General guidance offered is that exposures are best interpreted as they relate to background exposures. Without further consultation with OHEA toxicologists, the evidence developed so far suggests that adverse Impacts, either chronic or subchronic, are unlikely to occur at the Koppers site as a result of emissions from the BCD demor,stratlon unit. NOV-25-19'34 09: 15 202 2to0 1722 I I I I I I I I I g 0 D I I I I ·:1·202 260 1 i:!2 OHEA1EAG Derivation of key numbers regarding emissions and air concentrations from the Koppers site, 1. Average err ission rate of TEOs based on congener concentrations, TEF values for each con.ge1er, and measured volumetric flow rate: Test 1: Test 2: Test 4: Test 5: Test 6: Test 7: 1. S5E-8 g/sec 2.95E;8 g/sec 3.03E-10 g/sec 6. \14E-8 g/sec 1 . 1 9E-8 g/sec 51. G0E-9 g/sec Average = 2. 1 ':-8 g/sec · 2. Emissions ·over six days:. 2.1 E-8 g/sec · • 60 sec/m • 60 m/hr • 24 hr/day • 6 days = 0.01 g 3. Average annual "Period Max", in ng/m3, from the latest ISCST model runs: . . . . (0.00029 + 0.00032 + 0.00027 + 0.0005.5 + 0.00045)/5 = 0.000376 Each period lllaX assumed continuous emissions during the month of August, ~OOi but no emissior,s otherwise. This annual average Is a weighted average with these assumptions. Therefore, the average air concentration during any point in time during August r;an be estimated as: 0.00037G • (366/31) = 0.0044 ng/m3, or 4.4 pg/m3 These Period Maxes were based on emissions from Test 5 only.· To estimate the air concentratic,n which would be an average of the 5 tests, we need the ratio of· the average emission over the emission from Test 5: · 2.1 E-8/5.tAE-8 .,_ 0.356 Finally, the ave·age air concentration of 'fEOs at the point of maximum Impact during the six d ~vs is estimated as: 0.356 • "-.4 pg/f\13, or 1.6 pg/m3 4. · The followir,g estimates the air concentration et the high volume sampler. Toe contractors pro ,ided information that the air concentration at the point of the high volume sampler for the high year of 1990 was 0.000035 ng/m3• Since all air · concentrations ;re linear with air emission rates, than the key ratio is the ratio of the air concentration at the high vol sampler and the ratio at the point of maximum HCJV-25-1994 09: 15 202 26C 1722 P.007 I I I I I I D m I I I I I I I I I ll/25;9-l 0~1:15 'u'202 260 1722 OHE.VEAG Impact for 1990; 0.000035/0.00055 = 0.06 As a simplifyin~ assumption, this ratio can be applied to any air concentration result genereteo for the point of maximum impact to estimate the concentration at the high vol.um~ sampler point. Doing that is not exactly correct, since this ratio was generated 1or only one climate year, 1990. · For the day of /-,ugust 28, the "Period Max" is es.timated as the Period Max for Test 5 times the ratio of emissions from Test 1 and Test 6: (1.55E-8)1(5 94E-8) • 0.0044 = 0.0011 rig/m', or 1 .1 pg/m3 • Finally, the air C•)nceritration at the point of the high volume sampler on August 28 is estimated as: · 0.06 • 1.1 = 0.066 pg/m3 202 2f[\ 1722 P.008 Analyte Pcntachloropbcool Unknown 1Ubltituted pbeool Analyte Pentachloropbcool Unknown 1ubstituted phenol TABLE2 BCD-KOPPERS DEMONSTRATION MTTD TEST RUNS ANALYTICAL RESULTS FOR SEMIVOLATILE ORGANIC COMPOUNDS (METHOD 8270) IN SOIL SAMPLES (µg/kg) TESTRUN4 Input Output 8,100,000 ND 870' (1,700) ND 510' (3,400) ND TEST RUNS Input Output 5,200,000 (8,000,000) ND 280' (1,700) ND A-2 330' (6,000) ND 470' (3,400) ND 170' (3,400) ND DRAFT CRE (%) 2 99.99 CRE (%) 2 99.99 --- - Analyte Pcntachloropbcnol Unknown substituted phenol -- Input 1,600,000 (2,600,000) ND l!!!!!!!!I I!!!! == TABLE 2 (CONTINUED) ISO' (3,600) 170 lN(l) TEST RUN 6 ND (3,500) ND TESTRUN7 Input Output Not,s: BAT TR CN SL Analyte Pcntachloropbcool Unknown aub1tibJted phenol Batch number Tell IUD number Compoaitc number Sample location number CRE Cnntemioeot f'emoval efficiency 1,500,000' (3,200,000) ND Detected at a concentration below the reporting limit ab.own in parcnthcsca ND (3,600) ND ND (3,500) ND Only the output aamplca were GPC clunc.d-up and reanalyzed. The rcaulll for the input samples arc from the original analyaia. liliii - 130' (1,600) ND 190' (3,500) ND R.clllha from clean-up IWdy. Rcextraction rcJUlta arc presented because the QC results were bcncr and detection limita were lower than for the clean-up of the original extracts, Rcauha from clean-up awdy. Only original extract was