392SERBSF10,625

392SERBSF10,625

Site Name (Subject):	STARLING DAVID PROPERTY				
Site ID (Document ID):	NCD003185311				
Document Name (DocType):	Preliminary Assessment/Site Inspection (PA/SI)				
Report Segment:					
Description:	Screening Site Investigation Report				
Date of Document:	12/14/1989				
Date Received:					
Box: Enter SF and # with no spaces	SF10,625				
Access Level:	PUBLIC				
Division:	WASTE MANAGEMENT				
Section:	SUPERFUND				
Section.	SUPERFOND				
Program (Document Group):	SERB (SERB)				
Document Category:	FACILITY				
Print Report for Go to New	Go to New Record - Delete Record				
Record Blank Record	(default to last record values)				

State of North Carolina Department of Environment, Health, and Natural Resources Division of Solid Waste Management P.O. Box 27687 · Raleigh, North Carolina 27611-7687

James G. Martin, Governor William W. Cobey, Jr., Secretary William L. Meyer Director

December 14, 1989

Mr. Robert Morris EPA N.C. CERCLA Project Officer U.S. EPA Region IV Waste Division 345 Courtland Street, N.E. Atlanta, GA 30365

SUBJECT: Screening Site Investigation Report

SITE:

David Starling Disposal Site NCD 003185311 Route 2, Box 246 U.S. Highway 258 Farmville, Pitt County, NC 27828

Dear Mr. Morris:

Submitted herewith is the Screening Site Investigation Report for the David Starling Disposal Site. This report is based upon Superfund Section file documents, communication with persons knowledgeable of the site, and a site visit on 8-16-89.

From 1-6-71 until 3-31-71, a burial area at the David Starling property was used for disposal of 10,000 gallons of barium chromate, barium carbonate, and chromic acid. This waste was generated by Union Carbide (now EverReady) in Greenville, NC. The site is now inactive as a waste disposal area. No site remediation or waste removal has been performed at the site.

The Starling site is located in the Coastal Plain Physiographic Province and is underlain by sedimentary deposits to a depth of approximately 400 feet. Hydrologic connection throughout this sedimentary aquifer system is assumed because of the spatially discontinuous nature of the strata which comprise it. The sandy clay loam and loam clay soils on site belong to the Norfolk-Exum-Goldsboro soil association, and typically have permeabilities greater than 10E-3 centimeters per second. Depth to the seasonal high water table at the site is less than 10 feet. Mr. Robert Morris December 14, 1989 Page 2

The nearest drinking well to the site is located within 2000 feet of the burial area at the Starling residence. Based on information gathered during a visit to the site vicinity on 8-2-88, N.C. Public Water Supply Section records, and a USGS map house count, it has been estimated that approximately 6600 persons use ground water derived from within three miles of the site.

The site is situated in the Neuse River Drainage Basin, and the nearest surface water body to the site, Jacob Branch, is located 2500 feet to the south. Jacob Branch has been classified by the N.C. NRCD Division of Environmental Management as a Class C surface water body suitable for fish and wildlife propogation, secondary recreation, agriculture and other uses requiring waters of lower quality. There are no drinking water intakes within 15 miles downstream of the site.

While water from Starling's deep well does not appear to have been contaminated to date, monitoring well samples indicate that chromium levels of 170 ug/l and phenol levels of .014 mg/l exist in ground water at the site. Leaching of contaminants from the burial site, therefore, is occurring.

Please contact me at (919) 733-2801, if additional information is required.

Sincerely,

D. march Sum

D. Mark Durway, Hydrogeologist NC Superfund Branch Solid Waste Management Section

DMD/starl.si

NORTH CAROLINA

DEHNR/DSWM

David Starling Property NCD003185311 Screening Site Investigation December 1989

CERCLA

By: D. Mark Durway Hydrogeologist Superfund Section Division of Solid Waste Management

SCREENING SITE INVESTIGATION REPORT

David Starling Property NCD 083185311 Farmville, NC

December 1989

Superfund Section Division of Solid Waste Management North Carolina Department of Environment, Health and Natural Resources

Prepared by:

D. Mark Durway Hydrogeologist

TABLE OF CONTENIS

Executive Summary

1.0 Background

- 1.1 Location
- 1.2 Site Layout

- 1.3 Ownership History
 1.4 Site Use History
 1.5 Permit and Regulatory History
- 1.6 Remedial Actions to Date
- 1.7 Summary Trip Report

2.0 Environmental Setting

- 2.1 Topography
- 2.2 Surface Water
- 2.3 Geology, Soils, and Ground Water
- 2.4 Climate and Meteorology 2.5 Land Use
- 2.6 Population Distribution
- Water Supply
 Critical Environments
- 3.0 Waste Types and Quantities
- 4.0 Laboratory Data Summary

5.0 Toxicological and Chemical Characteristics

- APPENDIX A: MAPS AND PHOTOGRAPHS
- APPENDIX B: LABORATORY ANALYSES
- APPENDIX C: REFERENCES
- APPENDIX D: SITE INSPECTION FORM
- APPENDIX E: SITE SAFETY PLAN AND TOXICOLOGICAL DATA

EXECUTIVE SUMMARY

From 1-6-71 until 3-31-71, a burial area at the David Starling property was used for disposal of 10,000 gallons of barium chromate, barium carbonate, and chromic acid. This waste was generated by Union Carbide (now EverReady) in Greenville, NC. The site is now inactive as a waste disposal area. No site remediation or waste removal has been performed at the site.

The Starling site is located in the Coastal Plain Physiographic Province and is underlain by sedimentary deposits to a depth of approximately 400 feet. Hydrologic connection throughout this sedimentary aquifer system is assumed because of the spatially discontinuous nature of the strata which comprise it. The sandy clay loam and loam clay soils on site belong to the Norfolk-Exum-Goldsboro soil association, and typically have permeabilities greater than 10E-3 centimeters per second. Depth to the seasonal high water table at the site is less than 10 feet.

The nearest drinking well to the site is located within 2000 feet of the burial area at the Starling residence. Based on information gathered during a visit to the site vicinity on 8-2-88, N.C. Public Water Supply Section records, and a USGS map house count, it has been estimated that approximately 6600 persons use ground water derived from within three miles of the site.

The site is situated in the Neuse River Drainage Basin, and the nearest surface water body to the site, Jacob Branch, is located 2500 feet to the south. Jacob Branch has been classified by the N.C. NRCD Division of Environmental Management as a Class C surface water body suitable for fish and wildlife propogation, secondary recreation, agriculture and other uses requiring waters of lower quality. There are no drinking water intakes within 15 miles downstream of the site.

On 8-16-89, a site investigation was done at the Starling disposal site. While analyses show that water from Starling's deep well does not appear to have been contaminated to date, monitoring well samples indicate that chromium levels of 170 ug/l and phenol levels of .014 mg/l exist in ground water at the site. Leaching of contaminants from the burial area, therefore, is occurring.

1.0 BACKGROUND

1.1 Location

The Starling disposal site is located approximately 1100' west of the David Starling residence, which is located midway between the towns of Farmville and Fountain. The Starling's address is:

> Mr. and Mrs. David Starling Route 2, Box 246 Farmville, Pitt Co., NC 27828 Tel. (919) 753-3362

Site coordinates are 35° 38' 29" N latitude and 77° 37' 45" W longitude (App. A, maps 1 and 2).

1.2 Site Layout

The Starling disposal site is comprised of a $25' \times 100'$ burial area which is located in a field. This burial area is located immediately west of the Starling's former hog pens (App. A, map 3). There are six ground water monitoring wells in the vicinity of the burial area (Refs. 10,13).

The disposal area is situated approximately 800' west of the nearest residence, and about 1000' west of the Starling's 180' deep drinking well. This deep well was sampled during the site visit on 8-16-89 (Ref 11).

1.3 Ownership and Site Use History

During the period 1-6-71 to 3-31-71 a total of 10,000 gallons of barium chromate, barium carbonate, and chromic acid were buried in a field on the David Starling property (Refs. 9,10). This waste was generated by Union Carbide (now EverReady) of Greenville, NC, which payed Starling to accept and dispose of it. At the time, Starling did contract work for Union Carbide, such as mowing and landscaping. According to his son, Phil Starling, the reason Union Carbide needed the waste disposed of was that the Pitt County Landfill, which had been receiving the waste, refused to continue accepting it. David Starling was told by Union Carbide that the waste was completely harmless, and that it would "make the grass green," according to Phil Starling; on the contrary, he said, it killed some of Starling's cows and hogs. (It is assumed that these animals ingested the waste prior to its being completely buried). Phil Starling described the waste as an orange-yellow, chalky solid, though some of the waste was also liquid, he said (Refs. 1,11).

1.4 <u>Permit and Regulatory History</u>

Union Carbide of Greenville, NC installed monitoring wells at the site, monitoring is being conducted on a voluntary basis by EverReady. EverReady is sending analytical reports to the N.C. Department of Environment, Health, and Natural Resources (DEHNR) Division of Environmental Management in Raleigh, as these reports are generated (Ref. 13).

Apparently, the Starling disposal site was not issued permits to operate, and has never been regulated.

1.5 <u>Remedial Actions to Date</u>

Remedial action has not been taken at the Starling disposal site; however, a remedial action plan was developed, but never implemented (Ref. 9).

1.6 <u>Summary Trip Report</u>

On 8-16-89, a screening site investigation was conducted at the David Starling property. Present for the investigation were the following:

> D. Mark Durway, N.C. Superfund Jack Butler, N.C. Superfund Phil Starling, David Starling's son

Upon arriving at the site, Starling provided a tour of the area in which 10,000 gallons of barium chromate, barium carbonate, and chromic acid were buried in 1971 (Refs. 9,10). In addition, he provided background information about the site (Refs. 11,12).

It was observed that the disposal area was situated approximately 800' west of the nearest residence. This residence and several others on the Starling property were using water from a 180' deep well located approximately 1100' east of the burial area. A sample was collected from this well for laboratory analysis (Appendix B, analysis set 1).

A site inspection form is provided in Appendix D.

2.0 ENVIRONMENTAL SETTING

2.1 Topography

The Starling disposal site is located in the North Carolina Coastal Plain Physiographic Province on a broad, essentially flat, interstream divide. Site elevation is about 90' above mean sea level (App. A, map 1).

2.2 Surface Water

The Starling site is situated in the Neuse River Drainage Basin, and the nearest surface water body to the site, Jacob Branch, is located 2500 feet to the south (App. A, map 1). Jacob Branch has been classified by the N.C. DEHNR Division of Environmental Management as a Class C surface water body suitable for fish and wildlife propogation, secondary recreation, agriculture and other uses requiring waters of lower quality (Ref 7).

2.3 <u>Geology</u>, Soils, and Groundwater

The Starling site is underlain by sedimentary deposits to a depth of approximately 400 feet, where crystalline basement rock is encountered. Sedimentary deposits from the land surface down include: surficial sands of post-Pliocene age; gray marine clays and interbedded shell beds of the Pliocene Yorktown Formation; and interbedded sands and clays of the lower Cretaceous (Ref 10). Hydrologic connection throughout the sedimentary aquifer system is assumed because of the spatially discontinuous nature of the strata which comprise it.

The sandy clay loam and loam clay soils on site belong to the Norfolk-Exum-Goldsboro soil association, and typically have permeabilities greater than 10E-3 centimeters per second. Depth to the seasonal high water table at the site is less than 10 feet (Ref. 5).

2.4 <u>Climate and Meteorology</u>

Mean annual precipitation and mean annual lake evaporation of 48' and 41', respectively, provide for annual net precipitation of 7". The 1-year 24-hour rainfall in the area is approximately 3.4"' (Ref. 8).

2.5 Land_Use

Land use in the site vicinity is predominantly for agricultural purposes. Chief crops grown are tobacco, peanuts, corn, soybeans, cotton and cucumbers. Livestock production includes cattle, hogs, and chickens (Ref. 5).

2.6 <u>Population Distribution</u>

The Starling site is located midway between the towns of Farmville and Fountain in a rural area. Based on the town populations and a USGS map house count, population distribution around the site has been estimated as follows (App. A, map 1; Refs. 2,3,4):

25 persons within 0.25 miles 40 persons within 0.50 miles 150 persons within 1 mile 475 persons within 2 miles 1500 persons within 3 miles 6335 persons within 4 miles

The towns of Farmville and Fountain, which lie outside a three mile radius of the site, have populations of 4,834 and 473 persons, respectively (Ref. 3).

2.7 <u>Water Supply</u>

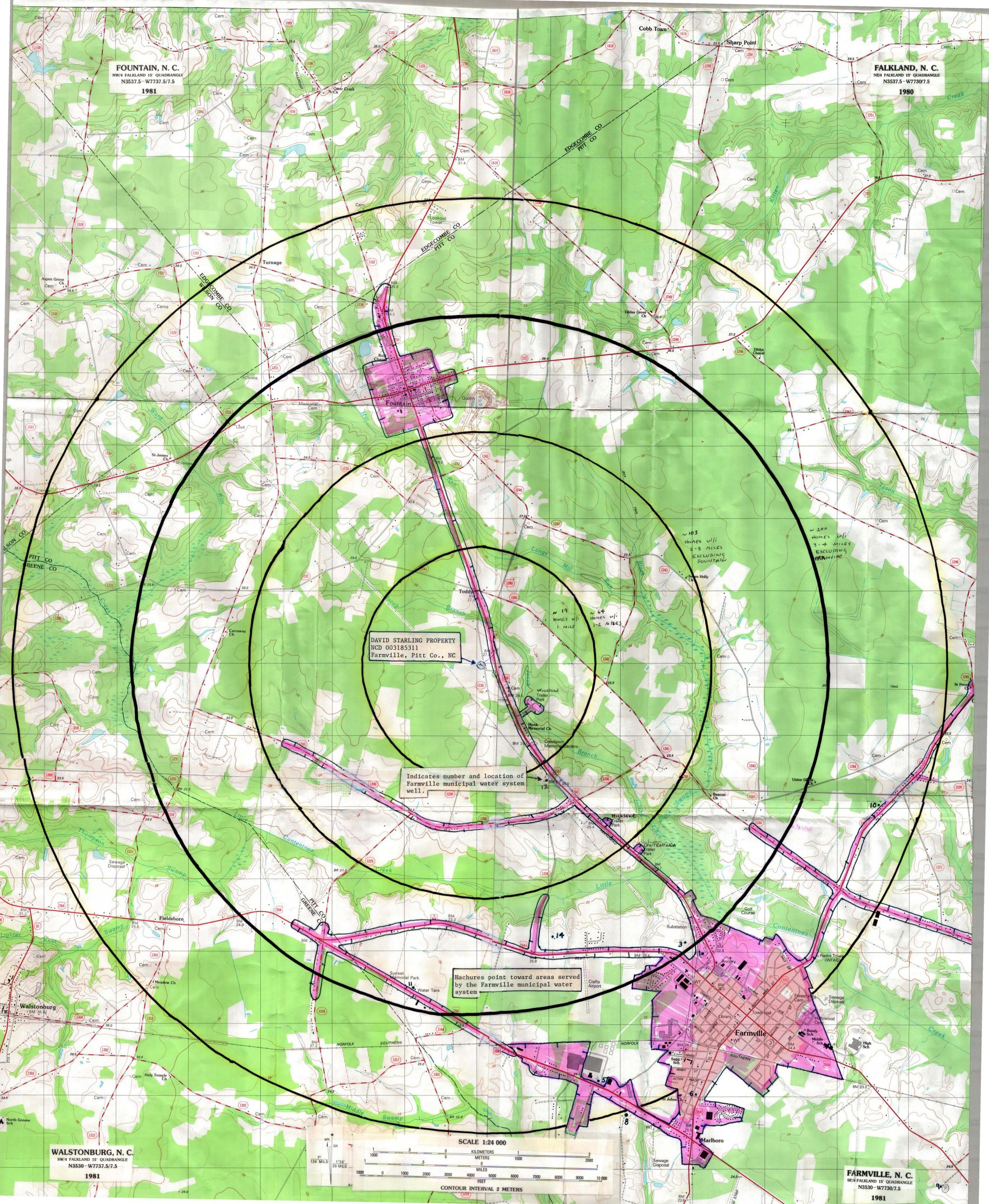
Based on information gathered during a visit to the site vicinity on 8-2-88, N.C. Public Water Supply Section records, and a USGS map house count, it has been estimated that approximately 6600 persons use ground water derived from within three miles of the site (App. A, map 1; Refs. 2,3,4). However, the majority of these persons live outside a three mile radius of the site. The explanation for this is that the Farmville municipal water system, which supplies 5900 of these people, has four of its wells within three miles of the Starling disposal site (App. A, maps 1 and 5). Water from these wells is pumped to a central distribution point where it mixes with water from other municipal wells on the system before being distributed to customers (Ref. 3). All customers, therefore, potentially use ground water derived from within three miles of the Starling disposal site. The town of Fountain, and some of the main rural roads in the site area, are also served by the Farmville municipal water system (App. A, map 1; Refs. 3,4).

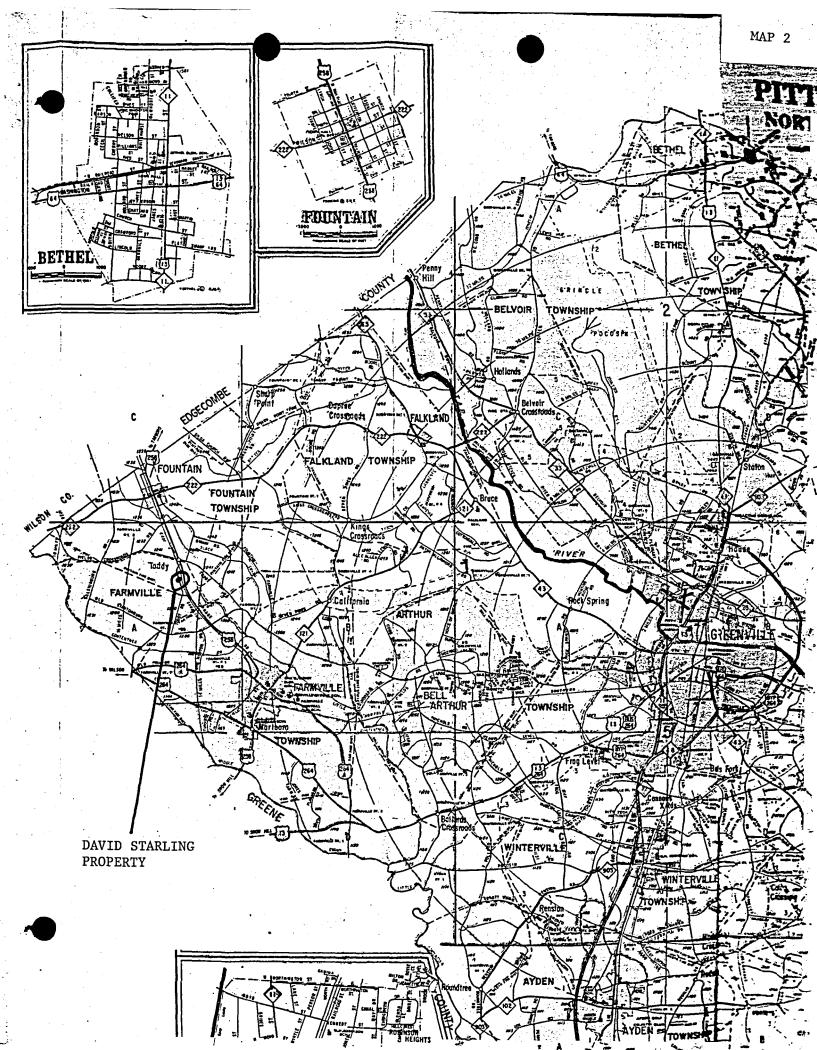
The Starling's 180' deep well, located 1100' from the disposal area, is the nearest drinking well to the site (Ref. 11).

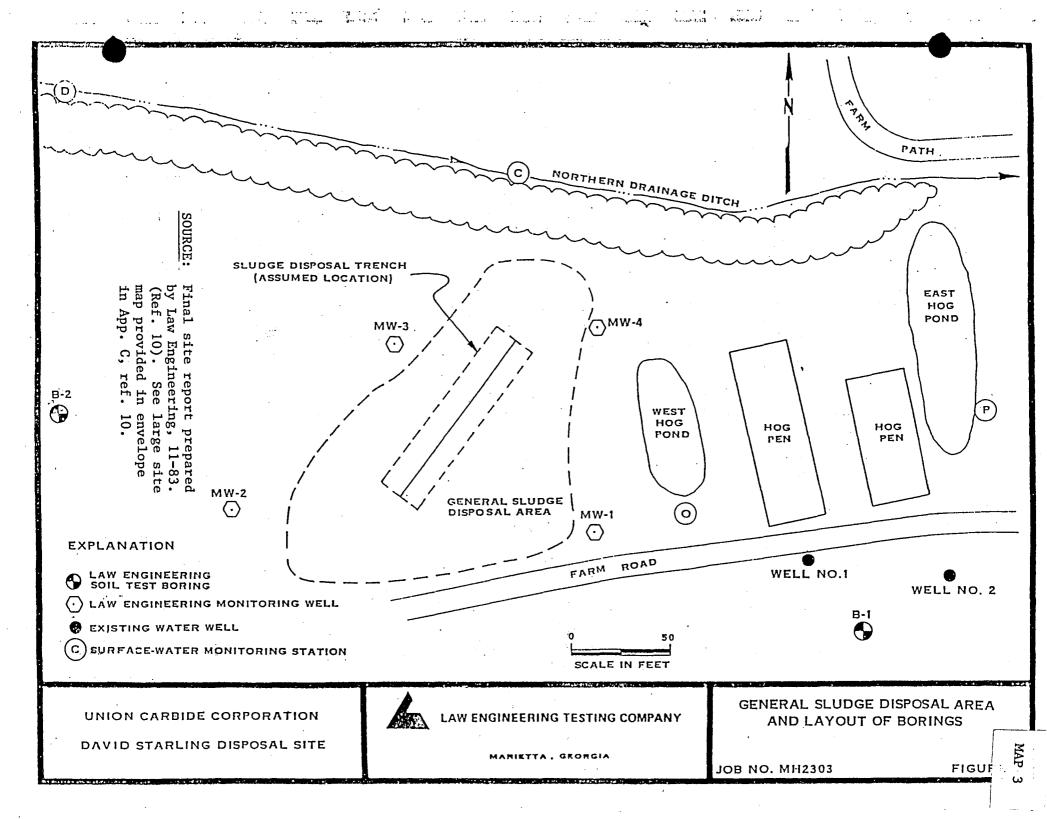
There are no drinking water intakes within 15 miles downstream of the site (App. A, map 4; Refs. 3,4).

2.8 Critical Environments

There are no fresh water wetlands or critical habitats within one mile of the Starling disposal site, based on current listings of the U.S. Fish and Wildlife Service (Ref. 6). However, wetlands exist within three miles of the site on Contentnea Creek (App. A, map 1). A total of 10,000 gallons of barium chromate, barium carbonate, and chromic acid were buried in a field on the David Starling property. This waste was generated by Union Carbide of Greenville, NC (Refs. 9,10)

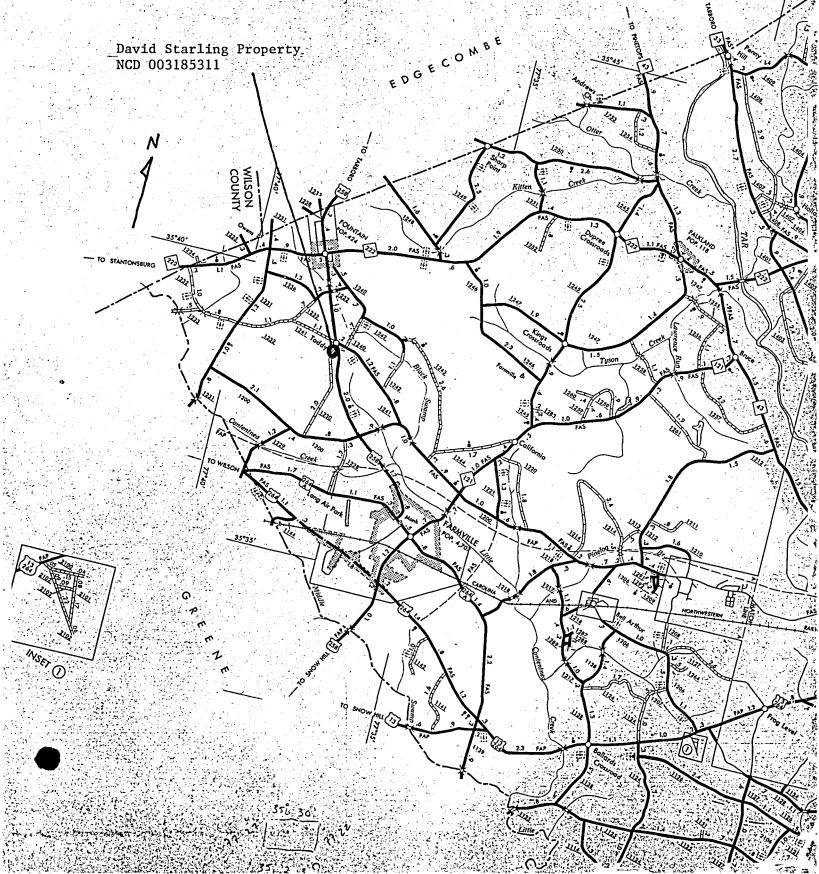

4.0 LABORATORY DATA SUMMARY

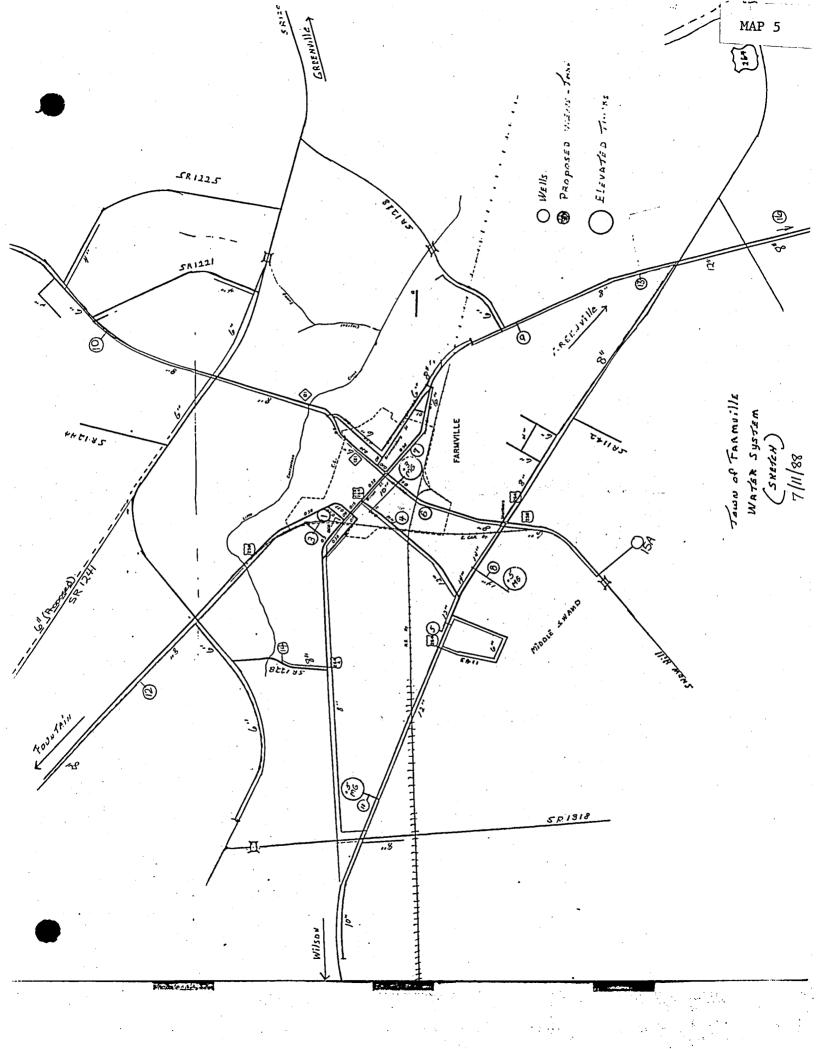

On 8-16-89, a site investigation was done at the Starling disposal site. Since many samples had been previously collected at and in the vicinity of the burial area, only a ground water sample was collected from Starling's drinking well during the investigation. Analysis of this sample shows that water from Starling's deep well does not appear to be contaminated (App. B, analysis set 1). Monitoring well samples collected in 1986 and 1983 indicate, however, that chromium levels of 170 ug/l and phenol levels of .014 mg/l do exist in ground water at the site (App. B, analysis sets 2 and 3). Leaching of contaminants from the burial area, therefore, is occurring.


5.0 TOXICOLOGICAL AND CHEMICAL CHARACTERISTICS

Toxicological and chemical characteristics of substances known or believed to be present at the Starling disposal site are discussed the Site Health and Safety Plan in Appendix E. APPENDIX A

MAPS AND PHOTOGRAPHS





COUNTY

SOURCE: NC DOT MAP (1984)

NC Public Water Supply Branch records indicate that there are no surface water intakes within 15 miles downstream of the site.

VARIOUS VIEWS OF THE DAVID STARLING PROPERTY DISPOSAL AREA, 8/16/89.

APPENDIX B

LABORATORY ANALYSES

ANALYSIS SET 1

N. C. Department of Hun Division of Health Servic		SAMPLE ANA	ALYSES REQUEST		aboratory of Public Hea P. O. Box 280 306 N. Wilmington Stre
Site NumberNCD	003185311		Field Sample Number	11570	Raleigh, 276
			Site Location		iff Co.
Collected By DUR	LW AY	_ ID#35	Date Collected	8/16/89	Time
Type of Sample:				8	
Environmental	Concentra	ate		Comments FD	
Groundwate	r (1) So	lid (5)	(1) Starlings	drinking well	
Surface Wa	ter (2) Lio	quid (6)	<u> </u>	SEP 2 5 1989	
Soil (3)	Sh	udge (7)		SUPERFUND BRANCH	
Other (4)	Ot	ther (8)			
		INORGAN	IC CHEMISTRY	(
Extrac	tables			otal	х.
Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver Parameter Parameter P&T:GC/MS Acid:B/N Ext. TOX		Arsenic Barium Cadmium Chloride Chromium Copper Fluoride Iron Lead Manganese Mercury Nitrate Selenium ORGANIC Parameter EDB PCB's Petroleum Endrin Lindane	$\frac{\langle 0.0 }{\langle 0.00}$ $\frac{\langle 0.00 }{\langle 0.005}$ $\frac{\langle 0.00 }{\langle 0.002}$ $\frac{\langle 0.002}{\langle 0.005}$ C CHEMISTRY Results mg/1	Parameter	<u>20.05</u>
	MICROBIOLOGY			RADIOCHEMISTR	
Parameter	1		Parameter	Result	s PCi/1
(MF) Coliform C (MPN) Coliform 		i	Gross Alpha Gross Beta 		
			I	9/19189	
Sate Received			_ Date Reported	11 1101	
Date Received			Date Applured	75 AUG 21 57	

2-1045	*	organic
6 1	N	

N. C. Department of Human Resources Division of Health Services

SUPERFUND BRANCH 401 OBERLIN ROAD

SAMPLE ANALYSES REQUEST

State Laboratory of Public Healt P. O. Box 2804 306 N. Wilmington Stree Raleigh, 2761

•	,				Raleigh, 276
			Field Sample Number		
Name of Site	DAVID STARLING	PROPERTY	Site Location	Farmville, Pitt	Co ,
Collected By	DURWAY	ID#35	Date Collected	. 8/16/89	Time
Type of Sample:	1				
Environmental	Concent	rate		Comments	
Groundwa	ater (1) S	olid (5)	() Starlin	g's drinking	wey
Surface W	Vater (2) L	iquid (6)		ADECEWED	-
Soil (3)	S	ludge (7)		RECEIVED	
Other (4)				SEP 8 1989	
			IC CHEMISTRY	SUPERFUND BRANCH	
Fytr	actables	INORGAN		Total	
		Parameter			D
Parameter	Results mg/1		Results mg/1	Parameter	Results mg/1
Arsenic Barium		Arsenic		Silver	
Cadmium		Cadmium		Zinc	
Chromium		Chloride		Ph	
Lead		Chromium		_ Conductivity	
Mercury		Copper		TDS	
Selenium Silver		Fluoride		TOC	
		Lead			· ·
		Manganese			
		Mercury			
	-	Nitrate			
		Selenium		-	
		ORGANI	CCHEMISTRY		
Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
P&T:GC/MS		EDB		Methoxychlor	
Acid:B/N Ext.		PCB's		_ Toxaphene	
TOX		Petroleum		2,4-D 2,4,5-TP (silvex	-)
		Lindane		2,4,3-11 (silvex	
	MICROBIOLOGY	7		RADIOCHEMISTR	v
Paramete			Parameter		ts PCi/1
	Colonies/100mls		Gross Alpha		
	m Colonies/100mls		Gross Beta		
(
					•
	UG 18 1989 BN	0		9-1-0-0	
Date Received	10 10 1989 Nr	×	Date Reported	1-1-87	· · ·
Date Extracted	n n	/	Date Analyzed8	3/25/89 JM	
Reported By	m K. Ned	l	_ Lab Number	902382	
DHS 3191 (Revised 7/85) Solid and Hazardous Wast	e (Review 7/87)	#90238	2-9023	83	

N. C. Department of	of Human Resources
Division of Health	Services

•

1-2l

SAMPLE ANALYSES REQUEST

State Laboratory of Public Healt P. O. Box 2804 306 N. Wilmington Stree Raleigh, 2761

	100 00010	F 3 1 1		11741	Raleigh, 276
			Field Sample Number _		B'H C
			Site Location		
	DURWAY	_ ID#	Date Collected	8/16/89	Time
Type of Sample:					
Environmental	Concentr	ate	\square	Comments	<i>(</i>)
Groundwa	ter (1) So	olid (5)	(1) Starling	s drinking	well
Surface W	ater (2) Li	quid (6)		RECEN	VED
Soil (3)	S1	udge (7)		0.0.0	1989
Other (4)	O	ther (8)	¢	SEP 8	1303
		INORGAN	NIC CHEMISTRY	SUPERFUND	BRANCH
Extra	ctables		T	otal	
Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
Arsenic		Arsenic		Silver	
Barium		Barium		Sulfates	
Cadmium		Cadmium		Zinc	
Chromium Lead		Chloride Chromium		Conductivity	
Mercury		Copper		TDS	
Selenium		Fluoride		TOC	
Silver		Iron			
	-	Lead			
		Manganese			
		Mercury			
		Nitrate Selenium			
		Selenium	~		
			CCHEMISTRY		٠
Parameter	Results mg/1	Parameter	Results mg/1	Parameter	Results mg/1
P&T:GC/MS		EDB		Methoxychlor	r
Acid:B/N Ext.		PCB's		Toxaphene	
TOX		Petroleum Endrin		2,4-D 2,4,5-TP (silv	ex)
	· · · · · · · · · · · · · · · · · · ·	Lindane		2,1,3-11 (Silvi	
	MICROBIOLOGY	1		RADIOCHEMIST	RY
Paramete	the second s	К.	Parameter		lts PCi/1
(MF) Coliform	Colonies/100mls		Gross Alpha		
(MPN) Coliform	n Colonies/100mls		Gross Beta		
Date Received AUG	18 1989 BQ		Date Reported		
Date Extracted	23-89 AA, JM,	BD,VP	Date Analyzed	1-89 BD	
Reported By				902383	
DHS 3191 (Revised 7/85) Solid and Harodous Weste	(Roview 7/87)				

STATE LABORATORY OF PUBLIC HEALTH DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES P.O. BOX 28047 - 306 N. WILMINGTON, ST., RALEIGH, N.C. 27611

ORGANIC CHEMICAL ANALYSIS

				C CHEMICAL A	WALYSIS					
BASE/NEUTRAL AND ACID	LAB NO	402	383							
EXTRACTABLES	FIELD #	117	40							
COMPOUND	TYPE	(/)	()	()	()	()	()
	UNITS	(ug/1	pa/ka	µg/1 µg/kg	ug/1 ug/kg	µg/l µg/kg	ug/1	ua/ka	ug/1	µg/kg
N-nitrosodimethylamine	10/330	A REAL PROPERTY OF THE PARTY OF	L			1	1			
bis(2-chloroethyl)ether	1						1			
2-chlorophenol						0.000				
phenol						R	+()F	IVF		
1,3-dichlorobenzene							+v-	1 7 1.		
1,4-dichlorobenzene							K CD	1484		
1,2-dichlorobenzene							The lot	1.00		
bis(2-chloroisopropyl)ether						SUI	EDELINI	0.00444		
hexachloroethane							EKLOW) RKAN	CH	
N-nitroso-di-n-propylamine										
nitrobenzene						1	1			
isophorone						1	1			
2-nitrophenol	1-1					+	1			
2,4-dimethylphenol	+					1	1			
bis(2-chloroethoxy)methane	+ +				+	1	1			
2,4-dichlorophenol						+	1			
1,2,4-trichlorobenzene							<u> </u>			
naphthalene										
hexachlorobutadiene										
4-chloro-m-cresol										
hexachlorocyclopentadiene										
2,4,6-trichlorophenol	1 1					+				
2-chloronaphthalene	1						1			
acenaphthylene										
dimethyl phthalate	1									
2,6-dinitrotoluene	1						+			
acenaphthene						1	1			
2,4-dinitrophenol	50/1650						+			
2,4-dinitrotoluene	30/1630									
4-nitrophenol	10/330									
	50/1650									
fluorene	10/330									
4-chlorophenylphenylether	+									
diethyl phthalate	FALLER									
4,6-dinitro-o-cresol	50/1650									
diphenylamine										
azobenzene	4									
4-bromophenylphenylether	10/330						I			
hexachlorobenzene	10/330						l			
pentachlorophenol	50/1650									
phenanthrene	10/330									
anthracene										
dibutyl phthalate			,							
fluoranthene		V			1					

MDL H20/SOIL

2

NA - Not analyzed. 1/ - Tentative identification. 2/ - On NRDC List of Priority Pollutants.

N.C. Division of Health Services DHS 3068-0 (4/86 Laboratory)

STATE LABORATORY OF PUBLIC HEALTH DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES P.O. BOX 28047 - 306 N. WILMINGTON, ST., RALEIGH, N.C. 27611

ORGANIC CHEMICAL ANALYSIS

BASE/NEUTRAL AND ACID	LAB NO	902383				1	
EXTRACTABLES	FIELD #	11740					
COMPOUND	TYPE	(1)	()	()	()	()	()
	UNITS	(µg/1) µg/kg	µg/1 µg/kg	µg/1 µg/kg	µg/1 µg/kg	µg/1 µg/kg	µg/l µg/kg
pyrene	10/330	u.					
benzidine	50/1650	1					
butyl benzyl phthalate	10/330						
benz(a)anthracene	1				The sea of		
chrysene					RH	FIVED	
3,3-dichlorobenzidine	50/1650					and to a side filling.	
bis(2-ethylhexyl)phthalate	10/330				SEP	8 1989	
di-n-octyl phthalate	10/330						
benzo(b)fluoranthene	50/1650				SUDEDE	IND RDANCH	
benzo(k)fluoranthene	1				OUTERF	DND BRANCH	
benzo(a)pyrene							
indeno(1,2,3-cd)pyrene							
dibenzo(a, h)anthracene							
benzo(g,h,i)perylene	V						
aniline	50/1650	U					
benzoic acid	1					1	
benzyl alcohol	11-						
4-chloroaniline	1						
dibenzofuran	10/330						
2-methylnaphthalene	101000						
2-methylphenol							
4-methylphenol	1						
2-nitroaniline	50/1650						
3-nitroaniline	100/1000						
4-nitroaniline							
2,4,5-trichlorophenol		1/					
						+	
						+	
						+	

MDL H20/501L

K = Actual value is known to be less than value given.
 L = Actual value is known to be greater than value given.
 U = Material was analyzed for but not detected. The number is the Minimum Detection Limit. MDL.
 NA = Not analyzed.
 1/ = Tentative identification.
 2/ = On NROC List of Priority Pollutants.

N.C. Division of Health Services DHS 3068-0 (4/86 Laboratory)

STATE LABORATORY OF PUBLIC HEALTH DIVISION OF HEALTH SERVICES, N.C. DEPARTMENT OF HUMAN RESOURCES P.O. BOX 28047 - 306 N. WILMINGTON ST, RALEIGH, N.C. 27611

Laboratory No.

2382

PURGEABLE COMPOUNDS

Date of Analysis

8/25/89

COMPOUND	µg/1
Dichlorodifluoromethane	И
Chloromethane	
√Vinyl Chloride	
Bromomethane	
Chloroethane	
Trichlorofluoromethane	
√1,1-Dichloroethylene	
Methylene Chloride	
tert-Butyl Methyl Ether	
(Trans) 1,2-Dichloroethylene	
Isopropyl ether	
1,1-Dichloroethane	
2,2-Dichloropropane	
(Cis) 1,2-Dichloroethylene	
Chloroform	
(BCM) Bromochloromethane	
√1,1,1-Trichloroethane	
1,1-Dichloropropene	
√Carbon Tetrachloride	
√Benzene	
√1,2-Dichloroethane	
√Trichloroethylene	
1,2-Dichloropropane	
Bromodichloromethane	
Dibromomethane	
Toluene	
1,1,2-Trichloroethane	
Tetrachloroethene	
1,3-Dichloropropane	
Dibromochloromethane	
1,2-Dibromoethane (EDB)	
1-Chlorohexane	V

COMPOUND	µg/1
Chlorobenzene	U
Ethylbenzene	
1,1,1,2-Tetrachloroethane	
p-Xylene	-
m-Xylene DECE	
o-Xylene	IVLL
Styrene	1000
Bromoform Oct O	1903
Isopropylbenzene	
1,1,2,2-Tetrachloroethane RFUN	DBRANCH
Bromobenzene	
n-Propylbenzene	
1,2,3-Trichloropropane	
2-Chlorotoluene	
1,3,5-Trimethylbenzene	
4-Chlorotoluene	
(Tert) Butyl Benzene	
Pentachloroethane	
1,2,4-Trimethylbenzene	
(Sec) Butyl Benzene	
p-Isopropyltoluene	
1,3-Dichlorobenzene	
√1,4-Dichlorobenzene	
n-Butylbenzene	
1,2-Dichlorobenzene	
(Bis) 2 Chloroisopropyl Ether	
1,2-Dibromo-3 Chloropropane	
1,2,4-Trichlorobenzene	
Hexachlorobutadiene	
Naphthalene	/
1,2,3-Trichlorobenzene	V
-	

COMMENTS:

MDL -- Minimum Detection Limit For water (EPA Method 502.2), is 1.0 µg/1.

J - Estimated value.

