Part B Permit Application Final Former Porcelanite Facility 20 Victor Street Lexington, North Carolina 27292 EPA ID #NCD 986 181 451 February 1, 2019 February 1, 2019

Ms. Mary Siedlecki
North Carolina Department of Environmental
Quality
Division of Waste Management
217 West Jones Street
1646 Mail Service Center
Raleigh, NC 27699-1646

Reference: Part B Permit Application Final

(Former) Porcelanite Facility

20 Victor Street

Lexington, North Carolina 27292 EPA ID Number: NCD 986 181 451

Dear Ms. Siedlecki:

On behalf of Mannington Mills, Inc. (formerly referred to as Mannington Mills of Delaware, Inc. or Maneto, Inc. and referred to in this submittal as "Mannington"), and without admission of liability, enclosed please find our February 1, 2019 Part B Permit Application Final including all the revisions that were completed in response to the two NODs. Here is what we believe is a "final," or renewed, Part B submittal that incorporates changes described in both our written NOD 1 (12/29/17) & NOD 2 (3/9/18) replies. It is unsigned and like the original Part B submission, this set of documents was prepared and financed by or on behalf of Mannington. This is not a Condumex work product as they continue to be unwilling to participate in the process. For ease of your review, we have submitted one hard copy and one electronic copy that incorporates the recommendations made in the NOD #1 and NOD #2. We hope this method is in keeping with your understanding of the deliverables. There are also several of the figures which are larger scale maps that were compressed for the electronic copy submission.

We look forward to discussing the enclosed materials with you to address any questions you may have.

Sincerely,

WATERS EDGE ENVIRONMENTAL, LLC

Phillip L. Rahn, PG

President

cc: Mr. Dave Kitts and Mr. Vic Giudice-Mannington

Ms. Pam Goodwin Esq.- Saul et al.

19-006

Part A- Part A Application

FO The Sta	ND DMPLETED RM TO: e Appropriate ate or Regional rice.	United States Env RCRA SUBTITLE (,	The state of the s	AL PROTECTION
1.	Reason for Submittal	Reason for Submittal: To provide an Initial Notification (firs for this location)	st time subn	mitting sit	e identification	information / to obtai	n an EPA ID	number
E	MARK ALL BOX(ES) THAT APPLY	☐ To provide a Subsequent Notificatio ☐ As a component of a First RCRA Ha ☐ As a component of a Revised RCRA ☐ As a component of the Hazardous V ☐ Site was a TSD facility and/or g >100 kg of acute hazardous wa	lazardous W A Hazardou Waste Repo generator of	Vaste Parus Waste ort (If ma	rt A Permit Appl Part A Permit <i>I</i> rked, see sub-b kg of hazardous	ication Application (Amendmullet below) waste, >1 kg of acu	nent #	s waste, or
		LQG regulations)					- Con Clate C	
2.	Site EPA ID Number	EPA ID Number						
3.	Site Name	Name:						
4.	Site Location	Street Address:					T	
	Information	City, Town, or Village:					County:	
		State: Cou	untry:				Zip Code:	
5.	Site Land Type	Private County District	Feder	ral L	Tribal	☐ Municipal ☐St	ate \Box	Other
6.	NAICS Code(s) for the Site	A			c .			
	(at least 5-digit codes)	В			D.			
7.	Site Mailing	Street or P.O. Box:						
	Address	City, Town, or Village:						
		State: Cou	untry:				Zip Code:	
8.	Site Contact	First Name: MI:	La	ast:				
	Person	Title:						
		Street or P.O. Box:						
		City, Town or Village:						
		State: Cou	untry:				Zip Code:	
		Email:	•					
		Phone:	E	xt.:			Fax:	
9.	Legal Owner	A. Name of Site's Legal Owner:	,				Date Becam Owner:	ie
	and Operator of the Site	Owner Type: Private County D	District	Federa	al Tribal	Municipal	State	Other
		Street or P.O. Box:						
		City, Town, or Village:				F	Phone:	
		State: Cou	untry:				Zip Code:	
		B. Name of Site's Operator:					Date Became Operator:	
		Operator Private County	District	Federa	al Tribal	Municipal	State	Other

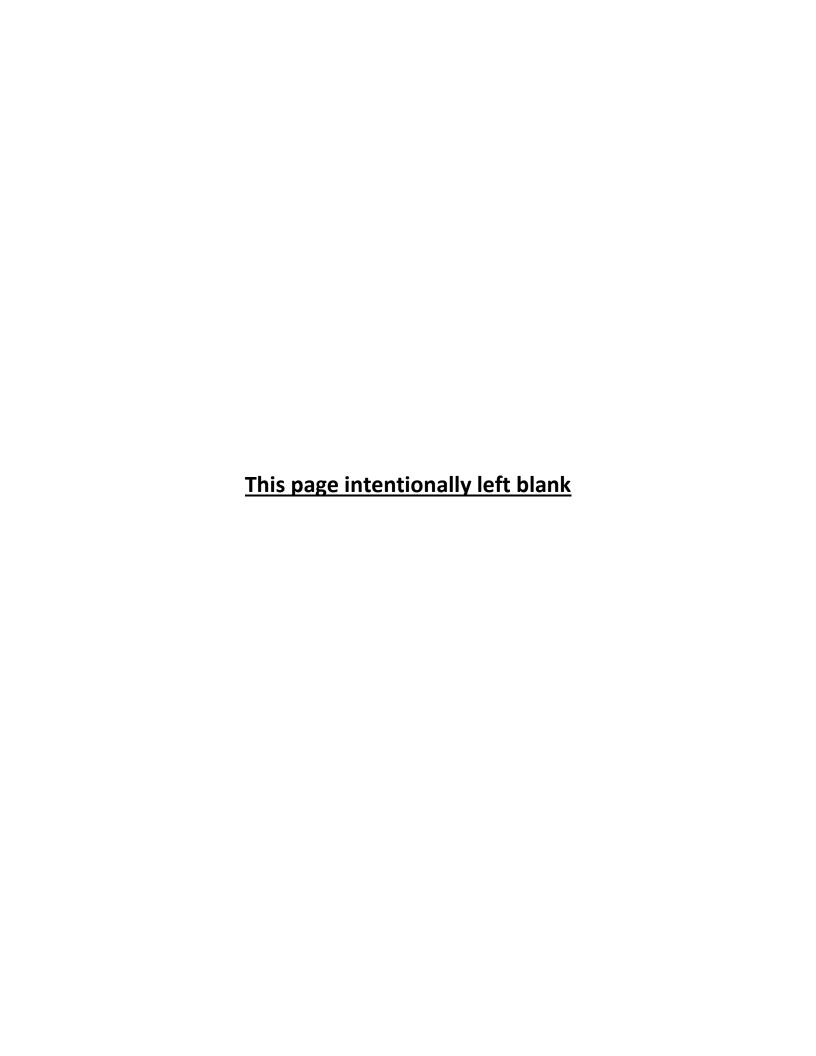
EPA ID Number			OMB#: 2050-0024; Expires 01/31/2017
	I Waste Activity (at your site) o" for all current activities (as of th	e date submitting the	form); complete any additional boxes as instructed.
A. Hazardous Waste	Activities; Complete all parts 1-10.		
	erator of Hazardous Waste es," mark only one of the following	յ – a, b, or c.	Y N 5. Transporter of Hazardous Waste If "Yes," mark all that apply.
☐ a. LO	QG: Generates, in any calendar (2,200 lbs/mo.) or more of h. Generates, in any calendar (accumulates at any time, mo (2.2 lbs/mo) of acute hazard Generates, in any calendar (accumulates at any time, mo (220 lbs/mo) of acute hazard material.	azardous waste; or month, or ore than 1 kg/mo lous waste; or month, or ore than 100 kg/mo	a. Transporter b. Transfer Facility (at your site) Y □ N □ 6. Treater, Storer, or Disposer of Hazardous Waste Note: A hazardous waste Part B permit is required for these activities. Y □ N □ 7. Recycler of Hazardous Waste
☐ b. SC			
_	ESQG: Less than 100 kg/mo (220 lk hazardous waste.		8. Exempt Boiler and/or Industrial Furnace If "Yes," mark all that apply. a. Small Quantity On-site Burner
Y N 2. Short- event a	Term Generator (generate from a shand not from on-going processes). If ation in the Comments section.	ort-term or one-time	Exemption b. Smelting, Melting, and Refining Furnace Exemption
Y N 3. United	d States Importer of Hazardous Wa	ste	Y N 9. Underground Injection Control
Y N 4. Mixed	Waste (hazardous and radioactive) Generator	Y N 10. Receives Hazardous Waste from Off-site
B. Universal Waste A	Activities; Complete all parts 1-2.		C. Used Oil Activities; Complete all parts 1-4.
ac re ty	arge Quantity Handler of Universal ccumulate 5,000 kg or more) [refer egulations to determine what is regones of universal waste managed a lark all that apply.	to your State ulated]. Indicate	Y N 1. Used Oil Transporter If "Yes," mark all that apply. a. Transporter b. Transfer Facility (at your site)
b. c. d. e. f.	Batteries Pesticides Mercury containing equipment Lamps Other (specify) Other (specify) Other (specify)		2. Used Oil Processor and/or Re-refiner If "Yes," mark all that apply. a. Processor b. Re-refiner Y N 3. Off-Specification Used Oil Burner Y N 4. Used Oil Fuel Marketer If "Yes," mark all that apply.
N	estination Facility for Universal Waote: A hazardous waste permit may ctivity.		a. Marketer Who Directs Shipment of Off-Specification Used Oil to Off-Specification Used Oil Burner b. Marketer Who First Claims the Used Oil Meets the Specifications

E	PA ID Nui	mber] [OME	3#: 2050	0-0024	; Expires (01/31/2017
D.	Eligible wastes								Notifi	catio	on fo	or opt	ing in	to or w	ithdra	wing f	rom ma	naging	labor	atory haza	ardous
		ou can (-														
	•	you ar	e at le	ast on ith a c	e of th	ne folle e or u	owing:													mal affiliati ation agree	on ement with
	•	you ha	ve che	ecked	with y	our S	tate to	dete	rmine	if 40	O CF	R Pa	rt 262	Subpar	t K is e	ffective	e in you	r state			
Υ[N																			stes in labo t apply:	oratories
		☐a.	Colle	ge or l	Unive	rsity															
		☐b.	Teach	ning H	lospita	al tha	ıt is ov	wned	by o	r has	s a f	orma	l writt	en affili	ation	agreer	nent wi	th a co	llege	or univers	ity
		C.	Non-p	orofit I	Institu	ite th	at is c	wnec	d by c	or ha	is a	form	al writ	ten affi	liation	agree	ment w	ith a co	ollege	or univer	sity
Υ[N	2. Witl	ndrawi	ng fro	m 40 (CFR I	Part 20	62 Su	ıbpart	K fo	r the	e man	agem	ent of ha	azardo	us was	stes in la	aborato	ries		
11.	Descrip	tion of	Hazar	dous	Waste	е															
Α.		e. List t	hem ir																	astes hand nal page if	
	ориссо																				
В.		us was	tes ha																	Regulated I page if m	
				_			_	_		_	_	_	· <u> </u>			· <u> </u>					

EPA ID Nu	mber													OMB#: 2050-0024; Expires 01/31/2017
12. Notific	ation of Haz	ardous	Seco	ndar	y Mate	erial ((HSM)) Act	ivity					
Y N	secondary	/ materi	al und	ler 40	CFR 2	261.2	?(a)(2))(ii), 4	40 CF	FR 26	61.4(a)(2	23), (24)	, or (25	g, or will stop managing hazardous i)? for Managing Hazardous Secondary
-	Material.													
13. Comm	ents													
accorda on my i informa penaltie	ance with a s nquiry of the tion submitte es for submit	person d is, to ting fals	design or per the be e infor	ed to rsons est of rmatic	assure who m my kno on, incl	e that nanag owled luding	t quali ge the dge a g the p	ified personant in inter- ification in income in inter- ification in income in inter- ification in income	perso tem, elief, ibility	onnel or the true, of fir	properly ose pers accurate nes and	y gather sons dire e, and c impriso	and evectly rescomplete	pared under my direction or supervision in valuate the information submitted. Based sponsible for gathering the information, the e. I am aware that there are significant for knowing violations. For the RCRA CFR 270.10(b) and 270.11).
	of legal own representa		rator,	or a	n	Na	ame a	and (Offic	ial Ti	tle (type	e or prii	nt)	Date Signed (mm/dd/yyyy)
				_			_	_	_	_				

EPA ID Number						1 1		- []	1	1	OMB#: 2050-0024: Ex	oires 01/31/2017
----------------------	--	--	--	--	--	-----	--	------	---	---	---------------------	------------------

ADDENDUM TO THE SITE IDENTIFICATION FORM: NOTIFICATION OF HAZARDOUS SECONDARY MATERIAL ACTIVITY


Addendum Page ____ of____

ONLY fill out this form if:

EPA Form 8700-12, 8700-13 A/B, 8700-23

- You are located in a State that allows you to manage excluded hazardous secondary material (HSM) under 40 CFR 261.2(a)(2)(ii), 261.4(a)(23), (24), or (25) (or state equivalent). See http://www.epa.gov/epawaste/hazard/dsw/statespf.htm for a list of eligible states; AND
- You are or will be managing excluded HSM in compliance with 40 CFR 261.2(a)(2)(ii), 261.4(a)(23), (24), or (25) (or state equivalent) or you have stopped managing excluded HSM in compliance with the exclusion(s) and do not expect to manage any amount of excluded HSM under the exclusion(s) for at least one year. Do not include any information regarding your hazardous waste activities in this section.

1. Indicate reason for notification. Include dates where requested. ☐ Facility will begin managing excluded HSM as of (mm/dd/yyyy).														
Facility will	begin managing excluded HSM as of	(mm/dd/yyyy).												
Facility is s	till managing excluded HSM/re-notifying as r	equired by March 1 of each	even-numbered year.											
Facility has	stopped managing excluded HSM as of	(mm/dd/yyyy) a	and is notifying as required	i.										
. Description of excluded HSM activity. Please list the appropriate codes and quantities in short tons to describe your excluded HSM activity <u>ONLY</u> (do not include any information regarding your hazardous wastes). Use additional pages if more space is needed.														
a. Facility code (answer using codes listed in the Code List section of the instructions)	b. Waste code(s) for HSM	c. Estimated short tons of excluded HSM to be managed annually	d. Actual short tons of excluded HSM that was managed during the most recent odd- numbered year	e. Land-based unit code (answer using codes listed in the Code List section of the instructions)										
	ancial assurance pursuant to 40 CFR 261 cilities managing excluded HSM under 40 CF		urance is required for recl	aimers and										
Y N Does	this facility have financial assurance pursua	ant to 40 CFR 261.4(a)(24)(v	vi)?											

EPA ID Number

	Н	ΑZ	ZAI	RE										tion Agen	cy ION FORM				
Facility Permit Contact	F	irst	Nar	ne:	Dav	⁄id						MI:E	. Last	: Name: Kitt	S				
	C	ont	act	Title	e:VF	P-En	viror	mer	it-Ma	nnir	ngtor	n Mills,	Inc.						
	P	hor	ne:8	56-	339	-58	71						Ext.: N/A		Email:dave_kitts@mannington.com				
2. Facility Permit Contact Mailing	S	tree	et o	r P.0	Э. В	ox:	Con	dum	ex, I	nc	900	Avenu	e South						
Address	С	ity,	Tov	vn,	or V	/illa	ge:	Grai	nd F	Prai	rie								
	s	tate	:Te	exas	3														
	С	our	ntry	:US	SA									Zip Code: 75050-1133					
3. Operator Mailing Address and Tolophone Number														Rd.					
Telephone Number	Address and																		
	S	tate	: Ne	w .	Jers	Phone:	856-339-5871												
Country: USA Zip Code: 08079															e: 08079				
Country: USA 4. Facility Existence Date Country: USA Zip Code: 08079 Facility Existence Date (mm/dd/yyyy): mid-50's																			
Date Facility Existence Date (mm/dd/yyyy): mid-50's 5. Other Environmental Permits																			
A. Facility Type (Enter code)	A. Facility Type B. Bormit Number														C. Description				
R	N	С	D	9	8	6	1	8	1	4	5		RCRA	Part A Per	mit				
N	Ν	С	0	0	0	6	4	5	9				Former	Wastewa	ter Discharge to Rats Springs Branch				
Р	5	4	0	8	R	5							Former	Air Permit	V				
E													POTW						
=																			
101-11-11-11																			
						О													
111 2111																			
								100											
6. Nature of Business:	Tile	ma	anu	fact	urin	g o	per	atio	ns c	eas	sed	opera	ations in 19	999.					

7. Process Codes and Design Capacities - Enter information in the Section on Form Page 3

- A. <u>PROCESS CODE</u> Enter the code from the list of process codes below that best describes each process to be used at the facility. If more lines are needed, attach a separate sheet of paper with the additional information. For "other" processes (i.e., D99, S99, T04 and X99), describe the process (including its design capacity) in the space provided in Item 8.
- B. PROCESS DESIGN CAPACITY For each code entered in Item 7.A; enter the capacity of the process.
 - 1. <u>AMOUNT</u> Enter the amount. In a case where design capacity is not applicable (such as in a closure/post-closure or enforcement action) enter the total amount of waste for that process.
 - 2. <u>UNIT OF MEASURE</u> For each amount entered in Item 7.B(1), enter the code in Item 7.B(2) from the list of unit of measure codes below that describes the unit of measure used. Select only from the units of measure in this list.
- C. PROCESS TOTAL NUMBER OF UNITS Enter the total number of units for each corresponding process code.

Process Code			te Unit of Measure for s Design Capacity	Process Code	Proces		Appropriate Unit of Measure for Process Design Capacity				
					eatment (Continu	ıed)	(for T81 – T94)				
D79	Underground Injection Well Disposal	Liters Per D	•	T81	Cement Kiln		Gallons Per Day; Liters Per Day; Pounds Per Hour; Short Tons Per Hour;				
D80	Landfill		ectares-meter; Acres; s; Hectares; Cubic	T82	Lime Kiln		Kilograms Per Hour; Metric Tons Per Day; Metric Tons Per Hour; Short Tons Per Day; BTU Per Hour; Liters Per Hour;				
D81	Land Treatment	Acres or He	ctares	T83	Aggregate Kiln		Kilograms Per Hour; or Million BTU Per Hour				
D82	Ocean Disposal	Gallons Per	Day or Liters Per Day	T84	Phosphate Kiln		Tioui				
D83	Surface Impoundment Disposal	Gallons; Lite Cubic Yards	ers; Cubic Meters; or	T85	Coke Oven						
D99	Other Disposal	Any Unit of	Measure Listed Below	T86	Blast Furnace						
	Sto	rage		T87	Smelting, Meltin	g, or Refining	ning Furnace				
S01	Container	Cubic Yards		T88	Titanium Dioxide	e Chloride Ox	kidation Reactor				
S02	Tank Storage	Gallons; Lite Cubic Yards	ers; Cubic Meters; or	T89	Methane Reform	•					
S03	Waste Pile		or Cubic Meters	T90	Pulping Liquor F	Recovery Furi	nace				
S04	Surface Impoundment	Cubic Yards		T91	Combustion Dev Sulfuric Acid	vice Used in t	the Recovery of Sulfur Values from Spent				
S05	Drip Pad	Hectares; or	ers; Cubic Meters; Cubic Yards	T92	Halogen Acid Fu	urnaces					
S06	Containment Building Storage	Cubic Yards	or Cubic Meters	T93	Other Industrial	Furnaces Lis	Listed in 40 CFR 260.10				
S99	Other Storage	Any Unit of	Measure Listed Below	T94	Containment Bu Treatment	ilding	Cubic Yards; Cubic Meters; Short Tons Per Hour; Gallons Per Hour; Liters Per				
	Trea	tment					Hour; BTU Per Hour; Pounds Per Hour;				
T01 T02	Tank Treatment Surface Impoundment		Day; Liters Per Day Day; Liters Per Day				Short Tons Per Day; Kilograms Per Hour; Metric Tons Per Day; Gallons Per Day; Liters Per Day; Metric Tons Per Hour; or Million BTU Per Hour				
T00		OL . T				Miscellaneo	ous (Subpart X)				
T03	Incinerator	Per Hour; G Per Hour; B' Per Hour; S	Per Hour; Metric Tons allons Per Hour; Liters TUs Per Hour; Pounds nort Tons Per Day;	X01	Open Burning/O Detonation		Any Unit of Measure Listed Below				
T04	Other Treatment	Day; Metric Million BTU	er Hour; Gallons Per Tons Per Hour; or Per Hour Day; Liters Per Day;	X02	Mechanical Prod	cessing	Short Tons Per Hour; Metric Tons Per Hour; Short Tons Per Day; Metric Tons Per Day; Pounds Per Hour; Kilograms Per Hour; Gallons Per Hour; Liters Per				
104	Carol Hoddinent	Pounds Per Hour; Kilogr Tons Per Da BTUs Per H	Hour; Short Tons Per ams Per Hour; Metric ay; Short Tons Per Day; our; Gallons Per Day; our; or Million BTU Per	X03	Thermal Unit		Hour; or Gallons Per Day Gallons Per Day; Liters Per Day; Pounds Per Hour; Short Tons Per Hour; Kilograms Per Hour; Metric Tons Per Day; Metric Tons Per Hour; Short Tons Per Day; BTU Per Hour; or Million BTU				
T80	Boiler		ers; Gallons Per Hour; our; BTUs Per Hour; or Per Hour	X04	Geologic Repos	itory	Per Hour Cubic Yards; Cubic Meters; Acre-feet; Hectare-meter; Gallons; or Liters				
				X99	Other Subpart X		Any Unit of Measure Listed Below				
Unit of Me	easure Unit of Me	asure Code	Unit of Measure		Measure Code	Unit of Mea	asure Unit of Measure Code				
Gallons		G	Short Tons Per Hour		D	Cubic Yard	lsY				
	er Hour		Short Tons Per Day				ersC				
	er Day		Metric Tons Per Hour Metric Tons Per Day				B A				
	Hour		Pounds Per Hour				Q				
	Day		Kilograms Per Hour				eterF				
			Million BTU Per Hour.			BTU Per He	ourl				

EPA	A ID Nu	ımber	Ĺ				OMB#: 2050-0	0024; 1	Expir	es 01	/31/2	2017			
7. I	Proces	s Cod	es an	d Des	ign Capacities (Continued)										
Е	XAMPL	E FOR	COMF	PLETIN	G Item 7 (shown in line number X-1 below): A fa	acility has a storage t	ank, which can hold 5	33.788	gallo	ns.					
	ine	A.	Proc. Code		B. PROCESS DESIGN CAPAC	ITY	C. Process Total		or Of	ficial	Use	Only			
Nu	mber	(Fro	m list a		(1) Amount (Specify)	(2) Unit of Measure	Number of Units					· · · · ·			
X	1	S	0	2	533.788	G	001								
	1														
	2														
	3														
	4														
	5														
	6														
	7														
	8														
	9														
1	0														
1	1														
1	2														
	3														
1															
No	te: If y	ou ne e line	ed to sequ	list me entiall	ore than 13 process codes, attach an addit y, taking into account any lines that will be	ional sheet(s) with e used for "other" p	the information in porocess (i.e., D99, S	the sa 99, T0	me fo 04, ar	orma nd X9	t as 19) in	abov Iten	/e. 1 8.		
No: Nun	te: If y	e line	sequ	entiall	ore than 13 process codes, attach an addit y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0	e used for "other" p	process (i.e., D99, S	the sa 99, TO	me fo	orma nd X9	et as 19) in	abov Iten	/e. 1 8.		
No: Nun 8.	te: If ynber th	e line Proce	seque sses	entiall (Follo	y, taking into account any lines that will be	e used for "other" p	orocess (i.e., D99, S s codes)	the sa 99, T0	me fo	orma od X9	et as 19) in	abov Iten	/e. n 8.		
Non Num 8. L Nu (Ent	te: If ynber th	Proce A. Pr	sequ	entiali (Follo	y, taking into account any lines that will be with instructions from Item 7 for D99, S99, T0	e used for "other" p	process (i.e., D99, S	99, TO	me fo	d X9	99) in	Iten	n 8.		
Non Num 8. L Nu (Ent	te: If ynber the Other ine mber er #s in uence	Proce A. Pr	seque	entiali (Follo	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY	e used for "other" p 4, and X99 process (2) Unit of	codes) C. Process Total	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y nber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		
No. Num 8. L Nu (Ent seq with	te: If y hber th Other ine mber er #s in uence ltem 7)	Proce A. Pr	seque sses (cocess m list a	(Followard) Code (bove)	y, taking into account any lines that will be w instructions from Item 7 for D99, S99, T0 B. PROCESS DESIGN CAPACITY (1) Amount (Specify)	4, and X99 process (2) Unit of Measure	crocess (i.e., D99, S s codes) C. Process Total Number of Units	99, TO)4, ar	d X9	99) in	Iten	n 8.		

9. Description of Hazardous Wastes - Enter Information in the Sections on Form Page 5

- A. EPA HAZARDOUS WASTE NUMBER Enter the four-digit number from 40 CFR, Part 261 Subpart D of each listed hazardous waste you will handle. For hazardous wastes which are not listed in 40 CFR, Part 261 Subpart D, enter the four-digit number(s) from 40 CFR Part 261, Subpart C that describes the characteristics and/or the toxic contaminants of those hazardous wastes.
- B. ESTIMATED ANNUAL QUANTITY For each listed waste entered in Item 9.A, estimate the quantity of that waste that will be handled on an annual basis. For each characteristic or toxic contaminant entered in Item 9.A, estimate the total annual quantity of all the non-listed waste(s) that will be handled which possess that characteristic or contaminant.
- C. UNIT OF MEASURE For each quantity entered in Item 9.B, enter the unit of measure code. Units of measure which must be used and the appropriate codes are:

ENGLISH UNIT OF MEASURE	CODE	METRIC UNIT OF MEASURE	CODE
POUNDS	Р	KILOGRAMS	K
TONS	Т	METRIC TONS	М

If facility records use any other unit of measure for quantity, the units of measure must be converted into one of the required units of measure, taking into account the appropriate density or specific gravity of the waste.

D. PROCESSES

1. PROCESS CODES:

For listed hazardous waste: For each listed hazardous waste entered in Item 9.A, select the code(s) from the list of process codes contained in Items 7.A and 8.A on page 3 to indicate all the processes that will be used to store, treat, and/or dispose of all listed hazardous wastes.

For non-listed waste: For each characteristic or toxic contaminant entered in Item 9.A, select the code(s) from the list of process codes contained in Items 7.A and 8.A on page 3 to indicate all the processes that will be used to store, treat, and/or dispose of all the non-listed hazardous wastes that possess that characteristic or toxic contaminant.

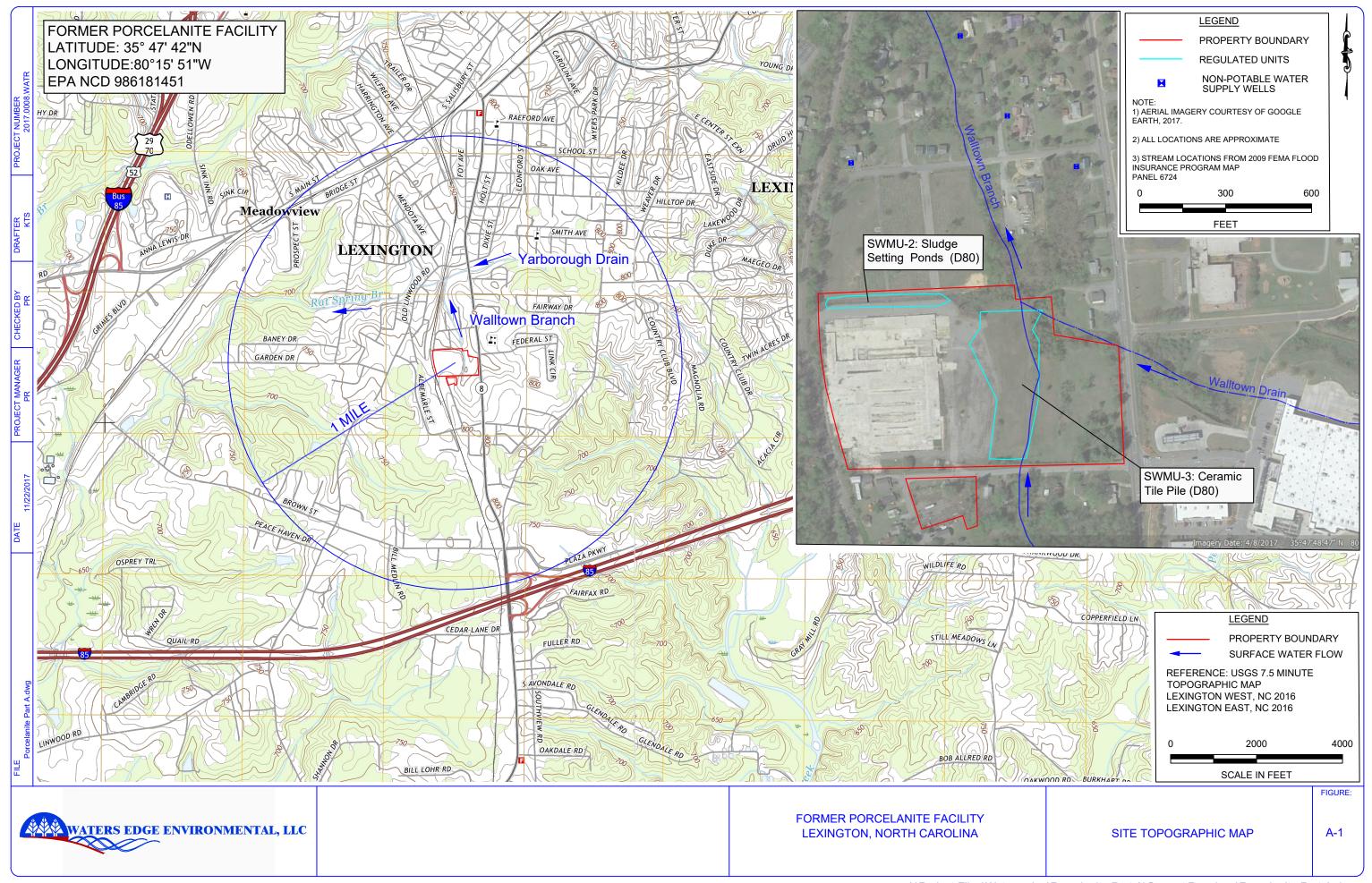
NOTE: THREE SPACES ARE PROVIDED FOR ENTERING PROCESS CODES. IF MORE ARE NEEDED:

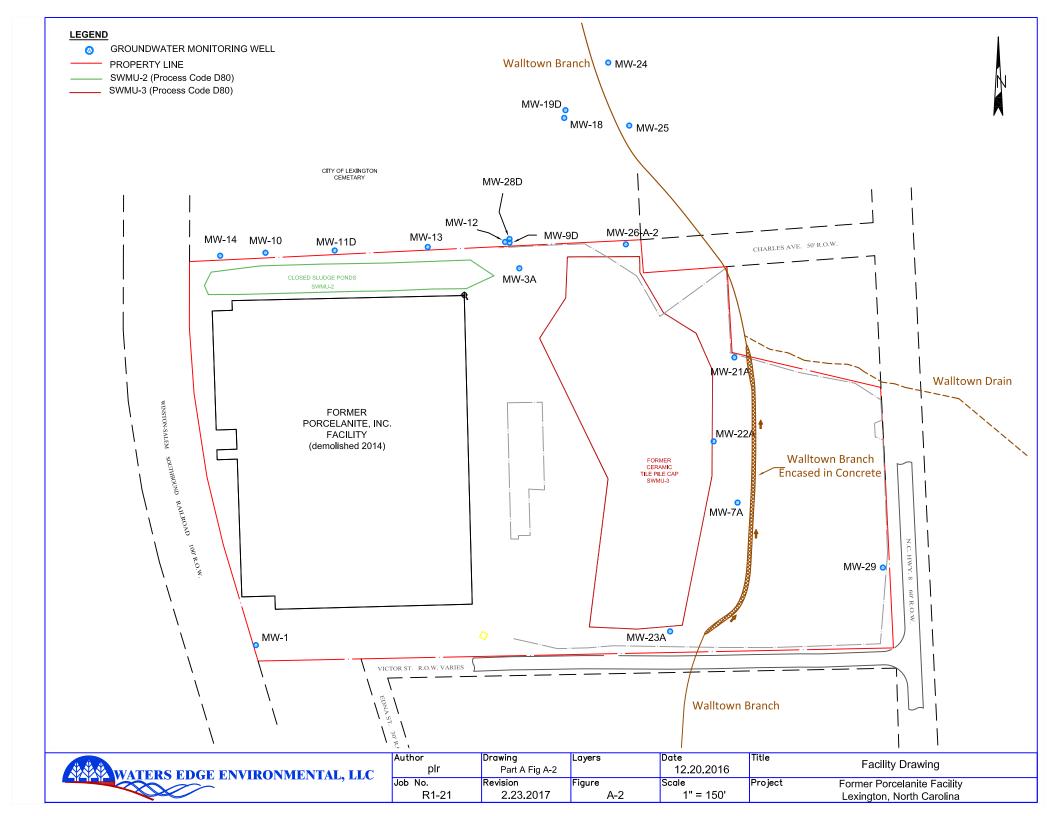
- 1. Enter the first two as described above.
- 2. Enter "000" in the extreme right box of Item 9.D(1).
- 3. Use additional sheet, enter line number from previous sheet, and enter additional code(s) in Item 9.E.
- 2. PROCESS DESCRIPTION: If code is not listed for a process that will be used, describe the process in Item 9.D(2) or in Item 9.E(2).

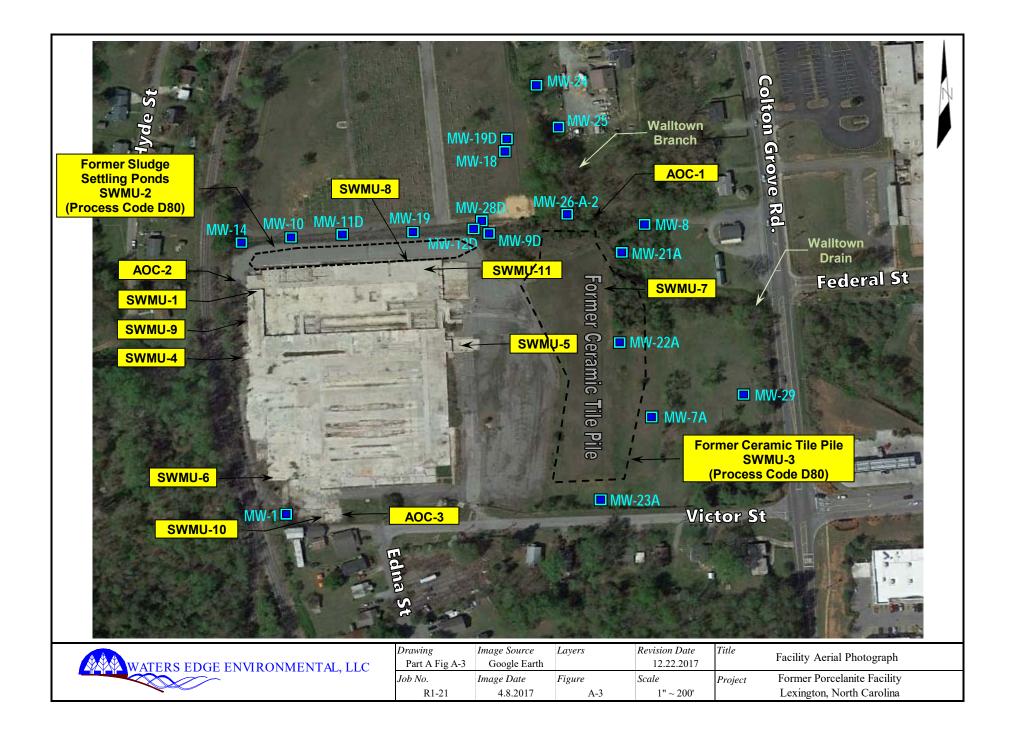
NOTE: HAZARDOUS WASTES DESCRIBED BY MORE THAN ONE EPA HAZARDOUS WASTE NUMBER – Hazardous wastes that can be described by more than one EPA Hazardous Waste Number shall be described on the form as follows:

- Select one of the EPA Hazardous Waste Numbers and enter it in Item 9.A. On the same line complete Items 9.B, 9.C, and 9.D by estimating the total annual quantity of the waste and describing all the processes to be used to store, treat, and/or dispose of the waste.
- 2. In Item 9.A of the next line enter the other EPA Hazardous Waste Number that can be used to describe the waste. In Item 9.D.2 on that line enter "included with above" and make no other entries on that line.
- 3. Repeat step 2 for each EPA Hazardous Waste Number that can be used to describe the hazardous waste.

EXAMPLE FOR COMPLETING Item 9 (shown in line numbers X-1, X-2, X-3, and X-4 below) – A facility will treat and dispose of an estimated 900 pounds per year of chrome shavings from leather tanning and finishing operations. In addition, the facility will treat and dispose of three non-listed wastes. Two wastes are corrosive only and there will be an estimated 200 pounds per year of each waste. The other waste is corrosive and ignitable and there will be an estimated 100 pounds per year of that waste. Treatment will be in an incinerator and disposal will be in a landfill.


Li	ne	A. EPA Hazardous Waste No.			lous	B. Estimated Annual	C. Unit of Measure							D.	PRO	CESS	ES
Nun	nber	(Enter			Qty of Waste	(Enter code)	(1) PROCESS CODES (Enter Code)									(2) PROCESS DESCRIPTION (If code is not entered in 9.D(1))
Х	1	K	0	5	4	900	Р	Т	0	3	D	8	0				
Х	2	D	0	0	2	400	Р	Т	0	3	D	8	0				
Х	3	D	0	0	1	100	Р	Т	0	3	D	8	0				
Х	4	D	0	0	2												Included With Above


	•	EPA H	lazard	B. Estimated	C. Unit of								PRO	
Line N	Number	Wast	te No. code)	Annual Qty of Waste	Measure (Enter code)		(1) P	ROCI	ESS (CODE	S (Eı	nter C	ode)	(2) PROCESS DESCRIPTION (If code is not entered in 9.D(1))
	1													
	2													
	3													
	4													
	5													
	6													
	7													
	8													
	9													
1	0													
1	1													
1	2													
1	3													
1	4													
1	5													
1	6													
1	7													
1	8													
1	9													
2	0													
2	1													
2	2													
2	3													
2	4													
2	5													
2	6													
2	7													
2	8													
2	9													
3	0													
3	1													
3	2													
3	3													
3	4													
3	5													
3	6													
						•								


EPA	ID Num	ber																	Ol	MB#	: 205	0-0024; Expires 01/31/2017
9. D	escript	ion o	f Haz	ardou	ıs Wa	stes	(Coi	ntinued	d. U	lse a	ddit	iona	al sh	eet(s) as i	песе	ssar	y; nı	ımbe	r paç	ges a	ns 5a, etc.)
			EPA H	lazard			Estir	nated		C. U	nit of	f									CESS	
Line Number		Waste No. (Enter code)				Annual Qty of Waste			Measure (Enter code)		(1) PROCESS CODES (Enter Code)									(2) PROCESS DESCRIPTION (If code is not entered in 9.D.1)		

EPA	ID Number OMB#: 2050-0024; Expires 01/31/2017
10	Мар
10.	Attach to this application a topographical map, or other equivalent map, of the area extending to at least one mile beyond property boundaries. The map must show the outline of the facility, the location of each of its existing intake and discharge structures, each of its hazardous waste treatment, storage, or disposal facilities, and each well where it injects fluids underground. Include all spring, rivers, and other surface water bodies in this map area. See instructions for precise requirements.
11.	Facility Drawing
	All existing facilities must include a scale drawing of the facility (see instructions for more detail).
12.	Photographs
	All existing facilities must include photographs (aerial or ground-level) that clearly delineate all existing structures; existing storage, treatment, and disposal areas; and sites of future storage, treatment, or disposal areas (see instructions for more detail).
13.	Comments

Part A Figures

Part A Appendices

Appendix A-1 SWMU Photodocumentaion

SWMU-1 Area Viewing North

SWMU-2 and SWMU-8 Area Viewing West

SWMU-3 Viewing East

SWMU-4 Area Viewing Northwest

SWMU-5 Area Viewing West with Empty 55-gallon Drums used for Groundwater Monitoring

SWMU-6 Viewing Northwest

SWMU-7 Viewing Northeast

SWMU-9 Area Viewing North

SWMU-10 and AOC-3 Area Viewing West

SWMU-11 Area Viewing West

AOC-1 Viewing North

AOC-2 Viewing Northwest

Appendix A-2 1993 Survey Plat and Condumex Warranty Deed

FILED 31.
F. S. 39 AH'79

Plat Book 17 Page 31

WINSTON SALEM SOUTHBOUND RAILROAD 100' R/W 127.22 S4-04E 100.23 S0-10W 99.81 Title References Corners a - 0
DB. 328 PGS.532 - 33
DB. 351 PG. 18
DB. 351 PG. 21
DB. 317 PG. 262
DB. 477 PG. 684 EDNA STREET Title Ref. 1-6 DB.-550 30' R/W PG.-965 0.85 Ac. 12.35 Acres LOT 83 PB. 4 PG. 52 SB8-53 STREET Title Reference PB.4 PG.52 'A' To 'H' DB.565 PG.752 3.31 Acres N 4 - 31 W→ 131.53 LOT 30 PB.4 PG. 52 LOTS PB.9 PG.28 LOTS PB.9 PG. 28 -- To New Interstate 85 254.5 NI-42W-N 2-44 W-+ 60' N.C. HIGHWAY Nº 8 60' To Lexington →

PLAT OF PROPERTY
SURVEYED for MID-STATE TILE CO., INC.
Lexington TWSP - Davidson County
Scale I" = 100'

Surveyed in August, 1979 by J. S. McNeill and Associates
Platted in September, 1979 by B. B. T.

Registered Surveyor
Nº L580

NORTH CAROLINA DAVIDSON COUNTY

I, J.S. McNEILL, REGISTERED SURVEYOR, DO HEREBY
CERTIFY THAT THIS MAP WAS DRAWN FROM AN ACTUAL
SURVEY MADE BY ME, FROM DEED DESCRIPTION AS
SHOWN HEREON: THAT THE ERROR OF CLOSURE AS
CALCULATED BY D.M.D. WAS I-10,000† THAT THIS MAP
WAS DRAWN IN ACCORDANCE WITH G.S. 4730 AS AMENDED

(S. M. neice)
REGISTERED SURVEYOR

I, THE UNDERSIGNED, NOTARY PUBLIC DO HEREBY CERTIFY THAT J.S. McNEILL, REGISTERED SURVEYOR, PERSONALLY APPEARED BEFORE ME THIS DAY AND ACKNOWLEDGED THE FOREGOING AFFIDAVIT.

THIS 28 DAY OF September 1979.

NOTARY PUBLIC Y COMMISSION EXPRES

31

North Caroling-Desire in County
The foregoing (or annexed) certificate of
Sue W. Tew - Notary
Richmond County, NC
is certified to be correct
day of Nov. A. D. 1979
Beald W. Callicutt, Register of Deeds
Signal County
Bush

FILED DAVIDSON COUNTY, NC DAVID T. RICKARD, REGISTER OF DEEDS 11/24/2009 9:13:33 AM BOOK 1950 PAGE 1118 - 1122 INSTRUMENT #2009000058124

Recording: \$24.00 Verification: \$2.00 Excise Tax: \$0.00 CR Fee: \$5.00 Deputy: SKEPLEY

NORTH CAROLINA GENERAL WARRANTY DEED

Excise Tax: NTC

Prepared by and mail after recording to: Jean C. Brooks, Esq. Brooks, Pierce, McLendon, Humphrey & Leonard, L.L.P., PO Box 26000, Greensboro, NC 27420 (No title examination was performed in connection with preparation of this Deed.)

THIS GENERAL WARRANTY DEED, made and entered into as of the day of November, 2009 by and between

Grantor	Grantee
PORCELANITE, INC., a North Carolina corporation 2590 114 th Street Grand Prairie, TX 75050	CONDUMEX, INCORPORATED 2590 114 th Street Grand Prairie, TX 75050

The designations Grantor and Grantee as used herein shall include such parties, their heirs, successors and assigns, and shall include singular, plural, masculine, feminine or neuter, as required by context.

WITNESSETH, that the Grantor, for a valuable consideration paid by the Grantee, the receipt of which is hereby acknowledged, has and by these presents does grant, bargain, sell and convey to the Grantee in fee simple all of those certain lots or parcels (as listed) of land situated in the City of Lexington, Davidson County, North Carolina and more particularly described on Exhibit A, attached hereto and incorporated herein by reference.

The parcels described herein were acquired by Grantor by the instruments referenced on Exhibit A.

TO HAVE AND TO HOLD unto the Grantee, and unto its heirs, successors and assigns, in fee simple forever, the above described real estate, together with the improvements thereon, and the hereditaments and appurtenances thereunto appertaining.

AND THE GRANTOR HEREBY COVENANTS with the Grantee, and with its heirs, successors and assigns, that Grantor is seized of the premises in fee simple, has the right to convey the same in fee simple, that title is marketable and free and clear of all encumbrances, and that Grantor will warrant and defend the title against the lawful claims of all persons whomsoever, except for the following exceptions:

Easements, restrictions, and rights of way of record, if any, and ad valorem taxes for the current year.

IN WITNESS WHEREOF, Grantor has hereunto set his hand and seal, or if corporate, has caused this instrument to be signed in its corporate name by its duly authorized officer, the day and year first above written.

PORCELANITE, INC., a North Carolina corporation

By:

Josq	President	
Alejandro	Sanchez	President
Rotard	Rotard	Rotard
Rotard	Rotard	Rot

June 21, 2013

Exhibit A

Parcel 1

BEING Lot Nos. 60, 61, 62, 63, 64, 65, 66, 67, 68 and 69 of Littleville as shown on a map recorded in Plat Book 4 at page 52 in the Office of the Register of Deeds for Davidson County, North Carolina.

For further reference, see Deed Book 283, page 92, page 90, and page 88; Deed Book 203, page 536; Deed Book 200, page 56; Deed Book 199, page 485; Deed Book 169, page 409; and Deed Book 289, page 131, in the Office of the Register of Deeds for Davidson County, North Carolina.

Parcel 2

BEGINNING at an iron stake, corner to the Littleville subdivision property on the east right-of-way of the Southbound Railroad; thence with (4) calls and distances on the East right-of-way of said railroad North 16 degrees 17' West 139.1 feet; thence North 14 degrees 27' West 100 feet; thence North 11 degrees 28' West 65 feet; North 8 degrees 56' West 60.4 feet to an iron stake, corner to Lexington's colored cemetery property on the East right-of-way of Southbound Railroad; thence with the line of said cemetery property and C. U. G. Biesecker Estates property South 86 degrees 29' East 654.5 feet to an iron stake, new corner to Davis in Biesecker line; thence with new line to Davis South 6 degrees 44' West 310.4 feet to an iron stake on the north side of Victor Street, a new corner to Davis; thence with the north side of Victor Street 375 feet to an iron stake where the north side of Victor Street intersects the West side of Edna Street, corner to Littleville property; thence with the Littleville property line South 89 degrees 16" West 155.8 feet to an iron stake, point of beginning.

See Deed Book 284, Page 593.

Parcel 3

BEGINNING at an old iron stake on the western right-of-way of N. C. Highway No. 8 (30 feet west of center line), said stake being the southeast corner of the original Lena Koonts lot, as recorded in the Office of the Register of Deeds for Davidson County in Book 210, Page 327, said stake also being designated as Corner "O" of the Mid-State Tile Company land as recorded in the Office of the Register of Deeds for Davidson County in Plat Book 17, Page 31; thence runs with Mid-State Tile Company's line and the original southern line of the Lena Koonts lot, North 86 degrees 33' West 256 feet to an old iron stake and being designated as Corner "N" of the Mid-State Tile Company land above referred to; thence runs with the original line, North 22 degrees 07' East 25 feet to Corner "M" on said plat; thence runs with the original line, North 5 degrees 15' West 61 feet to the southwest corner of William R. Koonts and wife, Margaret L. Koonts, lot, as recorded in the Office of the Register of Deeds for Davidson County in Book 290, Page 523; thence runs with the southern line of said lot, South 85 degrees 27' East 248.69 feet to an iron stake on the western right-of-way of N. C. Highway No. 8, said stake being the southeast corner of William R. Koonts' lot above referred to; thence runs with the western right-of-way of N. C. Highway No. 8, South 2 degrees 44' East 79.7 feet to the beginning containing 0.46 of an acre, more or less.

The above-described parcel of land is comprised of a southern portion of Tract Number 7 of the C. U. G. Biesecker Division, as recorded in Plat Book 7, Page 83, of the Davidson County Registry.

See Book 577, Page 76.

Parcel 4

COMMENCING at an existing iron pipe at the intersection of the Western right-of-way: of NC Highway 8 and the Northern right-of-way of Charles Avenue (street unopened); THENCE with the Western right-of-way of NC Highway 8 South 03° 07' 02" East 241.22 feet to a new iron pipe, said iron being the POINT AND PLACE OF BEGINNING; THENCE with the Western right-of-way of NC Highway 8 South 03° 07' 02" East 80.90 feet to a new iron pipe; THENCE with Mid-State Tile Company's line as described in Deed Book 595 at Page 870 North 85° 26' 00" West 247.87 feet to a new iron pipe; THENCE with Mid-State Tile Company's line as described in Deed Book 351 at Page 21 North 05° 17' 38" West crossing an existing iron pipe at 11.60 feet and continuing an additional 96.96 feet for a total distance of 108.56 feet to an existing iron pipe; THENCE with Mid-State Tile Company's line as described in Deed Book 351 at Page 21 and Warren J. Koonts' line as described in Deed Book 410 at Page 43 and Deed Book 583 at Page 692 South 79° 27' 08" East 257.05 feet to a new iron pipe on the Western right-of-way of NC Highway 8, said iron being the POINT AND PLACE OF BEGINNING and containing 0.536 acres more or less as shown on a map of survey by Mitcham & Associates, P.A., Job No. 902665L, dated 03/28/90.

This description contains property described in Deed Book 290 at Page 523 and Deed Book 595 at Page 931. This property is also a portion of lot 7, Plat Book 7 at Page 83.

Parcel 5

BEGINNING at an iron stake on the west side of State Highway #8 and running thence with the west side of Highway S. 2 deg. 15' E. 255 ft. to an iron stake on the west side Highway and north side of Street; thence with the north side of Street S. 88 deg. 30' W. 975 ft. to an iron stake on the North side of Street and on the right-of-way of the Winston-Salem S. B.Ry. Co.; thence with the right-of-way N. 17 deg. 05' W 165 ft. to a stake on the right-of-way; thence with the right-of-way again 200 ft. to an iron stake on the Biesecker line; thence with the said line about S. 86 deg. E. 800 ft. to an iron stake on branch the Koonts' corner; thence with the branch about S. 25 ft. to a stake in the branch; thence about S. 86 deg. E. 275 ft. to the beginning, containing 6.52 acres more or less. See also Deed Book 134, page 617, in Office of the Register of Deeds for Davidson County, NC.

Parcel 6

BEING one-half undivided interest in Lot Nos. 66, 67, 68, 69 and 70 of the C. U. G. Biesecker Estate as recorded in Plat Book 9, page 28, in the Office of the Register of Deeds of Davidson County.

Parcel 7

BEGINNING at the North West corner of Lot No. 64 as shown by map on record in the Register of Deeds Office of Davidson County in Plat Book 8, page 57; thence S. 85° 05' W 690 feet, more

or less, to the Winston-Salem Southbound Railroad right-of-way; thence South with said right-of-way as it curves 225 feet, more or less, to corner of Mid-State Tile company and the Winston-Salem Southbound Railroad right-of-way; thence S. 86° 55' E. 646.6 feet, more or less, to the South West corner of Lot No. 70 as shown by Plat Book 8, page 57; thence N. 4° 55' W. 319.2 feet, more or less to the beginning, containing 4.34 acres, more or less.

Subject to R.E.A. right-of-way over the Southeast corner of the tract above described.

Part B Facility Description

$\label{eq:partB} \textbf{Part B} - \textbf{Facility Description}$

Table of Contents

B-1 General Description	1
B-1-1 Site Location and Boundary Features	1
B-1-2 RCRA Related History of the Facility	1
B-1-2-1 Part B Permit	5
B-1-2-2 Solid Waste Management Units	5
B-1-3 Current Site Operation	6
B-1-4 Description of Regulated Units	6
B-1-4-1 Two Closed Sludge Settling Ponds (SWMU-2)	6
B-1-4-2 Closed Waste Ceramic Tile Pile (SWMU-3)	7
B-2 Topographic Map B-2a General Requirements B2-b Additional Topographic Requirements for Land Storage, Treatment and Disposal Facilities	8 8 d
B-3 Traffic Information	9
B-4 Location Information	9
B-4a Seismic Considerations	9
B-4a Seismic Considerations B-4b Floodplain Standard	9 10
B-4a Seismic ConsiderationsB-4b Floodplain StandardB-4b (1) Demonstration of Compliance	9 10 10
 B-4a Seismic Considerations B-4b Floodplain Standard B-4b (1) Demonstration of Compliance B-4b (2) Plan for Future Compliance with Floodplain Standard 	9 10 10 10
B-4a Seismic ConsiderationsB-4b Floodplain StandardB-4b (1) Demonstration of Compliance	9 10 10
 B-4a Seismic Considerations B-4b Floodplain Standard B-4b (1) Demonstration of Compliance B-4b (2) Plan for Future Compliance with Floodplain Standard B-4b (3) Waiver for Land Storage and Disposal Facilities 	9 10 10 10 11

Figures

- B-1 Project Location Map
- B-2 1,000-Foot Radius Facility Location Map
- B-3 SWMU-2 and SWMU-3 Location Map
- B-4 SWMU and AOC Location Map

Table

B-1 SWMU/AOC Identification and Past and Current Status

Appendices

- B-1 Booz Allen 2005 RFA (completed on April 29, 2004 and submitted on February 16, 2005)
- B-2 FEMA FIRM Flood Map
- B-3 Documentation of Correspondence in accordance with NCAC 13A .0113(c)(3), and .0113(c)(5)

Acronym List

ACL Alternative Concentration Limits

AOC Area of Concern

AQI Air Quality Index

BGS below ground surface

BDL below detection limits

BQL below quantitation limits

°C Celsius

COCs Constituents of Concern

DAQ Division of Air Quality

DWM Division of Waste Management

EP Extraction Procedure

Ft/ft Foot per foot

HWMU Hazardous Waste Management Unit

HWS Hazardous Waste Section

Mannington Mannington Ceramic Tile

mg/kg milligrams per kilogram or parts per million

NC North Carolina

NCDCPCA, NHP North Carolina Division of Conservation, Planning, and

Community Affairs, Natural Heritage Program

NCDEHNR North Carolina Department of Environment, Health and Natural

Resources

NCDENR North Carolina Department of Environment and Natural Resources

NCDEQ North Carolina Department of Environmental Quality (formerly

NCDENR, and renamed effective September 18, 2015)

NCDEQ, DWM, HWS North Carolina Department of Environmental Quality

Division of Waste Management, Hazardous Waste Section

NCDFR North Carolina Division of Forest Resources

NCGS North Carolina Groundwater Standards

NCDWR North Carolina Division of Water Resources

NCDNCR North Carolina Department of Natural and Cultural Resources

NPS National Park Service

Porcelanite Porcelanite, Inc.

PVC Polyvinyl Chloride

RCP reinforced concrete pipe

RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment

SAP Sampling and Analysis Plan

SIC Standard Industrial Classification

SVOC Semivolatile Organic Compound

SWMU Solid Waste Management Units

TCLP Toxicity Characteristic Leaching Procedure

USACE United States Army Corps of Engineers

USEPA United States Environmental Protection Agency

USFWS United States Fish & Wildlife Service

VOC Volatile Organic Compound

VSI Visual Site Inspection

Waters Edge Environmental, LLC

Part B – Facility Description

B-1 General Description

B-1-1 Site Location and Boundary Features

From the mid-1950's until the end of 1983, Mid-State Tile operated a ceramic tile manufacturing facility in Lexington, Davidson County, North Carolina (the "Facility") (see Figures B-1 and B-2). Prior to use by Mid-State Tile, the property was undeveloped, forested land. In 1984 Mannington Ceramic Tile, Inc. acquired Mid-State Tile and began operations at the Facility. In 1994, Porcelanite, Inc. purchased the Facility by acquiring all the stock of Mannington Ceramic Tile, Inc. from Mannington Mills of Delaware, Inc. (now known as Maneto, Inc. ["Mannington"]) and changing the corporate name from Mannington Ceramic Tile, Inc. to P&M Tile, Inc. Porcelanite commenced operation of the Facility shortly thereafter. In 1999, manufacturing operations ceased. Porcelanite, Inc. executed a General Warranty Deed of the property transferring ownership to Condumex, Incorporated on November 16, 2009. The deed was recorded with the Davidson County Register of Deeds on November 11, 2009 which is included in Appendix A-2. In 2014, all buildings on the site were demolished. The site is referenced as the Former Porcelanite Facility.

The Facility is located at 20 Victor Street, in Lexington, Davidson County, North Carolina, approximately 1 mile north of Interstate 85. The Tax Assessor's Parcel Number (APN) is 1134200000022. The geographical location of the Facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W, with elevations ranging from approximately 770 feet above MSL to approximately 730 feet above MSL at Walltown Branch. The Facility is located in a relatively rural area; however, the Facility is zoned for light industrial use. The Facility is bounded on the north by the Charles Avenue right-of-way, the Lexington City Cemetery, and undeveloped wooded property, and on the east by Cotton Grove Road (North Carolina Highway 8). The Facility is bounded on the south by Victor Street (State Road 1261) and on the west by the Winston-Salem southbound railway and undeveloped wooded property.

As shown on Figure B-2, the entire Facility occupies an area of approximately 13.3 acres. Formerly there was a 126,000-square foot building that was used for manufacturing and office space, a small maintenance garage, and a small security shack located at the site. These buildings have all been demolished and were removed in 2014. There are currently no building structures on the Facility property, and there are no immediate plans to redevelop the property, although potential Brownfields development has been explored.

The location of the Facility is shown on Figure B-1 and a 1,000-foot radius facility location map is shown on Figure B-2.

B-1-2 RCRA Related History of the Facility

We would begin this Section by noting there are numerous references to the previous names of the current NCDEQ including NCDENR and NCDEHNR; however, for consistency, we will use

NCDEQ throughout this document. During ceramic tile manufacturing operations at the Facility by Mid-State Tile and Mannington, two areas were created to handle waste generated from the ceramic tile manufacturing process. These later became SWMUs described as the Sludge Settling Ponds (SWMU-2) and the Ceramic Tile Pile (SWMU-3) (see Figure B-3). The Sludge Settling Ponds were used to settle solids contained in wastewater from the tile manufacturing process prior to discharge to the Rat Spring Branch of the Yadkin-Pee Dee River Basin under an NPDES permit. The Ceramic Tile Pile was used for disposal of off-specification ceramic tile materials.

The following is a list of significant regulatory events at the Facility:

- Between 1972 and 1989, wastewater was treated by passing it through two Sludge Settling Ponds which allowed solids to settle prior to discharge of the water to the Rat Springs Branch of the Yadkin-Pee Dee River Basin pursuant to NPDES permit #NC0006459.
- Based on a site assessment prepared by Mannington (dated April 12, 1990) and the likelihood that soil and groundwater at the Facility had been adversely impacted, NCDEQ issued a Compliance Order with Administrative Penalty (Order) (Docket #90-164) to Mannington Ceramic Tile, Inc.
- On July 5, 1990, Mannington submitted a consolidated Hazardous Waste Permit Application, Part A, to the EPA. This permit application listed two HWMUs an 8,240-cubic yard surface impoundment and a 69,300-cubic yard waste pile. Both units were listed as managing D008 wastes, which are wastes that exhibit the toxicity characteristic for lead. These two regulated units were identified as the Sludge Settling Ponds (SWMU-2) and the Ceramic Tile Pile (SWMU-3), respectively.
- On May 29, 1992, Mannington submitted a Hazardous Waste Permit Application, Part A, to the EPA. This permit application provided the same information as the previous permit application; however, it also indicated that the Facility had two other environmental permits. The first permit listed was a POTW discharge permit with the City of Lexington. The second permit was an Air Permit #5408R5, which was issued by NCDEQ DAQ. The permit application also listed a request for change in the air permit requirements.
- The 1990 Order was superseded by a Consent Agreement and Settlement Order (OAH File No. 90 HER 0689) on September 24, 1992. The 1992 Order required that Mannington:
 - a. Develop a plan to close the regulated units, identified as the two sludge settling ponds and the waste ceramic tile pile.
 - b. Investigate and assess subsurface contamination originating from the regulated units.
 - c. Implement a groundwater monitoring program.

- In May 1992, a Closure Plan for the Sludge Settling Ponds (SWMU-2) was submitted to NCDEQ, and was provisionally approved on August 13, 1992. To reflect the many subsequent modifications made to the closure plans for the Sludge Settling Ponds, the Closure Report contained several additional documents, including (a) the June 20, 1993, Closure Report for the Porcelanite Settling Ponds, (b) the proposed modification to the Closure Plan dated November 2, 2002, (c) the internal NCDEQ memo drafted by Ms. Sandra Moore to Ms. Rosemarie Roberts dated March 17, 2003, discussing the rationale for the amended closure performance standards, (d) the July 14, 2004, Revised Closure Plan, and (e) the August 9, 2005 report documenting additional soil excavation adjacent to the Sludge Settling Ponds which was placed on the Ceramic Tile Pile, prior to its closure. All the documents together satisfied closure and closure certification requirements for the Sludge Settling Ponds (SWMU-2). The Certification for Closure was submitted on November 9, 2005 and the Section accepted closure in place for the two Sludge Settling Ponds on February 1, 2006.
- In July 1992, initial construction work was performed to stabilize the tile pile/parking area. Phase II work was also completed to pipe the Walltown Branch (SWMU-7) along the eastern boundary of the Ceramic Tile Pile (SWMU-3).
- Between 1992 and 1998, numerous investigations of the Ceramic Tile Pile (SWMU-3) were conducted. These included assessments of soil and groundwater, investigation and characterization of the wastes stored in the Ceramic Tile Pile, and performing a treatability study to evaluate possible remediation techniques for the Ceramic Tile Pile (Aquaterra, 1997a, 1997b). Additional soil assessment outside and under the Ceramic Tile Pile was also conducted. Mannington submitted a Closure Plan for the Ceramic Tile Pile on February 11, 1997. The Closure Plan involved placing a RCRA-compliant technology cap over the Ceramic Tile Pile. The closure certification with waste in place was certified and submitted on April 26, 2004 and accepted by the NCDEQ on March 14, 2005.
- An RFA report was completed on April 29, 2004 by Booz Allen and was detailed in a February 16, 2005 NCDEQ *RCRA Facility Assessment*. The RFA identified eleven (11) SWMUs and three (3) AOCs. SWMU-2 was identified as the two Sludge Settling Ponds and SWMU-3 was identified as the Ceramic Tile Pile (regulated units). These two SWMUs as well as the remaining SWMUs and AOCs are discussed individually in greater detail in Part L of this report.
- The Facility is currently in post-closure monitoring with the intent of the sampling program to conform with 40 CFR 265 Subparts F and G. Waters Edge, environmental consultant for the Facility, is currently continuing the semi-annual post-closure monitoring of groundwater monitoring wells MW-1, MW-9, MW-12, MW-22A, MW-26A-2, and MW-28 for analysis of boron, cadmium, chromium, cobalt, lead, manganese, and zinc in accordance with the most recently approved October 2007 Revised SAP.

B-1-2-1 Part B Permit

On September 7, 2016, Ms. Julie S. Woosley, Section Chief, with the NCDEQ, DWM, HWS, issued a *Call for RCRA Part B Permit Application* letter jointly to Mannington Mills, Inc. and Condumex, Inc. for the Former Porcelanite Facility. This RCRA Part B Post-Closure Permit Application is in response to that Call.

B-1-2-2 Solid Waste Management Units

An RFA report was completed on April 29, 2004 by an EPA contractor (Booz Allen, 2004) and submitted on February 16, 2005 (see Appendix B-1). The RFA identified eleven (11) SWMUs and three (3) AOCs as depicted on Figure B-4. The RFA identified the original Hazardous Waste Regulated Units as SWMU-2 (two Sludge Settling Ponds) and SWMU-3 (Ceramic Tile Pile). Based on the 2005 RFA, Table B-1 lists the SWMUs and AOCs identified along with the recommended course of action in 2005 and after reevaluation in 2016. Portions of the following SWMU and AOC descriptions and past investigation summaries are directly referenced from the February 2005 RFA.

Table B-1 SWMU/AOC Identification and Past Status

Unit	Name	2005
SWMU-1	Wastewater Pretreatment System	CS
SWMU-2	Sludge Settling Ponds (Regulated)	NFA
SWMU-3	Ceramic Tile Pile (Regulated)	NFA
SWMU-4	20 cubic yard Sludge Roll-Off Container	NFA
SWMU-5	20 cubic yard Floor Sweeping Roll–Off Container	NFA
SWMU-6	Baghouse	CS
SWMU-7	Walltown Branch	RFI
SWMU-8	Off-Spec Tile Accumulation Roll-Off	NFA
SWMU-9	Filter Cake Waste Pile Area	NFA
SWMU-10	Maintenance Building Waste Management	NFA
SWMU-11	Spray Line Area Sumps	CS
AOC-1	Area of Discharge from Tile Pile	RFI
AOC-2	Broken Ceramic Tile Roadway	CS

AOC-3 Former UST and AST Area NFA

Notes:

CS = Confirmatory Sampling NFA = No Further Action

RFI = Recommended Further Investigation

B-1-3 Current Site Operation

All manufacturing operations at the Facility ceased in 1999 and the facility continued for some period as a tile distribution warehouse. The buildings were demolished and removed in 2014. There are currently no building structures at the Facility.

B-1-4 Description of Regulated Units

B-1-4-1 Two Closed Sludge Settling Ponds (SWMU-2)

SWMU-2 consisted of two surface impoundments estimated at 130' (L) x 30' (W) each (based on preliminary assessment figures) located in the northwestern corner of the Facility, between the northern property boundary and the northern wall of the former Main Building (see Figure B-3). Previous calculations indicated a total volume for both ponds to be approximately 8,240 cubic yards, consisting of approximately 3,625 cubic yards in the Western Pond and approximately 4,615 cubic yards in the Eastern Pond. Prior to January 1, 1989 and dating back to approximately 1972, wastewater treatment conducted at the Facility consisted of passing wastewater through a series of two Sludge Settling Ponds (SWMU-2), allowing solids to settle prior to discharge. After wastewater passed through the second (eastern) settling pond, Mid-State Tile and subsequently Mannington discharged wastewater directly into Rat Spring Branch of the Yadkin-Pee Dee River Basin pursuant to NPDES permit #NC0006459 (ENSCI, 1993, 1994).