cleaned and reanalyzed, ao no recxtraction results arc available. Only TcDlativcly Identified Compound, (11C) that arc chlorinated phenols arc included in this table. ND Analyt.c waa oot dct«:tcd above the detection limit. The number ah.own in parcnthcaca, when provided, ia the reporting limit. JN The ana.lyai1 indicates the preaence of an analytc for which there i1 prc1Umptive evidence to mak.e a •tentative identification•. The associated number is identifies the number of compounds which sum to the listed estimated concentration. A-3 --- --DRAFT CRE (%) ~99.99 CRE (%) ~ 99.76 an estimated value. The number in parentheses aaa ----·-- Analyte 2,3,7,8-TCDD TaulTCDD 2,3,7,8-TCOF Totaf TCDF Total PcCDD Total PcCDF Total HxCDD Total HxCDF Total HpCDD Total HpCDF OCDD OCDF - -- -- - TABLE3 BCD-KOPPERS DEMONSTRATION MTID TEST RUNS ANALYTICAL RESULTS FOR PCDDs/Fs (METHOD 8280) IN SOIL SAMPLES (µg/kg) TEST RUN 4 INPUT OUTPUT 2.1 u 0.74 u 1.4 3.4 u 5.1 u 7.6 1.2 u 1.4 u 1.0 22.0 J 2.1 u 1.1 7.2 u 8.4 u 8.1 122 J 3.1 u 1.2 117 15.4 u 4.2 607 J 2.1 u 1.8 2,000 J 23.1 u 12.2 1,070 J 3.4 u l.S 15,000 J 42.4 u 19.0 3,390 J 2.5 u 1.9 A-4 u u u u u u u u u u u u - 1.6 4.9 0.96 1.1 4.1 l.S 11.9 2.4 13.9 1.4 22.7 1.0 - -- - u u u u u u u u u u u u DRAFT CRE (%) NA NA NA 95.19 NA 99.05 96.54 99.71 99.41 99.87 99.88 99.97 - --------- ------ - DRAFT TABLE 3 (CONTINUED) TEST RUN 5 INPUT OUTPUT Analytc 2,3,7,8-TCDD 0.85 u 2.2 u 2.2 u 2.0 u NA Total TCDD 2.2 u 4.2 u 4.4 u 5.5 u NA 2,3, 7 ,8-TCDF I.I u 1.3 u 1.9 u 1.3 u NA TotalTCDF 36.3 I 1.6 u 2.8 u 2.2 u 96.71 Total PcCDD 6.4 u 4.1 u 7.2 u 3.7 u NA Total PcCDF 93.9 I 1.6 u 2.6 u 3.0 u 98.49 Total HxCDD 87.4 7.4 u 10.6 u 8.8 u 92.52 Total HxCDF 482 I 1.5 u 3.0 u 1.34 u 99.75 Total HpCDD 1,520 I 8.1 u 12.6 u 9.4 u 98.53 Total HpCDF 793 I 1.9 u 2.8 u 1.8 u 99.80 OCDD 7,400 I 12.4 u 17.0 u 12.4 u 99.Sl OCDF 1,420 I 1.9 u 6.4 u 0.48 u 99.91 A-5 ------== ----------------- TABLE 3 (CONTINUED) DRAFT TEST RUN 6 INPUT OUTPUT Analyte 2,3,7,8-TCDD 0.37 u 0.60 u 1.7 u 3.1 u 0.92 u NA Total TCDD 6.6 3.4 u 1.9 u 1.7 u 2.2 u 71.56 2,3,7,8-TCDF 1.7 u 1.2 u 1.4 u 3.0 u 1.4 u NA Total TCDF ll.l I 24.3 I 1.2 u 0.70 u 1.4 u 98.79 Total PcCDD 7.7 u 6.6 u 4.0 u 7.4 u l.0 u NA Total PcCDF 125 I Ill I l.S u 2.1 u 3. I u 99.08 Total HxCDD Ill 141 6,7 u 7.2 u 7.2 u 9l.48 Total HxCDF 701 I 826 I 1.4 u 1.3 u 2.3 u 99.Sl Total HpCDD 1,930 I 2,660 I 8.1 u 8.8 u 9.0 u 99.71 Total HpCDF 1,260 I 1,140 I 1.9 u 3,7 u 1.3 u 99.92 OCDD 9,010 I 11,200 I 11.7 u 12.8 u 11.4 u 99.90 OCDF 1,840 I 2,ll0 I 1.1 u 1.9 u 2.3 u 99.96 A-6 == == No<,s: BAT CN SL TR TEC D u =- 1 TCDD TCDF HpCDD HpCDF HxCDD HxCDF PcCDD PcCDF OCDD OCDF liiliii -.lliill lliii -----TABLE 3 (CONTINUED) Analytc 2,3,7,8-TCDD Total TCDD 2,3,7,8-TCDF TotalTCDP Total PcCDD Total PcCDF Total HxCDD Total. HxCDF TotalHpCDD To<&I HpCDF OCDD OCDF Batch number Composite number Sample location number Test run number Toxicity Equivalence Concentration Field duplicate sample INPUT 0.94 u 9.1 1 1.0 u 61.1 1 21.1 134 1 278 695 1 3,690 1 !,ISO 1 10,200 J 2,670 The antlytc wu analyzed for, but waa not detected at the level reported. 1.2 4.3 2.4 1.4 3.2 1.8 9.0 2.S 9.7 6.1 lS.S 0.62 The analytcwa■ positively identified. The asaociatcd numbcria an estimated value. Tctrachlorinatcd dibcnzo..p-dioxin Tctrachlorinatcd dibcnzofuran Hcptachlorioatcd dibcnzo...p-dioxin Hcptachlorinated dibcazofunn Hcxachlorinatcd dibcnzo-p-dioxin Hcxachlorinated dibcnzofuran Pcntachlorinatcd dibcozo-p-dioxin Pcmachlorinatcd dibcnzofuran Octachlorodibcozo-p-dioxin Octachlorodibcnzofuran u u u u u u u u u u u u A-7 TEST RUN 7 OUTPUT 1.4 3.0 1.9 1.9 8.1 3.0 16.2 1.9 18.9 2.7 22.2 1.6 ------ - DRAFT CRE (~) u 0.9 u NA u 6.S u 11.89 u 3.4 u NA u 3.4 u 99.92 u 8.2 u 93.97 u 4.4 u 98.18 20.1 97.06 u 2.9 u 99.75 u 21.6 u 99.76 u 3.S u 99.79 u 28.S u 99.86 u 4.3 u 99.98 --- --- 1,2-Dichlorobcnzcnc 173 ND(0.2) 1,2,4-Trichlorobcnz.ene 77.2 ND(0.2) 1,3-Dichlorobcnz.cnc 245 ND(0.2) 1,4-Dichlorobcnz.ene 44 ND(0.2) 2-Metb.ylnaphthalcne 197 ND(0.l) 2-Mcthylpbeool 25.7 ND(0.I) 2,4-Dichloropbcnol ND(3.7) ND(0.2) 2,4,5-Trichlorophcnol ND(3.3) ND(0.2) 2, 4, 6-T richlorophcnol ND(3.3) ND(0.2) 4-Mctbylpbcool 32.9 F ND(0.2) Accnapbthcoe ND(l.8) ND(0.I) Accnapbthylcnc 98.3 ND(0.I) Anthraccne 4.0 ND(0.I) Bcnzoic acid 19.1 J ND(l3) Bcnzo{b)fluor1nthcne ND(5.9) 0.5 F Bcnzo(k)fluoranthenc ND(6.5) 0.5 F Bcnzyl alcohol 18.5 ND(0.2) - 