- K Actual value is known to be less than value given. L Actual value is known to be greater than value given. U Material was analyzed for but not detected.
- NA Not analyzed.
- 1/ Tentative identification. √ Regulated VOC I Trihalomethane

N.C. Division of Health Services DHS 3068-0 (1/89 Laboratory)

SOI	DIVISION OF HEALT ID AND HAZARDOUS WASTE		organic
·	Chain of Custod	v Record	×
	Hazardous Waste	Materials	
Location of Sampling:	Generator	Transporter	Treatment Facilit
	Storage Facility	Disposal Facil	ity Landfill
	Other: well		RECEIVED
Company's Name David			
Address Hury 25	8. Farmuille	Pitt Co	SUPERFUND BRANCH
Collector's Name D.			
Date Sampled 8	116/89	Time Sampled	
Type of Process Generat:			
Field Information	•		
Field Sample No. <u>//740</u>			
Chain of Possession:		ана ана Холтан	
1. <u>D. mark</u> signa 2. <u>Welliam M</u> signa	Ment	Hydroged tithe Chimist title	8/16 - 8/18/89 inclusive dates 8-18-89 inclusive dates
3signa	ture	title	inclusive dates
Results reported			
signa	ture	title	date
· · · · · · · · · · · · · · · · · · ·	e all applicable inform with analysis request f		gnatures, and

ANALYSIS SET 2

~			
COUNTY		ATURAL RESOUR	10G-868
QUAD NO. M-27 M SERIAL NO. N/A			1 100
QUAD NO. 112 1M SERIAL NO. 10/11	& COMMUNITY DI		RECEIVED 11/4/86 Time 2-00
LAT. <u>35°38'43*</u> LONG. <u>77°37'43</u>	DEM	() Rec'd	by: From: Bus-Courier
5	GROUNDWATER FIE	LD/LAB FORM Other	
Report to: ARO, FRO, MRO, RRO, WaRO, W	SAMPLE PR		ENTRY BY: The CK: DF
WSRO, Kinston FO Other	St. 8"		17-7-81
Shipped by: Bus, Courier, Other	BOUTINE I	EMERGENCY DATE	REPORTED: 12-2-86
COLLECTOR(S): R Powers DATE	11-3-86 1045		SPIT
JOLLECTOR(S): <u>RTBWOLG</u> DATE _		(circle one)	
FIELD ANALYSES	Owner EVEREADY	BATTERY CO. STARLING	FARM SITE
DH ₄₀₀ Spec. Cond. ₉₄ at 25 ⁰	C Location or site	WELL #1	
Temp. ₁₀ ——— ^o C Odor ———	_ Description of sampling point レム	11 = 0	41-7111
Appearance Taste	Sampling Method <u>SH</u>	DER Samp	ole Interval 7-24
Field Analysis By:	Remarks		
	Remarks COPY TO 1 BO	B CHEEK (pum	ping time, air temp, etc.)
LABORATORY ANALYSES			*
BOD ₅ 310 mg/l	Diss. Solids 70300 mg/l	Ag - Silver 1077 ug/l	Organochlorine Pesticides
COD High 340 mg/l	Fluoride 951 mg/l	Al - Aluminum 1105 ug/l	Organophosphorus Pesticides
COD Low 335 mg/l	Hardness:Total 900 mg/l	₩ Ba - Barium 1007 < 500 ug/l	
Coliform:MF Fecal 31616 /100ml	Hardness (non-carb) 902 mg/l	Ca - Calcium 916 mg/l	Acid Herdicides
Coliform:MF Total 31504 /100ml	Phenols 32730 ug/l	✓ Cd - Cadmium 1027 ≤ / ○ ug/I	
-TOC 680 mg/l	Specific Cond. 95 uMhos/cm ²	Chromium:Total 1034 / 70 ug/l	Base / Neutral Extractable Organics
Turbidity 76 NTU	Sulfate 945 mg/l	X Cu - Copper 1042 - / D ug/l	Acid Extractable Organics
	Sulfide 745 mg/l	Fe - Iron 1045 ug/I	
		Hg - Mercury 71900 ug/l.	Purgeable Organics (VOA bottle)
pH 403 units		K - Potassium 937 mg/l	4
Alkalinity to pH 4.5 410 mg/l		Mg - Magnesium 927 mg/l	1,2 - Dibromoethane (EDB)
Alkalinity to pH 8.3 415 mg/l		Mn - Manganese 1055 ug/l	1 Participant Provent
Carbonate 445 mg/l		Na - Sodium 929 mg/l	
Bicarbonate 440 mg/l	NH ₃ as N 610 mg/l	Ni - Nickel 1067 ug/l	4
Arsenic:Total 1002 ug/l	TKN as N 625 mg/l	Pb - Lead 1051 ug/l	SHEE
Carbon dioxide 405 mg/l	NO2 + NO3 as N 630 mg/l	Se - Selenium 1147 ug/l	- Contraction
Chloride 940 mg/l	P:Total as P 665 mg/l	X Zn - Zinc 1092 27 ug/1-	
Chromium:Hex 1032 ug/l			e Pro
Color:True 80 Pt-Co			

	\cap	\bigcap		10 970
DUNTY PITT	N.C.	URAL RESOUR	LAB NUMBER	<u> </u>
JAD NO. M-27M SERIAL NO. N/A	. & COMMUNITY DEVI		DATE RECEIVE	0/1/4/86 Time 80
T. 35°38'43" LONG. 77°37'43	DEM	(5)	Bec'd by	From: Bus Courier
2000			. 4	
port to: ARO, FRO, MRO, RRO, Wabo,	GROUNDWATER FIELD		Other	зу: <u>Эт</u> ск: <u>DF</u> 17-2-810
SRO, Kinston FO Other		RITY	DATA ENTRY	зү:/ <u>Лл</u> ск:Г
SHO, KINSTON FO Other		MERGENCY	DATE REPORT	Еb: <u>12-2-86</u>
inned by Bus (Courier, Other				
DLLECTOR(S): R. POWERS DATE	11-3-86 TIME 1170 PURPO	SE: BASELINE, COMPLAINT,	COMPLIANCE	LUST, OTHER SPLIT
	EVE OF OAN	(circle	e one)	
ELD ANALYSES	Owner EVEREADY	BHITERY CO.		
1400 Spec. Cond.94 at 25	C Location or site <u>STARLIN</u>	G FARM WELL	#2	
•				
mp. ₁₀ ^o C Odor		-0	_	3.5- 725
pearance Taste	Sampling Method <u>BAIL</u> F (pump, bai	ler, etc.)	_ Sample Interv	ريان (al مراب (al مراب)
eld Analysis By:	Remarks			
	CDPY TD: BOB	CHEEK	upumping time	, air temp, etc.)
ABORATORY ANALYSES				
BOD5_310 mg/l	Diss. Solids 70300 mg/l	Ag - Silver 1077	ug/l	Organochtorine Pesticides
COD High 340 mg/l	Fluoride 951 mg/l	Al - Aluminum 1105	ug/l	Organophosphorus Pesticides
COD Low 335 mg/l	Hardness:Total 900 mg/l	< Ba - Barlum 1007 < 500	ug/l	
Collform:MF Fecal 31616' /100ml	Hardness (non-carb) 902 mg/l	Ca - Calcium 916	mg/l	Acid Herdicides
Coliform:MF Total 31504 /100ml	Phenois 32730 ug/l	Cd - Cadmlum 1027 ∠/U	ug/1	<u>a an an</u>
TOC 680 mg/l	Specific Cond, 95 uMhos/cm ²	Chromium:Total 1034 < 25	ug/l	Base / Neutral Extractable Organics 😤
Turbidity 76 NTU	Sulfate 945 mg/1	Cu - Copper 1042 30:	ug/1 /	Acid Extractable Organics
	Sulfide 745 mg/l	' Fe - Iron 1045	ug/1	
	<u> </u>	Hg - Mercury 71900	ug/1 · ·	Purgeable Organics (VOA bottle)
pH 403 units		K - Potassium 937	mg/1	
Alkalinity to pH 4.5 410 mg/l	<u> </u>	Mg - Magnesłum 927		1,2 - Dibromoethane (EDB)
Alkalinity to pH 8.3 415 mg/l	. <u>+</u>	Mn - Manganese 1055	ug/1	
Carbonate 445 mg/l	<u>+</u>	Na - Sodium 929	mg/1	
Bicarbonate 440 mg/l	NH3 as N 610 mg/l	NI - Nickel 1067	1/gu	
Arsenic;Total 1002 ug/i	TKN as N 625 mg/l	Pb - Lead 1051	ug/i	
Carbon dioxide 405 mg/l	NO2 + NO3 as N 630 mg/l	Se - Selenium 1147	ug/1	W.
Chloride 940 mg/l	P:Total as P 665 mg/l	< Zn - Zinc 1092 36	ug/1-	AS, A
Chromlum:Hex 1032 . ug/l			──┤ ┝──┼	
Color:True 80 Pt-Co	╂──────┤ ┞			
Cuanta 200 mo/t				<
Cyanide 720 mg/l		······································		
b Comments:				& <u>`</u> 1985

For Dissolved Analysis - submit filtered sample and write 'DIS' in block White copy - Headquarters Pink copy - Region Yellow copy - Lab

GW-54 Revised 7/85

т. <u>35°38′43 ^с Long. 77</u>	<u>२१८भ3</u>	DEM	(4) Rec'd by: From: Bus Courier	
port to: ARO, FRO, MRO, RRO	WaRO.	GROUNDWATER FIE	D/LAB FORM Other CK: CK:	_
RO; Kinston FO Other		SAMPLE PF		
			EMERGENCY DATE REPORTED: 12-2-16	
pped by: Bus, Courier, Other		<u> </u>	그는 것 같은 것 같	
LLECTOR(S): KITUWERS	DATE .	11- 3-81 TIME 11 4.7 PU	POSE: BASELINE, COMPLAINT COMPLIANCE LUST, OTHER 5 PLIT	7.
ELD ANALYSES		EVEPFAD'	BATTERY CO.	
		1-1011		
400 Spec. Cond.94	at 25	C Location or site	IG FARM MIELL# 3	- (
^{mp.} 10 ^o C Odor	·	Description of sampling point		_~
pearance Taste		Sampling Method <u>RAILEI</u> (pump.	Sample Interval 31-23	<u> </u>
eld Analysis By:		Lpump, Remarks	aller, etc.)	
		CUPY TO' BOB	CHFFK (pumping time, air temp, etc.)	
BORATORY ANALYSES				
BOD ₅ 310 mg	<u>س</u> ا	Diss. Solids 70300 mg/L	Ag - Silver 1077 ug/l Organochlorine Pesticides at 191	ר יר
COD High 340 mg		Fluoride 951 mg/l	Al - Aluminum 1105 ug/l Organophosphorus Pesticides	-
COD Low 335 mg		Hardness:Total 900 mg/l	Ba - Barlum 1007 <500 ug/l	「於」
Colliform:MF Fecal 31616 /100	<u>ni</u>	Hardness (non-carb) 902 mg/l	Ca - Catcium 916 mg/l Acid Herdicides Constant Strategy	
Collform:MF Total 31504 /100	n1	Phenols 32730 ug/l	X Cd - Cadmium 1027 ✓ / D ug/l Image: second secon	
TOC 680 mg	씌 ┣	Specific Cond, 95 uMhos/cm ²	Chromium:Total 1034 <25 Ug/I Base / Neutral Extractable Organics	
Turbidity 76 N	븨 ┣-	Sulfate 945 mg/l	Cu - Copper 1042 / 3 ug/l Acid Extractable Organics	
	┥┝	Sulfide 745 mg/l	Fe - Iron 1045 ug/l	4
	_ -		Hg - Mercury 71900 ug/l Purgeable Organics (VOA bottle)	-
pH 403 uni Atkalinity to pH 4.5 410 mg			K - Potassium 937 mg/l Mg - Magnesium 927 mg/l 1,2 - Dibromoethane (EDB)	┦╰
Alkalinity to pH 8.3 415 mg		+	Mn - Manganese 1055 ug/l	
Carbonate 445 mg			Na - Sodium 929 mg/l	- H
Bicarbonate 440 mg		NH3 as N 610 mg/l	Ni - Nickel 1067 ug/l	1
Arsenic:Total 1002 u	//	TKN as N 625 mg/l	Pb - Lead 1051 ug/l]:
Carbon dloxide 405 mg		NO2 + NO3 as N 630 mg/l	Se - Selenium 1147 ug/l	
Chtoride 940 m	p/1	P:Total as P 665 mg/l	X Zn - Zinc 1092 /5 ug/1 D~ "ONED	
Chromium:Hex 1032 Ug				4
Cotor:True 80 Pt-0				1.1
	<i>и</i> I I I			<u> 1</u> 27
Cyanide 720 mg				

OUNTY PITT	N.C. PARTMENT OF NATURAL RESOUR	IBER 8 (06-81
UAD NO. M.Z.7 M SERIAL NO. NA		CEIVED ///4/82 Time 5.20
AT. 35'38'43" LONG. 77'31'	$\frac{1}{2}$ DEM $\left(\frac{2}{2}\right)$ Rec'd by	From: Bus Courier
eport to: ARO, FRO, MRO, RRO, Waß		
	SAMPLE PRIORITY DATA EN	NTRY BY: 52. CK: DF
SRO, Kinston FO Other	IN ROUTINE LI EMERGENCY DATE R	EPORTED: 12-2-86
hipped by: Bus, Courier? Other		
OLLECTOR(S): R. TOWERS DAT	E 11-3-86 TIME 10.55 PURPOSE: BASELINE, COMPLAINT, COMPLI	ANCE LUST, OTHER _ <u>SP211</u>
IELD ANALYSES	OWNER EVEREABY BATTERY CO.	
H400 Spec. Cond.04 at	25°C Location or site STARLING FARM WELL#	
emp. ₁₀ ^o C Odor		
	Barrelies Mathed BAILER	2-77
ppearance Taste	(pump, bailer, etc.)	Interval
ield Analysis By:	Remarks	ng time, air temp, etc.)
ARODATORY ANALYSES	<u>COPY TO! BOB CHEFK</u>	
ABORATORY ANALYSES	, 	
BOD ₅ 310 mg/l	Diss. Solids 70300 mg/l Ag - Silver 1077 ug/l	Organochlorine Pesticides
COD High 340 mg/l	Fluoride 951 mg/l Al - Aluminum 1105 ug/l	Organophosphorus Pesticides
COD Low 335 mg/l	Hardness:Total 900 mg/l × Ba - Barium 1007 × 500 ug/l	Acid Herdicides
Collform:MF Fecal 31616 /100ml	Hardness (non-carb) 902 mg/l Ca - Calcium 916 mg/l Phenols 32730 ug/l Cd - Cadmium 1027 / D ug/l	Acid Herdicides
Coliform:MF Total 31504 /100ml TOC 680 mg/l	Phenols 32730 ug/l Cd - Cadmium 1027 <th< th=""></th<>	Base / Neutral Extractable Organics
Turbidity 76 NTU	Sulfate 945 mg/l Cu - Copper 1042 U ug/l</td <td>Acid Extractable Organics</td>	Acid Extractable Organics
	Sullide 745 mg/l Fe - Iron 1045 ug/l	
	Hg - Mercury 71900 ug/l	Purgeable Organics (VOA bottle)
pH 403 units	K - Potassium 937 mg/l	•
Alkalinity to pH 4.5 410 mg/l	Mg - Magnesium 927 mg/l	1,2 - Dibromoethane (EDB)
Alkalinity to pH 8.3 415 mg/l	Mn - Manganèse 1055 ug/l	and the second
Carbonate 445 mg/l	Na - Sodium 929mg/l	
Bicarbonate 440 mg/l	NH3 as N 610 mg/l Ni - Nickel 1067 ug/l	194 1954 A
Arsenic:Total 1002 ug/l	TKN as N 625 mg/l Pb - Lead 1051 ug/l	
Carbon dioxide 405 mg/i	NO2 + NO3 as N 630 mg/l Se - Selenium 1147 ug/l P:Total as P 665 mg/l X Zn - Zinc 1092 Z 5' ug/l	
Chioride 940 mg/l Chromium:Hex 1032 ug/l	P:Total as P 665 mg/l X Zn - Zinc 1092 25 ug/l	
Color:True 80 Pt-Co		
Cyanide 720 mg/i		
Gyanide 720		
ab Comments:		
GW-54 Revised 7/85	For Dissolved Analysis - submit filtered sample and write 'DIS' in block White copy - Headquarters Pink copy - Region Yellow copy - Lab	
	minte copy meadquarters i nik copy negron remote copy "Lab	

	F NATURAL RESOUR GW LAB NUMBER 8
$\frac{1}{M_{2}} = \frac{1}{\lambda_{1/2}} = \frac{1}{\lambda_{1/2}} = \frac{1}{\lambda_{1/2}}$	
	F NATURAL RESOURCES GW LAB NUMBER 8
UAD NO. 11-2/14 SERIAL NO. 10/11 & COMMUNITY	Y DEVELOPMENT DATE RECEIVED/114186 TIME 8-02
AT. <u>35°38'43</u> LONG. 77°37'43"	EM (b) Rec'd by: From: Bus-courier
GROUNDWATER	FIFLD/LAB FORM
eport to: ARO, FRO, MRO, RRO, Ward, WIRO,	PRIORITY DATA ENTRY BY: DE CK: DE
SRO, Kinston FO Other XING, MIC, SAMPLE	EMERGENCY DATE REPORTED: 12-2-86
hipped by: Bus. Courier. Other	
OLLECTOR(S): <u>RIPOWERS</u> DATE <u>11-3-86</u> TIME <u>1215</u>	PURPOSE: BASELINE, COMPLAINT, COMPLIANCE LUST, OTHER SPLIT
IELD ANALYSES Owner EVERER	DY BATTERY CO.
H ₄₀₀ Spec. Cond. ₉₄ at 25 ^o C Location or site <u>STA</u>	RLING FARM WELL # 11
emp. 10OC Odor Description of sampling p	oint
ppearance Taste Sampling Method	1112ER
(pur	mp, baller, etc.)
ield Analysis By: Remarks	pumping time, air temp, etc.)
COPY TO: BOR	S CHEFK
ABORATORY ANALYSES	
BOD ₅ 310 mg/l Diss. Solids 70300 mg	// Ag - Silver 1077 ug/l Organochlorine Pesticides
COD High 340 mg/l Fluoride 951 mg	
COD Low 335 mg/l Hardness:Total 900 mg	
Colliorm:MF Fecal 31616 /100ml Hardness (non-carb) 902 mg	
Coliform:MF Total 31504 /100ml Phenols 32730 ug	
TOC 680 mg/l Specific Cond, 95 uMhos/cn	
Turbidity 76 NTU Sulfate 945 mg.	/I X Cu - Copper 1042 // ug/I Acid Extractable Organics
Sulide 745 mg/	/I Fe - Iron 1045 ug/I
	Hg - Mercury 7 1900 ug/l Purgeable Organics (VOA bottle)
pH 403 units	K - Potassium 937 mg/l
Alkalinity to pH 4.5 410 mg/l	Mg - Magnesium 927 mg/l 1,2 - Dibromoethane (EDB)
Alkalinity to pH 8.3 415 mg/l	Mn - Manganese 1055 ug/l
Carbonate 445 mg/l	Na - Sodium 929 mg/l
Bicarbonate 440 mg/l NH3 as N 610 mg/	/ Ni - Nickel 1067 ug/l
Arsenic:Total 1002 ug/l TKN as N 625 mg/	Ni - Nickel 1067 ug/l /l Pb - Lead 1051 ug/l
Carbon dloxide 405 mg/l NO2 + NO3 as N 630 mg/l	
Chloride 940 mg/l P:Total as P 665 mg/	
Chromium:Hex 1032 ug/i	
Color:True 80 Pt-Ca	
Cyanide 720 mg/i	
ab Comments:	
W-54 Revised 7/85 For Dissolved Analysis - submit White copy - Headquarters P	filtered sample and write "DIS" in block ink copy - Region Yellow copy - Lab

Barton had were the second and the

COUNTY 177	N.C. CPARTMENT OF NATURAL RESOUR	
UAD NO. M-27 M SERIAL NO. N/H	N.C. L'PARTMENT OF NATURAL RESOUR JEW LAB NUMBER 8	
UAD NO. 11 A / M SERIAL NO. 10/1	& COMMUNITY DEVELOPMENT	
AT. <u>35°38'43</u> LONG. <u>77°37'</u>	$\frac{43}{2}$ DEM (3) Rec'd by: 5 From: Bus-courier	
	GROUNDWATER FIELD/LAB FORM	<u></u>
eport to: ARO, FRO, MRO, RRO, WaR	O, WIRO, <u>SAMPLE PRIORITY</u> DATA ENTRY BY: CK: DF	
SRO, Kinston FO Other		
nipped by: Bus, Courier, Other	\square . ROUTINE \square EMERGENCY DATE REPORTED: $12 - 2 - 36$	<u></u>
DILECTORIS), R. POWERS DAT	E 11-3-86 TIME 1115 PURPOSE: BASELINE, COMPLAINT, COMPLIANCE LUST, OTHER SPLIT	
	(circle one)	-
ELD ANALYSES	Owner EVEREADY BATTERY CO.	
		-6
mp. ₁₀ ——— ^o C Odor ———	Description of sampling point	
pearance Taste	Sampling Method SAMPle Interval Sample Interval	
eld Analysis By:	Remarks	
· · ·	COPY TO: BOB CHEFK (pumping time, air temp, etc.)	
BORATORY ANALYSES		79.8
BOD5 310 mg/l	Diss. Solids 70300 mg/L Ag - Silver 1077 ug/l Organochiorine Pesticides	i.
COD High 340 mg/l	Fluoride 951 mg/l Al - Aluminum 1105 ug/l Organophosphorus Pesticides	7
COD Low 335 mg/l	Hardness:Total 900 mg/l X 8a - Barlum 1007 < 500 ug/l	128
Collform:MF Fecal 31616 /100ml	Hardness (non-carb) 902 mg/l Ca - Calcium 916 mg/l Acid Herdicides	
Coliform:MF Total 31504 /100ml	Phenols 32730 ug/l 🗙 Cd - Cadmium 1027 🖍 / D ug/l	18.2
TOC 680 mg/l	Specific Cond. 95 uMhos/cm ² X Chromium:Total 1034 275 ug/l Base / Neutral Extractable Organics:	
Turbidity 76 NTU	Sulfate 945 mg/l X Cu - Copper 1042 10 ug/l Acid Extractable Organics	
	Sulfide 745 mg/l Fe - Iron 1045 ug/l	
	Hg - Mercury 7 1900 ug/l Purgeable Organics (VOA bottle);	
pH 403 units	K + Potassium 937 mg/l	
Atkalinity to pH 4.5 410 mg/l	Mg - Magnesium 927 mg/l 1,2 - Dibromoethane (EDB)	4 -
Alkalinity to pH 8.3 415 mg/l	Mn - Manganese 1055 ug/l Na - Sodium 929 mg/l	
Carbonate 445 mg/l		
Bicarbonate 440 mg/l Arsenic:Total 1002 ug/l	NH3 as N 610 mg/l NI - Nickel 1067 ug/l TKN as N 625 mg/l Pb - Lead 1051 ug/l	-
Carbon dioxide 405 mg/l	INV as N 625 mg/l FO - Lead 1051 ug/l NO2 + NO3 as N 630 mg/l Se - Selenium 1147 ug/l	-
Chloride 940 mg/l	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+
Chromium;Hex 1032 Ug/l		기
Color:True 80 Pt-Co		ALC.
Cyanida 720 mg/l		
ab Comments:		
		<u> </u>

GW-54 Revised 7/85

.

For Dissolved Analysis - submit filtered sample and write 'DIS' in block White copy - Headquarters Pink copy - Region Yellow copy - Lab

ANALYSIS SET 3

COMPLIANCE MONITORING REPORT FORM

Environmental Management Division Groundwater Section P.O. Box 27687 Raleigh,N.C. 27611 (919)722-5082

Facility Name	Eveready Battery Co. Inc	(919)733-5083	County Pitt	ce by R.F. Helms 3/18/83
-	P. O. Box 1547		Permit Number: Varian	ce by R F Helms 3/18/83
	Greenville, N. C. 27834	4	Non-Discharge	
- Well Location		e, N. C.	NPDES	
-		Well Depth25Ft.	Water Use	
		ned) Interval <u>4</u> Ft. To <u>24</u> Ft.	Injection Well	
		w measuring point. (before sampling)		
	is 0.0 feet above land su		Other	
- · .	r pumped bailed before sam		<u> </u>	
Field Analysis:		nductanceuMhos Temp	18 °C Odor None	Appearance Tan
•		Date Lab Sample Analyzed	7/28/86	
		C	•	
		NO ₂ as N		
Coliform: MF Fe	ecal/100ml	NO 3 as N	mg/I Pb - Lead	mg/1
Coliform: MF To	otal/100ml	Phosphorus: Total as P		
Dissolved Solid	s: Total225 mg/l	Al - Aluminum	mg/I Pesticides/Her	bicides (Specify Compounds)
pH (when analyz	zed) 4.3 units	Ba - Barium0.183	mg/l	ug/l
тос	mg/I	Ca - Calcium	≝mg/l	ug/l
Chloride	43 mg/l	Cd - Cadmium	mg/l	ug/l
Arsenic	mg/l	Chromium: Total 005	mg/I Other (Specif	y)ug/(,;
Grease and Oils	s mg/l	Cu - Copper048	mg/l	ug/l
Hardness: Total		Fe - Iron	mg/l	ug/l
Phenol		Hg - Mercury	mg/1AUG	2 Jos ug/l
Sulfate		K - Potassium	mg/l ^{GROUND}	ug/1
Specific Condu		Mg - Magnesium	mg/l <i>RALE</i>	4 7 1986 ug/l WATER SECTION ug/l IGH, N. C
Total Ammonia	(NH ₃ t NH 4) mg/i	Mn - Manganese	mg/l Note:	
TKN as N	mg/l	Na - Sodium	mg/l	d reflect total concentrations.
I CERT	TIFY THAT THIS REPORT IS TRU		Values shoulSee back for in	
	mat	8/26/86	· · · · · · · · · · · · · · · · · · ·	nd green copies to address above.
NA	OF*PERMITTEE. (OR, AUT)	IORIZED AGENT *) DATE		

OMPLIANCE MONITORING	Environmental Management Di Groundwater Section P.O. Box 27687 Raleigh,N.C. 27611	vision
acility Name Eveready Batter	Co. Inc. (919)733-5083	CountyPitt
	·	Permit Number: Variance by R.F. Helms 3/18/83
Greenville, N. (Non-Discharge
ell Location <u>Starling Farm</u> , 1	armville, N. C.	
ell Identification Number	#2 Well Depth25Ft.	Water Use
ell Diameter <u>2"</u> Sampl	e (Screened) Interval <u>3.5</u> Ft. To <u>23.5</u> Ft.	Injection Well
epth to Water Level. 7.25	ft. below measuring point. (before sampling)	Well Construction
easuring point is feet above	land surface	Other
allons of water pumped bailed bef	pre sampling7	
ield Analysis: pH Spe	cific ConductanceuMhos Temp	<u>18</u> ^O C Odor <u>None</u> Appearance <u>Tan</u>
ate Sample Collected 7/28/86	Date Lab Sample Analyzed	7/28/86
aboratory NameEnvironment	C	Certification No10
OD	_ mg/l NO ₂ as N	mg/l Ni - Nickelmg/i
oliform: MF Fecal	/100ml NO ₃ as N	mg/l Pb - Leadmg/l
oliform: MF Total		mg/l Zn - ZincMg/l
issolved Solids: Total63		mg/I Pesticides/Herbicides (Specify Compounds)
H (when analyzed)4.3	_ units Ba - Barium0.11	
	•	
hloride 20		A A A A A A A A A A A A A A A A A A A
rsenic		
rease and Oils	•	4mg/lug/l*
ardness: Total	,,	
nenol0.008	_mg/l Hg - Mercury	mg/lug/l
ulfate7.0	_ mg/I K - Potassium	AUG Z. / IARD
0.00	uMhos Mg - Magnesium	AUGOND WHICK SECTION PROVIDENCE
otal Ammonia(NH ₃ t NH ₄)0.06	_ mg/I Mn - Manganese	Mote: #ALEIGH, N. C.
KN as N	_ mg/l Na - Sodium	mg/l Values_should_reflect_total_concentrations.
I CERTIFY THAT THIS REPOR	T IS TRUE AND ACCURATE.	See back for instructions
(non de		 See back for instructions Submit blue and green copies to address above.

In the second of the second of the second second second and the second s

OMPONCE MONITORING	Environmental Management Div Groundwater Section P.O. Box 27687 Raleigh,N.C. 27611	vision			•
acility Name Eveready Battery Co	(919)733-5083	County	Pitt		
Address <u>P. 0. Box 1547</u>		-		ice by R.F. Helms	and the set of the set of the
Greenville, N. C.	7834				The share is a straight the state of the sta
Vell Location Starling Farm, Farm		· N	PDES		
ell Identification Number#3		v. v	ater Use		
/ell Diameter2" Sample (Sci	•	1	njection Well		
epth to Water Level8.33 ft. t	• •				
easuring point is feet above land					
allons of water pumped bailed before s		•			
ield Analysis: pH Specific	ConductanceuMhos Temp	<u>18 °</u> C	Odor <u>None</u>	Appearance _	<u>Tan</u>
ate Sample Collected7/28/86	Date Lab Sample Analyzed	7/28	/86		<u></u>
aboratory NameEnvironment I	C	ertification	n No. <u>10</u>		<u></u>
DD mg	/I NO ₂ as N	mg/l	Ni - Nickel		mg/l.
oliform: MF Fecal/100	nl NO ₃ as N	mg/l	Pb - Lead		mg/1
oliform: MF Total/100	nl Phosphorus: Total as P	mg/l	Zn - Zinc	0.022	mg/l
ssolved Solids: Total241 mg	/ AI - Aluminum	mg/l	Pesticides/He	bicides (Specify Co	mpounds)
l (when analyzed) <u>5.6</u> uni	ts Ba - Barium 0.307	mg/I			ug/l
DC mg	•	mg/l			ug/l
hloride 60 mg	/ Cd - Cadmium	mg/l			ug/l
rsenicmg	·	mg/i	Other (Specif	(y) (y	ug/l
rease and Oilsmg		mg/l		R	ug/l.
ndness: Total mg	/I Fe - Iron	mg/l		IPI MIG STRAM	<u></u> ug/l,
enol 0.006mg	· ·	mg/I			ug/l
lifate mg	/I K - Potassium	mg/l		AUG 2 7 1986	ug/I+
pecific Conductance <u>278</u> uMho	s Mg - Magnesium	mg/l	· · · · · · · · · · · · · · · · · · ·	UVID WAT	ug/l
otal Ammonia(NH ₃ + NH ₄) $\frac{0.09}{1000}$ mg	/I Mn - Manganese	mg/l	Note	BALEIGH, N. C.	/#
KN as N mg	/I Na - Sodium	mg/l			
I CERTIEY THAT THIS REPORT IS T	RUE AND ACCURATE.			ld reflect_totaliconce	
(no 1	8/26/86	••	See back for i		
X vv and a		· .		and green copies to,ad	ILESS, augve.

where the second states in the second states and the second second second second second second second second se

and the second s

A.4.

and the second second

- 112 · · · ·

•
Variance by R.F. Helm 3/18/83
narge
e
Well
struction
<u>None</u> Appearance <u>Tan</u>
10
ickelmg/l
eadmg/1
inc 0.029mg/l
ides/Herbicides (Specify Compounds)
ug/l
ug/l
ug/l
(Specify)ug/l
ug/l
AUGO
AUG 2 7 1985 401 GROUND WATER SECTION 9/1 RALEIGH, N. C
RALEIGH, N. C.
e:
es should reflect total concentrations
back for instructions hit blue and green copies to address above.

	•		
COMPLIANCE MONITORING REPORT FORM	Environmental Management Di Groundwater Section P.O. Box 27687 Raleigh,N.C. 27611	vision	
Facility Name	(919)733-5083	County	
Address <u>P. 0. Box 1547</u>			ance by R.F. Helms 3/18/83
Greenville, N. C. 278			
	.le, N. C	NPDES	
Well Identification Number#11			
Well Diameter Sample (Scree	·	Injection Well _	and the second secon
Depth to Water Level 6.14 ft. bel		-	n
Measuring point is <u>2.60</u> feet above land s		Other	
Gallons of water pumped bailed before san	_	O (iiici	
	onductanceuMhos Temp	18 °C Odor Nor	e Annearance Tan.
Date Sample Collected7/28/86	Date Lab Sample Analyzed	7/28/86	
Laboratory NameEnvironment I		Certification No. 10	
COD mg/l	NO ₂ as N	ma/I_Ni-Nickel_	ma/l
Coliform: MF Fecal/100mi			
Coliform: MF Total/100ml	•	mg/ Zn - Zinc	0.012 mg/l
Dissolved Solids: Total 1319 mg/l	AI - Aluminum		
pH (when analyzed)5.8 units	Ba - Barium 0.537		ug/l
TOC mg/l	Ca - Calcium	mg/l	ug/
* Chloride 740 mg/l	Cd - Cadmium	mg/l	ug/l,
Arsenicmg/l	Chromium: Total <0.001	mg/l Other (Spec	if ug/l
Grease and Oils mg/I	Cu - Copper0,006	57mg/1	ug/l
Hardness: Total mg/l	Fe - Iron	mg/i	ug/l
Phenol 0.057 mg/l	Hg - Mercury	mg/i	100 2 17 1086 /
Sulfate mg/l	K - Potassium	mg/l	CROUND WATER SECTION UG/
Specific Conductance1563uMhos	Mg - Magnesium	mg/l	"RALEIGH, N. C. ug/l
Total Ammonia(NH ₃ + NH ₄) <u>0.84</u> mg/l	Mn - Manganese	mg/l	
TKN as N mg/i	Na - Sodium	mg/l	
I CERTIFY THAT THIS REPORT IS TRI	JE AND ACCURATE.		uld reflect total concentrations.
· Muchan	8/26/86	See back for	and green copies: to a ssabove:
♥	HORIZED AGENT *) DATE		

GW-59 Revised 7/85

with a server with serve

· constant

COMPLIANCE MONITORING REPORT FORM

Environmental Management Division Groundwater Section P.O. Box 27687 Raleigh,N.C. 27611

Facility NameEverea	dy Battery Co. I	nc. (919)	733-5083	County <u>Pitt</u>			
	Box 1547			Permit Number:	Variance by	R.F. Helms 3	3/18/83
	ille, N. C. 278	34		Non-Discl	narge		
Well LocationStarlin	ng Farm, Farmvil	1e, N. C.		NPDES			
Well Identification Number_	#12	Well Depth	Ft.	Water Us	ə ə		
Well Diameter 2"	Sample (Screen	ed) Interval <u>14.7</u> Ft.	To <u>24.3</u> Ft.	Injection	Well		245 A.Y. (1997)
Depth to Water Level9	<u>.58</u> ft. belo	w measuring point. (be	fore sampling)		truction		
Measuring point is 2.40	•			Other			
Gallons of water pumped b	ailed before samp	ling7	- <u> </u>		•		
		nductanceu		<u>18 ⁰ C</u> Odor	None	Appearance <u>1</u>	<u>'an 👘</u>
Date Sample Collected		Data Lab Sc	mole Analyzed	7/28/86			
Laboratory Name Env:	ironment I	,	C	Certification No	10		
COD		2					
Coliform: MF Fecal	/100ml	NO ₃ as N		mg/l Pb - L	ead		mg/1
Coliform: MF Total	/100ml	Phosphorus: Total a	s P	mg/I Zn - Z	inc	<0.010	mg/l
Dissolved Solids: Total	÷	AI - Aluminum		mg/I Pestic	ides/Herbicide	s (Specify Com	(pounds)
pH (when analyzed)	5.7 units	Ba - Barium		mg/l			ug/l
TOC	•	Ca - Calcium	·	mg/l			ug/l
Chloride	16 mg/l	Cd - Cadmium		•			ug/i
Arsenic	mg/l	Chromium: Total	0.001	mg/l Other	(Specify)		ug/l
Grease and Oils	mg/l	Cu - Copper	0.025	mg/1	- Paran		ug/l
Hardness: Total		Fe - Iron	- <u></u>	mg/i			<u></u> ug/l
Phenol	0.008mg/I	Hg - Mercury		mg/l	Allo		<u> </u>
Sulfate	mg/l	K - Potassium	·	mg/l	AUG 2 7 GROUND WATE RALEIGH,	1986	ug/l
Specific Conductance	<u>112.9</u> uMhos	Mg - Magnesium		mg/l	RALFIO	RSECTIO	úg/i
Total Ammonia(NH ₃ t NH ₄)	0.15 mg/l	Mn - Manganese		mg/l '	RALEIGH,	N. C.	
TKN as N	mg/l	Na - Sodium		ma/i	· · · · · · · · · · · · · · · · · · ·	ct total;concent	rations
I CERTIEY THAT TH	HIS REPORT IS TRUE	AND ACCURATE.	11		back for instructio		
- Min			8/26/86	· · ·		ns n copies to addre	ess above
	BMITTEE (OR. AUTH	ORIZED AGENT*)	DATE				
GW-59 Revised 7/85				- - -			

WERE CONTRACTOR STORES AND STORE

APPENDIX C

REFERENCES

REFERENCES

- 1) Preliminary Assessment form, David Starling Property, 11-21-84.
- 2) Durway, D.M., memo re. Farmville water system, 4-21-89.
- 3) Durway, D.M., memo re. Farmville area water supply, 4-21-89.
- 4) Durway, D.M., memo re. Preliminary Assessment Update site area visits for the David Starling Property and American Petrofina.
- 5) Soil Survey of Pitt County, North Carolina, USDA Soil Conservation Service, November 1984.
- 6) Parker, W.T., letter to P. DeRosa, 6-21-85, and attachments.
- 7) Classifications and Water Quality Standards Assigned to the Waters of the Neuse River Basin, Code 15 NCAC 2B .0315, N.C. NRCD Division of Environmental Management, current through 6-30-89.
- 8) Uncontrolled Hazardous Waste Site Ranking System: A Users Guide, originally published in the 7-16-82 Federal Register, U.S. EPA, 1984.
- 9) Nash, A.M., letter to D.M. Durway, 11-16-84, and attachments regarding the evaluation and proposed cleanup of the David Starling disposal site.
- 10) Final Report of Hydrogeological Assessment, David Starling Disposal Site, Pitt County, NC for Union Carbide Corporation, prepared by Law Engineering Testing Company, November 1983.
- 11) Durway, D.M., letter to R. Morris re. Screening Site Investigation Summary Trip Report, 8-21-89.
- 12) Durway, D.M., field notes, 8-16-89.
- 13) DeRosa, P. file memo re. David Starling Property, 5-6-88.

SEPA	OTENTIAL HAZAF PRELIMINARY 1 - SITE INFORMA	ASSES	SMENT				ICATION SITE NUMBE	
II. SITE NAME AND LOCATION								
D1 SITE NAME (Legel, common, or descriptive name of alle)		02 STREE	T, ROUTE NO., OF	RSPECI	IC LOCATION I	DENTIFIER		
David Starling Property		Rout	e 2, Box	246	(Hwy. 2	258N)		
D3 CITY		1	05 ZIP CODE	•			07COUN CODE	DIST
Farmville		NC	27828	Pi	tt		074	01
	ONGITUDE		•	.		•	,	
ODIRECTIONS TO SITE (Starting from nearest public road) From Farmville, take Hwy. 2581 Woodland Hills Mobile Homes Es 0.25 miles. At Starling's add UN AESPONSIBLE PARTIES	states (on rig cess (Box 246)	ght).	continue	an	addition	nal 🖅	•	
DI OWNER (# known)			T (Business, malling, I					
David Starling		Rout	ce 2, Box	246	(Hwy. 1	258 N).		ļ
Farmville	· · · · · · · · · · · · · · · · · · ·	04 STATE NC	05 ZIP CODE 27828		919 753			
OF OPERATOR (I known and different from owned) Union Carbide Corporation	· · · · · · · · · · · · · · · · · · ·		Box 154			eet Ext	ension	
Greenville	· · · · · · · · · · · · ·	10 STATE NC	11 ZIP CODE 27834		919 756			
IS TYPE OF OWNERSHIP (Check one) 又A. PRIVATE D B. FEDERAL:	(Agency name)			TE C	D.COUNTY	D E. MU		· ·
G F. OTHER:	ecily)	· · ·	🗆 G. UNK	NOWN				
		LED WAST	E SITE (CERCLA 10	03c) D	ATE RECEIVE	D: <u>6,9</u>) <u>, 81</u> []	C. NONE
DI ON SITE INSPECTION BY	(Check ell that apply)	A CONTRA ICIAL () C. ST.	·		CONTRACTO	DR
- \	NTRACTOR NAME(S):				.e	эр ө слуј	· · · · · · · · · · · · · · · · · · ·	_ 1
2 SITE STATUS (Check one) A. ACTIVE & B. INACTIVE C. UNKNOWN		1-6	-71 3-31	<u>-71</u> g year	C		1	
04 DESCRIPTION OF SUBSTANCES POSSIBLY PRESENT, KNO Berium carbonate, barium chro Wastes from sources other that possibility of various heavy r	WN.ORALLEGED nate & chromi n Union Carbi netals.	de Coi	l were di cporation	spos are	unknow	n of. A	lleged	
Law Engineering Testing Co. (1 of the David Starling disposa environmental hazard for surfa area."	l site in 198	3. and	i conclud	led t	hat was	te "doe	es not :	represe
V. PRIORITY ASSESSMENT			······		·		<u></u>	
I PRIORITY FOR INSPECTION (Check one. If high or medium is check A. HIGH (Inspection required promptly) B. MEDIUM (Inspection required promptly)	C.LOW			NE	Conditions and Inck n needed, complet		tion form)	
I. INFORMATION AVAILABLE FROM					<u> </u>			
1 CONTACT	02 OF (Agency/Organiz						03 TELEPHO	NE NUMBER
Albert M. Nash	P.O. Box						(216 3	33-0500
4 PERSON RESPONSIBLE FOR ASSESSMENT	05 AGENCY		ANIZATION	_	7 TELEPHONE		08 DATE	
0.W. Strickland	DHR	1	S&HW		919) 733		_11_/	2 <u>1/84</u> Day year
						. –		

1

REF 1

Æ	PA	РОТ		DOUS WASTE ASSESSMENT INFORMATION		I. IDENTIFICAT 01 STATE 02 SITE NC D003	
	TATES, QUANTITIES, AN	ID CHARACTER	STICS				
01 PHYSICAL S D A. SOLID D B. POWDE X C. SLUDGI D D. OTHER	E LÌG.GAS	MUSI DO TONS CUBIC YARDS	1 weste quentities independent) 10,000 gals. 542	O3 WASTE CHARACT S A. TOXIC S B. CORRO □ C. RADIOA L D. PERSIS	CTIVE G. FLAMI	BLE DI. HIGHLY TIOUS XJ. EXPLOS MABLE DK. REACT	SIVE IVE PATIBLE
III. WASTE T	YPE	- and con	itainers	l	<u> </u>	· <u>········</u> ···························	
CATEGORY	SUBSTANCE N	AME	01 GROSS AMOUNT	02 UNIT OF MEASURE	03 COMMENTS		······
SLU	SLUDGE		10.000	gal			
OLW	OILY WASTE	<u> </u>		ga	· · · · · · · · · · · · · · · · · · ·	<u></u>	·····
SOL	SOLVENTS			· · · ·			
PSD	PESTICIDES	<u> </u>			·	······································	
OCC	OTHER ORGANIC CH		<u> </u>				
100	INORGANIC CHEMIC		}	·			
ACD	ACIDS		Unknown		{		
BAS	BASES					······	·
MES	HEAVY METALS		. Unknown	· · · · ·		•	
	OUS SUBSTANCES (See Ag		1	<u>1</u>	· · ·	······	;
01 CATEGORY	02 SUBSTANCE N		03 CAS NUMBER	04 STORAGE/DIS	POSAL METHOD	05 CONCENTRATION	06 MEASURE OF
D005			US CAS NOMBER				
D005 D005	Barium Chromat Barium Carbona			Burial in		40-50%	<u>% volume</u>
D005	Chromic Acid	се	-	and conta	ainers	50-60%	
			11115745		·	Unknown	=
D009 D008	Mercury		7439976	11		11	<u> -</u>
D000	Lead		7439921	11		11	
	· <u>_ · · · · · · · · · · · · · · · · · · </u>		· · · · · · · · · · · · · · · · · · ·				
			· · · · · ·				
	•						
	•						
	· · · · · · · · · · · · · · · · · · ·				· · ·		
]				
V EEEDETO	CKS (See Appendix for CAS Numbe		L	L		l,	<u>I</u>
			02 045 110 1250	CATEGORY	04 FEEDOT	CK NAME	03.040.100
CATEGORY	01 FEEDSTOCH		02 CAS NUMBER		01 FEEDSTC		02 CAS NUMBER
FDS	N/A			FDS			
FDS	· · · · · · · · · · · · · · · · · · ·			FDS			
FDS		·		FDS	···		
FDS		·	l	FDS			
VI. SOURCES	SOF INFORMATION (CR+)	apecific references, e.g.,	slate liles, sample analysis, r	eports)			
1. Cerc 2Albe	la Notficiation rt M. Nash, Env	n, 6-9-81, Vironmental	from F.M. C Coordinato	harles. r, Union Ca	rbide Corp.	, Rocky Rive	r. OH

3 Lab Analysis Results from: Union Carbide Corporation; Environment I, Inc. (Greenville, NC); N.C. Div. of Health Services State Lab of Public Health.

EPA FORM 2070-12 (7-81)

		•
POTI POTI	ENTIAL HAZARDOUS WASTE SITE	1. IDENTIFICATION
	PRELIMINARY ASSESSMENT	NC DO03185311
	ON OF HAZARDOUS CONDITIONS AND INCIDEN	
II. HAZARDOUS CONDITIONS AND INCIDENTS		
01 EI A. GROUNDWATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED:	IC 04 NARRATIVE DESCRIPTION	D POTENTIAL D ALLEGED
None detected in nearby drink beneath site.	king wells. Possible g-w contamin	nation directly
		-
01 D B. SURFACE WATER CONTAMINATION 03 POPULATION POTENTIALLY AFFECTED:	02 DOBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	D POTENTIAL D ALLEGED
	water standards at surface puddl ng water standards at surface pud	
	02 D OBSERVED (DATE:)	
03 POPULATION POTENTIALLY AFFECTED: NOT	04 NARRATIVE DESCRIPTION	
01 D. FIRE/EXPLOSIVE CONDITIONS 03 POPULATION POTENTIALLY AFFECTED: Unker	10WD - 02 DOBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	POTENTIAL ALLEGED
Chromic acid may explode on c contact with organic material	contact with reducing agents, and s.	may ignite upon
	02 [] OBSERVED (DATE:)	
03 POPULATION POTENTIALLY AFFECTED: UNK	nown 04 NARRATIVE DESCRIPTION or containers; accidental unearth	ing of these could
occur in lucure.		
	02 () OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	
•		
	02 🖸 OBSERVED (DATE:)	
03 POPULATION POTENTIALLY AFFECTED:NC	DIE 04 NARRATIVE DESCRIPTION	
None detected in nearby drink	king wells to date.	
01 D H. WORKER EXPOSURE/INJURY Unkn 03 WORKERS POTENTIALLY AFFECTED:	10W1 02 D OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	
No known danger at present.		
01 I. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED: Unkar	02 DOBSERVED (DATE:) 00WD 04 NARRATIVE DESCRIPTION	DPOTENTIAL DALLEGED
No known danger at present		· · ·
	· · · ·	
	<u>.</u>	

 $r \cdots b$

EPA FORM 2070-12 (7-81)

	AZARDOUS WASTE SITE NARY ASSESSMENT	I. IDENTIFIC	TE NUMBER
	ZARDOUS CONDITIONS AND INCIDENT	rs <u>NC</u> <u>D</u>	003185311
I. HAZARDOUS CONDITIONS AND INCIDENTS (Continued)	· · · · · · · · · · · · · · · · · · ·		
01 □ J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION	02 🖸 OBSERVED (DATE:)		D ALLEGED
Unknown			
D1 IK. DAMAGE TO FAUNA D4 NARRATIVE DESCRIPTION (include name(s) of species)	02 🗋 OBSERVED (DATE:)		
Unknown			
01 D L. CONTAMINATION OF FOOD CHAIN 04 NARRATIVE DESCRIPTION	02 DOBSERVED (DATE:)		
Unknown		· .	
01 DM. UNSTABLE CONTAINMENT OF WASTES (Spatis/www.if/standing injuids/iesking drums) 03 POPULATION POTENTIALLY AFFECTED: UNKNOWN	02 DOBSERVED (DATE:) 04 NARRATIVE DESCRIPTION		
10,000 gallons of sludge, and poss In time, drums and containers will OI D N. DAMAGE TO OFFSITE PROPERTY 04 NARRATIVE DESCRIPTION	ibly liquids, are buried in <u>leak or deteriorate</u> 02 D OBSERVED (DATE:)	D POTENTIAL	and container
Unknown	• •		
01 D O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTP 04 NARRATIVE DESCRIPTION	s 02 🗆 OBSERVED (DATE:)		D ALLEGED
Unknown			
01 D P. ILLEGAL/UNAUTHORIZED DUMPING 04 NARRATIVE DESCRIPTION	02 🗆 OBSERVED (DATE:)	D POTENTIAL	
Presumed legal during time period	that site was active.		
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLE	GED HAZARDS	-	
It is unknown as to whether wastes Corporation, were ever buried on t property.			
II. TOTAL POPULATION POTENTIALLY AFFECTED:Unk	nown		
V. COMMENTS			
Lab analysis results, which were a are often contradictory; thus thei			
. SOURCES OF INFORMATION (Cate specific references, e. g., state flee	, semple enalysis, reports)		
 Hydrogeological assessment report Testing Co., prepared for Union The Condensed Chemical Dictional As previously sited. 	Carbide Corp., 1983.	osal Site by	Law Engineer

.