Prior to 1990, the clay and silica used at the Facility likely contained hazardous constituents such as lead. In addition, according to Facility representatives, the pH of the incoming wastewater was usually in the range of 4 to 6. A site assessment of the Facility, prepared by Mannington, and dated April 12, 1990, consisted of a field investigation in which samples were collected from the Sludge Settling Ponds. TCLP analyses detected leachable lead levels in the sludge ranging from 230 mg/L to 1,230 mg/L, which is above the 5.0 mg/L threshold for a characteristic hazardous waste. All VOCs and SVOCs were BDL with the exception of methylene chloride, acetone, and carbon disulfide, which are considered laboratory artifacts. As a result, the solid waste (i.e., sludge) disposed in the Sludge Settling Ponds was a characteristic hazardous waste (D008) (NCDEQ, 1990b; ENSCI, 1993, 1994).

In July 1993, Mannington completed closure of the Sludge Settling Ponds (SWMU-2) per the NCDEQ approved Closure Plan. Mannington submitted a certified closure report to NCDEQ on November 9, 2005, which NCDEQ subsequently accepted on February 1, 2006. As a result of closure activities, sludge was removed from both sludge ponds and stabilized with Portland

Cement, such that the waste passed TCLP for lead. The stabilized material was placed back into the ponds and the area was capped with a RCRA compliant cap. According to Facility representatives, the cap included a 30-millimeter synthetic liner and an asphalt cap that serves as the top layer. Additionally, all piping associated with the sludge ponds was removed. Some of the surrounding soils north and west of the Sludge Settling Ponds were excavated and placed on the Ceramic Tile Pile (SWMU-3) prior to its closure in 1997. According to a September 1992 Consent Agreement, sludge from SWMU-2 was also deposited in SWMU-3. At the time of the September 2003 VSI, the asphalt cover appeared to be in good condition with no significant cracks, staining, or erosion identified (Booz Allen RFI, 2005).

B-1-4-2 Closed Waste Ceramic Tile Pile (SWMU-3)

The Closed Waste Ceramic Tile Pile (SWMU-3) is located east of the former Main Process Building and immediately west of Walltown Branch (SWMU-7). The Facility used SWMU-3 to store off-specification unfired and fired glazed ceramic tile beginning in the 1950s or 1960s until 1990. The unit extends approximately 12 feet north of the southern property fence line to the Area of Discharge from Tile Pile (AOC-1) to Rat Springs Branch as shown on Figure B-3. The total volume of the unit is estimated to be approximately 260,000 tons (*Transmittal of Revised Closure and Post-Closure Care Plans*, July 30, 1997). Additionally, in the early 1990s, soil north of SWMU-2 exhibiting elevated lead and zinc concentrations was excavated and placed on top of the Ceramic Tile Pile prior to closure of the unit, as was material from the Broken Tile Roadway (AOC-2). In 1990, Mannington ceased depositing waste tile material in SWMU-3 (NCDEQ, 1990d, 1990e, and 1990f).

Based on the site assessments conducted between 1989 and 1997 at the Facility, sample analyses results detected leachable lead levels in the Waste Ceramic Tile Pile considered to be a characteristic hazardous waste. As a result, the solid waste (i.e., ceramic tile) disposed on the Waste Ceramic Tile Pile was considered a characteristic hazardous waste (D008) in that samples from several different areas contained TCLP lead levels in excess of the regulatory limit (NCDEQ, 1990b).

In addition, impacted sludge/soil from SWMU-2 was also deposited in the Waste Ceramic Tile Pile prior to closure as follows:

• An unknown quantity of partially stabilized sludge and additional impacted soil located north and west of the Sludge Settling Ponds (SWMU-2) were excavated and deposited on the Ceramic Tile Pile (SWMU-3) prior to closure. According to the Closure Report for the Sludge Settling Ponds (SWMU-2), the partially stabilized sludge exceeded the NCGS via TCLP for mercury and zinc (closure standards NCDEQ temporarily used during that period of time) and the TCLP regulatory limit for lead when it was deposited on the Ceramic Tile Pile (SWMU-3) (Aquaterra, 1997b; Mannington, 2004; NCDEQ, 1997a, 1997b; Booz

Allen 2003). This excavated area also included one soil sample location from the area northeast of SWMU-2 which slightly exceeded the lead TCLP threshold.

• Lead impacted soil from along former Charles Avenue north of the Ceramic Tile Pile near the northern property boundary was excavated and placed on the Ceramic Tile Pile.

After multiple phases of soil assessment, the Facility initiated closure with wastes in place of the Ceramic Tile Pile (SWMU-3) due to soils exhibiting leachable levels of lead that were considered a characteristic hazardous waste (D008). Consistent with the approved 1997 Closure Plan, wastes were left in place and the unit was closed with a RCRA-compliant cap. The unit is capped with a "flat top surface cap" and a "slope surface cap" using a RCRA-compliant cap including a vegetative cover, geotextile liner, HDPE liner, and another managed vegetative cap. The top portion of the unit is level with the facility parking lot and has gravel covering the majority of the top of the unit. The sloped sides of the unit are covered with native vegetation. The 1997 approved Ceramic Tile Pile Closure Plan also depicted an area which exceeded three (3) times background levels for the metals barium, boron, lead, manganese, and zinc. These other areas that exhibited elevated total inorganic values in excess of three (3) times background levels were covered with the silty clay cover material used to stabilize the RCRA cap as shown on Figure B-3. The silty clay cover was two (2) or more feet thick over these elevated total inorganic areas, thus preventing dermal contact and minimizing leaching of the metals from the soils to the groundwater. (Aquaterra, 1997b; Mannington, 2004; NCDEO, 1997a, 1997b; Booz Allen 2003). This closure plan was approved by NCDEO on March 14, 2005.

B-2 Topographic Map

B-2a General Requirements

The following figures include map information as required by the Part B Application:

Figure B-1 is U. S. Geological Survey topographic quadrangle map (Lexington West) identifying the general Facility location. Figure B-2 is a more detailed topographic map of the Facility, and includes features 1,000-feet from the perimeter of the Facility, the Facility property boundary, surrounding tax parcel boundaries, surface water features, contour intervals, map scale, map date, 100-year floodplain, the two regulated units (SWMU-2 and SWMU-3). Figure B-3 depicts the location of access controls, internal roads and the location of storm and sanitary sewers. No buildings or structures remain on the property; therefore, there are no loading or unloading areas, fire control facilities, nor injection or withdrawal wells (both onsite and offsite). The concrete building foundation slab is the only remaining improvement. Figure B-2 also includes a wind rose from data collected from the nearest airport (Davidson County Airport [KEXX]).

The location of all remaining SWMUs and AOCs identified in Table B-1 is shown on Figure B-4. Photodocumentation is provided in Appendix A-2.

The current groundwater flow direction and plume maps for the Facility are discussed in Part E-Groundwater Monitoring of this report. The most recently approved October 2007 SAP includes semi-annual (March and September) monitoring and sampling of six (6) monitoring wells for analysis of boron, cadmium, chromium, cobalt, lead, manganese, and zinc. Monitoring wells MW-1, MW-12, and MW-22A are installed in the saprolite/shallow aquifer, and wells MW-9D, MW-26A-2, and MW-28D monitor groundwater quality in the bedrock/deeper saprolite aquifer. The information is presented to the NCDEQ, DWM, HWS semi-annually in a Semi-annual Groundwater Assessment Report.

B2-b Additional Topographic Requirements for Land Storage, Treatment and Disposal Facilities

The Facility is not an active treatment and disposal facility; however, additional topographic map requirements as listed in Part E-Groundwater Monitoring include the following:

- Groundwater flow direction and rate (isometric graph)
- Point of compliance
- Groundwater monitoring wells
- The extent of any plume (horizontal and vertical)
- Hazardous waste management area
- Property boundary

This information is included in Part E-Groundwater Monitoring.

B-3 Traffic Information

As this is a closed facility, transportation of hazardous waste is not presently occurring, and there are no immediate future plans for the transportation of hazardous waste at the Facility; therefore, there is no information regarding the movement of hazardous waste at the Facility.

B-4 Location Information

B-4a Seismic Considerations

Information regarding seismic considerations is required for new facilities only. As this is not a new facility, no seismic information is provided.

B-4b Floodplain Standard

According to the FEMA, National Flood Insurance Program, Flood Insurance Rate Map (FIRM) Panel 6724, Map Number 3710672400J, effective date March 16, 2009, a portion of the Facility property that encompasses Walltown Branch (SWMU-7) and a portion of the Ceramic Tile Pile (SWMU-3) is located within the 100-year floodplain (identified as the 1% annual chance floodplain boundary). Base floodplain elevations range from 747 feet above MSL south of Victor Street to 734 feet above MSL immediately north of the confluence of Walltown Branch with Walltown Drain. The limits of the 100-year floodplain boundaries are shown on Figure B-2 and documented in Appendix B-2.

B-4b (1) Demonstration of Compliance

In order to prevent surface water runoff and groundwater migration from the Ceramic Tile Pile (SWMU-3) from impacting Walltown Branch (SWMU-7), located at the eastern toe of the Ceramic Tile pile, Walltown Branch was enclosed in pipe in 1992/1993 by the City of Lexington under a Nationwide 26 permit from the USACE. This permit was issued based on the determination by the USACE that no significant wetlands were present at the site (Booz Allen, 2004). The enclosure included construction of a 36-inch RCP surrounded by #57 stone, a geotextile layer cap, and a compacted silty clay to clayey silt cover. This area is inspected quarterly by Condumex/Mannington personnel as part of the Post-Closure Care Plan. It is also inspected annually by a NCDEQ RCRA Compliance inspector. At the time the piping was installed at Walltown Branch, a permanent 25-foot easement was conveyed to the City of Lexington.

B-4b(1)(a) Floodproofing and Flood Protection

As indicated in Section B-4b (1), Walltown Branch was enclosed in 36-inch RCP in 1992/1993 by the City of Lexington under a Nationwide 26 permit from the USACE. No additional information is provided regarding floodproofing or flood protection.

B-4b(1)(b) Flood Plan

As this is a closed facility, the closed surface impoundments (Sludge Ponds) and closed landfill (Ceramic Tile Pile) will remain in-place. These units are monitored and maintained to protect the integrity of the final cover. There are no plans to remove hazardous waste.

B-4b (2) *Plan for Future Compliance with Floodplain Standard*

The portion of the Facility within the 100-year flood zone is under local enforcement by the Davidson County Planning and Zoning Department who is responsible for the management of the

permit. Any compliance issues would be handled by Davidson County. A copy of the FEMA FIRM Flood Map is documented in Appendix B-2.

B-4b (3) Waiver for Land Storage and Disposal Facilities

This is not applicable as a waiver is not being sought.

B-4c Additional North Carolina Location Standards

The two regulated SWMUs located at the Facility were closed in accordance with NCDEQ approved Closure Plans. The Certification for Closure for SWMU-2 was submitted on November 9, 2005 and the Section accepted closure in place for the two Sludge Settling Ponds on February 1, 2006. The closure certification with waste in place for SWMU-3 was certified and submitted on April 26, 2004 and accepted by the NCDEQ on March 14, 2005. As both of these units have been closed in place, the Facility is not required to meet these requirements.

This section addresses specific North Carolina standards for hazardous waste management facilities as outlined in 15A NCAC 13A.0109(r)(2), .0113(c)(3), and .0113(c)(5).

Regulation	Description	Meets Standard
13A.0109(r)(2) (A)	0.25-mile from institution	No, South Lexington School is located
		less than 0.25 mile to the northeast
		beyond NC Highway 8.
(B)	50-foot separation from	No, both HWMUs are located just
	property line	inside the northern property line.
(C)(i)	Hazardous waste 200 feet	No, both HWMUs are located just
	from the property line	inside the northern property line.
(C)(ii)	10 feet above historic high	No, bottoms of both SWMU-2 and
	groundwater table	SWMU-3 are located within 10 feet of
		the historic high groundwater level.
(C)(iii)	Drinking water wells	Uncertain, there are wells currently
	greater than 1,000 feet	located within 1,000 feet of the Facility,
		but by City Ordinance these are not to
		be used for drinking water, and
		municipal drinking water is supplied for
		use.
(D)	Liquid Waste	Facility waste is not applicable.
13A.0109(r)(4)(A)(i)	Recharge Area of an aquifer	Not Applicable, aquifer is not a sole-
	which is a sole-source	source drinking water aquifer.
	drinking water aquifer	
13A.0109(r)(4)(A)(ii)	Within 200 feet of a surface	The HWMUs are within 200 feet of a
	water stream	surface water stream (e.g. Walltown

Regulation	Description	Meets Standard
		Branch); however, they are closed and
		cannot be moved.
13A.0109(r)(4)(A)(iii)	Discharge to WS-1, WS-11	Walltown Branch is the discharge
	or SA waters or Class III	feature from the Facility and is
	Reservoir	considered a Class C surface water
		stream and not WS-1, WS-11, or SA
		waters or Class III Reservoir.
13A.0109(r)(A)(4)(iv)	Discharge to watershed for	Walltown Branch is the discharge
	a WS-1, WS-11 or SA	feature from the Facility and is
	waters or Class III	considered a Class C surface water
	Reservoir	stream and does not discharge to a
		watershed for a WS-1, WS-11, or SA
		waters or Class III Reservoir.
13A.0109(r)(A)(4)(v)	200 feet of a 100-year flood	The HWMUs are located within 200
	hazard	feet of a 100-year flood hazard;
		however, they are closed and cannot be
		moved.
13A.0109(r)(A)(4)(vi)	Within 200 feet of a	The HWMUs are not located within 200
	seismically active area	feet of a seismically active area.
13A.0109(r)(A)(4)(vii)	Within 200 feet of a mine,	The HWMUs are not located within 200
	cave, or cavernous bedrock	feet of a mine, cave, or cavernous
		bedrock.

In order to obtain additional information regarding the location of the Facility as outlined in 15A NCAC 13A .0113(c)(3), and .0113(c)(5), the following state and/or local agency representatives were contacted and asked to provide information regarding wetlands, endangered species habitats, parks, forests, wilderness areas, historical sites, mines and air quality:

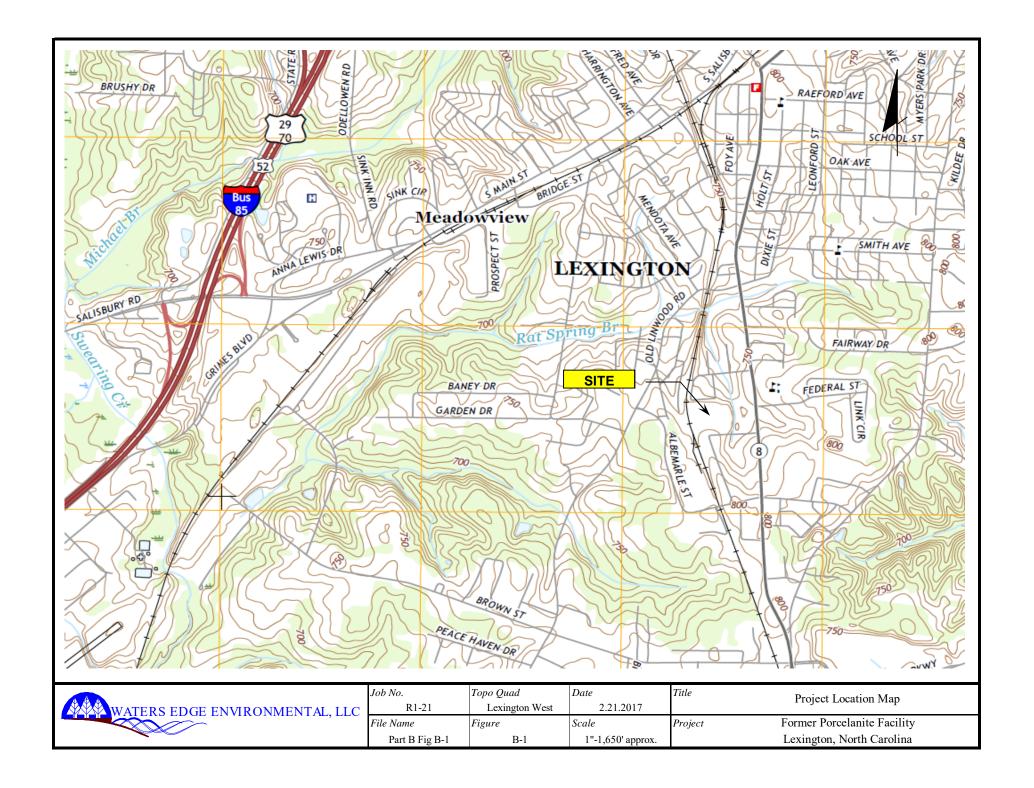
- The NCDCPCA, NHP was contacted by electronic mail on January 23, 2017 for information regarding endangered species habitats, parks, forests, wilderness areas, and historical sites. As of March 1, 2017, the NCDCPCA, NHP has not responded to this request in sufficient time to be included in this report.
- Ms. Anita Barnett with the NPS, Public Affairs Office, was contacted by electronic mail on January 23, 2017 and by telephone on January 30, 2017 for information regarding National Seashore, Lakeshore, and River Recreational Areas, National Parks and Monuments, and Federal Designated Wild & Scenic Rivers. As of March 1, 2017, an NPS representative has not responded to this request in sufficient time to be included in this report.
- Ms. Heather Luczak with the US Forest Service, was contacted by telephone and electronic mail on January 23, 2017 and January 24, 2017, respectively for information regarding

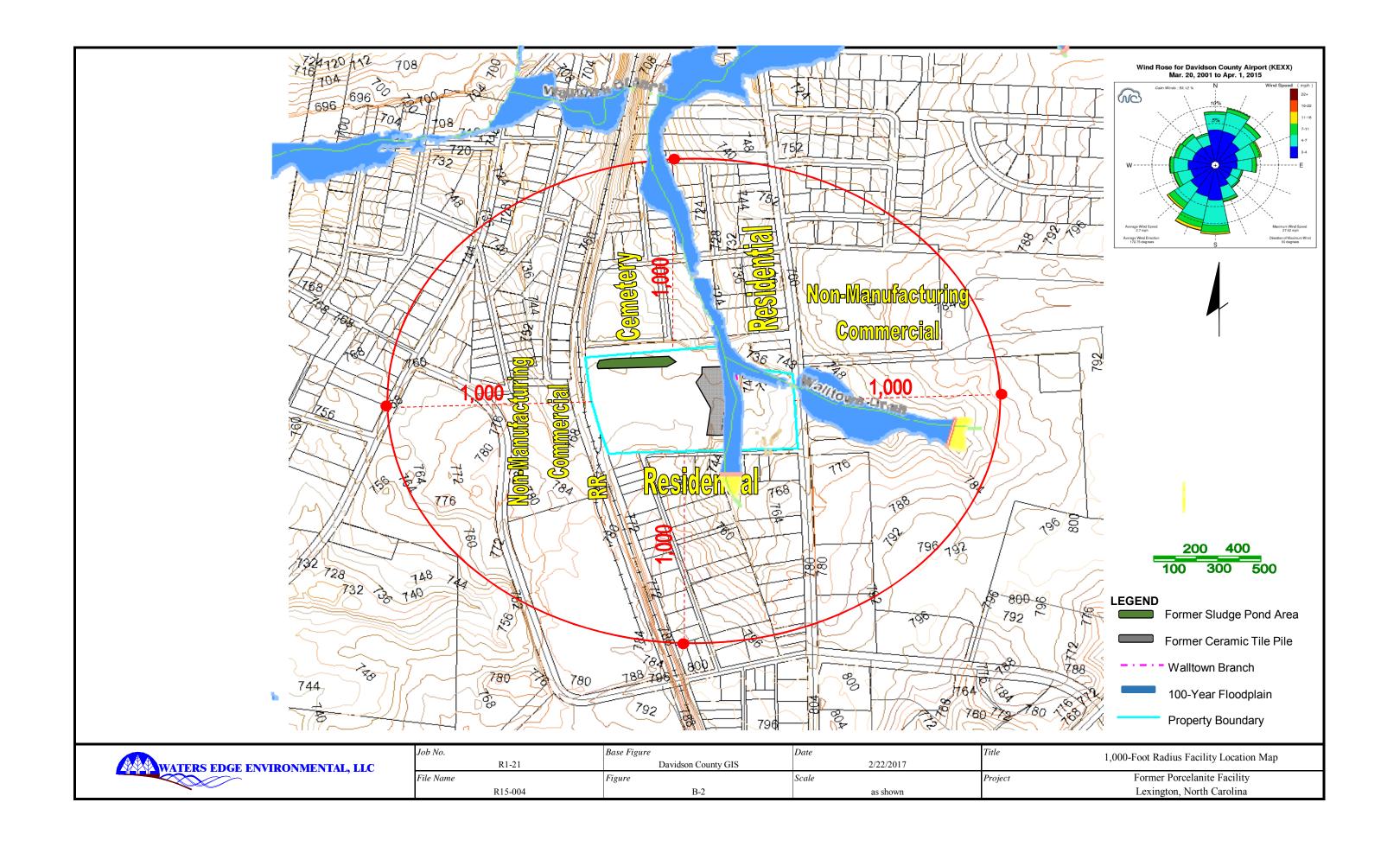
Designated and Proposed Federal Wilderness and Natural Areas, National Preserves and Forests, Federal Land Designated for the Protection of Natural Ecosystems. Ms. Luczak responded by electronic mail stating none of these sensitive environments were located within a 1.0-mile radius of the Facility.

- Ms. Melanie Williams with the NCDWR, was contacted by electronic mail on January 24, 2017 for information regarding State-designated areas for protection or maintenance of aquatic life (Clean Water Act 305b Report). As of March 1, 2017, an NCDWR representative has not responded to this request in sufficient time to be included in this report.
- Mr. Tom James with the NCDFR, was contacted by telephone on January 23, 2017 for information regarding State Preserves and Forests. As of March 1, 2017, an NCDFR representative has not responded to this request in sufficient time to be included in this report.
- Ms. Leigh Mann with the USFWS was contacted by electronic mail on January 23, 2017 for information regarding endangered species. Mr. Allen Ratzlaff, a Fish and Wildlife Biologist with the USFWS, responded electronically stating "no federally listed species or their habitats occur in the project area. Therefore, we believe the requirements under Section 7 of the Endangered Species Act of 1973 are fulfilled."
- The NCDNCR was contacted by electronic mail on January 24, 2017 for information regarding National and State Historical Sites. Ms. Ramona M. Bartos responded electronically stating "We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed."
- Mr. David Cox with the NC Wildlife Resources Commission was contacted by electronic mail on January 24, 2017 for information regarding dq | National or State Wildlife Refuges, State lands designated for wildlife or game management, Migratory pathways and feeding areas critical for maintenance of anadromous fish species within river reaches or areas in lakes in which fish spend extended periods of time, or spawning areas critical for the maintenance of fish/shellfish species within river or lake waters. Ms. Olivia Munzer, Western Piedmont Habitat Conservation Coordinator, responded electronically stating "There are no national refuges or state-owned, wildlife-designated or management lands within 1.0 mile of the site. However, lands managed by Davidson County as Open-Space are located with 1.0 mile of the site. There are no migratory or feeding grounds for anadromous fish or spawning areas critical for the maintenance of fish/shellfish species, or large lakes or reservoirs with areas that fish spend extended periods of time occur[sic] within 1.0 mile of the site. There is a historical record of the Carolina birdfoot-trefoil (Acmispon

helleri), a state species of special concern-vulnerable, within 1.0 mile of the site. A current record of the northern-long eared bat (*Myotis septentrionalis*), a state significantly rare and federally threatened species, occurs in Davidson County with no specific location identified. Therefore, the northern-long eared bat may be present or within 1.0 mile of the site. As such, consultation with the USFWS may be required."

- Ms. Bridget Munger with the NC Department of Energy, Mineral and Land Resources was
 contacted by electronic mail on January 25, 2017 for information regarding any active or
 inactive mines within a 1.0-mile radius of the Facility. Ms. Munger returned a letter by
 electronic mail including a list of active and inactive mines in Davidson County. None of
 the mines listed appear to be located within a 1.0-mile radius of the Facility.
- Ms. Jean Gibby with the USACE was contacted by telephone on January 30, 2017 for information regarding the 1992 Permit for piping in Walltown Branch and any wetlands within a 1.0-mile radius of the Facility. Ms. Gibby returned a letter by electronic mail stating "I have looked at the map and there is no record in our system about the town ever having acquired a permit for the fill at the referenced facility. As I had mentioned to you, we had permits back in 1992 that would have allowed such activities. There is a site off of Cotton Grove Road that had a permit and that stream flows from that property through the referenced property. In our conversation, I missed the fact that you desire to know about jurisdictional features within a 1-mile radius of the project. I am unable to do anything more than what you likely could do which is to review USGS topo maps and NRCS soil maps along with NWI maps."
- Air quality information for the Lexington area was obtained from www.usa.com. The website indicates the AQI for the calendar year 2009, the most recent data available, was 39. This AQI is used by the US EPA in issuing standardized public health warnings. AQI values between 0 and 50 are considered good.


Documentation of all correspondence is provided in Appendix B-3.


B-5 Additional North Carolina Requirements

B-5b Public Participation for New Facilities

This section is not applicable as this is not a new facility.

Part B Figures

Part B Appendices

Appendix B-1 Booz Allen 2005 RFA

North Carolina Department of Environment and Natural Resources

Dexter R. Matthews, Director

Division of Waste Management

Michael F. Easley, Governor William, G. Ross Jr., Secretary

February 16, 2005

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Mr. Tony Shaw Environmental/ Safety Manager Porcelanite, Inc. 1327 Lincoln Drive High Point, NC 27260-9945

Re:

RCRA Facility Assessment Report

Porcelanite, Inc.

Lexington, North Carolina EPA ID# NCD 986 181 451

Dear Mr. Shaw:

Enclosed is the RCRA Facility Assessment (RFA) Report for Porcelanite, Inc. This RFA was prepared by EPA Region 4.

If you have any questions, please contact Karim Pathan at (919) 733-4996 extension 228.

Sincerely,

Karim Pathan

Project Manager

Facility Management Branch

Hazardous Waste Section

Enclosures

cc:

Jon Johnston, US EPA, Region 4

Ernie Lawrence

rc:

Harold McCarty

Robert L. Glaser Karim Pathan

> 1646 Mail Service Center, Raleigh, North Carolina 27699-1646 Phone 919-733-4996 \ FAX 919-715-3605 \ Internet http://wastenotnc.org

An Equal Opportunity / Affirmative Action Employer -- Printed on Dual Purpose Recycled Paper

RCRA FACILITY ASSESSMENT REPORT

Porcelanite, Inc. NCD 986 181 451

20 Victor Street Lexington, North Carolina

Prepared for

U.S. ENVIRONMENTAL PROTECTION AGENCY Region 4 61 Forsyth Street, SW Atlanta, Georgia 30303

Work Assignment No.: R04804-1

Contract No.: 68-W-02-17

Prepared By: Booz Allen Hamilton

Booz Allen WAM: Jeremy Hogard Telephone No.: 404-658-8054

EPA WAM: Robert Morris Telephone No.: 404-562-8470

January 19, 2005

TABLE OF CONTENTS

1.0	EXEC	UTIVE SUMMARY	2
2.0	INTR	ODUCTION	6
	2.1	File search and Visual Site Inspection	7
3.0	FACI	LITY DESCRIPTION	7
4,0	DESC	RIPTION OF SITE ACTIVITIES AND HISTORY	8
	4.1	Waste Management Practices	8
	4.2	Regulatory History	11
5.0	ENVI	RONMENTAL SETTING	12
	5.1	Site Location and Setting	12
	•	5.1.2 Land Use	13
		5.1.3 Topography and Surface Water	13
		5.1.4 Geology and Hydrogeology	14
6.0	SWM	TU AND AOC DESCRIPTIONS	16
0.0	6.1	SWMU 1 - Wastewater Pretreatment System	16
	6.2	SWMU 2 - Sludge Settling Ponds	19
	6.3	SWMU 3 - Ceramic Tile Pile	22
	6.4	SWMU 4 - 20 Cubic Yard Sludge Roll-Off Container	26
	6.5	SWMU 5 - 20 Cubic Yard Floor Sweeping Roll-Off Container	28
	6.6	SWMU 6 - Baghouse	30
	6.7	SWMU 7 - Walltown Drain	32
	6.8	SWMU 8 - Off-Specification Tile Accumulation Roll-Off Container	34
	6.9	SWMU 9 - Filter Cake Waste Pile Area	36
	6.10	SWMU 10 - Maintenance Building Waste Management Areas	38
	6.11	SWMU 11 - Spray Line Area Sumps	40
	6.12	AOC 1 - Area of Discharge from the Sludge Settling Ponds to	
	0.12	Rat Springs Branch	42
	(12	AOC 2 - Broken Ceramic Tile Roadway	45
	6.13	AOC 3 - Former UST and AST Area	Δ7
	6.14		
7.0	PEFF	RENCES	49

FIGURES

Figure 1 – Location Map for the Porcelanite, Inc. facility Figure 2 – Porcelanite, Inc. SWMU and AOC Map	
TABLES	
Table 1 – Solid Waste Management Units. Table 2 – Areas of Concern	5
<u>ATTACHMENTS</u>	
Attachment 1 – Solid Waste Management Unit (SWMU) and Area of Concern (AOC) List Attachment 2 – Photographic Log Attachment 3 – VSI Logbooks	

1.0 EXECUTIVE SUMMARY

The first step in the Resource Conservation and Recovery Act (RCRA) corrective action process is the RCRA Facility Assessment (RFA). The RFA is conducted to assess if a release of hazardous waste or hazardous constituents has occurred from solid waste management units (SWMUs) and to identify potential area of concern (AOCs) at the facility. The main components of an RFA are to identify and gather information on releases at the RCRA facility; to evaluate SWMUs for releases to all media (groundwater, surface water, air, and soil); and to make preliminary determinations regarding releases of concern and the need for further action and interim measures at the facility.

An RFA is currently being conducted for the Porcelanite, Inc., (Porcelanite) facility located in Lexington, North Carolina. A file search of U.S. Environmental Protection Agency (EPA) Region 4 and North Carolina Department of Environment and Natural Resources (NCDENR) file material for the site was conducted in November 2003. Following completion of the file search, a preliminary review (PR) of the file material was conducted to develop an understanding of the site prior to conducting the visual site inspection (VSI). A VSI of the Porcelanite facility was conducted on September 30, 2003, to address information gaps identified during the PR and to identify and document information associated with all SWMUs identified in the PR. Each SWMU identified during the PR was inspected and a meeting with facility representatives was conducted to obtain additional information. This report outlines the findings of the PR and the VSI.

The Porcelanite facility is an inactive ceramic tile manufacturing facility located at 20 Victor Street, Lexington, North Carolina, in Davidson County. The geographical location of the facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W. The location of the facility is shown on Figure 1. The Porcelanite facility is bounded on the north by the Charles Avenue right of way and the Lexington City Cemetery; on the east by Cotton Grove Road (North Carolina Highway 8); on the south by Victor Street (State Road 1261); and on the west the Winston-Salem southbound railway and undeveloped wooden property. Several residential homes are located immediately to the south of the facility property, across Victor Street. The entire Porcelanite property comprises approximately 7.5 acres and includes a 126,000 square foot process building that was used for manufacturing and office space, a small maintenance garage, and a small guard shack. The facility property is surrounded by a seven-foot chain-link fence topped with barbed wire and access is controlled by a key-coded security gate (Aquaterra, 1997b; Booz Allen, 2003).

Mid-State Tile began operations at the Porcelanite property in approximately 1960. Prior to use by Mid-State Tile, the property was undeveloped, forested land. According to facility representatives, Mannington Ceramic Tile (Mannington) began operating at the site in 1985. Mannington ceased operations at the Porcelanite site and sold the property to P&M Tile, Inc., in 1994. P&M Tile, Inc., was later renamed Porcelanite, Inc. Porcelanite is currently the owner of the facility and property; however, Mannington retained responsibility for closure of the Ceramic Tile Pile (SWMU 3) and the Sludge Settling Ponds (SWMU 2). The tile manufacturing

operations at the Porcelanite facility were shut down in 1999. Shortly after the operations were terminated by Porcelanite, the tile manufacturing equipment was dismantled, sold, and removed from the property (Aquaterra, 1997b; Booz Allen, 2003).

According to facility representatives, the tile manufacturing process conducted at the Porcelanite property began when raw materials, such as clay, silica, feldspar, zinc oxide, limestone, zirconium silicate, and glass frit, were trucked to the site and stored in silos. These materials were then blended in various proportions and sent via belt conveyors to the Ball Mills, where they were mixed with water. After mixing, the materials were transferred to the spray dryer for drying. Using belt conveyors, the materials were then sent to the tile presses where they were formed into various sizes of tile. Three automatic presses for floor tile and as many as twenty small presses for producing trim tile were operated at the facility. After pressing, the green tiles were heated to remove moisture to less than one percent and then sent to the spray lines to receive color. From the spray lines, the tiles were sent through one of three kilns where they were fired at approximately 2000 degrees Fahrenheit. Tiles removed from the kilns were allowed to cool before being boxed for shipment. The finished products were sold to retail tile outlets. The Standard Industry Classification (SIC) code listed on the facility's permit application was 3253 and the facility was operated for the production of glazed ceramic floor and wall tile (Aquaterra, 1997b; Booz Allen, 2003, Mannington, 2004).

Based on the PR and information gathered during the VSI, a total of 11 SWMUs and three areas of concern (AOCs) were identified at the Porcelanite facility. The names of these SWMUs and AOCs are listed in Attachment 1 and their locations are identified on Figure 2. In addition, an overview description of the SWMUs and AOCs is provided in Tables 1 and 2 and a more detailed discussion is provided in Section 6.0.

Table 1
Solid Waste Management Units

SWMU#	SWMU Name	Type of Unit	Period of Operation	Waste Managed	Recommendation
1a, 1b, 1c, 1d	Wastewater Pretreatment System	a. Precipitating Tanks b. Filter Press c. Holding Tanks d. Sump	1989 to present	Wastewater containing RCRA metals such as lead	Confirmatory Sampling
2a, 2b	Sludge Settling Ponds	a. Pond 1 b. Pond 2	1972 to 1989	Wastewater containing RCRA metals such as lead	NFA
3	Ceramic Tile Pile	Waste Pile	1950s or 1960s to present	Tile fragments containing metals such as lead and chromium; sludge from Sludge Settling Ponds (SWMU 2) containing RCRA metals such as lead	NFA
4	20 Cubic Yard Sludge Roll-Off Container	Roll-Off Container	Unknown to present	Sludge from Sludge Settling Ponds (SWMU 2) containing RCRA metals such as lead	No Further Action
5	20 Cubic Yard Floor Sweepings Roll-Off Container	Roll-Off Container	Unknown to 1999	Floor sweepings including tile fragments containing RCRA metals such as	No Further Action

SWMU#	SWMU Name	Type of Unit	Period of Operation	Waste Managed	Recommendation
6	Baghouse	Baghouse	1960s to 1999	Dust generated during tile pressing operations containing RCRA metals such as lead	Confirmatory Sampling
7	Walltown Drain	Drainage Ditch	1960s to present	Surface water runoff from the Ceramic Tile Pile (SWMU 3) potentially containing RCRA metals such as lead	RFI
8	Off-Specification Tile Accumulation Roll-off Container	Roll-Off Container	Unknown to 1999	Broken and off- specification tile	No Further Action
9	Filter Cake Waste Pile Area	Waste Pile	1988 or 1989 to present	Filter cake of solids contained in wastewater treated by Wastewater Pretreatment System (SWMU 1)	No Further Action
10a, 10b	Maintenance Building Waste Management Areas	a. Drum Storage Area b. Parts Washer	1960s to 1999	Used oil and degreasing solvents	No Further Action
11	Spray Line Area Sumps	Sumps	1960s or 1970s to present	Wastewater containing RCRA metals such as lead	Confirmatory Sampling

					·
			ole 2 Concern		
AOC#	AOC Name	Type of Unit	Period of Operation	Waste Managed	Release Potential
. 1	Area of Discharge from Settling Ponds into Rat Springs Branch	NPDES Discharge	1972 to present (No wastewater discharge received after 1990)	Wastewater and runoff containing RCRA metals such as lead	RFI
2	Broken Ceramic Tile Roadway	Road	Unknown to present	Tile fragments containing RCRA metals such as lead	Confirmatory Sampling
3	Former UST and AST Area	USTs and ASTs	Unknown (Suspected 1960s) to 1989	No wastes managed but stored gasoline, fuel oil #2, and diesel	No Further Action

.

2.0 INTRODUCTION

The 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) provide authority in the RCRA program to assist the U.S. Environmental Protection Agency (EPA) in implementing corrective action at RCRA facilities. RCRA facilities include all facilities that currently treat, store, or dispose of hazardous waste (or have done so in the past) as regulated under RCRA. The first step in the RCRA corrective action process is the RCRA Facility Assessment (RFA). The RFA is conducted to assess if a release of hazardous waste or hazardous constituents has occurred from solid waste management units (SWMUs) and to identify potential area of concern (AOCs) at the facility. A SWMU is defined as any discernable waste management unit at a RCRA facility from which hazardous constituents might migrate, irrespective of whether the unit was intended for management of solid and/or hazardous waste. An AOC is an area where evidence of spills or other releases of waste have occurred resulting from waste management activities that may not fit the definition of a SWMU release. The main components of an RFA are to identify and gather information on releases at the RCRA facility; to evaluate SWMUs for releases to all media (groundwater, surface water, air, and soil); and to make preliminary determinations regarding releases of concern and the need for further action and interim measures at the facility.

Under Work Assignment No. R04804-1, EPA Region 4 requested that Booz Allen Hamilton (Booz Allen) conduct an RFA at the Porcelanite, Inc., (Porcelanite) facility located in Lexington, North Carolina. This RFA report outlines the findings of the preliminary review (PR) and the visual site inspection (VSI). The purpose of the RFA was to identify, gather information on, and evaluate the potential for releases to the environment from AOCs, including SWMUs, where releases of hazardous constituents may have occurred in the past.

The specific objectives of the RFA are to:

- Perform a PR of the file material and conduct a VSI to assess the potential for release of hazardous wastes or hazardous constituents from each SWMU and AOC
- Identify all SWMUs and AOCs located at the Porcelanite facility in Lexington, North Carolina
- Make preliminary determinations regarding releases of concern and the need for further actions, including confirmatory sampling (CS), RCRA facility investigations (RFIs) and/or interim measures (IMs) for each SWMU at the facility
- Rank each facility as a high, medium, or low priority facility utilizing the RCRA National Corrective Action Prioritization System (NCAPS).

2.1 File search and Visual Site Inspection

A file search of EPA Region 4 and North Carolina Department of Environment and Natural Resources (NCDENR) file material for the site was conducted in November 2002. Following the completion of the file search, a PR of the file material was conducted in July and August 2003 to develop an understanding of the site prior to conducting the VSI. A list of references used to prepare this report is provided in Section 7.0.

Primarily, the PR focused on past and current facility waste management practices involving waste generation, treatment, and storage and/or disposal. The PR also included a review of other activities and areas, not involving waste, which may have exhibited a potential for releasing contaminants to the environment (e.g., drum, raw materials, or product storage areas, fuel storage or transfer areas; and other areas of contamination). As a result of the PR, a tentative list of SWMUs was identified and used to plan the VSI. The PR also identified additional information that needed to be gathered during the VSI to fully assess the potential for releases from SWMUs.

On September 30, 2003, a three-person EPA/contractor team (John Johnston, EPA Region 4, and John Belin and Jeremy Hogard, Booz Allen Hamilton) performed the VSI. Also present were Bob Glazer and **Karim Pathan** from NCDENR. The primary facility participants were Tony Shaw for Mannington and Phil Rhan, a consultant for Mannington from Waters Edge Environmental, LLC. The purpose of the VSI was to address information gaps identified during the PR and to identify and document information associated with all SWMUs identified in the PR. Each SWMU identified during the PR was inspected and a meeting with facility representatives was conducted to obtain additional information (Booz Allen, 2003).

3.0 FACILITY DESCRIPTION

The EPA ID Number for the facility is NCD 986 181 451. The Porcelanite facility is an inactive ceramic tile manufacturing facility located at 20 Victor Street, Lexington, North Carolina, in Davidson County. The geographical location of the facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W. The location of the facility is shown on Figure 1. The Porcelanite facility is bounded on the north by the Charles Avenue right of way and the Lexington City Cemetery; on the east by Cotton Grove Road (North Carolina Highway 8); on the south by Victor Street (State Road 1261); and on the west the Winston-Salem southbound railway and undeveloped wooden property. Several residential homes are located immediately to the south of the facility property, across Victor Street. The entire Porcelanite property comprises approximately 7.5 acres and includes a 126,000 square foot process building that was used for manufacturing and office space, a small maintenance garage, and a small guard shack. The facility property is surrounded by a seven-foot chain-link fence topped with barbed wire and access is controlled by a key-coded security gate (Aquaterra, 1997b; Booz Allen, 2003).

4.0 DESCRIPTION OF SITE ACTIVITIES AND HISTORY

Mid-State Tile began operations at the Porcelanite property in approximately 1960. Prior to use by Mid-State Tile, the property was undeveloped, forested land. According to facility representatives, Mannington Ceramic Tile (Mannington) began operating at the site in 1985. Mannington ceased operations at the Porcelanite site and sold the property to P&M Tile, Inc., in 1994. P&M Tile, Inc., was later renamed Porcelanite, Inc. Porcelanite is currently the owner of the facility and property; however, Mannington retained responsibility for closure of the Ceramic Tile Pile (SWMU 3) and the Sludge Settling Ponds (SWMU 2). The tile manufacturing operations at the Porcelanite facility were shut down in 1999. Shortly after the operations were terminated by Porcelanite, the tile manufacturing equipment was dismantled, sold, and removed from the property (Aquaterra, 1997b; Booz Allen, 2003).

According to facility representatives, the tile manufacturing process conducted at the Porcelanite property began when raw materials, such as clay, silica, feldspar, zinc oxide, limestone, zirconium silicate, and glass frit, were trucked to the site and stored in silos. These materials were then blended in various proportions and sent via belt conveyors to the Ball Mills, where they were mixed with water. After mixing, the materials were transferred to the spray dryer for drying. Using belt conveyors, the materials were then sent to the tile presses where they were formed into various sizes of tile. Three automatic presses for floor tile and as many as twenty small presses for producing trim tile were operated at the facility. After pressing, the green tiles were heated to remove moisture to less than one percent and they were sent to the spray lines to receive color. From the spray lines, the tiles were sent through one of three kilns where they were fired at approximately 2000 degrees Fahrenheit. Tiles removed from the kilns were allowed to cool before being boxed for shipment. The finished products were sold to retail tile outlets. The Standard Industry Classification (SIC) code listed on the facility's permit application was 3253 and the facility was operated for the production of glazed ceramic floor and wall tile (Aquaterra, 1997b; Booz Allen, 2003; Mannington, 2004).

4.1 Waste Management Practices

Currently, the site is inactive and the only waste management unit that is operational is the Wastewater Pretreatment System (SWMU 1), which manages limited quantities of sanitary sewage before it is discharged directly to the City of Lexington sewer system.

Historically, the facility generated several waste streams when it was operated by Mannington and Porcelanite to produce ceramic tile. It should be noted that prior to March 1990, the raw materials (i.e., clay) and glazes used by Mannington in their ceramic tile manufacturing operations contained various metals, primarily lead and chromium, which were considered hazardous. Several different waste characterizations performed on the waste tile fragments generated by the facility prior to March 1990 confirmed that leachable lead concentrations exceeded regulatory levels for the toxicity characteristic using either the Extraction Procedure (EP) Toxicity Test or the Toxicity Characteristic Leaching Procedure (TCLP). Therefore, the

waste tile fragments are characteristic for lead (D008). By March 1990, Mannington had modified its processes to utilize raw materials and glazes that contained only <u>de minimis</u> quantities of metals.

According to a 1990 report entitled "Existing Waste Stream, Solid Waste Determination" prepared by NCDENR, the waste streams generated by the facility in 1990 were categorized into five separate waste streams:

- Unfired Glaze Ceramic Tile This waste stream consisted of unfired ceramic tile and chips that were rejected during quality control inspections because they did not meet technical specifications. Prior to 1990, this waste stream was disposed of in the Ceramic Tile Pile (SWMU 3). From 1990 until the facility stopped operating in 1999, this waste stream was stored on site before it was disposed of in an off-site landfill. According to correspondence from NCDENR to Mannington in 1990, ceramic tile manufacturing operations generated as much as 20,000 pounds per week of unfired glaze ceramic tile.
- Fired Glaze Ceramic Tile This waste stream consisted of fired ceramic tile and chips that were rejected during quality control inspections because they did not meet technical specifications. Prior to 1990, this waste stream was disposed of in the Ceramic Tile Pile (SWMU 3). From 1990 until the facility stopped operating in 1999, this waste stream was stored on site before it was disposed of in an off-site landfill. According to correspondence from NCDENR to Mannington in 1990, ceramic tile manufacturing operations generated as much as 110,000 pounds per week of fired glaze ceramic tile.
 - Ceramic Process Glaze Overspray Liquid Wastewater This waste stream consists of cooling and wash water from the various tile manufacturing process. The wastewater contains high concentrations of solids, which contain metals. Between 1972 and 1989, the liquid wastewater was passed through two Sludge Settling Ponds (SWMU 2) before it was discharged to Rat Springs Branch. After 1989, a Wastewater Pretreatment System (SWMU 1) processed the liquid wastewater before discharging it to the City of Lexington sewer system.
- Liquid Wastewater Pretreatment System Filter Cake Prior to discharge, the liquid wastewater passes through the Wastewater Pretreatment System (SWMU 1), which includes a filter press as the final pretreatment step. The filter cake is generated by the filter press and is stored on site before it is disposed of in an off-site landfill. According to correspondence from NCDENR to Mannington in 1990, ceramic tile manufacturing operations generated as much as 22,000 pounds per week of filter cake waste.
 - Floor Sweepings This waste stream consists of daily sweepings from the floor of the process area in the main building. This waste stream was stored on site before it was disposed of in an off-site landfill. According to correspondence from NCDENR to Mannington in 1990, ceramic tile manufacturing operations generated as much as 5,000

pounds per week of floor sweepings.

In 1990, samples were collected from each of these waste streams. The samples were analyzed for RCRA primary metals in extracted leachate (EP Toxicity Test via EPA Method 1310), volatile organic compounds (VOCs) (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The samples collected from the fired glaze ceramic tile waste stream did not contain any constituents at concentrations above detection limits. The unfired glaze ceramic tile and the filter cake waste stream samples contained bis(2-ethylhexyl)phthalate at concentrations of 5.6 mg/kg and 1.5 mg/kg, respectively. The floor sweepings samples contained 1,1,1-trichloroethane (0.087 mg/kg), bis(2-ethylhexyl)phthalate (15 mg/kg), and benzyl butyl phthalate (3.6 mg/kg). In addition, the extractable leachate from the floor sweepings sample also contained 0.84 mg/L of lead. All other constituents in all of the waste stream samples were not detected above detection limits (NCDENR, 1990b, 1990c, 1990d, 1993; Aquaterra, 1990b, 1997b).

Prior to January 1, 1989, wastewater treatment conducted at the Porcelanite facility consisted of passing wastewater through a series of two Sludge Settling Ponds (SWMU 2), which allowed solids to settle prior to discharge. Wastewater was generated, primarily during the glazing of ceramic tile at the spray lines. After wastewater had passed through the second settling pond, Mannington discharged wastewater directly into Rat Spring Branch of the Yadkin-Pee Dee River basin, pursuant to National Pollutant Discharge Elimination System (NPDES) permit #NC0006459 (ENSCI, 1992).

On January 1, 1989, after installation of the Wastewater Pretreatment System (SWMU 1), Mannington stopped discharging to Rat Springs Branch and commenced discharging to the City of Lexington sewer system. The pretreatment system installed by Mannington consisted of wastewater holding tanks and open-top solids precipitation tanks with pH control. The solids generated by the precipitation tanks are processed by a filter press. According to facility representatives, the filter cake is stored on site before it is transported to the Davidson County Sanitary Landfill for disposal. According to facility representatives, the solids generated by the filter press are characterized annually to ensure that the wastes are nonhazardous (NCDENR, 1990b, 1990c, 1990d, 1993; Aquaterra, 1990b, 1997b).

Once the wastewater system was operational, the Sludge Settling Ponds (SWMU 2) were no longer needed. As a result, after soil, sludge, and groundwater samples were collected, the Sludge Settling Ponds (SWMU 2) were closed in 1993 by removing the sludge, stabilizing the sludge, returning some of the sludge to SWMU 2, and constructing a cap over the unit to include an asphalt roadway used by facility personnel. According to the closure plan, some of the sludge from the Sludge Settling Ponds (SWMU 2) was deposited in the Ceramic Tile Pile (SWMU 3) and some was taken to the Davidson County landfill. A closure report for the Sludge Settling Ponds (SWMU 2) was submitted to NCDENR in May 1992 and was approved in August 1992 (ENSCI, 1992; NCDENR, 1990b, 1990c, 1990d, 1993; Aquaterra, 1990b, 1997b).

The Ceramic Tile Pile (SWMU 3) received glazed and unglazed, fired and unfired ceramic tile scraps and wastes generated by the manufacturing process operated by Mannington and Porcelanite. In addition, some sludge from the two former Sludge Settling Ponds (SWMU 2) was deposited in SWMU 3 during closure activities. Both the sludge from the Sludge Settling Ponds (SWMU 2) and the glazed and unglazed, fired and unfired ceramic tile scraps and wastes deposited in the Ceramic Tile Pile prior to March 1990 contained significant concentrations of metals, primarily lead and chromium, that are considered hazardous. According to the available file material, as much as 20,000 pounds per week of unfired glaze ceramic tile and 110,000 pounds per week of fired glaze ceramic tile were deposited in the Ceramic Tile Pile (SWMU 3). Since 1990, waste tile has been stored on site in the Off-Speculation Tile Accumulation Roll-Off Container (SWMU 9) before it is disposed of off site in a solid waste landfill. Several assessments of the tile pile waste materials conducted by Porcelanite indicated that lead, methylene chloride, and bis(2-ethylhexyl)phthalate were the primary constituents detected in the tile pile waste materials. Several radionuclides were also detected, including gross alpha, gross beta, radium 226, radium 228, and uranium 238; however, concentrations of these constituents were found to be consistent with concentrations detected in background soil samples from the area (NCDENR, 1990b, 1990c, 1990d, 1993; Aquaterra, 1990b, 1997b).

4.2 Regulatory History

The following is a list of significant regulatory events at the Porcelanite facility:

Prior to January 1, 1989, wastewater treatment conducted at the Porcelanite facility consisted of passing wastewater through a series of two Sludge Settling Ponds (SWMU 2), which allowed solids to settle prior to discharge. After wastewater treatment, Mannington discharged wastewater directly into Rat Spring Branch of the Yadkin-Pee Dee River basin, pursuant to NPDES permit #NC0006459 (ENSCI, 1992).

On February 26, 1990, Charles T. Main, Inc., performed a preliminary site assessment. Based on the findings of this site assessment and the fact that soil and groundwater at the site had likely been impacted, on June 11, 1990, NCDENR issued a Compliance Order with Administrative Penalty (NCDENR, 1990b).

On July 5, 1990, Mannington submitted a consolidated Hazardous Waste Permit Application, Part A to EPA. This permit application listed two hazardous waste management units – a 69,300 cubic yard waste pile and a 8,240 cubic yard surface impoundment. Both units were listed as managing D008 wastes, which are wastes that exhibit the toxicity characteristic for lead. These two units are reported to be the Ceramic Tile Pile (SWMU 3) and the Sludge Ponds (SWMU 2), respectively (Mannington, 1990).

On September 24, 1991, NCDENR issued a Notice of Violation to Mannington for several violations of groundwater monitoring requirements documented during a comprehensive groundwater monitoring evaluation conducted on February 19, 1991 (NCDENR, 1991a).

On May 29, 1992, Mannington submitted a Hazardous Waste Permit Application, Part A, to EPA. This permit application provided the same information as the previous permit application; however, it also indicated that Mannington had two other environmental permits. The first permit listed was a publicly owned treatment works (POTW) permit with the City of Lexington. The second permit was Air Permit #5408R5, which was issued the City of Lexington. The permit application also lists a request for change in the air permit requirements. No other information regarding these permits is provided (Mannington, 1992).

In May 1992, Porcelanite submitted a Closure Plan for the Sludge Settling Ponds (SWMU 2) to NCDENR. On August 13, 1992, NCDENR provisionally approved the Closure Plan for the Settling Ponds. In July 1993, closure of the Sludge Settling Ponds (SWMU 2) was completed and a certified closure report was submitted to NCDENR. No approval of the certified closure report by NCDENR was identified in the available file material (ENSCI, 1992).

In July 1992, Phase I construction work was performed to stabilize the tile pile area/parking area. Phase II work was completed to pipe the Walltown Drain (SWMU 7) (Aquaterra, 1997a, 1997b).

Between 1992 and 1998, numerous investigations of the Ceramic Tile Pile (SWMU 3) were conducted. These included assessments of soil and groundwater, investigation and characterization of the wastes stored in SWMU 3, and performing a treatability study to evaluate possible remediation techniques for the Ceramic Tile Pile (SWMU 3) (Aquaterra, 1997a, 1997b).

According to facility representatives, "dirty" closure of the Ceramic Tile Pile (SWMU 3) was initiated in 1997, prior to approval from NCDENR, and was completed in 1999. The closure of SWMU 3 involved covering and grading the area around the unit to make it level with the facility parking lot, and installation of a vegetated/gravel cap over the impacted area. Recent correspondence to NCDENR from Porcelanite's consultants dated January 28, 2004, indicates that the closure plan is currently being reviewed and has gone through the public notice process (Aquaterra, 1997a, 1997b; Mannington, 2004).

5.0 ENVIRONMENTAL SETTING

5.1 Site Location and Setting

The Porcelanite facility is located at 20 Victor Street, Lexington, North Carolina, in Davidson County. The geographical location of the facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W. The location of the facility is shown on Figure 1. The Porcelanite facility is bounded on the north by the Charles Avenue right of way, the Lexington City Cemetery, and undeveloped wooded property, and on the east by Cotton Grove Road (North Carolina Highway 8). The facility is bounded on the south by Victor Street (State Road 1261) and on the west by the Winston-Salem southbound railway and undeveloped wooded property. The property is located in a relatively rural area but is zoned for light industrial use. The entire Porcelanite property

comprises approximately 7.5 acres and includes a 126,000 square foot building that was used for manufacturing and office space, a small maintenance garage, and a small security shack. The buildings located on the property are not currently in use (Aquaterra, 1997b; Booz Allen, 2003).

5.1.2 Land Use

The Porcelanite facility is currently inactive and has not been used for manufacturing activities in approximately four years. As a result, workers do not regularly occupy the property. According to facility representatives, the only workers who access the property at any time are remediation workers and consultants working on closure activities. In addition, there are no plans to reuse the property in the immediate future (Booz Allen, 2003).

The nearest residences to the facility property are located to the south, across Victor Street. Additionally, a residence and small convenience store is located on the property adjacent to the northeast corner of the facility property. These residences are located approximately 100 feet from the Ceramic Tile Pile (SWMU 3). A middle school is located across Cotton Grove Road, approximately 750 feet northeast of the Ceramic Tile Pile (SWMU 3) (Booz Allen, 2003).

According to the North Carolina Division of Parks and Recreation, no records of any rare or threatened species or critical habitats have been identified at the Porcelanite site. The closest recreational areas are Washington Park and Pool facility and a golf course located approximately 3,200 feet east of the facility (Aquaterra, 1997b).

5.1.3 Topography and Surface Water

The Davidson County area is characterized by gently rolling hills divided by small streams. The Porcelanite facility is situated on a hillside, above a small stream called Walltown Drain (SWMU 7). The elevation of the site varies from approximately 770 feet above mean sea level (MSL) to approximately 730 feet MSL at the Walltown Drain (SWMU 7). Walltown Drain (SWMU 7), a creek that flows northward through the eastern portion of the property, was previously piped to prevent surface water runoff from the Ceramic Tile Pile (SWMU 3) from entering the creek. At the time the piping was installed at Walltown Drain (SWMU 7), a permanent 25-foot easement was conveyed to the City of Lexington. A sanitary sewer line and storm sewer lines also run parallel to Walltown Drain (SWMU 7) northward across the eastern portion of the property and a permanent 25-foot easement for these lines was also conveyed to the City of Lexington (Aquaterra, 1997b).

Runoff from the site discharges primarily to the Walltown Drain (SWMU 7). The Walltown Drain runs north approximately 0.5 miles to Rat Springs Branch, which flows to the northwest approximately 2 miles to Swearing Creek, a tributary of the Yadkin River. As of 1997, the Winston-Salem Regional Water Quality Office classified Rat Springs Creek as a "C" surface water designation, which is applied to freshwater protected for secondary recreation, fishing, aquatic life propagation and survival, and wildlife (Aquaterra, 1997b).

The Walltown Drain (SWMU 7), located at the toe of the Ceramic Tile Pile (SWMU 3), was enclosed in pipe in 1992/1993 under a Nationwide 26 permit from the U.S. Army Corps of Engineers (USACE). This permit was issued based on the determination by the USACE that no significant wetlands were present at the site (Aquaterra, 1997b).

5.1.4 Geology and Hydrogeology

The Porcelanite site is located in the Lexington area of Davidson County, North Carolina, which lies within the eastern portion of the Charlotte litho-tectonic belt in the Piedmont Physiographic Province. This is a zone of regionally metamorphosed amphibolite facies igneous rocks, bounded on the east and west sides by shear zones. The site is underlain by Late Proterozoic-aged undivided metavolcanic rocks. Bedrock lithologies at the site consist of massive, quartz-potassium feldspar-muscovite granite to granodiorite that could be associated with the Pennsylvanian to Permian-aged Churchland Pluton or the Devonian-aged Yadkin Pluton. No significant ores deposits have been recognized or mined extensively in the immediate Lexington area. However, silver, lead, cobalt, zinc, gold and copper have been recognized and mined in areas located 5 to 20 miles south and east of the site (USEPA, 2002).

The predominant lithology at the site has been described as pink to tan, silty sand-textured residual soils (saprolite) weathered in place from the underlying bedrock. The saprolite grades from intensely weathered rock near the surface to slightly weathered rock at depth. In some areas, sandy clay and clayey sand soils have developed in the upper 5 to 10 feet of saprolite (USEPA, 2002).

Groundwater occurs in two interconnected zones underlying the site. These zones included the unconsolidated (saprolite) water table aquifer and the underlying fractured bedrock aquifer. Groundwater in the water table aquifer is transmitted in a generally laminar fashion through the B- and C- soil zone horizons. These zones tend to have a fairly uniform porosity and permeability and have a relatively large storage capacity in the regolith overlying fractured bedrock. The two water-bearing zones do not appear to have a confining unit separating them. The saprolite/regolith zone acts as the storage reservoir for the underlying bedrock zone, and recharges the bedrock aquifer in response to water withdrawal (USEPA, 2002).

Based on previous site investigations, groundwater saturated soils in the uppermost aquifer occur at a depth of about 5.5 to 24 feet below ground surface (bgs) and extend to the top of the partially weathered rock unit at a subsurface depth of between 27 and 50 feet. From previous investigations, groundwater in the water table aquifer was found to be flowing from the southwest towards the northeast under a hydraulic gradient of about 0.024 to 0.038 feet/foot. There is a pronounced flattening of the gradient in the area under the building, the parking lot, and the capped Ceramic Tile Pile (SWMU 3) before the gradient generally steepens on the northeastern side of the property as groundwater approaches the tributary stream known as the Walltown Drain branch (ENSCI, 1993).

According to a memorandum by NCDENR dated January 12, 1998, 19 residences were identified immediately north of the facility and at least seven of these residences have groundwater wells. Sampling data indicate that these wells have not been impacted; however, they are located hydraulically downgradient from the facility (NCDENR, 1998a).

Initially, groundwater monitoring wells were installed in September 1989 in response to a request by NCDENR to investigate possible groundwater contamination. It appears that these wells included MW-1 through MW-6. Prior to May 1992, MW-5 and MW-6 were abandoned. In April 1990, MW-7 and MW-8 were installed and MW-9 thru MW-13 were drilled at some point between 1990 and 1992. Well logs indicate that wells MW-14 through MW-26 were installed in August or September 1992. Well MW-28 was installed in June 1993. Wells MW-3A, MW-7A, MW-21A, MW-22A, and MW-23A were installed in September 1998. These wells were installed to replace wells that had been previously abandoned. MW-26A was installed in May 1999 to replace well MW-26, which was abandoned in 1996 or 1997 (USEPA, 2002).

Of the eighteen monitoring wells currently on site, fourteen are completed into the saprolite/shallow aquifer and wells MW-9, MW-11, MW-19, and MW-28 are completed in the bedrock/deeper saprolite aquifer. The wells are all 2-inch PVC with 5 to 15 feet of 0.010 slotted PVC screen (USEPA, 2002).

In November 1992, single slug tests were conducted on fifteen monitoring wells. Results from the tests indicated a derived aquifer permeability of 0.40 ft/d. Groundwater flow velocity was calculated to range from 0.030 ft/d to 0.054 ft/d. Groundwater flows toward the northeast at an average hydraulic gradient of 0.04 ft/ft. The gradient steepens on the northeastern side of the property as groundwater approaches the tributary stream known as Walltown Drain. Recharge to the water table zone apparently occurs as surface water infiltration over the topographically higher regions southwest of the site (USEPA, 2002).

The most recent groundwater sampling event conducted at the site occurred in March 2003 and involved sampling of 19 wells (MW-1, MW-3A, MW-7A, MW-8, MW-9D, MW-10, MW-11D, MW-12D, MW-12, MW-14, MW-18, MW-19D, MW-21A, MW-22A, MW-23A, MW-24, MW-25, MW-26A, and MW-28D). It should be noted that MW-13 could not be sampled because the well was found to be dry. Groundwater samples were analyzed for boron, cobalt, fluoride, lead, sulfate, iron, and aluminum. Results from analysis of the groundwater samples indicate that boron was detected in nine wells at concentrations exceeding the 15 North Carolina Administrative Code 2L drinking water standards (NC 2L DWS) of 0.32 mg/L (MW-3A, MW-9, MW-12, MW-14, MW-22A, MW-23A, MW-25, MW-26A, and MW-28). The maximum detected concentration was 32.1 mg/L in MW-26A, which is located northeast of the Sludge Settling Ponds (SWMU 2). In addition, lead was detected above the NC 2L DWS of 0.015 mg/L in one well (MW-14) at a concentration of 0.028 mg/L (Mannington, 2004).

6.0 SWMU AND AOC DESCRIPTIONS

Based on the PR and information gathered during the VSI, a total of 11 SWMUs and three areas of concern (AOCs) were identified at the Porcelanite facility. The names of these SWMUs and AOCs are listed in Attachment 1 and their locations are identified on Figure 2. Photographs of the SWMUs taken during the VSI are included in Appendix B.

6.1 SWMU 1 - Wastewater Pretreatment System

- a. Holding Tanks
- b. Precipitation Tanks
- c. Filter Press
- 4. Sump

TYPE OF UNIT: Wastewater Pretreatment System

PERIOD OF OPERATION: January 1989 to present

PHOTOGRAPH NUMBER(S): 24 through 30

PHYSICAL DESCRIPTION AND CONDITION:

Historically, wastewater generated by the tile manufacturing operations was discharged to the Sludge Settling Ponds (SWMU 2). In 1988, a substantial modification of the wastewater treatment system at the Porcelanite facility occurred – all wastewater that had previously been discharged to the Sludge Ponds (SWMU 2) was channeled to a new Wastewater Pretreatment System (SWMU 1) (ENSCI, 1993).

The Wastewater Pretreatment System (SWMU 1) is located in a 60-foot long by 30-foot wide by 25-feet high room in the northwest corner of the main process building. The floor of this room was covered in tile, and a sump six inches wide and 12 inches deep bisects the room into eastern and western halves. According to facility representatives, this sump collects wastewater that is spilled during treatment so it can be pumped back into the holding tanks. The two halves of the room form two distinct areas – the holding tank area in the eastern half and the precipitation tank/filter press area in the western half. The holding tank area is a rectangular area surrounded by a six-foot high, concrete secondary containment wall that is 55 feet long and 25 feet wide. This area contains two 3,000-gallon fiberglass tanks that receive wastewater from the process area. According to facility representatives, wastewater is primarily generated by spray lines used to cool the fired tile that exits the kilns. The tiles were conveyed from the tile presses via a conveyor belt to the spray lines where water, glaze and stains were applied to green tile before it was sent to the kilns. The water from the spray heads were captured beneath the conveyor belt through floor grates that covered a series of subsurface trenches. This wastewater is conveyed to the holding tanks by a series of open trenches and grate-covered sumps that make up the Spray

Line Area Sumps (SWMU 11) (Booz Allen, 2003).

The western portion of the wastewater treatment room contains four precipitating tanks of various sizes (estimated to be between 250 and 500 gallons) located in the northwestern corner and a filter press located in the west-central portion of the room. Wastewater from the holding tanks is pumped to the precipitation tanks where solids are allowed to settle. Flocculent is added to increase the rate of precipitation and pH-adjusting solutions are added. At the time of the VSI, four drums of chemicals were stored near the precipitation tanks. The first two drums – labeled Selfloc and PolySep 1127 — were described as a flocculent by facility representatives. The second two drums — one unlabeled and one labeled as caustic soda — were described as pH-adjusting solutions by facility representatives. Treated wastewater from the precipitation tanks is discharged to the City of Lexington sewer system. In the past, some of the treated wastewater was reclaimed and returned to the spray lines. Sludge from the precipitation tanks is pumped to the filter press, where additional water is extracted from the solids by compressing it into a filter cake. The extracted water is returned to the precipitating tanks. The filter cake leaves the filter press via a conveyer belt that drops it through a hole in the western wall of the main process building, into the Filter Cake Waste Pile Area (SWMU 9) (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

Because manufacturing operations no longer occur at the site, the unit currently only treats small amounts of rainwater that accumulate in the Spray Line Area Sumps (SWMU 11) due to leaks in the roof of the process building. Previously, this unit received wastewater that was primarily generated by spray lines associated with the tile manufacturing operation. According to facility representatives, the wastewater contains high concentrations of solids – primarily clay and silica raw materials used to make the tile – and overspray from the glazing of fired tile. Prior to 1990, the clay and silica contained hazardous constituents such as lead and chromium; however, it is unclear if this unit received wastewater contaminated with metals. If this unit did receive wastewater contaminated with metals, it is possible that it would be characteristic for toxicity, most likely for lead (D008); however, no sampling data are available to confirm this possibility. In addition, the pH of the incoming wastewater is usually in the range of 4 to 6. As a result, caustic soda is added to neutralize the pH to a nominal range of 7 to 8 before discharge to the sanitary sewer system (ENSCI, 1993; Booz Allen, 2003; Mannington, 2004).