247 165 542 82.6 143 30.2 233 59.9 95.8 I!!!!!! !!!!I == TABLE 4 BCD-KOPPERS DEMONSTRATION MTTD TEST RUNS ANALYTICAL RESULTS FOR SEMIVOLATILE ORGANIC COMPOUNDS (METHOD 8270) IN OFF-GAS SAMPLES (µg/dsan) ND(0.2) 112 ND(0.2) 203 ND(0.2) 40.7 ND(0.2) 46.6 ND(0.2) 118 ND(0.2) 225 ND(0.2) 21.8 ND(0.2) 47.4 ND(0.l) 166 ND(0.l) 240 ND(0.01) ND(9.2) ND(0.I) ND(4.3) ND(0.2) ND(l7) ND(0.2) ND(l8) ND(0.2) ND(l5) ND(0.2) ND(7.I) ND(0.2) ND(l5) ND(0.2) ND(]) 33.5 F ND(0.I) ND(l4) ND(0.2) ND(6.4) 9.5 ND(0.1) ND(8.I) ND(0.I) 3.8 45.8 ND(0.I) ND(l2) ND(0.I) 8.3 4.5 ND(0.I) ND(I I) ND(0.I) ND(5.I) ND(231) 2 J ND(l 145) 0.4 J ND(540) ND(5.4) ND(0.3) ND(27) ND(2.3) ND(l3) ND(6) ND(0.3) ND(30) ND(0.3) ND(l4) ND(3.7) ND(0.2) ND(l8) ND(0.2) ND(8.5) A-8 ----- - DRAFT ND(0.2) 253 ND(0.2) 300 ND(0.2) ND(0.2) 64 ND(0.2) 109 ND(0.2) ND(0.2) 277 ND(0.2) 416 ND(0.2) ND(0.2) 66.7 ND(0.2) 83.1 ND(0.2) ND(0.l) 231 ND(0.1) 611 ND(0.1) ND(0.1) ND(8.6) ND(0.I) ND(7.5) ND(0.I) ND(0.2) ND(l6) ND(0.2) ND(l4) ND(0.2) ND(0.2) ND(l5) ND(0.2) ND(IJ) ND(0.I) ND(0.2) ND(l5) ND(0.2) ND(l3) ND(0.I) ND(0.I) ND(l3) ND(0.I) ND(l2) ND(0.I) ND(0.I) ND(7.6) ND(0.1) 18.8 ND(0.I) ND(0.1) ND(l2) ND(0.I) 20.5 ND(0. I) ND(0.I) ND(l1) ND(0.I) 20.3 ND(0.1) 0.5 J ND(l 100) 0.6 ND(940) 1.3 1.2 F ND(26) 1.4 ND(22) ND(0.3) 1.2 F ND(28) 1.4 ND(25) ND(0.3) ND(0.2) ND(l7) ND(0.2) ND(l5) ND(0.2) --------11!!!!!!!1 !!!!!!!! == lillll -----TABLE 4 (CONTINUED) DRAFT Benz(a)anchraccoc ND(2.9) 1.0 2 J ND(O.I) ND(l3) ND(O.I) ND(6.2) 0.9 ND(l3) 0.8 ND(l2) 1.9 Benz(a)pyrenc ND(3.4) 0.1 J ND(3.I) ND(0.2) ND(l6) ND(0.2) ND(7.2) 0.2 ND(l5) 0.1 ND(l3) ND(O.I) bia(l-Ethylhcxyl)phtha.late 6.0 4.6 24.6 ND(0.2) ND(l8) 51.4 E 7.5 J 22.8 ND(l7) 63.6 ND(l4) 23.7 Butylbcnzylphlhalate 5.8 3.3 25.2 ND(0.2) ND(l9) 0.7 8 J 3.7 ND(l8) 2.0 ND(l6) ND(0.2) Chryocnc ND(3.5) 1.1 40.2 ND(0.2) ND(l6) ND(0.2) ND(7.4) 1.9 ND(l5) 1.2 ND(13) 2.4 Dibenzofun.n 26.4 ND(0.2) 38.9 ND(0.2) ND(l6) ND(0.2) 7.8 ND(0.2) 12.6 J ND(0.2) 30.7 ND(O.I) Diclhylpblhalate 23.8 3.3 ND(3.I) ND(0.2) ND(l6) 0.3 ND(7.2) 0.1 J ND(l5) 0.2 ND(32) ND(O.I) Di.mcthylphathalate ND(2.2) ND(O.l) 1.6 J ND(O.I) ND(IO) ND(O.I) ND(4.4) ND(O.I) ND(9.3) ND(O.I) ND(8.I) ND(O.I) Di-o-butylpbthalate 4.8 0.6 13.7 ND(O.I) ND(IO) 0.3 ND(4.5) 0.2 ND(9) 0.3 ND(7.8) ND(O.I) Di-n-octylphth.alate ND(2.3) ND(O.l) ND(2.l) ND(O.I) ND(ll) ND(O.I) ND(4.9) 0.1 ND(9.8) ND(O.I) ND(8.5) ND(O.IJ Auoranthcoc 7.8 0.7 51.0 ND(O.l) ND(l4) ND(O.l) 6.1 J 16. I 9.5 0.3 24.1 2.2 Fluorcnc I 1.3 ND(0.01) 34.2 ND(O.I) ND(l2) ND(O.I) ND(5.3) ND(O.I) ND(! I) ND(O.I) 15.0 ND(O.I) Hcxachlorobcnz.eoc ND(2) ND(O.I) 48.6 ND(O.I) ND(9.3) ND(O.I) ND(4.4) ND(O.I) ND(8.7) ND(O.I) ND(7.6) ND(O.IJ hopborooc 17.4 ND(0.2) ND(3.7) ND(0.2) ND(l9) ND(0.2) ND(8.6) ND(0.2) ND(l8) ND(O.I) ND(l5) ND(O.l) Naphthalene 967 ND(0.2) 748 0.1 J 629 0.1 J 730 ND(O.I) 843 ND(O.I) 2826 ND(O.IJ Pcntachlorophcnol 495 1.2 6974 41.7 ND(27) 26.9 36.6 16.1 160 8.9 3285 24 Phc.c.a.n.lhrcnc 18.4 ND(0.2) 36.5 ND(O.l) ND(l4) ND(O.I) ND(6.5) ND(O.I) 9.4 J ND(O.l) 59.9 0.1 Pb.cool 384 ND(0.3) 521 ND(0.3) 229 ND(0.3) 224 ND(0.3) 306 ND(0.3) 493 ND(0.3) Pyrcoc 5.9 0.7 9.3 ND(O.l) ND(l3) ND(O.l) 5.9 0.4 10 J 0.6 29.2 5.7 Not,s: E Analytc concentration exceeded calibration range. F lnt.crfcrcnce or coclution auspcctcd. J Result is less than BU.led Detection Limit. NC Not calculable. A-9 - - docm IAlet Outlet ND ---!!!!!!! 1!!1111 == ---- --TABLE 4 (CONTINUED) DRAFT Dry Standard Cubic Meter Sample «>lleted prior to carbon ab10rptioo bed Sample collected after acrboo abaorption bed but prior to diachargc to the atmosphere. Ana.Jytc wu OOl detected above the detection/reporting limit. The number ahown inparcnlhcac■ i1 the detection/reporting limit. Result, for analytca detected below the detection/reporting limit arc reported and J.flagg«I. - ------ 2,3,7,8-TCDD 140 J 78.2 J Total TCDD 3,490 J 2,120 J 2,3, 7, 8-TCDF 7.36 J 3.93 J Total TCDF 5,520 J 316 J 1,2,3,7,8-PcCDD 509 J 333 J Total P<CDD 5,390 J 3,600 J l,2,3,7,8-PcCDF 42.2 J 24.8 J 2,3,4,7,8-PcCDF 14.4 l 8.41 l Total PcCDF 562 l 413 J 1,2,3,4,7 ,8-HxCDD 580 J 362 J l ,2,3,6, 7 ,8-HxCDD 702 J 442 J l,2,3,7,8,9-HxCDD 1,150 l 669 J Total HxCDD 12,400 J . 