EPA FORM 2070-12 (7-81)

...

2

;

REF 2

April 21, 1989

TO: FILE

FROM: D. MARK DURWAY

RE: FARMVILLE WATER SYSTEM

Current NC Public Water Supply Branch records indicate that the Farmville water system has 2380 connections, and serves a total of 5900 persons.

TO: FILE

FROM: D. MARK DURWAY

RE: FARMVILLE AREA WATER SUPPLY

On 8-2-88, Pat DeRosa, Ed Wallingford, and I spoke to William Baker of the town of Farmville (pop. 4,834), who told us the following regarding the Farmville municipal wells:

- 1) No city wells pump from depths less than 200'.
- Some city wells are within 3 miles of the David Starling property.
- 3) City wells pump 250-400 gpm.
- 4) City well depths range from about 300'-350' deep.
- 5) It is not possible to know how many persons a given city well serves. Water from city wells located within 3 miles of the David Starling property may potentially be consumed by anyone served by the Farmville water system.
- 6) Fountain (pop. 473) purchases water from Farmville The person in charge of the Fountain water supply is Bob Drew (tel. 919/749-7311).
- Surface water is not used for drinking in the Farmville area.

On the same day, Mike Bell of the NC Public Water Supply said that Highland, Contentnea, and Woodland Hills mobile home parks, located along NC 258 between Farmville and Fountain, no longer use their wells. These mobile home parks purchase water from the Farmville city water system. August 3, 1988

TO: DEFILE

FROM: D. MARK DURWAY

RE: PAUssite area visits for the David Starling Property and American Petrofina

Yesterday, PAU site area visits were conducted for the David Starling Property (NCD 003185311) in Farmville and American Petrofina (NCD 000770032) in Selma.by Mark Durway, Pat DeRosa, and Ed Wallingford. A summary of events in the order in which they occurred is as follows:

- Departed for Greenville at 8:00AM. Met Mike Bell of the NC Public Water Supply Branch in Greenville. Bell showed us where all community water wells within 4 miles of the Starling site were located saffle said there were no surface water drinking supplies within 4 miles for of the site.
- 2) Drove west to Farmville, then drove by Starling property. We were unable to see the burial areas from the highway where we stopped. Continued north to Fountain.
- In Fountain, I spoke to Bob Drew of the Town of Fountain. Drew showed me on my USGS map where the town's water lines were located. He said that the town purchases water from Farmville. The Fountain wells were no longer in use, he said. Afterwards, drove back to Farmville and got additional water supply info from William Baker of the Town of Farmville.
 Drove west to Selma, located American Petrofina (now Fina), and the
- 4) Drove west to Selma, located American Petrofina (now Fina), and the nearest well. The nearest well is located at an old home on HWY 70A at a distance of approximately 1200' southwest of the southern-most Fina bulk storage tank. Arrived at our point of departure at 5:10PM.
- cc. Pat DeRosa (dallo) Grover Nicholson Lois Walker

REF 4

SOIL SURVEY

REF 5

Pitt County North Carolina

UNITED STATES DEPARTMENT OF AGRICULTURE Soil Conservation Service In cooperation with NORTH CAROLINA AGRICULTURAL EXPERIMENT STATION Issued November 1974

PITT COUNTY, NORTH CAROLINA

TABLE 10.—Probabilities	of last freezing temperat	ures in spring	and first in fall
65. [[Å]	a from records obtained at	Greenvillel	

Probability	Dates for given probability and temperature							
	16° F. or lower	20° F. or lower	24° F. or lower	28° F. or lower	32° F. or lower			
Spring: 1 year in 10 later than 2 years in 10 later than 5 years in 10 later than Fall: 1 year in 10 earlier than 2 years in 10 earlier than 5 years in 10 earlier than 5 years in 10 earlier than	February 28 February 15 January 25 November 9 December 13 December 24	March 11 February 28 February 12 November 23 November 29 December 10	March 23 March 14 February 25 November 10 November 16 November 27	April 6 March 29 March 15 October 30 November 5 November 16	April 16 April 9 March 26 October 19 October 26 November 5			

Cloudiness is variable. The sun shines, on the average, more than half the total number of daylight hours in winter and nearly two-thirds of the total number of daylight hours in other seasons. The average relative humidity is about 85 percent at sunrise, and it drops to about 50 percent by midafternoon.

Tropical storms only occasionally retain destructive force when they move inland as far as Pitt County. Highest winds more often result from thunderstorms in summer than from tropical storms. Such winds are local and are of brief duration. Direction of surface winds is variable in all seasons, but the direction of prevailing winds is from the southwest. In autumn, however, northeasterly winds are a close second. The average surface windspeed is about 8 miles per hour.

Industry and Transportation

In 1967, 75 industrial plants were located in Pitt County. In that year industries provided employment to about 4,200 persons. Tobacco, wearing apparel, lumber, plastics, and processed foods were among the products manufactured.

Public transportation in the county is provided by railroads, buslines, and numerous interstate and intrastate trucking lines. In addition, a municipal airport serves the county.

Cultural Facilities

Among the cultural, recreational, educational, and religious facilities in the county are many civic clubs, an active wildlife club, several golf courses and country clubs, a riding academy, more than 100 churches, and numerous Home Demonstration and 4-H clubs. The Greenville Art Center, the summer and winter playhouses, and the theater at East Carolina University, and the educational courses available at that school and at Pitt Technical Institute all enhance the cultural development of the county. Clinics and rehabilitation facilities are available for health care.

Farming

The growing season in Pitt County is long enough that tobacco, peanuts, corn, soybeans, cotton, cucumbers, and sweetpotatoes have time to mature. In 1969, income from sales of tobacco accounted for about 78 percent of all the income derived from the sale of farm products. Good markets for crops and timber are located within the county. Markets for livestock are located at Kinston, Rocky Mount, Wilson, Tarboro, Bethel, and Greenville.

Acreages of the principal crops harvested in 1969 were as follows (11):

	Acres
Tobacco	20, 481
Peanuts	7, 159
Corn	55, 759
Soybeans	21, 863
Cotton	1, 082
Cucumbers	

In 1969, a total of 7,848 head of cattle, 51,980 hogs and pigs, and 580,624 hens and pullets of laying age were in the county.

Literature Cited

- (1) AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS. 1961. STANDARD SPECIFICATIONS FOR HIGHWAY MATERIALS AND METHODS OF SAMPLING AND TESTING. Ed. 8, 2 v., illus.
- (2) BALDWIN, M., KELLOGG, C. E., and THORP, JAMES. 1938. SOIL CLASSIFICATION. U.S. Dept. Agr. Ybk.: 979-1001, illns.
- (3) BROWN, PHILIP.
- 1959. GEOLOGY AND GROUND-WATER RESOURCES IN THE GREEN-VILLE AREA, NORTH CAROLINA. N.C. Dept. of Con-servation and Development, Div. of Mineral Res., Bul. No. 73, 87 pp., illus. (4) SCHUMACHER, F. N., and Colle, T. S.

- 1960. GROWTH AND YIELDS OF NATURAL STANDS OF THE SOUTH-ERN PINE. 115 pp., T. S. Coile, Inc., Durham, N.C. (5) SIMONSON, ROY W.
- 1962. SOIL CLASSIFICATION IN THE UNITED STATES. Sci. 137: 1027-1034.
- (6) THORP, JAMES, and SMITH, GUY D.
 - 1949. HIGHER CATEGORIES OF SOIL CLASSIFICATION: ORDER, SUBORDER, AND GREAT SOIL GROUPS. Soil Sci. 67: 117-126.
- (7) UNITED STATES DEPARTMENT OF AGRICULTURE.
 - 1929. VOLUME, YIELD, AND STAND TABLES FOR SECOND-GROWTH SOUTHERN PINES. Misc. Pub. 50, 202 pp. [Out of print]

Facts about industrial development were supplied by the East Carolina University Regional Development Institute, East Carolina University, Greenville, N. C.

Combined thickness of the sandy horizons is more than 80 inches. The Ap or A1 horizon is dark gray to dark grayish brown and is 5 to 10 inches thick. The upper part of the C horizon ranges from light yellowish brown to very pale brown and from fine sand to coarse sand. Gray or white mottles are at a depth within 10 to 40 inches of the surface. The lower part of the C horizon is commonly white to light brownishgray sand or coarse sand.

Chipley sand (Ch).—This is a moderately well drained soil on broad flats and on smooth side slopes of uplands and stream terraces. It occurs in areas of irregular shape that are 4 to 20 acres in size. Slopes range from 0 to 4 percent. The surface layer is dark grayish-brown sand about 9 inches thick. To a depth of about 42 inches, the underlying layers are light yellowish-brown and very pale brown, loose fine sand and sand mottled with white and brownish yellow. The next layers, to a depth of about 66 inches, are white and light brownish-gray, loose sand and coarse sand mottled with yellowish brown.

Included with this soil in mapping were a few areas of soils that have a similar profile but that have a surface layer of fine sand. Also included were small areas of Lakeland, Alaga, Pactolus, Osier, and Wagram soils.

Infiltration is rapid. Runoff is slow.

This soil is fairly easy to keep in good tilth and can be satisfactorily worked throughout a wide range of moisture content. It is fairly well suited to most of the locally grown crops, but natural fertility is very low. Also, infrequent flooding occurs for brief periods, and wetness is a severe limitation. About half of the acreage is cultivated or in pasture. The rest is chiefly in forest and in housing developments or other nonfarm uses. Some artificial drainage is needed in places for optimum returns from most crops. Capability unit IIIw-1; woodland suitability group 2w2.

Coxville Series

The Coxville series consists of poorly drained, nearly level soils on uplands. These soils formed in Coastal Plain sediment. A seasonal high water table is at or near the surface.

In a typical profile, the surface layer is dark-gray and gray fine sandy loam about 11 inches thick. The subsoil, about 51 inches thick, is dominantly gray, firm sandy clay mottled with yellowish brown, brownish yellow, and red. Below the subsoil and extending to a depth of about 70 inches is gray sandy clay mottled with reddish yellow.

Natural fertility and available water capacity are medium, and the content of organic matter is low. Permeability is moderately slow, and shrink-swell potential is moderate. In areas that have not received lime, reaction is very strongly acid or extremely acid.

Although most of the acreage is in forest, these soils are fairly important for farming. Areas not in trees are used mainly for cultivated crops and pasture. The major limitations to use of these soils are the seasonal high water table, frequent ponding for brief periods, and moderately slow permeability. Crops respond well to recommended applications of fertilizer and lime.

Representative profile of Coxville fine sandy loam, 0.2 mile south of the city limits of Greenville, 300 feet east of N. C. Highway No. 43, and 250 feet south of an apartment housing project:

- Ap-0 to 9 inches, dark-gray (10YR 4/1) fine sandy loam; weak, fine, granular structure; very friable; many small roots; slightly acid; clear, wavy boundary.
- A2—9 to 11 inches, gray (10YR 6/1) fine sandy loam; many, fine, distinct, grayish-brown mottles; weak, medium, granular structure; very friable; many small and medium roots and few large roots; few small and medium root channels; strongly acid; clear, smooth boundary.
- B1g—11 to 13 inches, grayish-brown (10YR 5/2) sandy clay loam; few, fine, distinct, brownish-yellow mottles; weak, medium, subangular blocky structure; friable, slightly sticky and slightly plastic; few small roots; very strongly acid; clear, wavy boundary.
- B21tg-13 to 25 inches, gray (10YR 6/1) sandy clay; few, medium, distinct, yellowish-brown (10YR 5/4) mottles; weak, medium, subangular blocky structure; firm, sticky and plastic; few small roots and root channels; thin clay films on vertical faces of peds and in root channels; very strongly acid; gradual, wavy boundary.
- B22tg—25 to 62 inches, gray (10YR 6/1) sandy clay; many, medium, distinct, brownish-yellow (10YR 6/6) mottles and few, fine, prominent, red mottles; weak, medium, angular and subangular blocky structure; firm, sticky and plastic; thin, patchy clay films on faces of peds; extremely acid; gradual, wavy boundary.
- cdiam, angular and subangular blocky states, and, sticky and plastic; thin, patchy clay films on faces of peds; extremely acid; gradual, wavy boundary.
 Cg-62 to 70 inches, gray (10XR 6/1) sandy clay; few, medium, prominent, reddish-yellow (5XR 6/6) mottles; massive; firm, sticky and plastic; pockets and lenses of clay and loamy sand; extremely acid.

The solum is more than 60 inches thick. The A horizon is gray or dark gray and ranges from 8 to 20 inches in thickness. The B1 horizon is gray to grayish brown. The Bt horizon is gray sandy clay to clay loam and is 43 to 55 inches or more thick. The B horizon is commonly mottled with yellowish brown, brownish yellow, and red. The C horizon is gray and is sandy clay to clay.

Coxville fine sandy loam (Co).—This is a poorly drained soil on smooth flats and in slight depressions in the uplands. It occurs in areas of irregular shape that are 4 to more than 40 acres in size. Slopes are 0 to 1 percent. The surface layer is dark-gray and gray fine sandy loam about 11 inches thick. The subsoil, about 51 inches thick, is dominantly gray fine sandy clay mottled with yellowish brown, brownish yellow, and red.

Included with this soil in mapping were a few areas of soils that have a similar profile but that have a surface layer of sandy loam or loam. Also included were small areas of Lenoir, Bladen, and Rains soils.

Infiltration is moderate. Runoff is slow to ponded. This soil is fairly easy to keep in good tilth, but it can be satisfactorily worked only within a fairly narrow range of moisture content. Most of the acreage is in forest, and the rest is chiefly cultivated or in pasture. If properly drained, this soil is suited to most of the locally grown crops. Wetness is a severe limitation, however, and frequent ponding occurs for brief periods. A complete drainage system is needed if cultivated crops are grown. In areas that are farmed, the crops are mainly corn, soybeans, small grain, and pasture. Capability unit IIIw-2; woodland suitability group 2w9.

Craven Series

The Craven series consists of moderately well drained. nearly level to sloping soils on uplands. These soils formed in Coastal Plain sediment. A seasonal high water table is at a depth of about 2½ feet. Gray mottles are within the zone affected by the high water table.

Norfolk sandy loam, 1 to 6 percent slopes, eroded (NrB2).—This is a well-drained soil on smooth side slopes in the uplands. It occurs in areas of irregular shape that are less than 3 to more than 8 acres in size. The surface layer is 5 to 8 inches thick. In most places it is a mixture of material from the remaining original surface layer and the subsoil. The present surface layer is light yellowish-brown in the more eroded areas and is grayish brown in the less eroded spots. The subsoil is olive-yellow to brownish-yellow, friable sandy clay loam to sandy loam and is 52 to more than 55 inches thick.

Included with this soil in mapping were a few areas of soils that have a similar profile but that are severely croded and have a surface layer of sandy clay loam. Also included were small areas of soils that have a similar profile but that have slopes of more than 6 percent. Other inclusions consist of small areas of Aycock, Goldsboro, and Exum soils.

Infiltration is moderately slow. Runoff is medium.

Because its surface layer has been thinned by erosion, this soil is rather difficult to keep in good tilth. It can be satisfactorily worked throughout a fairly wide range of moisture content. After hard rains, a crust forms in the more eroded spots, however, and clods tend to form if this soil is worked when too wet. The crusting and clodding adversely affect germination. As a result, stands of crops are poor and uneven. For some crops replanting of these areas may be necessary. Where the stand is uneven, the tobacco ripens at different times, harvesting and curing are difficult, and the quality of the crop is reduced.

This soil is suited to all the locally grown crops, but further erosion is a moderate hazard because of the slope and runoff. Most of the acreage is in cultivated crops and pasture. The rest is chiefly in forest and in housing developments or other nonfarm uses. The cultivated areas are used mainly for row crops, especially for tobacco, peanuts, and cotton. Practices that effectively control runoff and that reduce erosion are needed in cultivated areas. Capability unit IIe-1; woodland suitability group 201.

Ocilla Series

24

The Ocilla series consists of somewhat poorly drained, nearly level and gently sloping soils on uplands and stream terraces. These soils formed in Coastal Plain and alluvial sediment. A seasonal high water table is at a depth of about 2½ feet. Gray mottles are within the zone affected by the high water table.

In a typical profile, the surface layer is loamy fine sand about 22 inches thick. The surface layer is dark gray in the upper part and is pale brown in the lower part. The subsoil is about 47 inches thick and is friable sandy clay loam. The upper part of the subsoil is yellow and is mottled with brownish yellow. The lower part is brownish yellow and is mottled with gray. Below the subsoil and extending to a depth of about 75 inches is gray sandy clay loam mottled with light yellowish brown.

Natural-fertility, the content of organic matter, and available water capacity are all low. Permeability is moderate, and shrink-swell potential is low. In areas that have not received lime, reaction is strongly acid or very strongly acid. The Ocilla soils in Pitt County are moderately important for farming. The seasonal high water table is the major limitation to their use. Most of the acreage is cultivated or in pasture, and the rest is in forest or in housing developments or other nonfarm uses. In areas that are farmed, crops respond well to applications of fertilizer and lime.

Representative profile of Ocilla loamy fine sand, 0 to 4 percent slopes, one-third mile south of Hanrahan, 660 feet west of Seaboard Coast Line Railroad, 20 feet west of a field path, and 42 feet southwest of telephone pole No. 602:

- Ap-0 to 8 inches, dark-gray (10YR 4/1) loamy fine sand; weak, fine, granular structure; very friable; many small roots; medium acid; abrupt, smooth boundary.
 A2-8 to 22 inches, pale-brown (10XR 6/3) loamy fine sand;
- A2-8 to 22 inches, pale-brown (10YR 6/8) loamy fine sand; weak, fine, granular structure; very friable; few small and medium roots; few medium root channels filled with material from the Ap horizon; medium acid; gradual, wavy boundary.
- B1-22 to 28 inches, yellow (10YR 7/6) sandy clay loam; few, fine, distinct, brownish-yellow mottles; weak, medium, subangular blocky structure; friable, slightly sticky and slightly plastic; few medium roots and root channels; few, thin, patchy clay films on faces of peds; very strongly acid; gradual, wavy boundary.
 B2t-28 to 69 inches, brownish-yellow (10YR 6/6) sandy clay
- B2t—28 to 69 inches, brownish-yellow (10YR 6/6) sandy clay loam; common, medium, distinct, gray (10YR 6/1) mottles; weak, medium, subangular blocky structure; friable, slightly sticky and slightly plastic; few medium root channels in upper, half of horizon; few, thin, patchy clay films on faces of peds; very strongly acid; gradual, wavy boundary.
 Og—69 to 75 inches, gray (10YR 6/1) sandy clay loam; few
- Jg-69 to 75 inches, gray (10YR 6/1) sandy clay loam; few coarse lenses of loamy sand and sand; few, medium, distinct, light yellowish-brown (10YR 6/4) mottles; massive; friable, slightly sticky and slightly plastic; very strongly acid.

Thickness of the solum is 60 inches or more. Thickness of the A horizon is 20 to 40 inches. The Ap or A1 horizon is gray, dark gray, or dark grayish brown, and the A2 horizon is pale brown to light yellowish brown. The B horizon is yellow to brownish-yellow sandy clay loam to sandy loam. Gray mottles are within 30 inches of the surface. Thickness of the B horizon ranges from 20 to more than 40 inches. The C horizon has a grayish color. Texture of the C horizon ranges from loamy sand to sandy clay but is dominantly sandy clay loam.

Ocilla loamy fine sand, 0 to 4 percent slopes (OcB).— This is a somewhat poorly drained soil on broad flats and smooth side slopes in the uplands and on stream terraces. It occurs in areas of irregular shape that are less than 4 acres to as much as 20 acres in size. The surface layer is loamy fine sand about 22 inches thick. It is dark gray in the upper part and is pale brown in the lower part. The subsoil is about 47 inches thick and is friable sandy clay loam. The upper part of the subsoil is yellow and is mottled with brownish yellow. The lower part is brownish yellow and is mottled with gray.

Included with this soil in mapping were small areas of soils that have a similar profile but that have a surface layer of loamy sand. Also included were small areas of moderately well drained and of somewhat poorly drained soils in draws and depressions. Other inclusions consist of areas of Lynchburg and Rains soils.

Infiltration is rapid. Runoff is slow.

This soil is fairly easy to keep in good tilth and can be satisfactorily worked throughout a wide range of moisture content. Most of the acreage is cultivated or in pasture, and the rest is chiefly in forest and in housing depments or other nonfarm uses. Wetness is a severe Imitation, but this soil is suited to most of the locally grown crops. Artificial drainage is needed for most crops. Capability unit IIIw-1; woodland suitability group 3w2.

Olustee Series, Sandy Subsoil Variant

Soils of the Olustee series, sandy subsoil variant, are very poorly drained and are nearly level. They are on uplands and stream terraces, where they formed in Coastal Plain and alluvial sediment. A seasonal high water table is at or near the surface.

In a typical profile, the surface layer is black loamy sand about 12 inches thick. Beneath the surface layer and extending to a depth of about 18 inches is a layer of dark reddish-brown fine sand that is coated with organic matter. To a depth of about 42 inches, the next layers are grayish-brown and light brownish-gray fine sand. Below them and extending to a depth of about 85 inches are layers of light-gray sand and coarse sand.

Natural fertility is very low, and the content of organic matter is medium. Available water capacity is low. Permeability is rapid, and shrink-swell potential is low. In areas that have not received lime, reaction is strongly acid or very strongly acid.

These soils are of only minor importance for farming. The seasonal high water table, frequent flooding for brief periods, and very low natural fertility are the major limitations to their use. Most of the acreage is in forest, and the rest is chiefly in cultivated crops or pasture. Where crops are grown, response is fairly good to recommended applications of fertilizer and lime.

Representative profile of Olustee loamy sand, sandy subsoil variant, 2 miles east of Grifton, 200 feet south of State Road No. 1753, and 20 feet east of State Road No. 1915:

Ap-0 to 12 inches, black (10YR 2/1) loamy sand; weak; fine, granular structure; very friable; many small roots; very strongly acid; clear, smooth boundary. Bh-12 to 18 inches, dark reddish-brown (5YR 2/2) fine sand; B. Oak

÷.

12.5

11

- weak, fine, granular structure; friable; many small and few medium roots; sand grains well coated with organic matter; very strongly acid; clear, wavy boundary.
- C1g-18 to 30 inches, grayish-brown (10YR 5/2) fine sand; single grain; loose; few medium roots; very strongly acid; gradual, wavy boundary.
- C2g-30 to 42 inches, light brownish-gray (10YR 6/2) fine sand; single grain; loose; strongly acid; gradual, wavy boundary.
- C3g-42 to 75 inches, light-gray (10YR 7/1) sand; single grain; loose; strongly acid; gradual, wavy boundary.
- C4g-75 to 85 inches, light-gray (10YR 7/1) coarse sand; single grain; loose; few fine pebbles; strongly acid.

Combined thickness of the sandy horizons is more than 80 inches. The A horizon is black or very dark gray and is 10 to 20 inches thick. The Bh horizon is 4 to 8 inches thick. The sand grains in that horizon are well coated with organic matter, and they give the Bh horizon a dark reddish-brown color. The C horizon is graylsh-brown and light brownish-gray to light-gray fine sand to coarse sand. It ranges from 60 to more than 70 inches in thickness. These soils are variants to the Olustee series. Bt horizons

are lacking beneath the Bh horizon, but the profile is otherwise similar to that of normal Olustee soils.

Olustee loamy sand, sandy subsoil variant (Oe).-This is a very poorly drained, sandy soil on smooth flats and in slight depressions in the uplands and on stream terraces. It occurs in areas of irregular shape that are 3 to 15 acres in size. Slopes are 0 to 1 percent. The surface layer is black loamy sand about 12 inches thick. It is underlain by a layer of dark reddish-brown fine sand that is coated with organic matter and is about 6 inches thick. To a depth of about 42 inches, the next layers are grayish-brown and light brownish-gray fine sand. Below these layers and extending to a depth of about 85 inches are layers of light-gray sand and coarse sand.

Included with this soil in mapping were a few areas of soils that have a similar profile but that have a sur-face layer of loamy fine sand. Also included were small areas of soils that have a similar profile but that lack the dark reddish-brown layer that is stained with organic matter. Other inclusions consist of small areas of Osier, Tuckerman, Pantego, and Portsmouth soils.

Infiltration is rapid. Runoff is slow.

This soil is fairly easy to keep in good tilth and can be satisfactorily worked throughout a wide range of moisture content. Most of the acreage is in forest, however, and the rest is chiefly in cultivated crops or pasture. Wetness is a very severe limitation, and use of this soil is limited by the seasonal high water table, frequent flooding, and very low natural fertility. Artificial drainage is needed for most uses. If properly drained, this soil is fairly well suited to a few of the locally grown crops. Areas that are farmed are used mainly for corn, soybeans, and pasture. Capability unit IVw-1; woodland suitability group 3w2.

Osier Series

The Osier series consists of poorly drained, nearly level soils on uplands and stream terraces. These soils formed in Coastal Plain and alluvial sediment. A seasonal high water table is at or near the surface.

In a typical profile, the surface layer is loamy sand and is about 19 inches thick. It is very dark grayish brown in the upper part and is dark grayish brown in the lower part. The next layers consist of gray and dark-gray fine sand over very dark gravish-brown sand and gray loamy sand that extends to a depth of about 62 inches. Underlying these layers is light brownish-gray sandy loam that extends to a depth of about 80 inches.

Natural fertility is very low, and the content of organic matter and available water capacity are low. Permeability is rapid, and shrink-swell potential is low. In areas that have not received lime, reaction is strongly acid or very strongly acid.

The Osier soils in Pitt County are of only minor importance for farming. Most of the acreage is in forest, and the rest is chiefly in cultivated crops or pasture. Major limitations to the use of these soils are the seasonal high water table, very low natural fertility, and frequent flooding for brief periods. In areas that are farmed, crops respond fairly well to recommended applications of fertilizer and lime.

Representative profile of Osier loamy sand, loamy substratum, 3 miles east of Belvoir, 1.75 miles southeast of field path, and 65 feet southeast of power pole No. SPC-40-5:

Ap-0 to 8 inches, very dark gray (10YR 3/1) loam; weak, medium, granular structure; very friable; many small roots; strongly acid; clear, smooth boundary.

- A12-8 to 15 inches, very dark grayish-brown (10YR 3/2) loam; weak, medium, granular structure; very friable; many small and few medium roots; strongly acid; clear, smooth boundary.
- Big-15 to 22 inches, dark-gray (10YR 4/1) sandy loam; many, fine, distinct, grayish-brown mottles; weak, medium, subangular blocky structure; friable, slightly sticky and slightly plastic; few medium roots and root channels; few, thin, patchy clay films on vertical faces of peds and in old root channels; very strongly acid; gradual, wavy boundary.
- B2tg-22 to 39 inches, grayish-brown (10YR 5/2) sandy clay loam; few, fine, distinct, yellowish-brown mottles; weak, medium, subangular blocky structure; friable, sticky and plastic; few, thin, patchy clay films on faces of peds and in old root channels; very strongly acid; clear, wavy boundary.
- acid; clear, wavy boundary. IIC1g-39 to 52 inches, graylsh-brown (10YR 5/2) sand; single grain; loose; very strongly acid; gradual, wavy boundary.
- IIC2g-52 to 68 inches, light brownish-gray (10YR 6/2) coarse sand; single grain; loose; few fine pebbles and crushed oystershells; strongly acid.

Thickness of the solum is 40 inches or less. The A horizon is very dark gray or very dark grayish brown to black and is 10 to 20 inches thick. The B horizon is gray or dark-gray to grayish-brown sandy clay loam to sandy loam and is 20 to 30 inches thick. A few yellowish-brown or grayish-brown mottles are commonly in the B horizon. The C horizon is grayish-brown to light brownish-gray loamy sand to coarse sand. It commonly contains fine pebbles.

Portsmouth loam (Po).—This is a very poorly drained soil on broad, smooth flats and in slight depressions. It is on stream terraces and occurs in areas of irregular shape that are 3 to 20 acres in size. Slopes are 0 to 1 percent. The surface layer is very dark gray and very dark grayish-brown loam about 15 inches thick. The subsoil is about 24 inches thick. The upper part of the subsoil is dark-gray, friable sandy loam mottled with grayish brown. The lower part is grayish-brown, friable sandy clay loam mottled with yellowish brown.

Included with this soil in mapping were a few areas of soils that have a similar profile but that have a surface layer of fine sandy loam. Also included were small areas of Tuckerman, Cape Fear, and Olustee soils.

Infiltration is moderate. Runoff is very slow or ponded. This soil is easy to keep in good tilth and can be satisfactorily worked throughout a wide range of moisture content. Most of the acreage is in forest, however, and the rest is chiefly in cultivated crops or pasture. Flooding frequently occurs for brief periods, and wetness is a severe limitation. A system of surface drains or tile drains is needed for most uses, and both surface drains and tile drains are needed in some places. If properly drained, this soil is well suited to a few locally grown crops. Areas that are farmed are used mainly for corn, soybeans, and pasture. Capability unit IIIw-3; woodland suitability group 1w9.

Rains Series

The Rains series consists of poorly drained, nearly level soils on uplands. These soils formed in Coastal Plain sedi-

ment. A seasonal high water table is at or near the surface.

In a typical profile, the surface layer is dark-gray and light brownish-gray fine sandy loam about 13 inches thick. The lower part of the surface layer is mottled with yellowish brown and pale brown. The subsoil, about 49 inches thick, is gray, friable sandy clay loam mottled with brownish yellow and yellowish brown. Gray sandy clay loam mottled with yellowish brown is beneath the subsoil and extends to a depth of about 74 inches.

Natural fertility and the content of organic matter are low. Available water capacity is medium. Permeability is moderate, and shrink-swell potential is low. In areas that have not received lime, reaction is strongly acid or very strongly acid.

The Rains soils in Pitt County are moderately important for farming. About half of the acreage is cultivated or in pasture, and the rest is chiefly in forest. Major limitations to the use of these soils are the seasonal high water table and frequent ponding for brief periods. Crops respond well to recommended applications of fertilizer and lime.

Representative profile of Rains fine sandy loam, 4 miles northeast of Farmville, 300 feet north of State Highway No. 121, and 150 feet west of State Road No. 1259:

- Ap-0 to 8 inches, dark-gray (10YR 4/1) fine sandy loam; weak, fine, granular structure; very friable; many small roots; medium acid; abrupt, smooth boundary.
- A2g-8 to 13 inches, light brownish-gray (10YR 6/2) fine sandy loam; few, medium, distinct, yellowish-brown (10YR 5/6) and pale-brown (10YR 6/3) mottles; weak, medium, granular structure; very friable; few medium roots and root channels; medium acid; abrupt, smooth boundary.
- B21tg-13 to 32 inches, gray (10YR 6/1) sandy clay loam; few, medium, distinct, brownish-yellow (10YR 6/6) mottles; weak, medium, subangular blocky structure; friable, slightly sticky and slightly plastic; few medium roots; few medium and small root channels; few, thin, patchy clay films on faces of peds; very strongly acid; clear, wavy boundary.
- B22tg—32 to 38 inches, gray (10YR 6/1) sandy clay loam; common, medium, distinct, yellowish-brown (10YR 5/8) mottles; weak, medium, subangular blocky structure; friable, slightly sticky and slightly plastic; few medium root channels; thin, patchy clay films on faces of peds; very strongly acid; clear, wavy boundary.
- B23tg-38 to 62 inches, gray (10YR 5/1) sandy clay loam; few, medium, distinct, brownish-yellow (10YR 6/8) mottles; weak, medium, subangular blocky structure; friable; slightly sticky and slightly plastic; thin, patchy clay films on faces of peds; very strongly acid; clear, wavy boundary.
- Cg-62 to 74 inches, gray (10YR 5/1) sandy clay loam; few, fine, distinct, yellowish-brown mottles; massive; friable, slightly sticky and slightly plastic; very strongly acid.

Thickness of the solum is 60 inches or more. Thickness of the A horizon is 10 to 20 inches. The Ap or A1 horizon is dark gray to dark grayish brown, and the A2 horizon is light brownish gray to gray. The B horizon is sandy clay loam to sandy loam, and it is about 50 inches thick. Mottles in the B horizon are yellowish brown and brownish yellow. The C horizon is gray loamy sand to clay, but it is dominantly sandy clay loam.

Rains fine sandy loam (Ro).—This is a poorly drained soil on broad flats and in slight depressions in the uplands. It occurs in areas of irregular shape that are 4 to 25 acres in size. Slopes are 0 to 1 percent. The surface

layer is dark-gray and light brownish-gray fine sandy loam about 13 inches thick. The lower part of the surface layer is mottled with yellowish brown and pale brown. The subsoil, about 49 inches thick, is gray, friable sandy clay loam mottled with brownish yellow and yellowish brown.

Included with this soil in mapping were small areas of soils that have a similar profile but that have a surface layer of loamy sand, sandy loam, or loam. Also included were small areas of Lynchburg and Pantego soils.

Infiltration is moderate. Runoff is slow or ponded.

This soil is easy to keep in good tilth and can be satisfactorily worked throughout a wide range of moisture content. About half of the acreage is cultivated or in pasture, and the rest is chiefly in forest. Wetness is a severe limitation, and ponding occurs frequently for brief periods. A system of surface drains or tile drains is needed where cultivated crops are grown, and both surface drains and tile drains are needed in some places. If properly drained, this soil is suited to most of the locally grown crops. Areas that are farmed are used mainly for corn, soybeans, small grain, and Ladino clover-fescue pasture. Capability unit IIIw-3; woodland suitability group 2w3.

Roanoke Series

÷;

11

The Roanoke series consists of poorly drained, nearly level soils on stream terraces. These soils formed in alluvial sediment. A seasonal high water table is at or near the surface.

In a typical profile, the surface layer is dominantly dark grayish-brown silt loam about 9 inches thick. Beneath the surface layer is a gray subsoil about 33 inches thick. The upper part of the subsoil is dominantly very firm clay mottled with very dark gray and brownish yellow. The lower part is firm silty clay loam mottled with brownish yellow and dark gray. Below the subsoil and extending to a depth of about 66 inches is gray loamy fine sand and loamy sand mottled with light gray and brownish yellow. Underlying this material and extending to a depth of about 74 inches is white sand mottled with olive yellow.

Natural fertility and available water capacity are medium. and the content of organic matter is low. Permeability is slow, and shrink-swell potential is high. In areas that have not received lime, reaction is very strongly acid.

The Roanoke soils in Pitt County are of only minor importance for farming. Most of the acreage is in forest, and the rest is chiefly in cultivated crops or pasture. The seasonal high water table, frequent flooding for brief periods, and slow permeability are major limitations to the use of these soils for farming and for other purposes. In areas that are farmed, crops respond well to recommended applications of fertilizer and lime.

Representative profile of Roanoke silt loam, 3 miles west of Grimesland on U.S. Highway No. 264, 0.4 mile north on State Road No. 1762, 30 feet east of road and 100 feet north of a wooded area:

Ap-0 to 7 inches, dark grayish-brown (10YR 4/2) silt loam; weak, medium, granular structure; very friable; many small roots; medium acid; abrupt, smooth boundary.

- A2-7 to 9 inches, gray (10YR 5/1) very fine sandy loam; many, fine, distinct, brownish-yellow mottles; weak, medium, granular structure; friable; many small roots; few small root channels; very strongly acid; abrupt, smooth boundary
- B1tg-9 to 12 inches, gray (10YR 6/1) clay loam; few, fine, distinct, brownish-yellow mottles; weak, medium, subangular blocky structure; firm, sticky and plastic; few medium roots and root channels; some dark grayish-brown colors in root channels; few thin clay films on faces of peds; very strongly acid; abrupt, smooth boundary.
- B21tg-12 to 26 inches, gray (10YR 6/1) clay; few, coarse distinct, very dark gray (10YR 3/1) mottles and few, fine, distinct, brownish-yellow mottles; weak, medium, angular blocky structure; very firm, very sticky and very plastic; few medium roots and root channels; thin, patchy clay films on faces of peds; very strongly acid; gradual, wavy boundary. -26 to 36 inches, gray (10YR 5/1) clay; few, medium,
- B22tgdistinct, brownish-yellow (10YR 6/6) mottles; weak, medium, angular blocky structure; very firm, very sticky and very plastic; few, thin, patchy clay films on faces of peds; very strongly acid; gradual, wavy boundary.
- B3tg--36 to 42 inches, gray (10YR 6/1) silty clay loam; few, fine, distinct, brownish-yellow and dark-gray mottles; weak, medium, angular blocky structure; firm, sticky and plastic; few, thin, patchy clay films on faces of peds; very strongly acid; gradual, wavy boundary. 42 to 54 inches, gray (10YR 6/1) loamy fine sand;
- IIC1gfew, fine, faint, light-gray mottles; single grain; very
- friable; very strongly acid; gradual, wavy boundary. 54 to 66 inches, gray (10YR 6/1) loamy sand; few, IIC2gfine, distinct, brownish-yellow mottles; single grain; very friable; very strongly acid; gradual, wavy boundary
- -66 to 74 inches, white (N 8/0) sand; few, fine. dis-IIC3gtinct, olive-yellow mottles; single grain; loose; very strongly acid.

Thickness of the solum is 45 inches or less. Thickness of. the A horizon is 5 to 20 inches. The Ap or A1 horizon is dark gray to dark grayish brown, and the A2 horizon is commonly gray. Texture of the B horizon is silty clay loam, clay loam, or clay, but it is dominantly clay. The B horizon is commonly mottled with brownish yellow, dark gray, and very dark gray. The C horizon is gray to white loamy fine sand to sand.

Roanoke silt loam (Ro).—This is a poorly drained soil on broad flats and in slight depressions. It is on stream terraces, where it occurs in areas of irregular shape. The areas range from 3 to more than 100 acres in size. Slopes are 0 to 1 percent. The surface layer is dominantly dark grayish-brown silt loam about 9 inches thick. The subsoil is gray and is about 33 inches thick. The upper part of the subsoil is dominantly very firm clay mottled with very dark gray and brownish yellow. The lower part is firm silty clay loam mottled with brownish yellow and dark gray. The underlying material is gray to white loamy fine sand to coarse sand.

Included with this soil in mapping were a few areas of soils that have a similar profile but that have a surface layer of very fine sandy loam or loam. Also included were small areas of Altavista, Bibb, and Cape Fear soils.

Infiltration is moderate. Runoff is slow or ponded.

This soil is fairly easy to keep in good tilth, but it can be satisfactorily worked only within a fairly narrow range of moisture content. Most of the acreage is in forest, and the rest is chiefly in cultivated crops or pasture. Flooding frequently occurs for brief periods, and wetness is a very severe limitation. A system of surface drains is needed for most uses. If properly drained, this soil is

TABLE 6.—Estimated soil properties

[The symbol > means greater

Soil series, land types, and	Flooding	Depth to seasonal	Depth from surface	Classification
map symbols		high water table	(typical profile)	- USDA texture
laga: AgB	None	<i>Ft.</i> >5	In. 0-72 72-85	Loamy sandSand
ltavista: AIB	Infrequent and very brief.	2.5	0–14 14–37 37–92	Sandy loam Sandy clay loam, sandy loam Loamy coarse sand, loamy fine sand, coarse sand.
ycock: AyA, AyB, AyB2	None	· >5	0–10 10–72 72–85	Fine sandy loam Sandy clay loam, clay loam Sandy clay
Bibb: Bb	Very frequent and very brief.	0	0–21 21–36 36–72	Fine sandy loam Sandy loam Sand
Naden: Bd	Frequent and very brief.	0	0-7 7-14 14-70	Fine sandy loam Sandy clay Clay
Byars: By	Infrequent and very brief.	. 0	0-13 13-63 63-72	Loam Silty clay Sandy clay loam
Cape Fear: Ca	Frequent and very brief.	0	0-14 14-40 40-60	Loam Clay Coarse sand
Chipley: Ch	Infrequent and very brief.	2. 5	0–14 14–52 52–86	Sand Fine sand, sand Coarse sand
Coxville: Co	Frequent and very brief.	0	0–11 11–70	Fine sandy loam Sandy clay, clay loam
Craven: CrA, CrB, CrB2, CrC	None	2.5	0-12 12-78	Fine sandy loam Clay
Sxum: ExA, ExB	None	2.5	0–12 12–62 62–72	Fine sandy loam Clay loam Sandy clay loam
Goldsboro: GoA, GoB	None	2. 5	0-17 17-75	Sandy loam Sandy clay loam
akeland: LaB	None	>5	0–29 29–82	Sand, fine sand Coarse sand
eaf: Le	Frequent and very brief.	0	- 0–6 6–70 70–80	Silt loam Silty clay, clay Sandy loam
enoir, thin solum variant: LnA	Infrequent and very brief.	1. 5	0-7 7-36 36-58	Fine sandy loam Clay Loamy sand, coarse sand
enoir: Lo A	None	1.5	0-8 8-72 72-80	Loam Clay, silty clay, sandy clay Loamy sand
ynchburg: Ly	None	1. 5	0–10 10–48	Fine sandy loam Sandy clay loam

significant to engineering

han; < means less than]

Classification—Continued		n—Continued	Material less than 3 inches in diameter passing sieve 1—				Available			
	Unified	AASHO	No. 10 (2.0 mm.)	No. 40 (0.42 mm.)	No. 40 No. 200 (0.42 (0.074 Permeability capacity		water	Reaction	Shrink-swell potential	
	SM SP–SM	A-2 A-3, A-2	Pct. 100 95–100	Pct. 50-75 51-70	Pct. 1530 5-12	In. per hr. 6. 3-20. 0 6. 3-20. 0	In. per in. of soil 0. 06-0. 08 0. 05-0. 07	<i>pH</i> 4. 5–6. 0 5. 6–6. 0	Low. Low.	
ંદિ	SM	A-2, A-4	100	60-85	3045	2. 0-6. 3	0. 11-0. 13	4. 5-6. 0	Low.	
	SC, CL	A-6, A-4	100	80-95	3655	0. 63-2. 0	0. 12-0. 14	4. 5-5. 5	Low.	
	SM, SP–SM	A-2	90–100	50-75	530	2. 0-6. 3	0. 07-0. 09	4. 5-5. 5	Low.	
	ML	A-4	100	70-85	51–60	2. 0-6. 3	0. 11-0. 13	4. 5-6. 0	Low.	
	CL	A-6	100	80-100	55–80	0. 63-2. 0	0. 16-0. 18	4. 5-5. 5	Low to moderate.	
	CL	A-7	95–100	85-100	51–60	0. 63-2. 0	0. 14-0. 16	4. 5-5. 0	Low.	
	SM	A-4	95–100	60–70	40–50	0. 63–2. 0	0. 12-0. 14	4. 5-6. 0	Low.	
	SM	A-2, A-4	95–100	60–70	30–40	0. 63–2. 0	0. 12-0. 14	4. 5-5. 0	Low.	
	SP–SM	A-3, A-2	95–100	51–70	5–12	6. 3–20. 0	0. 05-0. 07	5. 6-6. 0	Low.	
ž (SM, ML	A-4	100	95–100	45–60	0. 63–2. 0	0. 11-0. 13	4. 5–5. 5	Low.	
	CL	A-7, A-6	100	85–95	51–60	0. 06–0. 20	0. 10-0. 12	4. 5–5. 0	Moderate.	
	CH	A-7	100	95–100	65–80	0. 06–0. 20	0. 10-0. 12	4. 5–5. 0	Moderate.	
- (ML	A-4	100	85-95	6075	0. 63–2. 0	0. 15-0. 17	<4. 5-5. 0	Low.	
	CH	A-7	100	90-100	7595	0. 06–0. 20	0. 13-0. 15	<4. 5-5. 0	High.	
	CL	A-6	100	80-90	5155	0. 63–2. 0	0. 13-0. 15	<4. 5	Low.	
	ML	A-4	100	85–95	60-75	0. 63–2. 0	0. 12–0. 14	4. 5-5. 5	•	
	CL	A-7, A-6	100	90–100	75-90	0. 06–0. 20	0. 14–0. 16	4. 5-5. 0	High.	
	SP-SM	A-3, A-2	95–100	51–70	5-12	6. 3–20. 0	0. 05–0. 07	4. 5-5. 0	Low.	
1	SP-SM	A-3, A-2	100	51-70	5–12	6. 3–20. 0	0. 03-0. 06	4. 5–6. 5	Low.	
	SP-SM	A-3, A-2	100	65-80	5–12	6. 3–20. 0	0. 03-0. 06	5. 1–5. 5	Low.	
	SP-SM	A-2, A-3	95–100	51-70	5–12	6. 3–20. 0	0. 03-0. 06	4. 5–5. 0	Low.	
1	SM CL, SC	A-4 A-6, A-7			40-50 36-60	0. 63–2. 0 0. 20–0. 63	0. 15-0. 17 0. 13-0. 15	$\leq 4.5-6.5$ $\leq 4.5-5.0$	Low. Moderate (oyvill	
	SM	A-4	100	75–100	40–50	0. 63–2. 0	0. 11–0. 13	$\leq 4.5-6.0$	Low.	
	CH	A-7	95–100	90–100	75–95	0. 06–0. 20	0. 13–0. 15	$\leq 4.5-5.0$	High.	
S] (ML	A-4	100	85–100	51–75	2. 0-6. 3	0. 11-0. 13	4. 5–6. 0	Low.	
	CL	A-6, A-7	100	90–100	70–80	0. 63-2. 0	0. 16-0. 18	4. 5–5. 5	Moderate.	
	SC, CH	A-6, A-7	100	80–100	36–80	0. 63-2. 0	0. 16-0. 18	4. 5–5. 0	Low to moderate.	
	SM	A-2, A-4	100	60-70	30–40	2. 0-6. 3	0. 10-0. 12	4. 5–6. 0	Low.	
	SC, ML-CL	A-2, A-4	95–100	80-90	36–55	0. 63-2. 0	0. 13-0. 15	4. 5–5. 0	Low.	
	SP-SM	A-3, A-2	100	51-80	5–12	6. 3–20. 0	0. 04-0. 06	5. 1-6. 0	Low.	
	SP-SM	A-2, A-3	95–100	51-70	5–12	6. 3–20. 0	0. 03-0. 05	5. 6-6. 0	Low.	
1	ML	A-4	100	90–100	70–90	0. 63–2. 0	0. 14-0. 16	· <4. 5-5. 5	Moderate.	
	CH	A-7	100	90–100	75–95	0. 06–0. 20	0. 15-0. 17	<4. 5-5. 0	High.	
	SM, SC	A-4	95–100	60–70	40–50	2. 0–6. 3	0. 11-0. 13	<4. 5	Low.	
) [(SM	A-2, A-4	100	70-85	30–50	2. 0-6. 3	0. 11-0. 13	4. 5-6. 5	Low.	
	CH	A-7	100	90-100	75–95	0. 06-0. 20	0. 14-0. 16	4. 5-5. 5	High.	
	SM, SP–SM	A-2, A-3	95–100	51-70	5–30	6. 3-20. 0	0. 05-0. 07	4. 5-5. 5	Low.	
	ML	A-4	100	85–100	6080	0. 63-2. 0	0. 13-0. 15	4. 5-6. 0	Low.	
	CL, CH	A-7, A-6	100	80–100	5595	0. 06-0. 20	. 0. 15-0. 17	4. 5-5. 0	High.	
	SM	A-2	95–100	50–100	1530	2. 0-6. 3	0. 09-0. 11	4. 5-5. 0	Low.	
	SM	A-4	100	70-85	40-50	2. 0-6. 3	0. 11-0. 13	4. 5-6. 5	Low.	
	SC, CL	A-6, A-4	100	80-90	36-55	0. 63-2. 0	0. 13-0. 15	4. 5-5. 5	Low.	
	SM	A-2, A-4	95-100	60-70	30-40	2. 0-6. 3	0. 11-0. 13	4. 5-5. 0	Low.	