RELEASE PATHWAYS:

Air (L) Surface Water (L) Soil (M)
Groundwater (L) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

At the time of the VSI, this unit was in poor condition. Numerous stains were observed both inside the secondary containment and on the tile floor beneath the precipitating tanks and the filter press. In addition, the tile floor was cracked and deteriorating in several places and a substantial amount of an unknown white powdery residue was observed on the floor and

secondary containment walls. Also, a significant amount of liquid was observed in the sump and on the tile floor. The source of the liquid could not be determined; however, it appeared that the liquid was untreated or partially treated wastewater that had spilled or leaked from the precipitating tanks. Finally, the bung on the metal drum containing PolySep 1127 was open and a significant amount of rust was observed on the top and sides of the drum. In general, very poor housekeeping procedures were observed associated with the Wastewater Pretreatment System (SWMU 1) (Booz Allen, 2003).

RECOMMENDATION:	No Further Action	()
	Confirmatory Sampling	$(X)^{1}$
	RFI Necessary	()

COMMENTS:

¹ Because of the extremely poor housekeeping procedures associated with this unit, the poor structural condition of the floor (e.g., cracks), and the extensive staining that was observed, it is recommended that sampling be performed to further investigate the potential for release of hazardous constituents. Most likely, this sampling should include wipe sampling of the floor and walls in the areas of staining, an investigation to determine the integrity of the sump and floor of the unit, and, if it is determined that the sump or floor integrity has been compromised, sampling of the soils beneath the unit. Samples should be analyzed for RCRA metals, specifically lead.

6.2 SWMU 2 - Sludge Settling Ponds

TYPE OF UNIT: Surface Impoundments

PERIOD OF OPERATION: 1972 to 1989

PHOTOGRAPH NUMBER(S): 11

PHYSICAL DESCRIPTION AND CONDITION:

SWMU 2 consisted of two surface impoundments of unknown dimensions located in the northwestern corner of the property, between the northern property boundary and the northern wall of the main building. Calculations indicate a total volume for both ponds to be approximately 8,240 cubic yards, consisting of approximately 3,625 cubic yards in the western pond and approximately 4,615 cubic yards in the eastern pond. Prior to January 1, 1989, wastewater treatment conducted at the Porcelanite facility consisted of passing wastewater through a series of two Sludge Settling Ponds (SWMU 2), which allowed solids to settle prior to discharge. After wastewater passed through the second (eastern) settling pond, Mannington discharged wastewater directly into Rat Spring Branch of the Yadkin-Pee Dee River basin pursuant to NPDES permit #NC0006459 (ENSCI, 1993, 1994).

In July 1993, closure of the Sludge Settling Ponds (SWMU 2) was completed according to the approved closure plan and a certified closure report was submitted to NCDENR. As a result of closure activities, sludge was removed from both sludge ponds, some of the surrounding soils were excavated, all piping associated with the sludge ponds was removed, and an asphalt cap was placed over the area. According to facility representatives, the cap installed during closure of the Sludge Settling Ponds (SWMU 2) included a 30-millimeter synthetic liner and an asphalt top layer. According to a September 1992 Consent Agreement, sludge from the Sludge Settling Ponds (SWMU 2) was deposited in the Ceramic Tile Pile (SWMU 3). At the time of the VSI, the asphalt cover appeared to be in good condition with no significant cracks, staining, or erosion identified (ENSCI, 1993, 1994).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

The Sludge Settling Ponds (SWMU 2) received process wastewater generated by spray lines associated with the tile manufacturing operation. According to facility representatives, the wastewater contained high concentrations of solids – primarily clay and silica raw materials used to make the tile – and overspray from the glazing of fired tile. Prior to 1990, the clay and silica contained hazardous constituents such as lead and chromium. In addition, according to facility representatives, the pH of the incoming wastewater is usually in the range of 4 to 6. A site assessment of the facility, prepared by Mannington, and dated April 12, 1990, consisted of a field investigation in which samples were collected from the sludge ponds. TCLP analysis results detected leachable lead levels in the sludge from the sludge ponds ranging from 230 mg/L to

1,230 mg/L. All VOCs and semi-volatile organic compounds (SVOCs) were below detection limits with the exception of methylene chloride, acetone, and carbon disulfide. As a result, the solid waste (i.e., sludge) disposed of in the sludge ponds is a characteristic hazardous waste (D008) because samples from three different areas contain TCLP lead levels in excess of the regulatory limit of 5.0 mg/L (NCDENR, 1990b; ENSCI, 1993, 1994).

RELEASE PATHWAYS:

Air (L) Surface Water (M) Soil (H)

Groundwater (H) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

Prior to initiating closure activities at this unit, groundwater monitoring results indicated the presence of cadmium, iron, lead, manganese, nickel, and zinc in shallow and deep wells at concentrations that exceeded the North Carolina (NC) 2L Drinking Water Standards (DWSs). Specifically, groundwater samples collected from monitoring wells MW-9, MW-11, MW-12, and MW-13 all contained exceedances of the NC 2L DWSs during the 1990, 1991, and/or 1992 groundwater sampling events (ENSCI, 1993, 1994; NCDENR, 1999a, 1999b, 1999d).

In addition, sample analysis results detected leachable lead levels in the sludge from the sludge ponds ranging from 230 mg/L to 1,230 mg/L. These concentrations exceed the TCLP regulatory limit of 5.0 mg/L, which supports the conclusion that lead in sludges from SWMU 2 may have been released to subsurface soils and, ultimately, to groundwater (ENSCI, 1993, 1994; NCDENR, 1999a, 1999b, 1999d).

The initial closure for the Sludge Settling Ponds (SWMU 2) involved stabilizing the sludges in the ponds using Portland cement. The stabilization process reduced the leachable (TCLP) concentrations of the metals in the sludge. After stabilization, an asphalt cap was placed over the former ponds. At the time of the VSI, the asphalt cover constructed over the Sludge Settling Pond (SWMU 2) area appeared to be in good condition with no significant cracks, staining, or erosion identified (ENSCI, 1993, 1994; NCDENR, 1999a, 1999b, 1999d; Aquaterra, 1997a, 1997c; Booz Allen, 2003). Confirmatory samples collected outside the capped ponds indicated the presence of contaminants of concern above the unrestricted use level. At one location SS-2 outside the northeastern fence line, the surface soil contained 6.64 mg/L of leachable lead, which exceeds the 5 mg/L TCLP regulatory limit. Based upon the results of the confirmatory sampling and a risk evaluation of the contaminants of concern remaining in the soil outside the capped area additional contaminated soil was removed. This removal action and risk evaluation is documented in the July 14, 2004 Revised Closure Plan for the Former Settling Ponds.

Soil sampling conducted in the Area of Discharge from the Sludge Settling Ponds to Rat Springs Branch (AOC 1), which received wastewater discharged from SWMU 2 until 1990, identified concentrations of RCRA metals, primarily lead, above background

concentrations.	Section 6.14 provides additional discussion of soil contamination
associated with	

RECOMMENDATION:	No Further Action Confirmatory Sampling RFI Necessary	(X) ¹ ()
	Kri Necessary	()

¹ A No Further Action recommendation for SWMU 2 is contingent upon continued compliance with the approved closure and post-closure plans.

6.3 SWMU 3 - Ceramic Tile Pile

TYPE OF UNIT: Waste Pile

PERIOD OF OPERATION: 1950s or 1960s to Present (off line-1993; capped-1995)

PHOTOGRAPH NUMBER(S): 2 through 5

PHYSICAL DESCRIPTION AND CONDITION:

The Ceramic Tile Pile (SWMU 3) is located east of the main process building and immediately west of the Walltown Drain (SWMU 7). The unit extends from approximately 12 feet from the southern fence line to the Area of Discharge from the Sludge Settling Ponds to Rat Springs Branch (AOC 1). The total volume of the unit is approximately 260,000 tons (Transmittal of Revised Closure and Post-Closure Care Plans, July 30, 1997). The facility used the unit to store waste glazed and unglazed ceramic tile, fired and unfired ceramic tile scraps, and some sludge from the Sludge Settling Ponds (SWMU 2). The facility initiated "dirty" closure (i.e., wastes were to be left in place) of the unit in 1997 (Closure and Post-closure Care Plan, April 1, 1997). The unit is currently capped with a "flat top surface cap" and a "slope surface cap" using a clayey silt to silty clay soil. The top portion of the unit is level with the facility parking lot and has gravel covering the majority of the top of the unit. The sloped sides of the unit are covered with native vegetation (Aquaterra, 1997b; Mannington, 2004; NCDENR, 1997a, 1997b; Booz Allen 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

Prior to 1990, these waste streams were disposed of in the Ceramic Tile Pile:

- Unfired Glaze Ceramic Tile This waste stream consisted of unfired ceramic tile and chips that were rejected during quality control inspections because they did not meet technical specifications. According to correspondence from NCDENR to Mannington in 1990, as much as 20,000 pounds per week of unfired glaze ceramic tile were generated by ceramic tile manufacturing operations.
 - Fired Glaze Ceramic Tile This waste stream consisted of fired ceramic tile and chips that were rejected during quality control inspections because they did not meet technical specifications. According to correspondence from NCDENR to Mannington in 1990, ceramic tile manufacturing operations generated as much as 110,000 pounds per week of fired glaze ceramic tile.

In 1990, Mannington stopped depositing waste tile material in SWMU 3 (NCDENR, 1990d, 1990e, 1990f).

A site assessment of the facility, prepared by Mannington, and dated April 12, 1990, consisted of a field investigation where samples were collected from the Ceramic Tile Pile (SWMU 3). Sample analysis results detected leachable lead levels in the ceramic tile pile ranging from 9.26 mg/L to 79.9 mg/L. As a result, the solid waste (i.e., ceramic tile) disposed of in the ceramic tile pile is a characteristic hazardous waste (D008) in that samples from three different areas contained TCLP lead levels in excess of the regulatory limit of 5.0 mg/L (NCDENR, 1990b).

In addition, during closure activities associated with the Sludge Settling Ponds (SWMU 2), an unknown quantity of partially stabilized sludge was deposited on the Ceramic Tile Pile (SWMU 3). According to the closure report for the Sludge Settling Ponds (SWMU 2), the partially stabilized sludge exceeded the NC 2L DWS for mercury and zinc and the TCLP regulatory limit for lead at the time it was deposited in the Ceramic Tile Pile (SWMU 3) (Aquaterra, 1997b; Mannington, 2004; NCDENR, 1997a, 1997b; Booz Allen 2003).

RELEASE PATHWAYS:

Air (L) Surface Water (H) Soil (H)
Groundwater (H) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

The Ceramic Tile Pile received glazed and unglazed, fired and unfired ceramic tile scraps and wastes generated by the manufacturing process operated by Mannington and Porcelanite. In addition, some sludge was deposited from the two former Sludge Settling Ponds (SWMU 2) during closure activities. Both the sludge from the Sludge Settling Ponds (SWMU 2) and the glazed and unglazed, fired and unfired ceramic tile scraps and wastes deposited in the Ceramic Tile Pile (SWMU 3) prior to March 1990 contained significant concentrations of metals, primarily lead and chromium, that are considered hazardous based on TCLP results (Aquaterra, 1997b; Mannington, 2004; NCDENR, 1997a, 1997b; Booz Allen 2003).

Groundwater monitoring and shallow aquifer assessments have been conducted at this site since 1989. A total of twenty-six groundwater monitoring wells were installed for detection and assessment monitoring around the former holding ponds and the waste ceramic tile pile. Exceedences of groundwater standards (e.g., MCLs and NC 2L DWS) have been detected in the monitoring wells, so the wells are monitored on a quarterly basis. According to a 1999 Annual Groundwater Assessment Report, the two wastewater holding ponds were closed in 1993 and the ceramic tile pile was closed at this point. Evaluations of the waste management units indicated that both units are RCRA-regulated units due to the leachable lead content of the waste. A total of 18 groundwater monitoring wells are currently monitoring groundwater at the site. In the December 1999 sampling event, boron was the only targeted compound analyzed for and it was detected in 3 wells (MW-1, MW-22< and MW-23). Of those three wells, only MW-22 was above the NC 2L groundwater standards at 8.54 mg/l. Also, during the other quarters of that year, seven targeted analytes were detected in excess of the NC 2L groundwater standards: boron, cobalt, manganese, zinc, titanium, vanadium, and gross beta radionuclides. Boron was detected above these standards in 14 wells (MW-3, MW-9, MW-10, MW-12, MW-13, MW-14, MW-18,

MW-19, MW-22, MW-23, MW-24, MW-25, MW-26A, and MW-28). Cobalt was detected in three wells (MW-1, MW-12, and MW-13). Manganese was detected above the standards in five wells (MW-9, MW-12, MW-13, MW-14, and MW-28). Zinc was detected above the standards in two wells (MW-9 and MW-12). Titanium was detected above the standards in four wells (MW-7, MW-21, MW-25, and MW-26A). Vanadium was detected above the standards in three wells (MW-7, MW-22 and MW-25). Fluoride was not detected above the standards during the 1999 sampling events. Only MW-10 has consistently shown any exceedence for fluoride. Gross Beta was detected above the standards in four wells (MW-9, MW-12, MW-13, and MW-14). Gross beta is routinely detected in every sample including MW-1, which is upgradient of the site. Three of these compounds (cobalt, gross beta and vanadium) do not have a codified standard so the method detection limit is considered the standard. VOCs were not detected in any constituents during the September sampling period in 1999 (Aquaterra, 1997b, 2000; Mannington, 2004; NCDENR, 1997a, 1997b; USEPA, 2002; Booz Allen 2003).

Finally, although limited sampling data were identified in the available file material, it is likely that runoff from the Ceramic Tile Pile (SWMU 3) to the Walltown Drain (SWMU 7), which drains to the Area of Discharge from the Sludge Settling Ponds to Rat Springs Branch (AOC 1), is a concern. This runoff is likely to have resulted in a release of hazardous constituents to soil/sediment and surface water associated with SWMU 7 and AOC 1. Sections 6.7 and 6.14 provide additional discussion of the releases associated with these units.

RECOMMENDATION: No Further Action Confirmatory Sampling RFI Necessary	(X) ¹ ()
---	----------------------

¹ A No Further Action recommendation for SWMU 3 is contingent upon continued compliance with the approved closure and post-closure plans.

6.4 SWMU 4 - 20 Cubic Yard Sludge Roll-Off Container

TYPE OF UNIT: Roll-Off Container

PERIOD OF OPERATION: Unknown to present

PHOTOGRAPH NUMBER(S): 15

PHYSICAL DESCRIPTION AND CONDITION:

This unit was situated adjacent to the western wall of the main building, approximately 40 feet south of SWMU 9. SWMU 4 consisted of a concrete pad with no secondary containment where 20 cubic yard steel roll-off containers were placed to receive sludge filter cake from the Wastewater Pretreatment System (SWMU 1). The concrete pad was approximately 15 feet wide and 40 feet long. At the time of the VSI, no roll-off box was present at SWMU 4 and the concrete pad was in fair condition. Some cracks in the concrete pad and some vegetation growing in the cracks were noted during the site visit (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

According to facility representatives, a small front-end loader (e.g., Bobcat®) was used to transfer the sludge from the Filter Cake Waste Pile Area (SWMU 9) to roll-off containers in SWMU 4. Once the roll-off container was full, it was sent to the Davidson County landfill for disposal. According to correspondence from NCDENR to Mannington in 1990, as much as 22,000 pounds per week of fired glaze ceramic tile were generated by ceramic tile manufacturing operations (Booz Allen, 2003).

In 1990, samples were collected from the filter cake and were analyzed for RCRA primary metals in extracted leachate (EP Toxicity via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The filter cake waste stream samples contained bis(2-ethylhexyl)phthalate at a concentration of 1.5 mg/kg. All other constituents were not detected above detection limits. Based on these sampling results, it was determined by NCDENR that the filter cake waste stream was nonhazardous waste that could be disposed of in a Subtitle D landfill. According to facility representatives, the solids generated by the filter press were characterized annually to ensure that the wastes are nonhazardous (USEPA, 1993).

RELEASE PATHWAYS: Air (L) Surface Water (L)

Soil (L)

Groundwater (L)

Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this

unit have ever occurred. Fin staining) was observed.	ally, at the time of the VSI,	no visual evidence of a release (i.e.,
RECOMMENDATION:	No Further Action Confirmatory Sampling RFI Necessary	(X) ()

6.5 SWMU 5 - 20 Cubic Yard Floor Sweeping Roll-Off Container

TYPE OF UNIT: Roll-Off Container

PERIOD OF OPERATION: Unknown to 1999

PHOTOGRAPH NUMBER(S): 8

PHYSICAL DESCRIPTION AND CONDITION:

This unit was located adjacent to the eastern central wall of the main process building and consisted of a 20 cubic yard steel roll-off container placed on the asphalt parking area. Floor sweepings from the main process building, containing dust, small tile pieces, and other wastes spilled on the floor during tile manufacturing operations, and were swept up daily and deposited in SWMU 5. According to facility representatives, a tarpaulin was used to cover the top of the roll-off container. At the time of the VSI, the area where the roll-off container formerly was placed appeared to be in good condition (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

The waste stream managed by this unit consisted of daily sweepings from the floor of the process area in the main building. According to correspondence from NCDENR to Mannington in 1990, as much as 5,000 pounds per week of floor sweepings were generated by ceramic tile manufacturing operations.

In 1990, samples were collected and were analyzed for RCRA primary metals using the EP Toxicity Test (EP Toxicity via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The floor sweepings samples contained 1,1,1-trichloroethane (0.087 mg/kg), bis(2-ethylhexyl)phthalate (15 mg/kg), and benzyl butyl phthalate (3.6 mg/kg). In addition, the extractable leachate from the floor sweepings sample also contained 0.84 mg/L of lead. Based on these sampling results, it was determined by NCDENR that the floor sweepings were not hazardous waste (USEPA, 1993; NCDENR, 1990d, 1990e, 1990f).

RELEASE PATHWAYS: Air (L) Surface Water (L) Soil (L) Groundwater (L) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. Finally, at the time of the VSI, no visual evidence of a release (i.e., staining) was observed.

RECOMMENDATION:	No Further Action Confirmatory Sampling RFI Necessary	(X) ()

6.6 SWMU 6 - Baghouse

TYPE OF UNIT: Baghouse

PERIOD OF OPERATION: 1960's to 1999

PHOTOGRAPH NUMBER(S): 17

PHYSICAL DESCRIPTION AND CONDITION:

The baghouse was historically located at the southwest corner of the main process building. The remaining footprint of the baghouse is located above a concrete pad, which is approximately 2 feet high by 30 feet long by 8 feet wide. The baghouse was used to collect particulates originating from the process area generated during production of the green tile. The unit operated under Air Permit #5408R5, which was issued by the City of Lexington. The dates of this permit are unknown. No information on the physical characteristics of this unit were identified in the available file material and facility representatives could not provide any specific details. In addition, no information regarding the waste management practices associated with this unit, such as handling and disposal of spent filters, was available. Finally, no information on permit conditions or violations was identified in the available file material. According to facility representatives, the particulates captured by this unit were recycled back into the raw materials stage of the tile production process. The unit was reportedly removed in 1999 or 2000 and was not present at the time of the VSI. No information regarding the removal of this unit was identified in the available file material and facility representatives could only provide the removal date (Booz Allen, 2003; Mannington 1992).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

According to facility representatives, this unit captured dust generated during production of the green tile, primarily from the pressing operations that molded raw materials into various sizes of tile. Facility representatives also indicated that the dust collected by this unit was generated prior to addition of lead-containing glaze. Therefore, no hazardous waste was managed by this unit (Booz Allen, 2003; Mannington 1992).

RELEASE PATHWAYS: Air (M) Surface Water (L) Soil (L) Groundwater (L) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. At the time of the VSI, no visual evidence of a release (i.e., staining)

was observed. However, it is important to note	that facility representatives and the file material
provided very limited information on this unit.	

RECOMMENDATION:	No Further Action Confirmatory Sampling RFI Necessary	(X) () ()	
	RFI Necessary	()	

6.7 SWMU 7 - Walltown Drain

TYPE OF UNIT: Surface Water Drainage Ditch

PERIOD OF OPERATION: 1960s to present

PHOTOGRAPH NUMBER(S): 6, 9, and 10

PHYSICAL DESCRIPTION AND CONDITION:

Walltown Drain runs north approximately 0.5 miles to Rat Springs Branch, which flows to the northwest approximately 2 miles to Swearing Creek, a tributary of the Yadkin River. As of 1997, the Winston-Salem Regional Water Quality Office classified Rat Springs Creek as a "C" surface water designation (Aquaterra, 1997 - Tile Pile closure plan). The Walltown Drain was enclosed in pipe in 1992/1993 under a Nationwide 26 permit from the USACE. This permit was issued based on the determination by the USACE that no significant wetlands were present at the site (Aquaterra, 1997 - Tile Pile closure plan). The piping was installed to prevent surface water runoff from the Ceramic Tile Pile (SWMU 3) to discharge into the creek. At the time the piping was installed at Walltown Drain, a permanent 25-foot easement was conveyed to the City of Lexington. A sanitary sewer line and storm sewer lines also run parallel to Walltown Drain (SWMU 7) northward across the eastern portion of the property and a permanent 25-foot easement for these lines was also conveyed to the City of Lexington (Aquaterra, 1997b, 2000; Booz Allen, 2003; Mannington, 2004).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

This unit was not designed to manage or handle waste. This unit is a tributary that was located on the facility property prior to the property being purchased. The Ceramic Tile Pile (SWMU 3) is located southwest and adjacent to the Walltown Drain. The ceramic tile pile is up gradient of the Walltown Drain. Prior to its enclosure, runoff from the ceramic tile pile and facility entered into the Walltown Drain. As a result, SWMU 7 may have received hazardous constituents from the waste tile fragments primarily consisting of RCRA metals such as lead (Booz Allen, 2003).

RELEASE PATHWAYS: Air (L) Surface Water (H) Soil (H)
Groundwater (M) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

There are four groundwater monitoring wells located adjacent to the Walltown Drain, which were installed primarily to monitor the Ceramic Tile Pile (SWMU 3) but are located in the vicinity of SWMU 7. The four wells are identified as MW-7, MW-8, MW-21, and MW-22. Groundwater samples, taken during the Spring and Summer 1994 monitoring event, revealed exceedances of manganese, iron, and tin. While these exceedances were for nonhazardous

constituents only, the NCDENR requested that the facility obtain surface water and sediment samples from the area of the Walltown Drain tributary in 1998. Specifically, the facility was asked to sample the up gradient and downgradient areas of the Walltown Drain (before and after the enclosed areas). The facility conducted the sampling event March 1999 in response to the NCDENR request. The sample results for the surface water identified increases in levels of RCRA metals and other identified elements in the downgradient (DG) samples versus the up gradient (UG) samples. The increases identified include levels of barium at 0.059 mg/l UG to 0.127 mg/l DG; boron at below detection limit (BDL) UG to 1.06 mg/l DG (which exceeds the North Carlina (NC) 2L levels); copper at 0.010 mg/l UG to 0.110 DG; iron at 1.34 mg/l UG to 2.58 mg/l DG (which exceeds the NC 2L levels); and zinc at 0.035 mg/l UG to 0.142 mg/l DG. The sample results for the sediment identified increases in levels of RCRA metals, metals, and other identified elements in the downgradient samples versus the up gradient samples. The increases identified include levels of barium at 49.9 mg/l UG to 93.9 mg/l DG; boron at 13.7 mg/l UG to 33.0 mg/l DG (which exceeds the North Carolina soil screening levels (SSL)); chromium at 12.9 mg/l UG to 20.7 mg/l DG; lead at 48.6 mg/l UG to 125 mg/l DG; nickel at 4.00 mg/l UG to 5.03 mg/l DG; barium TCLP at 0.349 mg/l UG to 0.988 mg/l DG; and lead TCLP at 0.013 mg/l UG to 0.130 mg/l DG. These levels of increase identify potential releases originating from the facility that have impacted the Walltown Drain and its recipient waters (NCDENR, 1998b, 1999c; Aquaterra, 1997b; USEPA, 2002; Mannington, 2004).

Results of a 1997 surface soil sampling investigation detected lead at a maximum concentration of 12,700 mg/kg in soils in the northern edge of SWMU 7. In addition, the maximum detected leachable lead concentration from a soil sample was 93.5 mg/L, which exceeds the regulatory limit of 5 mg/L. The location of these maximum detected concentrations is in the northeastern corner of the property (Aquaterra, 1997b; Mannington, 2004; NCDENR, 1997a, 1997b; Booz Allen 2003).

RECOMMENDATION:	No Further Action Confirmatory Sampling RFI Necessary	() () (X) ¹
	KI-I Mcccssm'	()

¹ Because elevated levels of RCRA metals, specifically lead, have been identified in the soil in the northern portion of this unit, a more thorough investigation of the Walltown Drain (SWMU 7) is recommended to determine the extent of contamination. Specifically, it is important to more fully investigate the downgradient contamination to determine the furthest extent of the release.

6.8 SWMU 8 - Off-Specification Tile Accumulation Roll-Off Container

TYPE OF UNIT: Roll-Off Container

PERIOD OF OPERATION: Unknown to 1999

PHOTOGRAPH NUMBER(S): 12

PHYSICAL DESCRIPTION AND CONDITION:

This unit was located on the asphalt roadway covering the area formerly occupied by the Sludge Settling Ponds (SWMU 2), adjacent to the north central wall of the main process building. This unit consisted of a 40 cubic yard roll-off container placed on an asphalt surface. According to facility representatives, once waste tile was no longer deposited in the Ceramic Tile Pile (SWMU 3), this unit was used to store broken and off-specification tile from the manufacturing operation before it was disposed of off site. At the time of the VSI, the roll-off container associated with this unit was no longer present at the facility; however, a metal frame with corrugated metal roof was observed in the unit location. Facility representatives indicated that the metal frame roof had been installed to cover the roll-off container at an unknown date (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

According to several RCRA Inspection Reports, since closure of the Ceramic Tile Pile (SWMU 3) in 1990, ceramic tile wastes accumulated at the facility were stored in this unit before it was transported to the Davidson County landfill for disposal. The waste stream managed by this unit consisted of unfired and fired ceramic tile and chips that were rejected during quality control inspections because they did not meet technical specifications. According to correspondence from NCDENR to Mannington in 1990, as much as 20,000 pounds per week of unfired glaze ceramic tile and 110,000 pounds per week of fired glaze ceramic tile were generated by ceramic tile manufacturing operations (USEPA, 1991; NCDENR, 1990d, 1990e, 1990f).

In 1990, samples were collected from each of the fired and unfired tile waste streams. The samples were analyzed for RCRA primary metals in extracted leachate (EP toxicity characteristic via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The samples collected from the fired glaze ceramic tile waste stream did not contain any constituents at concentrations above detection limits. The unfired glaze ceramic tile waste stream samples contained bis(2-ethylhexyl)phthalate at concentrations of 5.6 mg/kg. All other constituents in all of the waste stream samples were not detected above detection limits. Based on these sampling results, it was determined by NCDENR that the fired and unfired glaze ceramic tile waste steams were nonhazardous waste that could be disposed of in a Subtitle D landfill. As a result, waste from SWMU 8 was sent to the Davidson County landfill for disposal (USEPA, 1991; NCDENR, 1990d, 1990e, 1990f).

RELEASE PATHWAYS:	Air (L) Surface Water Groundwater (L)	(L) Soil (L) Subsurface Gas (L)
	Groundwater (L)	Subsurface Gas (L

HISTORY AND/OR EVIDENCE OR RELEASE(S):

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. Finally, at the time of the VSI, no visual evidence of a release (i.e., staining) was observed.

6.9 SWMU 9 - Filter Cake Waste Pile Area

TYPE OF UNIT: Waste Pile

PERIOD OF OPERATION: 1988/89 - present

PHOTOGRAPH NUMBER(S): 14

PHYSICAL DESCRIPTION AND CONDITION:

This unit is the location of the discharged waste cake from the facility filter press. The unit is comprised of a concrete floor, three partial concrete walls with three partial metal sides, and a roof. The unit dimensions are 8 feet wide by 8 feet deep by 10 feet tall. A conveyer belt extends from the filter press unit located in the Wastewater Pretreatment System (SWMU 1) room through the west wall of the main process building, which was used to convey the filter cake outside to the floor of the unit. The open western wall of SWMU 9 was used to allow a front-end loader (e.g., Bobcat®) to transfer the filter cake waste pile to the 20-Cubic Yard Sludge Roll-Off Container (SWMU 4) for disposal. At the time of the inspection, the unit contained residual solids and staining on the concrete floor from the filter press (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

The filter press received wastewater from the facility spray lines and sump pumps. In 1990, samples were collected from the filter cake and were analyzed for RCRA primary metals in extracted leachate (EP toxicity via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The filter cake waste stream samples contained bis(2-ethylhexyl)phthalate at a concentration of 1.5 mg/kg. All other constituents were not detected above detection limits. Based on these sampling results, it was determined by NCDENR that the filter cake waste stream was no-hazardous waste that could be disposed of in a Subtitle D landfill. According to facility representatives, the solids generated by the filter press were characterized annually to ensure that the wastes were nonhazardous (NCDENR, 1993).

RELEASE PATHWAYS: Air (L) Surface Water (L)

Groundwater (L) Subsurface Gas (L)

Soil (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

No evidence of a release from this unit was identified in the available file material. According to facility representatives, the conveyor deposited solids from the filter press outside of the covered unit to an area as far as the chain-link fence located parallel to the facility western property line. Also, runoff from rain events may have allowed the filter cake and residual materials to leach onto the surrounding soils. An asphalt cover was reportedly added to AOC 2 to inhibit impact from the solids or potential runoff. Finally, solids and residual dust were identified on the

concrete floor and walls and on the soils directly in front of the unit at the time of the VSI (I	Booz
Allen, 2003).	

RECOMMENDATION:	No Further Action	$(X)^1$	
	Confirmatory Sampling	()	
	RFI Necessary	()	

¹ Improved storage procedures are recommended to prevent further release of the filter cake solids to the soils in front of the unit.

SWMU 10 - Maintenance Building Waste Management Areas 6.10

TYPE OF UNIT:

Drum Storage Area a.

Parts Washer b.

PERIOD OF OPERATION: 1960s to 1999

PHOTOGRAPH NUMBER(S): 18 and 19

PHYSICAL DESCRIPTION AND CONDITION:

The Maintenance Building Waste Management Areas (SWMU 10) is located in the southwest corner of the facility property, west of the Former UST and AST Area (AOC 3) and east of the Baghouse (SWMU 6). The maintenance building is a metal, enclosed building with two large rolling bay doors and a concrete floor. The building is approximately 40 feet long by 40 feet wide by 20 feet high. The facility reportedly ceased using this building in 2000. The building was used to store chemicals, such as wastewater treatment chemicals, bulk chemicals, solvents, used oil, and lubricants, used at the facility and perform maintenance on forklifts. The chemicals were stored primarily in 55-gallon drums, which were stored in various locations inside the maintenance building. Safety Kleen parts washing tank was also stored in the maintenance building. Finally, a subsurface work area that was used to allow mechanics better access to the forklifts is located in the western central portion of the maintenance building. The subsurface work area was approximately 4 feet wide by 8 feet long by 3 feet deep. Dark staining was observed on the concrete west of the two bay doors and some minor staining was observed in the subsurface work area (Booz Allen, 2003; USEPA, 1991, 1992a, 1993).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

The facility used the maintenance building to store 55-gallon drums containing chemicals used at the facility. The chemicals stored include wastewater treatment chemicals, bulk chemicals, and used oil. According to a RCRA Inspection Report dated December 4, 1991, wastes generated at this unit included flammable waste petroleum naphthalene (D001) used in a Safety Kleen parts washing tank and used oil stored in drums generated by routine maintenance activities. Spent parts washing solvents and used oil were removed from the site monthly for recycling/reprocessing by Safety Kleen in High Point, North Carolina (RCRA Inspection 1991). According to a RCRA Inspection Report dated May 27, 1994, Mannington had discontinued the use of Safety Kleen parts washers, thereby eliminating the generation of flammable waste petroleum naphthalene (D001) (Booz Allen, 2003; USEPA, 1991, 1992a, 1993).

RELEASE PATHWAYS: Air (L) Surface Water (L) Soil (L)

Subsurface Gas (L) Groundwater (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. At the time of the VSI, dark staining was observed on the concrete west of the two bay doors on the concrete pad and some minor staining was observed in the subsurface work area. However, it should be noted that the staining did not extend off of the concrete surfaces and no cracks were identified in the concrete. According to facility representatives, the source of this staining is not known. At the time of the VSI, the staining appeared to be due to rusting of the metal walls of SWMU 10 (Booz Allen, 2003).

RECOMMENDATION: No Further Action (X)
Confirmatory Sampling ()
RFI Necessary ()

6.11 SWMU 11 - Spray Line Area Sumps

TYPE OF UNIT: Wastewater Sumps

PERIOD OF OPERATION: 1960's or 1970's to present

PHOTOGRAPH NUMBER(S): 31 and 32

PHYSICAL DESCRIPTION AND CONDITION:

The spray lines and associated sumps were previously located in one of the large process rooms in the northern portion the main process building. According to facility representatives, the tiles were conveyed from the tile presses via a conveyor belt to the spray lines where water, glaze and stains were applied to green tile before they were sent to the kilns. The water from the spray heads was captured beneath the conveyor belt through several floor grates, which covered a series of subsurface trenches. The wastewater was then channeled, by use of sumps, to the Wastewater Pretreatment System (SWMU 1) or, historically, to the Sludge Settling Ponds (SWMU 3), to be treated and disposed of. According to facility representatives, some of the wastewater from the Wastewater Pretreatment System (SWMU 1) was also looped back into the spray lines. At the time of the VSI, the spray lines and equipment were no longer present. The equipment was reportedly removed in 2000 and transferred to another company facility. During the VSI, the area appeared to be in good condition; however, the unit was overflowing with water so the bottom and sides of the sump could not be inspected. The trenches were overflowing with water that, according to facility representatives, originated from leaks in the roof of the building (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

This unit managed wastewater generated by the spray lines. According to facility representatives, the wastewater contained high concentrations of solids – primarily clay and silica raw materials used to make the tile – and glaze and stain overspray from the coloring of unfired tile. The clay, silica, glaze, and stain have formerly contained metals such as lead and chromium. In addition, the wastewater entering the Wastewater Pretreatment System (SWMU 1) from the Spray Line Area Sumps (SWMU 11) had a pH in the range of 4 - 6 (Booz Allen, 2003; Mannington, 2004).

RELEASE PATHWAYS: Air (L) Surface Water (L) Soil (M) Groundwater (L) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. Finally, at the time of the VSI, no visual evidence of a release (i.e.,

staining) was observed; however, the unit was overflowing with water so the bottom and sides of the sump could not be inspected (Booz Allen, 2003; Mannington, 2004).

No Further Action RECOMMENDATION: Confirmatory Sampling RFI Necessary

COMMENTS:

¹ Because the unit was filled with water at the time of the VSI, a more thorough inspection of this unit is recommended. The inspection should include draining of the sumps and inspection of the walls and floor to document the integrity of the concrete. If no evidence of cracks or breaching of the concrete is identified, then no further action is recommended for this unit. However, if evidence of cracks or breaching is observed; confirmatory sampling of the potentially impacted area (i.e., soil beneath the sump) should be conducted to determine if a release may have occurred.

6.12 AOC 1 - Area of Discharge from the Sludge Settling Ponds to Rat Springs Branch

TYPE OF UNIT: Discharge Area from Sludge Settling Ponds and the Ceramic Tile Pile

PERIOD OF OPERATION: 1972 to present (No wastewater discharge received after 1990)

PHOTOGRAPH NUMBER(S): 10

PHYSICAL DESCRIPTION AND CONDITION:

The Area of Discharge from the Sludge Settling Ponds to Rat Springs Branch (AOC 1) is located adjacent to the northeast corner of the Porcelanite facility property line. This area is specifically located at the intersection of Rat Springs Branch and the Walltown Drain (SWMU 7). Rat Springs Branch is located parallel to the northern boundary of the facility property line and flows east to intersect with the Walltown Drain (SWMU 7). Rat Springs Branch continues to flow to the north approximately two miles to Swearing Creek, a tributary of the Yadkin-Pee Dee River. As of 1997, the Winston-Salem Regional Water Quality Office classified Rat Springs Creek as a "C" surface water designation (Aquaterra, 1997 - Tile Pile closure plan). Rat Springs Branch is reportedly an intermittent stream that flows only when rainfall is present (Booz Allen, 2003). The Walltown Drain (SWMU 7) is a creek that flows north, inside the Porcelanite facility property, adjacent to the closed Ceramic Tile Pile (SMWU 3). The total length of this creek flows approximately 0.05 miles across the Porcelanite property, until it intersects with Rat Springs Branch. The Walltown Drain (SWMU 7) was enclosed in pipe in 1992/1993 under a Nationwide 26 permit from the USACE. This permit was issued based on the determination by the USACE that no significant wetlands were present at the site (Aquaterra, 1997b; Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

The facility utilized several spray lines to spray the tile pieces with glazes and colorings on a conveyor line as part of the product process. Until 1990, the raw materials used to produce the tile contained metals that are considered hazardous, such as lead and chromium. The wastewater generated by the spray lines was then pumped to the wastewater processing unit located at the facility, which was conducted at the Sludge Settling Ponds (SWMU 2). The two settling ponds were utilized to allow the solids in the wastewater to settle out of the water before discharge. Sample analysis results detected leachable lead levels in the sludge from the sludge ponds, which discharged wastewater to AOC 1 (Aquaterra, 1997b; Booz Allen, 2003).

RELEASE PATHWAYS: Air (L) Surface Water (M) Soil (M)
Groundwater (L) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OF RELEASE(S):

The facility conducted several site assessments to analyze the potential for releases of contamination located at or originating from the subject property. One such assessment of the facility, prepared by Mannington, and dated April 12, 1990, consisted of a field investigation in which samples were collected from the sludge ponds. Sample analysis results detected leachable lead levels in the sludge from the sludge ponds ranging from 230 mg/L to 1,230 mg/L. All VOCs and SVOCs were below detection limits with the exception of methylene chloride, acetone, and carbon disulfide. As a result, the solid waste (i.e., sludge) disposed of in the sludge ponds is a characteristic hazardous waste (D008) in that samples from three different areas contain extractable lead levels in excess of the regulatory limit of 5.0 mg/L. On August 28, 1991, the facility extracted groundwater samples from designated monitoring wells. The specific monitoring well located in the area of AOC 1 is MW-3. The groundwater samples resulted in the following detections: barium 0.28 mg/L, iron 9.8 mg/L, manganese 0.25 mg/L, sodium 30 mg/L, lead 0.014 mg/L, selenium 0.011 mg/L, chloride 33 mg/L, sulfate 130 mg/L, total organic carbon 4.9 mg/L, and mercury 0.0006 mg/L. A follow-up sample was obtained October 15, 1991, from MW-3 to confirm the selenium concentration. This sample contained 0.006 mg/L of selenium (NCDENR, 1990a; Aquaterra, 1997b; Booz Allen, 2003).

Additional soil samples collected from this area during a 1997 site investigation also identified several areas containing elevated metals concentrations. Specifically, hand auger soil samples collected north of the waste pile in AOC 1 contained significantly elevated concentrations of lead, barium, and boron. Lead concentrations in sampling locations 4HA-48, 4HA-47, and 2HA-23 were 5,140 mg/kg, 2,720 mg/kg, and 458 mg/kg, respectively. In addition, TCLP results for lead from soil samples from 4HA-48 and 4HA-47 were 91.0 mg/L and 93.5 mg/L, respectively. These sample locations appear to be located on the vegetated bank in the southern portion of this unit, adjacent to the northern property boundary of the site. Sampling locations 2HA-24, 2HA-25, and 2HA-26 were collected north of sampling locations 4HA-48 and 4HA-47 and detected lead concentrations were similar to background levels. Finally, hand auger samples were collected north of these locations in the AOC 1 area; however, sampling results were not identified in the available file material (NCDENR, 1990a, 1998b, 1999c; Aquaterra, 1997b; Booz Allen, 2003).

RECOMMENDATION:	No Further Action Confirmatory Sampling RFI Necessary	() () (X) ¹
	KEI Necessary	(23)

COMMENTS:

¹ Additional investigation of the soil contamination, specifically lead and leachable lead concentrations, identified in AOC 1 is recommended. This investigation should include a vertical and horizontal characterization of contaminant concentrations. While an RFI has been recommended for AOC 1, it is likely that the further investigation of AOC 1 will occur based on an investigation of releases from SWMU 3, which is the potential source of contaminants detected in AOC 1.

6.13 AOC 2 - Broken Ceramic Tile Roadway

TYPE OF UNIT: Road paved with broken ceramic tile

PERIOD OF OPERATION: Unknown date prior 1992 to present

PHOTOGRAPH NUMBER(S): 15 and 16

PHYSICAL DESCRIPTION AND CONDITION:

The Broken Ceramic Tile Roadway (AOC 2) consists of an eight-foot wide roadway that begins in the southwest corner of the property beneath the asphalt cap that was constructed as part of the Sludge Settling Ponds (SWMU 2) closure activities. It extends eastward for approximately 300 yards and terminates in the vicinity of the Baghouse (SWMU 6) and the Maintenance Building Waste Management Areas (SWMU 10). AOC 2 was partially constructed of waste tile fragments that were applied to the ground in the 1980s. At an unknown later date, the roadway was partially covered with asphalt and gravel. The asphalt portion of the roadway is located at the western and eastern ends of the road. The asphalt was applied to the road at the same time the Sludge Settling Ponds (SWMU 2) were closed. The gravel-covered portion of this unit is located in the middle portion of the road near the Filter Cake Waste Pile Area (SWMU 9) and the 20-Cubic Yard Sludge Container (SWMU 4). At the time of the VSI, the roadway appeared to be in good physical condition, with little significant cracking or deterioration of the asphalt (ENSCI, 1992; Booz Allen, 2003; ENSCI, 1994).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

According to the facility representatives, the facility applied tile fragments to pave the road at various times in the 1980's. Prior to 1990, the tile used reportedly contained metals that are considered hazardous including lead and chromium. Sample analysis results detected leachable lead levels in the ceramic tile waste deposited in the Ceramic Tile Pile (SWMU 3) ranging from 9.26mg/L to 79.9 mg/L. As a result, the solid waste (i.e., ceramic tile fragments) used to construct AOC 2 are most likely a characteristic hazardous waste (D008) in that samples from three different areas contain TCLP lead levels in excess of the regulatory limit of 5.0 mg/L (NCDENR, 1990a; ENSCI, 1992; Booz Allen, 2003; ENSCI, 1994).

RELEASE PATHWAYS: Air (L) Surface Water (L) Soil (L)

Groundwater (L) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

Results from a TCLP analysis of soil samples collected outside of the northwestern property boundary, adjacent and parallel to AOC 2 in May 1994 indicated one exceedance (6.31 mg/L) of the regulatory level of lead, which is 5.0 mg/L. Three other soil samples located north, south,

and west of this sampling location did not exceed the regulatory limit for lead. Based on the figure provided with the sampling results, it does not appear that this sampling location is located beneath the asphalt cap installed associated with SWMU 2. As a result, the potential for additional migration still exists. In addition, it is unclear if samples were analyzed for other metals (Aquaterra, 1997c; NCDENR, 1990a; ENSCI, 1992; Booz Allen, 2003; ENSCI, 1994).

RECOMMENDATION: No Further Action

Confirmatory Sampling (X)¹

RFI Necessary ()

COMMENTS:

¹ Confirmatory sampling is recommended to fully characterize the horizontal and vertical extent of the lead contamination located outside the fence line in the railroad right-of-way. The intent of this confirmatory sampling is to determine if lead concentrations exceed either risk-based screening levels for human or ecological receptors and/or leachability criteria for the protection of groundwater.

6.14 AOC 3 - Former UST and AST Area

TYPE OF UNIT: USTs and ASTs

PERIOD OF OPERATION: Unknown (Estimated 1960s) to 1989

PHOTOGRAPH NUMBER(S): 20

PHYSICAL DESCRIPTION AND CONDITION:

The Former UST and AST Area (AOC 3) is located in the southwest portion of the property, between the road running parallel to the southern wall of the main building and Victor Street. The Maintenance Building Waste Management Areas (SWMU 10) are located immediately west of AOC 3. Currently, AOC 3 is a grass-covered area with a short concrete curb running along the northern edge of the area and the barbed-wire topped fence, marking the facility property boundary, on the southern edge of the area (Aquaterra, 1990a; NCDENR, 1990a; Booz Allen, 2003).

According to facility representatives, two steel, 2,000-gallon underground storage tanks (USTs) were installed at an unknown time that was estimated to be in the 1960's. These USTs were used to store gasoline and #2 fuel oil that was used in vehicles operated at the facility, such as forklifts. In November 1989, the USTs and associated piping were removed and soil samples were collected from the excavation. Initially, four soil samples were collected from the bottom of the excavation, which ranged from 9 to 15 feet deep. The samples were analyzed for total petroleum hydrocarbons (TPHs) by EPA Methods 3550 and 5030. The excavation was backfilled with clean fill. On May 29, 1990, NCDENR issued a letter indicating that the UST system had been closed in accordance with UST regulations (40 CFR §§ 280.71 and 280.72) (Aquaterra, 1990a; NCDENR, 1990a; Booz Allen, 2003).

According to facility representatives, in 1993, a 750-gallon steel aboveground storage tank (AST) was installed in the location formerly occupied by the USTs. The AST was surrounded by a steel secondary containment system. This AST was used to store diesel fuel for facility vehicles. At some point between 1999 and 2000, facility representatives indicated that the AST was removed and that no releases or staining were observed during removal activities; however, no sampling was conducted (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

No wastes were managed at this unit; however, the gasoline, #2 fuel oil, and diesel fuel stored in the USTs and ASTs all contain hazardous constituents, such as metals and benzene, toluene, ethylbenzene, and xylene (Aquaterra, 1990a; NCDENR, 1990a; Booz Allen, 2003).

RELEASE PATHWAYS: Air (L) Surface Water (L) Soil (L)

Groundwater (L) Subsurface Gas (L)

HISTORY AND/OR EVIDENCE OR RELEASE(S):

In November 1989, the USTs and associated piping were removed and soil samples were collected from the excavation. Initially, four soil samples were collected from the bottom of the excavation with ranged from 9 to 15 feet deep. The samples were analyzed for TPHs by EPA Methods 3550 and 5030. Results of the analysis indicated that elevated levels of TPH (2,600 mg/kg) were present in the westernmost soil sample at a depth of 13 feet bgs. As a result, additional excavation, both vertically and horizontally, was conducted in the western portion of the original excavation down to a depth of 21 feet bgs. Three additional soil samples were collected from the bottom of the excavation. Soil from the western end of the excavation extension showed low levels of TPH contamination (43 mg/kg); however, it was determined that this concentration was not sufficient to warrant additional action. The excavation was backfilled with clean fill. On May 29, 1990, NCDENR issued a letter indicating that the UST system had been closed in accordance with 40 CFR §§ 280.71 and 280.72 (Aquaterra, 1990a; NCDENR, 1990a; Booz Allen, 2003).

RECOMMENDATION: Confirmatory	No Further Action Sampling	on (2)	(X)
RFI Necessary	, ()	

7.0 REFERENCES

Aquaterra, Inc. 1990a. Underground Storage Tank Closure Assessment, Mannington Ceramic Tile. January 8, 1990.

Aquaterra, Inc. 1990b. Existing Waste Streams, Solid Waste Determination, Mannington Ceramic Tile Facility, Lexington, Carolina. May 16, 1990.

Aquaterra, Inc. 1997a. Transmittal of Revised Closure and Post-closure Care Plan, Tile Pile Unit. July 30, 1997.

Aquaterra, Inc. 1997b. Ceramic Chip Tile Pile Closure Plan. July 11, 1997.

Aquaterra, Inc. 1997c. Additional Closure Activities at Former Waste Water Treatment Ponds. June 10, 1997.

Aquaterra, Inc. 2000. 1999 Annual Groundwater Assessment Report and Fourth Quarter 1999 Monitoring Report. January 31, 2000.

Booz Allen Hamilton. 2003. Visual Site Inspection Logbook. September 30, 2003.

ENSCI, Corporation. 1992. Revised Closure Plan for Settling Ponds, Mannington Ceramic Tile. June 24, 1992.

ENSCI Environmental, Inc. 1993. Closure Verification for Settling Ponds at the Mannington Tile, Lexington, North Carolina Facility. November 15, 1993.

ENSCI Environmental, Inc. 1994. Additional Closure Verification for Settling Ponds at the Mannington Tile, Lexington, North Carolina Facility. March 14, 1994.

Mannington Ceramic Tile. 1990. Hazardous Waste Permit Application, Part A. July 5, 1990.

Mannington Ceramic Tile. 1992. Hazardous Waste Permit Application, Part A. May 29, 1992.

Mannington Mills, Inc. 2004. Response to RFA Information Request. April 1, 2004.

North Carolina Department of Environment and Natural Resources (NCDENR). 1990a. Correspondence to Mannington Ceramic Tile Regarding Underground Storage Tank Closure. May 29, 1990.

NCDENR. 1990b. Compliance Order with Administrative Penalty. June 11, 1990.

NCDENR. 1990c. Correspondence to Mannington Ceramic Tile Regarding Disposal of Approximately 5,000 Pounds/Week of Floor Sweepings at the Davidson County Landfill. May 30, 1990.

NCDENR. 1990d. Disposal of Approximately 20,000 Pounds/Week of Unfired Glaze-Ceramic Tile at the Davidson County Landfill. May 30, 1990.

NCDENR. 1990e. Disposal of Approximately 20,000 Pounds/Week of Ceramic Process Glaze Overspray Filter Cake at the Davidson County Landfill. May 30, 1990.

NCDENR. 1990f. Disposal of Approximately 110,000 Pounds/Week of Fired Glaze-Ceramic Tile at the Davidson County Landfill. May 30, 1990.

NCDENR. 1990g. Compliance Order with Administrative Penalty. June 11, 1990.

NCDENR. 1991a. Notice of Violation for Mannington Ceramic Tile. September 24, 1991.

NCDENR. 1991b. RCRA Inspection Report for Mannington Ceramic Tile, Inc. December 4, 1991.

NCDENR. 1993. Comprehensive Groundwater Monitoring Evaluation Report for Mannington Ceramic Tile. March 8, 1993.

NCDENR. 1994a. Additional Closure Activities, Sludge Ponds, Mannington Ceramic Tile. February 24, 1994.

NCDENR. 1994b. RCRA Inspection Report for Mannington Ceramic Tile, Inc. May 27, 1994.

NCDENR. 1996a. March 26, 1996 Comprehensive Groundwater Monitoring Evaluation, Porcelanite, Inc. November 8, 1996.

NCDENR. 1996b. Transmittal of Radiological Data. December 20, 1996.

NCDENR. 1997a. Revised Post-Closure Care Plan Approval and Review of Revised Groundwater Sampling and Analysis Plan (SAP). April 29, 1997.

NCDENR. 1997b. Review of Closure Plan Activities. September 12, 1997.

NCDENR. 1998a. Memorandum: Porcelanite, Inc. Domestic Supply Wells Survey. January 12, 1998.

NCDENR. 1998b. Memorandum: Porcelanite, Inc. Surface Water and Sediment Data. December 3, 1998.

NCDENR. 1999a. Sludge Pond Closure. January 4, 1999.

NCDENR. 1999b. Sludge Pond Closure. February 11, 1999.

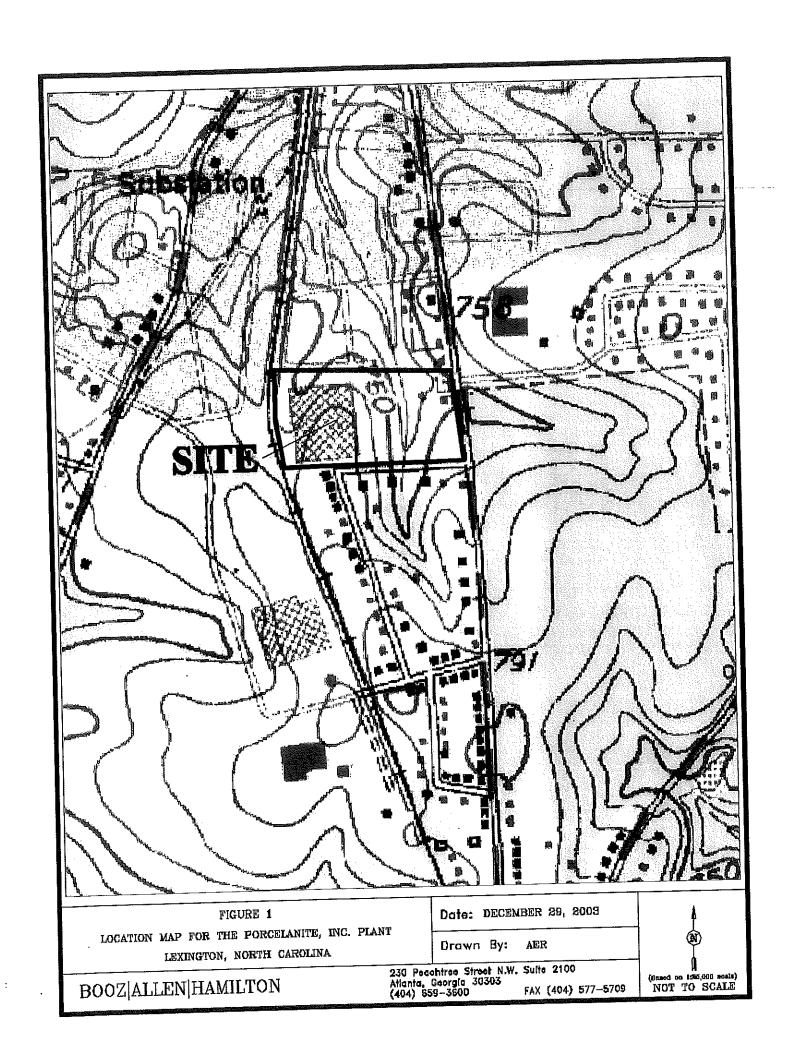
NCDENR. 1999c. Memorandum: Additional Surface Water/Sediment Data. May 27, 1999.

NCDENR. 1999d. Sludge Pond Closure, Porcelanite, Inc. (PI). September 23, 1999.

United States Environmental Protection Agency (USEPA). 1990. Hazardous Waste Permit Application for Mannington Ceramic Tile. July 5, 1990.

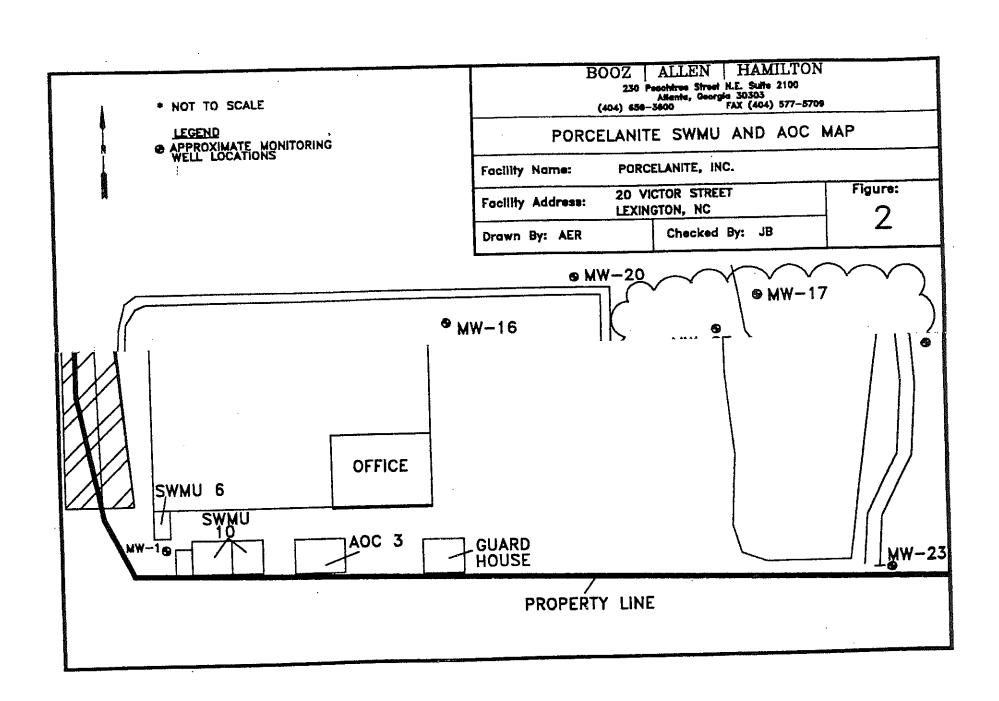
USEPA. 1991. RCRA Inspection Report. December 4, 1991.

USEPA. 1992a. Hazardous Waste Permit Application, Part A for Mannington Ceramic Tile. May 29, 1992.


USEPA Region 4. 1992b. Comprehensive Monitoring Evaluation Inspection Report. December 17, 1992.

USEPA Region 4. 1993. Comprehensive Monitoring Evaluation Inspection Report. June 24, 1993.

USEPA Region 4. 2002. SESD-ES Comprehensive Groundwater Monitoring Evaluation for Porcelanite, Inc. April 26, 2002.


FIGURE 1

Location Map for the Porcelanite, Inc. Facility

FIGURE 2

Porcelanite, Inc. SWMU and AOC Map

ATTACHMENT 1

Porcelanite, Inc.
Solid Waste Management Unit (SWMU) and
Areas of Concern (AOC) List

Porcelanite, Inc.

Solid Waste Management Unit (SWMU) and Areas of Concern (AOC) List

SWMU

1.	Wastewater Pretreatment System
----	--------------------------------

- a. Precipitating Tanks
- b. Filter Press
- c. Wastewater Holding Tanks
- d. Sump
- 2. Sludge Settling Ponds
 - a. Pond 1
 - b. Pond 2
- 3. Ceramic Tile Pile
- 4. 20 Cubic Yard Sludge Container
- 5. 20 Cubic Yard Floor Sweepings Roll-Off Container
- 6. Baghouse
- 7. Walltown Drain
- 8. Off-Specification Tile Accumulation Roll-Off Container
- 9. Filter Cake Waste Pile Area
- 10. Maintenance Building Waste Management Areas
 - a. Drum Storage Area
 - b. Parts Washer
- 11. Spray Line Area Sump

AOC -

- 1. Area of Discharge from Settling Ponds into Rat Spring Branch
- 2. Broken Ceramic Tile Roadway
- 3. Former UST and AST Area

ATTACHMENT 2

Photographic Log

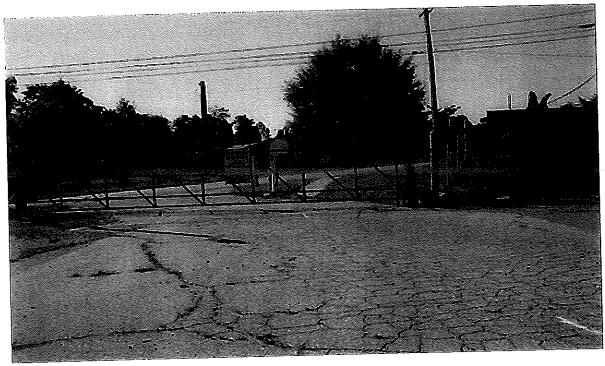


Photo Number: 1 Direction: Facing south

Photographer: Jeremy Hogard Date: 9/30/2003

Description: Security fence and guardhouse at main entrance to property

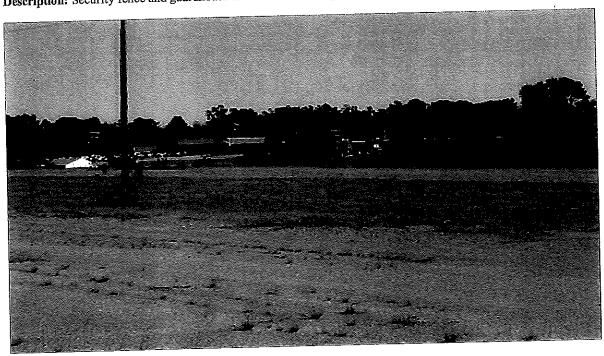


Photo Number: 2

Direction: Facing northeast
Description: Former location of the Ceramic Tile Pile (SWMU 3)

Photographer: Jeremy Hogard **Date:** 9/30/2003

Photo Number: 3

Direction: Facing north

Photographer: Jeremy Hogard
Date: 9/30/2003

Description: Gravel cap installed over the Ceramic Tile Pile (SWMU 3)

Photo Number: 4 Photographer: Jeremy Hogard Direction: Facing north
Description: Vegetated north side of the former Ceramic Tile Pile (SWMU 3)

Photo Number: 5
Direction: Facing northwest
Description: Eastern side of the former Ceramic Tile Pile (SWMU 3)

Photographer: Jeremy Hogard Date: 9/30/2003



Photo Number: 6

Direction: Facing west
Description: View of the Walltown Drain (SWMU 7) area, which is covered with large gravel and vegetation

Photo Number: 7
Photographer: Jeremy Hogard
Direction: Facing northeast
Description: View of Walltown Drain (SWMU 7) area, which is covered with gravel and vegetation



Photo Number: 8
Photographer: Jeremy Hogard
Direction: Facing west
Description: Former location of the 20 Cubic Yard Floor Sweepings Roll-Off Container (SWMU 5)

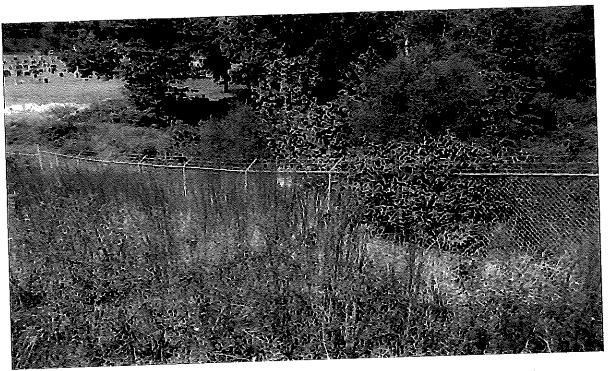
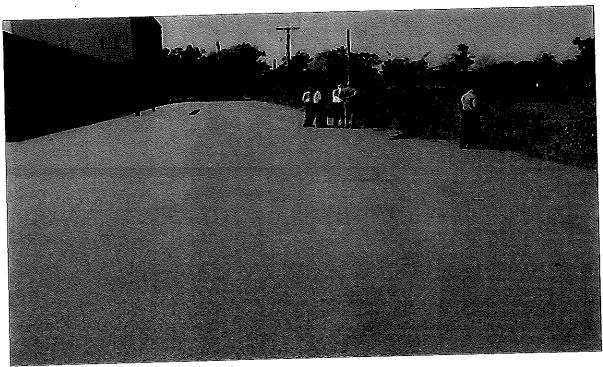



Photo Number: 9
Photographer: Jeremy Hogard
Direction: Facing northwest
Description: View of the Rat Springs Branch and Walltown Drain (SWMU 7) intersection

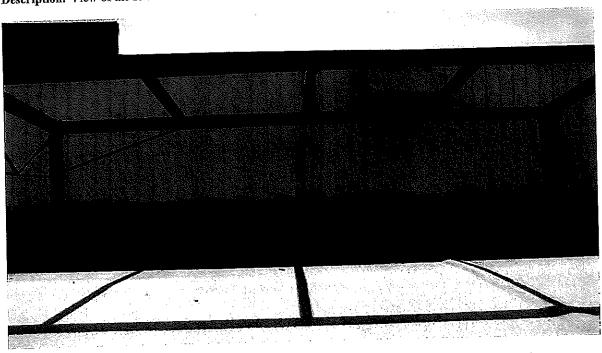


Photo Number: 10
Photographer: Jeremy Hogard
Date: 9/30/2003
Direction: Facing northeast
Description: View of the Area of Discharge from the Sludge Settling Ponds to Rat Springs Branch (AOC 1)

Photographer: Jeremy Hogard Photo Number: 11 Date: 9/30/2003 Direction: Facing west

Description: View of the former location of the Sludge Settling Ponds (SWMU 2)

Photographer: Jeremy Hogard Photo Number: 12 Date: 9/30/2003

Photographer: Jeremy Hogard

Direction: Facing east
Description: View of the northern bank of the cap covering the former Sludge Settling Ponds (SWMU 2)

Photo Number: 14 Direction: Facing east

Description: View of the Filter Cake Waste Pile Area (SWMU 9)

Photographer: Jeremy Hogard Date: 9/30/2003



Photo Number: 15
Photographer: Jeremy Hogard
Direction: Facing south
Description: View of the former location of the 20 Cubic Yard Sludge Roll-Off Container (SWMU 4) on the left and the Broken Ceramic Tile Roadway (AOC 2) on the right.

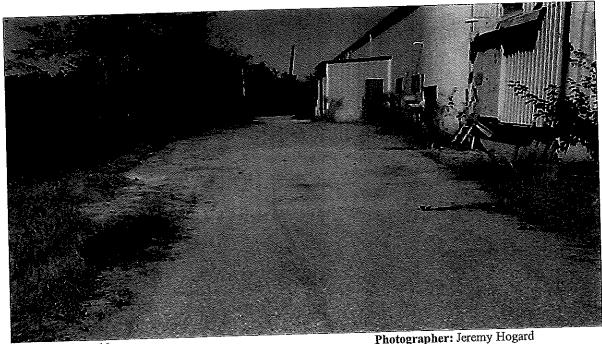


Photo Number: 16 Direction: Facing north

Description: View of the Broken Ceramic Tile Roadway (AOC 2)

Photographer: Jeremy Hogard Date: 9/30/2003



Photo Number: 17
Direction: Facing north
Description: View of the former location of the Baghouse (SWMU 6), which was situated on the concrete pilings shown in the left-central portion of the photograph.