7,480 J 1,2,3,4, 7 ,8-HxCDF 39.8 29.7 J 1,2,3,6, 7 ,8-HxCDF 38.7 29.5 J 2,3,4,6,7,8-HxCDF 4.2 2.88 1,2,3,7,8,9-HxCDF 8.87 5.27 --l!!!!!!!!I I!!!!! == TABLES BCD-KOPPERS DEMONSfRATION MITD TFSf RUNS -- ANALYfICAL RESULTS FOR PCDDs/Fs (METHOD 8270) IN OFF-{;AS SAMPLFS (og/dsan) 131 J 222 J 14.9 J 3.23 47.2 J 447 J 3,770 J 8,840 J 6,190 J 145 J 1,720 J ll,800 J 12.5 J 30.7 J 1.2 J 0.206 J 2.94 J 29.3 J 757 J 2,020 J 85.7 J 14.7 339 J 1,890 J 358 J 680 J 33.9 J 12. l J 346 J 1,750 J 5,710 J 11,600 J 525 J 188 J 3,650 J 24,300 J 33.8 J 53.6 J 2.52 J 0.805 J 21.9 J 125 J 21.6 J 38.l J l.ll 0.25 7.79 J 46.9 1,010 J 1,720 J 56.9 l 18.3 383 l 2,430 l 409 J 674 l 21.9 J 6.7 J 498 J 1,060 J 403 J 638 l 25.8 J 8.29 578 J 1,260 l 885 J 1,430 J 50.7 J 16.2 947 J 2,150 J 8,760 J 14,700 l 556 J 195 l !l,200 J 28,900 J 53.8 J 85.2 J 2.18 0.752 l 36.4 J 89.9 J 35 J 54.l J l.89 0.888 J 35.6 J 86.8 4.41 7.81 0.249 0.0874 3.73 6.68 4.42 7.22 0.313 0.0917 5.85 J 12.8 A-11 ---- - DRAFT 264 J 147 J 179 J !19 J 7,820 J 3,880 J 7,250 J 5,100 J 15.6 J 7.06 J 29.5 J 12.8 J l,!10 J 453 J 2,140 J 1,240 J 734 J 472 J 487 J 306 J 8,650 J 5,480 J 8,800 J 5,900 J 57.5 J 37.4 J 27.6 l 18.2 13.3 9.21 13.3 7.91 1,160 I 781 J 1,290 J 868 J 506 J 333 J 402 J 291 J 563 l 370 J 263 l 157 931 J 597 l 690 l 572 l 6,210 J 4,020 J 4,560 J 3,920 38.l J 31.8 J 41.l J 30.l 26.4 22.8 J 31.6 J 10.2 3.53 2.72 3.82 2.34 6.77 5.66 2.58 !.66 ------I!!!!! !!!!!I TABLE 5 (CONTINUED) Total HxCDF -142 J 607 J 1,2,3 ,4,6, 7 ,3--HpCDD 5,100 J 3,570 J Total HpCDD 10,400 J 7,420 J 1,2,3,4,6, 7 ,8-HpCDF 108 J 86.8 J 1,2,3,4,7,8,9-HpCDF 30.5 23.5 J Total HpCDF OCDD OCDF Noles: 313 J 327 J ll,600 J 8,630 J 502 J 301 J Dry Standard ubic Meter Hcxachlorinatcd dibenzo-p--dioxin Hcxachlorinated dibcnzofurao Pcn1ach1orinated dibcnzo-p--dioxin Pcntachlorinatcd dibcnzofuran Octachlorodibenzo...p--dioxin Octachlorodibem.ofun.n Tctrachlorinatcd dibc~ioxin Tctrachlorinated dibcnzofunn Hcptachlorinatcd dibcnzo-p--dioxin Heptachlorinatcd dibcnzofuran 729 J 1,150 J 25.6 J 3,090 J 5,140 J 163 J 6,220 J 10,200 J 398 J 85.9 J 132 J 3.98 18.5 J 29 J 0.88 298 J 480 J 14 5,430 J 14,100 J 408 J 251 J 792 J 5.01 d.cm HxCDD HxCDF PoCDD PoCDF OCDD OCDF TCDD TCDF HpCDD HpCDF J The analytc was poaitivcly identified. The associated number i• an estimated value. Sample collc.cted prior to carbon abaorption bed Inlet Outlet Sample collc.clcd after carbon abaorptioo bed, but prior to discharge to the atmosphere A-12 9.21 J 38 J 99.2 J 1.08 0.28 3.54 63.8 J 0.939 ------DRAFT 437 J 1,160 J 543 J 475 J 472 J 316 3,890 J 5,640 J 1,070 J 776 J 636 J 474 J 7,890 J 11,900 J 2,340 J 1,670 J 1,550 J 1,210 J 92.4 J 143 71.7 56.6 54.3 J 32.5 19.2 J 29.2 13.4 10.6 8.84 5.74 348 J 535 277 224 196 J 122 9,930 J 12,700 J 1,720 J 1,lOO J 856 J l6l J 747 J 497 J 88.4 89.2 38.7 19.1 ---- I, 1, 1-Trichloroctlu.nc ND(&) ND(0.7) 1,2-Dichlorobenzcoc IS ND(0.7) 1,2,4--Trichlorobcnz.cnc IS ND(0.7) 1,2,4-Trimethylbcnz.cnc 64 ND(0.7) 1,3-Butadicne 740 ND(0.7) 1,3-Dichlorobcnune 2& ND(0.7) 1,3,5-Trimcthylbcnz.cnc 22 ND(0.7) Acctonitrilc ND(SO) ND(7) B<nzene 1,200 ND(0.7) Bromomethane 160 II Chlorobcnzcne 63 ND(0.7) Chloroetlu.nc 200 ND(0.7) Chloromcthane 910 71 Elhyl benzene !30 O.Sl Ethyl toluene so ND(7) Methylene chloride g4 29 m,p-Xylcne 300 2.S !!!!!!!I !!!!!I mm == liiliiiil -TABLE 6 BCD-KOPPERS DEMONSTRATION MTTD TEST RUNS ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS (METHOD) IN OFF-GAS SAMPLES (ppbv) Analysis Dates: ND(55) ND(J.I) ND(900) ND(S,000) ND(2SO) ND(2SO) ND(55) ND(3.I) ND(900) ND(S,000) ND(2&0) ND(2&0) ND(55) ND(3.1) ND(900) ND(S,000) ND(2&0) ND(2&0) 5& ND(3.I) ND(900) ND(S,000) 3,000 3,000 2,000 ND(3.I) 62,000 ND(S,000) 24,000 24,000 ND(55) ND(3.I) ND(900) ND(S,000) ND(2SO) ND(2&0) ND(55) ND(3.I) ND(900) ND(l,000) 1,300 1,300 ND(llO) ND(31) ND(9,000) ND(l0,000) 36,000 36,000 1,600 ND(3.1) 16,000 ND(l,000) ND(2&0) ND(2&0) 1,000 S.9 ND(900) ND(S,000) 1,400 1,200 130 ND(J.I) ND(900) ND(S,000) l,lOO 1,lOO lOO ND(3.I) ND(900) ND(l,000) ND(2&0) ND(2&0) !3,000E 110 1,100 ND(l,000) 12,000 12,000 120 ND(3.I) 1,100 ND(l,000) 6,lOO 6,400 ND(llO) ND(31) ND(9,000) ND(l0,000) 3,600 3,600 310 190 ND(900) ND(l,000) ND(2SO) ND(2&0) 3l0 ND(J.I) 2,lOO ND(l,000) 14,000 14,000 A-13 ------ DRAfT ND(60) ND(290) ND(l90) ND(900) NA ND(60) ND(290) ND(l90) ND(900) NA ND(60) 410 ND(l90) ND(900) NA ND(60) ND(290) ND(l90) ND(900) NA 10,000 10,000 11,000 46,000 NA ND(60) ND(290) ND(l90) ND(900) NA ND(60) ND(290) ND(l90) ND(900) NA 2,000 9,000 ND(l ,900) ND(9,000) NA ND(60) 7,400 ND(l90) JS,000 NA ND(60) ND(290) ND(J90) ND(900) NA ND(60) ND(290) ND(l90) ND(900) NA