SOIL SURVEY

TABLE 6.—Estimated soil properties

いたのでいた。

		····		
Soil series, land types, and	Flooding	Depth to seasonal	Depth from surface	Classification
map symbols		high water table	(typical profile)	USDA texture
		· · · · · · · · · · · · · · · · · · ·	}	
Masada: MaB	None	<i>Ft.</i> >5	In. 0-15 15-36 36-60	Sandy loam. Sandy loam, sandy clay loam
Nahunta: Na	None	1. 5	0-20 20-72	Silt loam Silty clay loam
Norfolk: NrA, NrB, NrB2	· · ·	>5	0-10 10-72 72-84	Sandy loam Sandy clay loam Sandy loam
Ocilla: OcB	None	2.5	0-22 22-75	Loamy fine sandSandy clay loam
Olustee, sandy subsoil variant: Oe	Frequent and brief	0	0-12 12-85	Loamy sand Fine sand, sand, coarse sand
Osier: Os	Frequent and very brief.	0	0–19 19–54	Loamy sand Fine sand, sand, loamy sand
		· · · ·	54-80	Sandy loam, loamy sand
Pactolus: Pa	None	2.5	0-64 64-90	Loamy sand, loamy fine sand
Pantego: Pg	Frequent and very brief.	0	0-14 14-69 69-80	Loam Sandy clay loam Sandy loam
Portsmouth: Po	Frequent and very brief.	0	0–15 15–39 39–68	Loam Sandy loam, sandy clay loam Sand, coarse sand
Rains: Ra	Frequent and very brief.	0	0–13 13–74	Fine sandy loam Sandy clay loam
Roanoke: Ro	Frequent and very brief.	0	0-9 9-42 42-74	Silt loam Clay loam, silty clay loam, clay Loamy fine sand, loamy sand, sand
Swamp: Sw. Properties variable; not esti- mated.	Very frequent and long.			
Fuckerman: Tu	Infrequent and very brief.	0	0-20 20-36 36-72	Fine sandy loam Sandy clay loam, fine sandy loam Loamy sand, coarse sand
Wagram: WaB, WaC	None	>5	0–25 25–66 66–84	Loamy sand Sandy clay loam Loamy sand
Wickham: WkB	Infrequent and very brief.	>5	0-17 17-42 42-80	Sandy loam Sandy clay loam, sandy loam
	brief.		17-42 42-80	Loamy sand, sand

¹ 100 percent of the material less than 3 inches in diameter for all soils mapped passed through the No. 4 sieve.

PITT COUNTY, NORTH CAROLINA

significant to engineering.—Continued

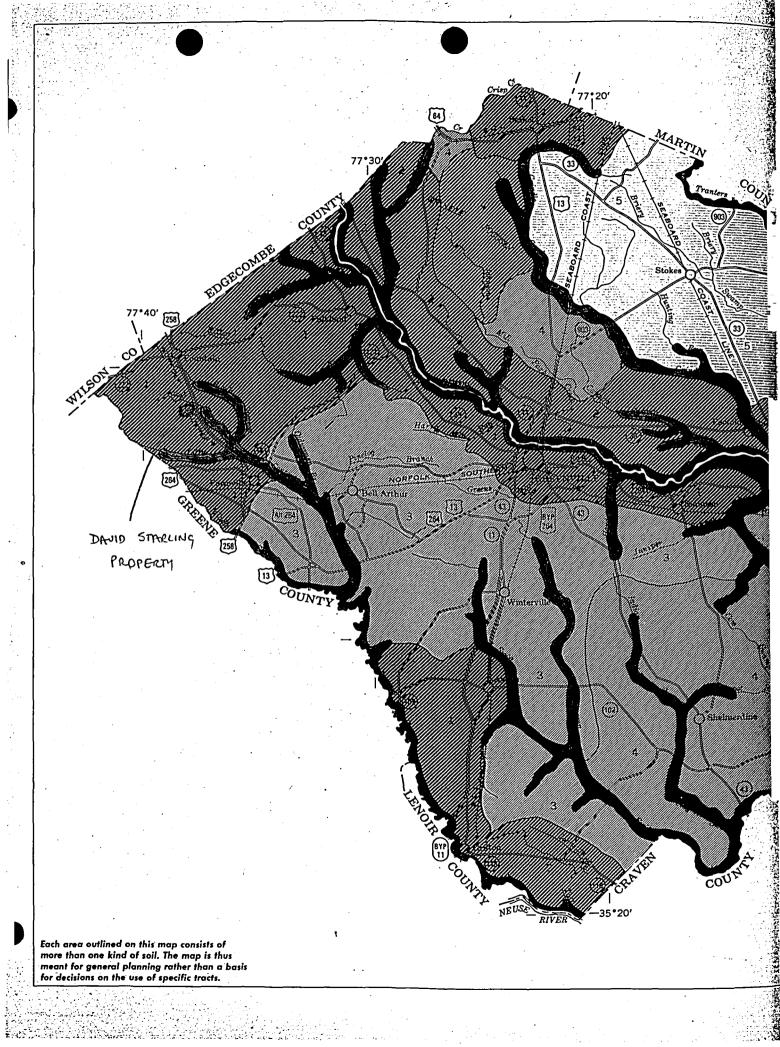
Classification-Continued		Material less than 3 inches in diameter passing sieve '				Available			
Ünified	AASHO	No. 10 (2.0 mm.)	No. 40 (0.42 mm.)	No. 200 (0.074 mm.)	Permeability	water capacity	Reaction	Shrink-swell potential	
SM SC SP-SM	A-2, A-4 A-6 A-2, A-3	Pct. 100 100 95–100	Pct. 60-85 80-90 51-70	Pct. 30-40 36-50 5-12	In. per hr. 2. 0-6. 3 0. 63-2. 0 2. 0-6. 3	In. per in. of soil 0. 11-0. 13 0. 13-0. 15 0. 07-0. 09	<i>pH</i> 4. 5–6. 0 5. 1–5. 5 4. 5–5. 0	Low. Low. Low.	
ML	A-4	100	90–100	7090	0. 63–2. 0	0. 15-0. 17	${}^{<4.5-5.0}_{<4.5-5.0}$	Low.	
ML–CL, CL	A-6	100	95–100	8595	0. 63–2. 0	0. 15-0. 17		Low.	
SM SC, CL SM	A-2, A-4 A-6, A-4 A-2, A-4	100 100 95–100	6070 8090 6070	3040 3655 3040	2. 0-6. 3 0. 63-2. 0 2. 0-6. 3	0. 11-0. 13 0. 13-0. 15 0. 11-0. 13	4. 5-6. 5 4. 5-5. 5 4. 5-5. 0	Low. Low.	
SM	A-2	100	50-75	15-30	2. 0-6. 3	0. 06-0. 08	4. 5–6. 0	Low Ocilla	
SC	A-6	95–100	80-90	36-50	0. 63-2. 0	0. 10-0. 12	4. 5–5. 0		
SM	A-2	100	51-75	15-30	6. 3–20. 0	0.06-0.08	4. 5-5. 5	Low.	
SP-SM	A-3, A-2	95–100	51-80	5-12	6. 3–20. 0	0.05-0.07	4. 5-5. 5	Low.	
SM	A-2	100	51–75	15–30	6. 3–20. 0	0.06–0.08	4. 5–6. 0	Low.	
SP–SM,	A-3, A-2	100	51–80	5–30	6. 3–20. 0	0.03–0.05	5. 1–5. 5	Low.	
SM SM	A-2	95–100	51-75	15-35	2. 0–6. 3	0. 11–0. 13	4. 5–5. 5	Low.	
SM	A-2	100	51–75	15–30	6. 3–20. 0	0. 06–0. 08	4. 5–6. 5	Low.	
SP-SM	A-2, A-3	95–100	51–75	5–12	6. 3–20. 0	0. 05–0. 07	5. 6–6. 0	Low.	
ML	~A-4	100	85–95	60–75	2. 0-6. 3	0. 15-0. 17	4. 5-6. 0	Low.	
SC, CL	A-6, A-4	100	85–95	36–55	0. 63-2. 0	0. 13-0. 15	4. 5-5. 0	Low.	
SM–SC, SC	A-2, A-4	95–100	60–70	30–40	2. 0-6. 3	0. 11-0. 13	4. 5-5. 0	Low.	
ML	A-4	100	85–95	60-75	2. 0-6. 3	0. 15-0. 17	4. 5-5. 5	Low.	
SM, SC	A-2, A-6, A-4	100	60–90	30-50	0. 63-2. 0	0. 13-0. 15	4. 5-5. 0	Low.	
SP-SM	A-3, A-2	95–100	51–70	5-12	6. 3-20. 0	0. 05-0. 07	4. 5-5. 5	Low.	
SM	A-4	100	70-85	40–50	2. 0-6. 3	0. 10-0. 12	4. 5-6. 0	Low.	
SC, CL	A-6, A-4	95–100	80-90	36–55	0. 63-2. 0	0. 13-0. 15	4. 5-5. 0	Low.	
ML	A-4	100	85–100	70–90	0. 63–2. 0	0. 12-0. 14	4. 5-6. 0	Low.	
CH	A-7	100	90–100	70–95	0. 06–0. 20	0. 14-0. 16	4. 5-5. 0	High.	
SM, SP–SM	A-2	95–100	51–75	5–30	6. 3–20. 0	0. 07-0. 09	4. 5-5. 0	Low.	
								•	
SM	A-4	100	70-85	36-50	0. 63–2. 0	0. 11-0. 13	5. 6–6. 5		
CL, SM, SC	A-6, A-4	100	70-90	36-55	0. 63–2. 0	0. 14-0. 16	5. 6–6. 0		
SM, SP-SM	A-2	95–100	51-75	5-30	6. 3–20. 0	0. 05-0. 07	5. 6–6. 5		
SM	A-2	100	51–75	15-30	6. 3-20. 0	0. 07-0. 09	<4. 5-6. 0	Low.	
SC, CL	A-6, A-2	100	8090	30-55	2. 0-6. 3	0. 14-0. 16	4. 5-5. 0	Low.	
SM	A-2	95–100	51–75	15-30	6. 3-20. 0	0. 06-0. 08	<4. 5	Low.	
SM	A-2	100	51–75	15-30	2. 0-6. 3	0. 12-0. 14	4. 5-6. 0	Low.	
SC, SM, CL	A-6, A-4, A-2	100	60–90	30-55	0. 63-2. 0	0. 13-0. 15	4. 5-5. 0	Low.	
SM, SP-SM	A-2, A-3	90–100	51–75	5-30	6. 3-20. 0	0. 06-0. 08	5. 1-5. 5	Low.	
<u>L'</u>	·	·	·	·				· · · · ·	

のないでもないで

ċ

ALC: NOT STREET

Constraints of



For a complete description of a mapping unit, read both the description of the mapping unit and the soil series to which it belongs. A technical description of a profile that is representative of the series is described under the soil series. For complete information about a capability unit, refer to the subsection "Management by Capability Units" beginning on page 34. Other information is given in tables as follows:

Acreage and extent of soils, table 1, p. 5. Estimated yields, table 2, p. 39. Woodland suitability, table 3, p. 40. Suitability of soils for wildlife, table 4, p.-46 Engineering uses of soils, tables 5, 6, and 7, pp. 48 to 65.

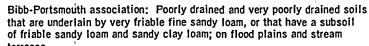
			Woodland
	De-	Capability	suitability
	scribed	unit	group
Мар	on i		Broab .
symbol. Mapping unit	page	Symbol Page	Symbol
symbol. Rapping diff	page	Symbol rage	Symbol
AgB Alaga loamy sand, banded substratum, 0 to 6 percent slopes	6	IIIs-1 37	-3s2
AgB Alaga loamy sand, banded substratum, 0 to 6 percent slopes			
AlB Altavista sandy loam, 0 to 4 percent slopes	7	IIw-2 35 I-1 34	2w8
AyA Aycock fine sandy loam, 0 to 1 percent slopes	7		201
AyB Aycock fine sandy loam, 1 to 6 percent slopes	8	IIe-1 34	201
AyB2 Aycock fine sandy loam, 1 to 6 percent slopes, eroded	. 8	IIe-1 34	201
Bb Bibb complex	9	IVw-4 38	2w9
Bd Bladen fine sandy loam	· 9	IIIw-2 . 36	2w9
By Byars loam	10	IIIw-2 36	2w9 .
Ca Cape Fear loam	11	IVw-2 37	2w9
Ch Chipley sand	12	IIIw-1 36	2w2
Co <u>Corville fine sandy loam</u>	12	IIIw-2 36	2w9
CrA Craven fine sandy loam, 0 to 1 percent slopes	13	IIw-1 35	3w2
CrB Craven fine sandy loam, 1 to 6 percent slopes	. 13	IIe-3 34	3w2
CrB2 Craven fine sandy loam, 1 to 6 percent slopes, eroded	14 · ·	IIe-3 34	3w2
CrC Craven fine sandy loam, 6 to 10 percent slopes	14	IIIe-2 35	3w2
ExA Exum fine sandy loam, 0 to 1 percent slopes	15 .	IIw-1 35	2w8
ExB Exum fine sandy loam, 1 to 6 percent slopes	15	IIe-2 34	2w8
"GoA Goldsboro sandy loam, 0 to 1 percent slopes	16	IIw-1 35	2w8
GoB Goldsboro sandy loam, 1 to 6 percent slopes	16	IIe-2 34	2w8
LaB Lakeland sand, 0 to 6 percent slopes	17	IVs-1 38	4s2
Le Leaf silt loam	17	IIIw-2 36	2w9
LnA Lenoir fine sandy loam, thin solum variant, 0 to 3 percent slopes	19	$\frac{111}{111} = \frac{30}{37}$	2w8
LoA Lenoir loam, 0 to 1 percent slopes	13	IIIw-4 37	2w8
Ly Lynchburg fine sandy loam	20	IIW-4 37 IIW-2 35	2w8
by Lynchourg line Sanuy Ioam			
MaBMasada sandy loam, 0 to 4 percent slopesNaNahunta silt loam	21	IIe-1 34	307
Na Nahunta silt loam	22	IIw-2 35	2w8
NrANorfolk sandy loam, 0 to 1 percent slopesNrBNorfolk sandy loam, 1 to 6 percent slopes	22	I-1 34	201
NrB Norfolk sandy loam, 1 to 6 percent slopes	23	IIe-1 34	201
NrB2 Norfolk sandy loam, 1 to 6 percent slopes, eroded	24	IIe-1 34	201
OcB Ocilla loamy fine sand, 0 to 4 percent slopes	24	IIIw-1 36	3w2 •
Oe Olustee loamy sand, sandy subsoil variant	25	IVw-1 37	3w2
Os Osier loamy sand, loamy substratum	26	IVw-1 37	3w3 3w3
Pa , Pactolus loamy sand	26	IIIw-1 36	3w2
Pg Pantego loam	27	IIIw-3 36	1w9
Po Portsmouth loam	28	IIIw-3 36	1w9
Ra Rains fine sandy loam	28	IIIw-3 36	2w3
Ro Roanoke silt loam	29	IVw-2 37	2w9
Sw Swamp	30	VIIw-1 38	
Tu Tuckerman fine sandy loam	30 .	IVw-4. 38	2w9
WaB Wagram loamy sand, 0 to 6 percent slopes	31	IIs-1 . 35	3s2
WaC Wagram loamy sand, 6 to 10 percent slopes	31	IIIe-3 36	3s2
WkB Wickham sandy loam, 0 to 6 percent slopes	33	IIe-1 34	207
· · · · · · · · · · · · · · · · · · ·	1		

S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE NORTH CAROLINA AGRICULTURAL EXPERIMENT STATION м

GENERAL SOIL MAP PITT COUNTY, NORTH CAROLINA

Scale 1:253,440 4 Miles

SOIL ASSOCIATIONS


Norfolk-Exum-Goldsboro association: Moderately well drained and well drained soils that have a subsoil of dominantly friable sandy clay loam or clay loam; on uplands

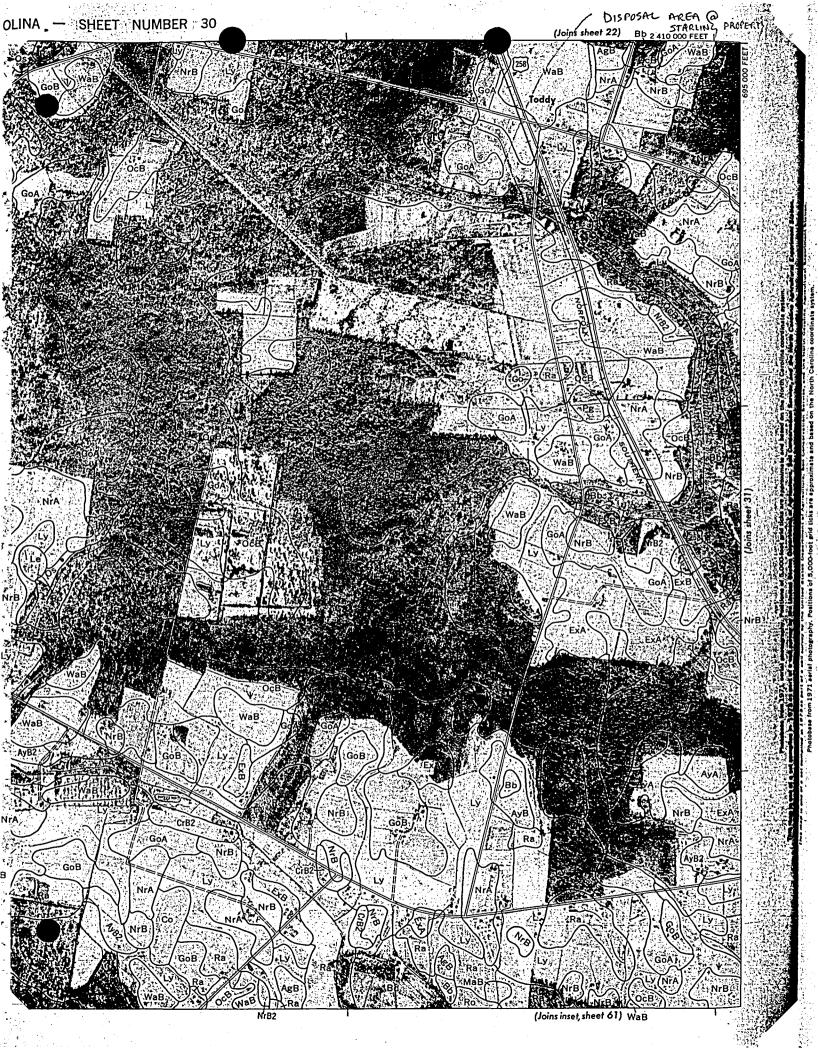
Roanoke-Lakeland-Altavista association: Poorly drained to excessively drained soils that have a subsoil of dominantly friable sandy clay loam or very firm clay, or that are underlain by loose sand; on stream terraces and uplands

Lynchburg-Rains-Goldsboro association: Moderately well drained to poorly drained soils that have a subsoil of dominantly friable sandy clay loam; on uplands

Lenoir-Bladen-Craven association: Moderately well drained to poorly drained soils that have a subsoil of very firm and firm sandy clay to clay; on uplands

Coxville-Exum association: Poorly drained and moderately well drained soils that have a subsoil of dominantly firm sandy clay or friable clay loam; on uplands

that are underlain by very friable fine sandy loam, or that have a subsoil of friable sandy loam and sandy clay loam; on flood plains and stream terraces


5

35°30'

BEAUFORT

Bladen-Byars association: Poorly drained and very poorly drained soils that have a subsoil of firm and very firm sandy clay to clay; on uplands

Compiled 1973

United States Department of the Interior FISH AND WILDLIFE SERVICE ENDANGERED SPECIES FIELD STATION 100 OTIS STREET, ROOM 224 ASHEVILLE, NORTH CAROLINA 28801

June 21, 1985

Ms. Pat Derosa Solid and Hazardous Waste Management Branch Environmental Health Section North Carolina Department of Human Resources P. 0. Box 2091 Raleigh, North Carolina 27602

Dear Ms. Derosa,

In response to your telephone conversation with John Fridell on May 30, 1985, we are enclosing the following items of information:

- A. North Carolina county distribution records of Federally listed, proposed and status review species,
- B. map of the critical habitat of the threatened spotfin chub (<u>Hybopsis monacha</u>),
- C. map of the critical habitat of mountain golden heather (<u>Hudsonia</u> montana), and
- D. copy of the U.S. Fish and Wildlife Service interagency Section 7 consultation process guidelines (included for your information)

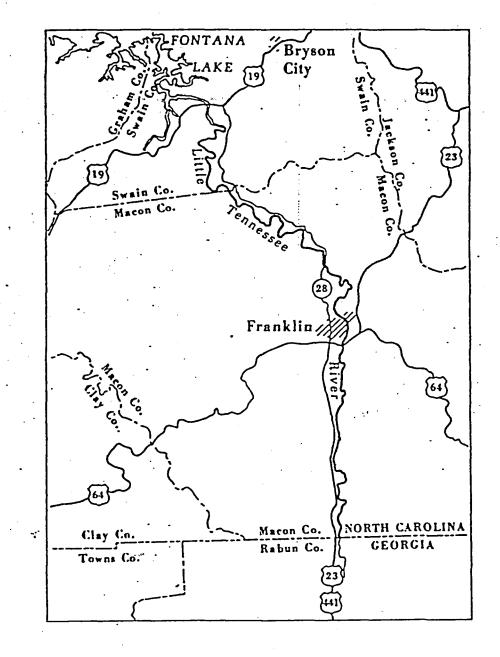
The abbreviations following the species names on the North Carolina species distribution records (A. above) indicate Federal status, i.e., E - endangered, T - threatened, PE - proposed endangered, PT - proposed threatened and SR under status review. Status review species are not legally protected under the Endangered Species Act. However, they are subject to being listed and agencies should be cognizant of their potential presence in a project area.

Since additions and deletions are made to the list of species on a regular basis, questions regarding updates of the list should be made to this office.

We hope this information will be of use to you. If we can be of any further assistance, please call John Fridell or Nora Murdock at (704) 259-0321.

Sincerely yours,

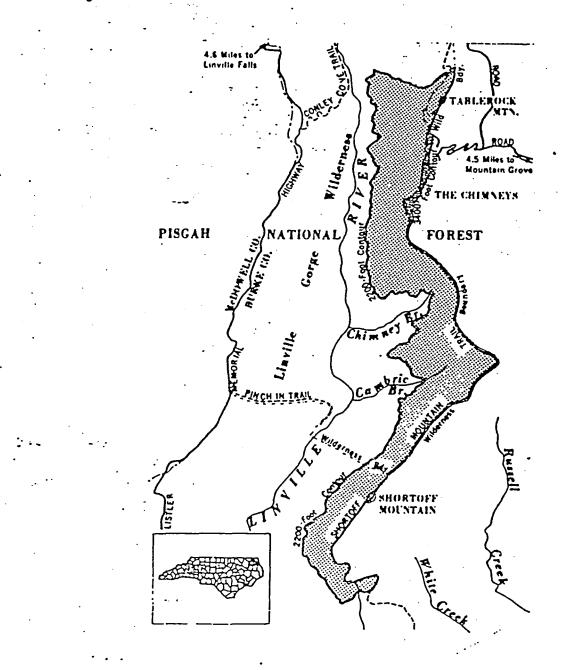
Warren T. Parker Field Supervisor


2

NORTH CAROLINA - Critical Habitat

Hybopsis monacha, "spotfin chub"

22


Macon and Swain Counties. Little Tennessee River, main channel from the backwaters of Fontana Lake upstream to the North Carolina-Georgia state line.

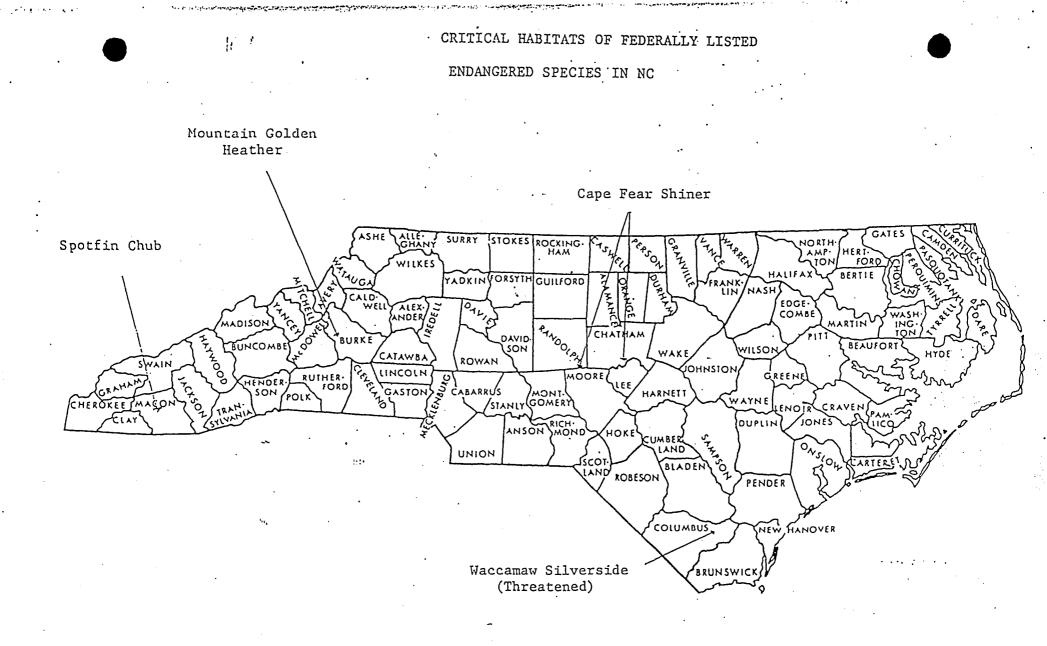
NORTH CAROLINA - Critical Habitat

Hudsonia montana, "mountain golden heather"

Burke County. The area bounded by the following: on the west by the 2200' contour; on the east by the Linville Gorge Wilderness Boundary north from the intersection of the 2200' contour and the Shortoff Mountain Trail to where it intersects the 3400' contour at "The Chimneys"--then follow the 3400' contour north until it reintersects the Wilderness Boundary--then follow the Wilderness Boundary again northward until it intersects the 3200' contour extending west from its intersection with the Wilderness Boundary until it begins to turn south--at this point the Boundary extends due east until it intersects the 2200' contour.

May 18, 1989

TO: Superfund Branch Staff


FROM: Pat DeRosa

RE: Critical Habitats of Federally Listed Endangered Species in North Carolina

On May 18, 1989, I spoke by telephone with John Fridell, US Fish and Wildlife Service, Asheville, NC (704) 259-0321 to request an update on critical habitats in North Carolina. Mr. Fridell said the Fish and Wildlife Service has been reorganized into a western and eastern office in North Carolina. His office now handles only western North Carolina. He said there have been no changes in the designated critical habitats identified in western North Carolina.

I then spoke by telephone with Debby Mignogno, US Fish and Wildlife Service, Raleigh, NC (919) 856-4520 regarding critical habitats in eastern North Carolina. Ms. Mignogno sent the attached maps of the 2 critical habitats designated in eastern North Carolina. Please note that the Waccamaw Silverside is listed as threatened, not endangered.

PD/pb/critical.hab

1 inch = approx. 53 miles

15 June 1987

TO:	File	
•	•	Dr
FROM:	Pat DeRosa	P

RE:

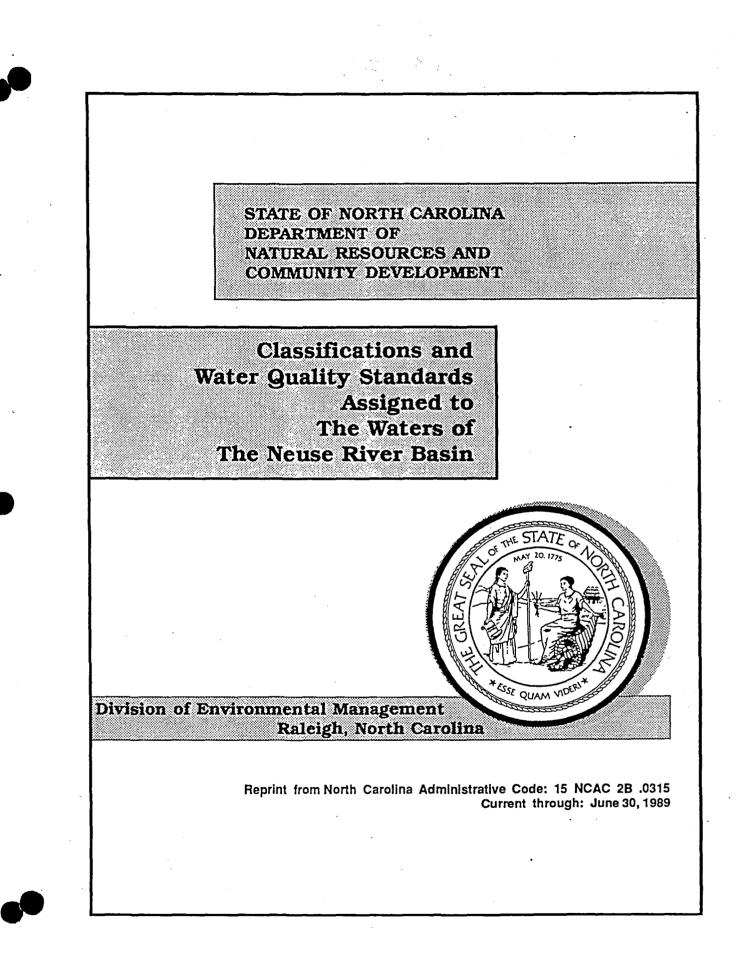
Critical Habitats of Federally Listed Endangered Species in N.C.

I spoke by telephone today with John Fridell, US Fish and Wildlife Service (704) 259-0321 to request an update on critical habitats in NC. Mr. Fridell informed me that there have been no changes since our previous correspondence of August 12, 1986. The "Proposal to List the Cape Fear Shiner as an Endangered Species with Critical Habitats" in NC (FR Vol. 51, No. 133, July 11, 1986) is expected to be finalized in the next month or so.

5

PD/tb/0338b

12 August 1986


TO: CERCLA Unit Staff

FROM: Pat DeRosa

RE: Critical Habitats of Federally Listed Endangered Species in N.C.

I spoke by telephone today with John Fridell, US Fish and Wildlife Service (704) 259-0321 to request an update on critical habitats in NC. Mr. Fridell informed me that the only change since our previous correspondence of June 21, 1985 has been a "Proposal to List the Cape Fear Shiner as an Endangered Species-with Critical Habitats" in NC. (FR Vol. 51, No. 133, July 11, 1986). A copy of the proposed rule is attached for your information.

PD/tb/0221b

REF 7

NRCD - ENVIRONMENTAL MANAGEMENT

SECTION .0300 - ASSIGNMENT OF STREAM CLASSIFICATIONS

.0301 CLASSIFICATIONS: GENERAL

(a) Schedule of Classifications. The classifications assigned to the waters of the State of North Carolina are set forth in the schedules of classifications and water quality standards assigned to the waters of the river basins of North Carolina, 15 NCAC 2B .0302 to .0317 which are on file in the Office of the Attorney General of North Carolina. These classifications are based upon the existing or contemplated best usage of the various streams and segments of streams in the basin, as determined through studies and evaluations and the holding of public hearings for consideration of the classifications proposed.

(b) Stream Names. The names of the streams listed in the schedules of assigned classifications were taken as far as possible from United States Geological Survey topographic maps. Where topographic maps were unavailable, U.S. Corps of Engineers maps, U.S. Department of Agriculture soil maps, and North Carolina highway maps were used for the selection of stream names.

(c) Classifications. The classifications assigned to the waters of North Carolina are denoted by the letters WS-I, WS-II, WS-III, B, C, SA, SB, and SC in the column headed "class." A brief explanation of the "best usage" for which the waters in each class must be protected is given as follows:

Fresh Waters

Class WS-I:	waters protected as water supplies which are in natural and uninhabited or predominantly undeveloped (not urbanized) watersheds; no point source
	discharges are permitted and local land management programs to control nonpoint source pollution are required; suitable for all Class C uses;
Class WS-II:	waters protected as water supplies which are in low to moderately developed
	(urbanized) watersheds; discharges are restricted to primarily domestic
	wastewaters or industrial non-process waters specifically approved by the
	commission; local land management programs to control nonpoint source
1	pollution are required; suitable for all Class C uses;
Class WS-III:	water supply segment with no categorical restrictions on watershed
	development or discharges; suitable for all Class C uses;
Class B:	primary recreation and any other usage specified by the "C" classification;
Class C:	fish and wildlife propagation, secondary recreation, agriculture, and other uses requiring waters of lower quality.

Tidal Salt Waters

Class SA:	shellfishing for market purposes and any other usage specified by the "SB" and
	"SC" classification;
Class SB:	primary recreation and any other usage specified by the "SC" classification;
Class SC:	fish and wildlife propagation, secondary recreation, and other uses requiring
	waters of lower quality.

Supplemental Classifications

Trout Waters:	Suitable for natural trout propagation and maintenance of stocked trout;
Swamp Waters:	Waters which have low velocities and other natural characteristics which
-	are different from adjacent streams;
NSW:	Nutrient sensitive waters which require limitations on nutrient inputs;
ORW:	outstanding resource waters which are unique and special waters of
	exceptional state or national recreational or ecological significance which
,	require special protection to maintain existing uses.

(d) Water Quality Standards. The water quality standards applicable to each classification assigned are those established in 15 NCAC 2B .0200, Classifications and Water Quality Standards Applicable to the Surface Waters of North Carolina, as adopted by the North Carolina Environmental Management Commission.

(e) Index Number

i

NRCD - ENVIRONMENTAL MANAGEMENT

.0315 NEUSE RIVER BASIN

×

· .			Class	sification
ame of Stream	Description	Class	Date	Index No.
Beaman Run	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-13
Howell Swamp	From source to Beaman Run	C Sw NSW	5/1/88	27-86-13-1
Nahunta Swamp	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-14
Perkins Old Mill Br.	From soure to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-0.5
The Slough	From source to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-1
Granny Branch	From source to The Slough	C Sw NSW	5/1/88	27-86-14-1-1
Moccasin Run	From source to The Slough	C Sw NSW	5/1/88	27-86-14-1-2
Exum Mill Branch	From source to The Slough	C Sw NSW	5/1/88	27-86-14-1-3
Beaver Dam	From source to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-2
Button Branch	From source to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-3
Mill Branch	From source to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-4
Beetle Branch (Beaver	From source to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-5
Branch)				
Cow Branch	From source to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-6
Appletree Swamp	From source to Nahunta Swamp	C Sw NSW	5/1/88	27-86-14-7
Fort Run	From source to Contentnea Creek	C SW NSW	5/1/88	27-86-15
Lang Branch	From source to Fort Run	C Sw NSW	5/1/88	27-86-15-1
Lewis Branch	From source to Fort Run	C SW NSW	5/1/88	27-86-15-2
Mill Run	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-16
Tyson Marsh	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-17
Jacks Fork	From source to Tyson Marsh	C SW NSW	5/1/88	27-86-17-1
Reeders Fork	From source to Tyson Marsh	C Sw NSW	5/1/88	27-86-17-2
Spring Branch	From source to Tyson Marsh	C Sw NSW	5/1/88	27-86-17-3
Panther Swamp Creek	From source to Contentnea Creek	C SW NSW	5/1/88	27-86-18
Poorhouse Run	From source to Contentnea Creek	C SW NSW	5/1/88	27-86-19
Shepherd Run	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-20
Rainbow Creek	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-21
Horsepen Branch	From source to Rainbow Creek	C SW NSW	5/1/88	27-86-21-1
Sowell Run	From source to Rainbow Creek	C Sw NSW	5/1/88	27-86-21-2
Beaverdam Run	From source to Contentnea Creek	C SW NSW	5/1/88	27-86-22
Mussel Run	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-23
Wheat Swamp Creek	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-24
Hallam Branch	From source to Wheat Swamp Creek	C Sw NSW	5/1/88	27-86-24-1
Polecat Branch	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-25
Little Contentnea Creek	From source to Contentnea Creek	C SW NSW	5/1/88	27-86-26
Ward Run	From source to Little Contentnea Creek	C SW NSW	5/1/88	27-86-26-1
Black Swamp	From source to Little Contentnea Creek	C SW NSW	5/1/88	27-86-26-2
Langs Mill Run	From source to Black Swamp	C SW NSW	5/1/88	27-86-26-2-1
Jacob Branch	From source to Black Swamp	C Sw NSW	5/1/88	27-86-26-2-2
Oldwoman Branch	From source to Little Contentnea Creek	C Sw NSW	5/1/88	27-86-26-3
Pinelog Branch	From source to Little Contentnea Creek	C Sw NSW	5/1/88	27-86-26-4
Middle Swamp	From source to Little Contentnea Creek	C Sw NSW	5/1/88	27-86-26-5
Sandy Run	From source to Middle Swamp	C Sw NSW	5/1/88	27-86-26-5-1
Eagle Swamp	From source to Contentnea Creek	C Sw NSW	5/1/88	27-86-27
rinnel Slough	From soruce to Neuse River	C SW NSW	5/1/88	27-87
alfmoon Creek	From source to Neuse River	C Sw NSW	5/1/88	27-88
illage Creek	From source to Neuse River	C Sw NSW	5/1/88	27-89
ore Creek	From source to Neuse River	C SW NSW	5/1/88	27-90

14

2B .03

.

•

Wanter Come

Uncontrolled Hazardous Waste Site Ranking System REF 8

A Sers Manual

Originally Published in the July 16, 1982, Federal Register

United States Environmental Protection Agency

1984

UNION CARBIDE CORPORATION 20575 CENTER RIDGE ROAD ROCKY RIVER, OHIO 44116 Battery Products Division

Mr. D. Mark Durway North Carolina Dept. of Human Resources Solid and Hazardous Waste Management Branch P. O. Box 2091 Raleigh, N. C. 27602-2091

NOV 21 1984 WASTER N TELEPHONE: (216)

TELEPHONE: (216), (246), (247) TELEX: UCCONSPRO HRVF38-5591 ADDRESS REPLY TO: P.O. BOX 16000 ROCKY RIVER, OHIO 44116

November 16, 1984

Subject: David Starling Disposal Site

Dear Mr. Durway:

This letter is in response to your 10/4/84 request for information about the Starling disposal site in Farmville, N. C. In 1970, Union Carbide Corporation (UCC) was awarded a contract to produce a magnesium battery for the Federal government. Part of the production operation involved chrome coating. Excess barium carbonate was added to spent coating solution to precipitate chromium such that the remaining wastewater could be safely discharged to the local POTW. The sludge generated from this treatment step consisted of 40% to 50% barium carbonate and 50% to 60% barium chromate. Between 1/6/71 and 3/31/71, approximately 542 containers were shipped to the Starling disposal site. The containers consisted of 55-gallon drums and 5-gallon pails and the total volume of sludge disposed of is estimated to be 10,000 gallons. The containers were transported to the disposal site by Mr. Starling; approximately 30 trips were made during that time period. This sludge was the only UCC material disposed of at the Starling site.

In late 1982, UCC hired Law Engineering to conduct a site environmental reconnaissance and preliminary site assessment. A copy of their report is provided with this letter. That document summarizes most of our actions to date and answers most of your questions relating to chronology, waste disposal practices, and site investigation information. The Law Engineering report concludes that the waste disposal on the Starling property does not represent an environmental hazard to surface or groundwater resources outside the immediate disposal area at this time (page 25).

Based on discussions with Law Engineering and several hazardous waste handling and disposal firms, we have concluded that the risks associated with disturbing the waste at this time outweigh the risks of leaving it in place. With proper site grading, there is no definite indication that the site is or will ever be an environmental or health problem. Our plan, therefore, is to adequately define the site, implement a monitoring program, and establish a contingency plan describing actions to be taken based on predetermined levels of surface water or groundwater degradation. Contingency plan remedial actions being considered include slurry wall construction, waste stabilization, in-place fixation, and waste excavation. Law Engineering has been hired to complete the Starling site assessment and to develop both the monitoring program and the contingency plan. Attachment No. 1 of this letter is a copy of our criteria for the above work. Our UCC action plan is shown in Attachment No. 2. The dates are approximations shown only for current planning purposes; they are not meant to be binding commitments. Please keep in mind that this is a voluntary effort being done with the cooperation of Mr. Starling, the site owner and operator.

I believe that this letter has responded to all of your concerns. If you have any questions, please call me at 216/333-0500.

AMN:ps Attachs. Very truly yours,

ert M Nash

A. M. Nash

Page 2

ATTACHMENT NO.

SITE EVALUATION-5-25-84

This order is to complete the David Starling disposal site evaluation and assessment. It is broken into several key tasks as listed below. Where appropriate, references are made to recommendations contained in Contractor's November 1983 Hydrogeological Assessment Report.

1) To obtain a better understanding of ground-water flow in the immediate vicinity of the waste disposal area, Contractor shall install several shallow (less than 5-foot deep) standpipes per recommendation 9.3. The standpipes would only be used for waterlevel measurements and could probably be installed by hand techniques. The standpipes would particurlarly be important along the northern and eastern side of the waste fill area where the hydraulic relationships to the existing hog pond are not well understood. This task includes topographic surveying and submission of a report of findings.

2) The surface of the waste disposal area shall be graded to prevent direct runoff of contaminants into the northern drainage ditchand to minimize exposure of animals to contaminated standing water. Recommedation 9.4 refers to this task. UCC-Greenville will provide labor, equipment, and any necessary material to accomplish this task. The grading operation shall be supervised by Contractor's soils engineer or geologist familiar with the site conditions and safety considerations.

3) To delineate the approximate limits (widths and depth) of the disposal trench, Contractor shall conduct a geophysical survey using electrical techniques (electromagnetic and/or resistivity) and a magnetometer to traverse the disposal area. This task corresponds to recommendation 9.5. A report of findings is included in this task.