Photo Number: 18 Direction: Facing south

Date: 9/30/2003

Description: View of the concrete equipment storage pad located in front of the Maintenance Building (SWMU 10)

Photo Number: 19

Direction: Facing east
Description: View of the Maintenance Building (SWMU 10)

Photographer: Jeremy Hogard Date: 9/30/2003

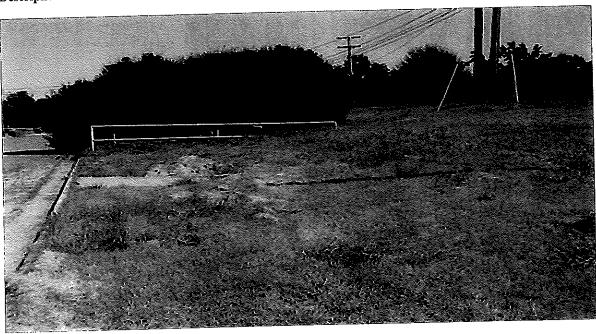


Photo Number: 20

Direction: Facing east
Description: View of the Former UST and AST Area (AOC 3)

Photographer: Jeremy Hogard **Date:** 9/30/2003

Photo Number: 21 Direction: Facing northwest

Description: View of the inside of the main process building

Photographer: Jeremy Hogard Date: 9/30/2003

Photo Number: 22

Direction: Facing southwest

Description: View of the inside of the main process building

Photographer: Jeremy Hogard Date: 9/30/2003

Photo Number: 23

Photographer: Jeremy Hogard Date: 9/30/2003

Direction: Facing west Description: View of the inside of the main process building where one of the kilns was formerly located

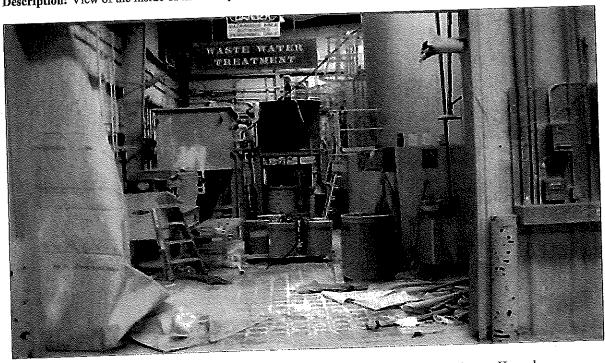


Photo Number: 24 Direction: Facing north Photographer: Jeremy Hogard Date: 9/30/2003

Description: View of the Wastewater Pretreatment System (SWMU 1) room

Photo Number: 25 Direction: Facing north

Photographer: Jeremy Hogard Date: 9/30/2003

Description: View of the Filter Press (SWMU 1c) showing the discharge point to the Filter Cake Waste Pile Area

. Photo Number: 26 Direction: Facing east

Photographer: Jeremy Hogard

Date: 9/30/2003

Description: View of four drums located in the Wastewater Pretreatment System (SWMU 1) room from right to left (Caustic soda, SelfLoc, Polysep1127, unknown caustic) and grate-covered sump (SWMU 1d)

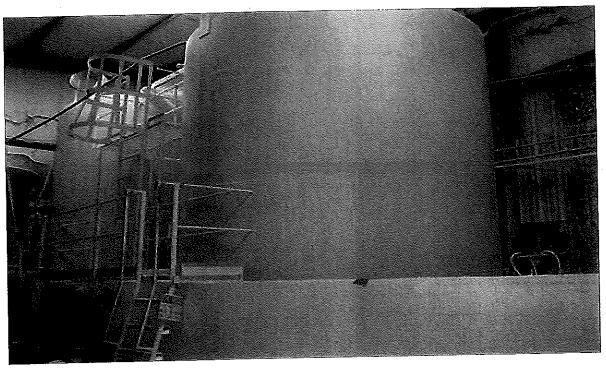


Photo Number: 27
Direction: Facing north

Photographer: Jeremy Hogard

Date: 9/30/2003

Description: View of Holding Tanks (SWMU 1a) associated with the Wastewater Pretreatment System (SWMU 1)

Photo Number: 28
Direction: Facing north

Photographer: Jeremy Hogard

Date: 9/30/2003

Direction: Pacing north **Description:** View of Precipitation Tanks (SWMU 1b) associated with the Wastewater Pretreatment System (SWMU 1)

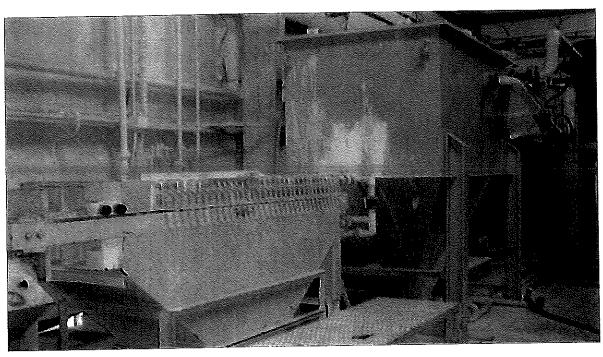


Photo Number: 29 Direction: Facing north

Photographer: Jeremy Hogard Date: 9/30/2003

Description: View of the Filter Press (SWMU 1c) associated with the Wastewater Pretreatment System (SWMU 1)

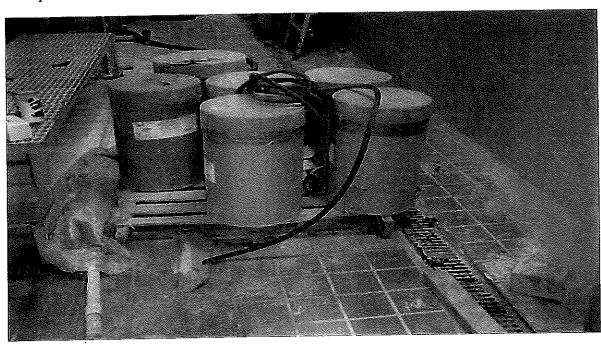


Photo Number: 30 Direction: Facing north

Photographer: Jeremy Hogard

Date: 9/30/2003

Description: View of the floor of the Wastewater Pretreatment System (SWMU 1) room showing the white staining and the generally poor housekeeping conditions of the area

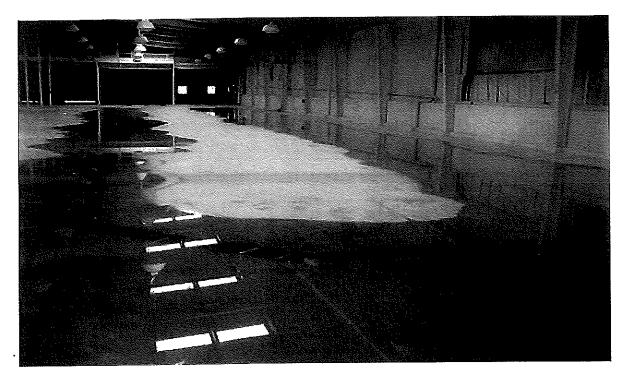


Photo Number: 31 Direction: Facing east

Description: View of the Spray Line Area Sumps (SWMU 11)

Photographer: Jeremy Hogard **Date:** 9/30/2003

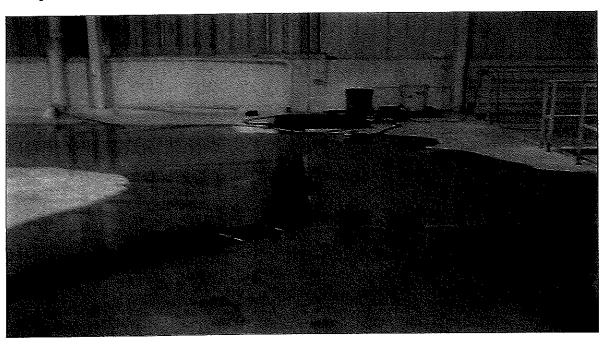


Photo Number: 32 Direction: Facing south

Description: View of the Spray Line Area Sumps (SWMU 11)

Photographer: Jeremy Hogard **Date:** 9/30/2003

ATTACHMENT 3

VSI Logbooks

Part B Appendix B-2 FEMA FIRM Mapping

Northing: = 744,836, Easting = 1,623,818

Without Base Flood Elevation (BFE)
Zone A, V, A99
With BFE or Depth
Zone AE, AO, AH, VE, AR

Regulatory Floodway

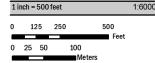
0.2% Annual Chance Flood Hazard

Future Conditions 1% Annual Chance
Flood Hazard Zone X

Areas Determined to be Outside the
0.2% Annual Chance Flood Hazard
Zone X

Jurisdiction Boundary

FIRM Panel Boundary


North Carolina State Plane Projection Feet (Zone 3200) Datum: NAD 1983 (Horizontal), NAVD 1988 (Vertical)

Program

Flood Insurance

National

NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP

Panel(s):6724 CONTAINS:

COMMUNITY CID

CITY OF LEXINGTON 370081

Notice to User: The Map Number(s) shown below should be used when placing map orders; the Community Number(s) shown above should be used on insurance applications for the subject community.

SELECTED PANELS:

MAP NUMBER EFFECTIVE DATE

3710672400J 3/16/2009

Page 1 of 2 Northing: = 744,836, Easting = 1,627,287

FEMA: National Flood Insurance Program

TO SECOND SECOND

Page 2 of 2

Panel(s):6724 CONTAINS:

COMMUNITY CID
CITY OF LEXINGTON 370081

Notice to User: The Map Number(s) shown below should be used when placing map orders; the Community Number(s) shown above should be used on insurance applications for the subject community.

SELECTED PANELS:

MAP NUMBER EFFECTIVE DATE

3710672400J 3/16/2009

NOTES TO USERS

This is an official FIRMette of a portion of the effective panels listed in the Title Block shown on Page 1. The information represented on this FIRMette was extracted from the effective digital flood hazard data available at www.floodmaps.nc.gov/fmis.

Base flood elevation data, floodway, nonencroachment widths, information on certain areas no in the Special Flood Hazard Areas protected by flood control structures, and other pertinent data are available in the Flood Insurance Study (FIS) available at www.floodmaps.nc.gov/fmis. Users should be aware that flood elevations shown on this FIRMette represent elevations rounded to one tenth of a foot (0.1') and should be utilized in conjunction with data available in the FIS.

NOTES TO USERS

Base map information and geospatial data used to develop this FIRMette were obtained from various organizations, including the participating local community(ies), state and federal agencies, and/or other sources. The primary base for this FIRM is aerial imagery acquired by the State in 2010. Information and geospatial data supplied by the local community(ies) that met FEMA base map specifications were considered the preferred source for development of the base map.

See geospatial metadata for the associated digital FIRMette for additional information about base map preparation. Base map features shown on this FIRMette, such as corporate limits, are based on the most up-to-date data available at the time of publication. Changes in the corporate limits may have occurred since this map was published. Map users should consult the appropriate community official or website to verify current conditions of jurisdictional boundaries and base map features. This map may contain roads that were not considered in the hydraulic analysis of streams where no new hydraulic model was created during the production of this statewide format FIRM.

Flood elevations on this map are referenced to either or both the North American Vertical Datum of 1988 (NAVD 88) or National Geodetic Datum of 1929 (NGVD 29), and are labeled accordingly. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. To obtain current elevation, description, and/or location information for bench marks shown on this map, or for information regarding conversion between NGVD 29 and NAVD 88, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov/.

MORE INFORMATION

Letters of Map Amendment (LOMA)	1-877-336-2627
	http://msc.fema.gov/
Letters of Map Revision (LOMR)	919-715-5711
	www.ncfloodmaps.com
Flood Insurance Availability	
North Carolina Division of Emergency	919-715-5711
Management (NCDEM)	http://www.nccrimecontrol.org/nfip
National Flood Insurance Program (NFIP)	1-877-638-6620
	http://www.fema.gov/business/nfip
Questions about this FIRMette	1-877-336-2627
	http://fema.gov

LEGEND

MAP REVISIONS

There are no map revisions for the selected area.

Appendix B-3

Documentation of Correspondence with NCAC 13A .0113(c)(3), and .0113(c)(5)

From:

Susan Kite <skite@charter.net>

Sent:

Monday, January 23, 2017 11:30 AM

To:

'natural.heritage@ncdenr.gov'

Subject:

Request for information, 20 Victor Street, Lexington, Davidson County, NC

Good Morning,

I would like to request any information that is available through your database with respect to the above-referenced address. The property is located on the Lexington, West quadrangle map. Please respond regarding the following:

- Endangered species habitats
- Parks
- Forests
- Wilderness areas
- Historical sites

If you have any questions, or need additional information, please contact me. Thank You,
Susan

Susan Kite, PG Senior Environmental Geologist

c: 678.640.5268 skite@charter.net

From:

Susan Kite <skite@charter.net>

Sent:

Monday, January 23, 2017 11:35 AM

To:

'anitabarnett@nps.gov'

Subject:

Request for information, 20 Victor Street, Lexington, Davidson County, NC

Good Morning,

I would like to request any information that is available through your database with respect to the above-referenced address. The property is located on the Lexington, West quadrangle map. Please respond regarding the following:

- National Seashore, Lakeshore, and River Recreational Areas
- National Parks or Monuments
- Federal Designated Wild & Scenic Rivers

If you have any questions, or need additional information, please contact me. Thank You,
Susan

Susan Kite, PG Senior Environmental Geologist

c: 678.640.5268 skite@charter.net

From:

Luczak, Heather L -FS <hluczak@fs.fed.us>

Sent:

Tuesday, January 24, 2017 10:16 AM

To:

Susan Kite

Subject:

RE: Request for Information: 20 Victor Street, Lexington, Davidson County, NC

Ms. Kite,

There are no Designated and Proposed Federal Wilderness and Natural Areas, National Preserves and Forests, or Federal Land Designated for the Protection of Natural Ecosystems within 1.0 miles of the site located at 20 Victor Street Lexington, NC.

Have a wonderful day!

Heather Luczak Forest NEPA Coordinator

Forest Service National Forests in NC

p: 828-257-4817 f: 828-259-0567 hluczak@fs.fed.us 160 Zillicoa St. Suite A Asheville, NC 28805 www.fs.fed.us

USDA 🏏 🧗

Caring for the land and serving people

From: Susan Kite [mailto:skite@charter.net]
Sent: Tuesday, January 24, 2017 6:30 AM
To: Luczak, Heather L -FS <hluczak@fs.fed.us>

Subject: Request for Information: 20 Victor Street, Lexington, Davidson County, NC

Good Morning,

At the request of the NC Department of Environmental Quality (DEQ), we are working on a RCRA Part B Permit Application for the closed Former Porcelanite Facility, located at 20 Victor Street, Lexington, Davidson County, NC, approximately 1 mile north of Interstate 85. The Assessor's Parcel Number (APN) is 1134200000022. The geographical location of the Facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W. The property is located on the Lexington, West quadrangle map. I have attached a copy of the topo map for your use. I would like to request any information that is available through your database with respect to the above-referenced address. Please let me know if any Designated and Proposed Federal Wilderness and Natural Areas, National Preserves and Forests, or Federal Land Designated for the Protection of Natural Ecosystems are identified on or within a 1.0-mile radius of the property.

If you have any questions, or need additional information, please contact me. Thank You,
Susan

Susan Kite, PG Senior Environmental Geologist c: 678.640.5268 skite@charter.net

This electronic message contains information generated by the USDA solely for the intended recipients. Any unauthorized interception of this message or the use or disclosure of the information it contains may violate the law and subject the violator to civil or criminal penalties. If you believe you have received this message in error, please notify the sender and delete the email immediately.

From: Susan Kite <skite@charter.net>
Sent: Tuesday, January 24, 2017 6:26 AM
To: 'melanie.williams@ncdenr.gov'

Subject: Request for Information: State-Designated Areas for Protection or Maintenance of

Aquatic Life, 20 Victor Street, Lexington, Davidson County, NC

Attachments: img144.pdf

Good Morning,

At the request of the NC Department of Environmental Quality (DEQ), we are working on a RCRA Part B Permit Application for the closed Former Porcelanite Facility, located at 20 Victor Street, Lexington, Davidson County, NC, approximately 1 mile north of Interstate 85. The Assessor's Parcel Number (APN) is 1134200000022. The geographical location of the Facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W. The property is located on the Lexington, West quadrangle map. I have attached a copy of the topo map for your use. I would like to request any information that is available through your database with respect to the above-referenced address. Please let me know if any State-Designated Areas for Protection or Maintenance of Aquatic Life are identified on or within a 1.0-mile radius of the property (Clean Water Act 305b report).

If you have any questions, or need additional information, please contact me. Thank You,
Susan

Susan Kite, PG Senior Environmental Geologist

c: 678.640.5268 skite@charter.net

Susan Kite

From: Ratzlaff, Allen <allen_ratzlaff@fws.gov>
Sent: Wednesday, February 1, 2017 1:59 PM

To: skite@charter.net

Subject: 17-164 20 Victor Street, Lexington, Davidson County

Flag Status: Flagged

Dear Ms. Kite:

Subject: Site assessment for 20 Victor Street, Lexington, Davidson County, North Carolina

We received your email dated January 23, 2017, requesting information on federally listed species within 0.5 mile of the subject site. The following comments are provided in accordance with the provisions of section 7 of the Endangered Species Act of 1973, as amended (16 U.S.C. 1531-1543) (Act).

According to our records and a review of the information you provided, no federally listed species or their habitats occur in the project area. Therefore, we believe the requirements under section 7 of the Act are fulfilled. However, obligations under section 7 of the Act must be reconsidered if: (1) new information reveals impacts of these identified actions that may affect listed species or critical habitat in a manner not previously considered, (2) these actions are subsequently modified in a manner that was not considered in this review, or (3) a new species is listed or critical habitat is determined that may be affected by the identified actions.

We appreciate the opportunity to provide these comments and request that you continue to keep us informed as to the progress of this proposed project. If we can be of assistance or if you have any questions, please contact Mr. Allen Ratzlaff of our staff at 828/258-3939, Ext. 229. In any future correspondence concerning this project, please reference our Log Number 4-2-17-164.

Allen Ratzlaff
Fish and Wildlife Biologist
U.S. Fish and Wildlife Service
160 Zillicoa Street
Asheville, NC 28801

828-258-3939. x229

North Carolina Department of Natural and Cultural Resources

State Historic Preservation Office

Ramona M. Bartos, Administrator

Governor Roy Cooper Secretary Susi H. Hamilton Office of Archives and History Deputy Secretary Kevin Cherry

February 17, 2017

Susan Kite skite@charter.net

Re: Former Porcelanite Facility, 20 Victor Street, Lexington, Davidson County, ER 17-0156

Dear Ms. Kite:

Thank you for your email of January 24, 2017, concerning the above project.

We have conducted a review of the project and are aware of no historic resources which would be affected by the project. Therefore, we have no comment on the project as proposed.

The above comments are made pursuant to Section 106 of the National Historic Preservation Act and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106 codified at 36 CFR Part 800.

Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579 or environmental.review@ncdcr.gov. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely,

Ramona M. Bartos

Rence Bledhill-Earley

Gordon Myers, Executive Director

January 30, 2017

Ms. Susan Kite Waters Edge Environmental, LLC Senior Geologist 4901 Waters Edge Dr # 201 Raleigh, North Carolina 27606

Subject: Request for Environmental Sensitive Areas

Condumex Facility, Lexington, Davidson County, NC Waters Edge Environmental, LLC Project Number: R1-21

Dear Ms. Kite,

Biologists with the North Carolina Wildlife Resources Commission (NCWRC) have reviewed the subject information. Comments are provided in accordance with provisions of the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661-667e) and North Carolina General Statutes (G.S. 113-131 et seq.).

Waters Edge Environmental, LLC is requesting a review of environmentally sensitive areas within 1.0 mile of the Condumex Facility, located at 20 Victor Street, Lexington, Davidson County. At the request of the NC Department of Environmental Quality, Waters Edge Environmental LLC is working on a RCRA Part B Permit Application for the former Porcelanite Facility. The site is located on parcel number 1134200000022 and is approximately 12.4 acres in size. An unnamed tributary of Rat Spring Branch in the Yadkin – Pee Dee River basin flows through the site. Rat Spring Branch is classified as a Class C stream by N.C. Division of Water Resources (NCDWR).

There are no national refuges or state-owned, wildlife-designated or management lands within 1.0 mile of the site. However, lands managed by Davidson County as Open Space are located within 1.0 mile of the site. There are no migratory or feeding grounds for anadromous fish or spawning areas critical for the maintenance of fish/shellfish species, or large lakes or reservoirs with areas that fish spend extended periods of time occur within 1.0 mile of the site.

There is a historical record of the Carolina birdfoot-trefoil (*Acmispon helleri*), a state species of special concern – vulnerable, within 1.0 mile of the site. A current record of a northern-long eared bat (*Myotis septentrionalis*), a state significantly rare and federally threatened species, occurs in Davidson County with no specific location provided. Therefore, the northern long-eared bat may be present or within 1.0 mile of the site. As such, consultation with the USFWS may be required. For more information, please

January 30, 2017 Condumex Site Lexington, Davidson County

see https://www.fws.gov/Midwest/endangered/mammals/nleb/index.html or contact the USFWS at (828) 258-3939 to ensure that potential issues related to this species are addressed.

The project footprint should be surveyed for wetlands and streams to ensure there are no impacts to surface waters. In addition to providing wildlife habitat, wetland areas and streams aid in flood control and water quality protection. United States Army Corps of Engineers Section 404 Permits and NCDWR Section 401 Certifications are required for any impacts to jurisdictional streams or wetlands. Furthermore, the NCWRC recommends maintaining a minimum 100-foot undisturbed, native, forested buffer along perennial streams, and a minimum 50-foot buffer along intermittent streams and wetlands. Wide riparian buffers are helpful in maintaining stream bank stability. In addition, these buffers provide a travel corridor for wildlife species.

Sediment and erosion control measures should be installed prior to any land clearing, construction or disturbance. The use of biodegradable and wildlife-friendly sediment and erosion control devices is strongly recommended. Silt fencing, fiber rolls and/or other products should have loose-weave netting that is made of natural fiber materials with movable joints between the vertical and horizontal twines. Silt fencing or similar products that have been reinforced with plastic or metal mesh should be avoided as they impede the movement of terrestrial wildlife species. Excessive silt and sediment loads can have detrimental effects on aquatic resources including destruction of spawning habitat, suffocation of eggs and clogging of gills.

If I can provide further assistance, please call (336) 290-0056 or email olivia.munzer@ncwildlife.org.

Sincerely,

Olivia Munzer

Western Piedmont Habitat Conservation Coordinator

Habitat Conservation Program

Susan Kite

From: Gibby, Jean B CIV USARMY CESAW (US) < Jean.B.Gibby@usace.army.mil>

Sent: Saturday, February 4, 2017 11:51 AM

To: Susan Kite

Subject: RE: [EXTERNAL] Request for Information: 20 Victor Street, Lexington, Davidson County,

NC

Flag Status: Flagged

Susan,

I have looked at the map and there is no record in our system about the town ever having acquired a permit for the fill at the referenced facility. As I had mentioned to you, we had permits back in 1992 that would have allowed such activities. The is a site off of Cotton Grove Road that had a permit and that stream flows from that property through the referenced property.

In our conversation, I missed the fact that you desire to know about jurisdictional features within a 1-mile radius of the project. I am unable to do anything more that what you likely could do which is to review USGS topo maps, NRCS soil maps along with NWI maps. In order to access property, we must have permission from a property owner and in this case I don't have that. In addition, in light of the fact of the area you are desiring to gain this information, I suggest that you get an environmental consultant to obtain that information. Otherwise, you would have to personally contact all property owners within that 1-mile radius, get their permission for me to go on their property to look for jurisdictional features and I personally could only give you about 2 hours every 2 months to do such an effort. Even if a consultant were to perform the work, I would still need to have the necessary information to provide either a preliminary or approved jurisdiction. Instructions for that paperwork can be found on our website at www.saw.usace.army.mil, go to Regulatory and then look at the information under jurisdictional determinations. All of the necessary paperwork would need to be provided to our office prior to making a site visit as we are not allowed to trespass on property.

I wish I could have been more helpful, but that is all I can provide based upon the limited information that you have provided to me.

Should you have additional questions, please do not hesitate to contact me; however, I might not be in the office much this week as I am on-call for jury duty through the rest of the week and will not be released from that obligation until 9 Feb 17.

V/R, Jean B. Gibby

The Wilmington District is committed to providing the highest level of support to the public. To help us ensure we continue to do so, please complete the Customer Satisfaction Survey located at http://corpsmapu.usace.army.mil/cm_apex/f?p=136:4:0.

Jean B. Gibby
Chief, Raleigh Field Office
U.S. Army Corps of Engineers
3331 Heritage Trade Drive, Suite 105
Wake Forest, NC 27587
(919) 554-4884, Ext. 24

e-mail: Jean.B.Gibby@usace.army.mil
Original Message From: Susan Kite [mailto:skite@charter.net] Sent: Monday, January 30, 2017 10:42 AM To: Gibby, Jean B CIV USARMY CESAW (US) < Jean.B.Gibby@usace.army.mil> Subject: [EXTERNAL] Request for Information: 20 Victor Street, Lexington, Davidson County, NC
Jean: Thank you for your time this morning.
Mannington Ceramic Tile, Inc. was the owner in 1992, but as I understand it, the City of Lexington obtained the permit and installed the pipe at Walltown Branch. The stream has also been referred to as Walltown Drain.
At the request of the NC Department of Environmental Quality (DEQ), we are working on a RCRA Part B Permit Application for the closed Former Porcelanite Facility, located at 20 Victor Street, Lexington, Davidson County, NC. The geographical location of the Facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W. The property is located on the Lexington, West quadrangle map. I have attached a copy of the topo map for your use. As we discussed I am looking for wetlands information regarding the Facility and a 1-mile radius of the property.
If you have any questions, or need additional information, please contact me.
Thank You,
Susan
Susan Kite, PG
Senior Environmental Geologist
c: 678.640.5268
skite@charter.net <mailto:skite@charter.net></mailto:skite@charter.net>

Susan Kite

From: Munger, Bridget <bridget.munger@ncdenr.gov>

Sent: Wednesday, January 25, 2017 4:17 PM

To: Susan Kite
Cc: Munger, Bridget

Subject: RE: Request for Information: 20 Victor Street, Lexington, Davidson County, NC

Attachments: Davidson County mines.xls

Hello Ms. Kite.

Here is a list of active and released Davidson County mines from the state mining program database. This should cover everything within the one-mile radius. The lat/long is listed for each location. Please let me know if you have any questions. Thank you,

Bridget Munger

Public Information Officer N.C. Department of Environmental Quality Division of Energy, Mineral and Land Resources Division of Water Resources

919-807-6363 office 919-207-7786 mobile bridget.munger@ncdenr.gov

1612 Mail Service Center Raleigh, NC 27699-1612

Nothing Compares

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Susan Kite [mailto:skite@charter.net]
Sent: Wednesday, January 25, 2017 10:34 AM
To: Munger, Bridget <bridget.munger@ncdenr.gov>

Subject: Request for Information: 20 Victor Street, Lexington, Davidson County, NC

Good Morning,

At the request of the NC Department of Environmental Quality (DEQ), we are working on a RCRA Part B Permit Application for the closed Former Porcelanite Facility, located at 20 Victor Street, Lexington, Davidson County, NC, approximately 1 mile north of Interstate 85. The Assessor's Parcel Number (APN) is 1134200000022. The geographical location of the Facility is latitude 35° 47' 42" N and longitude 80° 15' 51" W. The property is located on the Lexington, West quadrangle map. I have attached a copy of the topo map for your use. I would like to request any information that is available concerning active and inactive mines within a 1.0-mile radius of the property.

If you have any questions, or need additional information, please contact me. Thank You,
Susan

Susan Kite, PG

Senior Environmental Geologist c: 678.640.5268 skite@charter.net

North Carolina Department of Environment and Natural Resources	Division of Land Resources, Land Quality Section	Mining Permit Inventory Report					
PERMIT_NUMBER	Permittee_Bus_Name	LOCATION_ NAME	ORIG_ISSUE_ DATE	EXPIRATION_ DATE	Select Contact Person	Select Addr, City, State, Zip	Phone
29-03	Martin Marietta Materials, Inc.	Thomasville Quarry	08/10/1972	09/14/2022	Jay Nivens	413 South Chimney Rock RoadGreensboro, NC 27409	
29-04	Jacob'S Creek Stone	Davidson Mine	09/11/1972	05/21/2023	Jeff Mckinney	P O Box 608Denton, NC 27239	336-857-2602
29-06	Cunningham Brick Company	Davidson II Mine	06/17/1975	03/30/2017	Cunningham Brick Company	PO Box 2063Lexington, NC 27293	
29-13	Hanson Aggregates Southeast LL	C Lexington Quarry	11/02/1992	03/25/2025	Hanson Aggregates Southeast LI	LC 2101 Gateway Centre Blvd. Suite 100Morrisville, NC 2756	0
29-01	Cunningham Brick Co	Davidson Mine	08/19/1972	07/20/1982	Donald Beck	Route 2Thomasville, NC 27360	919-476-6181
29-02	Martin Marietta Materials, Inc.	Lexington Quarry	08/24/1972	06/24/1992	Martin Marietta Materials, Inc.	P O Box 30013Raleigh, NC 27622-0013	
29-05	White And Sink	I-85 Gravel Pit	03/25/1973	07/06/1983	Joe S. Sink	P O Box 1207Lexington, NC 27292	704-246-2310
29-07	Cecile Crushed Stone	Pilot Quarry	08/13/1976	07/15/1986	Danny Cecile	Route 1 Box 143Germanton, NC 27109	919-767-0636
29-08	Rea Construction Co	Sand Pit #115	07/09/1974	12/15/1993	Claude Hildreth	P O Box 32487Charlotte, NC 28232	704-373-1331
29-09	Triad Sand Co	Triad Sand Mine	09/12/1987	06/19/1997	Oscar L. Jones	4565 Frye Bridge RoadClemmons, NC 27012	919-766-6508
29-10	Walser Sand Co	Walser Sand Pit	08/08/1987	10/01/1997	Johnny Walser	317 Frye Bridge RoadClemmons, NC 27012	919-764-4193
29-11	Larco Construction	Larco #57 Mine	04/19/1989	03/15/2010	John Couture	P O Box 16279Winston Salem, NC 27115	336-767-3500
29-12	Carolina Gold Mines	Conrad Hill Mine	06/03/1989	06/09/1994	Tom Kleeberg	2316 Maple AvenueBurlington, NC 27215	336-570-1997

ORIGIN	NAL_APP_	PERMIT_	RELEASE_	MINE_	COMMODITY_	TOTAL_ACRES_	BONDED BOND_	ARR_F	RECEIVED_I	BOND_AMOU QUADRANGL	LATITUDE	LONGITUDE	ACRES	LAST
RECEI	VED_	REVISION_	DATE	STATUS	CODE	PERMITTED	TYPE_CODE			E	MEASURE	MEASURE	CURRENT	UPDATE_DATE
DATE		DATE								NAME				_
(08/07/1972	07/15/2013		Active	Crushed Stone	350	159 Surety Bond - N	∕lul [.]	01/13/2016	500,000.00 Lexington East	35.8497	-80.1631	182	04/07/2016
(03/30/1972	05/21/2013		Active	Flag Stone	441	77 Letter of Credit	- N	02/03/2016	217,800.00 Handy	35.5297	-80.1067	77	03/28/2012
(04/07/1975	03/30/2007		Active	Brick Clay	128	36 Surety Bond - S	Sinç	02/09/2016	97,200.00 Fair Grove	35.7779	-80.11	29	03/08/2016
(08/19/1991	03/25/2014		Inactive	Crushed Stone	158	66 Surety Bond - N	∕lul¹	01/29/2016	500,000.00 Lexington East	35.77200	-80.23840	1	11/16/2005
(04/19/1972		08/30/1982	Released	Brick Clay	140	0 Surety Bond - S	Single Site		25,000.00	35.79500	-80.12833	0	10/08/2003
(04/24/1972	06/24/1982	06/04/1985	Released	Crushed Stone	187	 0 Surety Bond - S 	Single Site		25,000.00	35.85166	-80.23483	0	
1	11/25/1972		09/01/1980	Released	Sand and Gravel	13	0 Surety Bond - S	Single Site		5,000.00	35.87833	-80.12833	0	
(04/13/1976		01/08/1982	Released	Dimension Stone	40	0 Surety Bond - S	Single Site		25,000.00	35.86500	-80.15500	0	
(03/09/1974	12/15/1983	06/25/1986	Released	Sand and Gravel	1 2	9 O Surety Bond - S	Single Site		25,000.00			0	
(05/12/1987		06/05/1998	Released	Sand Dredging	2	0 Assignment - S	ing	01/23/1997	2,500.00	35.9831	-80.3605	0	10/08/2003
(06/08/1987		01/06/1992	Released	Sand and Gravel	1 2	0 Assignment - S	ing	02/02/1990	2,500.00	35.97483	-80.33833	0	10/08/2003
1	11/21/1988	08/14/2001	02/05/2008	Released	Sand Dredging	5	5 Surety Bond - S	Sing	02/15/2008	10,000.00 Welcome	35.9355	-80.3697	0	01/22/2008
(02/03/1989		05/31/2001	Released	Gold	73	0 Assignment - S	ing	01/01/2001	25,000.00	35.7923	-80.1602	0	11/16/2005

Part E Groundwater Monitoring

Part E – Groundwater Monitoring

Table of Contents

E-1	Interim Status Monitoring Data	1
E	la Description of Wells	3
E	1b Description of Sampling /Analysis Procedures	3
	E-1b (1) Sample Collection	3 7
E	1c Monitoring Data	7
E	1d Statistical Procedures	7
E	le Groundwater Assessment Plan	7
	E-1e (1) Well Construction Procedures	7
	E-1e (2) Sampling and Analysis	9
	E-1e (3) Evaluation of Data	9
	E-1e (4) Reporting	9
E-2	General Hydrological Information	10
E	2a Topography and Surface Water Bodies	10
E	2b Geology	11
E	2c Site Specific Geology and Hydrogeology	11
E-3	Topographic Map Requirements	12
E-4	Contaminant Plume Description	12
E-5	General Monitoring Program Requirements	13
E	5a Description of Wells	13
E	5b Description of Sampling/Analysis Procedures	13
E	· · · · · · · · · · · · · · · · · · ·	13
E	5d Statistical Procedures	14
E-6	Description of Detection Monitoring Program for Facilities Not Detecting the Presence of Hazardous Constituents	15
E-7	Compliance Monitoring Program for Facilities Which Have Detected Presence of Hazardous Constituents	15
E-8	Corrective Action Program	15
E-	8a Characterization of Contamination	15
E - ϵ	8b Concentration Limits	15
	E-8b (1) Concentration Limits Established Under 264.94(a)	15
	E-8 b (2) Alternate Concentration Limits	16
E - ϵ	8c Corrective Action Plan	16
E - ϵ	8d Groundwater Monitoring Program	17
	E-8d (1) Description of Monitoring System	17
	E-8d (2) Description of Sampling and Analysis Procedures	17
	E-8d (3) Monitoring Data and Statistical Analysis Procedure	18
	E-8d (4) Reporting Requirements	18

Figures

- E-1A Topographic, and Monitoring Well Location Map with Groundwater Flow and Boron Isopleths (September 15, 2016)
- E-1B Manganese Isopleth Map (September 15, 2016)
- E-1C Zinc Isopleth Map (September 15, 2016)
- E-2 Groundwater Flow Map (September 15, 2016)

Tables

- E-1A Past Groundwater Monitoring Data 1995-2004
- E-1B Past Groundwater Monitoring Date 2005-2016
- E-2 Monitoring Well Depths and Screen Sections
- E-3 Monitoring Parameters and Schedule
- E-4 Container Size, Preservative, Holding Time and Analytical Methodology

Appendices

- E-1 Historic Groundwater Monitoring Reports Reference and Historic Tables
- E-2 Well Construction Diagrams
- E-3 2007 Sampling and Analysis Plan (SAP)
- E-4 Cross-Sections (September 15, 2016)

Acronym List

ACL Alternative Concentration Limits

BGS below ground surface

BQL below quantitation limits

CAP Corrective Action Plan

°C Celsius

COCs Constituents of Concern

EP Extraction Procedure

Ft/ft Foot per foot

HWMU Hazardous Waste Management Unit

HWS Hazardous Waste Section

Mannington Mannington Ceramic Tile

MCL Maximum Contaminant Level

mg/kg milligrams per kilograms or parts per million

NC North Carolina

NCDENR North Carolina Department of Environment and Natural Resources

NCDEQ North Carolina Department of Environmental Quality (formerly

NCDENR, and renamed effective September 18, 2015).

NCGS North Carolina Groundwater Standards

Porcelanite Porcelanite, Inc.

PGW Protection of Groundwater

PQL Practical Quantitation Limit

PSRG Preliminary Soil Remediation Goal

PVC Polyvinyl Chloride

SAP Sampling and Analysis Plan

SIC Standard Industrial Classification

SWMU Solid Waste Management Units

TCLP Toxicity Characteristic Leaching Procedure

USEPA United States Environmental Protection Agency

Waters Edge Environmental, LLC

Part E – Groundwater Monitoring

E-1 Interim Status Monitoring Data

Interim status groundwater monitoring was performed at the Facility both at the Settling Ponds and the Ceramic Tile Pile beginning in the late 1980s with one upgradient (MW-1) and seventeen (17) downgradient and cross-gradient monitoring wells (MW-3A, MW-7A, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14, MW-18, MW-19, MW-21A, MW-22A, MW-24, MW-25, MW-26-A-2, MW-28, and MW-29). The monitoring well data was evaluated and found to show exceedances of NCGS Standards which would also demonstrate a statistically significant variance in groundwater quality between the upgradient and downgradient wells.

The current set of groundwater monitoring wells (see Figure E-1A) existing at the Facility were installed as follows:

- The initial groundwater monitoring wells were installed in September 1989 in response to a request by NCDEQ to investigate possible groundwater contamination for lead which was identified in the unfired tile and glaze. It appears that these wells included MW-1 through MW-6.
- Prior to May 1992, MW-5 and MW-6 were abandoned.
- In April 1990, MW-7 and MW-8 were installed.
- Between 1990 and 1992, MW-9D through MW-13 were installed.
- In August or September 1992, MW-14 through MW-26 were installed.
- In June 1993, MW-28D was installed.
- In September 1998, MW-3A, MW-7A, MW-21A, MW-22A, and MW-23A were installed to replace wells that had been previously abandoned.
- In May 1999, MW-26A was installed to replace MW-26, which was abandoned in 1996 or 1997. In October 2006, MW-26A-2 was installed and replaced MW-26A.

Adverse impacts to groundwater quality were investigated through a series of phased assessments beginning in 1989. In the December 1999 sampling event, boron was the only targeted compound analyzed for and it was detected in three (3) wells (MW-1 (upgradient), MW-22 (east of SWMU-3, Ceramic Tile Pile), and MW-23 (south of SWMU-3, Ceramic Tile Pile)). Of those three (3) wells, only MW-22 was above the NCGS groundwater standard of 0.7 mg/L for boron at a concentration of 8.54 mg/L. Also, during the other quarterly groundwater sampling events of 1999, seven (7) targeted analytes were detected in excess of the NCGS groundwater standards: boron, cobalt, manganese, zinc, titanium, vanadium, and gross beta radionuclides. Boron was detected above the NCGS in fourteen (14) wells (MW-3, MW-9, MW-10, MW-12, MW-13, MW-14, MW-18, MW-19, MW-22, MW-23, MW-24, MW-25, MW-26A, and MW-28). Cobalt was detected in three (3) wells (MW-l, MW-12, and MW-13) above the NCGS. Manganese was detected above the NCGS in five (5) wells (MW-9, MW-12, MW-13, MW-14, and MW-28). Zinc was detected above the NCGS in two (2) wells (MW -9 and MW-12). Titanium was detected above the standard in four (4) wells (MW-7, MW-21, MW-25, and MW-26A). Vanadium was detected above the standard in three (3) wells (MW-7, MW-22 and MW-25). Fluoride was not detected above the standard during the 1999 sampling events. Only well

MW-10 has consistently shown any exceedance for fluoride. Gross beta was detected above the standard in four (4) wells (MW-9, MW-12, MW-13, and MW-14). Gross beta was routinely detected in every sample including MW-1, which is upgradient of the Facility. Three (3) of these compounds (cobalt, gross beta and vanadium) do not have a codified standard so the method detection limit is considered the standard. VOCs were not detected in any monitoring wells during the September 1999 sampling period (Aquaterra, 1997b, 2000; Mannington, 2004; NCDEQ, 1997a, 1997b; USEPA, 2002; Booz Allen 2003).

Summarizing past sampling events conducted in the 1990s, the following analytes were measured at concentrations exceeding their respective NCGS: arsenic, barium, boron, cadmium, chromium, fluoride, iron, lead, manganese, nickel, and zinc. Aluminum, cobalt, gross beta, potassium, sodium, titanium, and vanadium were also measured in groundwater at concentrations exceeding the laboratory method detection limits. These compounds do not have a North Carolina codified groundwater standard so the method detection limit is considered the standard. VOCs have not been detected consistently in the groundwater. Although a limited number of SVOCs have been detected, their presence was not considered indicative of a release. Neither VOCs nor SVOCs are currently monitored as part of the routine groundwater monitoring protocol.

Through subsequent quarterly and then semi-annual sampling, most of these previous NCGS exceedances have dropped below their respective NCGS and have been eliminated from the most recently approved SAP. The most recently approved SAP includes analysis for boron, cadmium, chromium, cobalt, lead, manganese, and zinc in six (6) monitoring wells. Monitoring wells MW-1, MW-12, and MW-22A are installed in the saprolite/shallow aquifer, and wells MW-9D, MW-26A-2, and MW-28D monitor groundwater quality in the bedrock/deeper saprolite aquifer.

Boron is consistently detected at elevated concentrations in groundwater collected at and around the Facility but manganese and zinc are also detected in multiple groundwater monitoring wells above their respective NCGS. Although boron has been consistently documented in concentrations below the NCGS in the upgradient monitoring well (MW-1) suggesting that upgradient sources of boron may exist, the consistently elevated levels of boron in groundwater collected downgradient of the regulated units (MW-26A-2) indicate that an additional source of boron potentially exists, although its specific location is unknown. Although the boron concentration fluctuates, boron was recently measured at 44.1 mg/L in groundwater collected from the most consistently elevated monitoring well (MW-26A-2) in September 2016. The NCGS for boron is 0.7 mg/L. We would consider that some of the plume dimensions are unknown.

All data from past monitoring events are summarized in Table E-1A for 1995-2004 (summarized by primary COCs) and Table E-1B for 2005-2016 (summarized by monitoring wells routinely sampled as part of the most recently approved SAP) and all past groundwater monitoring reports referenced and annual reports listed in Appendix E-1.

We would state here that boron is not a RCRA regulated hazardous waste or hazardous constituent pursuant to: 40 CFR Part 261, Appendix VIII (Hazardous Constituents); 40 CFR §261.24, Table 1 (Toxicity Table); 40 CFR Part 264, Appendix IX (Groundwater Monitoring List); 40 CFR §264.94, Table 1 (SWMU Hazardous Constituent Concentration Limits), or any other applicable RCRA regulation. At the direction of NCDEQ, boron monitoring data, however, has been included hereafter for reference.

E-1a Description of Wells

There are currently eighteen (18) groundwater monitoring wells at the Facility as shown in Figure E-1A. Fourteen (14) are Type II shallow groundwater monitoring wells and four (4) are Type III bedrock groundwater monitoring wells (MW-9 and MW-11, MW-19, and MW-28). Depth and screen intervals are contained in Table E-2 and well completion data for most of the monitoring wells are contained in Appendix E-2 including any water levels at the time of drilling and changes within 24 hours.

E-1b Description of Sampling /Analysis Procedures

The sample collection, sample preservation and shipment, analytical procedures, and chain-of-custody control are contained in the most recently approved SAP in Appendix E-3. Monitoring wells MW-1 (upgradient well for the Facility), MW-9D, MW-12, MW-22A, MW-26A-2, and MW-28D are sampled on a semiannual basis in accordance with the SAP. Details of the procedures are described below.

E-1b (1) Sample Collection

E-1b (1)-1 Groundwater Sample Collection Log Book

A groundwater sample collection log book is maintained to document each sampling event. Information is entered for each item contained on the form shown in Appendix E-3. The Groundwater Sample Collection Log Book is maintained at the retired Facility manager's residence in a locked cabinet since there are no longer any structures at the Facility. This Log Book is made available to an Inspector during any onsite inspection at the Facility.

E-1b (1)-2 Water Level Monitoring

The water level is measured in each well using an Actat Olympic well probe or equivalent before beginning the well purging/sampling procedures. The distance to the water level is measured to

+0.01 foot and recorded in the Groundwater Sample Collection Log Book. Measurements are collected from a reference point, established by a licensed surveyor, located at the top of the well casing with the locking cap off. These reference points have been established in relation to mean sea level and are listed in Table E-2.

E-1b (1)-3 Equipment for Well Purging/Sampling

Equipment for purging includes either a closed top, bottom loading Teflon bailer with a new nylon rope or a low flow electrical submersible Redi-Flo pump or its equivalent. Field measurements are collected to document pH, conductivity, and temperature.

E-1b (1)-4 Groundwater Sampling/Analysis Procedures

Purging

Prior to the purging procedure, water level measurements are taken for each well, using equipment and procedures described in the previous section, Section E-1b-2.

Well Purging/Sampling

Each well is purged to remove standing water so that water which is representative of the formation can replace the standing water. The order of groundwater purging and sample collection proceeds from the well with the most recent lowest concentrations of constituents to the well with the most recent highest constituent concentrations. This order of groundwater purging and sample collection helps to minimize the potential for cross contamination between wells. Clean, disposable nitrile gloves (powder free) worn by sampling personnel during water level monitoring, purging, sampling, and decontamination procedures. New gloves are utilized for each activity and each well.

Utilizing the well volume information gathered from the water level measurement procedures, three well volumes are calculated for each well to determine the minimum volume to be purged prior to sampling. Removal of the minimum three casing volumes and allowing the wells to stabilize insures that all of standing water in the well casing is removed. Newly installed wells will be allowed to stabilize for a minimum of one week following development before being purged and sampled.

A dedicated Grundfos Redi-Fl02 brand electric submersible impeller pump is used to purge and sample each well if feasible. If this is not feasible due to obstructions in the well, disposable bailers are attempted. Table E-2 specifies the top of casing elevations (wellhead measuring points, and pump intake in relation to the top of well casing for all monitoring wells currently located at the facility.

An individual pump is dedicated to each well, thus eliminating the potential for cross contamination and eliminating the need for decontamination between sampling events. The

pump is secured in the well with a stainless-steel cable. Discharge tubing is Teflon and is dedicated, eliminating the need for decontamination between sampling events.

The purging process involves pumping a minimum of three well volumes of water continuously at a low flow rate (approximately 0.25 gallons per minute). Pumping at the low flow rate reduces or eliminates the collection of well bore sediments and provides a more representative groundwater sample. Field parameters of pH, temperature and conductivity are measured for each well volume. The purging continues until field parameters and water level stabilize. Stabilization consists of three consecutive readings collected at approximate 5 minute intervals over a 15-minute period of time. Each well is purged until visibly clear water flows from the discharge hose of the pump. We also note the stabilized water level to ensure that the sample is entering the pump directly from the formation.

In the event that an existing well contains insufficient water to purge three well volumes or until field parameters have stabilized, the Redi-Fl02 pump is operated until it will not yield water and the groundwater samples are obtained following sufficient recharge of the well.

Groundwater Sample Collection

The order of groundwater purging and sample collection proceeds from the well with the most recent lowest concentrations of constituents to the well with the most recent highest constituent concentrations. This order of groundwater purging and sample collection helps minimize the potential for cross contamination between wells. Clean, disposable nitrile gloves (powder free) are be worn by sampling personnel during water level monitoring, purging, sampling, and decontamination procedures. New gloves are utilized for each activity and each well. Once the purging process is completed, the water is transferred into the appropriate sample containers without interrupting the pumping/purging process. Prior to commencement of field activities, the contracting laboratory prepares the appropriate sample containers for the sampling event. The target analyte list is contained in Table E-3. Containers are labeled for each well and sample parameter. If required, the laboratory facility adds preservatives to the appropriate sample containers. Sample containers, preservation techniques and holding times utilized in the sampling event are conducted in accordance with the methods presented in EPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Table 2-33. Table E-4 specifies the sample container volume, preservative, holding time and analytical method to be employed to analyze the sample at the laboratory.

E-1b (1)-5 Sample Identification and Shipment

Upon filling, the sample containers are immediately labeled. Legible labels will be affixed to each sample container to prevent the misidentifications of samples. The labels are sufficiently durable, to remain legible even when wet, and contain the following type of information:

• Sample of identification number

Parameters

Containers are numbered according to well numbers. Samples are packed in an ice chest with ice pack and transferred to the laboratory within 24-hours of collection. The chain-of-custody program includes the following:

- 1. Sample labels which prevent misidentification of samples
- 2. Field log book (Groundwater Sample Collection Log Book) to record information about each sample collection during the groundwater monitoring programs (see Appendix E-3). This is maintained at the Facility manager's residence in a locked filing cabinet.
- 3. Chain of custody record to establish the documentation necessary to trace sample possessions from the time of collection to analysis

A field log book (Groundwater Sample Collection Log Book) is maintained by Waters Edge or equivalent. The log book is kept up-to-date at all times. To establish the documentation necessary to trace sample possession from time of collection, a chain-of-custody record is completed and accompanies every sample.

Chain-of-Custody Record

A form is supplied by the laboratory in a format for recording all pertinent sampling data to maintain a record of the chain of custody of samples collected. The form is completed in the field prior to delivery of the samples to the laboratory. Information included on the chain of custody record includes, at a minimum, the following:

project name
 preservatives & number of containers

project number
 sample location, well number
 custody signatures

sampling date & time
 laboratory North Carolina Certification Number

requested analysis
 inclusive dates of sample possession

Once the sample has been transported and received in the laboratory, the sample custodian and/or laboratory personnel clearly document the processing steps applied to the sample. All sample preparation techniques and instrumented methods are identified in a laboratory log book. Experimental conditions such as the use of specific reagents, temperatures, reaction times, and instrument settings are noted. The results of the analysis of quality control samples are identified specific to each batch of groundwater samples analyzed. The laboratory log book includes the time, date, and name of the person who performed each processing step.

E-1b (1)-6 Analytical Methods

The semiannual sampling analyses for compliance monitoring has been performed by Research & Analytical Laboratories located in Kernersville, North Carolina. The most recently approved

SAP requires analysis of six metals (boron, cadmium, chromium, cobalt, lead, manganese, and zinc) which are analyzed according to EPA Method 200.7. We have included the monitoring parameters and schedule in Table E-3 and the container size, preservative, holding time and analytical methodology in Table E-4.

E1-b (1)-7 *Reporting*

A report is generated within 60 days of sample collection to document details of the sample collection event and laboratory results.

E-1c Monitoring Data

Since the Facility is in post-closure, we would conclude that providing interim status monitoring results (265.92(c)(1) and 265.92(d)), water levels (26592(e), and initial background arithmetic mean and variance for each indicator parameter based on replicate measurements from upgradient wells during the first year is not applicable. All available past monitoring data is included in Tables E-1A and E-1B and a listing of past monitoring reports summarized in Appendix E-1.

E-1d Statistical Procedures

Since the Facility is in post-closure, a description of the statistical procedures employed to make the required statistical comparisons between the upgradient and downgradient wells is not deemed applicable because there is documented impact and the statistical comparison was never completed during interim status.

E-1e Groundwater Assessment Plan

Since the semiannual plume monitoring continues to indicate continued plume migration, additional assessment of the groundwater is being considered. Additional assessment would follow this general plan outlined below.

Additional monitoring wells would be located ahead of the observed plume in order to delineate the contaminant plume to North Carolina 2L groundwater standards or ACL standards if accepted by NCDEQ. Similarly, intermediate to deep monitoring wells may need to be installed to delineate the plume vertically.

E-le (1) Well Construction Procedures

Three types of monitoring wells may be proposed as follows:

• shallow wells from 0 to 45 feet

- intermediate wells from 46 to 75 feet
- deep wells from 75 feet

Shallow wells (0 to 45 feet) would be constructed of Schedule 40 2-inch PVC casing and screen. The PVC casing and screen would be connected by flush-threaded end connections. No PVC solvent or glue would be used to connect the pipe. Screens would consist of a 10-foot length of PVC slotted screen with screen openings between 0.010 to 0.015 inches.

The intermediate wells (46 to 75 feet) and deep wells (76 feet plus) would be constructed of schedule 40 2-inch or 4-inch PVC casing and screen. All end connections would be flush-threaded. No PVC solvents or glues would be used. Screen length would be 10-foot and screen openings would be between 0.010 and 0.015 inches.

The drilling would be conducted with a hollow-stem auger or air rotary drill rig. The hole would be drilled to a diameter of approximately 7-7/8 to 8-1/14 inches. Cuttings would be collected every 5 feet and logged by a geologist. The geologist would also record drilling rates, rod drops, etc. to help develop the geology of the boring. Plastic would be placed around the proposed boring location with a hole for the drill rods and bit to pass. The plastic would collect the groundwater and drill cuttings during the drilling process. A plastic lined ditch would convey the groundwater to a small sump where it would be pumped into 55-gallon drums and eventually disposed as a non-hazardous waste.

If a highly-contaminated zone is encountered above the proposed screened interval, it may need to be cased to prevent the contamination from being carried down with the drilling process. A boring drilled to a diameter of approximately 10-12 inches would be completed through the contaminated zone. Then a 6 or 8-inch diameter casing would be installed and grouted in place to seal the contaminated zone. The drilling would then proceed using the smaller 5-7/8 or 7-7/8-inch bit until the desired screen depth is reached. Following the completion of the drilling, the monitoring well would be installed. All screens would have centralizers installed at their base and top to ensure that the screen would be centered within the boring. A sandpack consisting of clean washed sand would be tremied around the screen and carried from 2 to 4 feet above the screen top. Above the sandpack, bentonite would be placed to form a seal between the annular space and the well. After the seal, a cement grout or bentonite grout would be poured to within 30 feet of ground surface. From 30 feet to ground surface, a neat bentonite/cement grout would be poured.

A lockable protective steel casing would be installed around the well which would then be locked. The well location to the nearest foot and vertical elevations to the nearest 0.01 foot would be surveyed following well installation by a registered surveyor in the State of North Carolina.

After the well is installed, the well would be cleaned of all clay, silt, or sand that may have accumulated in the well. The well would be pumped or bailed for a sufficient length of time to settle the sandpack and remove any fines. The well would be considered developed when the water removed from the well is reasonably free of sand, silt, and clay. All development water would be containerized and eventually discharged into the City of Lexington POTW which has been accepted by that entity. No dispersing agents, acids, disinfectants, or other additives would be used during development or would at any other time be introduced to the well. The installed well shall be depicted in a well diagram. This diagram would graphically denote by depth from ground surface (unless otherwise specified):

- screen location
- bottom of boring
- granular backfill
- seals
- grout
- cave in
- height of casing stickup (above ground surface)
- protective casing details

Upon completion of the monitoring wells, Waters Edge would submit Well Completion Form GW-1 for the wells as required by North Carolina law. The originals would be submitted to the NCDEQ HWS and NCDEQ Groundwater Section or equivalent.

E-1e (2) Sampling and Analysis

The purging and sampling of any new monitoring wells would follow the most recently approved SAP contained in Appendix E-3 which is detailed in Part E-1b.

E-1e (3) Evaluation of Data

After any new monitoring wells have been sampled and the analytical results received, they would be evaluated to determine if the plume boundary has been defined. Any additional drilling and well locations would be reviewed with the HWS and the need for continued plume assessment determined.

E-le (4) Reporting

A report would be prepared after the plume boundaries have been defined. The report would contain the following items:

- copies of all geologic logs, monitoring well construction logs, and well survey data
- updated geologic cross section based on the new monitoring wells

- a hydrogeology discussion that includes the geology, hydrogeology, and water quality for the entire plume and contains:
 - a shallow depth groundwater map
 - an intermediate depth groundwater map
 - a plume map using the nearest semiannual sampling results and the new monitoring well data for shallow and intermediate depth groundwater quality.

E-2 General Hydrological Information

E-2a Topography and Surface Water Bodies

The Davidson County area is characterized by gently rolling hills divided by small streams. The former Porcelanite facility is situated on a hillside, above a small perennial stream named Walltown Branch (see Figures E-1 and E-2). The elevation of the Facility varies from approximately 770 feet above MSL to approximately 730 feet above MSL at Walltown Branch. Walltown Branch is a small stream with its origin approximately 200' south of the Facility, and running to the north along the east side of the property. Walltown Drain is a creek with its origin approximately 1,100' east of the Facility, and running northwest, intersecting with the Walltown Branch on the northeast portion of the Facility. Walltown Branch was piped in 1992/1993 to prevent surface water runoff from the Ceramic Tile Pile (SWMU-3) from entering the creek. A sanitary sewer line and storm sewer lines also run parallel to Walltown Branch northward across the eastern portion of the property and a permanent 25-foot easement for these lines was also conveyed to the City of Lexington.

Runoff from the site primarily discharges toward the Walltown Branch feature; however, since the Walltown Branch has been piped in on the eastern portion of the Facility, much of the discharge no longer enters the actual surface water body east of the Ceramic Tile Pile until it reaches the northern extent of the piping at the Facility's northern boundary. There may also be some runoff which flows over the Walltown Branch east of the Ceramic Tile Pile which would enter into the groundwater. Additionally, there would be a component of groundwater migration from the western portion of the Facility which would enter the Walltown Branch north of the Facility. Walltown Branch migrates north approximately 1,600' and then west after the confluence with Yarborough Drain which discharges into Rat Springs Branch. Rat Springs Branch flows to the west/northwest approximately 2 miles to Swearing Creek, a tributary of the Yadkin River. As of 1997, the Winston-Salem Regional Water Quality Office classified Rat Springs Creek as a "C" surface water designation, which is applied to freshwater protected for secondary recreation, fishing, aquatic life propagation and survival, and wildlife. When the Walltown Branch was enclosed in pipe in 1992/1993 under a Nationwide 26 permit from the U.S. Army Corps of Engineers (USACE), it was determined there were no significant wetlands present at the site (Booz Allen, 2004).

Stream water is not classified as suitable for swimming or drinking water purposes. An updated

description of the "C" surface water designation obtained from the NCDEQ website states "Waters protected for uses such as secondary recreation, fishing, wildlife, fish consumption, aquatic life including propagation, survival and maintenance of biological integrity, and agriculture. Secondary recreation includes wading, boating, and other uses involving human body contact with water where such activities take place in an infrequent, unorganized, or incidental manner." Rat Springs Branch is not on the 303(d) list of impaired streams.

E-2b Geology

The former Porcelanite facility is located in the Lexington municipality, part of Davidson County, North Carolina. The Facility lies within the eastern portion of the Charlotte lithotectonic belt in the Piedmont Physiographic Province. This is a zone of regionally metamorphosed amphibolite igneous rocks, bounded on the east and west sides by shear zones. The Facility is underlain by Late Proterozoic-aged undivided metavolcanic rocks. Bedrock lithologies at the site consist of massive, quartz-potassium feldspar-muscovite granite to granodiorite that could be associated with the Pennsylvanian to Permian-aged Churchland Pluton or the Devonian-aged Yadkin Pluton. No significant ore deposits have been discovered or mined extensively in the immediate Lexington area. However, silver, lead, cobalt, zinc, gold, and copper have been discovered and mined in areas located 5 to 20 miles south and east of the site.

E-2c Site Specific Geology and Hydrogeology

The predominant lithology at the site has been described as pink to tan, silty sand-textured residual soils (saprolite) weathered in-place from the underlying bedrock. The saprolite grades from intensely weathered rock near the surface to slightly weathered rock at depth. In some areas, sandy clay and clayey sand soils have developed in the upper 5 to 10 feet of saprolite.

Groundwater occurs in two interconnected zones underlying the site. These zones include the unconsolidated (saprolite) water table aquifer and the underlying fractured bedrock aquifer. Groundwater in the water table aquifer is transmitted in a generally laminar fashion through the B- and C- soil zone horizons. These zones tend to have a fairly uniform porosity and permeability and have a relatively large storage capacity in the regolith overlying fractured bedrock. The two water-bearing zones do not appear to have a confining unit separating them. The saprolite/regolith zone acts as the storage reservoir for the underlying bedrock zone, and recharges the bedrock aquifer in response to water withdrawal. Based on previous site investigations, groundwater saturated soils in the uppermost aquifer occur at depths ranging from 5.5 to 24 feet bgs and extend to the top of the partially weathered rock unit at subsurface depths ranging from 27 to 50 feet bgs. Two geologic cross-sections and flow nets across the site are included in Appendix E-4.

In November 1992, single slug tests were conducted on fifteen (15) monitoring wells. Results from the tests indicated a derived aquifer permeability of 0.40 ft./d. Groundwater flow velocity was calculated to range from 0.030 ft./d to 0.054 ft./d. Groundwater flow is directed toward the

northeast with an average hydraulic gradient of 0.04 ft./ft. (approximately though individual groundwater sampling events vary slightly (see the more recent groundwater contour map from September 2016 in Figure E-2). The gradient steepens on the northeastern side of the property as groundwater approaches the tributary stream known as Walltown Branch. Recharge to the water table zone apparently occurs as surface water infiltration over the topographically higher regions southwest of the site.

E-3 Topographic Map Requirements

A Topographic Map depicting the following information is included on Figure E-1A:

- Groundwater monitoring wells
- Estimated extent of boron impacted groundwater (horizontal depicted in Figure E-1A with the vertical extent cross-sections diagrams estimated in Appendix E-4).

There are also NCGS exceedances for manganese and zinc in multiple groundwater monitoring wells with isopleth maps depicted in Figure E-1B and Figure E-1C (manganese and zinc respectively from the September 2016 sampling event)

- Hazardous waste management area for Settling Ponds and Ceramic Tile Pile
- Property boundary

The groundwater flow rate, boundaries and underlying interconnection of the uppermost saprolite and deeper bedrock aquifer, hydraulic downgradient direction, and waste management areas have been previously described in Section E-2.

E-4 Contaminant Plume Description

As depicted in Figure E-1A and cross-sections contained in Appendix E-4, boron has impacted both the shallow saprolite and the deeper bedrock aquifer in the vicinity of the closed Settling Ponds, the closed Ceramic Tile Pile, and hydraulically downgradient of these HWMUs to the northeast. Manganese and zinc have also been detected above NCGS in multiple monitoring wells with September 2016 results depicted in Figures E-1B and E-1C. Tabulated results of semiannual groundwater analysis collected from post-closure compliance monitoring wells in the plume between 2005 and 2017 are presented in Table E-1B.

The most recent extent of groundwater impact for the plume was presented in the September 2016 Groundwater Monitoring Report that was submitted to the NCDEQ on December 19, 2016. The following conclusions and recommendations are based on the most recent sampling event:

• During this semiannual sampling event, the six groundwater monitoring wells specified in the most recently accepted SAP (See Appendix E-3) were sampled and

analyzed. Based on these results, there are inorganic exceedances above NCGS for monitoring wells MW-1 (upgradient well for the Facility), MW-9D, MW-12, MW-22A, MW-26A-2, and MW-28D with the main constituents being boron, manganese, and zinc.

- Most of the monitoring wells are depicting stable to slightly decreasing trends; however, increasing trends for inorganic constituents are noted for the following:
 - 1. Increasing trend for manganese for MW-1 (upgradient well) with the zinc trend considered widely fluctuating (large increases and decreases between sampling events)
 - 2. Widely fluctuating trend for boron (large increases and decreases between sampling events) for MW-12 and MW-26A-2
 - 3. Recent increasing trend for boron and manganese in MW-28D.
- Lead was analyzed and was ND or below the NCGS in all groundwater monitoring wells. The only detected value was at MW-9D at a concentration of 0.006 mg/L which is below the NCGS of 0.015 mg/L.

The horizontal and vertical extent of the boron contaminant plume is not yet fully defined. The necessity for corrective action and for a broader monitoring program would be determined once the plume has been further defined.

E-5 General Monitoring Program Requirements

A groundwater quality assessment program for the plume was initiated in 1990 and an assessment monitoring program was subsequently developed which is detailed in the most recently approved SAP (Appendix E-3) and in Part E-1b. Since there has been migration from the HWMUs to the uppermost and deeper aquifer, Porcelanite will not ask for a waiver.

E-5a Description of Wells

This is previously described in Section E-1a.

E-5b Description of Sampling/Analysis Procedures

This is previously described in Sections E-1b.

E-5c Procedure for Establishing Background Quality

Monitoring well MW-1 will be used as a background well for comparing results from POC and other monitoring wells. Per 40CFR 264.97(a)(1), we would conclude that the results from MW-1

"represents the quality of background groundwater that has not been affected by leakage from a regulated unit". Per 40CFR264.97(g), "in detection monitoring or where appropriate in compliance monitoring, data on each hazardous constituent specified in the permit will be collected from background wells and wells at the compliance point(s). The number and kinds of samples collected to establish background shall be appropriate for the form of statistical test employed, following generally accepted statistical principles. The sample size shall be as large as necessary to ensure with reasonable confidence that a contaminant release to groundwater from a facility will be detected. The owner or operator will determine an appropriate sampling procedure and interval for each hazardous constituent listed in the facility permit which shall be specified in the unit permit upon approval by the Regional Administrator. This sampling procedure shall be:

- (1) A sequence of at least four samples, taken at an interval that assures, to the greatest extent technically feasible, that an independent sample is obtained, by reference to the uppermost aquifer's effective porosity, hydraulic conductivity, and hydraulic gradient, and the fate and transport characteristics of the potential contaminants, or
- (2) an alternate sampling procedure proposed by the owner or operator and approved by the Regional Administrator."

Analytical data have been tabulated since the 1995 with no indication that the well is showing contamination from the HWMUs. The analytical results for MW-1 are summarized in Tables E-1A and E-1B. We would choose to use the background arithmetic mean for each constituent at MW-1 utilizing all past sampling data documented in Tables E-1A and E-1B. We would also specify that one half of the detection limit would be used for non-detect values. Based on our November 22, 2017 conference call, we will also use the statistical methods provided in the November 6, 2017 DEQ Comments on Site Conceptual Model and Identified Data Gaps. It is our understanding that this would have to be approved by the Regional Administrator before it can be utilized.

E-5d Statistical Procedures

Since there is contaminated groundwater associated with the HWMUs and the site downgradient from the HWMUs, there is no need for a groundwater monitoring program to detect contamination or measure compliance with the groundwater protection standards. Porcelanite does need a monitoring program to track the contaminant plume and to potentially evaluate the effectiveness of the corrective action program which will be submitted at a later date.

Even though the contaminants were fixated in the Settling Ponds and capped in the Ceramic Tile Pile, monitoring continues to assess the upgradient and downgradient monitoring wells to determine contaminant impact and historical trends. Since the background levels and NCGS are not influenced by seasonal variations, and any potential cleanup period will be of sufficient

duration that seasonal variations will be averaged; there is no need to correct for seasonal variations.

E-6 Description of Detection Monitoring Program for Facilities Not Detecting the Presence of Hazardous Constituents

Not Applicable.

E-7 Compliance Monitoring Program for Facilities Which Have Detected Presence of Hazardous Constituents

Not currently applicable. This would be part of the CAP submittal at a future date.

E-8 Corrective Action Program

A CAP has not been implemented at the Facility but will be implemented once assessment is complete.

E-8a Characterization of Contamination

The nature and extent of the hazardous constituents detected at the Facility since the 1995 sampling event include the following:

<u>Contaminant</u>	<u>Highest Detected Concentration (mg/L)</u>
Boron	102.6 mg/L (MW-26-A-2 on September 1996)
Cadmium	<0.005 mg/L since 2007
Chromium	0.031 mg/L (MW-22A on September 17, 2008)
Cobalt	0.402 mg/L (MW-1 on March 2000)
Fluoride	2.72 mg/L (MW-10 on September 1998)
Lead	0.024 mg/L (MW-26-A-2 on October 17, 2011)
Manganese	2.88 mg/L (MW-12 on September 29, 2009)
Zinc	2.97 mg/L (MW-26-A-2 on March 29, 2013)

The lowest detected concentration for each of these constituents would be ND.