ND(60) ND(290) ND(l90) ND(900) NA 600 9&0 lOO 10,000 NA ND(60) &20 ND(l90) 1,600 NA ND(600) 440 ND(J900) ND(9,000) NA ND(60) ND(290) ND(l90) ND(900) NA ND(60) 1,700 ND(l90) 3,100 NA ---l!!!!!!!!!!I !!!!!I !!!!!I I!!!!!!! I!!!!!!! == liillll -- n-Octanc o-Xylcoc Propylcoc Tetrachlorocthcoc Tolucoe Vmyl chloride Nous: NA E Inlet Outlet ND TABLE 6 (CONTINUED) 200 ND(0.7) 210 ND(3.I) 150 1.5 170 ND(3.1) 3,800 E 2.5 7,300 610 ND(8) I.I ND(55) ND(3.I) 870 3.3 1,100 ND(3.1) ND(8) ND(0.7) 100 ND(3.l) Run 7 outlet u.mplc wu lost due to flow controller becoming clogged. No< Analyzed Estimated value, result cxcecd1 instrument calibration nngc. Sample collected prior to carbon abaorption bed 2,000 ND(S,000) 1,100 ND(S,000) 350,000E 630,000 ND(900) ND(S,000) 12,000 ND(S,000) ND(900) ND(S,000) Sample collected after carbon abaorption bed, but prior to diacbugc to the atmosphere 4,000 7,300 110,000E ND(280) 39,000 ND(280) 3,900 7,200 110,000E ND(280) 39,000 ND(280) Analytc wu not detected above the detection/reporting limit. The number .ahown in parcnthcaca ia the dcWCtion/rcporting limit A-14 ------DRAFT ND(60) 1,200 ND(l90) ND{900) NA ND(60) 820 ND(l90) 1,400 NA 22,000 E 75,000E 31,000 220,000E NA ND(60) ND(290) ND(l90) ND{900) NA ND(60) 5,300 ND(l90) 18,000 NA ND(60) ND(290) ND(l90) ND{900) NA -- Ha• 02• HF Particulate Particulate Notes: • NA d,cm d,cf Inlet Outlet ND -- (a,g/cbc:m) 0.197 (a,g/d,cm) 0.094 (a,g/cbc:m) NA (gr/cbc:Q 0.037 Ob/hr) 0.024 Reported a■ chloride Not analyzed Dry Standard Cubic Meter Dry Standard Cubic Foot - 0.113 6.027 0.089 0.184 ND(0.01) NA 0.021 0.040 0.013 0.022 Sample collected prior to carbon absorption bed -----I!!!!! !!Im TABLE? BCD-KOPPERS DEMONSTRATION MTTD TESI' RUNS ANALYTICAL RESULTS FOR VARIOUS INORGANIC AND PHYSICAL PARAMETERS IN OFF-GAS SAMPLES 0.153 0.232 0.067 0.169 0.406 0.090 0.037 0.105 ND(0.01) NA ND(0.01) NA 0.021 0.001 0.0004 0.005 0.012 0.001 0.0002 0.003 0.052 0.039 ND(0.01) 0.005 0.003 Sample collected after carbon absorption bed, but prior to discharge to the atmosphere Analytc wu not dct.cctcd above the detection/reporting limit. The number shown in parcnthcsca ia the detection/reporting limit A-15 == -- - DRAFT 0.400 0.230 5.71 0.47 0.109 0.073 0.361 0.0214 NA ND(0.01) NA ND(0.01) 0.021 0.012 0.049 0.028 0.009 0.005 0.023 0.013 - -- -- Analyt, Pcntachlorophcnol 2,4,5-Tricblorophcnol 2,4-Dicbloropbcool Phenol 3-Chlorophcnol 2 ,3, 4 ,5-T ctrachloropbcnol Chloropbcnols Dichlorophcool1 Trichlorophcnols Tctnchloropbcnola Nolel: - - ---l!!!!!I TABLE 8 BCD-KOPPERS DEMONSTRATION MTTD TESf RUNS ANALYTICAL RESULTS FOR SEMIVOLATILE ORGANIC COMPOUNDS (METHOD 8270) IN WATER SCRUBBER SAMPLES" (µg/1) I 50,000 150,000 170,000 9,900' 12,000"' 12,000" (14,000) (16,000) (16,000) 9,800-10,000" 9,900' (14,000) {16,000) (16,000) 150,000 160,000 160,000 83,000 JN{I) 68,000 JN(I) 64,000 JN(I) ND ND 42,000 JN{I) ND ND' ND 149,000 JN(2) 193,000 JN(2) 182,000 JN(2) 77,000 JN(2) 100,000 JN(2) 96,000 JN(2) 75,000 JN(2) 71,000 JN(2) 51,000 JN(I) Dd.eclcd at a concentration below the rcporting limit shown in parcnthcse1 Only Tentatively Identified Compouod1 (flC'1) that arc chlorinated phenol, are included in the table CW Condensed Scrubber Water SL Sample location number G Gn.b sample number D Field duplicate aamplc == 180,000 14,000- (14,000) 13,000"' (14,000) 150,000 ND ND ND 196,000 JN(2) 92,000 JN(I) 103,000 JN(2) ND Analytc waa not detected above tbc detection limit; the number shown in parentheses, when provided, i• the reporting limit. JN The analyai1 indicate, the preaencc of analytc for which there is preaumptivc evidence for a •tentative identification•. The aaaociatcd number ia an estimated value. The number i.n parentbcaea idcntifica the number of compounds which sum to the listed estimated concentration. A-16 --DRAFT --- Noles: TCDD TCDF P.cDD P.cDF HxCDD G cw 1 u -------TABLE9 BCD-KOPPERS DEMONSTRATION MTTD TESf RUNS !Bl ANALYTICAL RESULTS FOR PCDDs/Fs (METHOD 8280) IN SCRUBBER WATER SAMPLES (ng/1) Anal)'10 2,3,7,8-TCDD 2,460 1,840 1,880 Taul TCDD 90,200 67,000 65,400 2,3,7,8-TCDF 280 u 318 u 19.6 u Taul TCDF 12,400 1 10,200 1 9,160 1 Taul PeCDD 98,000 71,800 72,000 Taul PeCDF 11,900 I 8,820 I 9,220 1 Taul HxCDD 144,000 109,000 112,000 Taul HxCDF 12,200 I 9,100 I 8,800 I Total HpCDD 130,000 I 99,600 I 105,000 I Taul HpCDF 8,000 6,160 6,880 OCDD 108,000 1 83,400 I 81,800 I OCDF 2,720 2,100 2,060 