4 A) Contractor shall develop an annual groundwater monitoring program based on eight(8) sampling stations- 4 wells, 2 to 3 surface water samples, 1 contingency. Surface and groundwater samples collected from the site shall be analyzed for total barium and chromium. Field measurements of PH and conductivity are to be obtained at the time of sample collection. The results of water quality shall be statistically compared to the existing data base to determine if significant changes have occured in the water quality conditions. Ground and surface-water elevations shall be obtained in the vicinity of the waste disposal area at the time of sample collection. The water level data shall be compared to the past potentiometric surfaces to determine if significant changes in flow or gradients have occurred. Contractor shall conduct one annual groundwater monitoring check (as described above) under this order. The report of findings is to include:

(a) description of groundwater monitoring program

(b) description of sample collection techniques and sample preservation, as appropriate

SITE EVALUATION 5-25-84 (cont'd)

(c) description of on-site tests (equipment, procedures)

(d) description of off-site analysis (equipment, test method)

(e) other descriptive information considered pertinent by the Contractor

(f) summary, discussion, and evaluation of monitoring results

4B) In developing the above groundwater monitoring program, the Contractor is to evaluate and report on the adequacy of the existing four(4) wells for sampling purposes. If due to hydrogeological or other condsiderations additional wells are recommended by the Contractor and approved by the Owner, the Contractor shall install said wells using similar techniques as in Contractors original study and to depths not exceeding 25 feet. In any event, no more than two(2) additional wells should be required. Well installation includes all materials, well development, supervision, surveying, and transmitting soil test boring/monitoring well records.

5) Contractor shall prepare a contingency plan describing what levels of degradation in surface or ground-water samples collected over the monitoring period require action by Union Carbide. The plan would be developed with Union Carbide's input, recognizing the current remedial measure alternatives being considered by Union Carbide. The action could include resampling if relatively low concentrations are detected, or implementation of a pre-specified remedial measure alternative if the concentrations are determined to represent statistically significant increases. The concentration levels will be based on drinking water standards or other applicable criteria.

ATTACHMENT No. 2

ACTION PLAN

DAVID STARLING DISPOSAL SITE

	Action	Responsibility	Timing
1)	Receive and review final Hydrogeo- logical Assessment Report.	UCC	Complete
2)	Review Hydrogeological Assessment Report with David and Francis Starling.	UCC	Complete
3)	Obtain permission from David Starling allowing UCC to do the site work outlined in the Hydrogeological Assessment Report and UCC's 5/25/84 criteria.	UCC	Complete
4)	Obtain quotes for removal and disposal of surface trash and for site grading.	UCC	December 1984
_. 5)	Complete surface trash removal and disposal.	UCC	January 1985
6)	Complete site grading under Law Engineering supervision.	UCC Law Engineerin	February 1985 g
7)	Perform geophysical survey.	Law Engineerin	g March 1985
8)	Install shallow standpipes and begin water level monitoring.	Law Engineerin	g April 1985
9)	Law Eng. issues report on grading, geo- physical survey, and standpipe study. Report includes assessment of adequacy of existing wells for groundwater monitoring pro	Law Engineerin Ogram.	g June 1985
10)	Installation of additional wells (if nec- essary and approved).	UCC Law Engineerin	July 1985 g
11)	Complete draft Monitoring Program and Con- tingency Plan.	Law Engineerin	g Sept. 1985
12)	Review written Monitoring Program and Contingency Plan with: (a) UCC internal (b) David Starling (c) North Carolina Solid & Hazardous Waste Management Branch and/or U.S. EPA	UCC	Oct. 1985 Nov. 1985 Dec. 1985
13)	Modify Monitoring Program & Contingency Plan as appropriate.	UCC	Jan. 1986
14)	Approval of Monitoring Program & Contingency	Plan UCC	Feb. 1986
15)	Implement	UCC	March 1986

FINAL REPORT OF

HYDROGEOLOGICAL ASSESSMENT

DAVID STARLING DISPOSAL SITE

PITT COUNTY, NORTH CAROLINA

FOR

100.11

UNION CARBIDE CORPORATION

NOVEMBER 1983

LAW ENGINEERING TESTING COMPANY

LAW ENGINEERING TESTING COMPANY geotechnical, environmental & construction materials consultants 2749 DELK ROAD, S.E. MARIETTA, GEORGIA 30067 (404) 952-9005

November 28, 1983

Union Carbide Corporation 20575 Center Ridge Road P.O. Box 16000 Rocky River, Ohio 44116

Attention: Mr. Albert M. Nash General Engineering Department

Subject: Final Report of Hydrogeological Assessment David Starling Disposal Site Pitt County, North Carolina Law Engineering Project No. MH2303

Dear Mr. Nash:

Law Engineering has completed a hydrogeological assessment of the David Starling disposal site as outlined in Union Carbide's Order No. 732-97521. Our report is based on various phases of study we have conducted on the site between September 1982 and May 1983.

We have concluded on the basis of our studies that the waste disposal on the David Starling property does not represent an environmental hazard at this time for surface or ground-water resources outside the immediate disposal area. We have provided recommendations for subsequent monitoring which should be evaluated before closure plans are implemented.

We would be happy to answer any questions you have regarding this report. Law Engineering looks forward to continued work on this assessment program.

Sincerely,

LAW ENGINEERING TESTING COMPANY

W. Joseph Alexander, P.G. Senior Hydrogeologist Project Manager

FREValence

Jon Larry A. Neal, P.E. Senior Environmental Engineer

BECEIVED BECEIVED BUILD NOV 21 1984

WJA-LAN/pc

cc: G. A. Babcock

TABLE OF CONTENTS

•

				Page
	1.0	INT	RODUCTION	1
	2.0	MET	HODOLOGY	2
		2.1 2.2 2.3 2.4 2.5 2.6	Reconnaissance of Site Area Construction of Base Map Exploratory Drilling Installation of Monitoring Wells	2 3 3 4 4 5
•	3.0	SIT	E CONDITIONS	7
		3.1 3.2	Topography and Drainage Existing Water Wells	7 7
	4.0	WAS	TE DISPOSAL	9
		4.1 4.2 4.3	Sludge Disposal Activities Observations Previous Chemical Data	9 9 10
	5.0	ARE	A HYDROGEOLOGY	11
		5.1 5.2 5.3 5.4 5.5 5.6	Area Physiography Hydroyeologic Units Water-Table Aquifer Yorktown Formation Cretaceous Lower Sand Unit Ground-Water Usage Near Site	11 11 12 12 13 13
	6.U	SIT	E HYDROGEOLOGY	15
		6.1	Geology	15
	•		 6.1.1 Silty/Clayey Fine Sand Stratum 6.1.2 Gray Sand/Silt Stratum 6.1.3 Silty-Shell Stratum 6.1.4 Lower Gray Silt Stratum 	15 16 16 16
		6.2 6.3	Shallow Aquifer System Aquifer Properties	17 18
	7.U	GEO	OCHEMISTRY	20
		7.1 7.2 7.3	Surface-Water Quality	20 21 22
			7.3.1 Background Conditions 7.3.2 Cation Exchange Capacity	22

TABLE OF CONTENTS (Continued)

			Page
8.0	CON	CLUSIONS	24
9.0	REC	OMMENDATIONS	26
•	9.1 9.2 9.3 9.4 9.5	Water-Quality Monitoring Water-Level Monitoring (Existing Stations) Water-Level Monitoring (New Stations) Surface Grading Trench Definition by Geophysics	26 26 26 27 27
10.0	BIE	LIOGRAPHY	29

LIST OF TABLES

(Following Text)

Table	1	Water Well Information Near Site
	2	Summary of Ground-Water Level Data (Water Wells)
	3	Summary of Ground-Water Level Data (Monitoring Wells)
	4	Hydrogeologic Units - Central Coastal Plain
	5	Summary of Surface-Water Level Data
	6	Results of Permeability Tests
	7	Results of Chemical Analyses - Ground Water
	8	Results of Chemical Analyses - Surface Water
	9	Results of Chemical Analyses - Soil
	ΤÛ	Results of Cation Exchange Capacity Tests

LIST OF FIGURES

(Following Tables)

Figure 1 General Location Map

• .

÷

- Topography of Site Area 2
- General Sludge Disposal Area and Layout of Borings 3
- Generalized Hydrogeologic Cross Section 4
- Potentiometric Surface of Cretaceous Lower 5 Sand Unit - 1979
- 6
- Location of Hydrogeological Profile Hydrogeological Profile of Disposal Area 7
- 8 Potentiometric Surface of Water-Table Aquifer (May 26, 1983)

TABLE OF CONTENTS (Continued)

LIST OF APPENDICES

(Following Figures)

Appendix 1 Soil Test Boring Records (Exploratory Drilling) 2 Soil Test Borings and Monitoring Well Details 3 Grain Size Analyses 4 Monitoring Well Variance 5 Previous Chemical Data

PLATES

Plate 1 Base Map

(Pocket)

1.0 INTRODUCTION

Law Engineering was contracted by Union Carbide Corporation's Battery Products Division to evaluate potential environmental impacts associated with sludge disposal at the David Starling disposal site. The battery sludge was produced by Union Carbide's Greenville, North Carolina plant in 1970. In early 1971 the sludge was shipped to the property of Mr. David Starling located halfway between Farmville and Fountain, North Carolina. In June 1981 the disposal site was listed by Union Carbide in EPA's CERCLA list of inactive sites.

. .

. .

ŧ

ł

Law Engineering's site assessment program was conducted in a sequence of tasks generally between September 1982 and May 1983. Our studies have basically included collection of area data, site reconnaissance, construction of a base map, soil test borings, monitoring well installation, collection and analysis of soil and water samples, and evaluation of data. Our study approach is described in more detail in Section 2.0 (Methodology). The purpose of our hydrogeological assessment was to determine if the disposal site represents an environmental hazard from the standpoint of water resources.

-1-

2.0 METHODOLOGY

2.1 Collection of Existing Data

• !

Data were collected from the following sources for use in this hydrogeological assessment:

Union Carbide:

- various information regarding the sludge disposal activities at the David Starling site
- information regarding the quantities and characteristics of the waste material
- . analytical results of water and sludge analyses

Property Owner:

In our interviews with Mr. Starling over the course of this assessment we obtained information on:

- . drainage features
- . water-well locations and usage
- . general methods of excavation and sludge burial

North Carolina Division of Environmental Management (Ground Water Section):

 hydrogeologic data from wells in the vicinity of Farmville

Pitt County Soil Conservation Service:

 various aerial photographs of the site and surrounding area reviewed

-2-

. soil survey of Pitt County

North Carolina Department of Human Resources (Division of Health Services):

representative water quality data for wells in the vicinity of the site

Publications:

 various State, County, and USGS publications and maps

2.2 Reconnaissance of Site Area

• •

We have conducted the following types of activities over the study period:

- . observations in the sludge disposal area
- observations of the general setting with particular emphasis on drainage ditches
- . observations of nearby streams
- . inventory of existing water wells on site
- . photographic coverage of pertinent site features

2.3 Construction of Base Map

Law Engineering arranged for photogrammetric mapping and ground surveying to prepare a base map of the site including the following features:

- . general property lines
- . drainage ditches and ponds
- . water-well locations
- . roads, buildings, and other pertinent features

-3-

elevations of selected features such as wells, ponds, drainage ditches, and land surface at selected locations

The aerial survey of the site was conducted by Piedmont Aerial Surveys, Inc. in December, 1982. This base map is provided in the pocket of the report (Plate 1). The ground surveying was performed by McDavid Associates, Inc. in April 1983. The immediate sludge disposal area was surveyed in more detail than the surrounding site features (Plate 1).

2.4 Exploratory Drilling

}

.

•

. :

. . .

Law Engineering drilled two exploratory borings outside the waste disposal area. Upon completion the borings were grouted closed from their termination depth to the ground surface. Soil samples were collected at regular intervals and were classified to determine the subsurface geological conditions. The data collected were used to characterize the material comprising the water-table aquifer, the confining bed, and the upper section of the principal aquifer. This information was used to determine the actual depths of subsequent monitoring wells installed within the sludge disposal area. The soil test boring records are provided in Appendix 1.

2.5 Installation of Monitoring Wells

After completion of the two exploratory borings, Law Engineering installed four shallow monitoring wells (approximately 25 feet deep) in the immediate vicinity of the sludge

-4-

disposal area (Appendix 2). These wells terminated above the confining layer to prevent downward movement of potential contaminants. Soil samples were collected on a regular basis and compared with subsurface information collected in the initial two borings. Grain size analyses were performed on selected soil samples (Appendix 3).

.

• -

• • • • • •

The shallow wells consist of 2-inch diameter PVC and manufacturer-slotted screens with .010 inch slot widths. The well construction utilized sand packing, bentonite seals, and surficial grout seals. The drilling equipment exposed to the subsurface was washed between each well location to minimize potential cross contamination. The shallow wells were installed under a variance from the State of North Carolina (Appendix 4). The monitoring wells are installed with protective, lockable covers and are marked "Ground-Water Monitoring Well - Not for Drinking Purposes."

2.6 Collection of Ground and Surface Water Data

After completion of the monitoring well installation, the wells were developed by over-pumping and bailing techniques. Hydraulic tests were performed in selected wells (slug tests and bailing tests) to obtain estimates of the permeability of the water-table aquifer. Representative ground-water levels were measured in the four monitoring wells and other selected water wells to produce potentiometric surface maps of the aquifer system. All development and testing equipment was thoroughly washed between well locations.

-5-

Ground-water samples were collected from the four monitoring wells with a PVC bailer and analyzed for constituents likely to be associated with the sludge disposal. Surface water samples were also collected for analysis. All sampling equipment was thoroughly washed between sampling locations. Field measurements of pH and conductivity were obtained. The water samples were filtered within a few hours after collection using a .45 micron pore filter and a vacuum pump system. The samples for metals analyses were then preserved with nitric acid to a pH of less than 2. The remaining samples were iced and shipped overnight to our laboratory in Marietta, Georgia for analysis.

-6-

-]

1

17

3.1 Topography and Drainage

The site is located in western Pitt County, North Carolina (Figure 1), midway between Farmville and Fountain. The sludge disposal area of the site is approximately 1400 feet west of N.C. Highway 258 on the property of Mr. David Starling.

The site has relatively little relief (about 4 feet) and slopes toward the southeast. Ground-surface elevations at the site range from elevation 94 feet, msl along the western portion of the Starling property to 90 feet, msl in the vicinity of the Starling residences (Plate 1). The site is drained primarily by man-made ditches. The flow in the ditches as determined by the April 5, 1983 survey is indicated on Plate 1. These ditches generally drain eastward toward Jacob Branch which is a tributary to Little Contentnea Creek (Figure 2). Contentnea Creek joins the Neuse River in southern Pitt County. It was learned in our meeting with Mr. Starling that subsurface-drain lines exist in fields just east of the sludge disposal area (Plate 1).

3.2 Existing Water Wells

Several wells exist at or near the site at locations shown on Plate 1. The information reported on these wells (from interviews with Mr. Starling) and our measurements are presented in Table 1. The small-diameter wells were washed down and no seals were reported in the installation process. Several of the water wells were installed around 1950. Several of the nearby

-7-

residences to the site are reported to be using water from a municipal water supply system (which is also derived from ground water) since spring of 1982.

-

......

• •

Ground-water levels were measured in the accessible water wells (Table 2). Of these wells, only Well No. 2 was considered useful for monitoring water levels in the immediate sludge disposal area.

4.1 <u>Sludge Disposal Activities</u>

.]

The Greenville, North Carolina Plant of Union Carbide Corporation produced a magnesium-can battery for the Federal Government in 1970. The plating operation produced a sludge with a composition of 40-50 percent barium carbonate and 50-60 percent barium chromate. Between January 6, 1971 and March 31, 1971, approximately 542 containers of the sludge were shipped to the David Starling disposal site (this number is based on Mr. Starling's memory). The containers consisted of 55 gallon drums and 5 gallon chromic acid pails. The total volume of sludge is estimated by Union Carbide Corporation to be approximately 10,000 gallons.

The containers of sludge remained above ground at the site until early fall of 1971. At this time Mr. Starling excavated a large trench, placed the containers in the trench and backfilled the trench with soil. Mr. Starling reported trench dimensions to Law Engineering as follows: width 15 to 25 feet; length 80 to 100 feet; and depth 12 to 14 feet. The trench is reported (by Mr. Starling) to have been open about two weeks before a tractor pushed soil back into the trench.

4.2 Observations

It was difficult for us to determine the actual dimensions of the sludge disposal trench by observation in the field although the approximate layout of the area is indicated in Figure 3. The surface of the immediate disposal area has about 4 feet of relief

-9-

caused by remnant piles of excavated soil. The original groundsurface elevation is interpreted to be approximately 93 feet, msl. Some unlabeled drums were exposed along the northern end of the trench and are in standing water. A small willow tree marks this location. On the southern end of the disposal area several chromic acid pails are exposed. We observed dark yellow-brown puddles of standing water along the eastern and southern end of the disposal area in December, 1982. The surface of the waste disposal area has scattered metal scraps, cross ties, and other miscellaneous debris. The area is overgrown with weeds.

4.3 Previous Chemical Data

Samples of ground water, surface water, and sludge were collected from the site or nearby areas prior to this study and analyzed by various laboratories in the time period between March The majority of the sample analyses have been and June, 1982. performed by the Edgewater Technology Laboratory of Union Carbide Corporation and compare favorably with results from other laboratories (Appendix 5). The ground-water samples typically had barium concentrations of less than 0.5 mg/l and chromium concentrations of less than 0.1 mg/l. The water samples from the drainage ditch adjacent to the sludge disposal area and a surface puddle at the disposal area had higher concentrations of barium than ground water (from 1.2 to 20 mg/l respectively). The sludge sample obtained from an exposed barrel at the site had a significantly higher concentration of extractable barium (between 6300 and 8500 ppm) than chromium (between 0.1 to 3.7 ppm).

-10-

This section of the report provides a brief description of the hydrogeologic framework of Western Pitt County. The information is primarily based upon published data.

5.1 Area Physiography

.

.

The site is in the Central Coastal Plain province. The mean annual precipitation in the area of the site is about 48 inches. Evapotranspiration in the area is probably on the order of 35 inches, leaving excess water for ground-water recharge. The topography in the site area is characterized by a flat upland, generally between 90 and 100 feet above mean sea level (msl). The upland topography near the site has been dissected by Little Contentnea Creek and its tributaries (Figure 2).

The Coastal Plain is comprised of a wedge-shaped sequence of stratified deposits which thicken seaward. The deposits overlie the crystalline basement surface which is interpreted to occur near elevation -300 feet, msl in the site area. (Estimated to be about 400 feet below land surface). The bedrock surface is irregular, being exposed at land surface just north of the site at the Fountain guarry.

5.2 Hydrogeologic Units

A summary of hydrogeologic units formed by the unconsolidated deposits in the Central Coastal Plain of North Carolina is

-11-

provided in Table 4. Hydrogeologic units of significance in the area of the site include in descending order:

Water-table aquifer

Yorktown confining bed

Lower Unit of Cretaceous aquifer system

The general thickness of these hydrogeologic units near the site is depicted by Figure 4.

5.3 Water-Table Aquifer

ł

The water-table aquifer is recharged by precipitation and discharges primarily into streams. Water levels are typically highest in the aquifer between January and March and lowest in late summer and between November and December. The water-table aquifer also recharges the underlying confined aquifer system through induced leakage. The water-table aquifer is a limited source of supply to a small number of domestic users. Water in this aquifer is typically soft, low in total dissolved solids, corrosive, and commonly contains high concentrations of iron.

5.4 Yorktown Formation

The lithology of the Yorktown Formation varies widely. Where present in the western parts of Pitt County the formation commonly occurs as a gray silty clay. Lenticular layers of sand occur in the formation. The fine texture of the formation precludes its use as a major aquifer although some small supplies are developed from the sand layers. In general the Yorktwon Formation serves as a semi-pervious confining bed for underlying aquifer systems.

-12-

5.5 Cretaceous Lower Sand Unit

. .

• •

. 1

.

The Cretaceous Lower Sand Unit comprises the lower part of the Cretaceous aquifer system and includes the water-bearing sands of the Black Creek and Tuscaloosa stratigraphic units. The aquifer is probably about 200 feet thick in the vicinity of the site. Ground water in the aquifer is primarily under confined conditions. Ground water in the aquifer moves from the site area to the southeast (Figure 5). Extensive cones of depression exist within the unit and are associated with major pumping centers such as Greenville and Kinston. A notable cone of depression also exists at Farmville, a few miles southeast of the site (Figure 5). Ground-water usage in the Farmville area range between 10 and 20 mgd.

Significant changes have occurred in the decline of the potentiometric surface of the aquifer near Greenville and Farmville. Between 1965 and 1979, the decline near Farmville has been as great as 60 feet and near Greenville 80 feet. The depth to the ground-water level in this principal aquifer in the vicinity of the site is estimated to be at least 70 feet. The quality of water from the Cretaceous Lower Sand is excellent, typically requiring little or no treatment.

5.6 Ground-Water Usage Near Site

The closest known community well to the site is located at the WoodLand Hills Motor Court (Plate 1). The well is within 1 mile southeast of the site near Highway 258. Highland Motor Court is located about 2 miles southeast of the site on Highway 258 and

-13-

also uses ground water. No treatment is required for these two water supplies, apparently developed in the Cretaceous Lower Sand Unit. Basic chemical analyses of these ground water supplies were obtained from the North Carolina Division of Health Services. No analyses for total barium or chromium are performed in these wells.

1

- 1

The closest well to the site known to be in use is the Starling Well No. 4 (Table 1). This well is approximately 1100 feet east of the disposal area and apparently developed in the Cretaceous Lower Sand Unit. The shallow wells in the immediate vicinity of the disposal area (Wells 1, 2, and 3 in Table 1) are no longer in use.

-14-

This section of the report is primarily based on the two exploratory borings and four monitoring wells drilled by Law Engineering.

6.1 Geology

The records of the two exploratory borings (located in Figure 6) are provided in Appendix 1. Boring B-1 terminated at a depth of 100 feet and boring B-2 terminated at a depth of 59 feet. The borings encountered similar strata as depicted by the hydrogeological profile in Figure 7. Four strata were identified by the two borings, described in descending order below (Figure 7).

6.1.1 Silty/Clayey Fine Sand Stratum

This sand stratum was encountered in all borings (the two exploratory borings and the four monitoring well borings). The sand stratum typically occurs to a depth of about 22 feet below land surface (elevation 71, msl). The stratum is predominantly composed of fine sand but also contains interbedded layers of very silty or clayey sand. The stratum is usually light gray or tan colored with some orange sands in the lower sections of borings MW-3 and MW-4 (Appendix 2). Penetration resistances in the sand stratum are typically between 10 and 30 blows per foot (bpf). The disposal trench was excavated within this stratum but apparently not into underlying strata (Figure 7).

-15-

6.1.2 Gray Sand/Silt Stratum

.

.

The gray sand/silt stratum was encountered in all borings at a depth of about 22 feet. The stratum has an average thickness of about 14 feet as measured in borings B-1 and B-2. The borings for the shallow wells terminated in the top of this stratum. The stratum is distinguished from the overlying stratum by its darker gray color and greater percentage of silt (20 and 25 percent silt as measured in samples from MW-3 and MW-4, respectively, Appendix 3). The stratum is interbedded with thin layers of fine sand and silt and contains some phosphate pebbles and wood fragments. In borings B-1 and MW-1 the stratum is composed almost entirely of silt. Penetration resistances in the stratum are typically less than 15 bpf.

6.1.3 Silty-Shell Stratum

The silty-shell stratum was encountered in the two exploratory borings between the depths of 34 and 47 feet in boring B-1 and 37 and 44.5 feet in boring B-2. The stratum is predominantly composed of shell fragments in a dark gray silt matrix. The stratum also contains fine to medium sand. Penetration resistances in the stratum are typically between 10 and 20 bpf.

6.1.4 Lower Gray Silt Stratum

The lower gray silt stratum underlies the shell stratum in borings B-1 and B-2. Boring B-2 terminated in the stratum at 59 feet. Boring B-1 encountered 52.8 feet of the gray silt before terminating in a coarse silty sand and gravel at 99.8 feet. The

-16-

silt stratum is predominantly composed of silt but also contains a small percentage of fine sand, clay, and shell fragments. The penetration resistance of the lower gray silt stratum is typically between 30 and 60 bpf.

6.2 Shallow Aquifer System

The saturated portion of the silty/clayey fine sand stratum (Section 6.1.1) forms a shallow aquifer under water-table conditions. The gray sand/silt stratum (Section 6.1.2) and underlying strata probably represent the base of the water-table aquifer. These strata have a lower permeability than the water-table aquifer and serve as a confining layer to deeper, more permeable aquifers. These low-permeability deposits probably correlate to the Yorktown confining bed. The sand and gravel encountered near 100 feet in boring B-1 may represent the top of the Cretaceous Lower Sand Unit (Section 5.5).

The four monitoring wells were installed within the watertable aquifer. The wells terminated within the top of the gray sand/silt stratum. The wells essentially screen the entire saturated thickness of the aquifer (Appendix 2).

Ground-water levels were measured in the monitoring wells and other nearby water wells on at least two occasions (Tables 2 and 3). The water elevations measured on May 26, 1983 are considered to be representative of stabilized ground-water conditions at the site. These measurements were used to construct a potentiometric surface map of the water-table aquifer (Figure 8). Water Well No. 2 is also considered to be representative of water levels in

-17-

the aquifer and was used in construction of Figure 8. As indicated by the potentiometric surface, ground-water flow is toward the northeast where discharge primarily occurs in the drainage ditch that forms the northern property line of the Starling property.

The presence of the hog ponds complicate the hydraulic flow conditions. Both ponds were apparently excavated into the watertable aquifer. The west hog pond appears to serve as a discharge point for ground water at the time of the May 1983 readings. The east hog pond appears to serve as a ground-water recharge area based on elevations measured in May 1983. Both ponds were apparently ground-water recharge areas in April 1983. This flow system is influenced by washing operations that discharge into one or both ponds, and direct response of the pond levels to rainfall.

The water table declined about 1/2 foot between the April and May readings (Table 3). Surface water level data are provided in Table 5.

6.3 Aquifer Properties

The permeability of the water-table aquifer was determined by slug tests or bailing tests in selected monitoring wells (Table 6). The aquifer has an average permeability of about 3 x 10-4 centimeters per second (cm/sec). This value is representative of very silty or clayey fine sands. The aquifer is anisotropic on a small scale due to the statification observed and relatively thin zones of higher and lower permeability likely exist. Taken as a

-18-

composite section, however, the aquifer essentially behaves as a homogeneous-isotropic medium in which flow is predominantly horizontal. As previously discussed, the strata underlying the sand stratum probably serve as a base to the water-table aquifer because of lower permeability.

The hydraulic gradient of the water-table aquifer is quite low (.005 feet per feet) on the basis of the potentiometric surfaces measured over the period of this study. The gradient may steepen slightly near the principal discharge area (northern property ditch). The gradient did not change sigificantly between April and May, 1983.

The velocity of the ground water moving in the water-table aquifer can be estimated on the basis of the following equation:

$$V = \frac{Ki}{ne}$$

where

•

· :

ve V = velocity of ground water (feet per year)

K = permeability of aquifer (3 x 10-4 cm/sec or 310
feet per year)

i = hydraulic gradient of water table (.005)

The ground-water velocity is, therefore, estimated to be quite low, less than 10 feet per year.

-19-

This section of the report is primarily based on samples collected and analyzed by Law Engineering. Our evaluation was based on analyses of ground water, surface water, and soil samples.

7.1 Ground-Water Quality

Well MW-2 is representative of background water quality conditions on the basis of ground-water hydraulics and water quality observed. Wells MW-1, MW-3 and MW-4 are in locations that could measure impacts from the disposal operation. Four ground-water samples were collected on April 7, 1983, and analyzed for total barium and chromium as well as other indicator parameters (Table 7). With the exception of water from well MW-1, the results were less than detection limits for barium (0.3 mg/1) and chromium (.005 mg/1).

The April 7 sample from well MW-l indicated an elevated concentration of total barium (6.4 mg/l) and total chromium (0.010 mg/l). The well was resampled on May 26, 1983, and indicated a lower concentration of total barium (0.5 mg/l) but essentially the same concentration of total chromium (0.012 mg/l). The high initial concentration of barium could be a result of near-surface contamination carried down in the drilling operation. The ground surface in the southeastern corner of the waste disposal area was noted to have dark yellow-brown puddles of standing water. Well MW-1 is situated in a location that could be impacted by the

-20-

disposal area (Figure 8) and may be indicative of contaminant migration in the subsurface. We anticipate that the barium could have mobilized from the barium carbonate portion of the waste sludge which is more soluble than barium chromate. The chromium could be derived from the barium chromate or residual chromic acid from the pails observed on site (Section 4.2).

The results of other parameters tested in the wells indicate that total magnesium and dissolved sulfate were lowest in wells MW-1 and MW-2 and highest in wells MW-3 and MW-4 (Table 7). The conductivity of the ground water is lowest in the background well (MW-2) ranging from 75 to 95 umhos/cm over the two sample collections. The conductivity of the ground water was highest in wells MW-3 (560 umhos/cm) and MW-4 (about 1000 umhos/cm). The pH of the ground water is acidic in the range of 5 to less than 7.

The results of the ground-water samples indicate some contamination may have reached well MW-1 as a result of sludge disposal. The higher conductivity values in wells MW-3 and MW-4 compared to background conditions may also be indicative of ground-water quality degradation from the disposal area.

7.2 Surface-Water Quality

The results of the surface-water quality analyses are presented in Table 8. These results indicate that no contamination by barium or chromium was detected in the northern drainage ditch in April, 1983. This ditch forms the principal discharge feature for the water-table aquifer, however, it is not likely for contaminants in the ground water to have migrated to this point (at

-21-

this time) based on the estimated velocity of ground water and the low solubility of the waste. The results of previous surface-water samples (Appendix 5) indicate some chromium (0.2 mg/l) and barium (1.2 mg/l) may have been encountered in the drainage ditch at the time of earlier sampling (April 1982). High barium and chromium concentrations exist in the exposed sludge and surface puddle in the disposal area (refer to Section It is not unlikely that during intense rainfall events 3.3). some contamination could reach the northern drainage ditch via over-land flow from the exposed portions of the disposal area. The surface water conditions were observed by Law Engineering during a heavy rainfall event on April 6, 1983. Although direct over-land flow to the ditch was not observed on this occasion, the existing topographic setting could permit this condition for storms of longer duration.

7.3 Soil Chemistry

I,

Ĩ

13

1

1 2

Soil samples were collected from the soil test borings for analysis of background concentrations and determination of the cation exchange capacity of the soils.

7.3.1 Background Conditions

Borings B-1 and B-2 were drilled in areas thought to be out of the direct impact of the waste disposal area (Figure 3). Soil samples were collected within the soils constituting the watertable aquifer (between depths of 8 to 15 feet). Background concentrations of barium in the soil are noted to range between 4

-22-

and 13 ppm and chromium is in the range of 5 to 7 ppm (Table 9). Hexavalent chromium was not detected as a constituent of the total chromium measured in the soils.

7.3.2 Cation Exchange Capacity

Soil samples were collected from strata in the four borings in the immediate vicinity of the disposal area for analysis of cation exchange capacity (Table 10). Although the soils selected were fine-grained materials, the resulting cation exchange capacities were relatively low (4 to 10 meq/100 gm). This is an indication that the shallow soils will provide little capacity to attenuate potential contaminant migration from the standpoint of cation exchange.

-23-

8.0 CONCLUSIONS

The sludge disposal trench on the Starling property contains barium carbonate and barium chromate from Union Carbide's plating operation in 1970. The general disposal area is easily recognized although the actual layout of the trench is not known.

The site is underlain by a relatively low permeability aquifer composed of silty clayey fine sand. The apparent base of the aquifer is about 22 feet below land surface at which depth a thick sequence of low permeability silty materials are encountered to a depth of about 100 feet. This thick sequence of silty material probably correlates with the Yorktown confining bed that overlies the lower unit of the Cretaceous aquifer system.

į

The water table is shallow (2 to 3 feet below land surface) and fluctuates in response to recharge by precipitation and discharge into surface-water features. The water-table aquifer primarily discharges into a northern drainage ditch that coincides with the Starling property line. This ditch drains to Jacob Branch, a tributary to Little Contentnea Creek. Groundwater flow and discharge/recharge relationships are complicated by the operation of the adjacent hog ponds. Because of the low permeability of the aquifer and relatively flat hydraulic gradients, the ground-water velocity in the vicinity of the waste disposal area is probably less than 10 feet per year.

The water-quality analyses from well MW-1 indicate some barium/chromium contamination is present in the ground water. It

-24-

is not known if the elevated concentrations are a result of contamination near the land surface carried downward in the drilling process, or from subsurface migration from the disposal Relatively high values of conductivity measured in wells trench. MW-3 and MW-4 may also be an indication of ground-water degradation from the disposal area. The shallow subsurface materials have a relatively low cation exchange capacity for attenuating The water wells in the immediate potential contaminants. vicinity of the waste disposal area (Wells No. 1 and 2) are no longer used by the property owner, however, these wells should be clearly designated for monitoring purposes only. The underlying Cretaceous aquifer is protected by the thick Yorktown confining bed and is very unlikely to be impacted by potential contamination from the water-table aquifer in the site area.

. 1

No surface-water contamination by barium or chromium was detected in the northern drainage ditch at the time of this study. Some potential exists for over-land flow of contaminated water to enter the northern drainage ditch under intense rainfall periods. It is also likely that some contaminated ground water will ultimately discharge into the northern drainage ditch.

Law Engineering concludes that the waste disposal on the Starling property does not represent an environmental hazard at this time for surface or ground-water resources outside the immediate disposal area.

-25-

Law Engineering makes the following recommendations on the basis of our studies to date:

9.1 Water-Quality Monitoring

1

A second suite of surface and ground-water samples should be collected and analyzed for total barium and chromium. Field measurements of pH, conductivity, and oxidation reduction potential should be obtained at the time of sample collection. The results of these analyses should be used to determine the frequency (or need) of further sampling.

9.2 Water-Level Monitoring (Existing Stations)

Ground and surface-water elevations should be obtained in the vicinity of the waste disposal area at the time of sample collection. These data should be compared to the past potentiometric surfaces to determine if significant changes in flow or gradients have occurred.

9.3 Water-Level Monitoring (New Stations)

To obtain a better understanding of ground-water flow in the immediate vicinity of the waste disposal area, we recommend the installation several shallow (less than 5-foot deep) standpipes. The standpipes would only be used for water-level measurements and could probably be installed by hand techniques. The standpipes would particularly be important along the northern and

-26-

eastern side of the waste fill area where the hydraulic relationships to the existing hog pond are not well understood.

9.4 Surface Grading

: :

in the second

Land L

The surface of the waste disposal area should be graded to prevent direct runoff of contaminants into the northern drainage ditch. The grading should also minimize exposure of animals to contaminated standing water.

The grading should be considered as a temporary control measure and not necessarily a permanent closure alternative. The surface grading is not intended to represent a low-permeability cover over the disposal area. Because the waste is largely buried within the water table, there is no obvious technical reason for using a cover material in the traditional sense of preventing infiltration of precipitation into the waste. It should be recognized that soils brought into the waste fill area may become contaminated and require incorporation in closure The trench area is probably not stable for heavy desian. construction equipment and consideration will have to be given for the use of a low pressure front-end loader. The grading operation should be supervised by a soils engineer or geologist familiar with the site conditions and safety considerations.

9.5 Trench Definition by Geophysics

We recommend that the disposal area be geophysically surveyed to delineate the approximate limits (widths and depth) of the trench. We recommend the use of electrical techniques

-27-

(electromagnetic and/or resistivity) and a magnetometer to traverse the disposal area. The magnetometer should detect buried metallic objects in the trench. The electrical techniques should be able to detect contrasts in soil characteristics or pore fluids resulting from the excavation/backfill operation. The combination of magnetics and electrical techniques also has the potential for providing some relative indication of contaminant migration beyond the trench limits. The geophysical survey should be performed after the grading operation for access and safety considerations. In addition it would be desirable to remove the majority of surficial scrap metal to prevent interference with the survey.

- ----

-28-

10.0 BIBLIGRAPHY

- Brown, Philip M., 1959, Geology and Ground-Water Resources in the Greenville Area, North Carolina, N. C. Department of Conservation and Development, Bulletin No. 73.
- Falkland, N. C., 1904, Topographic Quadrangle, U. S. Geological Survey.
- Fountain, N. C., 1981, Topographic Quadrangle, U. S. Geological Survey.
- Narkunas, Jack, 1980, Groundwater Evaluation in the Central Coastal Plain of North Carolina, N. C. Department of Natural Resources and Community Development.

1.19

- N. C. Department of Natural Resources and Community Development -Various Well Records in Farmville Area.
- Park, A. Drennan, 1979, Groundwater in the Coastal Plains Region
 A Status Report and Handbook, Coastal Plains Regional Commission.
- Soil Survey Pitt County, North Carolina, U. S. Department of Agriculture, Soil Conservation Service.
- Sumsion, Carlton T., 1970, Geology and Ground-Water Resources of Pitt County, North Carolina, N. C. Department of Water and Air Resources, Ground Water Bulletin No. 18.

TABLES

.

Water Well Information Near Site¹⁾ Table 1.

Well	Well Details	Well Details ₃₎	Usage or
Number ²⁾	(Reported)	(Measured)	Comments
1	2" galvanized 200 to 210' deep	2" galvanized 39.2' deep 4)	Not in use since 1975. Formerly use for hog operation.
2	24" terra-cotta	24" terra-cotta	Not in use. In-
	15 feet deep	13' deep	stalled 1960.
3	24" concrete 16-18 feet deep	24" concrete 27.5' deep	Not in use since 1960. Formerly used for hog operation.
4	4" irrigation	4" steel with	Used for irriga-
	well with con-	submersible	tion (nursery)
	crete slab	pump (not	and drinking
	180 feet deep.	accessible)	water supply.
5 *	2" galvanized	2" galvanized	Used for drink-
	65 feet deep	40.9' deep	ing water supply.
6 **	2" galvanized 200 deet deep	(not accessible)	Used to water yard and garden.
7	l-l/4" well 15 feet deep	(not accessible)	Not in use.

Notes:

1)

Information from Starling, 1982

Refer to Plate 1 for locations of wells 2)

3)

By Law Engineering Below ground surface 4)

Formerly referred to as John Starling house well Formerly referred to as David Starling house well *

* *

. ÷i ...

1 . .

1

•

Table 2. Summary of Ground-Water Level Data (Water Wells)

Well Designation ¹⁾	Reference Elevation ²⁾ (feet, msl)	Date Measured	Depth Below Reference (feet)	Water Surface Elevation (feet, msl)
No. 1	93.03	12-23-82 4-6-83	38.1 37.6	54.93 55.43
No. 2	93.68	12-23-82 4-6-83 5-26-83	3.35 3.15 3.4	90.33 90.53 90.28
No. 3	95.67	12-23-82 4-6-83	4.15 4,15	91.52 91.52
No. 5	91.83	12-23-82	18.67	73.16

Notes:

1

1 P. ., <u>2</u>

.

Refer to Figure 3 for location of wells. Top of casing; marked in field and surveyed. 1)

2)

Well Designation ¹⁾	Reference Elevation ²⁾ (feet, msl)	Date Measured	Depth Below Reference (feet)	Water Surface Elevation (feet, msl)
MW-1	92.98	4-6-83 5-26-83	2.66 3.44	90.32 89.55
MW-2	93.32	4-6-83 5-26-83	2.44	90.88 90.39
MM-3	93.91	4-6-83 5-26-83	3.53 4.26	90.38 89.65
MW-4	93.76	4-6-83 5-26-83	3.45	90.31 89.62

Table 3. Summary of Ground-Water Level Data (Monitoring Wells)

Notes:

÷

•

-

.

יו	Refer	to	Figure	3	for	location	of	wells.
ደ ነ	, verer	LΟ	riqure	<u>э</u>	LOL	TOCALION	OL	werra.

2) Top of casing; marked in field and surveyed.

A ALAAT

्र्य के

a contration

1.

tieri natti ti

. . . .

.....

HYDROGFOLOGIC UNITS CENTRAL COASTAL PLAIN

· •

• :

דו מניס אל ווויגאפוז נס וויפ פיאר המעמע דכמת 140 דכר זה נאכ אבאר נס מטרכ נגנה 2001 נפר זה נאכ פיאר, דר וא separated trom ואר Gretachary Upper Sund נגמו אי גרמונגעי בואר כטונומא אפט.	ares where malatical calcateous beds cause it to be moderately haid. Heavy withdriwals have resulted in declining water levels and expanding cones of depression.		V\$001V0\$01		
ער כופרוסטער דיטאפג ציטע געט דיטער אויז איז איז איז איז איז איז איז איז איז א	H. ware after reliable legizaring and steated back reward substantial after the Green contract contract and the time particulation of the traction of the second contract and the second of the second of the second of the second contract and the second of the second of the second of the second of the second			5004274352	
The Creticeous Upper Sand Unit consists of dark green or gray glaucomite or clayer sands interledded with missive dark gray clay heds, fodurated shell beds are present throughout. The unit outcopy or is near the surface in Duplin, Greene, I erom and BU terr The runit is oreflare to the east from als oright to between 60 and 80 feet. The runit is oreflare to conformulty by the Surficial, Yorktown or Castle filayed on a septiated conformulty by the Surficial, Yorktown or Castle filayed on a septiated from them by a massive clay layer 20 to 30 feet thick.	this unit is a semi-continued aquiter whose water-bearing sands yield moderate amounts of water to municipal, industriat or agricultural wells. The water is a soft, surfum bicarbonatertyle except in those area where moderated calcareous cover it to be muderately hard. Heavy withdrawals from the Cretaceous cover Sand Unit are reflected in teakage from the Upper Sand thur.	AOUIFER SYSTEM	i i	8 IJJ I	500 ()(1
гал Аргця	מטון גובןסי דידוים' ביוך טעט פובירקסטינוג - נגנה איזנגני	AQUIFE		ая роттуа	
throughout Graven, Jones and Onslow counties, and also in southeastern Duplin and eastern Pitt Counties. The unit thickens to the eastern part of the from its western limit to more than 400 feet of the eastern part of the	capable of yerlang large accords of water. It is an important aquiter in the exactern equater in the western exactor falling by undeveloped in the western part of the metry water is available at slightly greater depth. The) INARH 1115V JEZ?		IN DO L	- -
Ilate most normatives on a galocitit ni esines ince an etit strat etit. Ilate commines e ei energi i sensus il energi transferti van energi enit	ratiupe banitnos inse aldeannag yhdyd e ei rintt anyett alze.) adt	SYSTEM		NTOOLO	1.11.11.11.1
In the western part of the study area, the Yorktown num consists of a dark blue, massive clay matrix containing abundant shells. In the eastern part, the unit consists of loose shells and linnestone in a sund matrix. Some amounts of y cllow to gray clay are abo present. The num occurs as waltered remnants in the west, and as a continuous unit east of Greenville, New Bern, remnants in the west to about 60 feet in the ress of the unit tanges from 0 to 15 feet in the west to about 60 feet in the eastern part 15 feet in the west to about 60 feet in the eastern part	In the west, the Yorktown serves as a contining bed for those units before the water table aquiter. Small amounts of water are available from featurian and beds within the unit. In the east, the unit acts as a permeable sent controlation the unit. In the east, the unit acts as a permeable water.	ковитоми	NWOTABOY		
The deposits serve as an uncontined aquiter. The water table is shallow, buttertal deposits consisting clicity of sand, ets, and gavel. She mater table is shallow, change to be adding from table to surface to be adding to the region. The ratio present in the easien part of the region. The ratio present in the easien part of the region. The ratio deposits orethe table is shallow, the region. The ratio present in the easien part of the region. The ratio deposits orethe table is shallow, the region. The ratio present in the easier present in the ratio present is the ratio of the region. The ratio deposits ore the ratio present in the ratio present in the easier present in the ratio of the region. The ratio deposits ore the ratio and the region. The ratio present is the present in the easier present in the ratio of the region. The ratio deposits ore the ratio present in the ratio of the region. The ratio present is the ratio present in the rati		11871 8 1184	אטאר אראר	IN DOISLEIG	51
				15 10 18	- 2111
	11111110010100000H		HNA MIAVEPHYSIS	5 118 15	19115.

Modified after Narkunas, 1980

Table 5.

Summary of Surface-Water Level Data

Station Location ^{1).}	Reference Elevation ²⁾ (feet, msl)	Date Measured	Depth Below Reference (feet)	Water Surface Elevation (feet, msl)
А	88.19	4-5-83	0.89	87.3
В	89.29	4-5-83 5-26-83	1.25	88.04 87.74
С	90.18	4-5-83 5-26-83	0.95	89.23 88.92
D	90.34	4-5-83	0.86	89.48
E	90.58	4-5-83	0.80	89.78
F	93.02	4-5-83	1.20	91.82
G	92.96	4-5-83	1.55	91.41
H	92.73	4-5-83	0.95	91.78
I	92.13	4-5-83	1.43	90.70
J	91.63	4-5-83	1.62	90.01
K	90.38	4-5-83	1.35	89.03
L	87.04	4-5-83	1.18	85.86
M	87.65	4-5-83	1.27	86.38
N	89.04	4-5-83	1.33	87.71
U .	92.83	4-5-83 5-26-83	1.13 1.36	91.70 91.47
Р	91.70	4-5-83 5-26-83	1.29 2.42	90.41 89.28

Notes:

;

Refer to Plate 1 for station locations.
 Top of stake; marked in field and surveyed.