E-8b Concentration Limits

E-8b (1) Concentration Limits Established Under 264.94(a)

The nature and extent of hazardous constituents at the Facility from the past sampling events exceeding the MCLs or PQLs of Method 200.7 include the following:

Contaminant	MCL/PQL (mg/L)
Boron	PQL (0.05 mg/L)
Cadmium	MCL (0.01 mg/L)
Chromium	MCL (0.05 mg/L)
Cobalt	PQL (0.01 mg/L)
Lead	MCL (0.05 mg/L)
Manganese	PQL (0.01 mg/L)
Zinc	PQL (0.01 mg/L)

E-8 b (2) Alternate Concentration Limits

Concentration limits are the standard limits to be applied at Points of Compliance or the Facility boundary. However, based on the current data trends and site-specific factors, it may not be possible to remediate the groundwater plume to the current NCGS. Therefore, ACLs or risk based clean up levels, if accepted, may be established that must be obtained at a point within the property boundary prior to termination of the groundwater recovery program. These limits will be defined as the steady state or equilibrium concentration of a given contaminant at a Point of Compliance that would not cause an exceedance of the concentration limit at the facility boundary. These concentrations cannot be established at this time. The ACLs may be established in the future and applied based on a demonstration that the levels will not cause an exceedance of the concentration limits at the Facility boundary. Such a demonstration shall be based on an appropriate contaminant fate and transport analysis using historical corrective action monitoring data.

E-8c Corrective Action Plan

Corrective measures for groundwater and land based SWMUs have not been implemented at the Facility; however, these will be implemented in the future, as deemed necessary, and will include a CAP. This CAP will be designed to prevent hazardous constituents from exceeding their respective concentration limits at the property boundary. The CAP will consist of detailed engineering plans, if required, and will report and address the following:

- Identification of compliance point
- Plans for removing and handling hazardous waste
- Design and construction plans and specifications for any proposed features to contain groundwater or redirect its flow (e.g. drains, engineered barriers, wells)
- A description of the treatment technologies to be employed to remove hazardous constituents from contaminated groundwater
- Description of the operations and maintenance plans for the corrective action measures
- Description of any additional hydrogeologic data collected for use in designing the corrective action measures
- Schedule for implementation of the corrective action measures

E-8d Groundwater Monitoring Program

Implemented as part of the CAP, a groundwater monitoring program will be utilized to determine compliance with the concentration limits established under 40CFR Part 264.94, and to determine the effectiveness of the CAP.

E-8d (1) Description of Monitoring System

The groundwater monitoring program will include a description of the following:

- Number of wells
- Locations
- Depths and screen intervals
- Casing descriptions
- Other well construction details
- Description of how the groundwater monitoring program will demonstrate the adequacy of the correction action.

This monitoring program will continue until such time that the NCDEQ approves a petition for the Facility to modify or terminate the Corrective Action program based on a comparison of monitoring data to the concentration limits or ACLs proposed in the future. The Facility may also petition the NCDEQ to discontinue monitoring at any well or wells where three (3) consecutive monitoring events indicate contaminant concentrations are below the concentration limits or detection limits.

The frequency and points of monitoring in the program will provide sufficient data for a complete evaluation of the adequacy of corrective measures underway at the facility. The proposed monitoring will be performed in and around the defined extent of the contaminant plume for an evaluation of plume migration and capture by the groundwater recovery system.

E-8d (2) Description of Sampling and Analysis Procedures

The most recently approved SAP, located in Appendix E-3, contains detailed information regarding the sample collection, handling and analysis.

Procedures for Annual Determination of Groundwater Flow and Direction

The direction and rate of groundwater flow will continue to be determined annually using the following procedure:

- Static groundwater elevations will be measured on the same date at the monitoring well locations with an electronic interface probe with an accuracy of 0.01 feet.
- Water level measurements from all monitoring wells will be made on the date of the most recent sampling event for the annual groundwater flow determination.

- Maps of the shallow water table aquifer and deeper water aquifer will be constructed from the static water level measurements. The flow direction and gradient will be determined directly from the maps.
- The range of flow gradients and hydraulic conductivities previously determined at the site will be used to calculate the range of the groundwater flow rate from the equation:

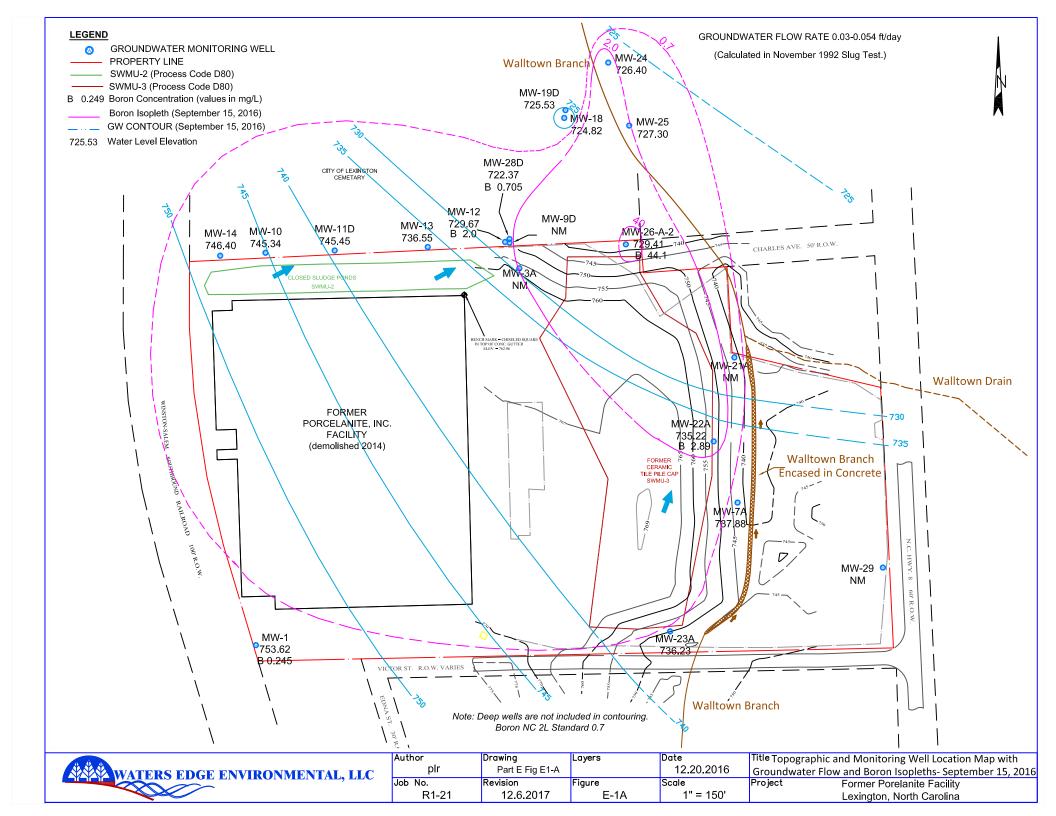
Vs=ki/n

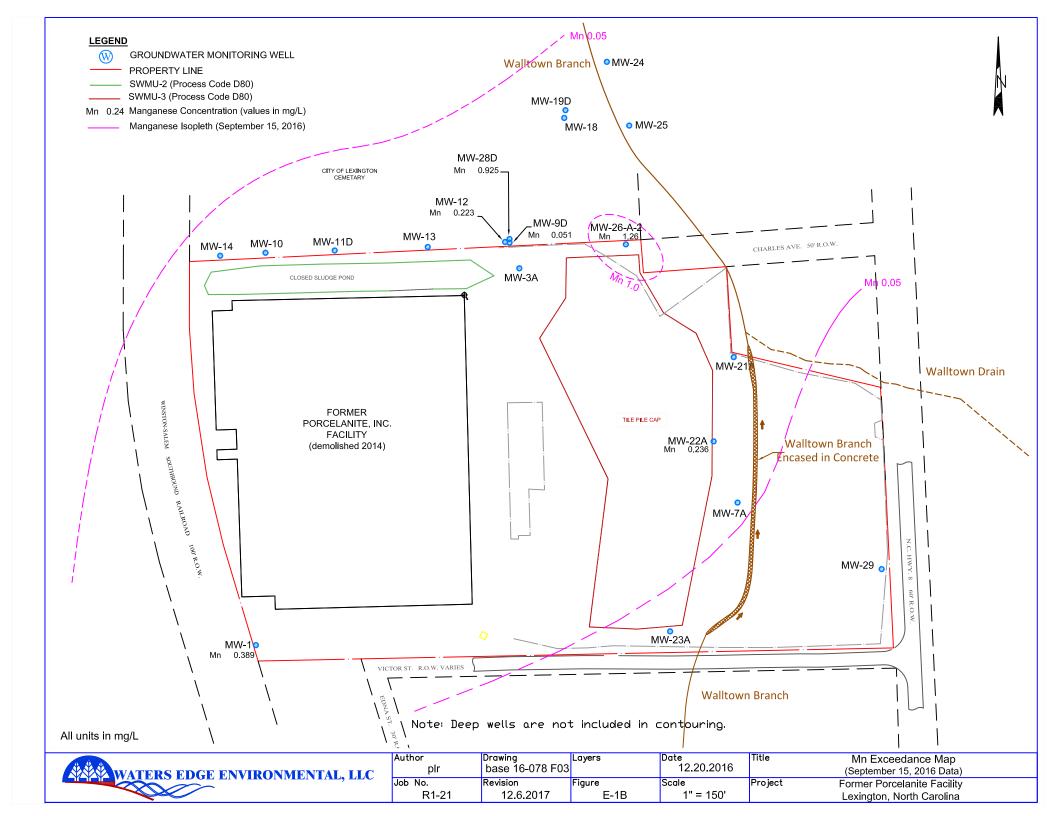
where: Vs = flow seepage velocity in ft/day,

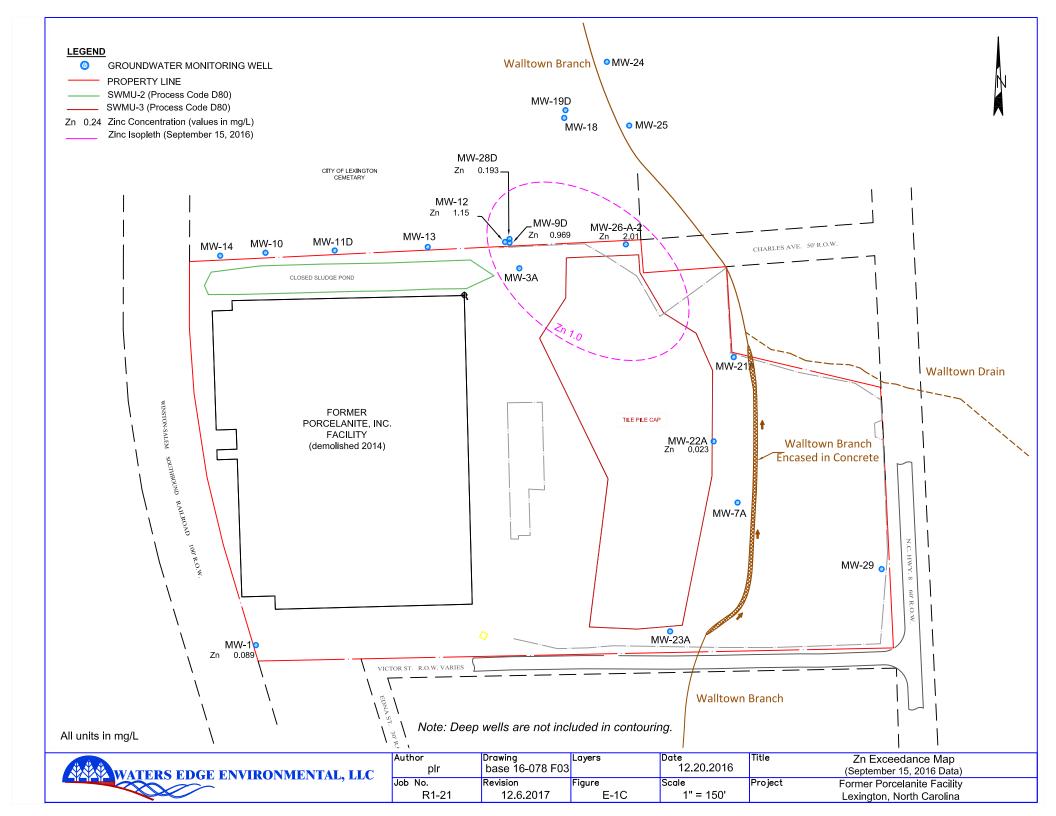
k = hydraulic conductivity in ft/day,

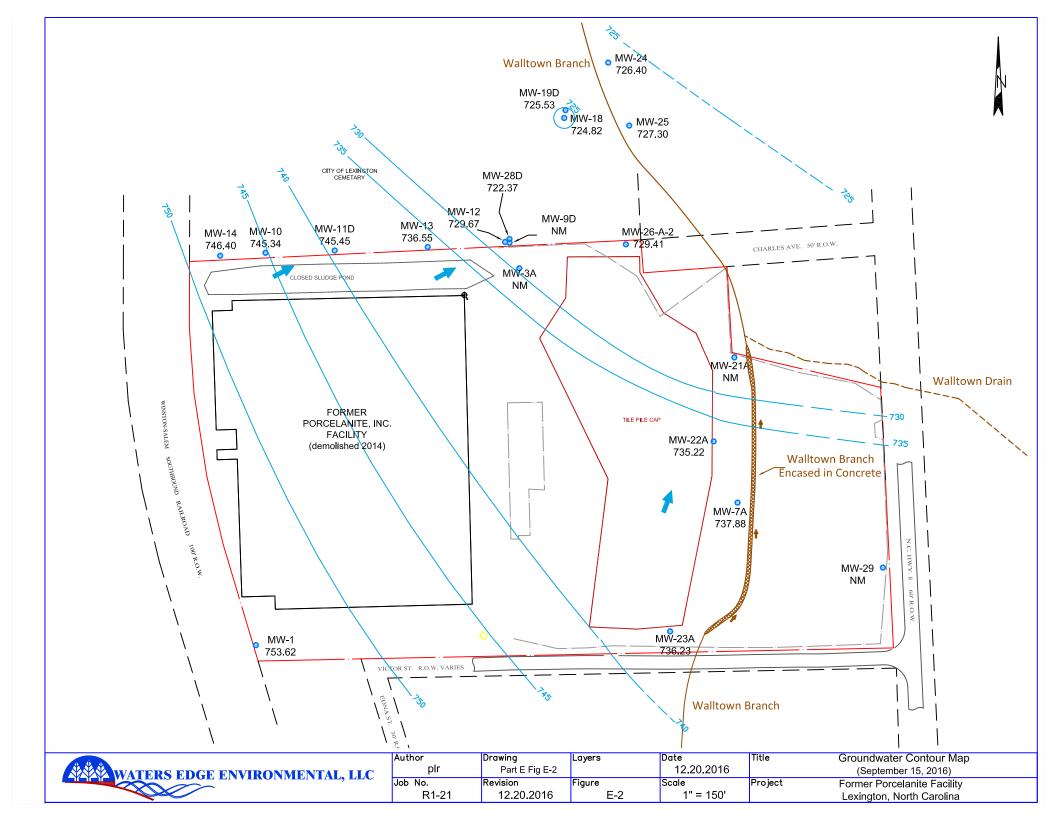
i = flow gradient ft/ft,

n = effective porosity (assumed to be 0.25)


E-8d (3) Monitoring Data and Statistical Analysis Procedure


No statistical analysis of the monitoring data is required. The MCLs or PQLs presented in Section E-8b (l), or potentially ACLs (to be established in the future), will be used to evaluate the effectiveness and scope of the corrective action system. Corrective action will continue until the NCDEQ approves a petition to modify or terminate the system as described in Section E-8d. Any constituent with a concentration remaining below the MCL or PQL for three (3) consecutive years may be dropped from the monitoring program in accordance with 264.96(c).


E-8d (4) Reporting Requirements


Records of the performance of the Corrective Measures and the progress of remediation will be kept neat and orderly in both hard and electronic format files. Reports will be submitted as required in the approved Corrective Measures Study Work Plan

Part E Figures

Part E Tables

Table E-1A 1995-2004 Summary of Analytical Result for Boron Former Porcelanite Facility Lexington, North Carolina

Well ID#	Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98
MW-1	0.341	0.202	0.31	0.332	0.232	0.209	0.24	0.228	0.232	0.186	0.189	NA	0.435	0.108
MW-3A	NA													
MW-7A	NA													
MW-8	NA													
MW-9	NA	1.18	NA											
MW-10	NA													
MW-11	NA													
MW-12	NA	7.42	NA											
MW-13	NA	22.8	NA											
MW-14	NA	8.56	NA											
MW-18	NA													
MW-19	NA													
MW-21A	6.18	9.72	11.2	4.07	5.48	5.47	6.34	4.92	3.81	NA	NA	NA	NA	NA
MW-22A	5.64	6.2	4.89	6.24	3.58	4.06	BDL	3.99	4.0	NA	NA	NA	NA	NA
MW-23A	NA													
MW-24	NA													
MW-25	NA	1.43	1.55											
MW-26A	80.8	37	29.3	43.8	70.9	52.2	102.6	NA						
MW-28	NA	5.83	NA											

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL = Below Detection Limit

NA = Not Analyzed

Highlighted blocks indicate concentration in excess of current GW standard (0.7 mg/L).

Table E-1A 1995-2004 Summary of Analytical Result for Boron Former Porcelanite Facility Lexington, North Carolina

Well ID#	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Mar-00	Jun-00	Sep-00	Dec-00	Mar-01	Jun-01	Sep-01	Dec-01
MW-1	0.28	0.249	0.254	0.22	0.179	0.239	0.24	0.237	0.281	0.225	0.236	0.267	0.236	0.482
MW-3A	NA	NA	1.32	NA	NA	NA	0.93	NA	1.04	NA	NA	NA	1.07	NA
MW-7A	NA	BDL												
MW-8	NA													
MW-9	1.12	NA	1.07	NA	0.798	NA	0.812	NA	0.806	NA	0.713	NA	0.802	NA
MW-10	14.5	NA	NA	NA	17.4	NA	NA	NA	9.01	NA	NA	NA	NA	NA
MW-11	0.217	NA	NA	NA	0.281	NA	NA	NA	BDL	NA	NA	NA	BDL	NA
MW-12	4.78	NA	2.12	NA	5.0	NA	4.8	NA	4.32	NA	2.86	NA	4.72	NA
MW-13	10.2	NA	10.7	NA	10.5	NA	8.14	NA						
MW-14	8.31	NA	9.46	NA	5.75	NA	4.8	NA	6.5	NA	5.2	NA	NA	NA
MW-18	0.237	NA	NA	NA	0.613	NA	NA	NA	0.283	NA	NA	NA	0.38	NA
MW-19	0.625	NA	NA	NA	0.499	NA	NA	NA	BDL	NA	NA	NA	0.129	NA
MW-21A	NA	0.148	BDL	BDL	BDL	BDL	0.115	BDL	BDL	0.234	BDL	0.25	BDL	BDL
MW-22A	NA	8.47	1.08	12	13.8	8.54	8.25	8.98	8.88	8.69	7.66	11	8.86	13
MW-23A	NA	NA	NA	0.302	0.74	0.211	0.527	0.272	0.104	0.111	1.31	0.181	BDL	0.181
MW-24	3.2	NA	NA	NA	3.52	NA	NA	NA	3.05	NA	NA	NA	3.92	NA
MW-25	1.71	1.58	1.77	1.83	3.12	NA	1.79	1.7	1.75	1.55	BDL	2.04	2.2	2.02
MW-26A	NA	NA	NA	0.262	10.4	NA	6.54	6.88	13.8	13	1.68	17.5	21.4	40.9
MW-28	3.86	NA	3.23	NA	3.33	NA	2.77	NA	2.37	NA	0.956	NA	2.34	NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL = Below Detection Limit

NA = Not Analyzed

Highlighted blocks indicate concentration in excess of current GW standard (0.7 mg/L).

Table E-1A 1995-2004 Summary of Analytical Result for Boron Former Porcelanite Facility Lexington, North Carolina

Well ID#	Mar-02	Jun-02	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Mar-04	Jun-04	Sep-04	Dec-04
MW-1	0.251	0.208	NA	0.303	0.261	0.157	0.426	0.323		0.248		0.288
MW-3A	0.976	NA	1.14	NA	1.48	NA	2.97	NA		NA		NA
MW-7A	BDL		BDL		0.163							
MW-8	NA	led	NA	eq	NA							
MW-9	0.794	NA	1.99	NA	0.538	NA	0.516	NA	orm	NA	г	NA
MW-10	NA	erfo	NA	irfo S.	NA							
MW-11	NA	NA	0.118	NA	NA	NA	0.162	NA	t pe	NA	pe Suc	NA
MW-12	2.67	NA	NA	NA	4.56	NA	6.5	NA	sampling not performed o SAP revisions.	NA	ng not performed revisions.	NA
MW-13	NA	ng re,	NA	lg rev	NA							
MW-14	4.22	NA	NA	NA	2.47	NA	2.42	NA	ildi AP	NA	r sampling to SAP rev	NA
MW-18	NA	am S/	NA	am S/	NA							
MW-19	NA	NA	0.441	NA	NA	NA	0.112	NA	r se to	NA	r s to	NA
MW-21A	BDL	BDL	0.456	0.336	0.117	BDL	BDL	0.147	arte due	BDL	arter due	0.177
MW-22A	7.9	10	16.3	8.93	7.13	3.46	3.1	2.86	t Quarter due t	4.25	Ö	pump broken
MW-23A	BDL	BDL	0.37	2.3	0.7	0.402	1.72	2.32	1st	3.19	3rd	2.61
MW-24	NA	NA	5.22	NA	NA	NA	4.98	NA		NA		NA
MW-25	2.47	2.55	3.37	2.9	3.59	2.29	2.57	2.24		1.57		2.13
MW-26A	37.4	31.7	68	34.6	32.1	20.8	19.8	18.1		17.8		13.3
MW-28	2.54	NA	3.56	NA	2.17	NA	NA	NA		NA		NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL = Below Detection Limit

NA = Not Analyzed

Highlighted blocks indicate concentration in excess of current GW standard (0.7 mg/L).

Table E-1A 1995-2004 Summary of Analytical Result for Cobalt Former Porcelanite Facility Lexington, North Carolina

Well ID#	Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98
MW-1	NA	0.0033	0.033	0.036	0.029	0.037	NA	BDL	NA	0.074	NA	NA	0.04	NA
MW-3A	NA	BDL	NA	BDL	NA	BDL	NA	BDL	NA	NA	NA	NA	NA	NA
MW-7A	BDL	NA	NA	NA	NA	NA								
MW-8	BDL	NA	NA	NA	NA	NA								
MW-9	NA	BDL	BDL	NA										
MW-10	NA	BDL	NA	NA										
MW-11	NA	BDL	NA	NA										
MW-12	NA	0.21	NA	0.117	NA	0.099	NA	0.062	NA	0.083	NA	0.091	0.055	NA
MW-13	NA	0.042	NA	NA	NA	0.032	NA	BDL	NA	0.026	NA	0.026	0.027	NA
MW-14	NA	BDL	NA	NA	NA	BDL	NA	BDL	NA	NA	NA	BDL	BDL	NA
MW-18	BDL	NA	BDL	BDL	NA	NA								
MW-19	NA	BDL	NA	BDL	NA	BDL	NA	NA	NA	NA	NA	BDL	NA	NA
MW-21A	BDL	NA	NA	NA	NA	NA								
MW-22A	BDL	NA	NA	NA	NA	NA								
MW-23A	BDL	NA	NA	NA	NA	NA								
MW-24	NA	BDL	NA	BDL	NA	BDL	NA	BDL	NA	NA	NA	BDL	NA	NA
MW-25	NA	BDL	NA	BDL	NA	BDL	NA	BDL	NA	NA	NA	BDL	NA	NA
MW-26A	BDL	NA	NA	NA	NA	BDL	NA	NA						
MW-28	NA	BDL	NA	0.0029	NA	BDL	NA	BDL	NA	NA	NA	BDL	BDL	NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL = Below Detection Limit

NA = Not Analyzed

Table E-1A 1995-2004 Summary of Analytical Result for Cobalt Former Porcelanite Facility Lexington, North Carolina

Well ID#	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Mar-00	Jun-00	Sep-00	Dec-00	Mar-01	Jun-01	Sep-01	Dec-01
MW-1	0.184	NA	0.101	NA	0.148	NA	0.402	NA	0.057	NA	0.195	NA	0.951	NA
MW-3A	NA	NA	BDL	NA	NA	NA	BDL	NA	BDL	NA	NA	NA	BDL	NA
MW-7A	NA													
MW-8	NA													
MW-9	BDL	NA												
MW-10	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA	NA	NA
MW-11	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA
MW-12	0.083	NA	0.083	NA	0.056	NA	0.046	NA	0.056	NA	0.049	NA	0.047	NA
MW-13	0.037	NA	0.033	NA	0.026	NA	0.026	NA						
MW-14	BDL	NA	0.12	NA	NA	NA								
MW-18	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA
MW-19	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA
MW-21A	NA													
MW-22A	NA													
MW-23A	NA													
MW-24	NA													
MW-25	NA													
MW-26A	NA													
MW-28	BDL	NA	0.013	NA	BDL	NA								

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL = Below Detection Limit

NA = Not Analyzed

Table E-1A 1995-2004 Summary of Analytical Result for Cobalt Former Porcelanite Facility

Lexington, North Carolina

Well ID#	Mar-02	Jun-02	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Mar-04	Jun-04	Sep-04	Dec-04
MW-1	0.178	NA	NA	NA	0.228	NA	0.123	NA		NA	1	NA
MW-3A	BDL	NA	BDL	NA	BDL	NA	BDL	NA	İ	NA		NA
MW-7A	NA	İ	NA		NA							
MW-8	NA	İ	NA		NA							
MW-9	BDL	NA	BDL	NA	BDL	NA	BDL	NA	not s.	NA	not s.	NA
MW-10	NA	NA	NA	NA	NA	NA	BDL	NA		NA	gu on:	NA
MW-11	NA	NA	BDL	NA	NA	NA	BDL	NA	sampling n rmed revisions	NA	sampling n irmed revisions.	NA
MW-12	0.038	NA	NA	NA	BDL	NA	0.017	NA		NA	arter sampl performed o SAP revis	NA
MW-13	NA		NA	~ ~ —	NA							
MW-14	BDL	NA	NA	NA	BDL	NA	BDL	NA	1st Quarter perfe due to SA	NA	Quarter perfo se to SA	NA
MW-18	NA	λυαι P e to	NA	rd Quar p due to	NA							
MW-19	NA	NA	BDL	NA	NA	NA	BDL	NA	st Qı due	NA	3rd (NA
MW-21A	NA	~ ~	NA	3r	NA							
MW-22A	NA		NA		NA							
MW-23A	NA		NA		NA							
MW-24	NA		NA		NA							
MW-25	NA		NA		NA							
MW-26A	NA		NA		NA							
MW-28	0.01	NA	BDL	NA	BDL	NA	NA	NA		NA		NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL = Below Detection Limit

NA = Not Analyzed

Table E-1A 1995-2004 Summary of Analytical Result for Fluoride Former Porcelanite Facility Lexington, North Carolina

Well ID#	Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98
MW-1	NA	BDL	0.141	BDL	BDL	BDL	NA	0.1	NA	BDL	NA	NA	BDL	NA
MW-3A	NA	BDL	NA	BDL	NA	BDL	NA	BDL	NA	NA	NA	NA	NA	NA
MW-7A	BDL	BDL	BDL	BDL	BDL	BDL	0.19	BDL	BDL	NA	NA	NA	NA	NA
MW-8	BDL	BDL	BDL	BDL	BDL	BDL	0.14	BDL	BDL	NA	NA	NA	NA	NA
MW-9	NA	0.4	NA	0.62	NA	0.43	NA	0.3	NA	0.34	NA	BDL	0.216	NA
MW-10	NA	0.8	NA	1.4	NA	2.6	NA	1.6	NA	1.68	NA	1.5	NA	NA
MW-11	NA	BDL	NA	NA										
MW-12	NA	0.58	NA	0.62	NA	0.38	NA	0.265	NA	0.3	NA	0.17	0.134	NA
MW-13	NA	BDL	NA	BDL	NA	0.1	NA	0.3	NA	0.17	NA	BDL	0.22	NA
MW-14	NA	BDL	NA	BDL	NA	0.1	NA	BDL	NA	BDL	NA	BDL	BDL	NA
MW-18	BDL	NA	BDL	BDL	NA	NA								
MW-19	NA	0.32	NA	0.27	NA	BDL	NA	BDL	NA	NA	NA	BDL	NA	NA
MW-21A	BDL	BDL	BDL	BDL	BDL	BDL	0.12	BDL	BDL	NA	NA	NA	NA	NA
MW-22A	BDL	0.17	BDL	BDL	BDL	BDL	0.14	BDL	BDL	NA	NA	NA	NA	NA
MW-23A	BDL	BDL	BDL	0.38	BDL	BDL	BDL	BDL	BDL	NA	NA	NA	NA	NA
MW-24	NA	BDL	NA	BDL	NA	BDL	NA	BDL	NA	NA	NA	BDL	NA	NA
MW-25	NA	BDL	NA	BDL	NA	BDL	NA	0.1	NA	NA	NA	BDL	NA	NA
MW-26A	1.34	0.14	1.68	0.14	1.58	0.17	1.8	BDL	NA	NA	NA	NA	NA	NA
MW-28	NA	BDL	NA	BDL	NA	0.1	NA	BDL	NA	NA	NA	BDL	BDL	NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL=Below Detection Limit

NA=Not Analyzed

Table E-1A 1995-2004 Summary of Analytical Result for Fluoride Former Porcelanite Facility Lexington, North Carolina

Well ID#	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Mar-00	Jun-00	Sep-00	Dec-00	Mar-01	Jun-01	Sep-01	Dec-01
MW-1	BDL	NA	BDL	NA	BDL	NA	0.108	NA	BDL	NA	BDL	NA	0.188	NA
MW-3A	NA	NA	BDL	NA	NA	NA	BDL	NA	BDL	NA	NA	NA	BDL	NA
MW-7A	NA													
MW-8	NA													
MW-9	0.23	NA	0.2	NA	0.15	NA	0.157	NA	0.24	NA	BDL	NA	0.37	NA
MW-10	2.72	NA	NA	NA	1.47	NA	NA	NA	0.82	NA	NA	NA	NA	NA
MW-11	0.15	NA	NA	NA	0.12	NA	NA	NA	0.132	NA	NA	NA	0.163	NA
MW-12	0.2	NA	NA	NA	BDL	NA	0.142	NA	0.189	NA	BDL	NA	0.275	NA
MW-13	BDL	NA	BDL	NA	BDL	NA	BDL	NA						
MW-14	BDL	NA	0.149	NA	NA	NA								
MW-18	0.33	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA	0.107	NA
MW-19	BDL	NA	NA	NA	BDL	NA	NA	NA	BDL	NA	NA	NA	0.329	NA
MW-21A	NA													
MW-22A	NA													
MW-23A	NA													
MW-24	NA													
MW-25	NA													
MW-26A	NA													
MW-28	BDL	NA	BDL	NA	1.62	NA	0.123	NA	0.111	NA	BDL	NA	0.609	NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL=Below Detection Limit

NA=Not Analyzed

Highlighted blocks indicate concentration in excess of current GW standard (2 mg/L).

Table E-1A 1995-2004 Summary of Analytical Result for Fluoride Former Porcelanite Facility Lexington, North Carolina

							,					
Well ID#	Mar-03	Jun-02	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Mar-04	Jun-04	Sep-04	Dec-04
MW-1	BDL	NA	NA	NA	0.381	NA	0.124	NA		NA		NA
MW-3A	BDL	NA	BDL	NA	0.137	NA	BDL	NA		NA		NA
MW-7A	NA		NA		NA							
MW-8	NA		NA	ţ	NA							
MW-9	0.124	NA	BDL	NA	0.225	NA	BDL	NA	not s.	NA	not s.	NA
MW-10	NA	NA	NA	NA	NA	NA	0.107	NA	gu on	NA	ng on	NA
MW-11	NA	NA	0.209	NA	NA	NA	BDL	NA	sampling n vrmed P revisions	NA	sampling n vrmed revisions.	NA
MW-12	0.165	NA	NA	NA	0.141	NA	BDL	NA	am me re	NA	arr me re	NA
MW-13	NA		NA		NA							
MW-14	BDL	NA	NA	NA	0.159	NA	BDL	NA	arter samp performed SAP revis	NA	tuarter sampl performed to SAP revis	NA
MW-18	NA	1 12 12	NA	Quarter perfo se to SA	NA							
MW-19	NA	NA	0.153	NA	NA	NA	0.109	NA	st Qı due	NA	3rd Qເ due	NA
MW-21A	NA	* ,	NA	3r	NA							
MW-22A	NA		NA		NA							
MW-23A	NA	Ï	NA		NA							
MW-24	NA		NA		NA							
MW-25	NA		NA		NA							
MW-26A	NA		NA		NA							
MW-28	0.125	NA	BDL	NA	0.198	NA	NA	NA		NA		NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL=Below Detection Limit

NA=Not Analyzed

Table E-1A 1995-2004 Summary of Analytical Result for Gross Beta Former Porcelanite Facility Lexington, North Carolina

						-	0119 1 (01 0							
Well ID#	Mar-95	Jun-95	Sep-95	Dec-95	Mar-96	Jun-96	Sep-96	Dec-96	Mar-97	Jun-97	Sep-97	Dec-97	Mar-98	Jun-98
MW-1	3.7	3.1	3.2	3.1	3.4	3.1	3.7	3.8	2.7	2.5	3.5	NA	NA	NA
MW-3A	NA	NA	NA	BDL	NA	NA	NA	11.7	NA	NA	NA	NA	NA	NA
MW-7A	NA	1.8	NA	NA	NA	NA	NA	NA						
MW-8	NA	2.9	NA	NA	NA	NA	NA	NA						
MW-9	NA	6.8	NA	NA	NA	5.5	NA	NA						
MW-10	NA	18.1	NA	NA	NA	20.6	NA	NA						
MW-11	NA	1.9	NA	NA	NA	1.8	NA	NA						
MW-12	NA	8.3	NA	NA	NA	13.4	NA	NA						
MW-13	NA	8.8	NA	NA	NA	7.0	NA	NA						
MW-14	NA	8.8	NA	NA	NA	5.5	NA	NA						
MW-18	NA	3	NA	NA	BDL	2.4	NA	NA						
MW-19	NA	NA	NA	NA	NA	10.4	NA	NA						
MW-21A	3.2	3.3	4.1	BDL	3.7	3.6	2.3	3.1	3.0	NA	NA	NA	NA	NA
MW-22A	1.4	NA	1.4	3.8	1.7	1.3	1.1	1.8	BDL	NA	NA	NA	NA	NA
MW-23A	NA	1.6	NA	NA	NA	NA	NA	NA						
MW-24	NA	2.1	NA	NA	NA	BDL	NA	NA						
MW-25	NA	1.7	NA	NA	NA	2.2	NA	NA						
MW-26A	20.4	21.1	NA	14.6	15	14.6	20.5	NA	NA	NA	NA	8.5	NA	NA
MW-28	NA	9.0	NA	NA	NA	9.9	NA	NA						

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL=Below Detection Limit

NA=Not Analyzed

Table E-1A 1995-2004 Summary of Analytical Result for Gross Beta Former Porcelanite Facility Lexington, North Carolina

						- 8	,							
Well ID#	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Mar-00	Jun-00	Sep-00	Dec-00	Mar-01	Jun-01	Sep-01	Dec-01
MW-1	BDL	NA	5.4	NA	NA	NA	4	NA						
MW-3A	NA	16.2	NA	NA	NA	11.3	NA							
MW-7A	NA													
MW-8	NA													
MW-9	6.3	NA	NA	NA	5.3	NA	NA	NA	5.4	NA	NA	NA	4.2	NA
MW-10	NA													
MW-11	NA													
MW-12	9.3	NA	NA	NA	9.8	NA	NA	NA	11.5	NA	NA	NA	11.4	NA
MW-13	7.5	NA	NA	NA	8.2	NA								
MW-14	8.8	NA	NA	NA	8.1	NA	NA	NA	8.5	NA	NA	NA	NA	NA
MW-18	NA													
MW-19	NA													
MW-21A	NA													
MW-22A	NA													
MW-23A	NA													
MW-24	NA													
MW-25	NA													
MW-26A	NA													
MW-28	7.7	NA	59.3	NA	NA	NA	5.4	NA						

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL=Below Detection Limit

NA=Not Analyzed

Table E-1A 1995-2004 Summary of Analytical Result for Gross Beta Former Porcelanite Facility Lexington, North Carolina

							- ,					
Well ID#	Mar-02	Jun-02	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Mar-04	Jun-04	Sep-04	Dec-04
MW-1	NA		NA		NA							
MW-3A	NA	NA	17.4	NA	NA	NA	NA	NA		NA		NA
MW-7A	NA		NA		NA							
MW-8	NA		NA	.	NA							
MW-9	NA	NA	5.2	NA	NA	NA	NA	NA	not s.	NA	not s.	NA
MW-10	NA	ampling n ned revisions	NA	ampling n ned revisions	NA							
MW-11	NA	ipli ed visi	NA	ildr ba isiv	NA							
MW-12	NA	arr me re	NA	sampling ormed > revision	NA							
MW-13	NA	er s for AP	NA		NA							
MW-14	NA	Quarter sampling n performed to SAP revisions	NA	arter samp performed s SAP revis	NA							
MW-18	NA	Quarter perfi se to SA	NA	1 12	NA							
MW-19	NA	1st Qเ due	NA	d Qi due	NA							
MW-21A	NA	18	NA	33	NA							
MW-22A	NA		NA		NA							
MW-23A	NA		NA		NA							
MW-24	NA		NA		NA							
MW-25	NA		NA		NA							
MW-26A	NA		NA		NA							
MW-28	NA	NA	9.1	NA	NA	NA	NA	NA		NA		NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL=Below Detection Limit

NA=Not Analyzed

Table E-1A
1995-2004 Summary of Analytical Result for Manganese
Former Porcelanite Facility
Lexington, North Carolina

Well ID#	Mar-98	Jun-98	Sep-98	Dec-98	Mar-99	Jun-99	Sep-99	Dec-99	Mar-00	Jun-00	Sep-00	Dec-00	Mar-01	Jun-01
MW-1	NA	NA	0.025	NA	NA	NA	0.025	NA	NA	NA	0.093	NA	NA	NA
MW-3A	NA	0.316	NA	NA	NA									
MW-9	NA	NA	0.163	NA	NA	NA	0.113	NA	NA	NA	0.124	NA	NA	NA
MW-12	NA	NA	0.568	NA	NA	NA	0.512	NA	NA	NA	0.55	NA	NA	NA
MW-13	NA	NA	0.278	NA	NA	NA	0.262	NA	NA	NA	dry	NA	NA	NA
MW-14	NA	NA	0.092	NA	NA	NA	0.094	NA	NA	NA	0.104	NA	NA	NA
MW-28	NA	NA	0.133	NA	NA	NA	0.361	NA	NA	NA	0.952	NA	NA	NA

Well ID#	Sep-01	Dec-01	Mar-02	Jun-02	Sep-02	Dec-02	Mar-03	Jun-03	Sep-03	Dec-03	Mar-04	Jun-04	Sep-04	Dec-04
MW-1	0.139	NA	NA	NA	NA	NA	NA	NA	0.123	NA	g s.	NA	ng Is.	NA
MW-3A	NA	NA	NA	NA	1.1	NA	NA	NA	0.348	NA	nplin sd sions	NA	iii 등 등	NA
MW-9	0.066	NA	NA	NA	0.082	NA	NA	NA	0.068	NA	an me evi	NA	sam _l ormec revis	NA
MW-12	0.567	NA	NA	NA	NA	NA	NA	NA	0.291	NA	rter s verfor AP re	NA	ter s erfo NP r	NA
MW-13	dry	NA	re ∠ Ω	NA	Quarter not perfo to SAP r	NA								
MW-14	dry	NA	0.127	NA	ot Qua not ie to	NA	d d d d d d d	NA						
MW-28	0.314	NA	NA	NA	0.761	NA	NA	NA	NA	NA	1s du	NA	3r du	NA

Additional compounds were analyzed but determinted not to be COCs.

All results in mg/L

BDL=Below Detection Limit

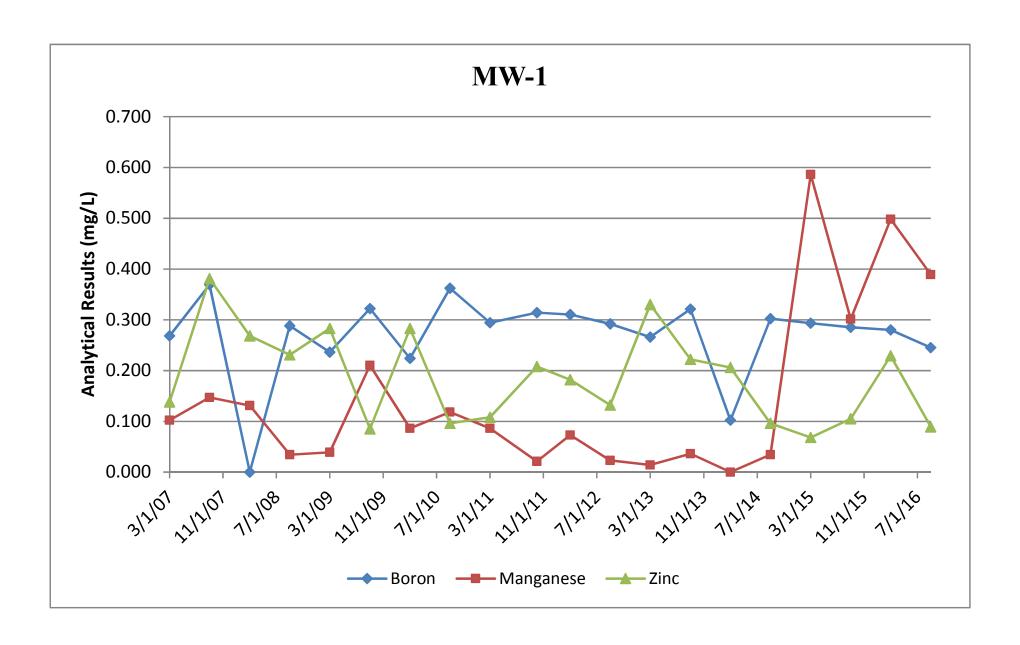
NA=Not Analyzed

Highlighted blocks indicate concentration in excess of current GW standard (0.05 mg/L).

MW-1

		Quantitation									
Parameter	Units	Limit	2L Standard	9/8/05	8/18/06	3/28/07	9/12/07	3/18/08	9/17/08	3/25/09	9/29/09
Metals											
Boron	mg/L	0.100	0.7	0.226	0.254	0.268	0.369	BQL	0.288	0.236	0.322
Cadmium	mg/L	0.005	0.002	NA	NA	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	NA	NA	0.344	0.818	0.222	0.042	0.259	0.295
Chromium	mg/L	0.010	0.01	NA	NA	BQL	0.013	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	0.026	BQL	0.007	0.012	0.009	0.012	0.018
Manganese	mg/L	0.010	0.05	NA	NA	0.102	0.147	0.131	0.034	0.039	0.210
Zinc	mg/L	0.020	1.0	NA	NA	0.138	0.381	0.268	0.231	0.283	0.085

MW-1 (cont.)


		Quantitation									
Parameter	Units	Limit	2L Standard	3/23/10	9/21/10	3/22/11	10/17/11	3/27/12	9/20/12	3/29/13	9/17/13
Metals											
Boron	mg/L	0.100	0.7	0.224	0.362	0.294	0.314	0.310	0.292	0.266	0.321
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	0.074	0.056	0.279	0.158	0.124	0.124
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	BQL	0.009	0.007	BQL	0.006	0.006	0.007
Manganese	mg/L	0.010	0.05	0.086	0.118	0.086	0.021	0.073	0.023	0.014	0.036
Zinc	mg/L	0.020	1.0	0.283	0.096	0.108	0.208	0.182	0.132	0.330	0.222

 $BQL = Below\ Quantitation\ Limit$

 $NA = Compound\ Not\ Analyzed$

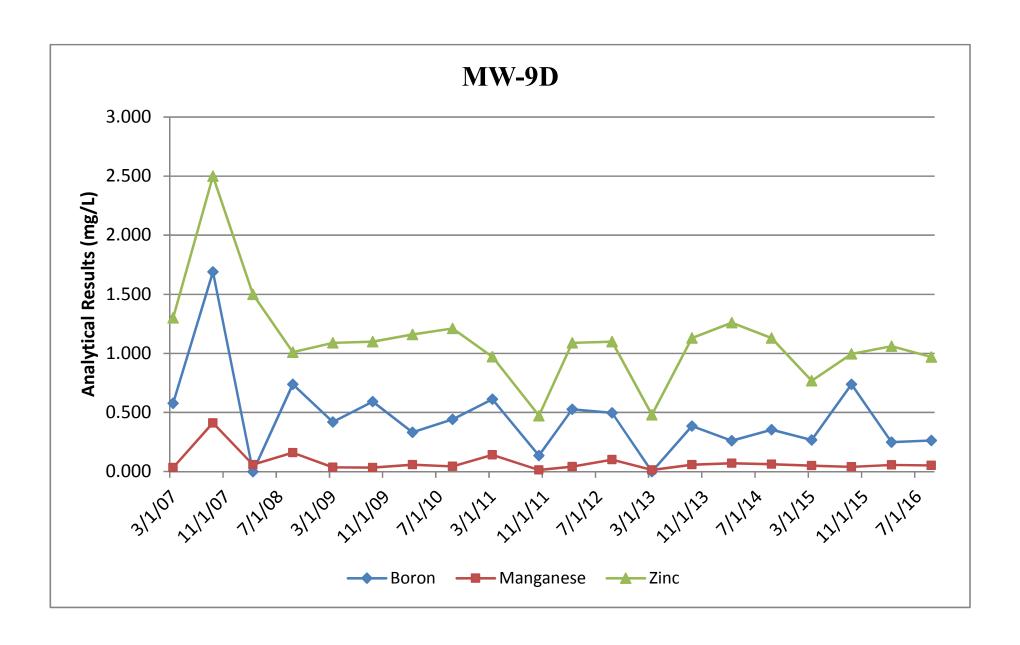
MW-1 (cont.)

		Quantitation								
Parameter	Units	Limit	2L Standard	3/11/14	9/9/14	3/24/15	9/23/15	3/15/16	9/15/16	
Metals										
Boron	mg/L	0.100	0.7	0.102	0.302	0.293	0.285	0.280	0.245	
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	
Cobalt	mg/L	0.025	NS	BQL	0.062	0.036	BQL	0.026	BQL	
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	
Lead	mg/L	0.005	0.015	BQL	0.010	0.005	BQL	0.015	BQL	
Manganese	mg/L	0.010	0.05	BQL	0.034	0.586	0.301	0.498	0.389	
Zinc	mg/L	0.020	1.0	0.206	0.096	0.068	0.105	0.229	0.089	

MW-9D

		Quantitation									
Parameter	Units	Limit	2L Standard	3/30/05	9/8/05	5/19/06	10/18/06	3/28/07	9/12/07	3/18/08	9/17/08
Metals											
Boron	mg/L	0.100	0.7	1.41	0.744	0.738	0.694	0.578	1.69	BQL	0.738
Cadmium	mg/L	0.005	0.002	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	BQL	BQL	BQL	BQL	BQL	BQL	0.006
Manganese	mg/L	0.010	0.05	NA	NA	NA	NA	0.033	0.412	0.058	0.160
Zinc	mg/L	0.020	1.0	NA	NA	NA	NA	1.30	2.50	1.5	1.01

MW-9D (cont.)


(**************************************											
		Quantitation									
Parameter	Units	Limit	2L Standard	3/25/09	9/29/09	3/23/10	9/21/10	3/22/11	10/17/11	3/27/12	9/20/12
Metals											
Boron	mg/L	0.100	0.7	0.419	0.59	0.332	0.441	0.613	0.136	0.527	0.497
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	BQL	BQL	0.006	BQL	0.006	BQL	BQL
Manganese	mg/L	0.010	0.05	0.035	0.034	0.058	0.043	0.142	0.013	0.041	0.10
Zinc	mg/L	0.020	1.0	1.09	1.10	1.16	1.21	0.971	0.473	1.09	1.10

 $BQL = Below\ Quantitation\ Limit$

 $NA = Compound\ Not\ Analyzed$

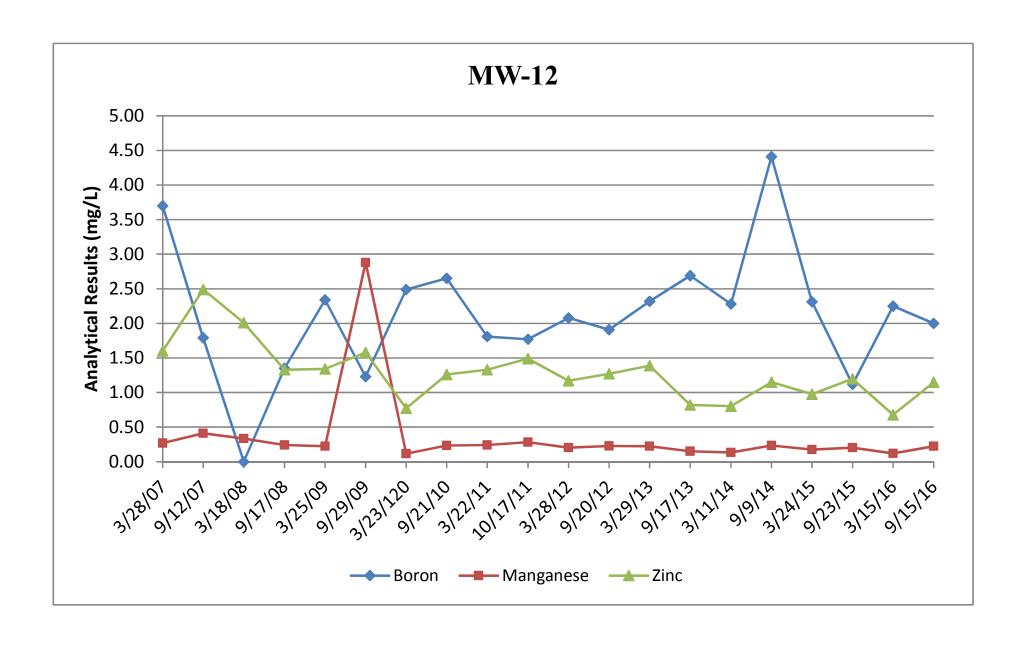
MW-9D (cont.)

		Quantitation									
Parameter	Units	Limit	2L Standard	3/29/13	9/17/13	3/11/14	9/9/14	3/24/15	9/23/15	3/15/16	9/15/16
Metals											
Boron	mg/L	0.100	0.7	BQL	0.385	0.260	0.355	0.266	0.737	0.249	0.262
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	0.008	BQL	0.014	0.009	BQL	BQL	BQL	0.006
Manganese	mg/L	0.010	0.05	0.014	0.058	0.070	0.062	0.05	0.039	0.056	0.051
Zinc	mg/L	0.020	1.0	0.48	1.13	1.26	1.13	0.768	0.996	1.06	0.969

MW-12

		Quantitation									
Parameter	Units	Limit	2L Standard	3/30/05	9/8/05	5/19/06	10/18/06	3/28/07	9/12/07	3/18/08	9/17/08
Metals											
Boron	mg/L	0.100	0.7	3.33	1.79	1.95	0.823	3.70	1.79	BQL	1.35
Cadmium	mg/L	0.005	0.002	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Manganese	mg/L	0.010	0.05	NA	NA	NA	NA	0.269	0.412	0.336	0.243
Zinc	mg/L	0.020	1.0	NA	NA	NA	NA	1.60	2.49	2.01	1.33

MW-12 (cont.)


		Quantitation									
Parameter	Units	Limit	2L Standard	3/25/09	9/29/09	3/23/120	9/21/10	3/22/11	10/17/11	3/28/12	9/20/12
Metals											
Boron	mg/L	0.100	0.7	2.34	1.23	2.49	2.65	1.81	1.77	2.08	1.91
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	0.005	BQL	BQL	BQL	BQL	BQL	BQL
Manganese	mg/L	0.010	0.05	0.224	2.880	0.116	0.234	0.242	0.284	0.205	0.229
Zinc	mg/L	0.020	1.0	1.34	1.58	0.772	1.26	1.33	1.49	1.17	1.27

 $BQL = Below\ Quantitation\ Limit$

 $NA = Compound\ Not\ Analyzed$

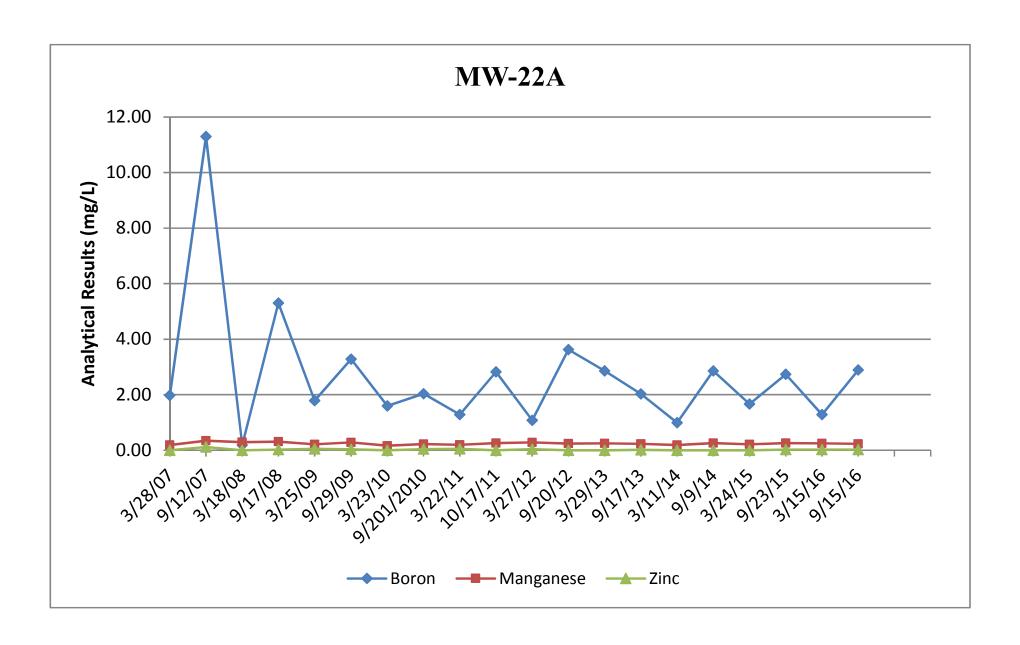
MW-12 (cont.)

		Quantitation									
Parameter	Units	Limit	2L Standard	3/29/13	9/17/13	3/11/14	9/9/14	3/24/15	9/23/15	3/15/16	9/15/16
Metals											
Boron	mg/L	0.100	0.7	2.32	2.69	2.28	4.41	2.31	1.12	2.25	2.00
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Manganese	mg/L	0.010	0.05	0.225	0.150	0.135	0.235	0.175	0.205	0.121	0.223
Zinc	mg/L	0.020	1.0	1.39	0.82	0.802	1.15	0.978	1.2	0.679	1.15

MW-22A

		Quantitation									
Parameter	Units	Limit	2L Standard	9/8/05	10/18/06	3/28/07	9/12/07	3/18/08	9/17/08	3/25/09	9/29/09
Metals											
Boron	mg/L	0.100	0.7	4.5	2.5	1.98	11.3	0.187	5.30	1.79	3.28
Cadmium	mg/L	0.005	0.002	NA	NA	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	NA	NA	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	NA	NA	BQL	BQL	BQL	0.031	0.022	0.010
Lead	mg/L	0.005	0.015	BQL	0.028	BQL	BQL	BQL	0.015	0.024	0.017
Manganese	mg/L	0.010	0.05	NA	NA	0.185	0.345	0.290	0.310	0.218	0.288
Zinc	mg/L	0.020	1.0	NA	NA	BQL	0.117	BQL	0.028	0.047	0.033

MW-22A (cont.)


		Quantitation									
Parameter	Units	Limit	2L Standard	3/23/10	9/201/2010	3/22/11	10/17/11	3/27/12	9/20/12	3/29/13	9/17/13
Metals											
Boron	mg/L	0.100	0.7	1.60	2.04	1.29	2.82	1.08	3.63	2.86	2.03
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	0.006	0.005	0.008	BQL	BQL	0.008	BQL	0.006
Manganese	mg/L	0.010	0.05	0.167	0.225	0.195	0.254	0.284	0.242	0.248	0.232
Zinc	mg/L	0.020	1.0	BQL	0.039	0.048	BQL	0.042	BQL	BQL	0.020

 $BQL = Below\ Quantitation\ Limit$

 $NA = Compound\ Not\ Analyzed$

MW-22A (cont.)

		Quantitation								
Parameter	Units	Limit	2L Standard	3/11/14	9/9/14	3/24/15	9/23/15	3/15/16	9/15/16	
Metals										
Boron	mg/L	0.100	0.7	0.99	2.86	1.67	2.74	1.29	2.89	
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	
Lead	mg/L	0.005	0.015	BQL	0.007	BQL	0.006	0.011	BQL	
Manganese	mg/L	0.010	0.05	0.188	0.256	0.216	0.260	0.251	0.236	
Zinc	mg/L	0.020	1.0	BQL	BQL	BQL	0.027	0.025	0.023	

MW-26A-2

		Quantitation									
Parameter	Units	Limit	2L Standard	3/30/05	9/8/05	5/19/06	10/18/06	3/28/07	9/12/07	3/18/08	9/17/08
Metals											
Boron	mg/L	0.100	0.7	24.3	16.5	30.8	31.9	18.5	56.6	3.560	64.3
Cadmium	mg/L	0.005	0.002	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	NA	NA	NA	NA	0.028	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	0.023	0.037	0.075	0.187	0.126	BQL	BQL	0.008
Manganese	mg/L	0.010	0.05	NA	NA	NA	NA	0.788	2.24	1.52	1.66
Zinc	mg/L	0.020	1.0	NA	NA	NA	NA	1.54	0.119	0.102	0.223

MW-26A-2 (cont.)

		Quantitation									
Parameter	Units	Limit	2L Standard	3/25/09	9/29/09	3/23/10	9/21/10	3/22/11	10/17/11	3/28/12	9/20/12
Metals											
Boron	mg/L	0.100	0.7	57.1	73.3	1.44	63.5	64.7	30.6	47.0	62.7
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	0.007	BQL	0.010	0.008	0.005	0.012	BQL	0.006
Manganese	mg/L	0.010	0.05	1.27	1.41	1.37	1.57	1.84	0.669	1.42	2.43
Zinc	mg/L	0.020	1.0	1.03	0.367	1.36	0.912	0.912	2.73	1.55	0.43

 $BQL = Below\ Quantitation\ Limit$

 $NA = Compound\ Not\ Analyzed$

MW-26A-2 (cont.)

		Quantitation									
Parameter	Units	Limit	2L Standard	3/29/13	9/17/13	3/11/14	9/9/14	3/24/15	9/23/15	3/15/16	9/15/16
Metals											
Boron	mg/L	0.100	0.7	17.9	29.2	18.6	66.4	17.6	69.9	11.0	44.1
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Manganese	mg/L	0.010	0.05	0.22	0.242	0.271	2.33	0.268	2.49	0.152	1.26
Zinc	mg/L	0.020	1.0	2.97	2.88	2.11	1.56	1.68	0.754	2.92	2.01

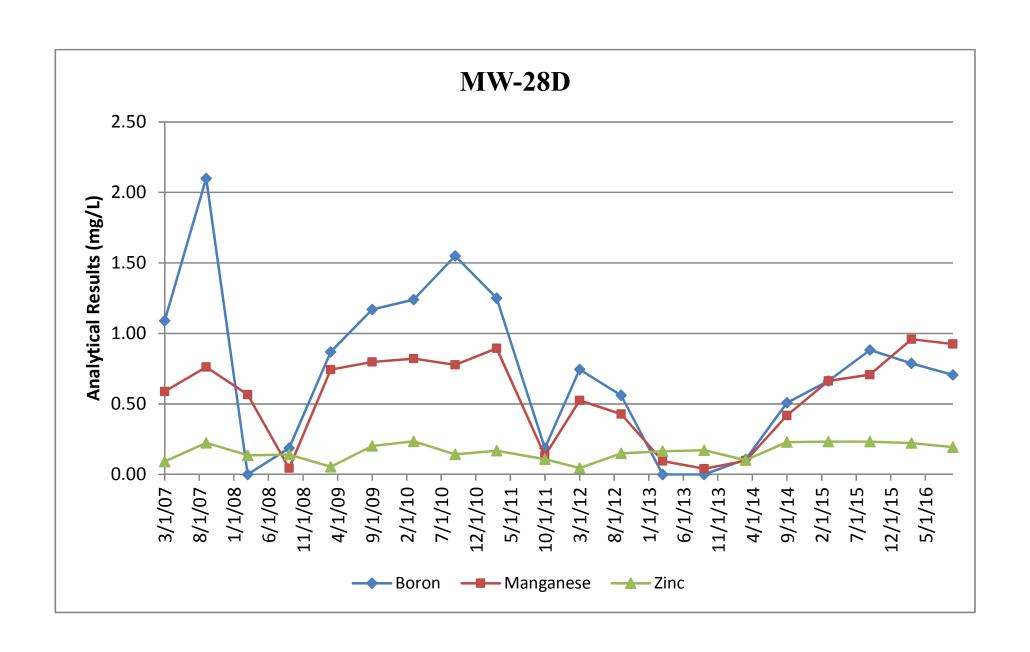
MW-28D

Parameter	Units	Quantitation Limit	2L Standard	3/30/05	9/8/05	5/19/06	10/18/06	3/28/07	9/12/07	3/18/08	9/17/08
Metals	"				1						
Boron	mg/L	0.100	0.7	1.13	1.09	1.54	1.05	1.09	2.10	BQL	0.186
Cadmium	mg/L	0.005	0.002	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	NA	NA	NA	NA	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	NA	NA	NA	NA	0.102	BQL	0.016	0.024
Lead	mg/L	0.005	0.015	BQL	BQL	0.012	0.012	BQL	BQL	0.005	BQL
Manganese	mg/L	0.010	0.05	NA	NA	NA	NA	0.588	0.762	0.566	0.043
Zinc	mg/L	0.020	1.0	NA	NA	NA	NA	0.092	0.224	0.136	0.140

MW-28D (cont.)

		Quantitation									
Parameter	Units	Limit	2L Standard	3/25/09	9/29/09	3/23/10	9/21/10	3/22/11	10/17/11	3/28/12	9/20/12
Metals											
Boron	mg/L	0.100	0.7	0.869	1.17	1.24	1.55	1.25	0.187	0.745	0.561
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	0.021	0.023	0.018	0.024	0.019	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	0.010	0.006	0.007	0.019	0.007	BQL	BQL	BQL
Manganese	mg/L	0.010	0.05	0.744	0.797	0.821	0.778	0.895	0.132	0.525	0.428
Zinc	mg/L	0.020	1.0	0.054	0.202	0.235	0.143	0.168	0.108	0.045	0.149

 $BQL = Below\ Quantitation\ Limit$


 $NA = Compound\ Not\ Analyzed$

MW-28D (cont.)

		Quantitation									
Parameter	Units	Limit	2L Standard	3/29/13	9/17/13	3/11/14	9/9/14	3/24/15	9/23/15	3/15/16	9/15/16
Metals											
Boron	mg/L	0.100	0.7	BQL	BQL	0.106	0.508	0.664	0.883	0.787	0.705
Cadmium	mg/L	0.005	0.002	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Cobalt	mg/L	0.025	NS	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Chromium	mg/L	0.010	0.01	BQL	BQL	BQL	BQL	BQL	BQL	BQL	BQL
Lead	mg/L	0.005	0.015	BQL	BQL	BQL	0.007	BQL	BQL	BQL	BQL
Manganese	mg/L	0.010	0.05	0.095	0.041	0.096	0.418	0.664	0.707	0.959	0.925
Zinc	mg/L	0.020	1.0	0.165	0.171	0.101	0.230	0.232	0.232	0.222	0.193

 $BQL = Below\ Quantitation\ Limit$

 $NA = Compound\ Not\ Analyzed$

Table E-2 Former Porcelanite, Inc. September 2016 Groundwater Monitoring Well Construction and Elevation Data

Monitoring Well Identification	Top of Casing Elevation	Water Level Reading (9.15.16)	Total Depth (ft bgs)	Screen Interval (ft bgs)	Ground Water Elevation	Pump Intake Elevation
MW-1	769.71	12.81	25	15-25	756.9	749.41
MW-3A	NM	NM	31	16-31	NM	NM
MW-7A	742.69	NM	16	6-16.0	NC	NM
MW-9D	749.79	21.57	55.50	45.5-55.5	728.22	699.97
MW-10	757.81	NM	20	10-20.0	NC	643.42
MW-11D	755.10	NM	70	60-70	NC	690.62
MW-12	749.59	17.78	27	17-27	731.81	727.80
MW-13	752.86	NM	23	13-23	NC	736.11
MW-14	756.92	NM	17	7-17.0	NC	744.54
MW-18	733.44	NM	18	8-18.0	NC	NM
MW-19D	732.4	NM	38	33-38	NC	NM
MW-21A	739.31	NM	12.5	2.5-12.5	NC	NM
MW-22A	753.25	18.45	22.5	12.5-22.5	734.80	730.73
MW-23A	748.57	NM	16	6-16.0	NC	NM
MW-24	729.42	NM	15	5-15.0	NC	NM
MW-25	731.59	NM	15	5-15.0	NC	NM
MW-26A-2	749.44	19.64	17.3	7.3-17.3	729.80	722.44
MW-28D	749.39	25.81	81	71-81	723.58	669.72
MW-29	753.19	NM	20	10-20.0	NC	NM

NC= Not Calculable
NM= Not Measured

Ground surface datum collected on May 15, 1999, August 2000 and September 2008

Waters Edge Environmental Job No. R1-21

Table E-3
October 2007 Sampling and Analysis Plan
Target Analyte List and Sampling Schedule
Former Porcelanite Facility
Lexington, North Carolina

Well ID#	March	September
MW-1	A	A
MW-9	A	A
MW-12	A	A
MW-22A	A	A
MW-26-A-2	A	A
MW-28	A	A

<u>PARAMETERS</u> A: Boron, Cadmium, Chromium, Cobalt, Lead, Manganese and Zinc

Table E-4

Target Analyte List Container Size, Preservative, Holding Time and Analytical Methodology Former Porcelanite Facility Lexington, North Carolina

Parameter	Container	Preservative	Holding Time	Analytical Method
Boron	950 ml	HNO ₃	6 months	200.7
Cadmium	950 ml	HNO ₃	6 months	200.7
Chromium	950 ml	HNO ₃	6 months	200.7
Cobalt	950 ml	HNO ₃	6 months	200.7
Lead	950 ml	HNO ₃	6 months	200.7
Manganese	950 ml	HNO ₃	6 months	200.7
Zinc	950 ml	HNO ₃	6 months	200.7

Note: With use of EPA Method 200.7, the lowest possible detection limit will be obtained with each analyte tested. Sample containers, preservation techniques and holding times utilized in the sampling events are conducted in accordance with the methods presented in EPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Table 2-33.