Tctn.chlorinatcd dibenzo--p-diox.in HxCDF Hcxacblorinatcd dibcnzofunn Tctrachlorinated dibcnzofuran HpCDD Hcptachlorinated dibcozo-p-dioxin Pcn1Achlorinatcd dibcnzo-p-diox.in HpCDF Hcptachlorinatcd dibcnzofuran Pcotachlorinat.cd dibenzofuran OCDD Octachlorodibcnzo-p-diox.in Hcx.achlorinatcd dibcnzo-p-dioxin OCDF Octachlorodibcnzofuran Gnb a.ample number D Field duplicate sample Condensed acrubbcr water SL Sample location number The analytc waa po1itively identified. The associated number i.11 an estimated value. The analytc was analyzed for, but wu not detected ., 1hc level rcportc.d. A-17 --l!llm lliiiil liliil - - DRAFT 1,750 62,600 I I 7 u 9,060 I 69,200 7,880 I 101,000 8,840 1 109,000 I 6,440 95,400 1 1,890 - - - Notes: cw SL G D ND -- -- - - - l!!!!!!!I TABLE 10 BCD-KOPPERS DEMONSTRATION MTID TEST RUNS ANALYTICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS (METHOD 8240) IN WATER SCRUBBER SAMPLES' (µg/1) Analytc Chloromethanc 920 Acetone 11,000 6,300 Benzene 3,500 4-Mcthyl-2-pcntanone 220 2-Hexanone 1,300 Tolucoc 2,700 Ethylbcnzene 540 Styrene 1,000 Total xylcnca 1,900 Detected at a conccn1ration below the reporting limit shown in parcnthcaea Tc01ativcly Identified Compound, (TIC'1) arc not included in this table Condensed Scrubber Water Sample location number Grab sample number Field duplicate sample 950 11,000 7,100 4,900 ND (400) 1,300 3,200 460 940 1,500 Analytc waa not detected above the detection limit; the number ahown in parcnthcaea is the reporting limit. A-18 990' (1,000) 12,000 6,400 4,800 ND (1,000) 630' (1,000) 2,700 320' (500) 710 1,100 980 12,000 6,700 5,200 ND (400) 1,500 3,800 670 1,300 2,400 lilll --- DRAFT ----- - ----!!!!I =- Analytc TABLEU BCD-KOPPERS DEMONSTRATION MTID TEST RUNS ANALYTICAL RESULTS FOR GENERAL CHEMISTRY ANALYSES FOR SCRUBBER WATER SAMPLES Chloride (mg/I), Method E32S.3 2,100 2,130 pH, Method SW9040 2.26 2.20 TOC (mg/I), Method SW9060 1,100 983 TSS (mg/I), Method El60.2 630 586 Oil aod Gruac (mg/I), Method E413.2 3.79 4.26 Notes: CW Condensed Scrubber Water SL Sample location number G Grab 11.mplc number D Field duplicate aamplc A-19 2,040 2.23 990 464 3.45 - - DRAFT 2,120 2.23 916 623 2.97 - -- --··.-- --- - TABLEU 11!!!!!!!1 l!!!!lm Analyte PcntacbJorophcool 2,4,5-Trichloropbcool 2,4,6-TrichJoropbcool 2,4-Dicblorophcnol Phcool Tctrachlorophcool1 Trichloropbcnol• Dichlorophcnola 170,000 3,700 l,600U 660 I 820 I 26,000JN(2) BCD-KOPPERS DEMONSTRATION LTR TEST RUNS ANALYTICAL RESULTS FOR SEMIVOLATILE ORGANIC COMPOUNDS (METHOD 8270) LTR OIL SAMPLES' (pg/kg) TEST RUN I Input Output 170,000 180,000 15,000 3201' 4,100 4,600 2,000U 1,600 U 1,600 U 1,600 U 2,000 U l,600U 680 I 790 I 2,000 U 1,600 U 870 I 930 I 5,300 7,500 19,000 JN{l) 51,000 JN(2) 3,000 JN{l) ND 11,900 JN(2) 13,800 JN(2) 23,000 JN(2) ND ND 12,000 JN(2) 27,700 IN (3) 23,200 JN(2) ND ND A-20 == lliiil lliii -- - DRAFT CRE 1,600 U 96.92' 1,600 U l,600U 1,600 U 5,700 ND ND ND --- ---- --l!!!!!!!!I !!!I == ---TABLE 12 (Continued) DRAFT Notes: LTR SL G D ND IN u 1 Input Analyte Pc01&cblorophcool 1,700,000 1,700,000 2,4,5-Tricbloropbcnol 7,800 7,100 2,4,6-Trichloropbcool 1501 6401 2, 4-Dichlorophcool 1,4001 1,2001 Pb.cool 7301 6601 Tctnchloropbcnola 330,000 JN(l) 280,000 JN(l) Trichloropbcoola !13,7001N(3) 94,5001N(3) Dichloropbcnol 59,7001N(2) 48,9001N(2) CRE hued on avenge input and output conccntraliom Only acid portion waa analyzed TESTRUN2 Output 1,300,000 1,700,000 1,600 U l,600U 6,1001 7,200 1,600 U l,600U 6,600 U 1,600 U 1,600 U 1,600 U 6,600 U 1,3001 1,600 U 1,600 U 6,600U 7501 1,800 3,700 370,000 lN(l) 380,000 lN(l) ND ND 11S,0001N(2) 132,000 1N(2) ND ND 65,500 JN(2) 7!,1001N(2) ND ND The value abown ia below the instrument confidence level (415 µg/kg), and may therefore have an uncertainty that ia unusually high. LTR test run number Sample location number Gni.b sample number Field Duplicate a.ample Analytc wu not dct«:tcd l,600U 1,600 U 1,600 U 1,600 U 3,200 ND ND ND The analyaia indicates the presence of analytc for which there i• presumptive evidence lO make a •tentative identification•. The aasociated number ia an estimated value. The number in parcnthcaca idcntifica the number of compounda which mm to the Hated estimated concentration. The analytc wu anaJyzcd for, but wu DOt dct«tcd. The associated number ia the reporting limit. The analytc was po1itively identified. The aasociatcd number i1 an elti.matcd value