.

Table 6. Results of Permeability Tests

.

14

Monitoring Well	Type of Test	Estimated Permeability (cm/sec)
MW-1	Slug Out	4.6×10^{-4}
MW-3	Bailing	2.2×10^{-4}
MW-4	Slug Out	1.4×10^{-4}

Well Number1)	Sample Date (1983)	Total Barium (mg/l)	Total Chromium (mg/l)	Total Magnesium (mg/l)	Dissolved Sulfate (mg/1)	рН (S.U.)	Conductivity (umhos/cm)
MW-1	4-7	6.4	0.010	2.4	6.	4.8	145
	5-26	0.5	0.012	· –	-	4.9	290
MW-2	4-7	< 0.3	< 0.005	2.8	< 5.	4.7	75
	5-26	-	-	. –	-	5.2	95
MW-3	4-7	< 0.3	< 0.005	16.	84.	6.9	560
	5-26	-	_	-	_	6.7	560
MW-4	4-7	< 0.3	< 0.005	34.	92.	5.6	1000
	5-26	-	-	_	-	6.4	1100

Table 7. Results of Chemical Analyses - Ground Water

Notes:

....

•

.

-

1) Refer to Figure 3 for location of wells.

< indicates less than detection limit.

- indicates no analysis performed.

pH and conductivity measured in field. Samples for metal analyses were filtered in field. Table 8.

Results of Chemical Analyses - Surface Water

Sample Location ¹⁾	Total Barium (mg/l)	Total Chromium _(mg/l)	Total Magnesium (mg/l)	Dissolved Sulfate (mg/l)	рН (S.U.)	Conductivity _(umhos/cm)_
SW-A	< 0.3	< 0.005	-	-	-	_
SW-B	< 0.3	< 0.005	-	-	· _ ·	-
SW-B/C	< 0.3	< 0.005	2.0	10.	3.4	50
SW-C	< 0.3	< 0.005	- . `	-	-	_
SW-D	< 0.3	< 0.005	· –	-	3.2	-

1

Notes:

1

.

1) Refer to Plate 1 for location of surface-water stations. indicates less than detection limit. < indicates no analysis performed. -Samples collected and preserved on April 7, 1983. Station SW-B/C is half way between Stations B and C.

Table 9. Results of Chemical Analyses - Soil

•...

1

.

.

.

:

• •

· . .

:

Boring Number	Soil Sample Depth Below Land Surface (Feet)	Total Barium (ppm)	Total Chromium _(ppm)	Hexavalent Chromium (ppm)
B-1	13.5 - 15.0	4.4	6.7	< 0.3
B-2	8.5 - 10.0	13.	5.0	< 0.3

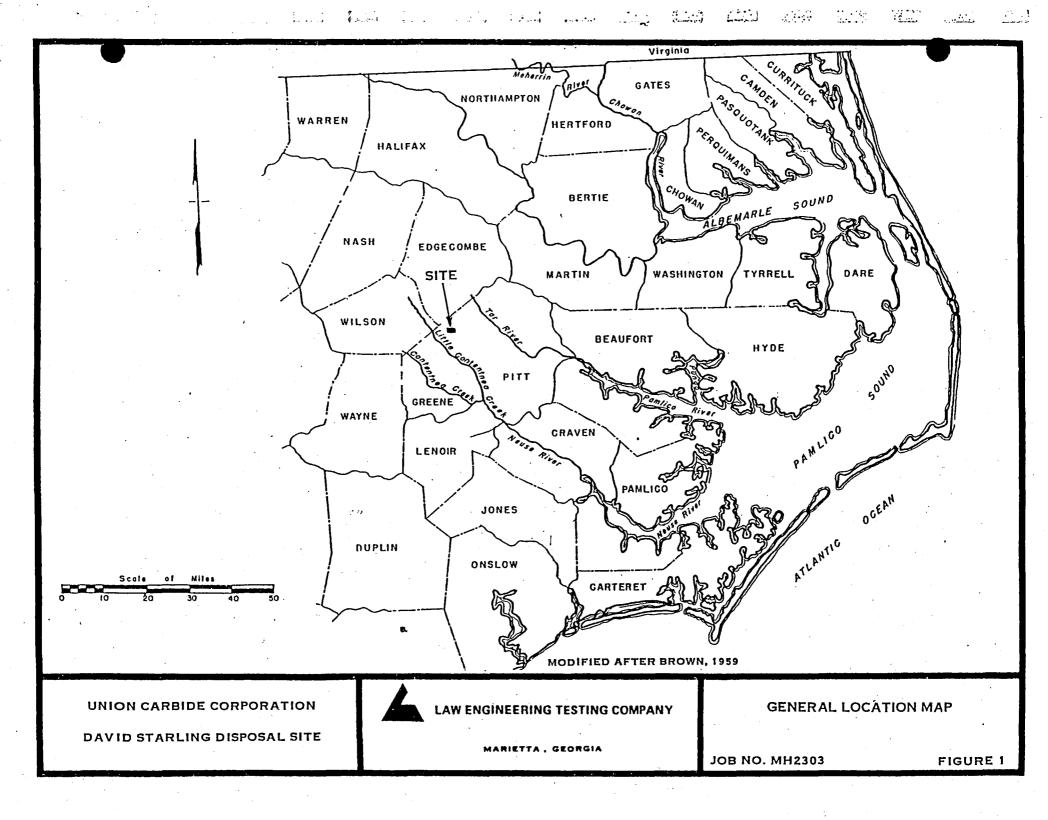
Table 10. Results of Cation Exchange Capacity Tests

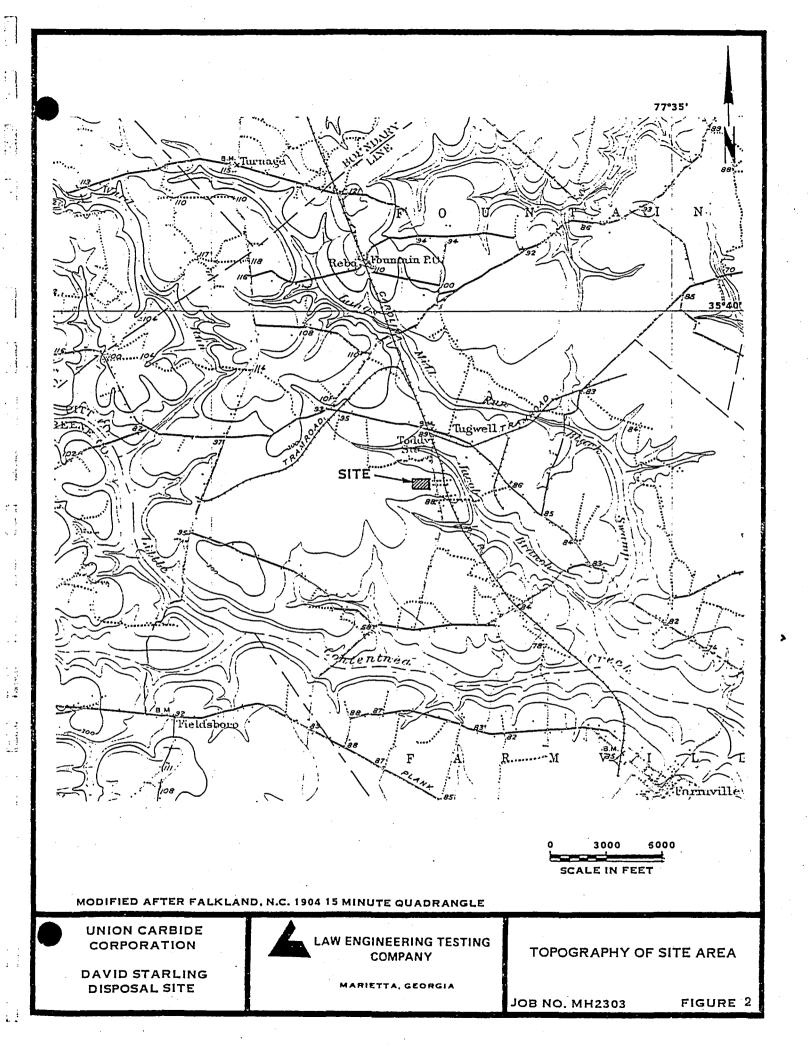
Boring Number1)	Soil Sample Depth Below Land Surface (Feet)	Cation Exchange Capacity (meq/100 gm)	Soil Description
MW-1	10	10.	Gray slightly silty very clayey medium to fine sand
MW-2	15	4.1	Light gray slightly silty and clayey medium to fine sand
MW-3	25	6.3	Dark gray very silty fine sand
MW-4	25	7.4	Gray very silty medium to fine sand

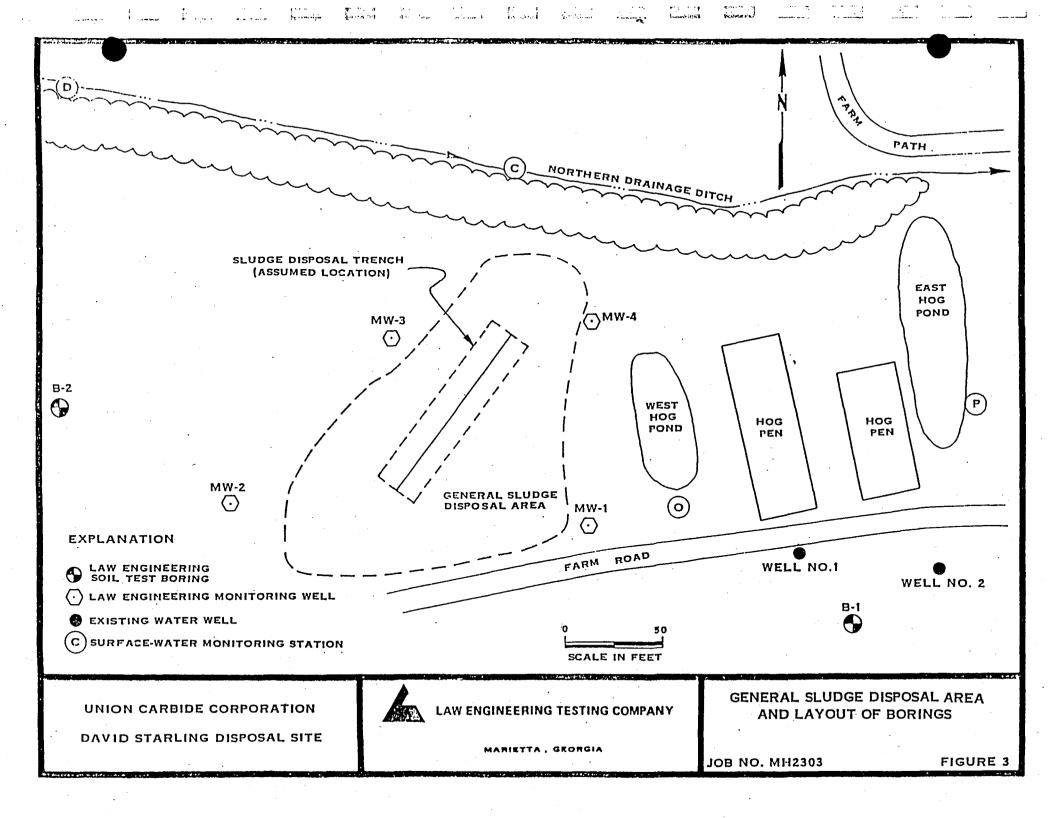
Notes:

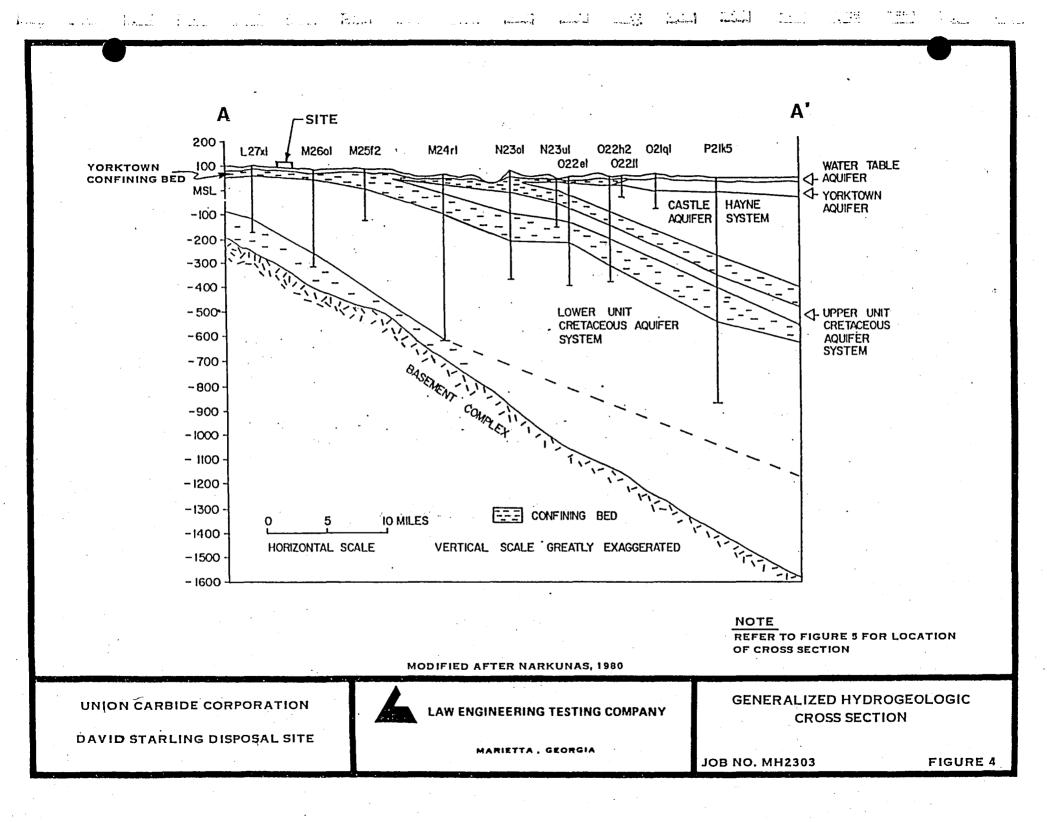
. i

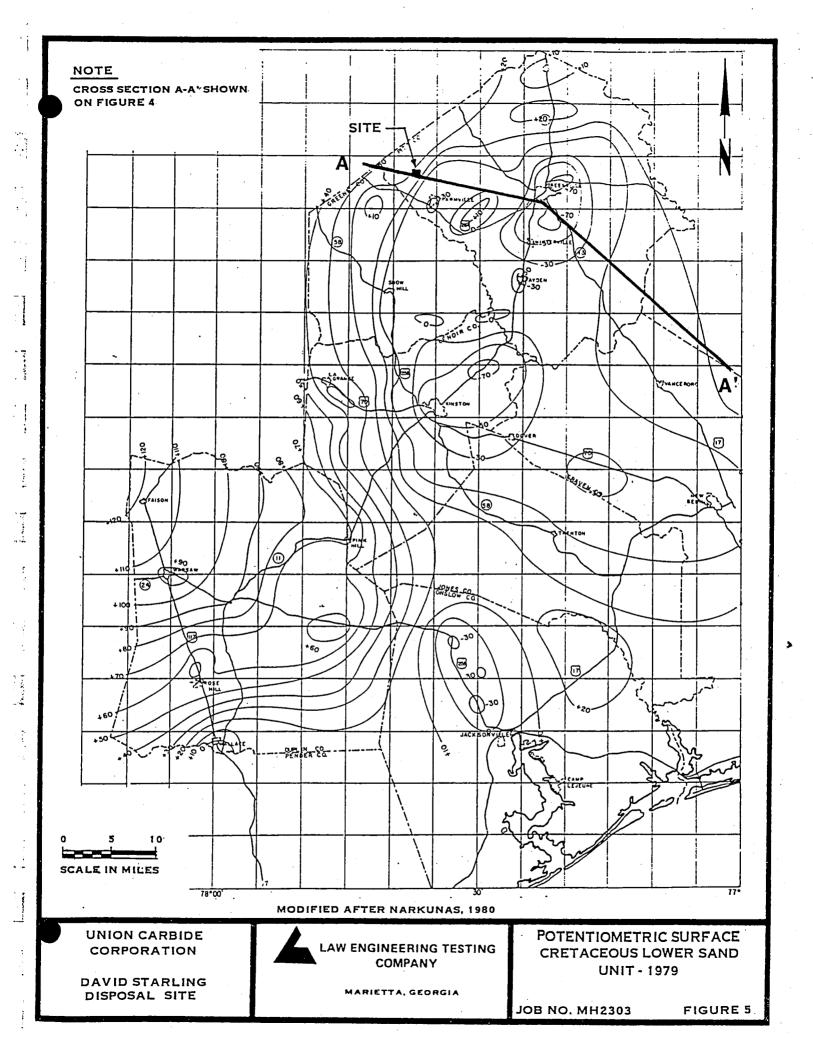
.

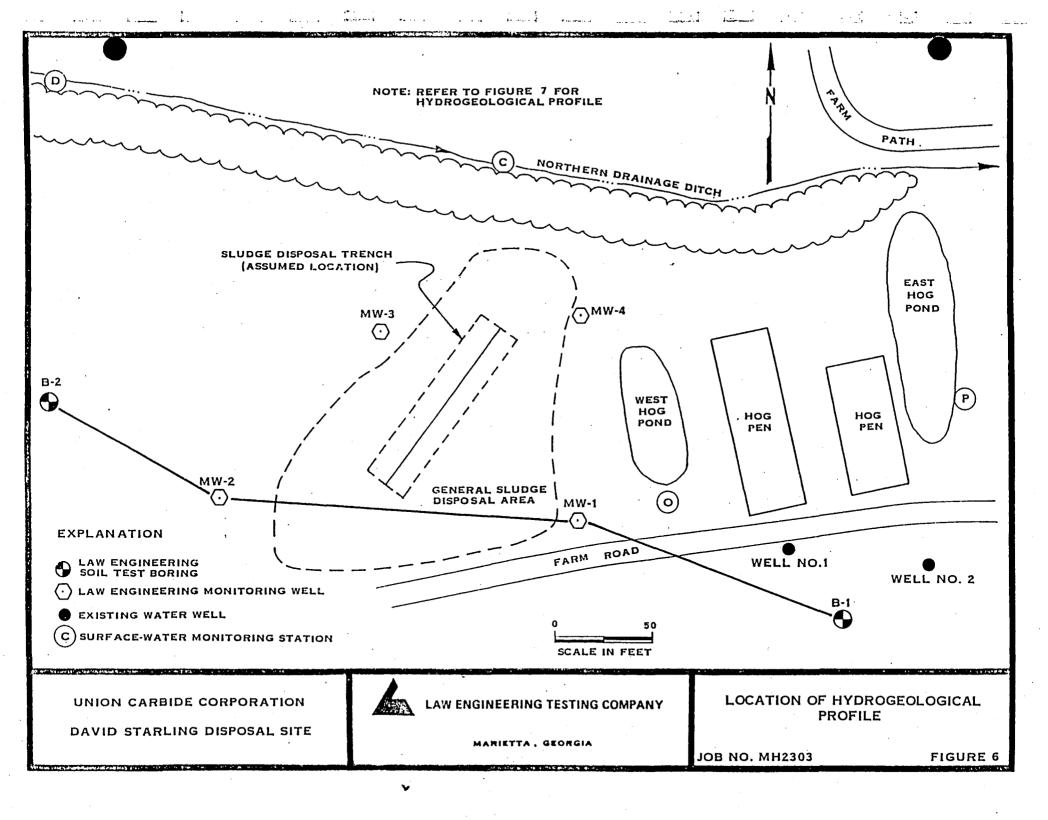

- :

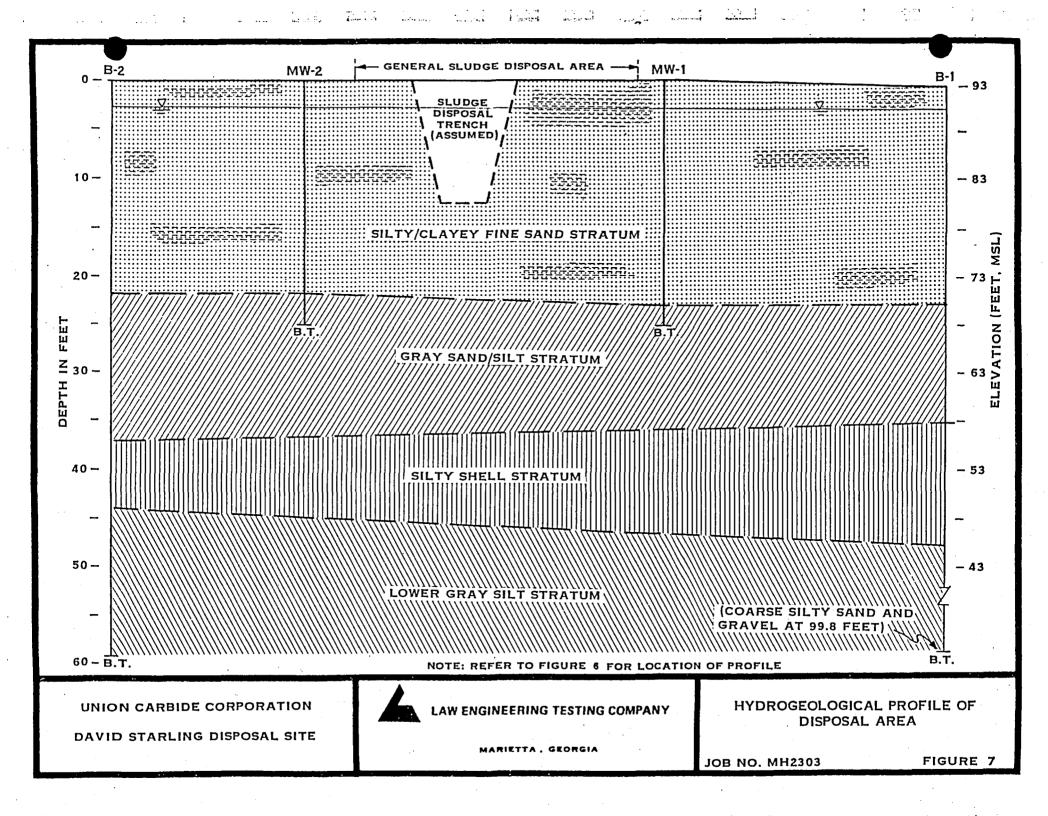

÷ ••

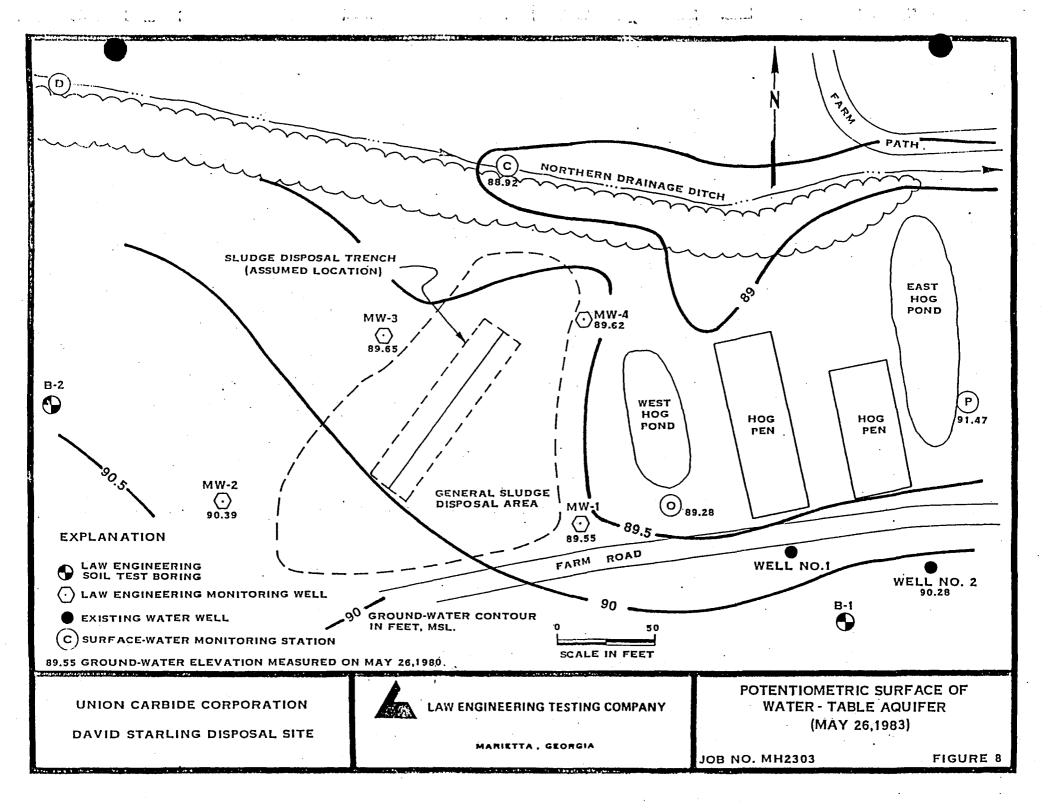

1) Refer to Figure 3 for location of borings.


FIGURES


.







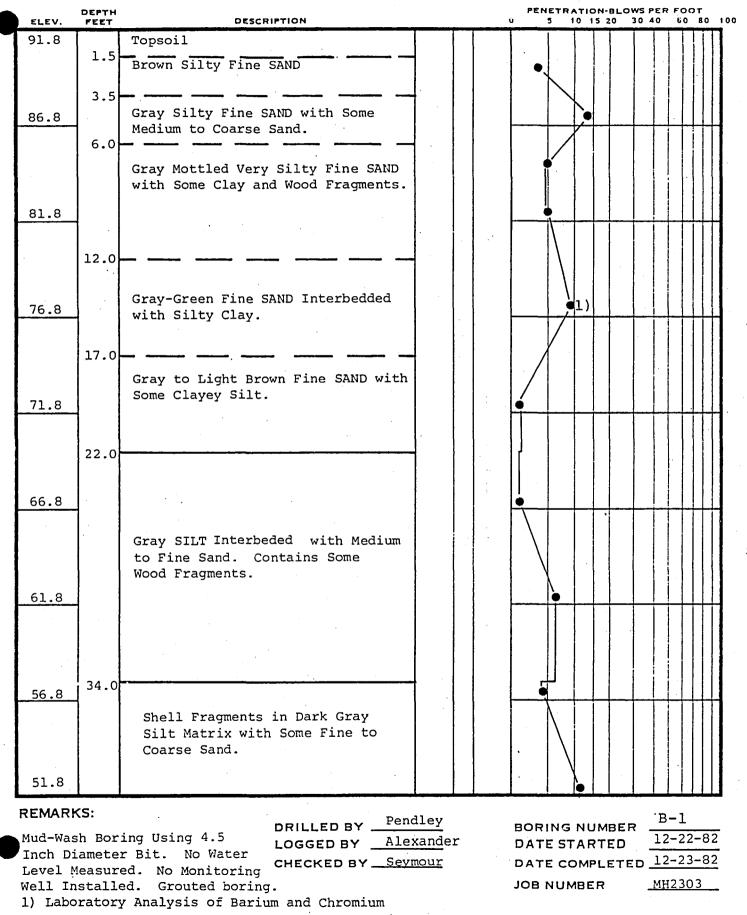
APPENDIX 1

1

: [

SOIL TEST BORING RECORDS

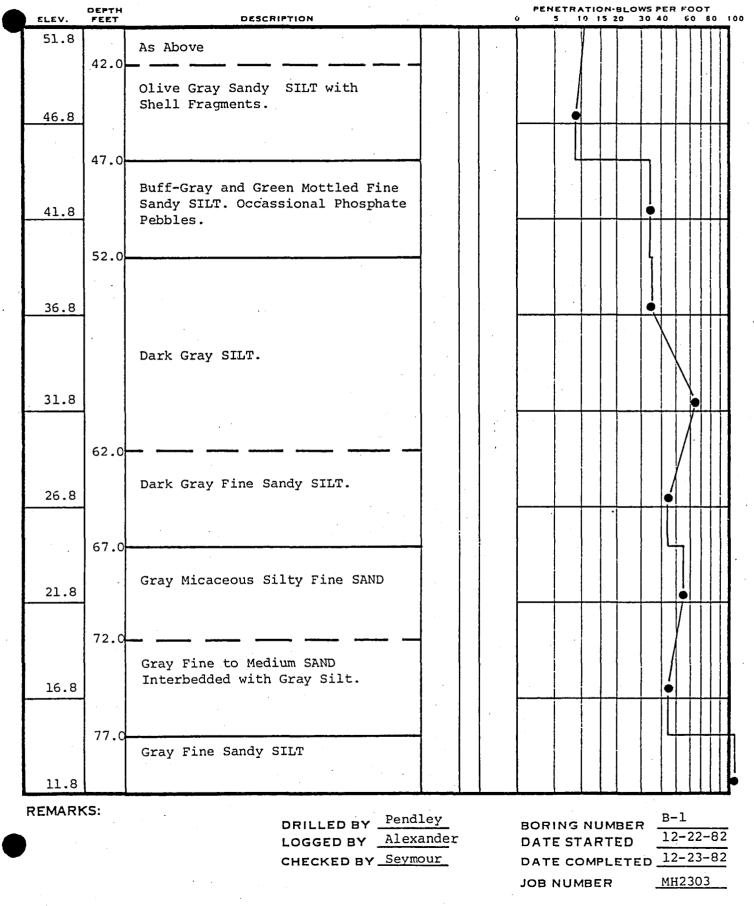
(EXPLORATORY DRILLING)


1

.

i

1.7



÷

:7

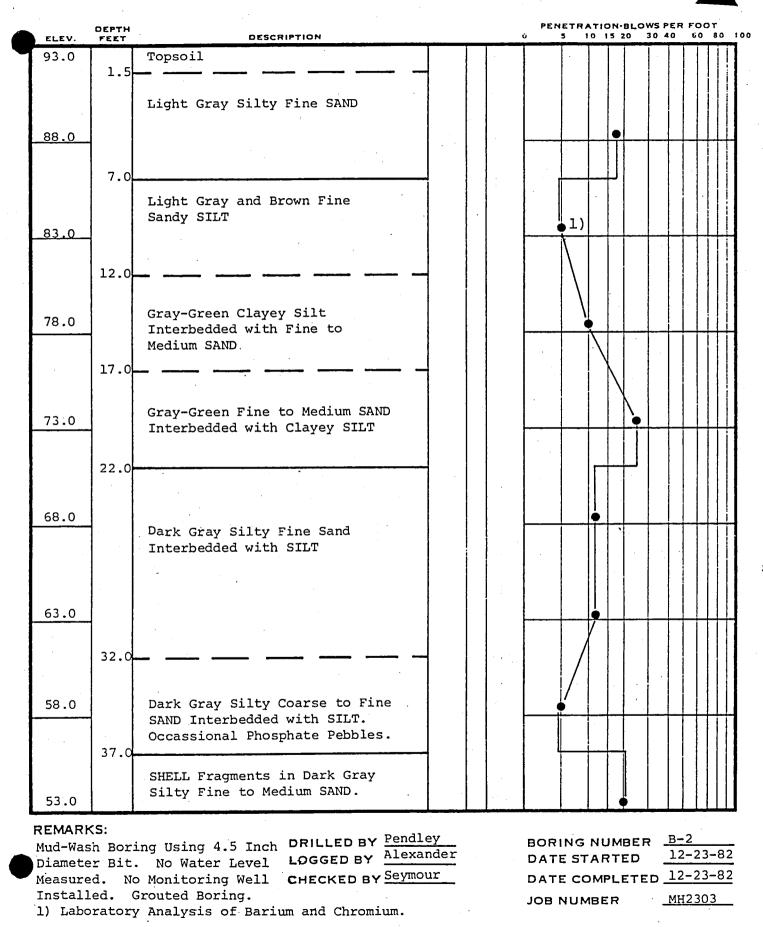
. .

Page 2 of 3

•

į

•


::: • * • •

• •

ELEV.	DEPTH FEET	DESCRIPTION		 	PEN	ETR/ 5 1	0 15	20 20	WS PE 30 40	н FO 60) 8/
11.8 6.8		Gray Fine Sandy SILT									
	85.0		· · ·								
<u>1.8</u> 1SL		Gray-Brown Clayey SILT				· · · ·					
-3.2											
-8.2	100.0	Coarse Silty SAND and GRAVEL Boring Terminated at 100.0 Feet Boring Grouted from Bottom to Ground Surface	• • •								
								•			

DRILLED BY <u>Pendley</u> LOGGED BY <u>Alexander</u> CHECKED BY <u>Seymour</u> BORING NUMBERB-1DATE STARTED12-22-82DATE COMPLETED12-23-82JOB NUMBERMH2303

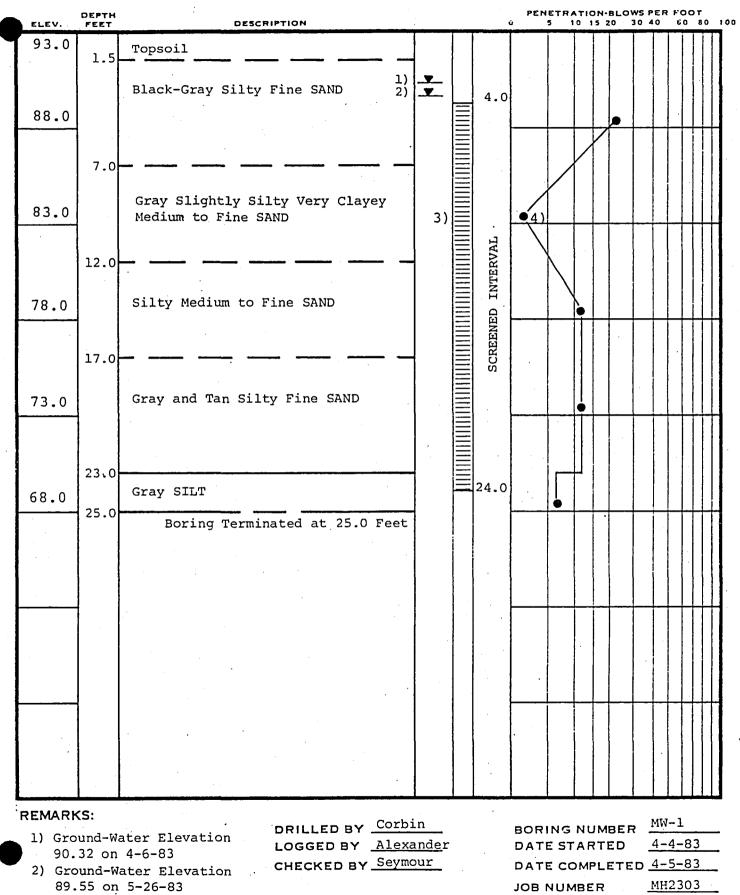
. 1

: مد

. 1

ELEV.FT.	DEPTH FEET	DESCRIPTION						N-BLO 5 20	WS PE 30 40		001 ;0 E	
53.0		SHELL Fragments in Dark Gray Silty Fine to Medium SAND										
48.0	44.5	······································					r					
					-							
43.0		Gray-Green SILT with Some Fine										
		to Coarse Sand and Shell Fragments										
38.0	54.5											
		Dark Gray SILT										
	59.0											
33.0		Boring Terminated at 59.0 FEET Boring Grouted from Bottom to Ground Surface										
							<u> </u>		$\left \right $	_		μ
												Ħ
			·									

DRILLED BY Pendley LOGGED BY Alexander CHECKED BY Seymour


BORING NUMBERB-2DATE STARTED12-23-82DATE COMPLETED12-23-82JOB NUMBERMH2303

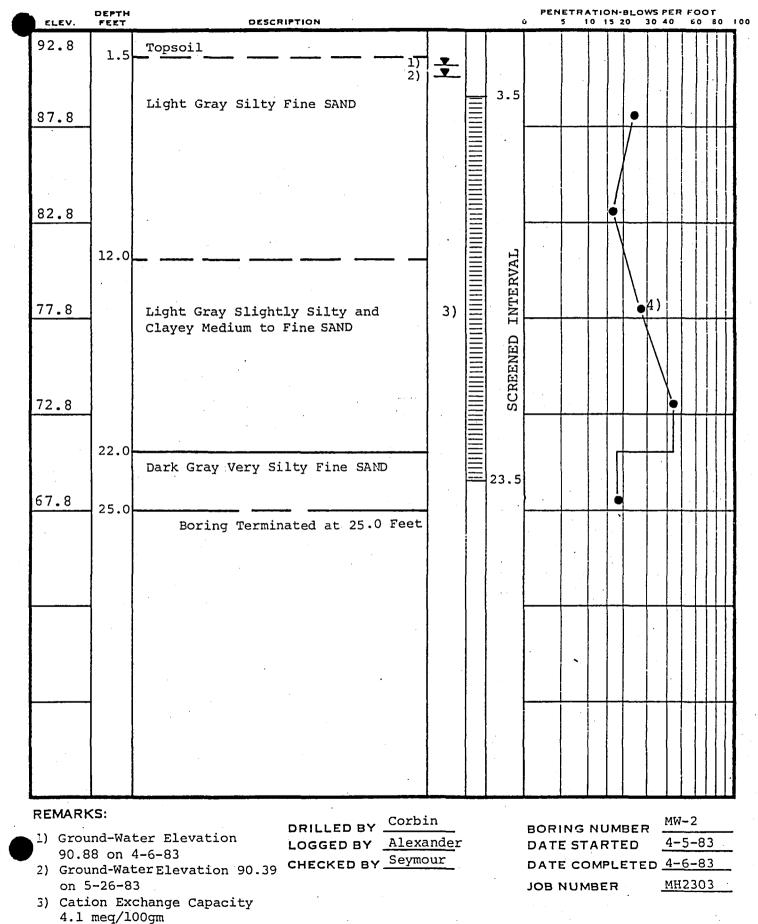
APPENDIX 2

.

.

SOIL TEST BORINGS AND MONITORING WELL DETAILS

- Cation Exchange Capacity 10 meg/100gm
- 4) Grain Size Analysis


- -

(Second

1

1

4) Grain Size Analysis

The second

• 3

. 1

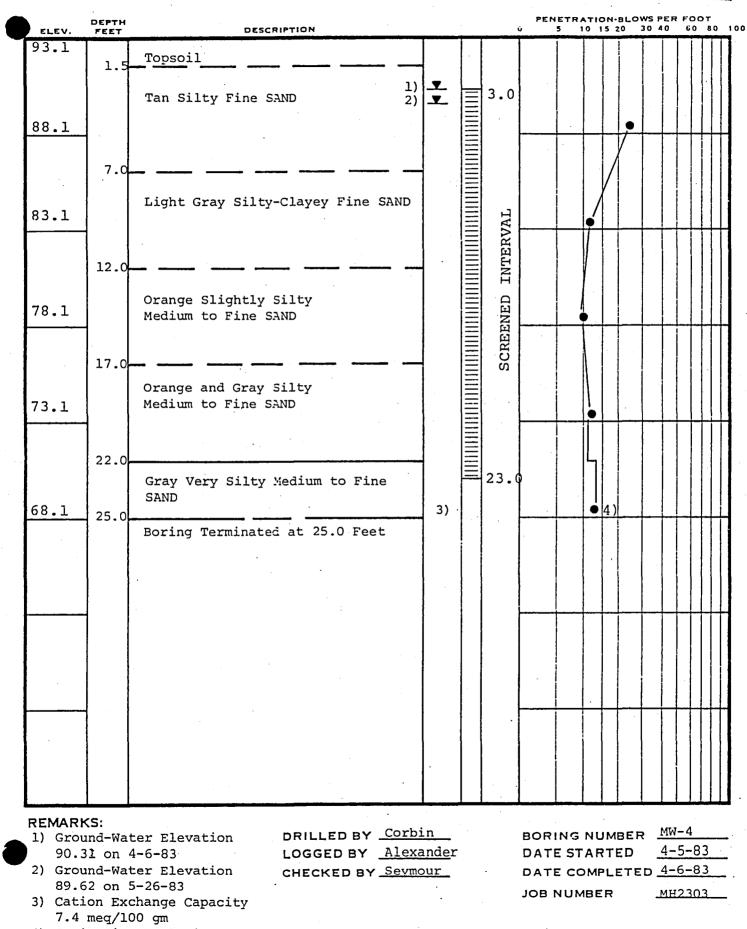
ELEV.	DEPTH FEET	DESCRIPTION				PEN Ú !	ETRAT 5 10	10N- 15	WS PE 30 40		0 T	
93.0	1.5	Topsoil		ŀ								
•	1.5	1)	_¥		3.0							
00 0		2)	_									
88.0		Light Gray Silty Fine SAND		E					 			+
				E					•			
	7.5		,									
83.0					<u>د</u>		•	1				
		Gray Very Clayey Fine SAND			INTERVAL		Ī					
	12.0	<u></u>			TEI			V				
					1			Ν				
78.0		Tan Slightly Silty Fine to			VED				 			
		Coarse SAND			SCREENED							
	17.0				SCF							
		Orange and Tan Slightly Silty										
73.0	4	Fine to Medium SAND	•••••			<u>├</u>		+-'	┟╼╼╂╸	┽┤	┽┤	+
	22.0	Dark Gray Very Silty Fine			23.0							
58.0		SAND	3)					 ●#)				
	25.0	Boring Terminated at 25.0 Feet						1		\top		Ť
								_		\downarrow		4
								+	 	+	┽┽	+
REMAR		Corbi	.n						 м	(TAT 7		
	nd-Wat 8 on 4	Corbiner Elevation DRILLED BY Corbiner	nder	:		BORI				<u>IW-3</u> -5-		•
2) Grou	nd-Wat	er Elevation CHECKED BY Seymo	our			DATE						
		-26-83 hange Capacity				JOB N	NUMB	ER	M	<u>H23</u>	03	
6.3	meq/10											

4) Grain Size Analysis

- -

r - 7

ļ


• •

2: 4

- -

. . .

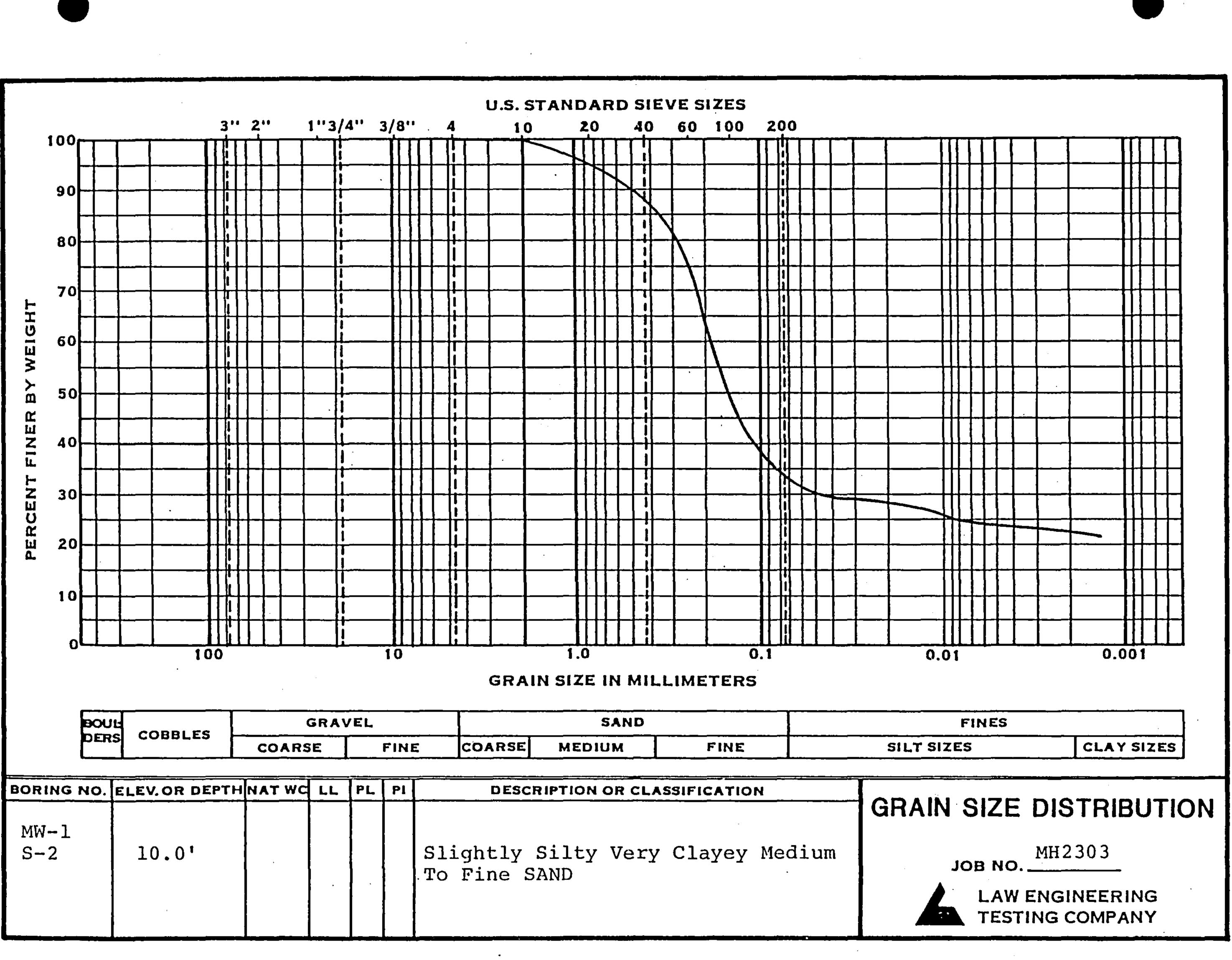
ł

4) Grain Size Analysis

С

•.:

2.