Part E Appendices

Appendix E-1 Historic Groundwater Monitoring Reports

Appendix E-1- Past Groundwater Monitoring Reports

- 1. Aquaterra, Inc., 1991 Annual Summary, Ground Water Quality Assessment Program, March 31, 1992
- 2. Applied Environmental Services Inc., End of Year Groundwater Assessment Report and Phase II Groundwater Assessment Plan for Former Waste Water Holding Ponds, December 31, 1992
- 3. ENSCI Environmental, Inc., 1993 Annual Groundwater Assessment Update Report, March 10, 1994
- 4. ENSCI Environmental, Inc., Fall and Year-End 1994 Groundwater Sampling Reports, March 21, 1995
- 5. Terra Technologies Group, P.A., 1995 Annual Groundwater Assessment Update Report, March 14, 1996
- 6. Waters Edge Environmental, 2000 Annual Ground Water Assessment Report and Fourth Quarter 2000 Monitoring Report, January 4, 2001.
- 7. Waters Edge Environmental, Second Quarter 2001 Report, July 26, 2001.
- 8. Waters Edge Environmental, Third Quarter 2001 Report, November 14, 2001.
- 9. Waters Edge Environmental, 2001 Annual Ground Water Assessment Report and Fourth Quarter 2001 Monitoring Report, February 19, 2001.
- 10. Waters Edge Environmental, First Quarter 2002 Report, May 30, 2002.
- 11. Waters Edge Environmental, First Quarter 2002 Resampling Monitoring Report, July 1, 2002.
- 12. Waters Edge Environmental, Second Quarter 2002 Monitoring Report, July 15, 2002.
- 13. Waters Edge Environmental, Third Quarter 2002 Monitoring Report, October 30, 2002.
- 14. Waters Edge Environmental, 2002 Annual Ground Water Assessment Report and Fourth Quarter 2002, January 27, 2003.
- 15. Waters Edge Environmental, First Quarter 2003 Monitoring Report, April 29, 2003.
- 16. Waters Edge Environmental, Second Quarter 2003 Monitoring Report, July 24, 2003.
- 17. Waters Edge Environmental, Third Quarter 2003 Monitoring Report, December 9, 2003.
- 18. Waters Edge Environmental, 2003 Annual Ground Water Assessment Report and Fourth Quarter 2003 Monitoring Report, January 14, 2004.
- 19. Waters Edge Environmental, Second Quarter 2004 Monitoring Report, July 12, 2004.
- 20. Waters Edge Environmental, Fourth Quarter 2004 Monitoring, Surface Water/Sediment Sampling and 2004 Annual Ground Water Assessment Report, January 24, 2005.
- 21. Waters Edge Environmental, March 2005 Semiannual Ground Water Monitoring Report, April 12, 2005.
- 22. Waters Edge Environmental, Amended September 2005 Semiannual Ground Water Monitoring Report, November 18, 2005.
- 23. Waters Edge Environmental, May 2006 Semiannual Ground Water Monitoring Report, June 13, 2006.
- 24. Waters Edge Environmental, October 2006 Semiannual Ground Water Monitoring Report, November 9, 2006.
- 25. Waters Edge Environmental, March 2007 Semiannual Groundwater Assessment Report, April 26, 2007.
- 26. Waters Edge Environmental, September 2007 Ground Water Monitoring Report, October

RCRA Part B Post-Closure Permit Application Part E-Groundwater Monitoring Former Porcelanite Facility Lexington, Davidson County, North Carolina

- 9, 2013 (modified 12.6.13).
- 27. Waters Edge Environmental, March 2008 Semiannual Ground Water Monitoring Report, June 4, 2008.
- 28. Waters Edge Environmental, September 2008 Semiannual Ground Water Monitoring Report, November 11, 2008.
- 29. Waters Edge Environmental, March 2009 Semiannual Ground Water Monitoring Report, May 22, 2009.
- 30. Waters Edge Environmental, September 2009 Groundwater Assessment Report, December 10, 2009.
- 31. Waters Edge Environmental, March 2010 Groundwater Assessment Report, April 22, 2010.
- 32. Waters Edge Environmental, September 2010 Groundwater Assessment Report, November 8, 2010.
- 33. Waters Edge Environmental, March 2011 Groundwater Assessment Report, May 6, 2011.
- 34. Waters Edge Environmental, September 2011 Groundwater Assessment Report, December 12, 2011 Revised March 19, 2012.
- 35. Waters Edge Environmental, March/April 2012 Groundwater Assessment Report, April 30, 2012.
- 36. Waters Edge Environmental, September 2013 Semi-annual Groundwater Assessment Report, October 9, 2013.
- 37. Waters Edge Environmental, March 2014 Semi-annual Groundwater Assessment Report, July 17, 2014 (revised).
- 38. Waters Edge Environmental, September 2014 Semi-annual Groundwater Assessment Report, September 15, 2014.
- 39. Waters Edge Environmental, March 2015 Semi-annual Groundwater Assessment Report, April 29, 2015.
- 40. Waters Edge Environmental, September 2015 Semi-annual Groundwater Assessment Report, October 30, 2015.
- 41. Waters Edge Environmental, March 2016 Semi-annual Groundwater Assessment Report, April 19, 2016.
- 42. Waters Edge Environmental, September 2016 Semi-annual Groundwater Assessment Report, December 19, 2016.

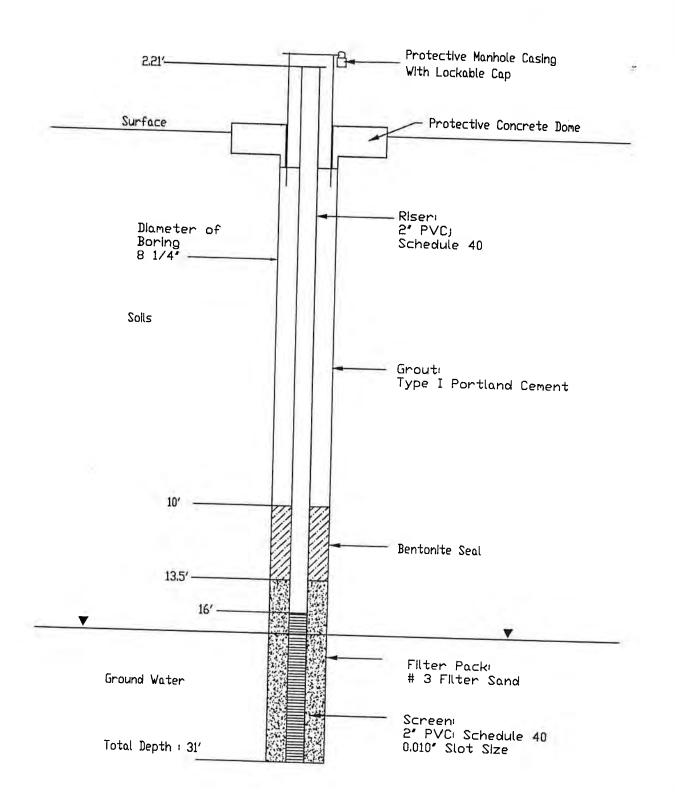
Appendix E-2 Well Construction Diagrams

Boring /Well Construction Log

Well Construction Permit Number

Aquaterra, Inc.

I. D. Number	MW-3A			D.,,,,,,	
Project Name	Porcelanite				Monitoring Well Replacement
Project No.	3105804			Contractor	Aquadrill
Geologist	Tom Haynes			Registration No.	1361
0				Driller	Paul Waddell
Start Date	9/17/98	Complete Date	9/17/98	Equipment	Ingersoll-Rand A-300


Comments	Well set at 31' Pas	t horing loge in	diagted MIV 2	
		. Doring logs the	dicated MW-3 was 30.25' deep with water level of \sim 17'.	
		_		
Well (Construction	Depth		FID / PID
Inf	ormation	From - To	Soil / Pools Description / G	(ppm)
Borehole Dia.	8 1/4" 0.0	0-2'	Soil / Rock Description / Comments Crushed Stone	@ Depth (ft.
Riser Type	PVC Sch 40	2'-4'	Yellow, medium grain Sand	
Diameter	2"	4'-5'	Red, brown clayey Sand	
Screen Type	PVC Sch 40	5'-7'		
Diameter	2"	5-7	Red, brown slightly micaceous	
Riser Interval	16-0'	7'-9'	slightly sandy Clay	
Screen Interval	31-16'	7-3	Yellow, brown slightly micaceous	
Slot Size	0.010"	9'-13'	sandy Clay, moist	
Grout Type	Type I Portand	9-13	Red brown sandy Clay with tile pieces intermingled	
nterval	10-0'		also old grass / wood, also crushed stone included.	
Bentonite Type	215 to 14			
nterval	13.5"-10'	13'-14'	D	
ilter Pack	#3 Filter Sand		Brown, clayey sand, sandy Clay	
nterval	31'-13.5'	14'-20'	Red, brown slightly sandy Clay	
otal Depth	31'	20'-31'	Yellow, brown sandy Clay	
L.P. Elevation	51			
atum				
	el Information			
Date				
Date	W.L. Below R.P.		13	

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Refer to Standard Well Construction Schematic Type II - Style 1.

	Author	Drawing	Layers	Date	Title		
	mbb	mbb 105804		2000	1 5226	Well Construction Diagram Monitoring Well MV-3A	
	G	Revision	Figure	Scale	Project		
	105804	9-8-00		NTS		Porcelanite Lexington, North Carolina	

North Carolina Department of Environmental, Health & Natural Resources
Division of Environmental Management- Groundwater Section
P.O. Box 27687-Raleigh, N.C. 27611-7587

Minor Basin Basin Code WELL CONSTRUCTION RECORD Header Ent. GW-1 Ent. Well Identification MW-3A **Drilling Contractor** Aquadrill State Well Construction Permit **Driller Registration Number** 1361 Number: On Client Property 1. Well Location: (Show sketch of the location below) Nearest Town: Lexington, NC County: Davidson Co. NC Hwy. 8 and Victor St. Depth Drill Log (Road, Community, or Subdivision and Lot No.) 2. Owner Formation Description Mannington Mills, Inc. 0-21 Address Crushed Stone P.O. Box 30 2'-4' Yellow, medium grain Sand (Street or Route No.) 41-51 Red, brown clayey Sand Salem NJ 08079 5'-7' Red, brown slightly micaceous City State Zip Code 3. Date Drilled slightly sandy Clay 9/17/98 Use of Well Monitoring 7'-9' Yellow, brown slightly micaceous 4. Total Depth 31' Cuttings Collected No 5. Does Well Replace Existing Well sandy Clay, moist Yes 9'-13' Red brown sandy Clay with tile pieces intermingled 6. Static Water 17 Feet Below Top Of Casing also old grass / wood, also crushed stone included. Level Top of Casing 3 Feet Above Land Surface 7. Yield (gpm): NA Test Method 13'-14' Brown, clayey sand, sandy Clay 8. Water Zones: NA 14'-20' Red, brown slightly sandy Clay (depth) 20'-31' Yellow, brown sandy Clay 9. Chlorination: NA Amount 10. Casing: If additional space is needed, use back of form. Depth (ft.) From Τo Diameter Wall Thickness Material Location Sketch 16-0 Sch 40 PVC Sch 40 (Show direction & distance from at least two State Roads, or other map reference points.) 11. Grout: Depth (ft.) CHARLES AVE. From **Material** Method WINSTON-SALEM SOUTHBOUND RR 10-0 Type I Portand Pour 13.5"-10 Bentonite Pour 12. Screen: Depth (ft.) From To Diameter Slot Size Material 31-16' 2" 0.010" PVC Sch 40 13. Gravel Pack: EDNA ST. Depth (fl.) From T_0 VICINITY MAP 1"=1000'± Size Material 31'-13.5' #3 Filter Sand #3 Filter Sand 14. Remarks:

I do hereby certify that this well was constructed in accordance with 15 NCAC 2C, well construction standards, and that a copy of this record has been provided to the well owner.

GW-1 Revised 2/90

Signature of Contractor or Agent

Date

For Office Use Only

Serial No.

Quad. No.

Lat.

North Carolina Department of Environmental, Health & Natural Resources Division of Environmental Management- Groundwater Section P.O. Box 27687-Raleigh, N.C. 27611-7587

Long. Minor Basin Basin Code WELL CONSTRUCTION RECORD Header Ent. GW-1 Ent. Well Identification MW-7A **Drilling Contractor** Aquadrill State Well Construction Permit Driller Registration Number 1361 Number: On Client Property 1. Well Location: (Show sketch of the location below) Nearest Town: Lexington, NC County: Davidson Co. NC Hwy. 8 and Victor St. Depth (Road, Community, or Subdivision and Lot No.) Drill Log 2. Owner From To Mannington Mills, Inc. Formation Description 0-1" Address Grass P.O. Box 30 1"-2" Red, brown sandy silty Clay (Street or Route No.) 2'-5' Brown sandy Clay Salem NJ 08079 5'-8' Grey, brown sandy Clay, moist City State Zip Code 8'-13' 3. Date Drilled Tan sandy Clay, moist 9/17/98 Use of Well Monitoring 4. Total Depth 13'-14' Tan, red sandy Clay, wet 16' Cuttings Collected No 14'-16' 5. Does Well Replace Existing Well Tan, grey sandy Clay, wet Yes 6. Static Water NM Feet Below Top Of Casing Level Top of Casing 3 Feet Above Land Surface 7. Yield (gpm): NA Test Method 8. Water Zones: NA (depth) 9. Chlorination: NA Amount 10. Casing: If additional space is needed, use back of form. Depth (ft.) From To Diameter Wall Thickness Material 6-0' 2" Location Sketch Sch 40 PVC Sch 40 (Show direction & distance from at least two State Roads, or other map reference points.) 11. Grout: Depth (ft.) CHARLES AVE From To Material Method 2-01 MNSTON-SAL SOUTHBOUND Type I Portland Pour 4-2 Bentonite Pour 12. Screen: HWY. Depth (ft.) From Diameter Slot Size Material 16-6' 2" 0.010" PVC Sch 40 VICTOR ST. 13. Gravel Pack: Depth (ft.) EDNA ST. From To Size **Material** 16-4 VICINITY MAP #3 Filter Sand #3 Filter Sand 1"=1000'± 14. Remarks: I do hereby certify that this well was constructed in accordance with 15 NCAC 2C, well construction standards, and that a copy of this record has been provided to the well owner. GW-1 Revised 2/90 Signature of Contractor or Agent Date

For Office Use Only

Submit original to Division of Environmental Management & copy to well owner

Serial No.

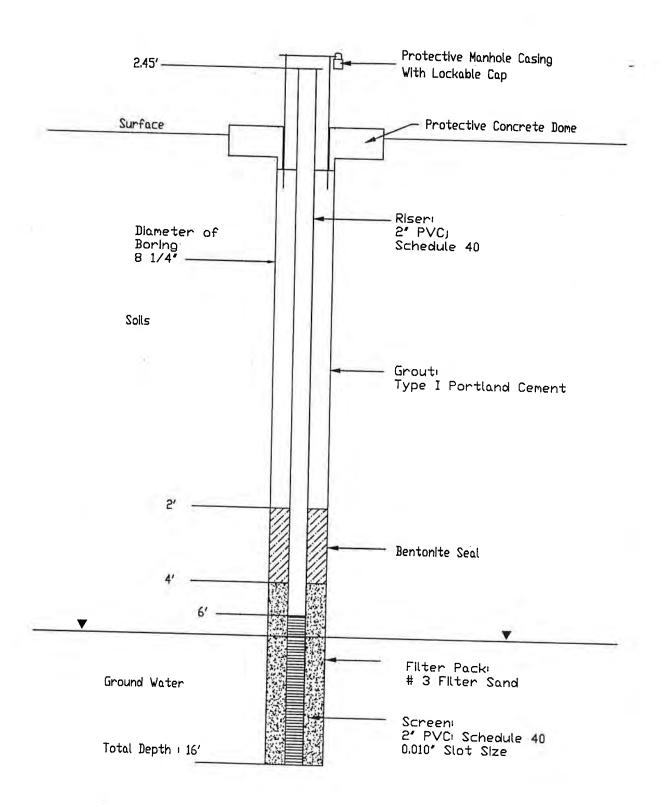
Quad. No.

Lat.

Boring / Well Construction Log

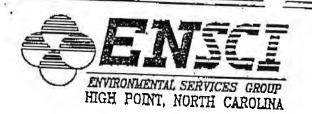
Well Construction Permit Number

Aquaterra, Inc.


I. D. Number	MW-7.4			Durmasa	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Project Name	Porcelanite				Monitoring Well Replacement
Project No.	3105804			Contractor	Aquadrill
Geologist	Tom Haynes			Registration No.	1361
Start Date	9/16/98	C- 1 / 7 /		Driller	Paul Waddell
	3/10/98	Complete Date	9/17/98	Equipment	Ingersoll-Rand A-300

Comments				
	Construction formation	Depth From - To	Soil / Rock Description / Comments	FID / PID (ppm)
Borehole Dia.	8 1/4" O.D.	0-1"	Grass	@ Depth (ft.
Riser Type	PVC Sch 40	1"-2"	Red, brown sandy silty Clay	
Diameter	2"	2'-5'	Brown sandy Clay	
Screen Type	PVC Sch 40	5'-8'	Grey, brown sandy Clay, moist	
Diameter	2"	8'-13'	Tan sandy Clay, moist	
Riser Interval	6-0'	13'-14'	Tan, red sandy Clay, wet	
Screen Interva	1 16-6'	14'-16'	Tan, grey sandy Clay, wet	
Slot Size	0.010"		, g. ey sundy Cidy, wei	
Grout Type	Type I Portland			
Interval	2-0'			
Bentonite Type	3/8" Pellets			
nterval	4-2'			
Filter Pack	#3 Filter Sand			
nterval	16-4'			
Total Depth	16'			
R.P. Elevation				
atum				
Water Lev	el Information			
Date	W.L. Below R.P.			

TBM = Temporary Benchmark


MSL = Mean Sea Level

Refer to Standard Well Construction Schematic Type II - Style 1.

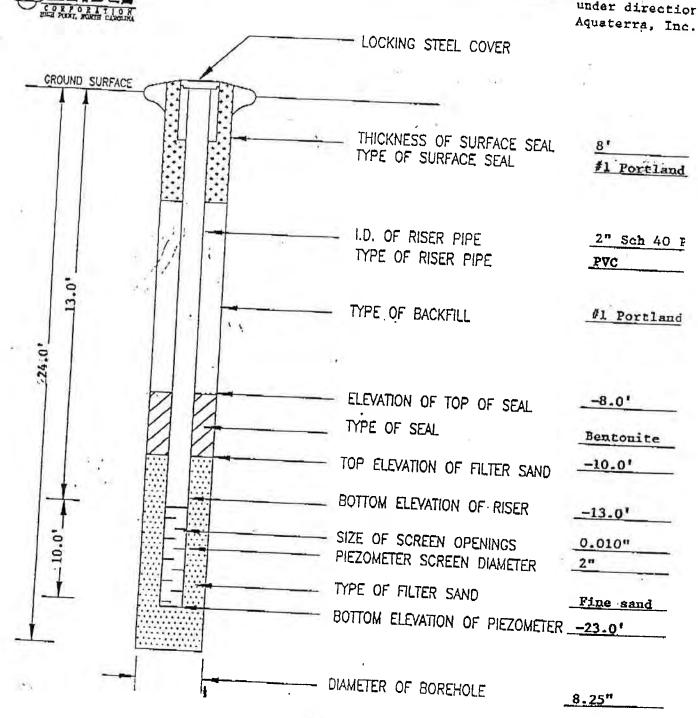
	Author mbb	Drawing 105804	Layers	Date	Title	Well Construction Diagram Monitoring Well MW-7A
	Job No. 105804	Revision	Figure	Scale NTS	Project	Porcelanite Lexington, North Carolina

20.87

DRILLING CONTRACTOR Well Drillers, In

TYPE III MONITORING WELL

STEEL MANHOLE COVER CROUNDLINE DEPTH TO WATER LEVEL #1 PORTLAND_CEMENT 0 - 39:0" PIT CASING 0 - 42.01 Stainless Steel RISER 0 - 44.5* 3' THICK BENTONITE PLUG 39:0' - 42.0' 2' ABOVE SCREEN Fine quartz Filter sand .010" SLOTTED SCREEN 44.5" -- 54.5" #12-#20 WELL SCREEN SAND 42.0" - 54.51


PROJECT Mann ston PIEZOMLIER NUMBER MW-12 BENCH MARK DATA _____ ELEVATION OF WATER LEVEL ____ ELEVATION OF TOP OF PIEZOMETER _____ DRILLING CONTRACTOR Well Drillers, Inc. NOTE: Well installed under direction Aquaterra, Inc. LOCKING STEEL COVER CROUND SURFACE THICKNESS OF SURFACE SEAL 13.0 TYPE OF SURFACE SEAL #I Portland I.D. OF RISER PIPE 2" Sch 40 F TYPE OF RISER PIPE TYPE OF BACKFILL ELEVATION OF TOP OF SEAL -13.0 TYPE OF SEAL Bentonite -15.0 TOP ELEVATION OF FILTER SAND BOTTOM ELEVATION OF RISER -17.0 - SIZE OF SCREEN OPENINGS 0.010" PIEZOMETER SCREEN DIAMETER TYPE OF FILTER SAND Fine sand BOTTOM ELEVATION OF PIEZOMETER __27.0" DIAMETER OF BOREHOLE 8.25

ממיאפטים מרבב ברם בזי

00.01 ICCT 09 IL

ENSCI

NOTE: Well installed under direction

FIELD DRILLING RECORD

BORING #	MW - 14	LOCATION:	Mannington
START DATE:	9-9-92	COMPLETED:	9-9-92
GEOLOGIST:	C. Boggs	DRILLER;	T. Scott
DRILL METHOD:	Hollow Stem Auger	SAMPLE METHOD:	Split Spoon
BORING DIA:	6.25 Inches	CASING DIA:	2 Inches
TOTAL DEPTH:	17 Feet	CASING DEPTH:	7 Feet

DEP	ΓH	LITHOLOGIC DESCRIPTION	P	ENETR	TI NOIT	EST RESU	JLTS
FROM	то	Color, texture; structure; consistency, etc.	REC	6"	12"	18"	24
0	10	Water level in former	1 T T	74 Dest**	m= +++-1 × -1	401	establish K
	-	piezometer on 9-9-92					
		9.8 feet.					
		Over drilled piezometer:					
		no samples. 0 - 10 ft.					
		Brown sandy clay loam					
		in cuttings.					
		E					
13 15	Brown - pink mottled			/			
		medium to coarse grained					
		quartz-k-feldspar muscovite.					
		Friable weathered granite					
		saprolite.					
2.1							
	- 1					A.	
				0			

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH(ft) 7'	_DEPTH(ft)0 -	7DIAMETER(in)	2' MATERIAL PVC
SCKEEN LENGIH(If) 10,	_DEPTH(ft) <u>7 -</u> _	17 DIAMETER(in) 2	MATERIAL PVC
DEPTH TO TOP OF SAND DEPTH TO TOP SEAL	5	BAGS OF SAND	3 1/5
D > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5	BENTONITE USED_	3
DEGO OF CEWENT USED 1	Portland 4 Sak	rete	

ONISION OF ENVIRONMENTAL MANAGEMENT - GROUNDWATER SECTION P.O. 80X 27687 - RALEIGH, NC 27611-7687 PHONE (919)733-3221

WELL CONSTRUCTION RECORD

ENSCI

DRILLING CONTRACTOR _

2. OWNER _

ADDRESS _

9. CHLORINATION:

From _

10. CASING:

11. GROUT:

12. SCREEN:

Nearest Town: Lexington

6. STATIC WATER LEVEL: 10

DRILLER REGISTRATION NUMBER __1233

(Road, Community, or Subdivision and Lot No.)

City or. Town

7. YIELD (gpm): _____ METHOD OF TEST _

Deoth

Deoth

Depth

8. WATER ZONES (depth): ______10-17'

1. WELL LOCATION: (Show sketch of the location below)

Mannington Ceramic Tile

Lexington, NC 27693

3. DATE DRILLED 9/9/92 USE OF WELL Monitoring 4. TOTAL DEPTH 17' CUTTINGS COLLECTED \square Yes

TOP OF CASING IS 0 FT. ABOVE LAND SURFACE

From 0 To 7 Ft 2 Sch 40

State

Wall Thickness Diameter or Weignt/Ft.

Material

Slot Size

To 3.5 Ft. #1 Portland Poured

1

FL Bentonite

Diameter

FT.

above TOP OF CASING,

Zip Code

Material

Method

Post Office Box 1777

5. DOES WELL REPLACE EXISTING WELL? Yes No

	Quad.	No Serial No	_
	Lat	Long P	c
		Basin	_
	Header	r Ent GW-1 Ent	
k -	L		
	E WELL (CONSTRUCTION MW-14	
		BER: 28-0331-WM-0098	
County:	Davi	dson	_
Dep	tn	DRILLING LOG	
From	— To	Formation Description	
			_
0	10	Brown sandy clay	-:
1.0			00
10	17	Brown pink granitic sa	pre
			_
			-
	,		
			-
			_
			-
			_
		space is needed use back of form.	
It	additional		_
II.	additional		-
		LOCATION SKETCH	1200
(Show di	rection and	LOCATION SKETCH	
(Show di	rection and	LOCATION SKETCH	
(Show di	rection and	LOCATION SKETCH	
(Show di	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di or other	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di or other	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di or other	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di or other	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di or other	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di or other	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	
(Show di	rection and map refere	LOCATION SKETCH d distance from at least two State Rosence points)	
(Show di or other	rection and map refere	LOCATION SKETCH d distance from at least two State Ro ence points)	

I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN ACCORDANCE WITH 15 NCAC 2C. WELL CONSTRUCTION STANDARDS. AND THAT A COPY OF THIS RECORD HAS BEEN PROVIDED TO THE WELL OWNER.

MONIONING WELL INSTALLATION SETUT

PROJECTMannington	PIEZOMETER NUMBER MW-14
GROUND ELEVATION	DEPTH TO WATER LEVEL
BENCH MARK DATA	ELEVATION OF WATER LEVEL
ELEVATION OF TOP OF PIEZOMETER	

GROUND -SURFACE	LOCKING STEEL COVER	
GRUUNIA - SURFACE.	THICKNESS OF SURFACE SEAL TYPE OF SURFACE SEAL	0.5 Sakrete
	I.D. OF RISER PIPE TYPE OF RISER PIPE	2" Sch 40 Pvc
	TYPE OF BACKFILL	#1 Portland
	ELEVATION OF TOP OF SEAL	-3.5
	TYPE OF SEAL	Bentonite
	TOP ELEVATION OF FILTER SAND	<u>-5</u>
	BOTTOM ELEVATION OF RISER	-7
	SIZE OF SCREEN OPENINGS PIEZOMETER SCREEN DIAMETER	0.010"
	TYPE OF FILTER SAND	#3
	BOTTOM ELEVATION OF PIEZOMETER.	
	*	
	DIAMETER OF BOREHOLE	6.25"

FIELD DRILLING RECORD

1

BORIN	IG #		MW - 18	LOCA	TION:		I	/Ianningt	on	
START	DATE:		9-9-92	СОМР	COMPLETED:		9-9-92			
GEOL	OGIST:		C. Boggs	DRILL	DRILLER:			T. Scott		
DRILL	метно	D:	Hollow Stem Auger SAMPLE			HOD:	5	Split Spo		
BORIN	G DIA:		6.25 Inches CASING DIA:			2 Inches				
TÖTAL	DEPTH:		18 Feet	CASIN	G DEPT	II:		8 Feet		
DE	РТН		LITHOLOGIC DESCRIPTI	ON	ī	ENETR	ATION '	TEST RES	TIT TO	
TROM TO		elessionals in these	12"		24"					
0	3		own, organic rich sand	- restablished		1	10,314,000	· ·		
- Y		The Control of	y loam.							
		1								
3	5		n - red, mottled, massive		- 10.73					
		SCI	ff, sandy, clay. Dan	ıp	24"	4	5	7	9	
8	10	No	sample. Recovered spl	it						
	- 7		on. Wet.		0	3	4	7	11	
13	15	Tan	-brown, friable, quar	+ -						
			eldspar, muscovite,	027						
		gra	nitic, saprolite. We	t.	6"	6	11	30/3		
					-					
	12-0		(i)							
			*							
			·							
	- 1									
		-								

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH(ft) 8'	DEPTH(ft)_	0 - 8	_DIAMETER(in)_	2"	MATERIAL	DVC
SCREEN LENGTH(ft) 10' DEPTH TO TOP OF SAND	DEPTH(ft)_		_DIAMETER(in)_			
DEPTH TO TOP SEAL	6_		BAGS OF SAND		4	
BAGS OF CEMENT USED 1	Doubles 1		BENTONITE USED		4	
THE OF CEMENT USED 1	Policiand 4	Sakrete				

P.O. 80X 27687 - RALEIGH, NC 27811-7687 PHONE (919)733-3221

WELL CONSTRUCTION RECORD

Quad. No.	Senal No.
	Lang Pc
Minor Basin	
Basin Code	
Header Ent	

	nea	der Ent GW-1 Ent
DRILLING CONTRACTORENSCI	MW-18	
DRILLER REGISTRATION NUMBER 1233	STATE WELL PERMIT NUM	CONSTRUCTION BER: 28-0331-WM-0098
1. WELL LOCATION: (Show sketch of the location below)		
Nearest Town: Lexington	Course	23
	County: Day	ldson
(Road, Community, or Subdivision and Lot No.)	<u>Oeoin</u>	DRILLING LOG
2. OWNER Mannington Ceramic Tile	From To	Formation Description
ACORESS Post Office Box: 1777 Lexington, NC 27293	0 3	Brown sandy clay loam
City of Town	and the second second second	The state of the s
3. DATE DRILLED 9/9/92 USE OF WELL Monitoring		Red sandy clay
4. FOTAL DEPTH CUTTINGS COLLECTED Yes X No		
5. DOES WELL REPLACE EXISTING WELL? Yes X No		-
6. STATIC WATER LEVEL: 5 FT. I above TOP OF CASING.	515_	Brown granitic saprolite
FI. ABOVE LAND SURFACE	-	
7. YIELD (gpm): METHOD OF TEST		<u> </u>
8. WATER ZONES (depth): 5-18	-	
	-	
9 CHI ODINA TION.		
9. CHLORINATION: Type Amount		
10. CASING: Wall Thickness	If additional	space is needed use back of form.
10. CASING: Wall Thickness Depth Diameter or Weignt/Ft. Material	if additional	space is needed use back of form.
10. CASING: Depth Diameter or Weignt/Ft. Material From 0 To 8 Ft 2 Sch 40 PVC	(Show direction and	LOCATION SKETCH
10. CASING: Depth Diameter or Weignt/Ft. Material From 0 To 8 Ft 2 Sch 40 PVC FromToFt		LOCATION SKETCH
10. CASING: Depth Diameter or Weignt/Ft. Material From 0 To 8 Ft 2 Sch 40 PVC	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter or Wall Thickness Material From 0 To 8 Ft 2 Sch 40 PVC From To Ft. From To Ft. Depth Material Method	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter or Wall Thickness Material From 0 To 8 Ft 2 Sch 40 PVC From To Ft. From To Ft.	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter or Wall Thickness Material From 0 To 8 Ft 2 Sch 40 PVC From To Ft. From To Ft. Depth Material Method	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter Wall Thickness Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter or Wall Thickness or Weignt/Ft. Material From 0 To 8 Ft 2 Sch 40 PVC From To Ft. 11. GROUT: Depth Material Method From 0.5 To 5 Ft. #1 Portland Poured From To Ft.	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter or Weignt/Fit. Material From 0 To 8 Ft 2 Sch 40 PVC From To Ft. 11. GROUT: Depth Material Method From 0.5 To 5 Ft. #1 Portland Poured From To Ft. 12. SCREEN: Depth Diameter Slot Size Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter Wall Thickness Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter or Wall Thickness Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter Or Weignt/Fit. Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter Wall Thickness Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter Or Weignt/Ft. Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road
Depth Diameter Or Weignt/Ft. Material	(Show direction and	LOCATION SKETCH I distance from at least two State Road

MINIMOKING WELL INSTALLATION SULTON

PROJECT Mannington	PIEZOMETER NUMBER
CDOLLIND ELEVATION	DEPTH TO WATER LEVEL
BENCH MARK DATA	ELEVATION OF WATER LEVEL
ELEVATION OF TOP OF PIEZOMETER	-

HIGH POINT, NORTH CLROLONA	LOCKING STEEL COVER	
GROUND SURFACE	THICKNESS OF SURFACE SEAL TYPE OF SURFACE SEAL	.5" Sakrete
	I.D. OF RISER PIPE TYPE OF RISER PIPE	2" Sch 40 PVC
8	 TYPE OF BACKFILL	#1 Portland
18	ELEVATION OF TOP OF SEAL TYPE OF SEAL TOP ELEVATION OF FILTER SAND	_5: Bentonite _6:
	BOTTOM ELEVATION OF RISER SIZE OF SCREEN OPENINGS	0.010"
10	PIEZOMETER SCREEN DIAMETER TYPE OF FILTER SAND BOTTOM ELEVATION OF PIEZOMETER	#3 -15'
<u>+</u>	DIAMETER OF BOREHOLE	6.25"

FIELD DRILLING RECORD

BORING #	MW - 19	LOCATION:	Mannington
START DATE:	8-31-92	COMPLETED:	9-1-92
GEOLOGIST:	S. Stadelman	DRILLER:	Engineering Tectonics
DRILL METHOD:	Hollow Stem Auger 0 to 25' Roller Cone 25'	SAMPLE METHOD:	Split Spoon
BORING DIA:	6.25 Inches	CASING DIA:	25'/6" 33'/2"
TOTAL DEPTH:	38 Feet	CASING DEPTH:	33 Feet

DEI	TH	LITHOLOGIC DESCRIPTION	PENETRATION TEST RESULTS			JLTS	
FROM	то	Color, texture, structure, consistency, etc.	REC	6"	1 24000000000	18"	24
3.5	5.0	Red clay. Highly	0-8	18/1	6	5	6
		weathered saprolite.				la tall	
		yellowish-brown Clay. Highly	8-16				
		weathered saprolite.			ii =		
		Common light gray mottles.					
8.5 10.0	10.0	Yellowish-brown clay loam to clay.	0-6		4	5	8
		Few red stains. Highly weathered					
		saprolite. Abrupt lower	7				
		boundary.					
		Moderately weathered saprolite with	6-8				
		rock structure. Resembles			7		
	D.	granite. Slightly altered micas.					
		Saprolite. Crushes to sand. Resembles granite.	8-15				
		Crushes to sand. Brown					
		staining. Moderately					
		weathered micas/Fe minerals.					-
		Crushes to loamy sand.		E	1		

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH(ft) DEPTH(ft) SCREEN LENGTH(ft) DEPTH(ft) DEPTH TO TOP OF SAND	DIAMETER(in)MATERIAL
DEPTH TO TOP SEAL BAGS OF CEMENT USED	BAGS OF SAND

FIELD DRILLING RECORD

BORING #	MW - 19 (Continued)	LOCATION:	Mannington
START DATE:	8-31-92	COMPLETED:	9-1-92
GEOLOGIST:	S. Stadelman	DRILLER:	Engineering Tectonics
DRILL METHOD:	Hollow Stem Auger 0 to 25' Roller Cone 25'	SAMPLE METHOD:	Split Spoon
BORING DIA:	6.25 Inches	CASING DIA:	25'/6" 33'/2"
TOTAL DEPTH:	38'	CASING DEPTH:	33'

DEI	TH	LITHOLOGIC DESCRIPTION	PENETRATION TEST RESULTS		
FROM	TO	Color, texture, structure, consistency, etc.	REC 6"	12" 18"	24"
13.5	15	Saprolite, Moderately	0-6	50/6	
		weathered. Resembles pink			
		granite (high K feldspar			1
		content). Micas/FeMn minerals			
		are slight to moderately			1
		weathered. Oxidation halos			1
		around approx. 25% of FeMn			
		minerals. Black Mn-Oxide staining.			
18.5	20	Saprolite. Same as 13.5 to	0-6	50/6	77.7
		15.			
23.5	25	Same as 18.5 - 20 feet.	0-1.5	50/6	
		Set 25' - 6" PVC casing 8-31.			
		Returned 9-1. Drilled			
		additional 15' w/5½"			
		air hammer. Medium grained			
		quartz-k-feldspar-muscovite.			
		Weathered granite. Set 35'			
		2" riser 5'2" .010 screen.			

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH(ft) 33	DEPTH(ft)0-33	DIAMETER(in) 2	MATERIAL	PVC
SCREEN LENGTH(ft) 5	_DEPTH(ft)33-38	DIAMETER(in)2		PVC
DEPTH TO TOP OF SAND	30	BAGS OF SAND	2	
DEPTH TO TOP SEAL	29	BENTONITE USED	*	
BAGS OF CEMENT USED	10 Portland	4 Sakrete		

P.O. BOX 27587 - RALEIGH, NC 27611-7687 PHONE (919)733-3221

WELL CONSTRUCTION RECORD

THE CORD TRUCTION RECORD	B:	eader Ent GW-1 Ent
DRILLING CONTRACTORENSCI		7–19
DRILLER REGISTRATION NUMBER 1233	STATE WE	LL CONSTRUCTION IMBER: 28-0331-WM-0098
1. WELL LOCATION: (Show sketch of the location below)		
Nearest Town: Lexington	County: Day	idson
(Road, Community, or Subdivision and Lot No.)	- Deptn	DRILLING LOG
2. OWNER <u>Mannington Ceramic Tile</u>	From To	Formation Description
ADDRESS Post Office Box 1777	0 0	
Lexington, NC 27293 City or Town State Zio Code		Highly weathered graniti
3. DATE DRILLED 8/31/92 USE OF WELLMonitoring 4. TOTAL DEPTH 40' CUTTINGS CON FOUTE TO	0.5	
4. TOTAL DEPTH 40' CUTTINGS COLLECTED Yes No	<u> 25 - 38</u>	Weathered pink granite
5. DOES WELL REPLACE EXISTING WELL? Yes The	-	-
6. STATIC WATER LEVEL: 5 FT. C above TOP OF CASING.		*
TOP OF CASING IS 0 FT. ABOVE LAND SURFACE	-	· , ——————
7. YIELD (gpm): METHOD OF TEST		
8. WATER ZONES (depth): 5'-40'		
9. CHLORINATION: Type Amount		
10. CASING:		
Depth Diameter or Weignt/Ft. Material	If additiona	I space is needed use back of form.
From 0 To 25 Ft 6" Sch 40 PVC	(Show dispesses a	LOCATION SKETCH
From U To 33 Ft 2" Sch 40 PVC	or other map rele	nd distance from at least two State Roads.
FromToFt		*
11. GROUT:		
Depth Material Method		
From To Ft. #1 Portland Tremie Ft		17
12. SCREEN:		4
1		
Depth Diameter Slot Size Material		
From 33 To 38 Ft. 2" in 0.010 in PVC		
From To Ft in in		
From To Ft in in in In In In In In In In In In In In In In		
(4) ×	*	
Depth Size Material		
500 20 - 20		
From 29 To 38 Ft. #3 Washed Sand	e e	
500 20 - 20	y 10	

Senal No.

Long.

Minor Basin

TYPE III MONITORING WELL

STEEL MANHOLE COVER GROUNDLINE #1 PORTLAND .. CEMENT 0 - 291 4 - 6" PIT CASING 0 - 25' - 2" RISER 0 - 33' -1' THICK BENTONITE PLUG <u>29 - 30'</u> - 2' ABOVE SCREEN -.010 SLOTTED SCREEN -#12-#20 WELL SCREEN SAND <u> 30 - 38'</u>

North Carolina Department of Environmental, Health & Natural Resources Division of Environmental Management- Groundwater Section P.O. Box 27687-Raleigh, N.C. 27611-7587

WELL CONSTRUCTION RECORD

MW-21A

Well Identification

	For Office Use Only
	Quad. No. Serial No.
	Long. Pc
	Minor BasinBasin Code
	Header Ent GW-1 Ent
	(\$)
Well Co	Instruction Permit
er:	On Client Property
County:	Davidson Co.
oth	
To	Drill Log
3"	Formation Description Topsoil grass
4'	Dark brown sandy Clay, dry
6'	Brown, grey slightly sandy Clay, moist
8'	Grey, highly micaceous, slightly clayey Silt
0'	Olive brown highly micaceous sandy Silt
2.5'	Olive brown highly micaceous Sand, weathered rock
	The state of the s
	0
	If additional space is needed, use back of form.
	Location Sketch
v direction	& distance from at least two State Roads, or other map reference points.)
	CHARLES
	CHARLES AVE.
	v≤1 \
	27 VIIIIIII
	물명 No.
	BON-I WY.
	ξψ\///////// R
	- E ///////////////////////////////////
	AS VICTOR ST
	MCTOR ST.
	EDNA OF
	EDNA ST.

Drilling Contractor Aquadril1 **Driller Registration Number** 1361 1. Well Location: (Show sketch of the location below) Nearest Town: Lexington, NC NC Hwy. 8 and Victor St. (Road, Community, or Subdivision and Lot No.) 2. Owner Mannington Mills, Inc. Address P.O. Box 30 (Street or Route No.) Salem 08079 City State Zip Code 3. Date Drilled 9/17/98 Use of Well Monitoring 4. Total Depth 12.5 Cuttings Collected No 5. Does Well Replace Existing Well Yes 6. Static Water NM Feet Below Top Of Casing Level Top of Casing 3 Feet Above Land Surface 7. Yield (gpm): NA Test Method 8. Water Zones: NA (depth) 9. Chlorination: NA Amount 10. Casing: Depth (ft.) From To Diameter Wall Thickness Material 2.5-01 2" Sch 40 PVC Sch 40 11. Grout: Depth (ft.) To Material Method 0.5-01 Type I Portland Pour 2-0.5 Bentonite Pour 12. Screen: Depth (ft.) From То Diameter Slot Size Material 12.5-2.5 2" 0.010" PVC Sch 40 13. Gravel Pack: Depth (fl.) From То Size Material 12.5-2.01 #3 Filter Sand #3 Filter Sand 14. Remarks:

VICINITY MAP 1"=1000'±

I do hereby certify that this well was constructed in accordance with 15 NCAC 2C, well construction standards, and that a copy of this record has been provided to the well owner.

GW-1 Revised 2/90

Signature of Contractor or Agent

State Well

Depth

0-3"

3"-4"

4'-6'

6'-8'

8'-10'

10'-12.5'

(Show direc

From

Number:

Date

Submit original to Division of Environmental Management & copy to well owner

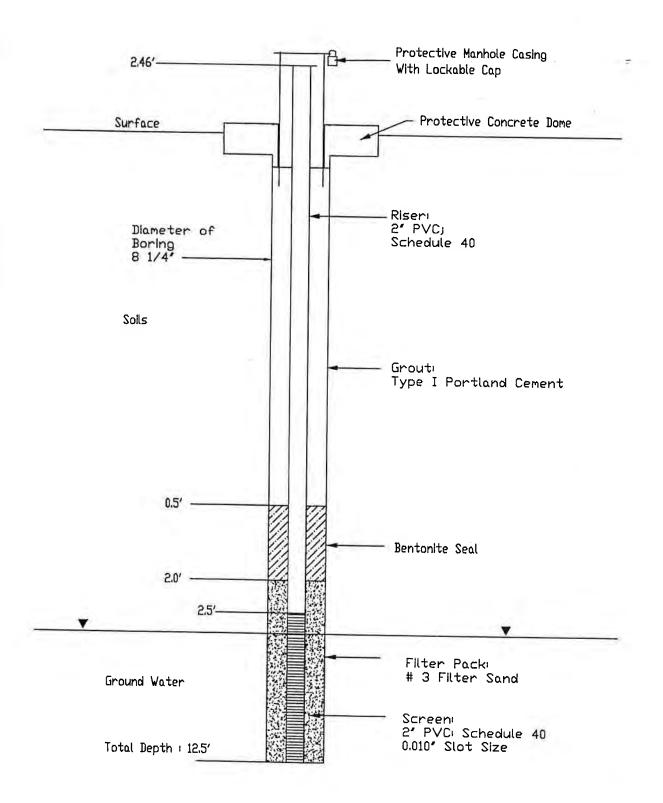
Boring / Well Construction Log

Well Construction Permit Number

Aquaterra, Inc.

I. D. Number	MW-21A			Purpose	Monitorina W-II D
Project Name	Porcelanite			Contractor	Monitoring Well Replacement
Project No.	3105804			Registration No.	Aquadrill 1361
Geologist	Tom Haynes			Driller	Paul Waddell
Start Date	9/16/98	Complete Date	9/17/98	Equipment	Ingersoll-Rand A-300
					8

Drilling Metho	Hollow Stem Auger			
Comments	Area covered with ri	p-rap stone.		
Inf	Construction ormation	Depth From - To	Soil / Rock Description / Comments	(ppm) (@ Depth (ft.)
Borehole Dia.	8 1/4" O.D.	0-3"	Topsoil grass	Beptii (It.)
Riser Type	PVC Sch 40	3"-4"	Dark brown sandy Clay, dry	
Diameter	2"	4'-6'	Brown, grey slightly sandy Clay, moist	
Screen Type	PVC Sch 40	6'-8'	Grey, highly micaceous, slightly clayey Silt	
Diameter	2"	8'-10'	Olive brown highly micaceous sandy Silt	
Riser Interval	2.5-0'	10'-12.5'	Olive brown highly micaceous Sand, weathered rock	
Screen Interval	12.5-2.5'		modecous sand, wedinered rock	
Slot Size	0.010"			
Grout Type	Type I Portland			
Interval	0.5-0'			1
Bentonite Type	3/8" Pellets			
Interval	2-0.5'	110-71	No.	
Filter Pack	#3 Filter Sand			
Interval	12.5-2.0'			
Total Depth	12.5'			
R.P. Elevation				
Datum				
Water Leve	el Information			
Date	W.L. Below R.P.			


R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Refer to Standard Well Construction Schematic Type II - Style 1.

@aquaterra	Author	Drawing 105804	Layers	Date	Title	Vell Construction Diagram Monitoring Well MW-21A
ensineerins	Job No. 105804	Revision 9-8-00	Figure	Scale NTS	Project	Porcelanite Lexington, North Carolina

North Carolina Department of Environmental, Health & Natural Resources Division of Environmental Management- Groundwater Section P.O. Box 27687-Raleigh, N.C. 27611-7587

WELL	CONS	TRUCT	ION	RECO	RD
	00110	TATO CIT			ND

Quad. No		Serial No.	
Lat.	Long		Pc
Minor Basin			
Basin Code			
Header Ent.		GW-1 Ent.	

	ation	MW-22A			9
Drilling Contr		Aquadrill		State Well Con	nstruction Permit
Driller Registr	ation Number	1361		Number:	On Client Property
1. Well Location: (Show sketch of the loc	ation below)			
Nearest Town:	Lexington, NC			County:	Davidson Co.
	NC Hwy. 8 and Vi	ctor St.		Depth	Drill Log
2. Owner		Community , or Subdivision as	ad Lot No.)	From To	Formation Description
Address	Mannington Mills, P.O. Box 30	Inc.		0-1"	Grass
1144,455	(Street or Route No		_	1"-2'	Red, brown sandy Silt
	Salem		08079	2'-10'	Red, slightly sandy Clay
	City		Zip Code	13.5-17.5'	Red, brown slightly micaceous sandy Clay
3. Date Drilled	9/17/98	Use of Well	Monitoring	17.5-22'	Brown sandy Clay Dark brown slightly sandy Clay, wet.
4. Total Depth	22.5'	Cuttings Collected	No	17.5-22	Dark brown slightly sandy Clay, wet.
5. Does Well Repla	ce Existing Well	_	Yes	22'-22.5'	Olive, grey sandy silty Clay
5. Static Water Level	NM	Feet Below	Fop Of Casing		On 19, giely outry only
Top of Casing	3	Feet Above Land Surfa	ice		
7. Yield (gpm):	NA	Test Method			
3. Water Zones: (depth)	NA	7			-
). Chlorination:	NA	Amount			
0. Casing:					If additional space is needed, use back of form.
Depth (fl.)					p and the state of
From To	Diameter	Wall Thickness	Material		Location Sketch
12.5-0'	2"	Sch 40	PVC Sch 40	(Show direction	a & distance from at least two State Roads, or other map reference points.)
1. Grout;					4.30.55.7
Depth (fl.)					CHARLES AVE.
From To	<u>Material</u> Type I Portland		<u>Method</u> Pour		SS N N N N N N N N N N N N N N N N N N
10.5-7'	Bentonite	-	Pour		NST TO NO.
2. Screen: Depth (ft.)		_	3755		THOUND REALER VICTOR ST.
From To	Diameter	Slot Size	Material		a a
22.5-12.5'	2"	0.010"	PVC Sch 40		VICTOR ST.
3. Gravel Pack:	-				EDNA ST.
<u>Depth (ft.)</u> From To	Q!		20.00		\\O\\\\T\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\
22.5'-10.5'	Size #3 Filter Sand	_	Material #3 Filter Sand		VICINITY MAP 1"=1000'±
4. Remarks:	-				
	10.4	was constructed in accord			

GW-1 Revised 2/90

Signature of Contractor or Agent

Date

Submit original to Division of Environmental Management & copy to well owner.

Boring / Well Construction Log

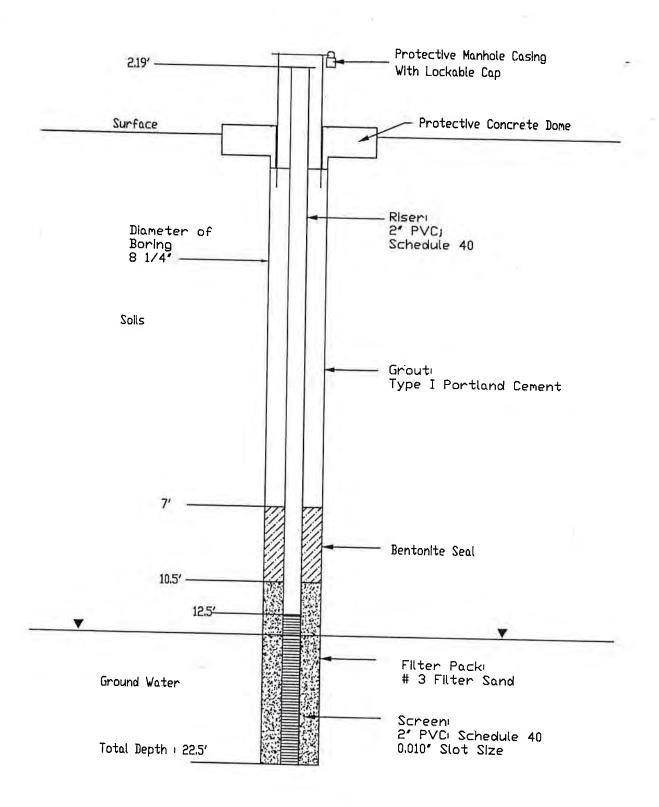
Well Construction Permit Number

Drilling Metho Hollow Stem Auger

Aquaterra, Inc.

I. D. Number	MW-22A			Purpose	Monitoring Well Replacement
Project Name	Porcelanite			Contractor	Aquadrill
Project No.	3105804			Registration No.	1361
Geologist	Tom Haynes			Driller	Paul Waddell
Start Date	9/16/98	Complete Date	9/17/98	Equipment	Ingersoll-Rand A-300

Inf	Construction ormation	Depth From - To	Soil / Rock Description / Comments	FID / PID (ppm) @ Depth (ft.
Borehole Dia.	8 1/4" O.D.	0-1"	Grass	S = opin (in
Riser Type	PVC Sch 40	1"-2'	Red, brown sandy Silt	
Diameter	2"	2'-10'	Red, slightly sandy Clay	
Screen Type	PVC Sch 40	10'-13.5'	Red, brown slightly micaceous sandy Clay	
Diameter	2"	13.5-17.5'	Brown sandy Clay	
Riser Interval	12.5-0'	17.5-22'	Dark brown slightly sandy Clay, wet.	
Screen Interval	22.5-12.5'			
Slot Size	0.010"	22'-22.5'	Olive, grey sandy silty Clay	
Grout Type	Type I Portland			
Interval	7'-0'			
Bentonite Type	3/8" Pellets			
Interval	10.5-7'			
Filter Pack	#3 Filter Sand			
Interval	22.5'-10.5'	(
Total Depth	22.5'		100000	
R.P. Elevation				
Datum		11111		
Water Lev	el Information			
Date	W.L. Below R.P.			


R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

MSL = Mean Sea Level

Refer to Standard Well Construction Schematic Type II - Style 1.

	Author mbb	Drawing 105804	Layers	Date	Title	Vell Construction Diagram Monitoring Well MW-22A
Suelussilus	Job No. 105804	Revision 9-8-00	Figure	Scale NTS	Project	Porcelanite Lexinaton, North Carolina

North Carolina Department of Environmental, Health & Natural Resources
Division of Environmental Management- Groundwater Section
P.O. Box 27687-Raleigh, N.C. 27611-7587

WELL	CONSTRUCTION RECORD	n
		,

For Office	e Use Only
	erial No.
atLong.	Pc
Minor Basin	
Basin Code	
leader Ent G	W-1 Ent.

Well Identific	ation	MW-23A			
Drilling Contractor		Aquadrill		State Wall O-	Instruction Permit
Driller Registi	ration Number	1361		Number:	On Client Property
Well Location: (Nearest Town:	Show sketch of the lo	cation below)			
ivearest 10wn:	Lexington, NC			County:	Davidson Co.
	NC Hwy. 8 and Vi	ctor St.		5	
_	(Road,	Community, or Subdivision	and Lot No.)	<u>Depth</u>	<u>Drill Log</u>
2. Owner	Mannington Mills,	Inc.	2011(0.)	From To	Formation Description
Address	P.O. Box 30				Grass
	(Street or Route No	0.)		4'-8'	Red slightly sandy clayey Silt
	Salem	NJ	08079	8'-12'	Red, brown slightly sandy Clay with tile chips
7	City	State	Zip Code	12'-14'	Brown sandy Clay, moist
. Date Drilled	9/17/98	Use of Well	Monitoring	14'-16'	Light brown clayey Sand, wet
. Total Depth	16'	Cuttings Collected	No	14*10	Tan, olive sandy Clay, moist
. Does Well Replace			Yes		
. Static Water	NM	Feet Below	Top Of Casing		
Level			4000 000 000		
op of Casing	3	Feet Above Land Surf	ace	-	
Yield (gpm): Water Zones;	NA NA	Test Method		-	
	NA ·				
(depth) Chlorination:					
Cinormation:	NA	Amount			
Depth (ft.) From To 6-0'	<u>Diameter</u> 2"	Wall Thickness Sch 40	Material PVC Sch 40	(Show direction	If additional space is needed, use back of form. Location Sketch & distance from at least two State Roads, or other map reference poi
Grout:					o case map religious por
Depth (ft.) rom To 2-0'	<u>Material</u> Type I Portland		<u>Method</u> Pour		CHARLES AVE.
4-2'	Bentonite		Pour		SAST NO.
Screen: Depth (ft.) com To 6-16'	Diameter 2"	Slot Size	Material PVC Selvato		NC HWY. B NC HWY. B NCTOR ST. SOUTHBOUND RR
			PVC Sch 40		WICTOR ST.
Gravel Pack: Depth (fl.)					EDNA ST.
om To	Size				LUNA SI.
16-4'	#3 Filter Sand	-	Material #3 Filter Sand		VICINITY MAP
Remarks:					1"=1000'±
I do hereby	certify that this well w	as constructed in accord	ance with 15 NCAC 2C,	well construction	
suurarus, ai	na uiai a copy of this r	record has been provided	to the well owner.		
1 Revised 2/90					

Boring /Well Construction Log

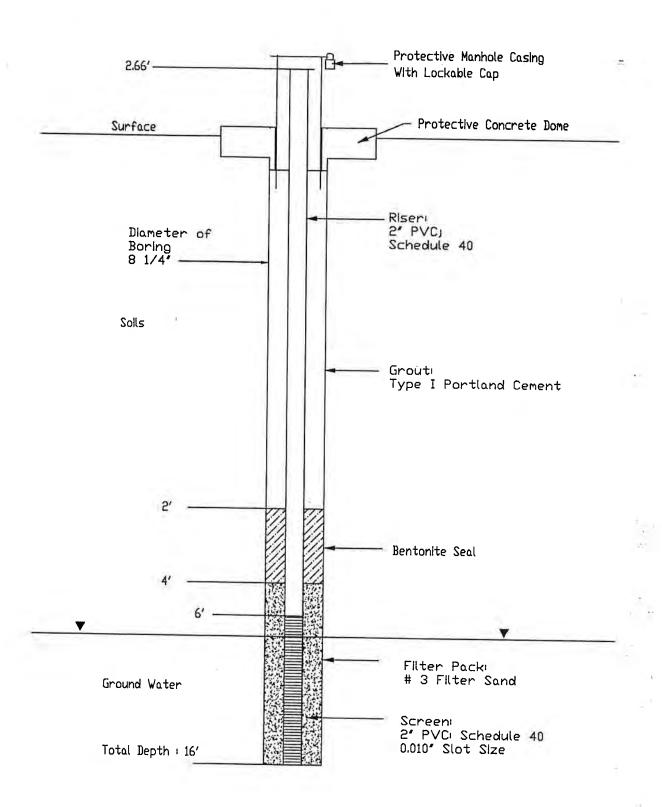
Well Construction Permit Number

Drilling Metho Hollow Stem Auger

Aquaterra, Inc.

I. D. Number	MW-23A		Purpose	Monitoring Well Replacement	
Project Name	Porcelanite			Contractor	Aquadrill
Project No.	3105804			Registration No.	1361
Geologist	Tom Haynes			Driller	Paul Waddell
Start Date	9/16/98	Complete Date	9/17/98	Equipment	Ingersoll-Rand A-300

Comments				
				FID / PID
Well Construction Depth Information From - To Soil / Rock Description / Comments			(ppm) @ Depth (ft.)	
Borehole Dia.	8 1/4" O.D.	0-1"	Grass	G Deptii (it.)
Riser Type	PVC Sch 40	1"-4"	Red slightly sandy clayey Silt	
Diameter	2"	4'-8'	Red, brown slightly sandy Clay with tile chips	
Screen Type	PVC Sch 40	8'-12'	Brown sandy Clay, moist	
Diameter	2"	12'-14'	Light brown clayey Sand, wet	
Riser Interval	6-0'	14'-16'	Tan, olive sandy Clay, moist	
Screen Interval	6-16'			
Slot Size	0.010"			
Grout Type	Type I Portland			
Interval	2-0'	1		
Bentonite Type .	3/8" Pellets	-		-
Interval	4-2'			-
Filter Pack #	#3 Filter Sand			
Interval .	16-4'			
Total Depth	16'			_
R.P. Elevation		10 4 0		
Datum		(1-)		-
Water Level	Information	-		
Date	W.L. Below R.P.			
		-		
		-		


R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

MSL = Mean Sea Level

Refer to Standard Well Construction Schematic Type II - Style 1.

@aquarerra	Author mbb	Drawing 105804		Date	Title	Well Construction Diagram Monitoring Well MW-23A
Sue in set in	Job No. 105804	Revision	Figure	Scale NTS	Project	Porcelanite Lexington, North Carolina

BORING # MW - 24		MW - 24	LOCATION:			Mannington				
START	DATE:		9-1-92	COMP	LETED:			9-1-92	2	
GEOLOGIST: DRILL METHOD: BORING DIA:			C. Boggs	DRILLER: SAMPLE METHOD: CASING DIA:		Engineering Techtonics				
):	Hollow Stem Auger			HOD:	Sp	lit Spo	on	
			6.25 Inches				2	Inche	S	
TOTAL	DEPTH:		15 Feet	CASINO	IG DEPTH:			5 Feet		
DE	PTH		LITHOLOGIC DESCRIPTI	ON]	PENETRA	TION TI	EST RES	ULTS	
FROM	TO	Čolo	or,texture,structure,consistenc	y,etc.	REC	6"	12"	18"	24 [#]	
1	3	1	wn organic rich rootedy clay loam.	ed						
3	5	Bro	wn sandy clay loam ab							
		cha	nange to gray rooted sandy							
		cla	y loam. Wet.							
			4							
8 10	Gra	Gray-white foliated								
		k-f	eldspar, plagioclase,							
		qua	rtz muscovite graniti	.c			LEI			
		sap	rolite. Wet.							
			OX.							

MONITORING WELL INFORMATION (IF APPLICABLE)

13

15

Gray-white saprolite.

As above.

RISER LENGTH(ft) 8 ft	_DEPTH(ft)_+3	5 DIAMETER(in) 2	MATERIAL PVC
SCREEN LENGTH (it) 10 ft	_DEPTH(ft)_5 -	- 15 DIAMETER(in) 2	MATERIAL PVC
DEPTH TO TOP OF SAND	3 feet	BAGS OF SAND	4
DEPTH TO TOP SEAL	1 2 feet	BENTONITE USED	1/2
BAGS OF CEMENT USED			

WELL CONSTRUCTION RECORD

,	Heade	r Ent GW-	- 1 Eut		
ORILLING CONTRACTOR ENSCI	MW-24 STATE WELL CONSTRUCTION PERMIT NUMBER: 28-0331-WM-0098				
DRILLER REGISTRATION NUMBER 1233	PERMIT NUMB	ER: 28-0331-WM-0098			
1. WELL LOCATION: (Show sketch of the location below)					
Nearest Town: Lexington	County: Davidso	n			
Hadiazi Iowii: Ticking con		DRILLING LOG			
Road, Community, or Subdivision and Lot No.)	Oeath From To	Formation Descri	-		
2. OWNER Mannington Ceramic Tile	Pidili 10				
ADDRESS Post Office Box 1777	0 - 5	Sandy Clay loam			
(Street or Route No.) Lexington, NC 27293					
City or, Town State Zio Code					
3. DATE DRILLED 9/1/92 USE OF WELL Monitoring	<u>5 – 15 .</u>	Gray white weather			
4. TOTAL DEPTH 15 CUTTINGS COLLECTED Yes No		granite saprolite			
5. DOES WELL REPLACE EXISTING WELL? Tyes X No					
6. STATIC WATER LEVEL: 3 FT. Q above TOP OF CASING.	,				
TOP OF CASING IS 3 FT. ABOVE LAND SURFACE					
7. YIELD (gom): METHOD OF TEST					
8. WATER ZONES (depth): 3-15'		. 1			
GHLORINATION: Type, Amount					
O. GASING: Wall Thickness	If additional	space is needed use back of	lonn.		
Depth Diameter or Weignt/Ft. Material		LOCATION SKETCH			
From +3 Ta -5 Ft 22 Sch 40 PVC		distance from at least two S	late Roads		
From To Ft	or other map refere	ance points)			
FromFt					
1. GROUT: Material Method			7		
Cepth Material Method From 0.5 To 2 Ft. #1 Portland Poured					
2 Pontonito					
1 V III III III III III III III III III					
2. SCREEN:					
Depth Diameter Slot Size Material					
From 5 To 15 Ft. 2 in 0.010 in PVC					
From To Ft in in					
From To Ft in in in					
3. GRAVEL PACK:		4-4			
Depth Size Material					
From 3 To 15 Ft. #3 Sand	7		* 34		
From To Ft					
4. REMARKS:					
I DO HEREBY CERTIFY THAT THIS WELL WAS CONSTRUCTED IN	ACCORDANCE WITH	1 15 NCAC 2C, WELL CONST	RUCTION		
STANDARDS. AND THAT A COPY OF THIS RECORD HAS BEEN PROV	MET IN THE METT OF	AINCU!			

SIGNATURE OF CONTRACTOR OR AGENT

DATE

Submit original to Division of Environmental Management and copy to well owner.

Minor Basin _

Basin Code _

MONITORING WELL INSTALLATION SKETCH

	PROJECT	PIEZOMETER NUMBER — DEPTH TO WATER LEVEL ELEVATION OF WATER L	
**************************************		PROTECTIVE BOX W/LOCKING CAP SEAL CAP	
	3	The date of the control of the contr	
		THICKNESS OF SURFACE SEAL TYPE OF SURFACE SEAL	6" Sakrete
	5	I.D. OF RISER PIPE TYPE OF RISER PIPE TYPE OF BACKFILL	2" Sch 40 PVC #1 Portland
	15	ELEVATION OF TOP OF SEAL TYPE OF SEAL	Bentonite
		TOP ELEVATION OF FILTER SAND BOTTOM ELEVATION OF RISER	-5'
	10	SIZE OF SCREEN OPENINGS PIEZOMETER SCREEN DIAMETER	0.010½ 2"
		TYPE OF FILTER SAND BOTTOM ELEVATION OF PIEZOMETER	<u>-15'</u>
		DIAMETER OF BOREHOLE	6.25"

FIELD DRILLING RECORD

BORIN	G#		MW - 25	LOCATION:			N	Aanning	gton	
START	DATE:		9-1-92	СОМР	LETED:			9-1-92		
GEOLOGIST: C. Boggs DR					ER:			Engineering Techtonics		
DRILL	METHO	D:	Hollow Stem Auger	SAMPI	E MET	HOD:	S	Split Sp	oon	
BORIN	G DIA:		6.25 Inches	CASIN	G DIA:			2 Inch		
TOTAL	DEPTH:		15 Feet	CASINO	G DEPI	H:		5 Fee	t	
DE	PTH		LITHOLOGIC DESCRIPTI	ON	1	PENETR	ATION '	TION TEST RESULTS		
FROM	TO	Col	or,texture,structure,consistenc	y,etc.	Digg. ht light record	br - Jeonaddisae	er sumseest der sud		24"	
0	3	Bro	wn rooted organic ric	h						
			dy clay loam.							
3	5	-	y rooted organic rich							
-			dy clay with				1	-		
			roximately 2" coarse		-	-				
-			rtz sand in bottom of							
		sam	ple. Wet.							
8	10	Bro	wn-green vertically							
			iated micaceous schis	tose						
		2	rolite. Wet.							
			-							
13	15		-dark gray strongly							
			tically foliated mica	ceous			14			
			istose saprolite.							
			eralology similar to							
		gran	nodiorite.							