bccauac it i1 below the reporting limit or b«auac of quality control problems. A-21 CRE ~99.96 - -----··-- Input 2,3,7,8-TCDD 594 J 571 J To<alTCDD 17,500 18,200 2,3,7,&-TCDF -46.6 U 45.1 U To<al TCDF 751 J 767 J To<al PcCDD 15,400 14,200 To<al PcCDF 233 264 J To<al HxCDD 13,100 12,500 To<al HxCDF 350 J 400U To<al HpCDD 9,850 10,300 To<al HpCDF 1,440 J 1,070 J OCDD 9,250 8,810 OCDF 166 331 U - - --TABLE 13 BCD-KOPPERS DEMONSTRATION LTR TEST RUNS ANALITICAL RESULTS FOR PCDDs/Fs (MEIBODS 8280, 8290) IN LTR OIL SAMPLES (ng/g) TEST RUN 1 Output 521 J 0.051 U 17,500 0.227U 56.7 U 0.042 U 658 J 0.084 U 13,800 0.328 U 275 U ' 0.211 J 12,200 0.047 J 143 0.551 J 9380 1.S40U 1,460 0.402 U 8,460 14 314 U 0.489 U A-22 0.237 U 0.237 U 0.090 U 0.090 U 0.253 U 0.075U 0.130 U 0.082 U 0.330 U 0.081 U 0.353 U 0.059 U llli --DRAFT 0.161 U 0.161 U 0.144 U 0.144 U 0.137U 0.171 U 0.167 U 0.126 U 0.222 U 0.093 U 0.969 U 0.208 U CJtE (~) :,: 99.99 :,: 99.99 NA :,: 99.99 :,: 99.99 99.97 99.99 99.99 :,: 99.98 :,: 99.99 99.84 :,: 99.96 - ---- Analyte 2,3,7,8-TCDD 5361 To<alTCDD 16,000 2,3,7,8-TCDF 106 U To<al TCDF 3151 To<alPoCDD 20,000 To<al PoCDF 1,0601 To<al HxCDD 20,300 To<al HxCDF 1,-400 I To<al HpCDD 17,200 To<al HpCDF 1,090 OCDD 17,800 OCDF 280 J Noles: LTR SL G -LTR. tell run number. -Sample location number. -Grab aamplc nwnber -Field Duplicate ,ample -Tctrachlorioatcd dibenzo-p..dioxin. 716 I 17,400 141 U 5151 20,900 3TI1 24,500 8411 19,300 1,160 19,600 415 I -- ---TABLE 13 (CONTINUED) TESTRUN2 Input 6081 6791 O.ISS U 9,230 19,200 0.242 U 81.8 U 93.7 U 0.097 U 8161 1,2901 0.097U 20,600 22,900 0.308 U 1,2001 6021 0.146U 21,100 28,300 0.195 U 1411 1,5901 0.126 V 17,200 19,500 0.556 U !,ISO 1,-4001 0.098 U 17,700 20,200 I.OS U 3111 4111 0.137 U D TCDD HpCDD LD HxCDD PoCDD OCDD 1 Hcptachlorinatcd dibenzo-p-dioxin TCDF -Tetra.chlorinated dibcnzofuran -Laborotory duplicatc 11.mplc. HpCDF Hcptachlorinatcd dibenzofun.n -Hcxachlorinatcd dibcnzo-p-dfoxin HxCDF Hexachlorinatcd dibenzofur11.n -Pcotachlorinatcd dibcnzo-p-dioxin PcCDF Pcntachlorinatcd dibcnzofuran -Octachlorodibcnzo--p--dioxin OCDF Octachlorodibcnzofuran -The analyte wu positively identified.. The auociatcd number ia an estimated value. u -The analyte wu a.na.lyzed for, but wu not detected at the level reported. A-23 l!!9 -- - DRAFT Output CRE (ll,) 0.245 U 0.142 U 0.163 U :. 99.98 0.389 U 0.164 U 0.322 U :. 99.99 0.139U 0.088 U 0.133 U NA 0.139 U 0.088 U 0.133 U :. 99.99 0.262 U 0.144 U 0.086 U >, 99.99 0.151 U 0.09 U 0.103 U :. 99.99 0.488 U 0.295 U 0.372 U :. 99.99 0.09U 0.139 U 0.095 U >, 99.99 1.12 U 0.509 U 0.659 U :. 99.99 0.128 U 0.117U 0.17 U :. 99.99 4.9U 1.S60U I.SIU >, 99.99 0.273 U 0.081 U 0.(89 U :. 99.99 I I TABLE 14 BCD-KOPPERS DEMONSI'RA TION LTR TESf RUN 1 DRAFT I ANALITICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS IN OFF-GAS SAMPLES, METHOD (ppbv) I I l, I, 1-Tricblorocthanc 1,2-Dichlorobcnzcnc u 1,2,4-Trichlorobcnzcnc 1,2,4-Trimcthylbcnzcnc I 1,3-Butadicnc 1 ,3-Dicblorobcnzcac I 1,3,5-Trimethylbcnzcoc Acctonitrilc I Ben,.cne Bromomcthanc • Chlorobcnzcnc I Chlorocthanc Chloromcthanc I Ethyl benzene Ethyl toluene I Methylene chloride m,p--Xylcne I o-Oclane o-Xylcoc I Propylene Tctnchlorocthcnc Toluene I· Vinyl chloride Notes: part, per billion by volume Result exceed■ imtrumcnt calibnlion range I ppbv B ND Analyte waa not detected above the detect.ion/reporting limit .shown in parcnthcac1. I I A-24 I 8,700 ND (3,500) ND (3,500) 14,000 ND (3,500) ND (3,500) 6,900 ND (35,000) ND (3,500) ND (3,500) ND (3,500) ND (3,500) ND (3,500) 56,000 19,000 ND (3,500) 120,000 180,000 71,000 1,100,000 E ND (3,500) 320,000 ND (3,500) I I I I H R I I I I I I I I I I I TABLE 1S BCD-KOPPERS DEMONSTRATION LTR TESf RUN 2 DRAFT ANALITICAL RESULTS FOR VOLATILE ORGANIC COMPOUNDS IN OFF-GAS SAMPLES, METHOD 1,2-Dichlorobcnzcoc 1,2,4-TrichJorobcnzcnc t ,3-Dichlorobcnzcnc 1,4-Dicblorobcnzcnc 2-Mctbylnaplhalcnc 2-Mctbylpbcnol 2,4-Dichloropbcnol 2,4-5-Trichlorophcnol 2,4,6-Trichloropbcool 4-Mctbylphcool Accoapbthylcnc Anthraccnc Bcnzoic acid Bcnzo(b)fluorantbcnc Beozo(k)Ouonmtbenc Benzel alcohol Beaz(a)anthraccnc Bcaz(a)pyrcne bi1(2-EthylhoxyQphlhala1e Butylbcnzylphthalatc Cluyscoc Dibcnzofuran Dicthylphthalatc DimctbylphathaJatc Di-o,.butylphthalatc Di-D-OCtylpbtbalatc Fiuoranthcnc F1uorenc Hcxacblorobcnzcnc hophoronc Napthalcnc Pcntachlorophcnol Phcnanthrcnc Phenol Pym,c Rc■ult i■ below aamplc-apccitic detection limit. dry ltandard cubic meter (µG/dsan) ·.