. .

•

APPENDIX 3

. .

GRAIN SIZE ANALYSES

.

\$25 m. - 205

المحدد المراجع

•• •

· · · ·

فمدويت ويعاوي

tanan ang tanan ang

.

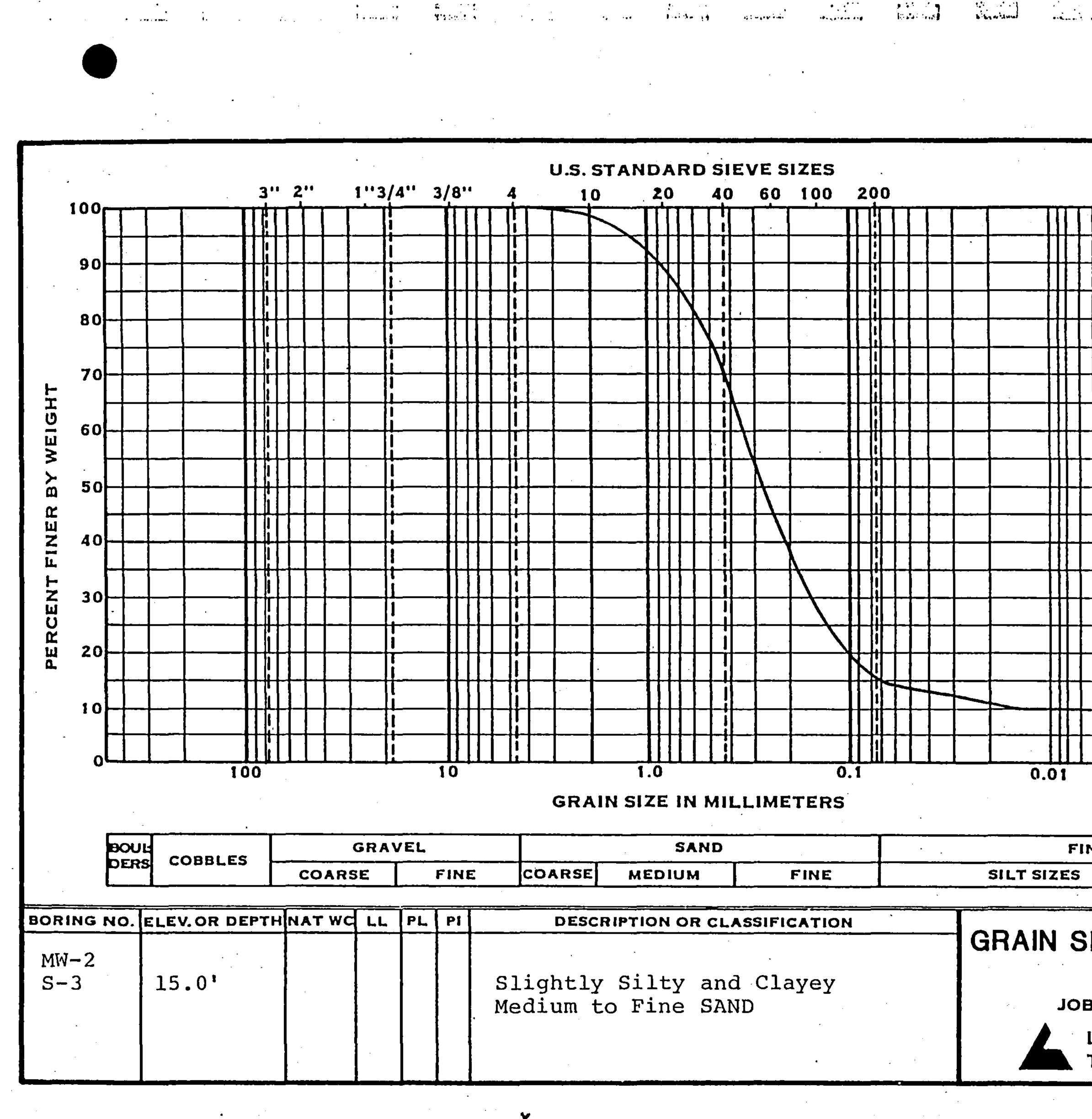
44.47232

. .

• ... • ...

٧

-


•· •

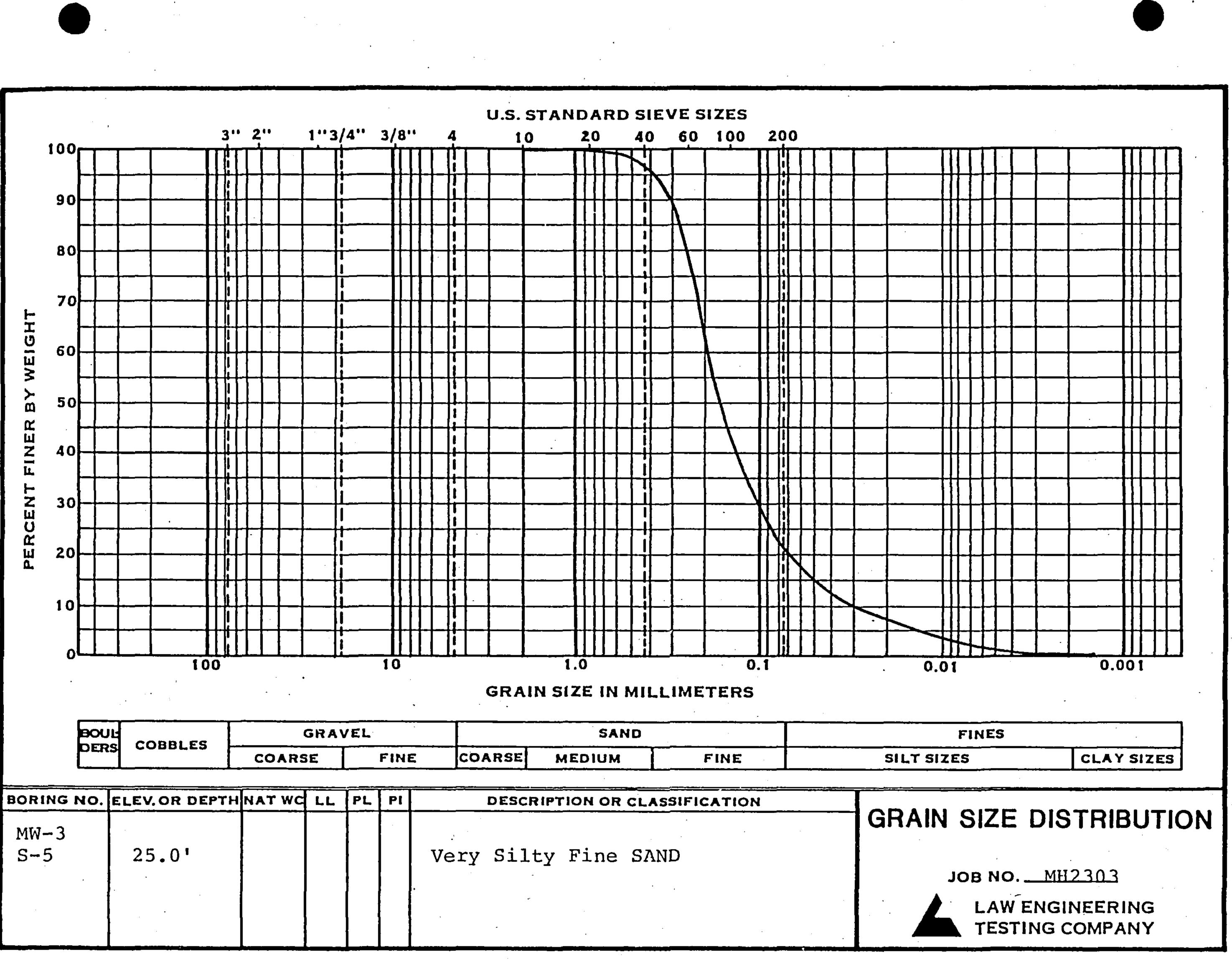
.

.

. .

	i.,		•	 4 - 14 - 14	• Y	2 ¥13 a s. t	* •. •.				·. ·.	•	.†. ∎-•	і З и	: •	4	t w _a rse i	• 	• ۱۴۰۰ ر		•	ب ان	nt in Nation			1		•••	••• •	•	•			• • • • • • • • • • • • • • • • • • •		•	4 9 9 54aan 8	
																																					•	
																	·																	·	<i>*</i> .			
						•				<u> </u>	-																					• ·				.		· ·
						- • •			ι	J.S. 9	5 t a	NC	A	RC) S	IE	VE	SI					·					-					•					
3" 111			ן 	·''3/.	4	3/8'		4			<u> </u>		20 [0	60		100		20 ∏‡	0 	П	- T		Τ		Π		П	τ-	1-	- T -		П		Π	
╏				 i			┝┨╾╂╸	╶┼┠╴				\checkmark		┝╌╂╸				┥					╂╂	-	•			╺╂╉				+	+-		╏╎┤			
											· 		N		Ţ																							
							┝┟╴╿	_ i	 					X					•				$\left \right $		<u> </u>	_				╽╽	_				╏╽╎			
 	-	╏╺╏╴					╎╢╴╿	_ _ -	$\left \right $		<u> </u>				X		-	-					$\left\{ \right\}$	-					┝╌┠╍	┠┠		╂	+		┞╎┼			
	┨━	┠╌┠╼	-	li li		╢	╏╏┤		$\left\{ \begin{array}{c} \\ \end{array} \right\}$			╧╋	╏	┝╌┼╸		\mathbf{I}		╉				┝╌┠╼	╂─┨							┼┼					╏╎╎			
	╋	╏╷╷				╶╂┼╴		- - 			· · ·	╉		╏╴┠╴		\mathbf{h}		╋				┝╌┠╍	╏─┤					╺╂╂		┼╊	+-				╏╎╎			
					-						-								··																			
																	A_								-													
 	+		_			╢	╽╿╷		$\left - \right $		·,- <u>p.</u>			┠╌╿-			\square			-		┠╌┠-	┨╼┨		, <u></u>				┤┤	┼┼					╏╎╎			
+	┼	┟╌┠╸					┝┼╌╂	╢	┼─┦			-+		┠╌┠╴			╂─	\mathcal{H}		-	- i	┠╌┠╌	$\left\{ \right\}$			┨─		╶┼╂	╏╴┨╶	┼╂	╉	 	+-		╏╎╎			
	┥			i		╶╂┼╴			$\left - \right $								╂╼╸	\uparrow		╡			┼╴╢			+			╏╎	┼┼	╉		+		╏╎╎			
				!															\mathbf{T}																			
ļ						_ -		_ <u> </u>]				_				i				\downarrow	i							┛╢										
┼╬┼	┢	$\left \cdot \right $		i		-	┞╀╌┦		┨──┨	{	•	-	╢					-		-	N	┝╪							╏┼	┼┼					╏	+		
┼╫┦	+	┢┼				┛╢	╏╢┨	╢					╂╂	┨╌┠╴		;	╢	-			- 1	┝┼╴	$\left\{ - \right\}$					╺┼┼	┟╂	┼┼	┥╼		╞		╏╎╎	╉		
	╋			[†		╶╂┼	╏╏╏											╡			┢╴╢		$\frac{1}{1}$					╢	╏╴╏╴	╁╂	┢				╏╎╽	╈		
0						10						1.0								0.1	1						Q	.01	• • • • • • • • • • • • • • • • • • •					0.0	001			
									(GRA	IN S	51Z	E	IN	MI	L	_IM		ΓER	S			•			·								•				
			C	GRA	/EL								:	SAI	ND				· · · ·				•						FII	NES	5				• .			
		COA	RS	E		FIN	E		COA	RSE		ME	DIL	M				F	INE						-	SI	LTS	SIZE	ES					CLAY	' SI	ZE	s	
ртн	N	AT V	٨d	ԼԼ	PL,	PI				DESC	RIP	TIO	N (OR	CI		SIF	71C	ATIC	DN		•											<u> </u>					
]6	iR	AI	N	S	IZ	E	DI	S 1	R	BL	JT	101	N I
۲								Sl	igł	ntly	y S	il	.ty	2	an	d	C]	La	yey	,								-		•	-	MH	23	03				
							. ¹	Me	diu	ım †	to	Fi	.ne	9	SA	NĽ)											J ▲						-				
																																		EER DMP				
						<u> </u>	1					و الم	-																•							-		

. .


- -

.

-

. .

.

.


Sec. Landard

.

· .

.

n fan de fan

a lige per tent

terrene and

APPENDIX 4

. |

•

MONITORING WELL VARIANCE

ł

North Carolina Department of Natural Resources & Community Development

DIVISION OF ENVIRONMENTAL MANAGEMENT

> Robert F. Helms Director

Telephone 919 733-7015

James B. Hunt, Jr., Governor

Joseph W. Grimsley, Secretary

March 18, 1983

Mr. W. J. Alexander, P.G. Law Engineering Testing Company 2749 Delk Road, S.E. Marietta, Georgia, 30067

Dear Mr. Alexander:

Reference is made to your request on behalf of the Union Carbide Corporation for a variance to 15 NCAC 2C .0108(b)(2) for the construction of six (6) permanent observation wells to be located on their disposal site near Farmville, Pitt County.

Permission is granted to construct the observation wells at the facility in variance to 15 NCAC 2C .0108(b)(2) based on the following conditions:

- 1. The entrance into each wall casing shall be secured with a lockable top and lock.
- 2. Each well shall be labeled to show that it is for monitoring only and not to be used for drinking purposes.

If you have any questions or require any additional information concerning this matter, please contact Jim Mulligan, Regional Supervisor, or Bill Jeter, Regional Hydrologist, Washington Regional Office, PO Box 1507, Washington, NC 27889, telephone 919/946-6481.

Sincerely yours,

Robert F. Helms

cc: Washington Regional Office

POLLUTION PREVENTION PAYS

P. O. Box 27687 Baleigh, N. C. 27611-7687 An Equal Opportunity Affirmative Action Employer

APPENDIX 5

PREVIOUS CHEMICAL DATA

(SURFACE AND GROUND-WATER ANALYSES)

EAST CAROLINA UNIVERSITY

GREENVILLE, NORTH CAROLINA 27834

SCHOOL OF ALLIED HEALTH AND SOCIAL PROFESSIONS TELEPHONE 919-757-6961 Office of the Dean

Biostatistics/Epidemiology Community Health Environmental Health Medical Record Science Medical Technology Occupational Therapy Physical Therapy Rehabilitation Counseling Social Work and Correctional Services Speech, Language and Auditory Pathology

MENORANDUM

TO:

FROM:

Willie Pate Sanitarian Supervisor Pitt County Health Department

Barney Kane unu Lab Director Department of Environmental Health

DATE: April 9, 1982

SUBJECT: Results of Analyses for toxic metals in water samples Samples received April 2, 1982, submitted by: Mr. Willie Pate

Source All concentrations reported as my/l (prm)

Nursery	Cacinium _ 0.025	Chramium <u> </u>	Silver <_ 0.10	≤ 0.2
Hog Pen	< 0.025	< 0.15	≤ 0.10	<u><</u> 0.2
Mercer Res.	<u><</u> 0.025	<u>≤</u> 0.15	≤ 0.10	<u>≁</u> 0.2
Fulford Res.	<u>≤</u> 0.025	<u><</u> 0.15	≤ 0.10	<u><</u> 0.2
Starling Res.	≤ 0.025	≤ 0.15	≤ 0.10	≤ 0.2

Method: Air/Acetylene Flame Atomic Spectrophotometry

Connent: These levels indicate that the presence of metals was below detection level for the method used. Time did not permit use of the Carbon Rod method which would have been roughly 10 times more sensitive.

STARLING FARM SUPERFUND INVESTIGATION

PERSONAL WELL NONITORING SUMMARY

STATE LABS

:

CONTAMINANT	EPA STANDARD	FULFORD WELL	MERCEL WELL	NURSERY WELL	HOG PEN	STARLING HOUSE WELL
Barium	1.0 mg/1	.2 mg/1	ζ.1	<.1	۲ .۱	.2
Cadmium	.01 mg/1	<.005	<.005	∠.005	く.005	く.005
Chromium	.05 mg/1	۲.01	<.01	<.01	۲.01	く.01
Lead	.05 mg/1	<.03	<.03	۲.03	۲.03	८. 03
Silver	.05 mg/1	<.02	<.02	٤.02	Հ. 02	く.02
Iron		1.07	.24	.53	.14	. 38
Manganese		<.06	<. 03	<u>ک.03</u>	(.03	۲.03
Arsenic	.05 mg/1					
Mercury	.002 mg/1	<.0002	८. 0002	۲.0002	٤. 0002	ζ.0002
Selenium	.01 mg/1				'	
Sulfate	: 	<1	18	4	6	4
РН		7.4	5.0	7.4	7.0	7.9
Fluoride	1-42-4 mg/1	.23	∠. 1	.23	.23	. 40
Phosphate		.75	.06	1.13	.87	.45
Nitrate		1.95	· 1.05	く.05	د .05	₹.05
Sod i un		4.7	17.9	47.8	49.9	14.6

STARLING FARM SUPERFUND INVESTIGATION

120.000

PERSONAL WELL MONITORING SUMMARY

EDGEWATER LABS

1

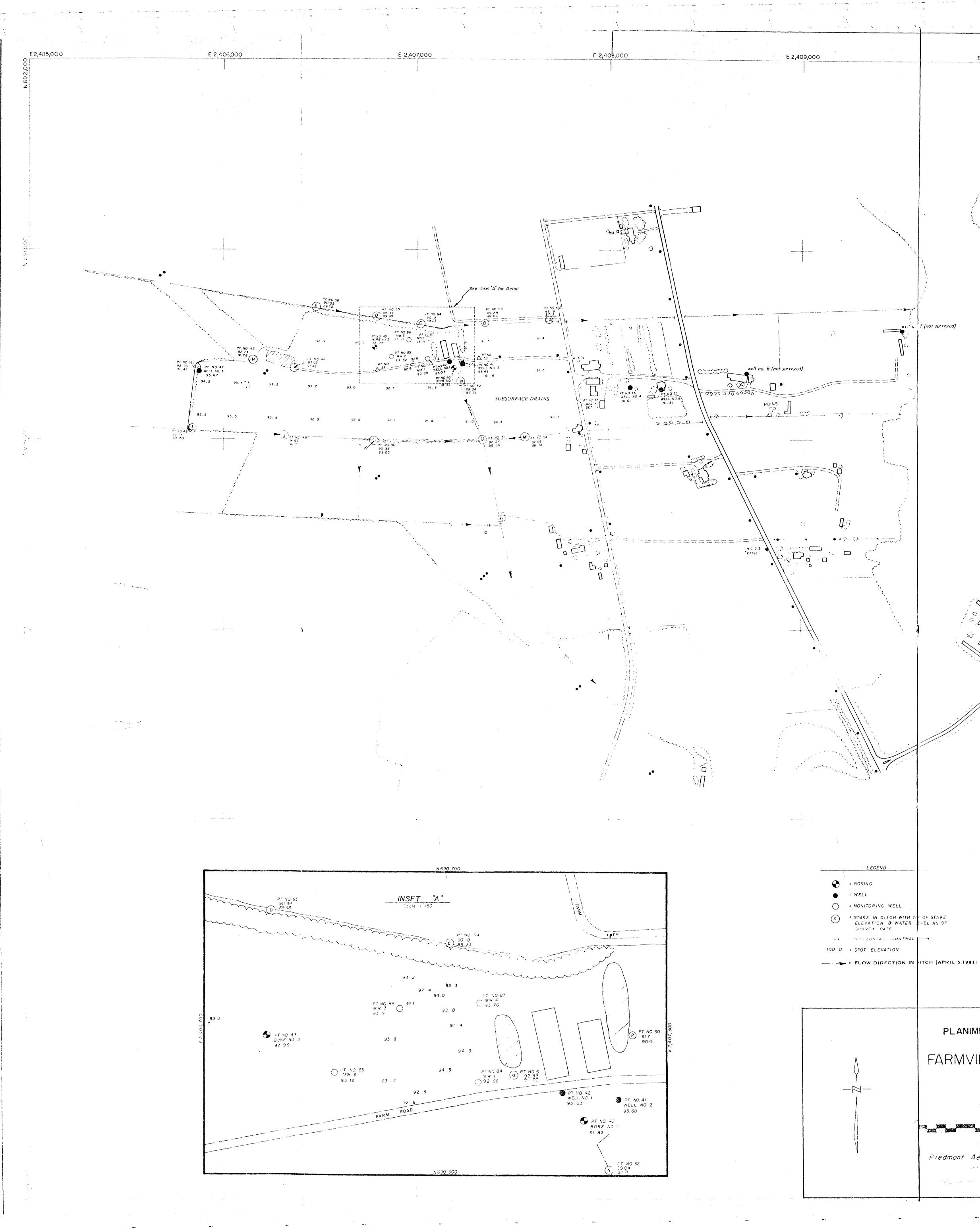
CONTAMINANT	EPA STANDARD	FULFORD WELL	MERCER WELL	NURSERY WELL	HOG PEN	STARLING HOUSE WELL
Barium	1.0 mg/1	.2 mg/1	.5 mg/1	.1 mg/1	.1 mg/1	.3 mg/1
Cadmium	.01 mg/1	८. 02	<.02	<u>ر.02</u>	< .02	<. 02
Chromium	.05 mg/1	<.1	ζ.1	ζ.1	۲.1	ζ.1
Lead	.05 mg/1	<.03	<. 03	ζ. 03	٢.03	ر. 03
Silver	.05 mg/l	.09	ـ Հ. 07	۷.07	ζ. 07	ζ.07
Iron		.93	.10	.65	.18	.25
Manganese		.05	<.01	.02	٢.01	.02
Arseníc	.05 mg/1	<. 001	人 001	<. 001	ر. 001	٢.001
Mercury	.002 mg/1	<. 0001	<. 0001	۲.0001	.0002	٢.0001 .
Selenium	.01 mg/1	<. 001	८. 001	< .001	<. 001	ζ.001
Sulfate		2.1	. 11	4.5	3.8	3.5
РН		6.95	4.65	6.85	6.66	7.28
Fluoride	1.4-2.4	. 4	. 4	1.0	. 4	.7
Phsophate		<u></u> ζ1	· <1	1.3	ا	人1
Nitrate		4.6	4.6	۲. 6	1.1	ζ.6
Sod i um		6.5	22	53 ·	57	18

SURFACE WATER ANALYSIS STARLING FARM

أستعور مرجع

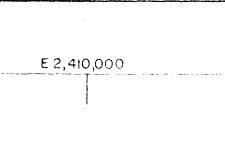
ar. 1. e

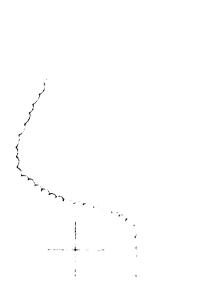
l Issuest


.

i sa nar

FDGFUATER LAB


. j


CONTAMINANT	EPA STANDARD	SURFACE PUDDLE	LAGOON	DRAINAGE DITCH
Lead	.05 mg/1	.10 mg/1	く.01 mg/1	.03 mg/1
Chromium	.05 mg/1	.03	<.01	.02
Barium	1.0 mg/1	20	.04	1.2
Mercury	.002 mg/1	∠. 0001	<.0001	.0001

-

÷.,

WOODLAND HILLS MOBILE HOME ESTATES

4011

and the second second second second

PLANIMETRIC MAP

FARMVILLE, N.C. SITT

÷.,

1994 Hay 1996 Hay 1996 Pledmont Aerial Surveys. المحاولة والمحاولة والمحاو

E 2,411,000

• . . . •

The Providence of the second state of the seco

÷--

÷,

North Carolina Department of Human Resources Division of Health Services P.O. Box 2091 • Raleigh, North Carolina 27602-2091

James G. Martin, Governor David T. Flaherty, Secretary

1 .

Ronald H. Levine, M.D., M.P.H. State Health Director

August 21, 1989

Mr. Robert Morris EPA NC CERCLA Project Officer EPA Region IV Waste Division 345 Courtland Street, NE Atlanta, GA 30365

SUBJECT: Screening Site Investigation Summary Trip Report

SITE: David Starling Property NCD 003185311 Route 2, Box 246 (Hwy 258) Farmville, Pitt County, NC 27828

Dear Mr. Morris:

On 8-16-89, a screening site investigation was conducted at the David Starling property located midway between the towns of Farmville and Fountain. Present for the investigation were the following:

> D. Mark Durway, NC Superfund Jack Butler, NC Superfund Phil Starling, son of David Starling

Upon arriving at the site, Starling provided a tour of the area in which 10,000 gallons of barium chromate, barium carbonate, and chromic acid were buried in 1971. This waste was generated by Union Carbide of Greenville, NC, which payed David Starling to accept it and dispose of it on his property. At the time, David Starling did contract work for Union Carbide, such as mowing and landscaping. Phil Starling said that the reason Union Carbide needed the waste disposed of was that the Pitt County Landfill, which had been receiving the waste, refused to continue accepting it. David Starling was told by Union Carbide that the waste was completely harmless, and that it would "make the grass green," according to Phil Starling; on the contrary, he said, it killed some of Starling's cows and hogs. (It is assumed that these animals ingested the waste prior to its being completely buried). Phil Starling described the waste as an orange-yellow, chalky solid, though some of the waste was also liquid, he said.

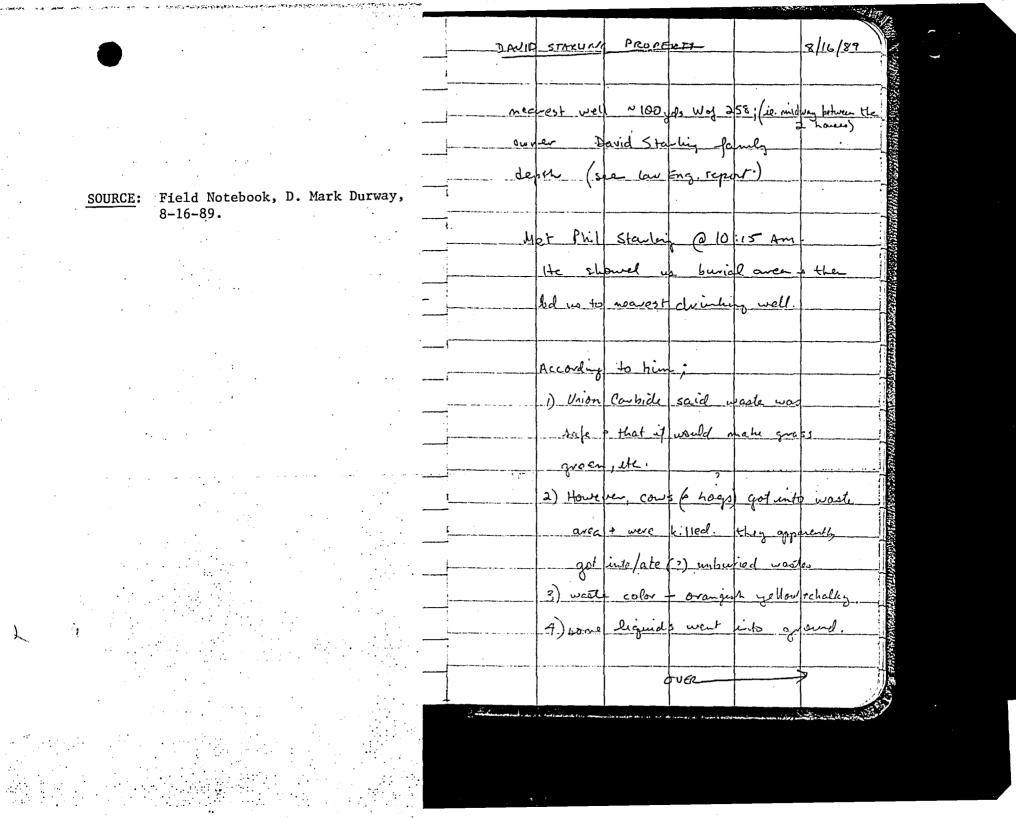
Mr. Robert Morris August 21, 1989 Page 2

It was observed that the disposal area was situated approximately 800' west of the nearest residence. This residence and several others on the Starling property were using water from a 180' deep well located approximately 1100' east of the burial area. A sample was collected from this well for laboratory analysis.

Since many samples had been previously collected at and in the vicinity of the burial area, additional samples were not collected during the site screening investigation.

Please contact me at (919) 733-2801, if you have questions or comments regarding the investigation.

Sincerely,


MID

D. Mark Durway, Hydrogeologist Superfund Section Solid Waste Management Division

DMD/starling.1

cc: Kelly Cain

I

REF 12

Starling Property 8/16/89 Phil Starling restinging control S) Dourd Starling was doined properly mavilenance (mowing rete.) et Union Carbide during time he bogan tooken taking wasile bogan tooken taking wasile	
Phil Stanking Jostinon y control Phil Stanking Jostinon y control S) Dors & Stanking was maniference (mousing reter.) et Union Carbide during time he bogan tooken taking wasile	
5) Dord Starling was doing yound maniference (mouring rete.) et Union Carbide during time he bogan tooken taking wasile	
5) Dord Starling was doing yound maniference (mouring rete.) et Union Carbide during time he bogan tooken taking wasile	
5) Dourd Stanling was doing yound maniferrance (mouning rete.) et Union Carbide during time he bogan tooken taking wasile	
5) Dourd Stanling was doing yound maniferrance (mouning rete.) et Union Carbide during time he bogan tooken taking wasile	
Union Carbide during time he	
Union Carbide during time he	
Union Carbide during time he	
bogan toolon taking waite	
bogan toolon taking waite	
	1
b) Phil Starling behaves Greenville	
	ł
Co. left had begun to refuse the	
	1
warto p that it had stock p lad	
the at the Control of the	
ot Union Carbido, At this	
point, they paid Stanling to	
Take the waster	
Conduct general site farce survey;	
depart area ~ 2:00 pm	m.
	1

. •

••

•

.

. . . .

·

.

وجو مادنا وتعادد ال

6 May 1988

TO: File

FROM: Pat DeRosa PD

RE: David Starling Property, NCD003185311 Farmville, NC

On May 4, 1988, I spoke by telephone with Bill Jeter, Groundwater Section, DEM, (919) 733-3221 to get an update on activity at the subject site. Bill referred me to Richard Powers in the Washington Regional Office (919) 946-6481. I called and left a message for Mr. Powers.

I then called Al Nash, Corporate Environmental Coordinator, Union Carbide Corporation, (216) 835-7500 for additional information. Mr. Nash said that since the 1983 report by Law Engineering (in file), there has been some surface cleanup, grading, and landscaping at the site. A magnetometer survey has been done and the disposal area has been more clearly identified. Two additional monitoring wells (total 6) were installed in 1985. Monitoring wells have been sampled 3-4 times a year by a contractor (Environment I) and sample results have been sent to the Raleigh Office Groundwater Section, DEM, since about 1984. Results were originally sent to Bob Cheek at that office. Parameters monitored are pH, specific conductivity, dissolved solids, chlorides, phenols, sulfates, total ammonia, chromium, copper, barium, and zinc. The last sampling was done on February 6, 1988. Results are currently mailed from Everready Battery Co., Greenville, NC, through Russell Gibbs at the Greenville Plant, to DEM, Raleigh, NC. Mr. Nash said that he would send me the results if I could not get them from DEM.

Richard Powers called me back and we discussed the subject site. Mr. Powers said that since the sludges were generated as part of a wastewater pre-treatment process permitted by DEM, DEM could require monitoring of the sludge disposal area as a non-discharge land disposal unit. Union Carbide (Everready) is conducting self-monitoring and submitting the report (GW-59) to Raleigh for review. Ms. Nargis Toma reviews the data and forwards a copy to Richard in Washington, NC. Richard is sending me a copy of his file.

PD/ds/0572b.63

APPENDIX D

SITE INSPECTION FORM

			•	•		
	NTIAL HAZARI SITE INSPECT LOCATION AND	ION RE	PORT	ATION	I. IDENTIF	ICATION 22 SITE NUMBER 003185311
II. SITE NAME AND LOCATION		<u>.</u>		•		
01 SITE NAME (Legal, common, or descriptive name of she) David Starling Property			2, BOX 246			
03 CITY		04 STATE	05 ZIP CODE	OB COUNTY		07COUNTY 08 CONG
Farmville		NC	27828	· Pitt		74 01
35° 38 29". 77° 37 45".	TYPE OF OWNERSHI 2 A. PRIVATE F. OTHER -	P (Chick oni B. FED	/ ERAL		D. COUNTY G. UNKNOW	
III. INSPECTION INFORMATION OI DATE OF INSPECTION 02 SITE STATUS 0	3 YEARS OF OPERAT	юN				
8, 16, 89 DACTIVE		0-71	3-31-71 R ENDING YEAR		UNKNÓWN	
04 AGENCY PERFORMING INSPECTION (Check at that apply)						•
VI E. STATE I F. STATE CONTRACTOR	ne of firm)		NICIPAL D.D.M	••	RACTOR	(Hame of firm)
OS CHIEF INSPECTOR	06 TITLE			(Specify) 07 ORGANIZA	TION	OB TELEPHONE NO.
D. Mark Durway	Hydrogeol	ogist		NC Sup	erfund	(919) 733-2801
OP OTHER INSPECTORS Jack Butler	10 TITLE			. 11 ORGANIZA		12 TELEPHONE NO.
	Environme	ental l	ingineer	· NC Sup	erfund	(919) 733-2801
		•	:		•	()
		•	•	· .		()
	· .		·	· .		()
			• . •			() ·
13 SITE REPRESENTATIVES INTERVIEWED	14 TITLE	1	SADDRESS	· · · · · · · · · · · · · · · · · · ·		16 TELEPHONE NO
Phil Starling	resident		same as si	ite address	3	919) 753-3362
						()
	······································	•	· · · · · ·			()- :-
	·		••••	• • • • •	· · · · · · ·	()
		:	•		•	()
				· · ·		()
			•			
17 ACCESS GAINED BY. (CARCHON) M PERMISSION WARRANT WARRANT	19 WEATHER COND					
IV. INFORMATION AVAILABLE FROM						
irs. David Starling	address sa		site	• •		03 TELEPHONE NO. (919) 753-3362
04 PERSON RESPONSIBLE FOR SITE INSPECTION FORM	05 AGENCY	OS ORG	ANIZATION	07 TELEPHONE	NO.	OB DATE
D. Mark Durway	NC DEHNR	Sup	erfund	919/733-	2801	12 12, 89 HONTH DAY . YEAR

CFA FORM 2070-13 (7-81

••••••

		POT	ENTIAL HAZAR	RDOUS WASTE	SITE	I. IDENTIFICATI	
E	ЪД			TION REPORT		NCD 003	UMBER 185311
			PART 2 - WAST	EINFORMATION	1		
II. WASTE ST	ATES, QUANTITIES, AN	D CHARACTERI	STICS				
	TATES (Check at Inal apply)	02 WASTE OUANTI	TY AT SITE	03 WASTE CHARACT	ERISTICS (Check at Inal a		
	JD E. SLUARY		I waste cuantanes independenti	A. TOXIC	🐱 E. SOLU		OLATILE
C. SLUDGE		TONS _	10,000 gals.	区 B. CORRO		MABLE C K. REACT	VE I
		CUBIC YARDS -		🖾 D. PERSIS			ATIBLE
D D. OTHER	(Specty)	NO. OF DRUMS	542 and con	tainers			
III. WASTE T	 YPF	L		!	·		
CATEGORY	SUBSTANCE N	AUF	OL CROSS AUQUNT	02 UNIT OF MEASURE	03 COUNENTS	·	
SLU	SLUDGE		10,000	gal.	US COMMENTS		
OLW	OILY WASTE			901.	<u> </u>		
	SOLVENTS				<u> </u>		
SOL			[<u> </u>		
PSD	PESTICIDES			l		····-	
000	OTHER ORGANIC CH		 		{···	·	
100	INORGANIC CHEMIC	ALS		· · · · · · · · · · · · · · · · · · ·	ļ		
ACD	ACIDS	<u> </u>	unknown				·
BAS	BASES		·	<u> </u>			
MES	HEAVY METALS		unknown	ļ	L		
IV. HAZARD	DUS SUBSTANCES IS AP	pendix for most frequent	ly cited CAS Numbers)	. <u></u>		······	
0: CATEGORY	C2 SUBSTANCE N		03 CAS NUMBER	04 STORAGE/DIS		05 CONCENTRATION	D6 MEASURE OF
D005	Barium Chromat	e		Burial in	drums	40-50%	% volume
D005	Barium Carbona	te	·	and contain	ners	50-60%	% volume
D002	Chromic Acid		11115745	17	· · ·	unknown	– .
D009	Mercury		7439976	11		unknown	_
D008	Lead		7439921	11		unknown	-
	· · ·				<u></u>	<u> </u>	
					······		
				· · · · · · · · · · · · · · · · · · ·			
			[·	· · · · · · · · · · · · · · · · · · ·	
			<u> </u>				
· · · ·				 			
					·		
	<u></u>			·			
			<u>}</u>				· · · · · · · · · · · · · · · · · · ·
				•	<u> </u>		[
V. FEEDSTO	CKS (See Apsendia for CAS Numb	ers)			•		
CATEGORY	01 FEEDSTOC	KNAME	02 CAS NUMBER	CATEGORY	01 FEEDST	OCK NAME	02 CAS NUMBER
FDS				FDS			·····
FDS				FDS -			
FDS		·	· · · · · · · · · · · · · · · · · · ·	FDS			
FDS			<u></u>	FDS	<u></u>		
			L	lł	<u> </u>	<u> </u>	
- SOURCE	S OF INFORMATION ICH.	specilic ielerences, e.c.	, Siete Hes, sample analysis, i				
Pofor-	and refer to the						
1,9,10,	ces refer to the	se in Appe	enaix C of s	ite investig	ation report	t.	

	AZARDOUS WASTE SITE SPECTION REPORT	· · · · · · · · · · · · · · · · · · ·	1. IDENTIFIC	
PART 3 - DESCRIPTION OF HA	ZARDOUS CONDITIONS AND		·	
01 D A. GROUNDWATER CONTAMINATION NONE 03 POPULATION POTENTIALLY AFFECTED:	02 DOBSERVED (DATE:	<u> </u>	POTENTIAL	D ALLEGED
None detected in nearby drinking well detected in monitoring wells.	ls, but .014 ug/l phe	nol and 170	ug/l chr	omium
01 D B. SURFACE WATER CONTAMINATION	02 D OBSERVED (DATE:	·) O	POTENTIAL	
D3 POPULATION POTENTIALLY AFFECTED: Lead: Exceeded EPA drinking water	04 NARRATIVE DESCRIPTION		m cita	
Barium: Exceeded EPA drinking water near site.	•	-		ditch
01 [] C. CONTAMINATION OF AIR 33 POPULATION POTENTIALLY AFFECTED:NONE	02 DOBSERVED (DATE: 04 NARRATIVE DESCRIPTION) 0	POTENTIAL	C ALLEGED
		· , .		
· ·			:	
01 D. FIRE/EXPLOSIVE CONDITIONS Unknown 03 POPULATION POTENTIALLY AFFECTED:	02 DOBSERVED (DATE: 04 NARRATIVE DESCRIPTION) □	POTENTIAL	D ALLEGED
Chromic acid may explode on contact w contact with organic materials. Mate	with reducing agents, erial is now buried.	and may ig	nite upon	
	02 🗍 OBSERVED (DATE:		POTENTIAL	
Material is buried in drums or contain occur in future. ⁰¹ D F. CONTAMINATION OF SOIL 03 AREA POTENTIALLY AFFECTED: Unknown	02 D OBSERVED (DATE: 04 NARRATIVE DESCRIPTION		these co	uld O ALLEGED
(Acros)			• .	
	·.	•	•.	
01 [] G. DRINKING WATER CONTAMINATION NONE 03 POPULATION POTENTIALLY AFFECTED:	02 DOBSERVED (DATE: 04 NARRATIVE DESCRIPTION) · 🕅	POTENTIAL	
None detected in nearby drinking well	s to date.			
	02 D OBSERVED (DATE: 04 NARRATIVE DESCRIPTION) 03	POTENTIAL	C ALLEGED
			• <u> </u>	
01 DI. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED: Unknown	02 D OBSERVED (DATE: 04 NARRATIVE DESCRIPTION		POTENTIAL	O ALLEGED
01 DI. POPULATION EXPOSURE/INJURY 03 POPULATION POTENTIALLY AFFECTED: Unknown) XI	POTENTIAL	O ALLEGED

•	•			
	AZARDOUS WASTE SITE SPECTION REPORT		I. IDENTIFIC.	
PART 3 - DESCRIPTION OF HA	ZARDOUS CONDITIONS AND	INCIDENTS		03103311
II. HAZARDOUS CONDITIONS AND INCIDENTS (Continued)				
01 J. DAMAGE TO FLORA 04 NARRATIVE DESCRIPTION	02 DOBSERVED (DATE: 8-	<u>16-89</u> , o	POTENTIAL	D ALLEGED
Tall vegetation was absent over bur	ial area.			
		•		:
01 J K. DAMAGE TO FAUNA 04 NARRATIVE DESCRIPTION (Include name(s) of species) UNKNOWN	02 OBSERVED (DATE:) 0	POTENTIAL	D ALLEGED
Phil Starling claims farm animals w	vere killed by waste :	in 1971 befo	ore it was	buried.
	02 DOBSERVED (DATE:) □	POTENTIAL ·	D ALLEGED
Unknown		•	•	
01 3 M. UNSTABLE CONTAINMENT OF WASTES	02 🗍 OBSERVED (DATE:	} ,	POTENTIAL	D ALLEGED
(SPAL'Runoll/Sincing Faulds, Leaking drums) Unknown DS POPULATION POTENTIALLY AFFECTED:	04 NARRATIVE DESCRIPTION		<i>i</i> .	
10,000 gallons of sludge, and possi In time, drums and containers will	bly liquids, are bur leak or deteriorate.	ied in 542 d	drums and	containers
D1 C N. DAMAGE TO OFFSITE PROPERTY D4 WARRATIVE DESCRIPTION	02 DOBSERVED (DATE:) · D	POTENTIAL	O ALLEGED
Unknown		•		
07 D. O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTPs 04 NARRATIVE DESCRIPTION	02 C OBSERVED (DATE:) []	POTENTIAL	C ALLEGED
Unknown				
01 XP. ILLEGAL/UNAUTHORIZED DUMPING D4 NARRATIVE DESCRIPTION	02 DOBSERVED (DATE:) <u></u> x ^j	POTENTIAL	D ALLEGED
Unknown	•		•	
•		. •		
	<u> </u>	·	81 - 44 (44) A	·····
DE DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLE	GED HAZARDS		•	•
		•		
II. TOTAL POPULATION POTENTIALLY AFFECTED: V. COMMENTS				
				·
· · ·		١	•	
. SOURCES OF INFORMATION (Cae specific references, e.g. state Hes.	sample analysis, rapoits;			
Refs. 1,9,10,11			· · · · · · · · · · · · · · · · · · ·	
An Cranada (C. 1930) - An Constanting (C. 1930)	· · ·			

.