MONITORING WELL INFORMATION (IF APPLICABLE)

RISER LENGTH(ft) 8'	DEPTH(ft)	+3 -5 DIAMETER(in)	2 MATERIAL PVC
SCREEN LENGTH(ft) 10'	DEPTH(ft)		
DEPTH TO TOP OF SAND	3 ` '	BAGS OF SAND	4
DEPTH TO TOP SEAL	1 2	BENTONITE USED	1/2
BAGS OF CEMENT USED			

P.O. BOX 27687 - RALEIGH, NC 27511-7687 PHONE (919)733-3221

41.7

1

WELL CONSTRUCTION RECORD		Basın	Basin — Code — r Ent.—				
DRILLING CONTRACTORENSCI	STATE PERMIT			RUCTI			
WELL LOCATION: (Show sketch of the location below) Nearest Town:Lexington	Causas	D:	1				
PEXTUREOU	County:		ason_				_
(Road, Community, or Subdivision and Lot No.)	Prom			-	ORILLI		
2, OWNER <u>Manninton Geramic Tile</u>	71011				mation	Uesc	noton
ADDRESS Post Office Box 1777 (Street or Route No.) Lexington, NC 27293	0 -	5.	Sai	ndy_C	la y		
City or Town State Zio-Code	5 -	15	Bro	yn V	ertic	ally	· · · · · · · · · · · · · · · · · · ·
3. DATE DRILLED9/1/92 USE OF WELL Monitoring			_fo	Liate	i sar	roli	to
4. TOTAL DEPTH 15' CUTTINGS COLLECTED Yes X No							
5. DOES WELL REPLACE EXISTING WELL? Yes No							
6. STATIC WATER LEVEL: 3 FT. C above TOP OF CASING. TOP OF CASING IS 3 FT. ABOVE LAND SURFACE.							
7. YIELD (gpm): METHOD OF TEST							
8. WATER ZONES (depth): 3-15'		_	<u> </u>				· ·
9. CHLCRINATION: Type 'Amount						****	
10. CASING:	lf ad	ditional :	enace le	naadar	f usa h	ack of	form
. Wall Thickness Deoth Dlameter or Weignt/Ft. Material	11 44						
From 13 To -5 Ft 2" Sch 40 PVC	(Show director or other ma	ton and		e from		t two	State Roads
FromToFt							
11. GROUT:							
Depth Material Method							
From 0.5 To 2 Ft. #1 Portland Poured							*
From 2 To 3 Ft. Bentonite							
12. SCREEN:							
Deom Diameter Slot Size Material							
From _ 5 To 15 Ft. 2 in. 0.010in. PVC							
From To Ft in in.					•		1.00
. FromToFtinin							
13. GRAVEL PACK:							
Depth Size Material	**	-		•	5		
From 3 To 15 Ft. #3 Sand	1 6						
From To Fl.	10						
The second secon		4.0					

Senal No.

_ Long. _

MONITORING WELL INSTALLATION SKETCH

PROJECT Manninton GROUND ELEVATION BENCH MARK DATA ELEVATION OF TOP OF PIEZOMETER	PIEZOMETER NUMBER DEPTH TO WATER LEVEL ELEVATION OF WATER LE	
	PROTECTIVE BOX W/LOCKING CAP	The state of the s
3		
	THICKNESS OF SURFACE SEAL TYPE OF SURFACE SEAL	6" Sakre t e
	I.D. OF RISER PIPE TYPE OF RISER PIPE TYPE OF BACKFILL	2" Sch 40 P
5	ELEVATION OF TOP OF SEAL TYPE OF SEAL _	-2' Bentonite
15	TOP ELEVATION OF FILTER SAND BOTTOM ELEVATION OF RISER	-31
10	SIZE OF SCREEN OPENINGS - PIEZOMETER SCREEN DIAMETER -	0.010"
	TYPE OF FILTER SAND BOTTOM ELEVATION OF PIEZOMETER _	#3 -15'
	DIAMETER OF BOREHOLE	6.25"

North Carolina Department of Environmental, Health & Natural Resources Division of Environmental Management-Groundwater Section P.O. Box 27687-Raleigh, N.C. 27611-7587

XXXIVI T	CONCERNICATION
WELL	CONSTRUCTION RECORD

Geologic Exploration

MW-26A

1175

Well Identification

Drilling Contractor

Nearest Town:

Driller Registration Number

1. Well Location: (Show sketch of the location below)

Lexington, NC

	For Office Use Only
	Quad. No. Serial No.
	Lat. Long. Po
	Miller Basin
	Basin Code
	Header EntGW-1 Ent
	~
77 11 0	
well Co	nstruction Permit
er:	On Client Property
County:	Davidson Co.
<u>pth</u>	Drill Log
То	Formation Description
6"	Grass / Topsoil
3'	Red, brown sandy slightly micaceous Clay.
8'	Brown, sandy Clay
9'	Brown, olive slightly micaceous clayey Silt, silty Clay. Moist.
11	Grey, olive clightly micaceous fine sandy clavey Silt Moist
12'	Brown, yellow clayey Sand. Moist. ~12' hit auger refusal.
	Will switch to roller cone then core.
18'	Granite / Competant rock. Fracture zones @ ~18'
_	
_	
	If additional appear is a set of the set of
	If additional space is needed, use back of form.
	Taradia of an
v direction	Location Sketch
w direction	& distance from at least two State Roads, or other map reference points.)
)
	The second secon
	CHARLES AVE.
	\ \ \ \ \ \
	85
	St
	NC HWY. 8 NC HWY. 8 NC HWY. 8
	27/
	38\\///////////////////////////////////
	双型 V///////////////////////////////////
	WICTOR ST.
	EDNA ST.
	VICINITY MAP

NC Hwy. 8 and Victor St. (Road , Community , or Subdivision and Lot No.) 2. Owner Mannington Mills, Inc. Address P.O. Box 30 (Street or Route No.) Salem NJ 08079 City State Zip Code 3. Date Drilled 5/21/99 Use of Well Monitoring 4. Total Depth 17.3 **Cuttings Collected** No 5. Does Well Replace Existing Well Yes 6. Static Water NM Feet Below Top Of Casing Level Top of Casing 3 Feet Above Land Surface 7. Yield (gpm): NA Test Method 8. Water Zones: NA (depth) 9. Chlorination: NA Amount 10. Casing: Depth (ft.) From Τo Diameter Wall Thickness Material 7.3'-0' 2" Sch 40 PVC Sch 40 11. Grout: Depth (ft.) <u>Material</u> Method 3'-0' Type I Portland Pour 5'-3' Bentonite Pour 12. Screen: Depth (ft.) From То Diameter Slot Size Material 17.3'-7.3' 2" 0.010" PVC Sch 40 13. Gravel Pack: Depth (ft.) From To Size <u>Material</u> 17.3'-5' #3 Filter Sand #3 Filter Sand 14. Remarks: I do hereby certify that this well was constructed in accordance with 15 NCAC 2C, well construction standards, and that a copy of this record has been provided to the well owner.

State Well

Depth

0'-6"

6"-3"

31-81

81-91

9'-11'

11'-12'

13'-18'

(Show dire

From

Number:

Signature of Contractor or Agent

1"=1000'±

Submit original to Division of Environmental Management & copy to well owner.

Date

GW-1 Revised 2/90

Boring / Well Construction Log

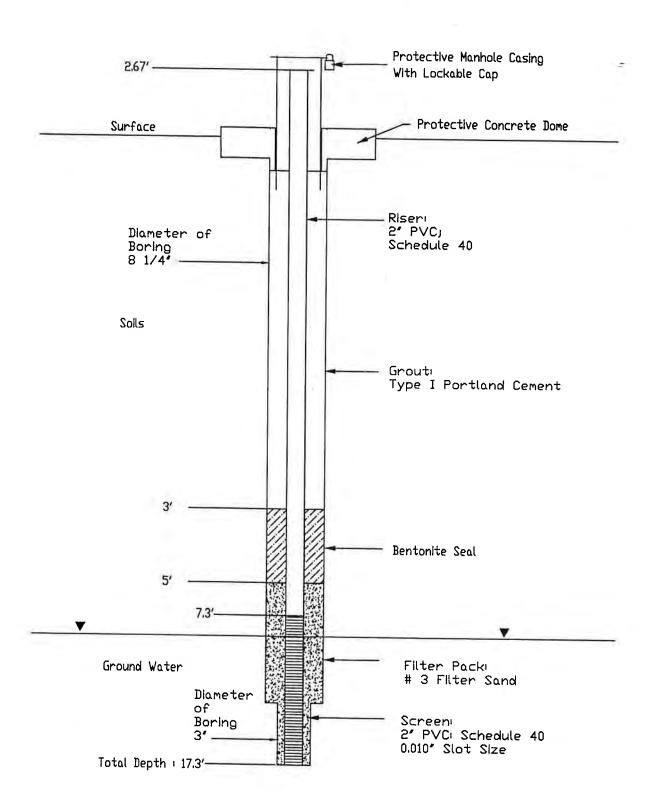
Well Construction Permit Number

Drilling Metho Hollow Stem Auger / Core Drill

Aquaterra, Inc.

I. D. Number	MW-26A			Purpose	Monitoring Well Replacement Geologic Exploration	
Project Name	Porcelanite			Contractor		
Project No.	3105804			Registration No.		
Geologist	Tom Haynes			Driller	Mike	
Start Date	5/20/99	Complete Date	5/21/99	Equipment	Mobile B-61	

Info	Construction ormation	Depth From - To	Soil / Rock Description / Comments	(ppm) (a) Depth (ft.
Borehole Dia.	8 1/4" to 12'; 3" at 12'-18'	0'-6"	Grass / Topsoil	July and (i.e.
Riser Type	PVC Sch 40	6"-3"	Red, brown sandy slightly micaceous Clay.	
Diameter	2"			
Screen Type	PVC Sch 40	3'-8'	Brown, sandy Clay	
Diameter	2"	8'-9'	Brown, olive slightly micaceous clayey Silt, silty Clay. I	Aoist.
Riser Interval	7.3'-0'	9'-11'	Grey, olive clightly micaceous fine sandy clayey Silt. M	
Screen Interval	n Interval 17.3'-7.3' Brown, yellow clayey Sand. Moist. ~12' hit auger refusal.			
Slot Size	0.010"		Will switch to roller cone then core.	
Grout Type	Type I Portland	13'-18'	Granite / Competant rock. Fracture zones @, ~18'	
Interval	3'-0'		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Bentonite Type	3/8" Pellets			
Interval	5'-3'			
Filter Pack	#3 Filter Sand			-
Interval	17.3'-5'			
Total Depth	17.3'			-
R.P. Elevation				
Datum				
Water Leve	el Information			
Date	W.L. Below R.P.			


R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Refer to Standard Well Construction Schematic Type II - Style 1.

@aquaterra	Author mbb	Drawing 105804	Layers	Date	Title	Vell Construction Diagram Monitoring Well MW-26A
Suginsating		Revision 9-8-00	Figure	Scale NTS	Project	Porcelanite Lexington, North Carolina

Appendix E-3 2007 Sampling and Analysis Plan

November 2, 2007

Mr. Bob Glaser
North Carolina Department of Environment and Natural Resources
Division of Waste Management
Post Office Box 27687
Raleigh, North Carolina 27611-7687

Reference: October 2007 Revised Sampling and Analysis Plan (SAP)

Porcelanite, Inc.

Lexington, North Carolina

Waters Edge Environmental Job No. R1-21

Dear Mr. Glaser:

Based on our October 15, 2007 meeting and recommendations made by Ms. Mary Siedlicki, we have attached the following revisions to the most recently approved SAP:

- 1. We would monitor wells MW-1, MW-9, MW-12, MW-22A, MW-26-A-2 and MW-28 in both March and September.
- 2. All wells would be analyzed for boron, cadmium, chromium, cobalt, lead, manganese and zinc.

If you have any questions regarding this report or require additional information, please call me at 919.859.9987.

Sincerely,

WATERS EDGE ENVIRONMENTAL, LLC

Phillip L. Rahn, P.G. President

07-122/PLR/aht

October 2007 Revised SAP Porcelanite, Inc. Lexington, North Carolina November 2, 2007

Prepared For

Porcelanite, Inc. (Mannington Mills) Lexington, North Carolina

Prepared By

Waters Edge Environmental, LLC Raleigh, North Carolina

Table of Contents

1	Introduction	1
2	Site Setting	1
	2.1 Topographic Setting	1
	2.2 Geologic Setting	2 2
	2.3 Hydrogeologic Setting	
	2.4 Monitoring Well System	3
3	Health and Safety	4
4	Ground Water Sample Collection	4
	4.1 Ground Water Sampling Preparation	4
	4.2 Ground Water Sample Collection Logbook	4
	4.3 Measurement of Water Levels	5
	4.3.1 Decontamination of Water Level Probe	5
	4.4 Well Development and Purging	6
	4.5 Ground Water Sample Collection	7
	4.6 Disposal of Purged Water	7
	4.7 Field Quality Control	7
5	Quality Assurance/Quality Control Program	8
	5.1 Introduction	8
	5.2 Duplicate Samples	8
	5.3 Split Samples	8
	5.4 Field Blanks	8
	5.5 Method Blanks	8
6	Monitoring Parameters / Schedule	9
7	Chain of Custody Protocols	9
	7.1 Sample Labels	9
	7.2 Chain of Custody Record	9
	7.3 Sample Transportation	10
8	Renorting	10

Figures

Figure No.	<u>Title</u>
1	Site Location Map
2	Monitoring Well Location Map
3	December 2004 Ground Water Contour Map

Tables

Table No.	<u>Title</u>
1	Ground water Monitoring Well Data
2	Target Analyte List and Sampling Schedule
3	Target Analyte List
	Container Size, Preservative, Holding Time and Analytical Methodology

Appendices

<u>Appendix</u>	<u>Title</u>
A	Cross Sections and Flow Nets
В	Monitoring Well Construction Details

October 2007 Revised SAP Porcelanite, Inc. Lexington, North Carolina November 2, 2007

1 Introduction

Porcelanite, Inc. 1995-present (formerly Mannington Ceramic Tile 1986-1995) was a ceramic tile manufacturing company that operated a facility in Lexington, Davidson County, North Carolina (see Figure 1). Two solid waste management units were created to handle waste previously generated from the ceramic tile manufacturing process. These units include the waste water settling ponds and the waste ceramic tile pile (see Figure 2). The settling ponds were used to settle solids contained in production waste water and then discharged to the Rat Spring Branch of the Yadkin-Pee Dee River Basin under a National Pollution Discharge Elimination System (NPDES) permit. The waste ceramic tile pile was used to dispose of off-specification ceramic tile materials. Currently the plant is closed and is for sell by Porcelanite.

Previous site evaluations of the solid waste management units revealed that both units are regulated by the Resource Conservation and Recovery Act (RCRA) due to toxicity associated with leachable lead content. Closure of the settling ponds and ceramic tile pile unit are complete. A total of twenty six (26) ground water monitoring wells were originally installed for detection and assessment monitoring around the former settling ponds and the waste ceramic tile pile of which 18 currently exist. Exceedances of ground water standards have been detected in some of the monitoring wells.

This Ground water Sampling and Analysis Plan (SAP) supersedes the February 2005 SAP generated by Waters Edge. Revisions in the SAP were based on comments made by the North Carolina Department of Environment and Natural Resources (NCDENR), Division of Waste Management (DWM) in our October 15, 2007 meeting. The significant differences between this SAP and the previous SAP include:

• Increase in the amount of wells sampled and analyte list for both the March and September sampling rounds.

2 Site Setting

2.1 Topographic Setting

The site is located in the central portion of the Piedmont physiographic province in North Carolina. The Piedmont region is characterized by a rolling hill topography. This topography was developed by tectonic uplift and subsequent erosion of the region between the Blue Ridge Mountains and the Atlantic Ocean.

The site lies on the margin of a minor first order stream known as Walltown Drain. Site topography is dictated by the stream valley and is characterized by an average topographic grade of approximately 0.085 ft/ft sloping toward the northeast. A map depicting ground water flow is presented in Figure 3.

2.2 Geologic Setting

The site is situated in the eastern portion of the Charlotte Lithotectonic Belt which is a zone of regionally metamorphosed amphibolite facies igneous rocks with a similar character, bounded on the east and west sides by shear zones. Lithologies, which occur beneath the Porcelanite facility, are mapped as Late Proterozoic-aged undivided metavolcanic rocks according to the Charlotte U.S.G.S. geologic quadrangle map (Gair, 1989).

Two cross-sectional diagrams and flow nets are contained in Appendix A. These cross sections and flow nets were prepared by Waters Edge to illustrate relevant site geology and contaminant flow paths. As seen in the cross-sections, the predominant lithology encountered at the site was described as pink to tan silty sand textured residual soils (saprolite) weathered in place from the underlying bedrock. The saprolite grades from intensely weathered rock near the surface to slightly weathered rock with increasing depth. In some areas, sandy clay to clayey sand soils have developed in the upper 5 to 10 feet of saprolite.

As seen in the cross-section diagrams, underlying bedrock lithologies encountered at the site consist of partially weathered to highly fracture granite to granodiorite. This observation is contrary to the above-mentioned mapped lithologies. As confirmation of the rock types observed at the site, quartz diorite has been recognized in the vicinity of the site at the Lexington Quarry (Gair, 1989). The distribution of these intrusive rocks has been mapped or subdivided from the metavolcanics in the area. Based upon the lithology and location of these intrusive rocks, it is likely that the granite to granodiorite is associated with the Devonian-aged Yadkin Pluton. No significant ore deposits have been recognized or mined extensively in the immediate area surrounding Lexington. However, significant deposits of a number of ores including silver, lead, cobalt, zinc, gold and copper have been recognized and mined in the regions located 5 to 20 miles south and east of the site (Gair, 1989).

2.3 Hydrogeologic Setting

As is typical of the Piedmont Physiographic Province, ground water occurs in two interconnected zones underlying the site. These zones include the unconsolidated (saprolite) water table aquifer and the underlying fractured bedrock aquifer. Ground water in the water table aquifer is transmitted in a generally laminar fashion through the pores in the "B-Horizon" and "C-Horizon" soil zones. These soil zones (saprolite) tend to have a fairly uniform porosity and permeability and have a relatively large storage capacity in the regolith overlying fractured bedrock. The two water bearing zones are directly interconnected and are

not separated by a confining layer at the site. The saprolite/regolith zone acts as the storage reservoir for the underlying bedrock zone, thus recharging the bedrock aquifer in response to any withdrawal of water from the bedrock.

Ground water in the saprolite water table zone has been mapped to illustrate the direction and gradient of ground water flow. To illustrate the direction and gradient of ground water flow at the site, the most recent water table contour map (December 2004) is provided in Figure 3. As seen in Figure 3, ground water is flowing toward the northeast under an average hydraulic gradient of approximately 0.028 ft/ft. The depicted ground water flow and gradient is in general agreement with previous observations. The local point of ground water discharge from the water table aquifer appears to be the Walltown Drain. Recharge to the water table zone apparently occurs as surface water infiltration over the topographically higher regions southwest of the site.

In order to gain information about the permeability of the water table and bedrock aquifers, ENSCI Environmental (November 1992) conducted single well slug tests on fifteen monitoring wells. Results of these tests indicated the hydraulic conductivity of the water table aquifer is fairly consistent across the site. The hydraulic conductivity values derived from the slug tests were averaged by calculating the geometric mean, resulting in a derived aquifer permeability of 0.40 feet/day. Utilizing the derived hydraulic conductivity, average hydraulic gradient and estimates of the effective porosity of the aquifer, ENSCI estimated that the ground water flow velocity at the site ranges from 0.030 feet/day to 0.054 feet/day.

The site is situated in the eastern portion of the Charlotte lithotectonic belt, which is a zone of regionally metamorphosed amphibolite facies igneous rocks with a similar character, bounded on the east and west sides by shear zones. According to the Charlotte geologic quadrangle map, the site is underlain by Late Proterozoic-aged undivided metavolcanic rocks. However, bedrock lithologies encountered at the site consist of massive, quartz-potassium feldspar-muscovite granite to granodiorite that are likely associated with the Pennsylvanian to Permian-aged Churchland Pluton.

2.4 Monitoring Well System

As of April 10, 1997, 19 ground water monitor wells were used to monitor ground water at the site. In preparation for closure of the ceramic tile chip pile, on April 10, 1997, the following six monitoring wells were abandoned; MW-3, MW-7, MW-8, MW-21. MW-22 and MW-26A. All wells except MW-8 were replaced in the same approximate locations upon completion of closure activities. Of the eighteen (18) monitoring wells currently existing at the site, fourteen (14) are Type II monitoring wells installed to monitor the shallow aquifer, and four Type III monitoring wells (MW-9 and MW-11, MW-19 and MW-28) installed to monitor the saprolite aquifer. Appendix B contains available monitoring well construction records for existing monitoring wells.

This SAP includes six monitoring wells (MW-1, MW-9, MW-12, MW-22A, MW-26-A-2, and MW-28) as described in Table 2 to be used to monitor the Tile Pile and Settling Ponds with sampling being accomplished in March and September of each year. The parameters for sampling will be boron, cadmium, chromium, cobalt, manganese, lead and zinc.

3 Health and Safety

As required in 29 CFR Pan 1910.120 a health and safety plan (HASP) for the hydrogeologic assessment was previously developed. The HASP includes the following items:

- safety and standard operating procedures
- anticipated hazards
- exposure limits
- levels of dermal and respiratory protection
- emergency medical care of personnel
- contingency plan for sudden releases of hazardous materials by the drilling program
- emergency procedures and ambient air monitoring

All personnel and subcontractors are monitored under an approved medical program including baseline and annual physicals. All personnel will have 32 to 40 hours of hazardous waste health and safety training. Personnel will be fit tested for respirators, OSHA trained in the use of negative and positive pressure respiratory protection, and the proper use of personal protective equipment (PPE).

4 Ground Water Sample Collection

4.1 Ground Water Sampling Preparation

The sampling team and site manager will review the ground water sampling plan prior to beginning sampling activities. The team and site manager will develop a sampling schedule and determine which samples will be duplicated for QA/QC purposes. The correct number of sample containers will be secured for each sampling round.

4.2 Ground Water Sample Collection Logbook

The following data will be recorded in the on-site water sample collection logbook (hereafter referred to as the "logbook") maintained by the Mannington site manager:

- name(s) of people present
- date of the sampling event

- environmental conditions
- date and procedure used for equipment calibration will be documented in the logbook

For each well sampled:

- well condition
- date and time of measurement and/or purging
- equipment used for purging
- well depth below measuring point (to the nearest 0.01 feet)
- elevation of the water level
- length of water column in the well
- volume of water column in the well
- approximate volume of water removed during purging
- sample collection time and date
- equipment used for sample collection
- field measurements
- types and number of sample containers
- any special handling procedures

4.3 Measurement of Water Levels

Well caps with air/water tight seals will be removed from all of the wells, and the wells will be allowed to equilibrate with atmospheric pressure for a minimum of 15 minutes prior to measurement of water levels. Water levels will be measured to the nearest 0.01-foot using an electronic water level meter. The top of the Grundfos wellhead water level probe port has been selected as the reference measuring point for each well (see Table 1). Static water level measurements will be obtained from all wells prior to beginning the well purging procedure at any well. Water level measurements will proceed from the least to the most contaminated wells based on the "most recent" historical analytical data. This order of water level measurements will help to minimize the potential for cross contamination between wells.

All sampling personnel will wear protective non-reactive nitrile gloves throughout the water level monitoring procedures. Depth to ground water measurements (including calculated ground water elevations) and other data will be recorded in the facility ground water sample collection logbook.

4.3.1 Decontamination of Water Level Probe

The water level probe will be decontaminated prior to initial use and between each well before measuring the water levels. The electric probe and length of cable inserted into the monitoring well will be rinsed with deionized (or distilled) water, scrubbed in a phosphate-

free low-residue soap, rinsed with deionized (or distilled) water, rinsed with a 5% nitric acid solution, rinsed with deionized (or distilled) water, rinsed with isopropyl alcohol, rinsed with deionized (or distilled) water and air dried as long as possible between wells.

4.4 Well Development and Purging

Clean, disposable gloves (powder free, vinyl or latex) will be worn by sampling personnel during water level monitoring, purging, sampling, and decontamination procedures. New gloves will be utilized for each activity and each well.

Utilizing the well volume information gathered from the water level measurement procedures, three well volumes will be calculated for each well to determine the minimum volume to be purged prior to sampling. Removal of the minimum three casing volumes and allowing the wells to stabilize should insure that all of standing water in the well casing is removed. Newly installed wells will be allowed to stabilize for a minimum of one week following development before being purged and sampled.

A dedicated Grundfos Redi-Flo2 brand electric submersible impeller pump will be used to purge and sample each well if feasible. If this is not feasible due to obstructions in the well, disposable bailers will be attempted. As requested in the HWS correspondence dated November 8, 1996, a new survey of the replacement monitoring well measuring points has been completed. This included surveying the top of casing elevations and surveying the Grundfos dedicated wellhead measuring point (water level probe port) for the replacement well heads. Table 1 specifies the pump intake in relation to the top of well casing for all monitoring wells currently located at the facility.

An individual pump will be dedicated to each well, thus eliminating the potential for cross contamination and eliminating the need for decontamination between sampling events. The pump will be secured in the well with a stainless steel cable. Discharge tubing will be Teflon and will also be dedicated, eliminating the need for decontamination between sampling events.

The purging process will involve pumping a minimum of three well volumes of water continuously at a low flow rate (approximately 0.25 gallons per minute). Pumping at the low flow rate will reduce or eliminate the collection of well bore sediments and provide a more representative ground water sample. Field parameters of pH, temperature and conductivity will be measured for each well volume. The purging will continue until field parameters and water level stabilize. Stabilization consists of three consecutive readings collected at 5-minute intervals over a 15 minute period. Each well will be purged until visibly clear water flows from the discharge hose of the pump. We will also note the stabilized water level to insure that the sample is entering the pump directly from the formation.

In the event that an existing well contains insufficient water to purge three well volumes or until field parameters have stabilized, the Redi-Flo2 pump will be operated until it will not yield water and the ground water samples will be obtained following sufficient recharge of the well.

4.5 Ground Water Sample Collection

The order of ground water purging and sample collection will proceed from the well with the most recent lowest concentrations of constituents to the well with the most recent highest constituent concentrations. This order of ground water purging and sample collection will help to minimize the potential for cross contamination between wells. Clean, disposable nitrile gloves (powder free) will be worn by sampling personnel during water level monitoring, purging, sampling, and decontamination procedures. New gloves will be utilized for each activity and each well.

Once the purging process is completed, the water will be transferred into the appropriate sample containers without interrupting the pumping/purging process. Prior to commencement of field activities, the contracting laboratory prepares the appropriate sample containers for the sampling event. Containers are labeled for each well and sample parameter. If required, the laboratory facility adds preservatives to the appropriate sample containers. Sample containers, preservation techniques and holding times utilized in the sampling event are conducted in accordance with the methods presented in *EPA SW-846*, *Test Methods for Evaluating Solid Waste*, *Physical/Chemical Methods*, *Table 2-33*. Table 3 specifies the sample container volume, preservative, holding time and analytical method to be employed to analyze the sample at the laboratory. Upon filling, the sample containers will be immediately labeled with the appropriate information and placed on ice to lower the temperature of the samples to approximately 4°C. Permanent ink will be used for all sample container label entries to ensure information remains legible when wet. Reported field parameters will be obtained following acquisition of all ground water samples that are to be sent to the laboratory for analysis.

4.6 Disposal of Purged Water

The purged ground water from the monitoring wells will be containerized in labeled 55-gallon drums, labeled as purge water and stored on site while awaiting proper disposal.

4.7 Field Quality Control

In the event that the Redi-Flo2 Pump malfunctions, the pump will be removed from the well and repaired in the field if possible. If field repair of the pump is not possible, the pump will be removed, the well head will be fitted with a temporary locking expansion cap and the pump will be shipped to the manufacturer for repair. Prior to returning the pump and discharge plumbing to the well, all downhole portions of the pump, discharge hose and

suspension cable will be fully decontaminated in the same manner described in Section 4.3.1 of this report.

5 Quality Assurance/Quality Control Program

5.1 Introduction

A quality assurance (QA) program will be used to assure valid analytical data. A quality control (QC) program will be in effect in the form of the field sampling procedures. The analytical laboratory to be used is an EPA approved laboratory that will use a QA/QC program that complies with EPA SW-846 methods.

The QA programs used for the ground water will consist of duplicate samples, split samples, field blanks, and travel blanks as requested by the NCDENR. Any deviations from the specifications of this SAP and/or approved procedures will be documented in the quarterly report generated to document ground water and site conditions.

5.2 Duplicate Samples

A least one duplicate sample will be randomly collected from a monitoring well during each day of sample collection for each semiannual sampling event. The sample will be acquired from the monitoring well in a manner identical to the primary sample (same time, same location, using the same sampling equipment, etc.). These samples will be collected in identical containers that have been similarly prepared and filled to the same volume. Duplicate samples will be preserved and handled in an identical fashion.

5.3 Split Samples

Split samples are not planned for the program unless requested by the NCDENR, the analytical laboratory results become suspect, or unexpected contaminants are detected.

5.4 Field Blanks

Field blanks will consist of laboratory prepared deionized analyte free water that will be containerized, treated (if preservatives are used), and handled in the same manner as the samples collected from the monitoring wells.

5.5 Method Blanks

The analytical laboratory is required to collect, analyze, and report the data associated with a method blank. A method blank is required at the beginning and end of each day that an analysis for the site is conducted. For example, if 10 samples were submitted for analysis

from this particular site, and they were all analyzed on the same day, then one set of method blanks would be submitted. However, if a portion was analyzed one day, and the remainder analyzed on another day, then two sets of method blanks, one for each day, would be submitted.

The analytical data from each sampling event is compared to the historical database developed for the site to determine whether an anomaly exists. If information is suspected of being anomalous, then the wells associated with the anomaly will be resampled for verification.

6 Monitoring Parameters / Schedule

Porcelanite will employ the schedule and analytical methods outlined in Table 2 for the ongoing evaluation of ground water at the site. For the assessment program, Porcelanite will follow the schedule, parameter list, and sample locations (i.e. wells) described in this document or applicable correspondence from NCNCDENR. As indicated in Table 2, there are currently 18 wells; however, we are only proposing to analyze six wells based on the historical analysis conducted at the site. Table 3 specifies the sample container size, preservative, holding time, and analytical test method to be utilized during the analysis of the recovered ground water sample.

7 Chain of Custody Protocols

7.1 Sample Labels

Preprinted labels will be affixed to the sample containers by the laboratory. Preprinted items on the labels will include the laboratory name, address and preservative added to the container. Once a sample is collected in the field, the date, time, sample location, project name, sampler name and target analytical methods will be recorded. All label entries will be made using permanent ink.

7.2 Chain of Custody Record

A form will be supplied by the laboratory in a format for recording all pertinent sampling data to maintain a record of the chain of custody of samples collected. The form will be completed in the field prior to delivery of the samples to the laboratory. Information to be included on the chain of custody record will include, at a minimum, the following:

- project name
- project number
- sample location, well number
- sampling date & time

- preservatives & number of containers
- sampler identification
- custody signatures
- laboratory North Carolina Certification Number

requested analysis

- inclusive dates of sample possession

7.3 Sample Transportation

Following collection, samples will be placed in a cooler and immediately chilled on ice to approximately 4°C. Sample containers will be packed in the cooler with plastic foam packing materials or equivalent to prevent breakage of sample containers during transportation. Sample coolers will remain in custody of field sampling personnel until delivered to laboratory personnel or until shipped via a commercial overnight shipping firm to the laboratory.

8 Reporting

A report will be generated within 60 days of sample collection to document details of the sample collection event and laboratory results.

Porcelanite, Inc.
October 2007 Sampling & Analysis Plan

Ground Water Monitoring Well Data

Table 1

Monitoring Well Top of Casing Ground Water Pump Intake Identification **Elevation Elevation Elevation** 749.41 MW-1 769.71 750.86 MW-3A 764.49 730.38 735.42 MW-7A 742.38 736.79 724.57 MW-9 (D) 749.79 727.86 699.97 MW-10 757.81 742.52 738.81* 755.10 742.72 690.62 MW-11 (D) 749.59 729.6 727.80 MW-12 (D) MW-13 752.86 734.94 729.86* 740.92* MW-14 756.92 744.22 MW-18 733.44 726.09 721.28 MW-19 (D) 732.40 725.8 699.73 725.09 MW-21A 739.11 734.26 MW-22A 753.25 735.1 730.73 740.28 MW-23A 752.31 737.02 MW-24 729.42 725.59 716.30 MW-25 731.59 725.64 718.93 MW-26-A-2 749.59 NM NM MW-28 (D) 749.39 726.75 669.72

NM – Not Measured since MW-26-A-2 installed in September 2007

D = Deep Well

Ground surface datum collected on May 15, 1997 and August 2000

*- Pump intakes lowered on October 3, 2001

Waters Edge Environmental Job No. R1-21

Table 2

Porcelanite, Inc.
October 2007 Sampling and Analysis Plan
Target Analyte List and Sampling Schedule

Well ID#	March	September		
MW-1	A	A		
MW-9	A	A		
MW-12	A	A		
MW-22A	A	A		
MW-26-A-2	A	A		
MW-28	A	A		

<u>PARAMETERS</u> A: Boron, Cadmium, Chromium, Cobalt, Lead, Manganese and Zinc

Porcelanite, Inc.
Target Analyte List
Container Size, Preservative, Holding Time and Analytical Methodology

Table 3

Parameter	Container	Preservative	Holding Time	Analytical Method
Boron	950 ml	HNO ₃	6 months	200.7
Cadmium	950 ml	HNO ₃	6 months	200.7
Chromium	950 ml	HNO ₃	6 months	200.7
Cobalt	950 ml	HNO ₃	6 months	200.7
Lead	950 ml	HNO ₃	6 months	200.7
Manganese	950 ml	HNO ₃	6 months	200.7
Zinc	950 ml	HNO ₃	6 months	200.7

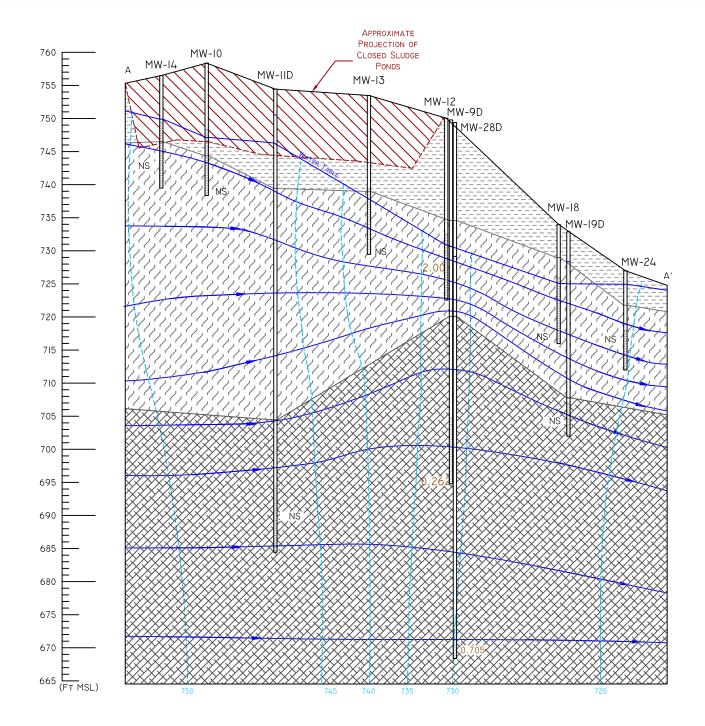
Note: With use of EPA Method 200.7, the lowest possible detection limit will be obtained with each analyte tested. Sample containers, preservation techniques and holding times utilized in the sampling events are conducted in accordance with the methods presented in EPA SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Table 2-33.

Appendix E-4 Cross-Sections (September 2016)

LEGEND

CLAYEY SAND SURFICIAL SOILS

SILTY SAND SAPROLITE SOILS


PARTIALLY WEATHERED GRANODIORITIC BEDROCK

CLOSED SLUDGE PONDS

I.06 BORON CONCENTRATION (IN MG/L)*
NS MONITORING WELL NOT SAMPLED

V EQUIPOTENTIAL LINE

GROUND WATER FLOW LINE / DIRECTION

	Author	Drawing	Layers	Date	Title	
	plr	App E-4		4.11.16	Geologic Cross Section and Flow Net A and A'	
WATERS EDGE ENVIRONMENTAL, LLC					(September 15, 2016)	
	Job No.	Revision	Figure		Project Former Porcelanite Facility	
	R1-21	1 10.28.16	App E-4	1"= 150'	Lexington, North Carolina	
			' '	VE = 10x	Loxington, North Garonna	

LEGEND

CLAYEY SAND SURFICIAL SOILS

SILTY SAND SAPROLITE SOILS

PARTIALLY WEATHERED GRANODIORITIC BEDROCK

CAPPED TILE PILE

1.06 BORON CONCENTRATION (IN MG/L)

NS MONITORING WELL NOT SAMPLED

EQUIPOTENTIAL LINE

GROUND WATER FLOW LINE / DIRECTION

0 0 0	Author	Drawing	Layers	Date	Title	Geologic Cross Section and Flow Net B and B'
WATERS EDGE ENVIRONMENTAL LLC	p l r	App E-4		4.11.16	(September 15, 2016)	
	Job No.	Revision	Figure	Scale _{1" =150'}	Project	Former Porcelanite Facility
	R1-21	10.28.16	App E-4	VE = 10x		Lexington, North Carolina

Part F Hazard Prevention

Part F - Procedures to Prevent Hazards Table of Contents

Appendix F-1 Quarterly Inspection Log

PART F - Procedures to Prevent Hazards

F-1 Security

F-1a Security Procedures and Equipment

A seven-foot chain-link fence topped with barbed wire and locked gates surround the Facility as a barrier to entry.

F-1a (1) 24-Hour Surveillance System

Not applicable – This is a closed facility with no buildings or structures remaining. No guard or 24-hour surveillance system is necessary.

F-1a (2) *Barrier and Means to Control Entry*

F-1a (2)(a) Barrier

A seven-foot chain-link fence topped with barbed wire and locked gates with one key-coded lock entry surround the Facility as a barrier to entry. Remaining locks use a key.

F-1a (2)(b) Means to Control Entry

Five (5) drive-thru gates and one (1) personnel entrance gate are part of the fence surrounding the Facility as depicted on Figure B-3. The gates are all locked with a chain and key padlock, with the exception of a key-coded lock on the "main gate" off Victor Drive, where employee parking and the guard house were previously located. Individuals with access to the Facility are limited to:

- Mr. George Smith, phone number (336) 752-2945, retired Porcelanite/Condumex Associate, Lexington resident, and caretaker
- Mr. Phil Rahn and Mr. Tom Haynes, Waters Edge Environmental, LLC
- a Lexington police officer who inspects areas of the Facility property
- NCDEQ individual who performs periodic post-closure care inspections for SWMU-2 and SWMU-3

F-1a (3) Warning Signs

Current signage at the Facility states: NO TRESPASSING – KEEP OUT

Condumex and Mannington has installed signs which state "No Trespassing- Keep Out" at all entrances and any other ordinal sides of the Facility.

F-1b Waiver

A Waiver is not requested.

F-1b (1) *Injury to Intruder*

Not applicable – This is a closed facility with no buildings, structures, or equipment remaining. Wastes remaining at the Facility are protected by NCDEQ approved caps.

F-1b (2) *Violation Caused by Intruder*

Not Applicable – This is a closed facility with no buildings, structures, or equipment remaining.

F-2 Inspection Schedule

The Facility is inspected quarterly by Condumex/Mannington personnel as part of the Facility's approved Post-Closure Care Plan with a Inspection Log contained in Appendix F-1. It is also inspected annually by a NCDEQ RCRA Compliance Inspector.

F-2a General Inspection Requirements

The Facility is in post-closure; therefore, many items listed in this Section are not applicable.

F-2a(1) Types of Problems

Types of potential problems related to conditions with respect to the Facility included in the quarterly inspections are as follows:

- Erosion Damage
- Vegetative/Stone/& Asphalt Covers
- Run-on/Run-off Control System
- any Subsidence
- Monitoring wells
- Security Fence and Gates

F-2a (2) Frequency of Inspection

Post-closure inspections are conducted quarterly by Condumex/Mannington personnel and annually by a NCDEQ RCRA Compliance Inspector (see Inspection Log in Appendix F-1).

F-2b Facility Inspection Requirements

F-2b (1) *Monitoring Equipment*

The Facility is a closed facility and no fixed monitoring systems are present.

F-2b (2) Emergency Equipment

The Facility is a closed facility, and based on the lack of buildings and manufacturing activities, no fire or spill risks requiring equipment, and no hazards requiring emergency personal protective equipment (PPE) are present.

F-2b (3) Safety Equipment

The Facility is a closed facility, and based on the lack of buildings and manufacturing activities, no hazards requiring safety equipment are present.

F-2b (4) Security Equipment

The Facility is a closed facility, and based on the lack of buildings and manufacturing activities, no security risks requiring such equipment, other than the fences and locked gates described previously are present.

F-2b (5) *Operating and Structural Equipment*

The Facility is a closed facility, and based on the lack of buildings and manufacturing activities, there is no operating and/or structural equipment at the Facility requiring this type of inspection.

F-2b (6) *Testing of Equipment*

The Facility is a closed facility, and based on the lack of buildings and manufacturing equipment, no such equipment requiring such testing is present.

F-2c Specific Process Inspection Requirements

The Facility is a closed facility, and based on the lack of buildings and manufacturing activities, there are no specific processes to inspect.

F-2c (1) Container Inspection

The Facility is a closed facility, and there are no containers to inspect.

F-2c (2) *Tank System Inspection*

The Facility is a closed facility, and there are no tank systems to inspect.

F-2c (3) Waste Pile Inspection

The Facility is a closed facility, and there are no waste piles to inspect.

F-2c (4) Surface Impoundment Inspection

The Facility is a closed facility, and there are no operational surface impoundments to inspect. The two closed settling ponds (SWMU-2) are inspected during quarterly post-closure inspections conducted by Condumex/Mannington personnel and annual compliance inspections conducted by NCDEQ.

F-2c(5) Incinerator Inspection

The Facility is a closed facility, and there are no incinerators to inspect.

F-2c (6) Landfill Inspection

The Facility is a closed facility, and there are no operational landfills to inspect. The closed Ceramic Tile Pile (SWMU-3) is inspected during quarterly post-closure inspections conducted by Condumex/Mannington personnel and annual compliance inspections conducted by NCDEQ.

F-2c (7) Land Treatment Inspection

The Facility is a closed facility, and there are no land treatment operations to inspect.

F-2c (8) *Miscellaneous Unit Inspections*

The Facility is a closed facility, and there are no miscellaneous units, as described, to inspect.

F-2c (9) *Boilers and Industrial Furnaces Inspections*

The Facility is a closed facility, and there are no miscellaneous boilers or industrial furnaces to inspect.

F-2c (10) Drip Pad Inspections

The Facility is a closed facility, and there are no drip pads to inspect.

F-2c (11) Containment Building Inspections

The Facility is a closed facility, and there are no containment buildings to inspect.

F-2c (12) Subpart AA - Air Emission Standards for Process Vents

The Facility is a closed facility, and there are no process vents.

F-2c (13) Subpart BB - Air Emission Standards for Equipment Leaks

The Facility is a closed facility, and there is no air emissions equipment.

F-2c (14) Subpart CC - Air Emission Standards for Tanks, Surface Impoundments, and Containers

The Facility is a closed facility, and there are no attributes as covered under the Subpart CC checklist.

F-2d Remedial Action

Only a "handful" of individuals have access to the Facility. During their visits for groundwater monitoring events and other sampling events, and during quarterly inspections, problems are rarely found. Additionally, any problems that have been identified tend to be minor: for example, a damaged or fallen fence or a missing lock on a groundwater monitoring well. Repairs/actions are coordinated promptly depending on the issue identified.

F-2e Inspection Log

A sample of a blank checklist for quarterly owner/operator inspections is included as Appendix F-1. Quarterly inspections are typically performed by Mr. Tony Shaw.

Annual inspections are also completed by NCDEQ. The last inspection was completed by Mr. Ernest Lawrence, dated July 27, 2016. There were no reported findings. The previous inspection was conducted by Mr. Mark Burnette, dated Sept. 8, 2015. The only finding was a small access hole cut in the fence, which was promptly repaired. Quarterly inspection documentation is audited by NCDEQ personnel as part of the annual inspection.

F-3 Waiver of Preparedness and Prevention Requirements

A waiver is not requested.

F-3a Equipment Requirements

Wastes are no longer handled at the Facility.

F-3a (1) *Internal Communications*

Internal personnel are no longer located at the Facility.

F-3a (2) External Communications

No external communication requirements are needed except for those having access to the Facility to inspect or provide maintenance carry mobile phones.

F-3a (3) Emergency Equipment

The Facility is a closed facility, and there is no fire risk requiring this type of emergency equipment.

F-3a (4) Water for Fire Control

The Facility is a closed facility, and there is no water for fire control on site.

F-3b Aisle Space Requirements

The Facility is a closed facility, and there are no buildings, therefore no aisles.

F-4 Preventive Procedures, Structures, and Equipment

The Facility is a closed facility, and there are no structures or equipment.

F-4a Loading and Unloading Operations

The Facility is a closed facility, and there are no loading/unloading operations.

F-4b Run-Off

The Facility is a closed facility, and there are no hazardous waste handling areas.

F-4c Water Supplies

The Facility is a closed facility, and there are no water supplies.

RCRA Part B Post-Closure Permit Application Part F-Procedures to Prevent Hazards Former Porcelanite Facility Lexington, Davidson County, North Carolina March 6, 2017

F-4d Equipment and Power Failure

The Facility is a closed facility, and there is no equipment, therefore no risk from power outage.

F-4e Personal Protection Equipment

The Facility is a closed facility, and there is no hazardous waste handling requiring PPE.

F-4f Ventilation Equipment

The Facility is a closed facility, and there is no ventilation equipment.

F-5 Prevention of Reaction of Ignitable, Reactive and Incompatible Wastes

The Facility is a closed facility, and there is no ignitable, reactive, or incompatible waste generated at the Facility.

F-5a Precautions to Prevent Ignition or Reaction of Ignitable or Reactive Wastes

The Facility is a closed facility, and there is no ignitable, reactive, or incompatible waste generated at the Facility.

F-5b General Precautions for Handling Ignitable or Reactive Waste and Mixing of Incompatible Waste

The Facility is a closed facility, and there is no ignitable, reactive, or mixing of incompatible wastes at the Facility.

F-5c Management of Ignitable or Reactive Wastes in Containers

The Facility is a closure facility, and there are no ignitable or reactive wastes in containers to manage.

F-5d Management of Incompatible Wastes in Containers

The Facility is a closed facility, and there is no incompatible waste in containers to manage.

F-5e Management of Ignitable or Reactive Wastes in Tanks

The Facility is a closed facility, and there is no ignitable or reactive waste in tanks to manage.

RCRA Part B Post-Closure Permit Application Part F-Procedures to Prevent Hazards Former Porcelanite Facility Lexington, Davidson County, North Carolina March 6, 2017

F-5f Incompatible Wastes in Tanks

The Facility is a closed facility, and there is no incompatible waste in tanks.

F-5g Ignitable or Reactive Wastes in Waste Piles

The Facility is a closed facility, and there is no ignitable or reactive waste in waste piles.

F-5h Incompatible Wastes in Waste Piles

The Facility is a closed facility, and there is no incompatible waste in waste piles.

F-5i Ignitable or Reactive Wastes in Surface Impoundments

The Facility is a closed facility, and there are no ignitable or reactive wastes in surface impoundments.

F-5j Incompatible Wastes in Surface Impoundments

The Facility is a closed facility, and there is no incompatible waste in surface impoundments.

F-5k Ignitable or Reactive Wastes in Landfills

The Facility is a closed facility, and there is no ignitable or reactive waste in landfills.

F-5l Incompatible Wastes in Landfills

The Facility is a closed facility, and there is no incompatible waste in landfills.

F-5m Ignitable or Reactive Wastes in Land Treatment

The Facility is a closed facility, and there is no land treatment.

F-5n Incompatible Wastes in Land Treatment

The Facility is a closed facility, and there is no land treatment.

Part F Appendix

Appendix F-1 Quarterly Inspection Logs

Appendix A Quarterly Inspection Log Porcelanite Tile Plant

Lexington, North Carolina Davidson County

Settling Ponds

	1 ^s Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Asphalt roadway cover				
Run-on/Run-off Control System				
Subsidence				
Security Fence				
Monitoring wells				
Tile Pile				
	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Erosion Damage				
Vegetative/Stone/or asphalt Cover				
Run-on/Run-off Control System				
Subsidence				
Monitoring wells				
Security Fence				-
	1 st	2 nd	3 rd	4 th
	Quarter	Quarter	Quarter	Quarter
Date of inspections:				
Inspected By:				

Part I Closure Plans, Post-Closure Plans, and Financial Requirements

Part I- Closure Plans, Post-Closure Plans, and Financial Requirements

Table of Contents

I-1	Closure Plans, Post-Closure Plans, and Financial Requirements	1
I-2	Post-Closure Plans	1
	I-2a Inspection Plan	1
	I-2b Monitoring Plan	1
	I-2c Maintenance Plan	1
	I-2c (1) Repair of Security Control Devices	1
	I-2c (2) Erosion Damage Repair	
	I-2c (3) Correction of Settlement, Subsidence, and Displacement	2 2
	I-2c (4) Mowing, Fertilization, and Vegetative Cover Maintenance	2
	I-2c (5) Repair of Run-on and Runoff Control Structures	2
	I-2c (6) Groundwater Monitoring Well Replacement	2
	I-2d Land Treatment	2
	I-2e Post-Closure Care for Miscellaneous Units	2 2 2 2 2 2 2 3
	1-2f Post-Closure Security	2
	I-2g Post-Closure Contact	3
I-3	Notices Required for Disposal Facilities	3
I-4	Closure Cost Estimate	3
I-5	Financial Assurance Mechanism for Closure	3
I-6	Post-Closure Cost Estimate	3
I-7	Financial Assurance Mechanism for Post-Closure	3
	I-7a Post-Closure Trust Fund	3
	I-7b Surety Bond	3
	I-7c Post Closure Letter of Credit	3
	I-7d Post-Closure Insurance	4
	I-7e Financial Test and Corporate Guarantee for Post-Closure	4
	I-7f Combinations	4
I-8	• •	4
	I-8a Sudden Insurance	4
	I-8b NonSudden Insurance	4
	I-8c Variance Procedures and Regional Administrator Adjustments	4
I-9	State Financial Mechanism	4

Appendices

- I-1 Closure Plans and Closure Certification for Settling Ponds and Ceramic Tile Pile
- I-2 Post-Closure Care Plans (SWMU-2 Post Closure Care Plan for Settling Ponds- Revision #6, February 14, 2005 and SWMU-3- Post-Closure Care Plan- Revision #5, Ceramic Chip Tile Pile, February 14, 2005)
- I-3 Hazardous Waste Facility Certification of Liability Insurance Policy
- I-4 Indian Harbor Policy Endorsement (#31)

Acronym List

AOC Area of Concern

HWMU Hazardous Waste Management Unit

HWS Hazardous Waste Section

Mannington Mannington Ceramic Tile

NC North Carolina

NCDENR North Carolina Department of Environment and Natural Resources

NCDEQ North Carolina Department of Environmental Quality (formerly

NCDENR, and renamed effective September 18, 2015).

NCGS North Carolina Groundwater Standards

Porcelanite Porcelanite, Inc.

SWMU Solid Waste Management Units

Waters Edge Environmental, LLC

Part I – Closure Plans, Post-Closure Plans, and Financial Requirements

I-1 Closure Plans, Post-Closure Plans, and Financial Requirements

This part of the application presents closure and post-closure plans, the post closure cost estimate, and financial assurance. The only HWMUs at the Facility are the Former Settling Ponds (SWMU-2) and the Former Ceramic Tile Pile (SWMU-3) which were closed in accordance with NCDEQ accepted closure plans and certified by NCDEQ on February 1, 2006 for SWMU-2 and March 14, 2005 for SWMU-3. This information is contained in Appendix I-1 which includes:

- Closure Performance Standard (Part I-1a)
- Partial closure and Final Closure Activities (Part I-1b)
- Maximum Waste Inventory (Part I-1c)
- Schedule for Closure (Part I-1d but not applicable since both HWMUs are closed)
- Closure Procedures (Part I-1e)

There was also an additional 2005 RFA conducted by Booz Allen which identified 11 additional SWMUs and three (3) Areas of Concern, four of which were recommended for further assessment (SWMU-1, SWMU-7, AOC-1, and AOC-2) while the remainder were recommended by Booz Allen for a NFA designation. Further description of these SWMUs and AOCs including any additional data gaps requiring additional assessment is discussed in Part L.

I-2 Post-Closure Plans

Post-Closure Care Plans for both units (SWMU-2- Post Closure Care Plan for Settling Ponds-Revision #6, February 14, 2005 and SWMU-3- Post-Closure Care Plan- Revision #5, Ceramic Chip Tile Pile, February 14, 2005) are included in Appendix I-2.

I-2a Inspection Plan

Both the Closed Settling Ponds and Closed Tile Pile are inspected quarterly according to the accepted Post-Closure Care Plan with an Inspection Log contained in Appendix F-1.

I-2b Monitoring Plan

The groundwater monitoring plan is specified in the most recently approved SAP which is contained in Appendix E-3. Leachate collection and removal is not applicable.

I-2c Maintenance Plan

I-2c (1) Repair of Security Control Devices

Security devices, such as fences, gates, signs, etc., will be maintained properly, and if warranted, repaired on a timely basis.

I-2c (2) Erosion Damage Repair

Repair will be made to the asphalt parking surface for SWMU-2 if there is any significant degradation of the surface which would allow for precipitation to infiltrate the cap. This would include resurfacing the asphalt when required. Repairs shall be made to the cover from any erosion damage and prevention of additional erosion for both SWMU-2 and SWMU-3. Additional topsoil, reseeding, etc. will be used for repairing for SWMU-3.

I-2c (3) Correction of Settlement, Subsidence, and Displacement

Addition of topsoil, sand, reseeding, etc. shall occur if settlement, subsidence, or displacement is evident to prevent further damage.

I-2c (4) *Mowing, Fertilization, and Vegetative Cover Maintenance*

The vegetation cover (Kentucky 31 Fescue) will be moved to keep below a maximum 12-inch height. No additional watering other than rainfall will be necessary for maintenance, unless during extreme drought conditions for prevention of vegetation loss. An application of fertilizer may be warranted from time to time for proper vegetation root growth.

I-2c (5) Repair of Run-on and Runoff Control Structures

The SWMU-2 asphalt cover and SWMU-3 vegetative cap will be kept clear of any miscellaneous storage items and maintained to allow for proper run-on and run-off control. If warranted, repairs will be made in a prompt manner.

I-2c (6) Groundwater Monitoring Well Replacement

If a ground-water monitoring well becomes ineffective for monitoring, due to collapse of the well casing or some other means, it will be abandoned and filled with a grout/bentonite mixture. A replacement monitoring well will be installed in close proximity. Procedures for monitoring well installation are presented in Part E- Section E-1e (1).

I-2d Land Treatment

Not applicable

I-2e Post-Closure Care for Miscellaneous Units

This is specified in the Post-Closure Care Plans (see Appendix I-2).

I-2f Post-Closure Security

There is no exposure to hazardous waste so this is not applicable.

I-2g Post-Closure Contact

This is specified in our Part A Permit Application (Mr. David Kitts- VP Environment).

I-3 Notices Required for Disposal Facilities

This was complied with during the closure of both SWMU-2 and SWMU-3 and is currently not applicable since this is a closed facility.

I-4 Closure Cost Estimate

This was complied with during the closure of both SWMU-2 and SWMU-3 and is currently not applicable since this is a closed facility.

I-5 Financial Assurance Mechanism for Closure

This was complied with during the closure of both SWMU-2 and SWMU-3 and is currently not applicable since this is a closed facility.

I-6 Post-Closure Cost Estimate

Waters Edge Environmental, LLC routinely provides anticipated future post-closure care cost estimates. Details based on expected annual costs are:

- Quarterly inspections:
 - 1. Labor- (5 hrs @ \$75/hour)= \$375
 - 2. Mileage- (165 mi @ \$0.75/mile) = \$123.75
 - 3. Subtotal (rounded)= \$500/event

Subtotal- $$500 \times 2 \text{ per year } \times 30 \text{ years} = $30,000$

- Semiannual Sampling Plus Quarterly Inspection (2/year):
 - 1. Field Labor- (12 hrs @ \$75/hr)= \$900
 - 2. Quarterly Inspection- (3 hrs @ \$75/hour) = \$225
 - 3. Mileage- (285 mi @ \$0.75/mile) = \$213.75

- 4. Laboratory- (6 wells + Equipment Blank + Field Blank for 7 Metals plus 10% Markup= \$853.6
- 5. Report Preparation (8 hrs @ \$100/hour)= \$800
- 6. Subtotal (rounded)- \$3,000/event

Subtotal- $\$3,000 \times 2 \text{ per year} \times 30 \text{ years} = \$180,000$

This would total \$210,000 for thirty years.

I-7 Financial Assurance Mechanism for Post-Closure

I-7a Post-Closure Trust Fund

An Escrow account is held with U.S Bank N.A. ABA091000022 Account # is 173103781824. Contact person is Ms. Lisa Moorehead (Phone # of 704-335-4597). The escrow is adjusted annually using current inflation factors provided by Ms. Jenny Lopp, Financial Analyst, NCDEQ DWM, HWS.

I-7b Surety Bond

Not applicable- see I-7a & Escrow Account

I-7c Post Closure Letter of Credit

Not applicable- see I-7a & Escrow Account

I-7d Post-Closure Insurance

Not applicable- see I-7a & Escrow Account

I-7e Financial Test and Corporate Guarantee for Post-Closure

Not applicable- see I-7a & Escrow Account

I-7f Combinations

Not applicable- see I-7a & Escrow Account

I-8 Liability Requirements

I-8a Sudden Insurance

An insurance policy is held with Indian Harbor Insurance Company, part of XL Catlin (Policy #PEC000801603). The contact person is Kevin O'Grady, Underwriter (Telephone-610-968-

9500). Included in policy is RCRA Amendatory Endorsement via Indian Harbor Insurance. A certificate of evidence was sent to NCDEQ by Anthony Gentile, VP of Indian Harbor on February 12, 2017 which is documented in Appendix I-3.

A copy of both the Indian Harbor Policy Endorsement (#31) & also the North Carolina Hazardous Waste certificate is included in Appendix I-4.

I-8b NonSudden Insurance

Not applicable-See coverage description in I-8a.

I-8c Variance Procedures and Regional Administrator Adjustments

Not applicable- There are no currently applicable variances.

I-9 State Financial Mechanism

Not applicable- There are no unique state-required financial mechanisms that apply.

Part I Appendices

Appendix I-1 Closure Plans and Closure Certifications (SWMU-2 and SWMU-3)

Closure Plan and
Post-Closure Care Plan
Ceramic Chip Tile Pile
Porcelamite, Inc.
Lexington, North Carolina
February 11, 1997

Prepared For:

Mannington Mills, Inc. Salem, New Jersey

Porcelanite, Inc. Lexington, North Carolina

Prepared By:

Aquaterra, Inc. Raleigh, North Carolina

© CORPORATE HEADQUARTERS:
POST OFFICE BOX 37579 • RALEIGH NC • 27627-7579 • (919) 859-9987 • FAX (919) 859-9930

Closure Plan and
Post-Closure Care Plan
Ceramic Chip Tile Pile
Porcelanite, Inc.
Lexington, North Carolina
February 11, 1997

Prepared For:

Mannington Mills, Inc. Salem, New Jersey

Porcelanite, Inc. Lexington, North Carolina

Prepared By:

Aquaterra, Inc. Raleigh, North Carolina

Contents

Chapt	ter 1	Introduction	1-1
1.1	Ceran	nic Chip Tile Pile	1-1
1.2	1.2.1 1.2.2 1.2.3	nal and Local Hydrogeology Site Topography Geology and Soils Hydrogeology Surface Water and Wetlands	1-1 1-1 1-4 1-4
1.3	1.3.1 1.3.2	ical and Archaeological Sites/Critical Habitats/Recreational Areas Historical and Archaeological Sites Critical Habitat of Endangered or Threatened Species Recreational Areas	1-5 1-5 1-5 1-5
1.4	Closu	re Plan Development	1-5
1.5	Health	and Safety Plan	1-5
1.6	Maint	enance of Plans	1-6
Chapt	ter 2	Waste Characterization	2-1
2.1	Previo	ous Investigations	2-1
2.2	2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6	s of the Waste Characterization Investigations 1989 Soil/Tile Material Assessment October 1992 Tile Pile Material Assessment March 1992 Tile Pile Material Assessment September 1992 Tile Pile Material Assessment December 1996 Tile Pile Material Assessment Conclusions from Tile Pile Material Assessments Assessment Beneath/Downgradient of Tile Pile September 1992 Tile Pile Soil Assessment December 1996 Tile Pile Soil Assessment	2-1 2-1 2-2 2-2 2-3 2-4 2-6 2-6 2-6
2.4	Groun	d Water Assessment Downgradient of Tile Pile	2-6
Chap	ter 3	Closure Plan	3-1
3.1	Closu	re Plan Objectives	3-1
3.2	Maxir	num Inventory of Hazardous Waste	3-1
3.3	Closu	re of the Chip Pile	3-1

Draft - Tile Pile Closure Ceramic Chip Tile Pile Porcelanite, Inc. 611024.Dir

Contents (cont.)

	3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.8 3.3.9 3.3.10	General Information and Objectives Cap Design Testing and Monitoring Subsidence Time for Closure Decontamination of Equipment Inspection and Maintenance Site Security Closure Cost and Financial Assurance Certificate of Closure	3-3-3-3-3-14 3-16 3-17 3-17 3-14 3-14
/***		Notice to Local Land Authority	3-14
Cna	ipter 4	Post-Closure Care Plan	4-]
4.1	Introd	uction	4-1
4.2	4.2.1	d Water Monitoring Plan Ground Water Assessment To Date Ground Water Assessment Plan	4-2 4-2 4-2
4.3	Inspec	tion and Maintenance	4-6
4.4	Site Se	curity	4-6
4.5	4.5.1 4.5.2 4.5.2a 4.5.2b 4.5.2c	losure Cost and Financial Assurance Post-Closure Cost Estimate Financial Assurance Mechanism Post-Closure Trust Fund Surety Bond Post-Closure Letter of Credit Financial Test and Corporate Guarantee for Post-Closure Care	4-7 4-7 4-7 4-7 4-9
4.6	Certifi	cate of Completion of Post-Closure Care	4-9
4.7	Notice	to Local Land Authority	4-9
hani	tor 5	Peferonese	5.3

Chapter 1 Introduction

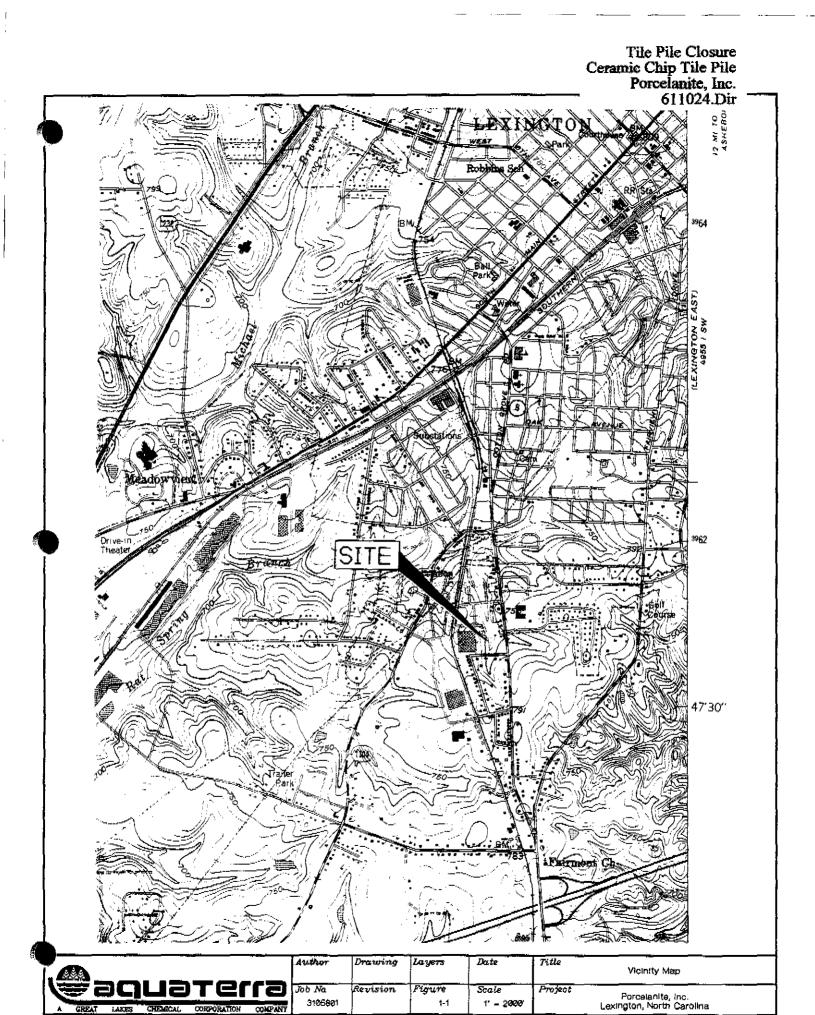
1.1 Ceramic Chip Tile Pile

The Porcelanite, Inc. (Porcelanite) facility is located at 20 Victor Street in Davidson County, Lexington, North Carolina as shown on the Vicinity Map (see Figure 1-1). The facility area consists of approximately 7.5 acres. The area is bounded on the north by the Charles Avenue right of way and the Lexington City Cemetery; on the east by Cotton Grove Road (North Carolina Highway 8); on the south by Victor Street (State Road 1261); and on the west by the Porcelanite parking area. The Winston-Salem southbound railway and undeveloped wooded property are located west of the manufacturing facility. Several residential homes are located on the south side of Victor Street (see Figure 1-2).

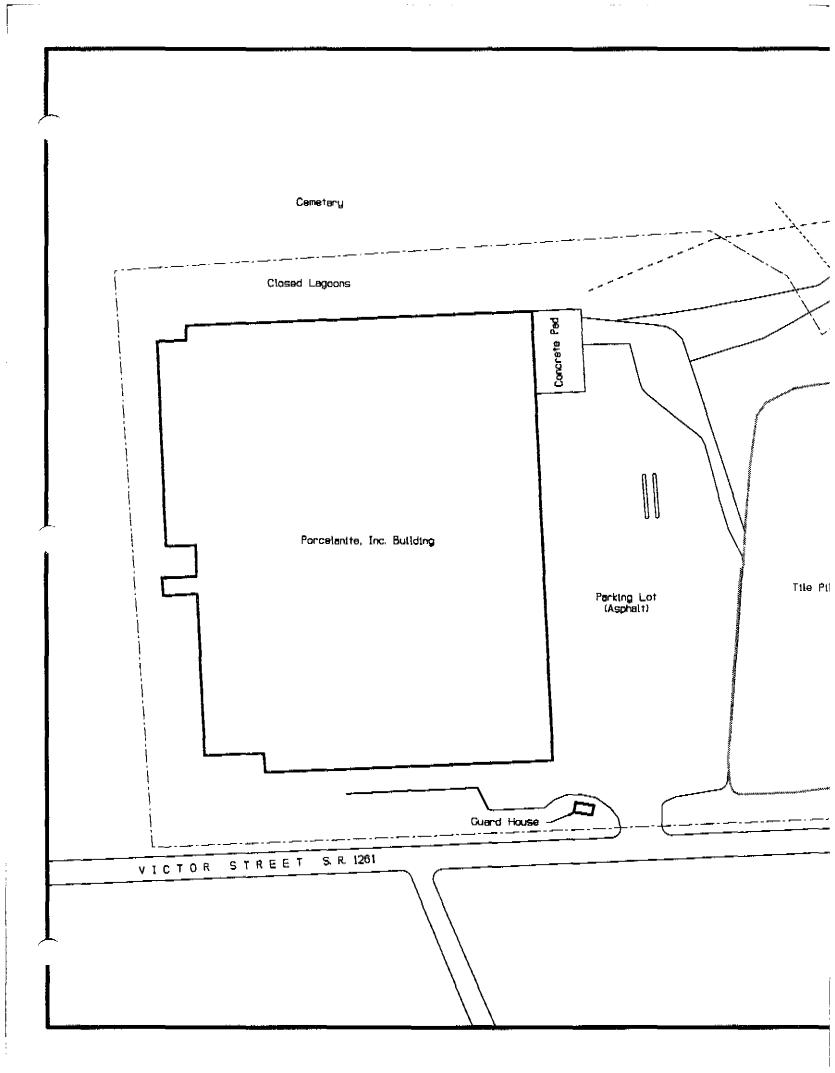
Material in the stockpile consists of glazed and unglazed, fired and unfired ceramic tile scraps, and some sludges from the two former lagoons along the northwestern side of the manufacturing building. The stockpile contains toxic concentrations of leachable lead as analyzed using the Toxicity Leaching Characteristic Procedure (TCLP). The area of the tile pile is approximately 4 acres.