· ill£ i i}•kt··r.Til'.i:i.illmi•1tt>•••••••••••··•·••····•· ND (2,050) ND (1,900) ND (2,310) ND (1,900) 28,035 ND (1,000) ND (1,830) ND (1,650) ND (1,650) ND (1,500) ND (1,350) ND (1,745) ND (12,400) ND (2,920) ND (3,220) , ND (1,970) ND (1,450) ND (1,670) ND (1,870) ND (2,000) ND (1,750) ND (1,750) ND (1,660) ND (1,080) 445 1 ND (1,140) 1,350 1 3,494 ND (1,010) ND (1,980) 68,740 ND (2,860) 10,830 2,840 1,952 docm ND Anal)'UI Wat not detected above the detection/reporting limit ahown in parcnthcae1. Rcaulll for analytca detected below the detection/reporting limit are reported and J-flagged. A-25 I I I I n D I I I I Noles: I I I I I I I I I LTR COND G TCDD TCDF HpCDD HpCDF HxCDD HxCDF PcCDD PcCDF OCDD OCDF u TABLE 16 BCD-KOPPERS DEMONSTRATION LTR TESI' RUN 1 ANALYTCAL RESULTS FOR PCDD/Fs (METHOD 8280) IN LTR CONDENSATE (ng/g) Analyto 2,3,7,8-TCDD TO!Al TCDD 2,3,7,8-TCDF TO!Al TCDF Total PcCDD Total PcCDP TOIAIHxCDD TO!Al HxCDF TO!Al HpCDD TO!Al HpCDF OCDD OCDF LTR Test Run number Coodematc from LTR Test Run 1 Grab aamplc number TctracbJorinatcd dibcnzo.p-dioxin TctnacbJorinatcd dibcnzofuran Hcptachlorinatcd dibenzo-p~ioxin Heptachlorinatcd dibcnzofuraa Hcxachlorinatcd dibcnzo.p-dioxin Hcxachlorinatcd dibcnzofuran Pcntachlorinated dibenzo-p-dioxin Pcntacblorinatcd dibenzofuran Octachlorodibenzo-.p-dioxin Octachlorodibcozofuran LTRl-COND-01 75.4 183 23.1 llO 288 202 261 ll7 275 904 433 '333 The analytc waa analyzed for, but wu oot detected at the level reported. A-26 u u u u u u u u u u u u DRAFT I I I I TABLE 17 BCD-KOPPERS DEMONSI'RA TION LTR TESf RUN 1 ANALYTCAL RESULTS FOR SEMIVOLATILE ORGANIC COMPOUNDS (METHOD 8270') FOR LTR CONDENSATE (pg/kg) ANALYSIS DATE: DRAFT I I Analytc LTRI-COND-GI IF=' ============r====ND======li PentachJorophenol I u I I I I I I I I I I I (12,000,000) Nous: ND Analytc waa not detected above the detection limit; the number shown in parcntbesea ia the reporting limit LTR. -LTR. lclf. run number COND -Condensate from LTR. Tell Run 1 G -Grab sample number -Only Telllltively Identified Compounds (TIC'a) that arc chlorinated phenols arc included in the table • A-27 I I I n D I I I I I I I I I I I PRC Environmencal Management, Inc. PAGE 26 Close Support Laboratory BCD SITE Demonstration Project n: 047-1123 Date: 09/02/93 Compound 2-Chlorophenol 24-Dichlorophenol 246-Trichlorophenol 2346-Tetrachlorophenol Pentachlorophenol ASC = MDL = ND = J = Chlorinated Phenols MDL (mg/kg) 0.4 0.4 0.4 0.4 0.8 Sample and Results --------TR-6 (9/02) ASC-1 ASC-2 (ug) (ug) ND ND ND ND ND ND ND ND ND ND Air Sample -Charcoal Method Detection Limit None detected above MDL Reported value is below MDL. Value should be considered an estimate I I I I n D I I I I I I I I I I I I PRC Environmental Management, Inc. Close Support Laboratory Report Form (Draft) BCD SITE Demonstration Project~: 047-1123 Date: 09/01/93 Dioxin And Furan Result Form Compound 2378 TCDF 2378 TCDD 12378 PCDF 12378 PCDD 123478 HxCDF 123478 HxCDD 1234678 HpCDF 1234678 HpCDD 12345678 OCDF & OCDD Total CDF & CDD compared to 2378 TCDD MDL c: ND= r'!.J Lo~ lo1.-l~o-<3 ~'L~ MDL ASC-1 ASC-2 (ug/m3) (ug/m3) (ug/m3) 0.1 ND 0,1 ND 0,1 ND 0.1 ND 0,1 ND 0.1 ND 0.1 ND 0.1 ND 0.2 ND 0.2 ND Method Detection Limit None detected above MDL ND ND ND ND ND ND ND ND ND ND PAGE 12 -1-- - - - - - - Field Logbook No. ff/)O(>C;, Date 1/t- 1 19 Q Project No. tJ9'>7',.-/f.2"</ ncn Project Name _ ___,/...,J'-=--'.1-../::::..._ ______ _ .. ' • s ' -l!!!!!!!!!!I !!!!!I == == liliilil liiii - I_ i Field Logbook No. /t TbDtJ b ~,cf.t;;-. q/~/'13 Project No. CJ 4 7 .•,:j;/.Z.,Cf; ,, Project Name /$ C 0 _L~_t../_1 1skt L~b~~-0_. ' I ___!._t·· . I /l o / ~,. ) -,~t66 .... " -·· ~~1~¢~01.1~rr-o -, l'c_C_ilj--~i-1·"-· l --g~i-.. ~ ~-:-~~,~~ --r ---i-~-I ~I --, -~-~~ff.-L '_j2(5J'1~ 81 H: 1" r_ ~.; :. ...:1·•-~ J"ll--i'J b~- .,. ,0 -~ ,,, .~r t1,,, •. b /7 ff.-., 19?~ ~-·-' -/.: . o,:~ , . V "- "'-, "' ,.,-:,. ''-·· -----'\. 7 ·-..:,--":-- l, " ~ '\ 91 \ ... -'\Yl'~ :~=}=:-.:: :.~:'.:: ' r. ------~-/ Field Logbook No. 11 rooor; _ Date __!lp/9~ • Project No. CJ(/.:2-:: //Z X' W·'.' .! 1_. BCD ,.., l l l .. I . ' , ' ' "· i • . Project Name µc° /)1 C) - - - -l!!!!!!!I l!!!!!!!!!il == -11111111!'.' r.· ' t:.,· . Field Logbook No. flTOOO(> J'~'•1b-~tJ':J._/z__J q3 Project No. (;Jq'7~r/2.V·' I Project Name J3 CO fJe Y)A Q