:

	•				
3 EPA		SITE INSPEC	JS WASTE SITE TION PTIVE INFORMAT		I. IDENTIFICATION OI STATE OZ SITE NUMBER NCD 003185311
I. PERMIT INFORMATION					
I TYPE OF PERMIT ISSUED	02 PERMIT NUMBER	03 DATE ISSUED	D4 EXPIRATION DATE	05 COMMENTS	· · · · · · · · · · · · · · · · · · ·
		•			
CA. NPDES					
D.C. AIR					
OD. RCRA					
DF. SPCCPLAN	<u> </u>				
Image: Grant Gran		_ <u></u>	<u> </u>		
			<u> </u>	·	
EL OTHER (Specky)			+		
X J. NONE				!	
	D2 AMOUNT 03 UNIT C	FMEASURE 041	REATMENT ICAACK AFINALA		05 OTHER
A. SURFACE IMPOUNDMENT B. PILES C. DRUMS, ABOVE GROUND D. TANK, ABOVE GROUND E. TANK, BELOW GROUND S. F. LANDFILL G. LANDFARM A. DATINUMUP			. INCENERATION . UNDERGROUND INJE . CHEMICAL/PHYSICA . BIOLOGICAL . WASTE OIL PROCES: . SOLVENT RECOVER	NL SING Y	A. BUILDINGS ON SITE
H. OPEN DUMP 1. OTHER		J	OTHER RECYCLING/	RECOVERY	(λει)
· · · · · · · · · · · · · · · · · · ·		J	. OTHER		(Acr+
COMMENTS		J	. OTHER		(Acr+
COMMENTS	No liner		. ΟΤΗΕR [Sρ•	c#yj	
COMMENTS	No liner D B. MODERATE		. OTHER	c#yj	URE, UNSOUND, DANGEROUS
COMMENTS CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES (Check one) A. ADEQUATE, SECURE	D B. MODERATE		. ΟΤΗΕR [Sρ•	c#yj	(Acri
COMMENTS CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES (Check one) A. ADEQUATE, SECURE	D B. MODERATE		. ΟΤΗΕR [Sρ•	c#yj	
COMMENTS CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES (Check one) A. ADEQUATE, SECURE	D B. MODERATE		. ΟΤΗΕR [Sρ•	c#yj	
COMMENTS	D B. MODERATE		. ΟΤΗΕR [Sρ•	c#yj	(Acri
COMMENTS	D B. MODERATE		. ΟΤΗΕR [Sρ•	c#yj	(Acri
COMMENTS COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) C A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, UNERS, B.	D B. MODERATE		. ΟΤΗΕR [Sρ•	c#yj	
COMMENTS COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) C A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, UNERS, B.	D B. MODERATE		. ΟΤΗΕR [Sρ•	c#yj	(Acri
CONTAINMENT COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) C A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: XYES 02 COMMENTS	D B. MODERATE		OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
CONTAINMENT COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) CONTAINMENT OF DRUMS, DIKING, LINERS, B.	D B. MODERATE		OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
COMMENTS COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B. ACCESSIBILITY O1 WASTE EASILY ACCESSIBLE: XYES O2 COMMENTS Site is unfenced; soil	D B. MODERATE ARRIERS, ETC. NO Cover over buri	□ c. INADEC	OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
CONTAINMENT COMMENTS CONTAINMENT OF WASTES (Check one) D A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, LINERS, B. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: XYES 02 COMMENTS Site is unfenced; soil SOURCES OF INFORMATION (Con 120)	D B. MODERATE ARRIERS, ETC. NO Cover over buri	□ c. INADEC	OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
COMMENTS COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) C A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, UNERS, B. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: (XYES 02 COMMENTS Site is unfenced; soil .SOURCES OF INFORMATION (Care specified)	D B. MODERATE ARRIERS, ETC. NO Cover over buri	□ c. INADEC	OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
COMMENTS COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) C A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, UNERS, B. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: (XYES 02 COMMENTS Site is unfenced; soil .SOURCES OF INFORMATION (Care specified)	D B. MODERATE ARRIERS, ETC. NO Cover over buri	□ c. INADEC	OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
CONTAINMENT COMMENTS	D B. MODERATE ARRIERS, ETC. NO Cover over buri	□ c. INADEC	OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
CONTAINMENT CONTAINMENT CONTAINMENT OF WASTES (Check one) CONTAINMENT OF WASTES (Check one) C A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, UNERS, B. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: XYES 02 COMMENTS Site is unfenced; soil SOURCES OF INFORMATION (Con 120) Refs. 1,9,10,11,12	D B. MODERATE ARRIERS, ETC. NO Cover over buri	□ c. INADEC	OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS
COMMENTS COMMENTS CONTAINMENT CONTAINMENT OF WASTES (Check one) C A. ADEQUATE, SECURE DESCRIPTION OF DRUMS, DIKING, UNERS, B. ACCESSIBILITY 01 WASTE EASILY ACCESSIBLE: (XYES 02 COMMENTS Site is unfenced; soil .SOURCES OF INFORMATION (Care specified)	D B. MODERATE ARRIERS, ETC. NO Cover over buri	□ c. INADEC	OTHER	داری کل D. INSEC	URE, UNSOUND, DANGEROUS

•

,

EPA	РОТЕ	NTIAL HAZAR	DOUS WASTE	SITE	01 ST/	
	PART 5 - WATER			NMENTAL DATA	NC	D 003185311
II. DRINKING WATER SUPPLY				-		
01 TYPE OF DRINKING SUPPLY (Check as applicable) SURFACE COMMUNITY A. []	WELL B. X	02 STATUS ENDANGERE A. 🗆	D AFFECTED B. D		03 (Far	DISTANCE TO SITE INVILLE WELL #12 (m!)
NON-COMMUNITY C.	D. 😡	D. 🗆	E. D	F. D	В.	(mi)
III. GROUNDWATER						
01 GROUNDWATER USE IN VICINITY (Check	one)		•			· · · · · · · · · · · · · · · · · · ·
CA. ONLY SOURCE FOR DRINKING	B. DRINKING (Other sources availab COMMERCIAL, IN (No other water source)	DUSTRIAL, IRRIGATIO	(Limhed other	IAL, INDUSTRIAL, IRRIGAT sources eveneble)		D D. NOT USED, UNUSEABLE
02 POPULATION SERVED BY GROUND WA	TER 6606	-	03 DISTANCE TO NEA	AREST DRINKING WATER V	VELL	0.15 (mi)
04 DEPTH TO GROUNDWATER	05 DIRECTION OF GRO	-	06 DEPTH TO AQUIFE	R 07 POTENTIAL YIEL OF AQUIFER	م	08 SOLE SOURCE AQUIFER
< 20(h)	SSE (es	t.)	1 20	(h) Unknown	(gpd)	XO YES 🗆 NO
Shallow monitor wel	ls; shallow a	nd deep dom	estic wells	<u> </u>		
				IENTS		
IV. SURFACE WATER			└ <u>╺</u> ╸────			······································
01 SURFACE WATER USE (Check one)		N, ECONOMICALLY IT RESOURCES		RCIAL, INDUSTRIAL		D. NOT CURRENTLY USED
02 AFFECTED/POTENTIALLY AFFECTED B	ODIES OF WATER					
NAME:		•		AFFECTED		DISTANCE TO SITE
Jacob Creek		· · ·		D		0.46 (mi
	•			0	-	
V. DEMOGRAPHIC AND PROPERT						······································
01 TOTAL POPULATION WITHIN		<u></u>	· · · · · · · · · · · · · · · ·	02 DISTANCE TO NEARI	EST POP	ULATION
100	WO (2) MILES OF SITE B. <u>520</u> NO. OF PERSONS	C	B) MILES OF SITE		15	(mi)
03 NUMBER OF BUILDINGS WITHIN TWO (2) MILES OF SITE		04 DISTANCE TO NE	AREST OFF-SITE BUILDING	3	· ·
100-	- 			_0.15	·((ml)
05 POPULATION WITHIN VICINITY OF SITE	(Provide narralive description of	nature of population within	wchity of site, e.g., surel, vil	age, densely populated urban ar	·•a)	<u> </u>
Site is located in p towns lie just outs these towns exist wi groundwater derived	de 3 miles of thin this dis	E the site, stance. The	some if the is explains	e community w why the popu	ells	serving
EPA FORM 2070-13 (7-81)	· · · · · · · · · · · · · · · · · · ·				4 e -	

EPA		SITE INSPEC	RDOUS WASTE TION REPORT IC, AND ENVIROI		01 ST	ATE 02 SITE NU 003185	MBER
VI. ENVIRONMENTAL INFORMA	TION		· · · · · · · · · · · · · · · · · · ·				
DI PERMEASILITY OF UNSATURATED ZO	DNE (Check one)		···				<u> </u>
	⁸ cm/sec	– 10 ^{–6} cm/sec 🗴	C. 10 ⁻⁴ – 10 ⁻³ cm/	/sec 🛛 D. GRI	EATER THAN 1	0-3 cm/sec	
O2 PERMEABILITY OF BEDROCK (Check or		•	•	·			
C A. IMPERMI	EABLE DB.RELA 0 ⁻⁶ cm/sec) (10 ⁻⁴)	TIVELY IMPERMEABI - 10 ⁻⁸ cm ⁻ soc)	LE 🕅 C. RELATIVEL	Y PERMEABLE	D D. VERY F	ERMEABLE	•
03 DEPTH TO SEDROCK	04 DEPTH OF CONTAMIN	ATED SOIL ZONE	05 SOIL PH	1	Soil be	longs to	Norfolk-
≥100'(ii)	unkno	(h)	4.5	-6	Exum-Go ciation	ldsboro S	Soil Asso
	07 ONE YEAR 24 HOUR R.	AINFALL	08 SLOPE SITE SLOPE	DIRECTION OF	SITE SLOPE	TERRAINAV	ERAGE SLOPE
<u>7 (approx)</u> (in)	3.4	(in)	<u>.<3</u> %	SSE		< 3	%
OF FLOOD POTENTIAL		N/A D SITE IS ON BARRI	ER ISLAND, COASTA	L HIGH HAZARO	AREA, RIVERI	NE FLOODWA	Y .
SITE IS INYEAR FLOO		Black	12 DISTANCE TO CRIT				
ESTUARINE		Swamp	12 DISTANCE TO CHIT	ICAL HABITAT (of .	1	: ,	
N/A	. OTHER 2	Wetlands			<u> </u>	(mi)	
A (mi)	B	(mi)	ENDANGERE	D SPECIES:			_
13 LAND USE IN VICINITY						• ,	
DISTANCE TO:	RESIDEN	TIAL AREAS: NATIO	NAUSTATE PARKS.		AGRICULTU	RAL LANDS	
COMMERCIAL/INDUSTRI	AL FO	RESTS, OR WILDLIF		PRIME	AG LAND	AGL	AND
(mi)		в. 0.15	(mi)	c	(ml)	D	(ml)
14 DESCRIPTION OF SITE IN RELATION T	O SURROUNDING TOPOGE	арну	<u> </u>	·····			
Site is located in divide. Site eleva	the coastal p ation is about	lain on a bi 90' above r	road, essent: nean sea leve	ially fla el.	t inters	tream	
	•					• •	•
	•	•	· ·	_		• • •	
·	· · · · ·		, · · ·	••••			•
•							
		•	• .				
		•					
•							•
WE COUDETE OF MERCENTER							
VII. SOURCES OF INFORMATION	CHe specific references, e.g.	stele lifes, sample analysis,	(*pons)				

:

ÊE	PA
----	----

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

I. IDENTIFICATION OI STATE OZ STE NUMBER NCD 003185311

II. SAMPLES TAKEN	· · ·	`	
SAMPLE TYPE	01 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO	03 ESTIMATED DATE RESULTS AVAILABLE
GROUNDWATER	1	NC DEHNR Public Health Laboratory	present
SURFACE WATER			
WASTE			
AIR			
RUNOFF			
SPILL.			
SOIL		· ·	
VEGETATION			
OTHER			
III. FIELD MEASUREMENTS TA	KEN	· · · · · · · · · · · · · · · · · · ·	
D: TYPE	02 COMMENTS		
	photograph	S	
	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	
IV. PHOTOGRAPHS AND MAPS	S		
CI TYPE X3 GROUND D AERIAL		02 IN CUSTODY OF <u>NC Superfund</u> , Raleigh	
03 MAPS 04 LOCATION X YES ↓ □ NO	NOF MAPS	NC Superfund, Raleigh	
V. OTHER FIELD DATA COLLE	CTED (Provide nerrelive des	cription)	
None	•		
VI. SOURCES OF INFORMATIO	N (Che specific references, e.	.g., Slate lifes, sample analysis, ieDOf1]	· · · · · · · · · · · · · · · · · · ·
Appendixes A and B	b		· .
	•		2 .
EFA FORM 2070-13 (7-51)			······································

•EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 7 - OWNER INFORMATION

•

I. IDENTIFICATION OI STATE OZ SITE NUMBER NCD 003185311

.

II. CURRENT OWNER(S)		PARENT COMPANY (# +20-4)				
David Starling	David Starling		OB NAME			
O3 STREET ADDRESS (P.O. Bor, RFD r. +IC.) Rt. 2, Box 246		04 SIC CODE	10 STREET ADDRESS IP.O. 601, RFD 4, etc.	J	1 1 SIC CODE	
oscry Farmville	05 STATE NC	07 ZIP CODE 27828	12 CITY	13 STATE	14 ZIP CODE	
01 NAME		02 D+B NUMBER	BNUMBER 08 NAME		09 D+B NUMBER	
03 STREET ADDRESS (P.O. Box. RFD +, +IC.)		04 SIC CODE ·	10 STREET ADDRESS (P.O. Bos, RFD +, etc.)	,	11 SIC CODE	
05 C TY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE	
01 NAME .		02 D+B NUMBER	OB NAME		09 D+B NUMBER	
03 STREET ADDRESS (P.O. Boz. RFD +, +1c.)		04 SIC CODE	10 STREET ADDRESS (P.O. Bos. RFD 4, etc.)	, <u> </u>	11SIC CODE	
05 C TY	06 STATE	07 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE	
01 NAME		02 D+B NUMBER	OB NAME	· ·	09 D+B NUMBER	
D3 STREET ADDRESS (P.O. Box, RFD +, etc.)		04 SIC CODE-	10 STREET ADDRESS (P.O. Bas, RFD +, etc.)	,	11 SIC CODE	
05 CTT	OE STATE	O7 ZIP CODE	12 CITY	13 STATE	14 ZIP CODE	
III. PREVIOUS OWNER(S) (List most recent linst)		· · · · · · · · · · · · · · · · · · ·	IV. REALTY OWNER(S) IT ADDE NOT	ist most recent first)	L	
		02 D+B NUMBER	01 NAME		02 D+B NUMBER	
D3 STREET ADDRESS (P.O. Bos, RFD +, +IC.)		04 SIC CODE	03 STREET ADDRESS (P.O. Boz, RFD +, +IC.	,	04 SIC CODE	
OS CITY	OBSTATE	07 ZIP CODE	05 CITY	08 STATE	07 ZIP CODE	
01 'AME		02 D+B NUMBER	OT NAME		02 D+B NUMBER	
D3 STREET ADDRESS (P.O. Box, RFD +, etc.)		04 SIC CODE	03 STREET ADDRESS (P.O. Bos. RFD 4. etc.)	,	04 SIC CODE	
05 CTY	OB STATE	07 ZIP CODE	OS ĈITY	06 STATE	07 간무 CODE	
O: NAME		02 D+B NUMBER	01 NAME		02 D+B NUMBER	
0: STREET ADDRESS (P.O. Bas, RFQ +, +IC.)		04 SIC CODE	03 STREET ADDRESS (P.O. Bos, RFD 4. etc.)		04 SKC CODE	
DE DITY	OSTATE	07 ZIP CODE	OS CITY	06 STATE	07 ZIP CODE	
V. SOURCES OF INFORMATION (CA. 10+CA	he colorone s.	.e.p., tiste ives, zemple enalysis	s, reports)	h	L	
				<u></u>		
As previously cited	•					

	P	OTENTIAL HAZAR	RDOUS WASTE SITE		I. IDENTIFICATION			
SITE INSPE			TION REPORT	2 SITE NUMBER 003185311				
II. CURRENT OPERATOR (Provide # delivent in	xn owner]	1	OPERATOR'S PARENT COMPANY (# 10000000)					
Union Carbide Corporation			10 NAME . 		11 D+BNUMBER			
OS STREET ADDRESS (P.O. Bor, AFD . arc.) Evans Street Ext. and 2	04 SIC CODE DASS	12 STREET ADDRESS (P.O. Bot. RFD . etc.)		13 SIC CODE				
⁰⁵ City Greenville	NC	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE			
D8 YEARS OF OPERATION 09 NAME OF OWNER		·····	· ·		· · ·			
III. PREVIOUS OPERATOR(S) IList most recent	lusi; provide or	ny i cillerent from owner)	PREVIOUS OPERATORS' PARENT CO	MPANIES (addicebiai			
01 NAME		02 D+BNUMBER	10 NAME .		11 D+B NUMBER			
03 STREET ADDRESS (P.O. Bas, RFD #, olc.)			12 STREET ADDRESS (P.O. Bos, RFD +, etc.)	<u> </u>	13 SIC CODE			
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	18 ZIP CODE			
OB YEARS OF CPERATION OP NAME OF OWNER	DURING TH	IS PERIOD		<u> </u>	<u> </u>			
D1 NAME		02 D+B NUMBER	10 NAME		11 D+B NUMBER			
03 STREET ADDRESS (P.O. BOX. RFD /, etc.)		104 SIC CODE	12 STREET ADDRESS (P.O. Bos, RFD +, +IC.)					
			·					
05 CITY	06 STATE	07 ZIP CODE	14 CITY	15 STATE	16 ZIP CODE			
08 YEARS OF CPERATION 09 NAME OF OWNER	DURING TH	IS PERIOD						
D1 NAME		02 D+B NUMBER	10 NAME	·.	11 D+BNUMBER			
03 STREET ADDRESS (P.O. 604, RFD 4, old.)			12 STREET ADDRESS (P.O. Bot. RFD +, etc.)	•	13 SIC CODE			
05 כודץ	OC STATE	07 ZIP CODE	14 CITY	15 STATE	18 ZIP CODE			
08 YEARS OF CPERATION 09 NAME OF OWNER	DURING TH	IS PERIOD						
IV. SOURCES OF INFORMATION (CRespect	lic relevences.	s.ç., state likes, semple analysis,	reports)					
As previously cited.								
		14			•			
•								
			: .					
			· · · · · · · · · · · · · · · · · · ·					
				•				
EPA FORM 2075-13 (7-81)			· · · · · · · · · · · · · · · · · · ·					

AND DESTROY

÷

•

. ÷

. : :

.....

POTENTIAL HAZARDOUS WASTE SITE
SITE INSPECTION REPORT
PART 9 - GENERATOR/TRANSPORTER INFORMATION

1. IDENTIFICATION OI STATE OZ SITE NUMBER NCD 003185311

II. ON-SITE GENERATOR						······································			· · ·
01 NAME		02 0-	+B NUMBER		•				
		İ							
03 STREET ADDRESS (P.O. Box, RFD +, etc.)		L-T	04 SIC CODE	1.	-			:	
			•						
05 CITY	08 STATE	07.71		4	•				
		0. 2.			•				
			·		·	·			· ·
III. OFF-SITE GENERATOR(S)									
01 NAME .		02 D	+B NUMBER	DI NAME				02 D	+ B NUMBER
Union Carbide Corporation	1		•						
03 STREET ADDRESS (P.O. Box, RFD . etc.)			04 SIC CODE	03 STREET ADD	RESS (P.O. Box,	RFD #, etc.)			04 SIC CODE
Evans Street Ext. and 264	Вура	ss		[•				•
· · · · · · · · · · · · · · · · · · ·	06 STATE	1	PCODE	05 CITY			06 STATE	07 Z	UP CODE
Greenville	NC	[
01 NAME	L	1 02 D	+ B NUMBER	01 NAME		<u> </u>		020	+B NUMBER
						•	:		
· · · · · · · · · · · · · · · · · · ·			·				<u></u>		
O3 STREET ADDRESS (P.O. Box, RFD /, elc.)		· 1	04 SIC CODE	03 STREET ADD	RESS (P.O. Box.	RFO #, otc.J			04 SIC CODE
		•							·
05 CITY	06 STATE	07 ZI	PCODE	05 CITY			06 STATE	07 Z	IP CODE
									•
IV. TRANSPORTER(S)	•	·				•••••••••••••••••••••••••••••••••••••••			
01 NAME		02 D	+ B NUMBER	01 NAME		-	<u>.</u>	102 D	+B NUMBER
•			•						
		L	04 SIC CODE ·	03 STREET ADD	2222 10 222			L	04 SIC CODE
03 STREET ADDRESS (P.O. Boz, RFD +, +IC.)	•		·	US STREET ADD	ncoo (r.u. 101, 1	nr 11 F. elc.)			UN SIC CODE
O5 CITY	06 STATE	07 ZI	PCODE	05 CITY			08 STATE	07 2	UP CODE
		1						•	•
OI NAME	··	02 D	+ B NUMBER	01 NAME				02 0	+ B NUMBER
				}	•		•••		
03 STREET ADDRESS (P.O. Box, RFD P. etc.)		'	04 SIC CODE	03 STREET ADD	RESS (P.O. Box,	RFD / , +1C.)		<u> </u>	04 SIC CODE
	· .		••	· · ·	·. ·	·	•		• • • •
05 CITY	06 STATE		P CODE	05 CITY			06 STATE	077	
			. 0002						
				<u></u>					
V. SOURCES OF INFORMATION (CRe apecfic	relevences, o	e.g., sia	ile files, sample analysis, re	(1100					
				•					
									,
As previously cited									
									•
					•	-			
•									
· · · · ·									
•									
		•							
	-								
					•				

EPA

SEPA

•

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

1. IDENTIFICATION 01 STATE 02 STE NUMBER NCD 003185311

.

......

II. PAST RESPONSE ACTIVITIES	······································	
01 D A. WATER SUPPLY CLOSED 04 DESCRIPTION	02 DATE	03 AGENCY
None		· · · · · ·
01 D B. TEMPORARY WATER SUPPLY PROVIDED 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 C. PERMANENT WATER SUPPLY PROVIDED 04 DESCRIPTION	02 DATE	03 AGENCY
None		· · ·
01 D D. SPILLED MATERIAL REMOVED 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 D E. CONTAMINATED SOIL REMOVED 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 D F. WASTE REPACKAGED 04 DESCRIPTION	02 DATE	03 AGENCY
None	•	÷
01 D G. WASTE DISPOSED ELSEWHERE 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 D H. ON SITE BURIAL	02 DATE	03 AGENCY
C4 DESCRIPTION		
	02 DATE	03 AGENCY
04 DESCRIPTION		
. <u>None</u>		
01 D J. IN SITU BIOLOGICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY
None	·	
01 D K. IN SITU PHYSICAL TREATMENT . 04 DESCRIPTION		03 AGENCY
	· · · · · · · · · · · · · · · · · · ·	
01 DL. ENCAPSULATION 04 DESCRIPTION	02 DATE	03 AGENCY
Nône	*** ** **** **** **** * *** *** ***	
01 D M. EMERGENCY WASTE TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 D N. CUTOFF WALLS	02 DATE	03 AGENCY
04 DESCRIPTION None		
01 D O. EMERGENCY DIKING/SURFACE WATER DIVERSION	02 DATE	03 AGENCY
04 DESCRIPTION		
01 D P. CUTOFF TRENCHES/SUMP 04 DESCRIPTION	02 DATE	O3 AGENCY
None	•	
01 D Q. SUBSURFACE CUTOFF WALL 04 DESCRIPTION	02 DATE	03 AGENCY
None		
EPA FORM 2070-13 (7-81)		

3	E	P	7	ĺ
	J	H.		×

• •

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION NCD 003185311

II PAST RESPONSE ACTIVITIES (Continued)	· .	· · · · · · · · · · · · · · · · · · ·
01 D R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 D S. CAPPING/COVERING 04 DESCRIPTION	02 DATE	03 AGENCY
None		·
01 D T. BULK TANKAGE REPAIRED 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 DU. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
None		·
None 01 D V. BOTTOM SEALED 04 DESCRIPTION	02 DATE ·	D3 AGENCY
None		
01 D W. GAS CONTROL 04 DESCRIPTION	02 DATE	03 AGENCY
None		
	02 DATE	03 AGENCY
None	:	
01 D Y. LEACHATE TREATMENT 04 DESCRIPTION	02 DATE	D3 AGENCY
None		
01 G Z. AREA EVACUATED 04 DESCRIPTION	02 DATE	03 AGENCY
None		
01 D 1. ACCESS TO SITE RESTRICTED	02 DATE	03 AGENCY
04 DESCRIPTION None		
01	02 DATE	03 AGENCY
None		•
01 D 3, OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION	02 DATE	O3 AGENCY
None		
1	•	
		•
	· · · · · ·	
		· · · · · · · · · · · · · · · · · · ·
III. SOURCES OF INFORMATION (CHe specific relevances, e.g.	slete Hes, sample analysis, reports]	
As previously cited		
	·	. · ·

EPAFCAM 2070-13 (7-81)

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 11 - ENFORCEMENT INFORMATION

...

I. IDENTIFICATION 01 STATE 02 SITE NUMBER NCD 003185311

.

II. ENFORCEMENT INFORMATION

01 PAST REGULATORY/ENFORCEMENT ACTION (1 YES X) NO

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

None

III. SOURCES OF INFORMATION (Crespectic relevances, e.g., state fres, sample analysis, reports)

. . . .

As previously cited.

EPA FORM 2070-13 (7-81)

-

APPENDIX E

SITE SAFETY PLAN AND TOXICOLOGICAL DATA

SITE HEALTH AND SAFETY PLAN

A. General Information

Site NameDavid Starling PropertyID # NCD 003 185 311LocationRoute 2, Box 246 (Hwy. 258N),Date August 3, 1989Farmville, Pitt County, NC

Proposed Date of Investigation <u>August 16, 1989</u> Date of Briefing <u>August 15, 1989</u> Date of Debriefing <u>August 17, 1989</u>

Site Investigation Team: All site personnel have read the Site Health and Safety Plan and are familiar with its provisions.

Personnel Responsibilities Signature

Team	1	Mark Durway	team leader, sampling	
Team	1	Jack Butler	sampling	<u></u>
Team	2			
Team	2	•••••••••••••••••		·

Plan Preparation:

Prepared By: <u>David Lilley, Industrial Hygienist</u> Reviewed By: Jack Butler, <u>Environmental Engineer</u>

B. SITE/WASTE CHARACTERISTICS

Barium Carbonate	OT=no data		0.5mg/m^3
Chromic Acid	OT=no data	PEL=	1mg $/10$ m ³
Mercury	OT=no data		0.01mg/m ³
Lead	OT=no data	PEL=	0.05mg/m ³

ID # NCD 003 185 311

Facility Description: Size <u>unknown</u> Buildings <u>unknown</u> Disposal Methods Being Investigated <u>Burial of 10,000 gallons of sludge in</u> <u>pits 15 to 25 feet wide, 80 to 100 feet long, and 12 to 14 feet deep.</u> Unusual Features on Site (dike integrity, power lines, terrain, etc.): none known

History of the Site: From January 6, 1971 to March 31, 1971, a burial area at the David Starling property was used for disposal of 10,000 gallons of barium chromate, barium carbonate, and chromic acid in 55 gallon drums and 5 gallon pails. This waste was generated by the Union Carbide plant in Greenville, NC. The site is now inactive as a waste disposal area.

C. HAZARD EVALUATION

The site can be toured and sampled in level D. PE or PVC gloves will be worn while collecting water samples and soil samples. Tyvek suits (saranex in wet conditions) are recommended to keep clothing clean.

D. WORK PLAN INSTRUCTION

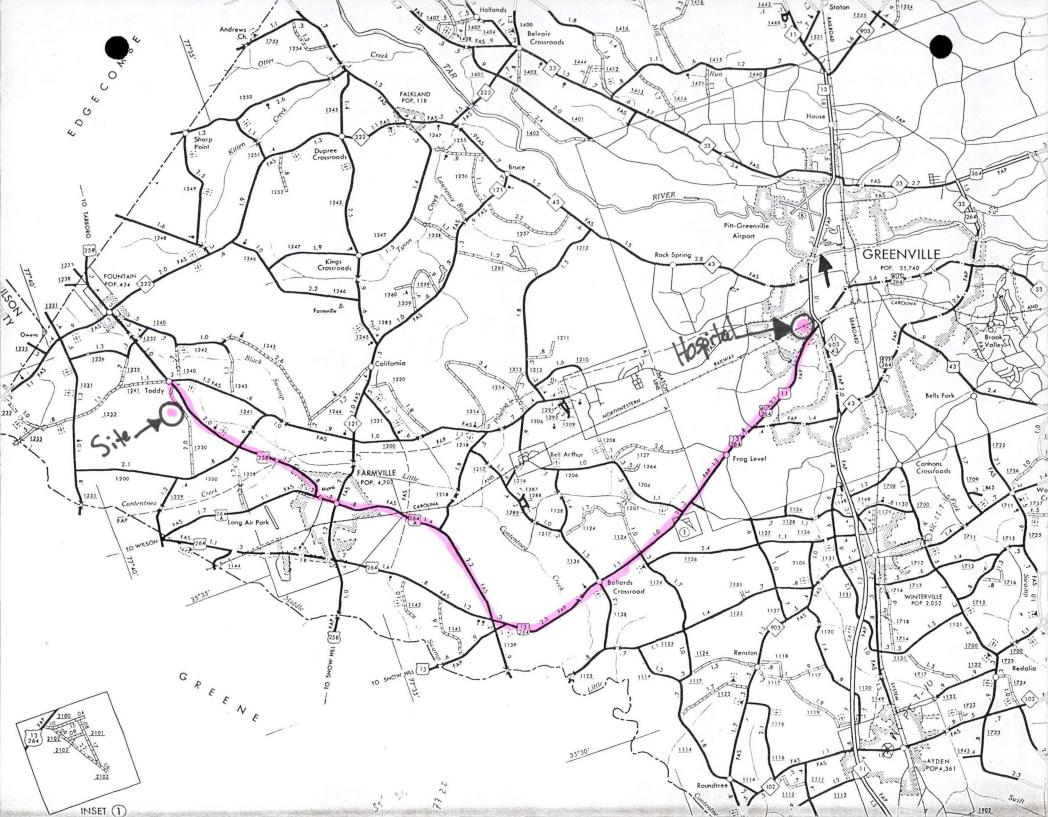
Map or Sketch Attached? <u>yes</u> Perimeter Identified? <u>no</u> Command Post Identified? <u>no</u> Zones of Contamination Identified? <u>no</u>

Personal Protective Equipment/Level of Protection: _____C ___X __D

Modifications <u>Wear goggles and PVC gloves while preparing acid preserved</u> samples. Avoid breathing acid vapors. ID # NCD 003 185 311

Surveillance Equi	ipment.
HNU	Detector Tubes and Pumps
MNO OVA	02 Meter
<u> </u>	simeter Radiation Monitor
IAP200	
Decontamination P	Procedures
Level C	Respirator wash, respirator removal, suit wash (if neede
	suit removal, boot wash, boot removal and glove removal.
XLevel D	Boot wash and rinse and boot removal, suit removal, glove and goggle removal.
Modifications <u>Di</u>	ispose of trash properly, on-site if possible.
	ispose of trash properly, on-site if possible.
	ispose of trash properly, on-site if possible.
	sit Objectives The purpose of this visit is to determine
Nork Schedule/Vis	
Work Schedule/Vis	sit Objectives The purpose of this visit is to determine
Work Schedule/Vis if this site pose Sampling will con	sit Objectives <u>The purpose of this visit is to determine</u> es a hazard to the public health or the environment. Insist of drinking water well sampling, and possibly
Work Schedule/Vis if this site pose	sit Objectives <u>The purpose of this visit is to determine</u> es a hazard to the public health or the environment. Insist of drinking water well sampling, and possibly
Work Schedule/Vis if this site pose Sampling will con	sit Objectives <u>The purpose of this visit is to determine</u> as a hazard to the public health or the environment. Asist of drinking water well sampling, and possibly bling.
Work Schedule/Vis if this site pose Sampling will con surface soil samp	sit Objectives <u>The purpose of this visit is to determine</u> as a hazard to the public health or the environment. Asist of drinking water well sampling, and possibly bling.
Work Schedule/Vis if this site pose Sampling will con surface soil samp	sit Objectives <u>The purpose of this visit is to determine</u> es a hazard to the public health or the environment. Insist of drinking water well sampling, and possibly poling.
Work Schedule/Vis if this site pose Sampling will con surface soil samp EMERGENCY PRECAUT	sit Objectives <u>The purpose of this visit is to determine</u> es a hazard to the public health or the environment. Insist of drinking water well sampling, and possibly poling.
Work Schedule/Vis if this site pose Sampling will con surface soil samp EMERGENCY PRECAUT	sit Objectives <u>The purpose of this visit is to determine</u> es a hazard to the public health or the environment. Insist of drinking water well sampling, and possibly poling.
Work Schedule/Vis <u>if this site pose</u> <u>Sampling will con</u> <u>surface soil samp</u> EMERGENCY PRECAUT <u>Route of Exp</u> Eyes	sit Objectives <u>The purpose of this visit is to determine</u> es a hazard to the public health or the environment. Insist of drinking water well sampling, and possibly poling. CIONS <u>First Aid</u>
Nork Schedule/Vis <u>if this site pose</u> <u>Sampling will con</u> <u>surface soil samp</u> EMERGENCY PRECAUT <u>Route of Exp</u> Eyes	sit Objectives <u>The purpose of this visit is to determine</u> es a hazard to the public health or the environment. Insist of drinking water well sampling, and possibly poling. CHONS ENONS <u>First Aid</u> <u>irrigate immediately</u>

	ID # <u>NCD 003 185 311</u>			
Location	Location of Nearest Phone: <u>nearby residences</u>			
Hospital	Hospital (Address and Phone Number)			
Pitt Coun	Pitt County Memorial Hospital, 200 Stantonsburg Road, Greenville, NC 27835			
<u>(919) 551</u>	(919) 551-4100-can handle chemically contaminated patients			
Emergency	Transportation Systems	(Phone Numbers)		
Fire <u>91</u>	.1			
Ambulance	911	•		
Rescue Sq	uad <u>911</u>			
Emergency	Route to Hospital <u>Take</u> a	a left onto SR 1	230, then take a right	
route 258	East to Farmville. Take	e route 264 East	out of Farmville and stay	
<u>on 264 ap</u>	proximately 12-15 miles.	The hospital i	s well marked.	
PREVAILIN	G WEATHER CONDITIONS AND	FORECAST Partia	lly cloudy, chance of	
showers,	high of 86 ⁰ F.			
	EQUIPME ifying respirator	INT CHECKLIST		
Cartrid X Rainsui 02 Indi X Eye Was H Nu DH Mete Explosi Radioac	ges for respirator t cator h Unit r	X Gloves X Boots/ X Covera X Eye Pr X Hard H	at amination	
	Telephone:	ty Medical Cent 1-800-672-1697 x 3024		
ASHEVILLE 704-255-4490	Western NC Poison Control Center Memorial Mission Hosp. 509 Biltmore Ave. 28801	HENDERSONVILLE 704-693-6522 Ext. 555,556	Margaret R. Pardee Memorial Hospital Fleming St., 28739	
CHARLOTTE 704-379-5827	Mercy Hospital 2001 Vail Ave, 28207	HICKORY 704-322-6649	Catawba Mem. Hosp. Fairgrove Chur. Rd 28601	
DURHAM 1-800-672-1697	Duke Univ. Med. Center Box 3007, 27710	JACKSONVILLE 919-577-2555	Onslow Mem. Hospital Western Blvd. 28540	
GREENSBORO	Moses Cone Hospital 1200 N. Elm St. 27420	WILMINGTON 919-343-7046	New Hanover Mem. Hospital 2131 S. 17th St. 28401	


safeform.005

TO BE COMPLET	TED BY PROJECT MANAGER
PROJECT MANAGER: Mark Durway	PROJECT: David Starling Prop.
Mat	terials Used
Air Purifying respirator can Detector tubes Eye Wash Units First Aid Kit Gloves (polyethylene) Gloves(PVC)	rtridges Gloves (nitrile) Gloves (cloth) Boot covers Coveralls (tyvek) Coveralls (saranex) Auger Brushes
Respirator Worn By	Approximate Time in Respirator
Air Monitoring Data (]	Include Calibration Reading)
HNU:	
OVA:	
Explosimter:	
Radiation Meter:	
	equipment as outlined in the Hazard
Evaluation Section was not used, pl	
<u></u>	
Visitors Present	Orginazation Represented
· · · · · · · · · · · · · · · · · · ·	
	······································
DL/ds/Revised 11-88	

. •

. •

.

. .

Chemical Name: Barium as BaCr04

I. PHYSICAL/CHEMICAL PROPERTIES

Chemical Formula <u>given above</u>	_1
Natural Physical State at 25 ⁰ C <u>solids</u>	·
Vapor Pressure mm Hg at 20 ⁰ C	· · · · · · · · · · · · · · · · · · ·
Melting Point ^o F/ ^o C Boiling Point ^o F/ ^o C	<u></u>
Flash Point (open or closed cup)OC/OF	
Solubility - H ₂ O <u>partially insoluble</u>	1,2
Other	

Physical Features: (odor, color, etc.) yellow, heavy crystals

II. TOXICOLOGICAL DATA

Standards: no data TLV

no data PEL no data IDLH

Reference

Routes of Exposure: inhalation, ingestion

Acute/Chronic Symptoms: respiratory tract irritation, muscle spasms, GI tract infection

First Aid: Eyes: irrigate immediately; Skin: water flush immediately; Inhalation: fresh air and artificial respiration; Ingestion: medical attention promptly.

Chem	ical Name: <u>BaCr04</u>	
III.	HAZARDOUS CHARACTERISTICS	Reference
	A. Combustibility Yes No <u>X</u> Toxic by-products	
	B. Flammability LEL UEL	
	C. Reactivity Hazard	
	D. Corrosivity Hazard yes/ <u>no</u> pH: Neutralizing agent:	1,2,3
	E. Radioactive Hazard Exposure Rate	
	E. Radioactive Hazard Exposure Rate Background yes/no Alpha particles yes/no Beta particles yes/no Gamma radiation yes/no	
IV.	REFERENCES	
	 The Merck Index, 1985 Documentation of the TLV's, Fourth Edition, 1980 Pocket Guide to Chemical Hazards, NIOSH, 1985 	

.

· · · ·

Chemical Name: Barium Carbonate

I. PHYSICAL/CHEMICAL PROPERTIES

Chemical Formula <u>BaCO</u>	1
Natural Physical State at 25 ⁰ C <u>solid</u>	1
Vapor Pressure mm Hg at 20 ⁰ C	<u></u>
Melting Point <u>811</u> ^o F/ ^o C Boiling Point ^o F/ ^o C	1
Flash Point (open or closed cup) <u>NA</u> C/ ^O F	<u></u>
Solubility - H ₂ O <u>0.024g/liter</u>	2
Other <u>hydrochloric</u> , <u>nitric</u> , <u>and acetic acid</u> ,	2
ammonium nitrate, ammonium chloride	

Reference

Physical Features: (odor, color, etc.) white, heavy powder (2)

II. TOXICOLOGICAL DATA as barium

Standards:	$0.5 mg/m^3$ (3)	TLV <u>0.5</u>	mg/m ³ (4)	PEL	250mg/m ³	<u>(5)</u>	IDLH
------------	------------------	----------------	-----------------------	-----	----------------------	------------	------

Routes of Exposure: Ingestion, Inhalation, Skin/Eye contact

Acute/Chronic Symptoms: <u>Upper respiratory irritant, gastrointestional</u> distress, muscle spasms, heart problems, irritation of the eyes, skin burns

First Aid: Ingestion: get medical attention; Inhalation: fresh air, artifical respiration; Skin contact: soap and water wash; Eye contact: flush with water

Chem	ical	Name: Barium Carbonate		
III.	HAZ	ARDOUS CHARACTERISTICS		Reference
	Α.	Combustibility Yes <u>No X</u> Toxic by-products	-	
	в.	Flammability LEL	UEL	
	c.	Reactivity Hazard		
	D.	Corrosivity Hazard yes/no	pH:	
	Neut	tralizing agent:		
	Ε.	Radioactive Hazard Background yes/no Alpha particles yes/no Beta particles yes/no Gamma radiation yes/no	Exposure Rate	
IV.	REFI	ERENCES		
	<u>2. 5</u> <u>3. 5</u>	The Condensed Chemical Dictionary, The Merck Index, 10th Edition, 1983 Threshold Limit Values and Biologic for 1988-1989	l	
	4.1	Air Contaminants-Permissible Exposu 29 CFR 1910.1000, 1989	ure Limits,	
	<u>5. 1</u>	NIOSH Pocket Guide to Chemical Haza	urds, 1987	
		i		

•

•

-

• • •

,

Chemical Name: Chromic Acid

I. PHYSICAL/CHEMICAL PROPERTIES

 Chemical Formula Cr 03
 1

 Natural Physical State at 25°C solid
 1

 Vapor Pressure _____ mm Hg at 20°C

 Melting Point ______°F/°C Boiling Point _____°F/°C

 Flash Point (open or closed cup) _____°C/°F

 Solubility - H₂O soluble _____
 1

 Other ______
 1

Physical Features: (odor, color, etc.) <u>dark red, bypyramidal</u> crystals (1).

II. TOXICOLOGICAL DATA

Standards: none TLV 1mg/10m³ (2) PEL <u>30mg/m3 (3)</u> IDLH

Reference

Routes of Exposure: Ingestion, Inhalation, Skin/Eye contact

Acute/Chronic Symptoms: <u>Skin contact: irritation & ulceration of skin</u>. Inhalation: irritation & perforation of nasal system & pulmonary irritation.

First Aid: Eye: irrigate immediately, Skin: water flush immediately, Inhalation: artificial respiration, Ingestion: immediate medical attention.

Chemical	Name:	Chromic	Acid
Chemicar	name:	Chromite	ACTO

III.	III. HAZARDOUS CHARACTERISTICS			
	A.	Combustibility Yes Toxic by-products	s <u>x</u> No <u>contact with combustible</u> <u>material may cause fire.</u>	<u>1</u>
	в.	Flammability	LEL UEL	
S	C. omet		oxidizes most other organic substances.	<u></u>
	D.	Corrosivity Hazard	<u>yes</u> /no pH:	
	Neu	tralizing agent:		
	E.	Radioactive Hazard Background Alpha particles Beta particles Gamma radiation	yes/no	
IV.	REFI	ERENCES	dex, 10th Edition, 1983.	
			ants-Permissible Exposure Limits,	

<u>29 CFR 1910.1000, 1989</u>

3. NIOSH Pocket Guide to Chemical Hazards, 1987

:

Chemical Name: Mercury-inorganic

I. PHYSICAL/CHEMICAL PROPERTIES

•	
Chemical Formula <u>Hg</u>	
Natural Physical State at 25 ⁰ C <u>liquid</u>	2
Vapor Pressure 0.0012 mm Hg at 20 ⁰ C	2
Melting Point <u>-38</u> ^o F/ ^o C Boiling Point <u>674</u> ^o F/ ^o C	_2
Flash Point (open or closed cup) <u>None</u> ^O C/ ^O F	2
Solubility - H ₂ O <u>0.002%</u>	2
Other	

Reference

Physical Features: (odor, color, etc.) <u>Silvery, mobile odorless liquid</u>
(2)

II. TOXICOLOGICAL DATA

Standards: $0.01 \text{ mg/m}^3(3)$ TLV $1 \text{ mg/10m}^3(4)$ PEL $28 \text{ mg/m}^3(2)$ IDLH

Routes of Exposure: Inhalation, skin and/or eye absorption, Ingestion (2)

Acute/Chronic Symptoms: <u>Acute: soluble salts have violent corrosive effect on</u> <u>skin and mucous membranes, severe nausea, vomiting, abdominal pains, blood,</u> <u>diarrhea, kidney damage, death usually with 10 days; Chronic: inflammation of</u> <u>mouth and gums, excessive salivation, loosening of teeth, kidney damage,</u> <u>muscle tension, jerky gait, spasms of extremities, personality changes,</u> <u>depression, irritability, nervousness(1).</u>

First Aid: Eyes: irrigate immediately; Skin: wash with soap and water immediately; Inhalation: artificial respiration; Ingestion: get medical attention immediately (2).

	Chem	ical	Name: Mercury-i	norganic		
	III.	HAZ	ARDOUS CHARACTERIS	STICS		Reference
		Α.	Combustibility Y Toxic by-products		_	2
				. <u></u>	_	<u></u>
		в.	Flammability	LEL <u>none</u>	UEL	
	ammo		_	Incompatible	with acetylenes,	2
		_		(insoluable sal	-	
		D.	Corrosivity Hazar	rd <u>yes</u> /no	pH:	. 1
		Neu	tralizing agent: _			
		Е.	Radioactive Hazar	đ	Exposure Rate	
			Background	yes/no		
			Alpha particles	yes/no		
			Beta particles	yes/no		
			Gamma radiation	n yes/no		
	IV.	REF	ERENCES			
					•	
	(1) The Merck Index, 10th Edition, 1983				983	
		<u>(2)</u>	Pocket Guide to	Chemical Hazards	, NIOSH, 1985	
		<u>(3)</u>	Threshold Limit	gical Exposure		
			Indices for 198	8-89, ACGIH.		
1		<u>(4)</u>	Air Contaminants	-Permissible Exp	osure Limits,	
			29 CFR 1910.100	0, 1989.		

Chemical Name: Lead, inorganic dusts

I. PHYSICAL/CHEMICAL PROPERTIES

Reference

Chemical Formula <u>Pb</u>	1
Natural Physical State at 25 ⁰ C <u>solid</u>	1
Vapor Pressure <u>N/A</u> mm Hg at 20 ⁰ C	1
Melting Point <u>600</u> [°] F/ [°] C Boiling Point <u>900</u> [°] F/ [°] C	1
Flash Point (open or closed cup) <u>N/A</u> ^O C/ ^O F	
Solubility - H ₂ O <u>N/A</u>	
Other <u>N/A</u>	

Physical Features: (odor, color, etc.) <u>appearance and odor vary depending</u> upon specific compound.

II. TOXICOLOGICAL DATA

Standards: <u>.15 mg/m³ (2)</u> TLV <u>0.05 mg/m³ (3)</u> PEL <u>N/A</u> IDLH <u>3</u>

Routes of Exposure: inhalation, ingestion, eye contact, skin contact(3)

Acute/Chronic Symptoms: <u>Acute: lassitude, pallor, constipation, abdominal pain, gingival gum line, tremors. Target organs: GI tract, CNS, kidneys, blood.(3)</u>

First Aid: Eyes: irrigate immediately; Skin: soap and water wash promptly; Inhalation: fresh air and artificial respiration; Ingestion: medical attention immediately. Chemical Name: Lead, inorganic dusts

. ·

,

.

III.	HAZA	RDOUS CHARACTERIST	ICS		Reference
	Α.	Combustibility Yes Toxic by-products	s <u>No X</u>	- <u> </u>	
	в.	Flammability	LEL N/A		
				· · · · · · · · · · · · · · · · · · ·	
	c.	Reactivity Hazard	None		
		,			
	D.	Corrosivity Hazard	yes/no	рН:	<u> </u>
	Neut	ralizing agent:			
	Ε.	Radioactive Hazard		Exposure Rate	
	2.	Background	ves/no	Inpodulo naco	
		Alpha particles			
		Beta particles		· · · · · · · · · · · · · · · · · · ·	
		Gamma radiation			
IV.	REFE				
	(1) The Merck Index, 10th Edition, 1985				
	(2) Threshold Limit Values and Biological Exposure Indices			ogical Exposure Indices	
		for 1988-1989,	ACGIH.		
	(3) Pocket Guide to Chemical Hazards, NIOSH, 1987.				