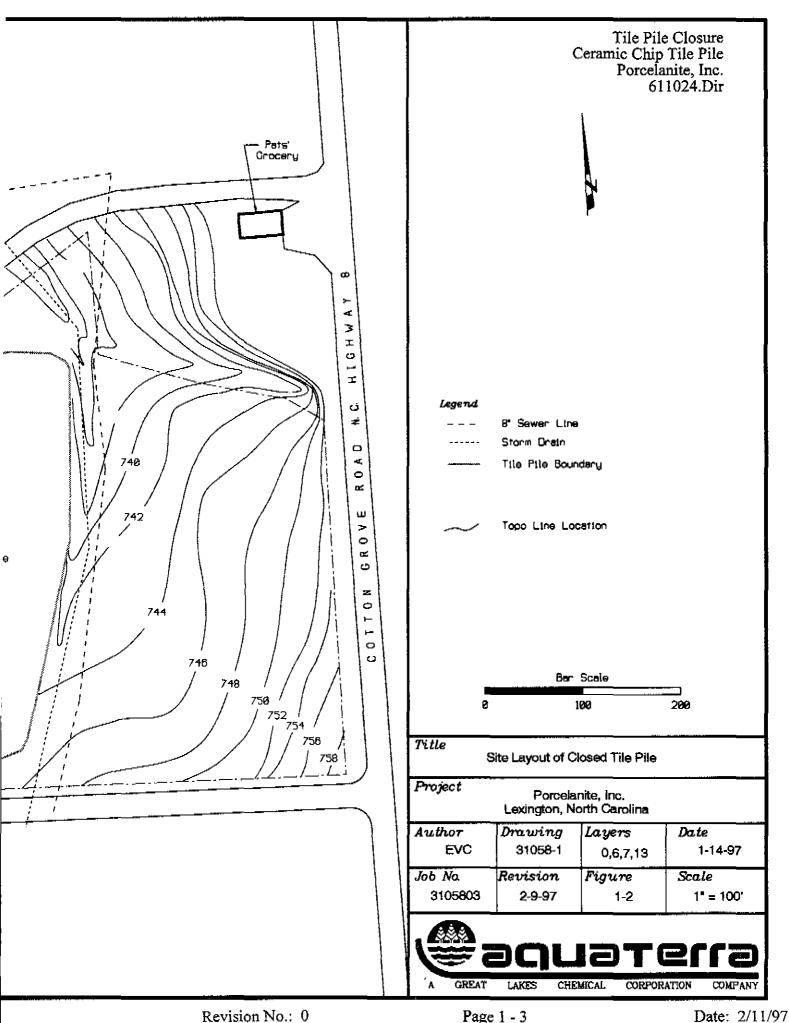
Mannington Mills, Inc. (Mannington) sold the Mannington Ceramic Tile facility in 1994 to P&M Tile, Inc. P&M Tile, Inc. later renamed to Porcelanite, Inc. Porcelanite is now the owner of the facility, and Mannington has retained responsibility for the closure of the tile pile.

1.2 Regional and Local Hydrogeology


1.2.1 Site Topography

The elevation of the site varies from approximately 770 feet above mean sea level (MSL) to approximately 730 feet MSL at Walltown Drain. Walltown Drain, a creek which flows through the eastern portion of the site, was placed in a concrete culvert in 1992/1993.


1.2.2 Geology and Soils


The Lexington area of Davidson County is located in the southern part of the Charlotte Belt in the Piedmont Physiographic Province, which consists predominantly of igneous and meta-igneous rocks. The bedrock at the Porcelanite facility has been mapped as Precambrian to Paleozoic metamorphosed mafic rock, consisting of an intermediate intrusive and felsic intrusive complex. These units typically consist of metagabbros, metadiorites, and mafic plutonic-volcanic complexes.

Revision No.: 0 Page 1 - 1 Date: 2/11/97

Date: 2/11/97

Thick saprolite sequences are common above bedrock in the Piedmont Physiographic Province. Saprolite grades from intensely weathered rock near the surface to slightly weathered rock with increasing depth. Soils typically have formed in the upper 5 to 6 feet of saprolite on uplands and slopes. Soils along stream floodplains have formed in alluvial material and are typically less developed.

According to the Davidson County Soil Survey Map (ENSCI, 1993), soils at the site have been mapped as the Chewacla series in the drainage at the east end of the facility, Vance series on the slopes above the drainage, and an Urban unit at the Porcelanite plant.

1.2.3 Hydrogeology

Previous site investigations at the Porcelanite facility have recognized two aquifer units. The uppermost unit is comprised of the residual soil (saprolite) as described above. The lower unit of the aquifer consists of slightly weathered bedrock and fractured bedrock.

The residual soil unit contains the vadose zone and the water table aquifer. Ground water saturated soils occur in this unit from a depth of about 5.5 to 24 feet below land surface and extend to the top of the partially weathered rock unit at a subsurface depth of between 27 and 50 feet. From previous investigations, ground water in the water table aquifer at the site was found to be flowing from the southwest toward the northeast under an average hydraulic gradient of about 0.028 foot/foot. The gradient generally steepens on the northeastern side of the property as ground water approaches the tributary stream known as Walltown Drain.

1.2.4 Surface Water and Wetlands

Runoff from the facility area discharges to Walltown Drain. Walltown Drain runs north approximately 0.5 miles to Rat Springs Branch, which flows to the southwest approximately 2 miles to Swearing Creek, a tributary of the Yadkin River. As indicated by Mr. Abner Brady of the Winston-Salem Regional Water Quality Office, Rat Springs Branch has a "C" surface water classification, based on classifications established by the North Carolina Environmental Management Commission (ENSCI, 1993).

Walltown Drain, located at the toe of the tile pile, was piped in 1992/1993. The construction was performed under a Nationwide 26 permit. In his letter dated July 23, 1992 (Appendix C of the ENSCI 1993 Closure Plan for Scrap Tile Pile), Mr. Wayne Wright, Regulatory Branch Chief, underground storage tanks United States Army Corps of Engineers indicated that a site visit was conducted by Mr. John Thomas on May 18, 1992. The purpose of the site visit was to review plans to construct a culvert, fill a section of Walltown Drain, and to inspect the site for wetlands subject to Department of the Army permitting authority.

Authorization was provided by the Army Corps of Engineers to proceed with piping the creek under a Nationwide 26 permit. The authorization was based on the determination that less than one acre of waters of the United States, located above the headwaters of Rat Springs Branch, would be impacted by the construction. (The impacted area is 0.11 acres.) No wetlands are present at this site.

1.3 Historical and Archaeological Sites/Critical Habitats/Recreational Areas

1.3.1 Historical and Archaeological Sites

The North Carolina Department of Cultural Resources, Division of Archives and History indicated in a letter dated July 29, 1993, (see Appendix O of the ENSCI 1993 Closure Plan for Scrap Tile Pile), that it had conducted a review of the project and concluded that there are no known properties of architectural, historic, or archaeological significance which would be affected by the proposed beneficial fill project. The search was conducted pursuant to Section 106 of the National Historic Preservation Act of 1966 and the Advisory Council on Historic Preservation's Regulations for Compliance with Section 106, codified at 36 CFR Part 800.

1.3.2 Critical Habitat of Endangered or Threatened Species

According to Mr. Marshall Ellis, Resource Management Specialist for the North Carolina Division of Parks and Recreation, the Division of Parks and Recreation's Natural Heritage Program has no records of any rare or threatened species or critical habitats in the area downslope of the chip pile (see ENSCI 1993, Appendix O).

1.3.3 Recreational Areas

According to Mr. Marshall Ellis, Resource Management Specialist for the Division of Parks and Recreation, the proposed embankment for the closure of the chip pile will not adversely affect any state parks, state trails, registered natural heritage areas, or state recreational areas (see ENSCI 1993, Appendix O). Ms. Kathy Shoaf of the Lexington City Department of Parks and Recreation indicated that the closest recreational area was Washington Park and Pool located at Linwood Road and Booker Street (see ENSCI 1993, Appendix O). ENSCI identified a golf course approximately 3,200 feet east of the facility (ENSCI, 1993).

1.4 Closure Plan Development

Porcelanite and Mannington have contracted Aquaterra, Inc. (Aquaterra) to develop and implement the 1997 closure plan and post-closure care plan. The requirements of 40 CFR 265, Subpart L-Waste Piles and the general requirements of Subpart G-Closure and Post-Closure were used as requirements for closure and post-closure care.

The closure plan for the ceramic chip tile pile is presented in Chapter 3.0. The closure will be a "dirty" closure requiring post-closure care. The post-closure care plan is presented in Chapter 4.0.

1.5 Health and Safety Plan

Prior to any work at the site, a health and safety plan (HASP) will be developed for the tile pile as required under 29 CFR Part 1910. The HASP will address safety and standard operating procedures, anticipated hazards, exposure limits, levels of dermal and respiratory protection, emergency medical care of personnel, contingency plan for sudden releases of hazardous materials, emergency procedures, and ambient air monitoring.

Tile Pile Closure Ceramic Chip Tile Pile Porcelanite, Inc. 611024.Dir

All Aquaterra personnel and subcontractors having direct contact with the tile pile materials will be under an approved medical monitoring program including baseline and annual physicals. All personnel will have 32 to 40 hours of hazardous waste, health and safety training including negative pressure respirators and positive pressure breathing equipment. All personnel will be "fit tested" for respirators and be clean shaven and groomed in order to provide a good seal between face and respirator or breathing apparatus.

1.6 Maintenance of Plans

Porcelanite will maintain an on-site copy of the approved closure plan and post-closure care plan and all revisions. The closure plan will be maintained until the certificate of closure has been submitted and accepted by the North Carolina Department of Environment, Health, and Natural Resources, Division of Waste Management, Hazardous Waste Section (HWS). One copy of the plans and all revisions will be kept in the Environmental Health/Safety Engineer's office. The current EHS engineer's name and address is:

Mr. Tony Shaw Porcelanite, Inc. Post Office Box 1777 Lexington, North Carolina 27293-1777

Phone# (910) 242-5636 Fax# (910) 242-5601

Chapter 2 Waste Characterization

2.1 Previous Investigations

The chemical characteristics of the existing ceramic tile pile material have been developed from several previous investigations. These investigations include:

- A soil assessment conducted by Aquaterra in November and December of 1989. Soil Boring Assessment, Mannington Ceramic Tile, Lexington, North Carolina, Aquaterra report number R835-90, dated January 31, 1990.
- A tile pile material assessment conducted by Aquaterra in October 1991.
 Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina, Aquaterra report number R1547-92, dated January 7, 1992.
- An additional tile pile material assessment conducted by Aquaterra in March 1992. Additional Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina. Aquaterra report number R1646-92, dated April 1, 1992.
- Additional tile pile testing and treatability study conducted by ENSCI during September 1992. Comprehensive Tile Pile Testing Program and Treatability Study, Mannington Ceramic Tile, Lexington, North Carolina, ENSCI report dated October 20, 1992.
- A December 1996 soil assessment and tile pile material investigation by Aquaterra.

Figures showing the approximate location of all the previous sample locations are contained in Appendix A.

2.2 Results of the Waste Characterization Investigations

2.2.1 1989 Soil/Tile Material Assessment

The 1989 soil assessment consisted of 14 soil test borings in background native soils (B-1, B-2, and B-3), fill material (B-4, B-5, B-6, B-7, B-8, B-9, B-10, B-13, and B-14), and tile material (B-5, B-8, and B-10). A photocopy of the data tables and a figure showing location of borings are contained in Appendix A. The samples were analyzed for the eight RCRA metals. The only sample to have detectable total metals was the tile material sample from B-8 which contained 0.2 mg/kg of cadmium and 74 mg/kg of lead.

Revision No.: 0 Page 2 - 1 Date: 2/11/97

2.2.2 October 1992 Tile Pile Material Assessment

The October 1991 tile pile assessment consisted of excavating four test pits approximately 16 to 18 feet deep. Samples were collected every 2 feet and composited into one composite sample per test pit (TP-1, TP-2, TP-3, and TP-4). The samples were analyzed for the following total metals:

aluminum	iron	sodium
antimony	lead	tin
barium	magnesium	titanium
boron	nickel	vanadium
calcium	potassium	zinc
chromium	praseodymium	zirconium
cobalt	silver	

The samples were also analyzed for the following additional inorganic parameters:

alkalinity	fluoride	pH units
bromide	phosphates	•
chloride	sulfates	

Finally, the samples were analyzed for the TCLP metals and the following radionuclides:

gross alpha	radium 226	radium 228
gross beta		

The photocopies of the analytical results and figures showing the sample locations are shown in Appendix A. Only lead exceeded the regulatory levels for the TCLP extract. Lead ranged from 47 mg/L to 130 mg/L in the TCLP extract.

The radionuclide results in picocuries per gram (pCi/g) were

	<u>TP-1</u>	<u>TP-2</u>	<u>TP-3</u>	<u>TP-4</u>
Gross Alpha	16 ± 6.0	22 ± 7.0	21 ± 7.0	21 ± 7.0
Gross Beta	34 ± 3.0	30 ± 3.0	35 ± 3.0	39 ± 3.0
Radium 226	1.5 ± 0.2	1.4 ± 0.1	1.8 ± 0.2	1.9 ± 0.2
Radium 228	1.2 ± 0.2	1.2 ± 0.1	1.3 ± 0.2	1.3 ± 0.2

2.2.3 March 1992 Tile Pile Material Assessment

The March 1992 tile pile material assessment consisted of four soil borings (B-1, B-2, B-3, and B-4) to depths of approximately 22 to 24.5 feet. The samples were analyzed for SW-846 Method 8240 volatile organic compounds (VOCs), Method 8270 semivolatile organic compounds (SVOCs), and formaldehyde. Photocopies of the analytical data table and figure showing boring locations are contained in Appendix A.

The only VOC detected was ethylene chloride ranging from 820 µg/kg to 860 µg/kg. The only SVOC detected was bis(2-ethylhexyl) phthalate ranging from 1,900 µg/kg to 5,300

Revision No.: 0 Page 2 - 2 Date: 2/11/97

μg/kg. No formaldehyde was detected. It was suspected that the ethylene chloride was a laboratory artifact and that the bis(2-ethylhexyl) phthalate probably came from the vinyl gloves worn by the samplers and the analytical personnel.

2.2.4 September 1992 Tile Pile Material Assessment

The September 1992 tile pile material assessment consisted of four test pits (EX-1, EX-2, EX-3, and EX-4) placed as close as possible to the four test pits (TP-1, TP-2, TP-3, and TP-4) discussed in Section 2.2.2 October 1991 Tile Pile Material Assessment. The four test pits were excavated to 21 feet. Samples were collected in EX-1 at 18 feet, EX-2 at 20 feet, EX-3 at 16 feet, and EX-4 at 21 feet. The samples were analyzed for VOCs (Method 8240), SVOCs (Method 8270), formaldehyde by colormetric analysis, and the radionuclides gross alpha, gross beta, radium 226, radium 228, and uranium 238. Summary data tables and a figure showing test pit locations are contained in Appendix A.

No VOCs, SVOCs, or formaldehyde were detected in the samples.

The radionuclide results in pCi/g were:

	EX-1	<u>EX-2</u>	EX-3	EX-4
Gross Alpha	7.78 ± 3.90	11.17 ± 5.13	3.92 ± 2.55	2.77 ± 3.10
Gross Beta	5.47 ± 2.49	10.42 ± 3.17	10.04 ± 3.11	9.01 ± 2.89
Radium 226	1.222 ± 0.175	1.778 ± 0.174	1.565 ± 0.163	1.624 ± 0.134
Radium 228	1.303 ± 0.325	1.322 ± 0.268	1.280 ± 0.272	1.258 ± 0.223
Uranium 238	1.390 ± 0.537	1.390 ± 0.464	1.388 ± 0.488	1.097 ± 0.366

As reported by ENSCI (1992), the three naturally occurring radioisotopes (radium 226, radium 228, and uranium 238) were detected at levels near the levels commonly observed in native soils. Mr. Jim Watson of the University of North Carolina School of Public Health, reported to ENSCI (1992) that these naturally occurring radioisotopes occur in North Carolina soils in ranges of I to 3 pCi/g.

ENSCI (1992), as requested by the HWS, converted the concentrations of the radium 226, radium 228, and uranium 238 to units of millirems per year using the following formulas and assumptions.

"Beta particle energy (MeV/disintegration) x 0.037 (disintegrations/second/pCi) x isotope concentration (pCi/g) x 1.602×10^{-6} (ergs/MeV) x 1 rem (0.01 g/erg) = rem/sec beta radiation absorbed from the concentration of the isotope in 1 gram of the tile material by 1 gram of human tissue.

This conversion is true given the following assumptions:

- 1. The deposition rate is equal to the production rate, i.e., all beta particles are absorbed.
- 2. The beta particles are absorbed equally by all parts of the body.
- The material is ingested so that the exposure rate is constant.
- 4. Absorbed dosage is cumulative."

Revision No.: 0 Page 2 - 3 Date: 2/11/97

Based on the above assumptions, the dosages in millirems per year that would be absorbed by a 180-pound man ingesting 1 gram/day of tile material for 1 year are:

<u>Isotope</u>	<u>EX-1</u>	<u>EX-2</u>	EX-3	EX-4
Uranium 238	0.001161	0.001162	0.001160	0.000917
Radium 226	0.000366	0.000534	0.000469	0.000487
Radium 228	0.001840	<u>0.001868</u>	0.001803	0.001778
Total	0.003367	0.003564	0.002967	0.002719

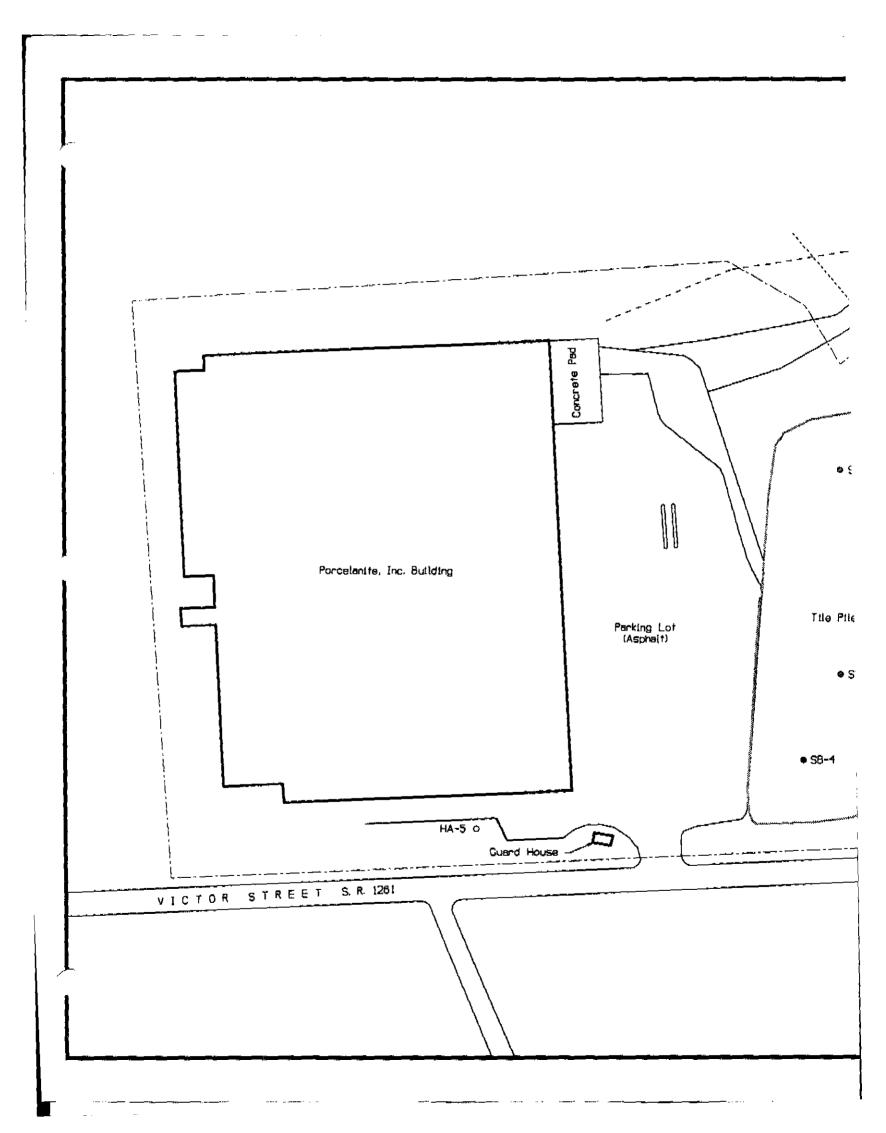
Based on this scenario, radiologic results indicate a total exposure of significantly less than 4 millirems per year, which is the EPA National Interim Primary Drinking Water Standard (ENSCI, 1992).

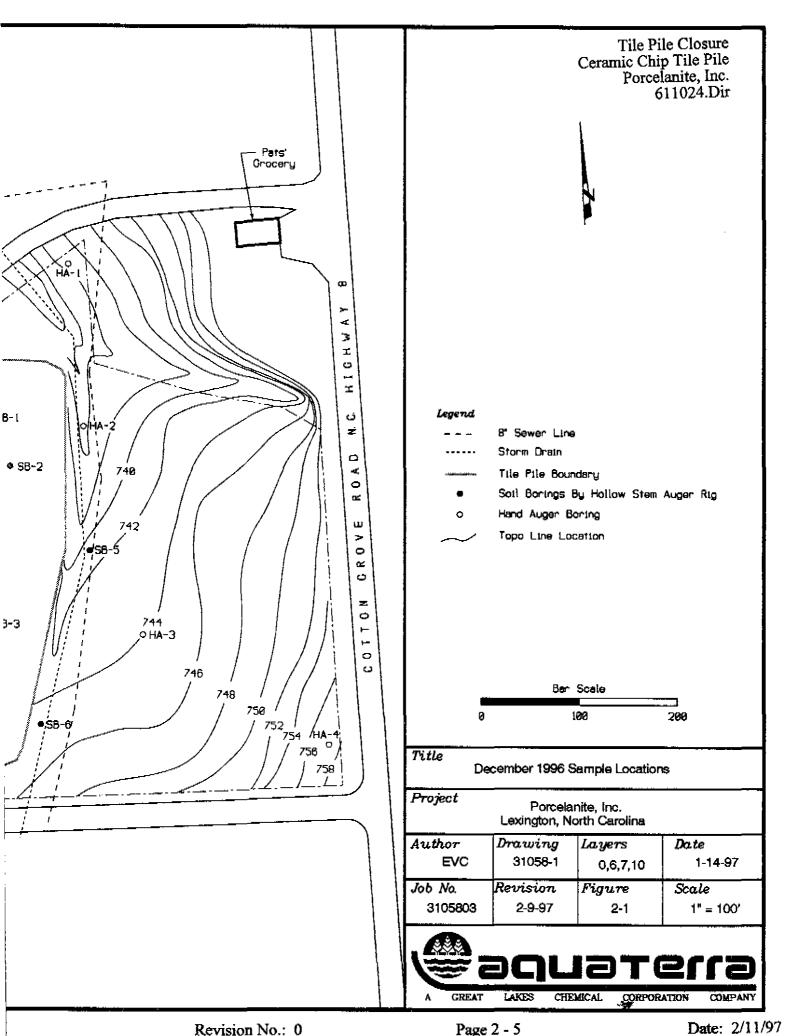
2.2.5 December 1996 Tile Pile Material Assessment

Four soil borings (SB-1, SB-2, SB-3, and SB-4) were installed on the tile pile from depths of 15 to 30 feet (see Figure 2-1). One sample from each boring was randomly chosen (SB-1-15', SB-2-10', SB-3-15', and SB-4-5') and then two samples from the four (SB-1-15' and SB-4-5') were submitted to the laboratory. The samples were analyzed for the total metals:

arsenic	chromium	mercury	silver
barium	cobalt	nickel	titanium
boron	lead	praseodymium	vanadium
cadmium	manganese	selenium	zinc

The inorganics bromide, nitrates, sulfates, phenols, and the radionuclides gross alpha and gross beta were also analyzed for each sample. One composite sample of the four random samples was analyzed for the TCLP metals.


The analytical results for SB-1-15' and SB-4-5' are summarized in Table 1 in Appendix B. The results show elevated levels of barium, boron, lead, and zinc above the background samples, HA-2, HA-3, HA-4, and HA-5 (see Table 2 in Apeendix B). The other metals and inorganic parameters were non-detect or at concentrations equal to or less than the background soil samples. The gross alpha and gross beta values were approximately the same as the background values for HA-4 and HA-5 (see Tables 1 and 2 in Appendix B). The TCLP results are summarized in Table 3 in Appendix B.


2.2.6 Conclusions from Tile Pile Material Assessments

As indicated by the TCLP results, the tile pile material is hazardous based on lead.

Based on the radionuclide data, the tile pile material does not appear to be hazardous. The values from the tile pile were approximately the same or less than the values for the background soil samples. In addition, the tile pile materials appear to contribute doses of radium 226, radium 228, and uranium 238 at concentrations significantly less than 4 millirems per year (average value of 0.003 millirems per year).

Revision No.: 0 Page 2 - 4 Date: 2/11/97

2.3 Soil Assessment Beneath/Downgradient of Tile Pile

2.3.1 September 1992 Tile Pile Soil Assessment

ENSCI (1992) installed four soil borings (SB-11, SB-12, SB-13, and SB-14) adjacent to the four test pits, EX-1 (SB-11), EX-2 (SB-12), EX-3 (SB-13), and EX-4 (SB-14). The borings were extended into native soil beneath the tile pile where a sample of the native soil was collected. The samples (SB-11 through SB-14) were analyzed for VOCs (Method 8240), SVOCs (Method 8270); and, in addition SB-13 and SB-14 were analyzed for the TCLP metals. Summary tables of analytical data and figure showing boring locations are contained in Appendix A.

Based on the TCLP analytical results, the native soils are not hazardous.

2.3.2 December 1996 Tile Pile Soil Assessment

Aquaterra personnel collected one upgradient native soil sample (HA-5) and seven native soil samples (SB-5-2.5', SB-6-2.5', HA-1, HA-2, HA-3, and HA-4) east of the tile pile on December 10-11, 1996. The sample locations are shown on Figure 2-1. The analytical results are summarized in Tables 1 and 2 located in Appendix B.

Soil borings SB-5-2.5' and SB-6-2.5' and hand auger boring HA-1 were placed parallel to the toe of the tile pile and adjacent to the now piped Walltown Drain. These samples were collected to evaluate if any metals had migrated from the tile pile into the downgradient native soils. Hand auger borings HA-2, HA-3, and HA-4 were placed east of the tile pile and topographically uphill from the toe of the tile pile. HA-5 was placed upgradient and west of the tile pile and approximately 250 feet east of MW-1. These soil samples represented undisturbed native background soil samples.

The concentrations for the four samples (HA-2, HA-3, HA-4, and HA-5) were compared as an average range of background values and then compared against samples SB-5-2.5', SB-6-2.5', and HA-1. HA-1 showed elevated levels of lead and zinc compared to the background samples. However, the concentrations were well below the levels of lead and zinc seen in the tile pile samples SB-1-16' and SB-4-10' (see Table 1 in Appendix B). It appears from these data that there has not been significant migration of constituents from the tile pile into the native soils.

Radionuclide samples were collected from SB-5-2.5', HA-4, and HA-5 for developing a background value for gross alpha and gross beta. The background values for gross alpha and gross beta are higher than in sample SB-5-2.5' (see Table 2 in Appendix B).

2.4 Ground Water Assessment Downgradient of Tile Pile

The ground water quality downgradient of the tile pile was reviewed based on historical data. The following Tetra Technologies Group, P.A. reports were evaluated:

1995 Annual Groundwater Assessment Update Report, Former Wastewater Holding Ponds and Waste Ceramic Tile Pile P & M Tile, Inc. Facility, Lexington, North Carolina, dated March 14, 1996.

Revision No.: 0 Page 2 - 6 Date: 2/11/97

Tile Pile Closure Ceramic Chip Tile Pile Porcelanite, Inc. 611024.Dir

Second Quarter 1996 Groundwater Assessment Report, Porcelanite, Inc., Lexington, North Carolina, dated November 4, 1996.

Third Quarter 1996 Groundwater Assessment Report, Porcelanite, Inc., Lexington, North Carolina, dated November 4, 1996.

Based on the data presented in these reports, boron (MW-21, 22, and 23) and gross beta (MW-26A) were found in the downgradient monitoring wells to exceed North Carolina 2L standards and MW-1 background levels (for gross beta). Photocopies of these data tables and figures are contained in Appendix A.

Even though the tile pile is classified as hazardous based on lead, no ground water samples contained lead at values close to the 2L standards.

Porcelanite proposes to monitor the constituents in the tile pile that were elevated above background and that might potentially leach to the ground water. These constituents are boron and lead. Gross alpha and gross beta do not appear to have any more probability to show up in the ground water from the tile pile material than from the surrounding native soils. However, gross beta analysis will be conducted until sufficient data are available to verify if it is background or tile pile related.

Revision No.: 0 Page 2 - 7 Date: 2/11/97

Chapter 3 Closure Plan

3.1 Closure Plan Objectives

The following Closure Plan has been prepared for "dirty" closure conditions to comply with the closure requirements of Subpart G-Closure and Post-Closure (40 CFR 265.110 to 265.120) and, Subpart L-Waste Pile (40 CFR 265.250 to 265.258), Subpart N-Landfills (40 CFR 265.300 to 265.316) and to reflect the closure performance standards addressed in 40 CFR 265.111. Porcelanite will close the tile pile such that:

(a) There is minimal need for further maintenance;

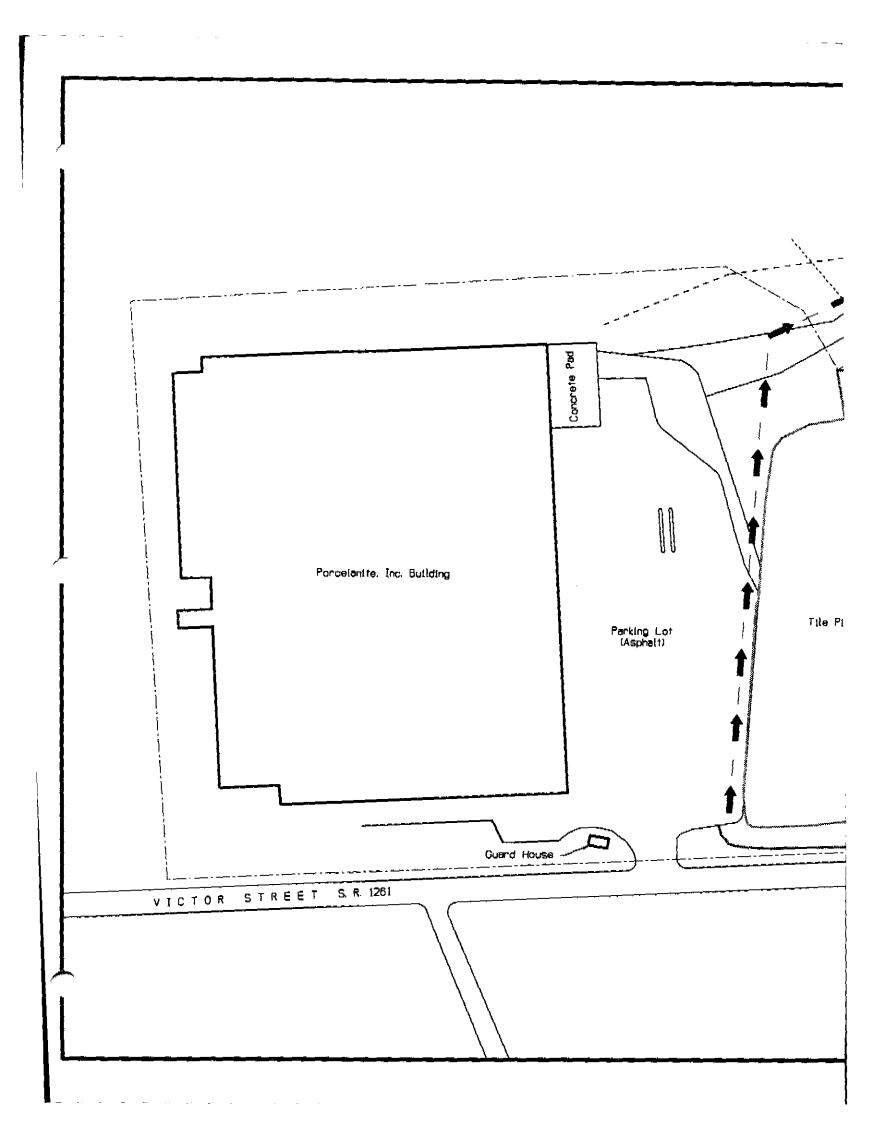
(b) The closure protects human health and the environment and minimizes or eliminates the escape of hazardous waste, hazardous constituents, leachate, contaminated runoff, or hazardous waste decomposition products to the atmosphere, ground water and surface water; and

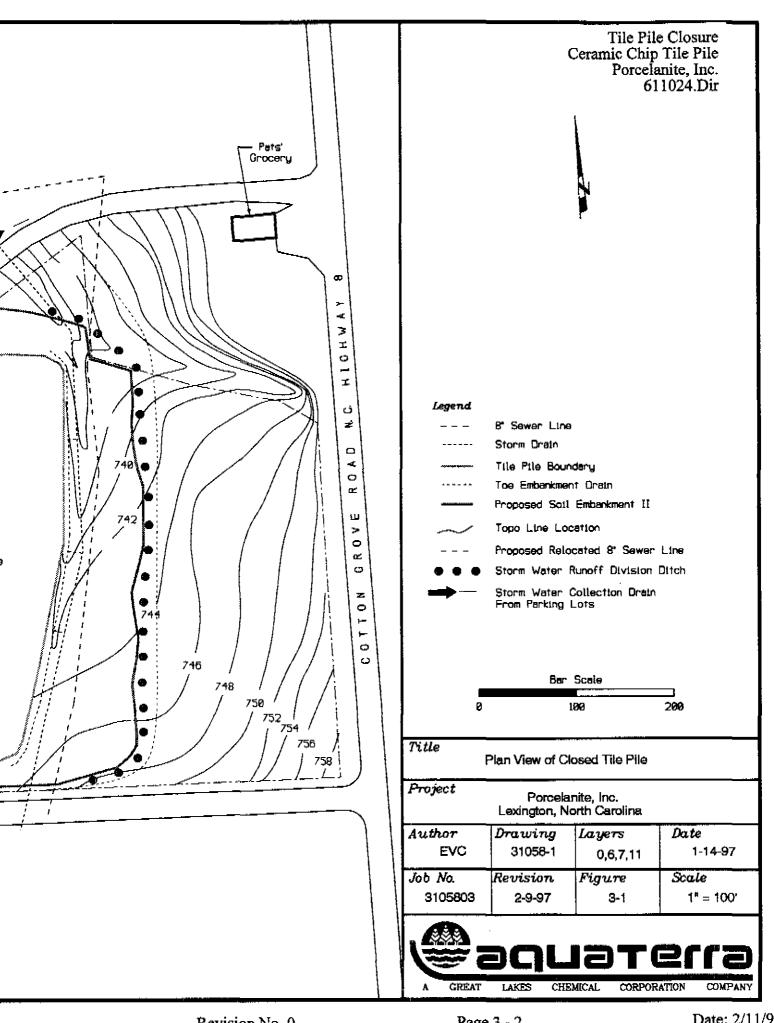
(c) The Closure Plan complies with the closure requirements of this subpart (Subpart G-Closure and Post Closure) and Subpart L-Waste Pile and Subpart N-Landfills.

3.2 Maximum Inventory of Hazardous Waste

The total volume of tile pile waste was calculated by ENSCI (1993). The total volume of tile material calculated was approximately 107,000 cubic yards. Assuming a bulk unit weight (density) of 120.6 pounds per cubic foot, the weight of tile material was calculated at approximately 174,200 tons.

3.3 Closure of the Chip Pile


3.3.1 General Information and Objectives


The chip pile cap system will consist of a flat top surface cap and a downgradient sloping cap. The upgradient portion of the chip pile is bordered (contained) by natural soils (saprolite). The cap system will be designed

- to have a hydraulic conductivity less than the chip pile material and equal to or less than the naturally occurring soils
- to require low maintenance even under future land use plans for the chip pile and cap.

The flat surface of the cap will be used for employee parking and a truck turnaround. In the near future, a warehouse will be built on the flat surface of the cap. The slope of the cap will be used for a second drive way to the plant (see Figure 3-1).

The following sections describe the design details for the cap, geotechnical design testing of the site soils and borrow material (also includes analytical quality of

borrow soils), the preparation of the chip pile, and the installation and quality control for the cap system.

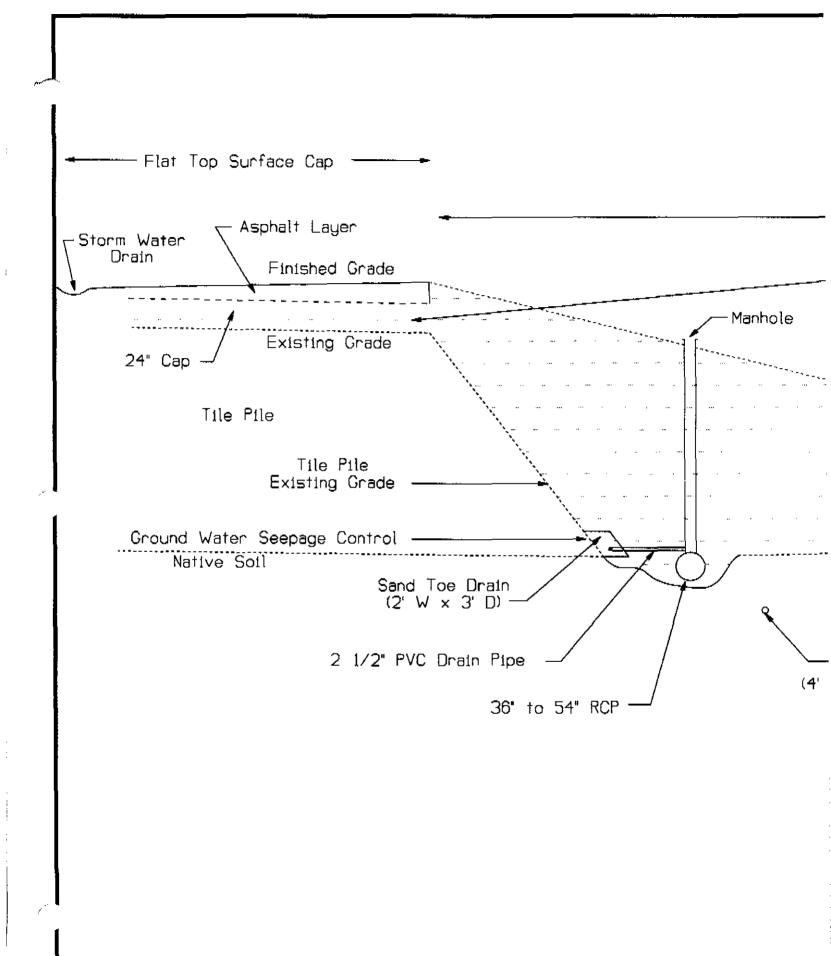
3.3.2 Cap Design

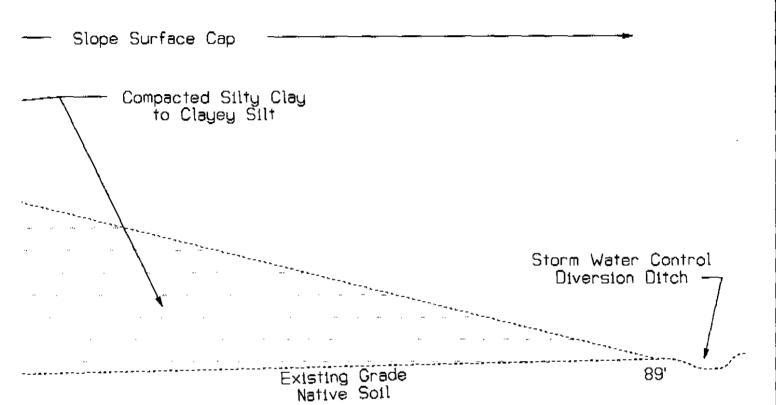
The cap design consist of four parts (see Figure 3-2). These include:

- the flat top surface cap
- the slope surface cap
- storm water control
- ground water seepage control

3.3.2.1 Flat Top Surface Cap

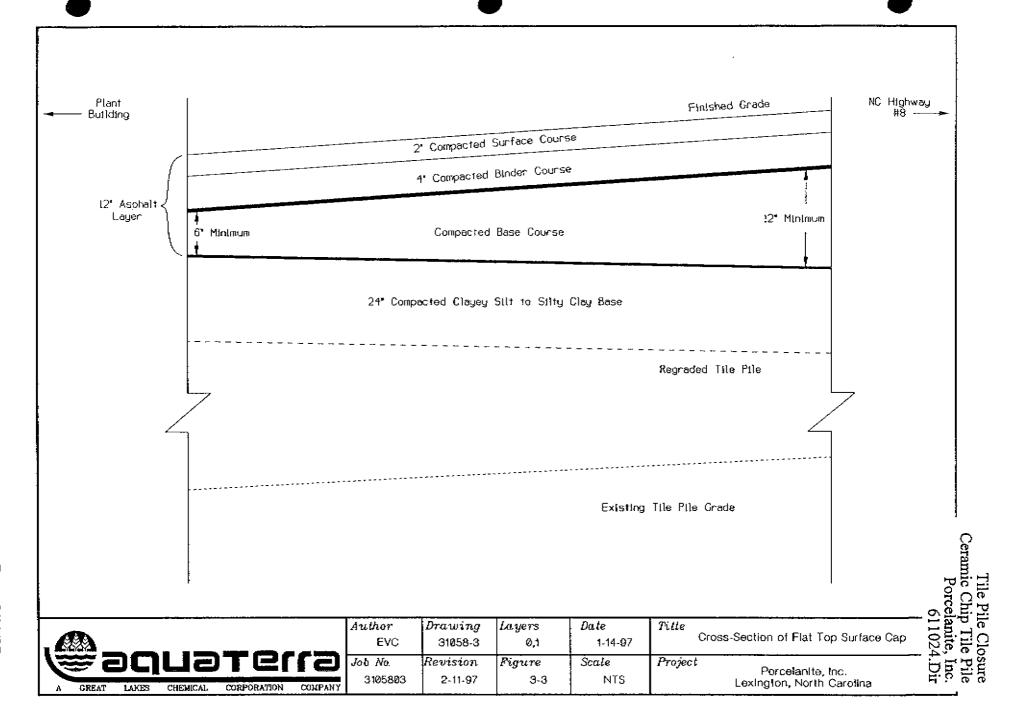
The flat top surface cap will consist of 24-inches of compacted clayey silt to silty clay soils (see Figure 3-3). The upper tile pile surface will be graded and compacted to design grade to promote surface water drainage from the overlying cap.


The 24-inches of compacted clayey silt material will be the same material proposed for the slope cap. The clayey silt will be compacted to airport runway densities (95 percent modified Proctor).


Overlying the 24-inches of compacted soil cap is a 12-inch asphalt cover to protect the cap from vehicles and to promote runoff. The asphalt cover will consist of three layers. The first layer will consist of a minimum of 6-inches of compacted base course (crush and run, North Carolina. Department of Transportation (NCDOT) Standard Specification for Roads and Structures, Section 520-Aggregate Base Course). The next layer consists of 4-inches of binder course. The third and top layer consists of 2-inches of compacted surface course. The base course will be wetted and compacted to 95 percent modified Proctor. The asphalt cover is suitable for Traffic Class IV (urban minor arterial and light industrial streets, rural major collectors and minor arterial highways) for an approximate range of heavy trucks of 700,000 to 1,500,000 during the design period (Asphalt Institue Traffic Classifications, Lindeburg, 1989).

The compaction to 95 percent modified Proctor (ASTM D 1557 for the cap and asphalt base course will insure that the future warehouse and any vehicular traffic does not compromise the integrity of the cap. Where the utilities (power, gas, water, and sewer) run to the warehouse, the base course will be increased to a minimum thickness of 12-inches to allow the utilities to be installed without trenching into the cap.

The flat top surface cap and asphalt cover will be sloped to drain back to the intersection of the existing parking lot. The runoff will be collected in a drain running parallel to the existing parking lot. The runoff will then be directed north, eventually discharging into the Walltown Drain downgradient of the closed tile pile (see Figure 3-2). A curb will be installed along the eastern edge of the surface cap and asphalt cover to prevent any runoff from the asphalt surface running down the slope surface cap.


The flat top surface cap will merge into the slope surface cap to prevent seepage down along the contact of the tile pile slope and the slope surface cap.

8" Sanitary Sewer to 5' Below Grade Line)

Project		inite, Inc. orth Carolina	
Author	<i>Drawing</i>	<i>Layets</i>	Date
EVC	31058-4a	0,1	1-14-97
Job No.	Revision	Figure	Scale
3105803	1-28-97	3-2	NTS

3.3.2.2 Slope Surface Cap

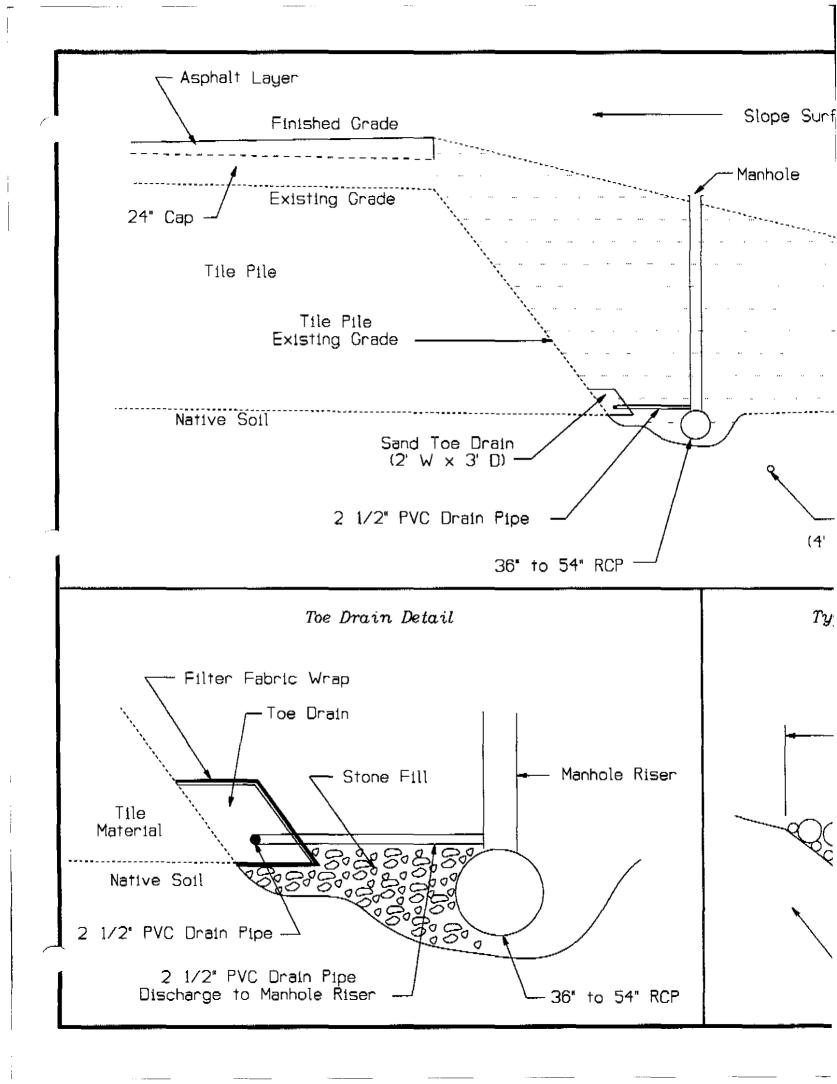
General Design

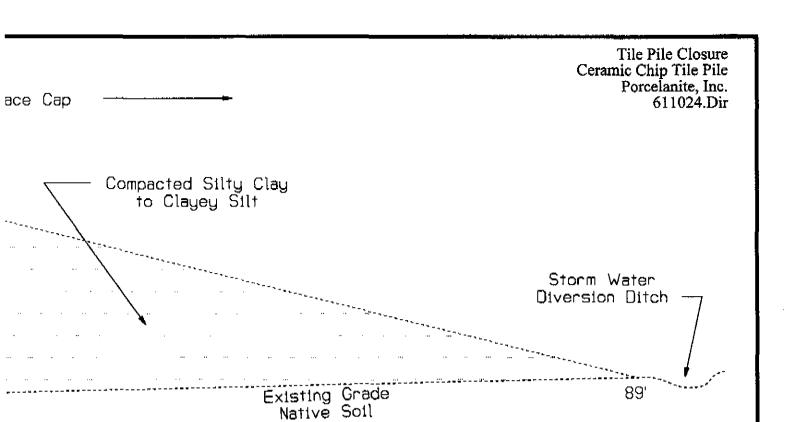
The cap proposed for the chip pile slope is an earthen embankment of compacted clayey silt to silty clay soils on an average 4 horizontal to 1 vertical slope. The cap will consist of an interior drain along the toe of the existing tile pile to collect any seepage from the tile pile and native soils. The slope surface cap will then be placed against the drain and existing tile pile (see Figure 3-4). A surface runoff collection ditch will be placed along the toe of the slope surface cap.

Cap Placement

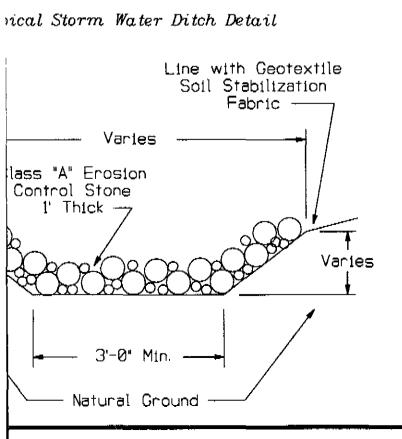
Cap material shall be clean clayey silt to silty clay soils that when compacted are less permeable than the underlying tile materials, fill, and native soils. Cap material shall be free of all organic materials, sod, peat, perishable, or other deleterious materials. No gravel or stones greater than two inches in any direction will be allowed in the cover soil.

Cap materials shall be placed in horizontal lifts not exceeding 12 inches in uncompacted thickness. Each lift shall be compacted to a minimum density of 90 percent of the maximum dry density as determined in accordance with ASTM D 1557 (modified Proctor).


Upon completion of placement of the compacted clayey silt to silty clay, the upper surface shall be trimmed to a smooth surface and then compacted to provide a smooth, flat surface placed to the grade shown in Figure 3-4.


Placement of Topsoil Material

Topsoil material shall consist of clean off-site borrow materials. Topsoil shall be free of trash, perishable, or other deleterious materials. No cobbles, stones, or rock fragments greater than 3 inches in any direction will be allowed to be placed in the topsoil layer. Topsoil materials will be sufficiently compacted by placement activities, no further compaction of the topsoil will be required. No in-place density testing will be required on topsoil materials. The topsoil will be planted with shallow root plants to prevent the roots from penetrating the cap and reaching the tile material.


Mulching and seeding will occur after the topsoil is in place. The topsoil will be loosened to a depth of approximately 5 inches with the top 2 to 3 inches formed into a seedbed. Seedbed materials will meet NCDOT Division 10, Article 1060 requirements. Seeds will be distributed uniformly over the seedbed at the required rate of application, and immediately harrowed, dragged, raked, or worked to cover the seed. Immediately after the seedbed is covered, it will be lightly compacted. The following materials and application rates(in pounds per acre) will be applied:

- 40 pounds rye grain
- 70 pounds Kentucky tall fescue
- 1,000 pounds fertilizer (10-10-10)
- 2,000 pounds lime

8" Sanitary Sewer to 5' Below Grade Line)

Project Porcelanite, Inc. Lexington, North Carolina							
Author	<i>Drawing</i>	La yers	Date				
EVC	31058-4	0,1	1-14-97				
Job No.	Revision	Figure	Scale				
3105803	1-28-97	3-4	NTS				

3.3.2.3 Toe Drain

The toe drain will consist of an interior drain along the toe of the existing tile pile to collect any seepage from the tile pile and native soils. The drain will consist of a base of gravel (no gravel larger than 3-inches in any direction) to bring the ground surface to the level of the surface water diversion pipe presently installed in the Walltown Drain. A geotextile fabric (Mirafi 500 or similar) will be placed over the top of the stone, up the slope of the tile pile, and up along a form parallel to the diversion pipe (see Figure 3-4). The geotextile fabric is placed over the sand layer to prevent clogging of the sand from the infiltration of the fines from the tile pile or compacted soils.

Six inches of compacted washed stone (North Carolina Aggregate Gradation Standard Size 78M, Section 1005 of NCDOT 1990 Specifications) will be placed to bed the drainpipe. A 2 1/2-inch PVC schedule 80 drainpipe will be placed over the compacted stone. The 2 1/2-inch drainpipe will be sloped to the north and will discharge into the surface water diversion pipe through the side of the manhole. Eight inches of compacted Standard Size 78M washed stone will be placed around and over the PVC pipeline. A minimum of 10-inches of compacted Standard Size 57 stone will then be placed over the Standard Size 78M stone. The geotextile will then be wrapped over the top of the toe drain from both the tile pile side and the diversion pipe side. The overlap shall be a minimum of 12 inches. Pins shall be used to hold the geotextile in place until the compacted cap soils are placed.

3.3.2.4 Surface Water Diversion Ditch

A surface water runoff ditch will be installed parallel to the toe of the cap to collect runoff from the cap and from the remainder of the site east to North Carolina Highway 8 (see Figures 3-3 and 3-4). The diversion ditch will carry the runoff to the north discharging to the Walltown Drain. The ditch will be constructed in the native soils and will consist of a finished trapezoidal ditch approximately 3 feet wide and 2 to 3 feet deep. The side slopes will be 2 feet horizontal to 1 foot vertical. A geotextile fabric (Mirafi 500 or similar) will be placed over the top of the excavated ditch prior to placing the stone lining for the ditch. The stone lining will be Class A erosion control stone 1-foot thick. The details of the ditch are shown in Figure 3-4.

3.3.3 Testing and Monitoring

3.3.3.1 Borrow Soil Testing

Chemical Quality of the Soils

All borrow sources for the fill soil, cap soil, and topsoil will be sampled and analyzed for SW-846 Methods 8240 (Purgeable Organic Compounds), 8270 (Base, Neutral, and Acid Extractable Compounds), and the priority pollutant metals plus the specific metals related to Porcelanite. No contaminated borrow material will be allowed on-site at Porcelanite.

Geotechnical Properties of Soil

The borrow sources for the cap soils will be drilled and sampled to determine the uniformity of the borrow soils. Samples will then be submitted to the soil laboratory and analyzed for the maximum dry density as determined in accordance with ASTM D 1557 (modified Proctor). Based on these results, quality control data will be generated for the different design densities. Soil samples at these different design densities will be analyzed for hydraulic conductivity properties to insure that the cap is less permeable than the tile materials or native soils.

Geotechnical quality control data for the stone and gravel will be supplied by the quarry where the stone and gravel are mined and screened. In general, NCDOT standards will be used.

3.3.3.2 Construction Soil Testing

All placement activities will be continuously monitored by a qualified person familiar with soil placement and testing techniques and procedures. On-site testing will consist of determining in-place density by the Sand Cone method in accordance with ASTM D 1556, the Rubber Balloon method in accordance with ASTM D 2167, or by the Nuclear method in accordance with ASTM D 3017.

Prior to placement activities, moisture/density tests will be performed on representative samples of each material to be placed. The results of these tests will be the basis for determining acceptable in-place density criteria. If there is any discrepancy between testing results between methods, the Sand Cone shall be the standard to which all results shall be compared.

Testing frequency shall be a minimum of one test per lift per 100 linear feet. Any in-pace materials not meeting the minimum density requirements shall be recompacted. Upon completion of the in-place test, the hole created for the test shall be cleaned of any remaining sand or other materials and shall be backfilled with commercially produced bentonite clay pellets, hand compacted in a maximum of two inch lifts, and hydrated.

3.3.4 Subsidence

The potential subsidence of this material will be negligible. The materials placed in accordance with the above procedures will exist in a compacted condition and will be over-consolidated due to the compactive effort during placement. Surcharge loads will be minimal consisting of vehicle parking and traffic and future warehousing. Since low surcharge load placed on the area by surface load and minimal seepage will be flowing downward through the placed material, there is no mechanism available to cause further compression of the cover, fill or subgrade materials.

3.3.5 Time for Closure

The closure activities will begin within 30 days of submittal of the closure plan to the HWS. Porcelanite will complete the closure activities within 180 days after start of closure.

3.3.6 Decontamination of Equipment

After closure of the tile pile area, equipment will be decontaminated on-site using dry decon procedures. Tires, compactors, and other pieces of equipment that come into contact with the tile materials will be brushed with heavy, stiff brooms to remove the tile pile materials. A temporary decontamination pad will be constructed and lined with an impermeable plastic material to collect tile materials. All dry solids in the lined decon pad will be removed by shovels and placed in drums which will be disposed of by the contractor. The impermeable plastic material used to line the decon pad along with any gravel will also be removed and disposed of by the contractor.

If dry decon is not adequate, equipment will be decontaminated on-site using high pressure stream and phosphate free soap. A temporary decontamination pad will be constructed and lined with an impermeable plastic material to collect washdown from the decontamination process. Equipment will be positioned during decontamination so that washdown is collected without runoff to any unlined portion of the soil. All washdown in the lined decon pad will be removed by a vacuum system and placed in drums which will be disposed of by the contractor. The impermeable plastic material used to line the decon pad along with any gravel will also be removed and disposed of by the contractor.

The dry solids and/or sludge and water from the washdown and the plastic and gravel will be sampled and analyzed for the hazardous waste constituents of concern identified in the Section 2.0 Waste Characterization and the resulting decon waste will be disposed of in accordance with the applicable requirements of 40 CFR 262. Completion of decontamination will be determined by visual inspection to ensure all tile materials have been removed from the equipment.

3.3.7 Inspection and Maintenance

Porcelanite will ensure that the closed tile pile is properly maintained by inspecting it regularly in the following areas:

- 1. Erosion damage
- 2. Vegetative cover
- 3. Run-on/run-off control system
- Subsidence
- Pavement wear and subsidence

The caps will be sloped to provide positive site drainage away from the tile pile as shown on the drawing. The sloped cap is designed so that the maximum drainage velocity leaving the cap is less than the velocity likely to cause erosion for the selected vegetation. The caps will be visually inspected annually to ensure that the positive drainage slopes are maintained. Should minor subsidence or spot irregularities be discovered, new topsoil will be placed on the slope cap, the area will be regraded, and the topsoil layer will be reseeded.

The sloped cap will also be protected from erosion by maintaining an appropriate vegetative cover. Maintenance activities for the vegetative cover will include mowing, seeding, and fertilizing during the year. The activities will be performed on an as-needed

basis due to the seasonal nature of vegetation. The vegetation will be mowed as required to control volunteer growth of trees and shrubs.

The paved parking lot surface (flat top surface cap) will be inspected for wear and subsidence. Areas of subsidence or wear that allow ponding and possible infiltration of the ponded waters will be patched or replaced as necessary. As necessary, the entire asphalt surface will be seal coated.

As discussed in Section 3.3.4 Subsidence, subsidence of the tile pile and caps are not expected since: (1) the tile pile material has settled over the 16 years since the last disposal of the chips, (2) the cap materials will be compacted, (3) runon will be controlled, (4) infiltration through the cap will be minimized, and (5) only light surcharge loads will be placed on the cap. However, the topsoil layer will not be compacted and may settle. The topsoil layer will be visually inspected by a professional engineer or professional geologist. If subsidence is observed, topsoil will be added, the topsoil layer graded to promote runoff, and reseeded to minimize erosion.

3.3.8 Site Security

Site security is provided by perimeter fencing of the Porcelanite property which includes the present tile pile and all the proposed area affected by closure. Gates are locked at all times with the exception of the main gate at the plant on Victor Street. A guard is on duty at the main gate to prevent unauthorized access.

During the closure process, the contractor will provide personnel to control unauthorized access at any points in the fence that are open to allow truck traffic.

3.3.9 Closure Cost and Financial Assurance

3.3.9.1 Closure Cost Estimate

The closure cost information presented is submitted according to the requirements of 40 CFR 265.142, Cost Estimate for Closure. An estimated \$491,340 will be needed to close the Porcelanite tile pile. This estimation includes the capping of the tile pile, waste characterization and confirmation sampling, surveying, inspections, and reporting. These costs are broken down in more detail and summarized in Table 3-1.

These closure estimates will be kept on file at the Porcelanite facility and will be revised whenever a change in the Closure Plan affects the cost of closure. It will be adjusted annually from the date of its original development to reflect changes in the closure cost brought about by inflation. The Department of Commerce's Annual implicit Price Deflater for Gross National Product (published by U.S. Department of Commerce in its monthly publication "Survey of Current Business") will be used to make this adjustment.

3.3.9.2 Financial Assurance Mechanism

Mannington, as the operator of the tile pile, has retained responsibility for the closure of the tile pile. Mannington, as the operator and submitter of the closure plan and post-closure care plan, will continue to maintain the financial assurance and liability requirements in compliance with 40 CFR 265 Subpart H-Financial Requirements.

Revision No. 0 Page 3 - 11 Date: 2/11/97

Table 3-1 Cost Estimate¹ for Closure of Ceramic Chip Tile Pile, Porcelanite, Inc., Lexington, North Carolina

 Grade and place surface cap (includes equipment, materials, and labor) 		\$ 69,660	
 Grade, install drain, and place sloped cap (includes equipment, materials, and labor) 		\$ 336,510	
 3. Environmental Consultant/Professional Engineer Geotechnical QA/QC of cap construction Install replacement monitoring well and sample Professional engineer to certify closure 	Subtotal	\$ 19,000 \$ 18,000 \$ 3,500 \$ 446,670	
4. Contingency (10 percent)	Total	<u>\$ 44,670</u> \$ 491,340	
1			

Costs are in 1997 dollars 3105801 The financial assurance information is submitted according to the requirements of 40 CFR 265.143, Financial Assurance for Closure. Mannington has reviewed the five mechanisms for financial assurance and has chosen a mechanism for the Lexington facility.

- 3.3.9.2a Closure Trust Fund Not applicable.
- 3.3.9.2b Surety Bond Not applicable.
- 3.3.9.2c Closure Letter of Credit Not applicable.
- 3.3.9.2d Closure Insurance Not applicable.
- 3.3.9.2e Financial Test and Corporate Guarantee for Closure

Mannington meets the financial test criteria of 40 CFR 265.143. The following items have been submitted to the HWS for 1996 in accordance with Section 265.143. An updated financial assurance package will be submitted in 1997 by Mannington. The items that will be included are:

- 1. A copy of a letter signed by Mannington Chief Financial Officer that is worded as specified in Section 264.151(f).
- 2. A copy of the independent Certified Public Accountant's report on examination of Mannington's financial statement for the latest completed fiscal year.
- 3. A copy of the special report from Mannington's independent Certified Accountant to Mannington that:
 - (a) He has compared the data which the letter from the Chief Financial Officer specified as having been derived from the independently audited, year-end financial statements for the latest fiscal year with the amounts in such financial statements; and
 - (b) In connection with that procedure, no matters came to his attention which have caused him to believe that the specified data should be adjusted.

Revision No.: 0 Page 3 - 13 Date: 2/11/97

3.3.10 Certificate of Closure

Within 60 days of completing closure, Mannington and Porcelanite will submit to the HWS a certification by both Mannington and Porcelanite and an independent Registered Professional Engineer in the State of North Carolina that the tile pile has been closed according to the Closure Plan. Documentation supporting the independent registered professional engineer's certification will be maintained until the HWS (Regional Administrator) releases Mannington from the financial assurance requirements for closure under Section 40 CFR 265.143(h).

3.3.11 Notice to Local Land Authority

Porcelanite within 60 days after closure is completed, will submit to the Davidson County Register of Deeds and to the HWS a survey plat indicating the location and dimensions of the tile pile with respect to permanently surveyed benchmarks. This plat will be prepared and certified by a registered professional land surveyor in the State of North Carolina. The plat will contain a note, prominently displayed, which states Porcelanite's obligation to restrict disturbances of the site in accordance with 40 CFR 264.117(c) if all the hazardous waste can not be cleaned up and the tile pile must begin post-closure care.

Revision No.: 0 Page 3 - 14 Date: 2/11/97

Chapter 4 Post-Closure Care Plan

4.1 Introduction

Since the tile pile cannot be clean closed, a post-closure care plan has been developed. The following items are included:

1. Ground Water Monitoring Plan - Since the monitoring wells placed in the earlier assessments showed ground water contamination, a ground water monitoring plan has been prepared by a qualified geologist and is submitted with the Post-Closure Care Plan.

The ground water monitoring plan addresses:

the number, location and depth of wells;

(i) (ii) sampling and analytical methods for those hazardous wastes or hazardous waste constituents found present in the facility;

(iii) evaluation procedures, including any use of previously gathered ground water quality information; and

(iv) a schedule of implementation.

- 2. A description of the planned ground water monitoring activities and frequencies at which they will be performed.
- 3. A description of the planned maintenance activities and frequencies at which they will be performed for the cap, security fence and monitoring
- 4. The name, address, and phone number of the person or office to contact about the hazardous waste disposal unit during the post-closure care period.
- 5. Recordkeeping and reporting during post-closure:
 - ground water monitoring data and evaluation of data;
 - annual report until closure is complete;
 - updates on costs of post-closure care; and
 - all records will be maintained for the post closure care period.
- 6. Copies of the Post-Closure Care Plan will be maintained at:

Mr. Tony Shaw Porcelanite, Inc. Post Office Box 1777 Lexington, North Carolina 27293-1777

Phone#

(910) 242-5636

Fax#

(910) 242-5601

The person responsible for updating the Post-Closure Care Plan will be the facility representative mentioned or his designee. As the Post-Closure Care Plan is updated or amended, the date and number of the revision will be noted on the plan's title page.

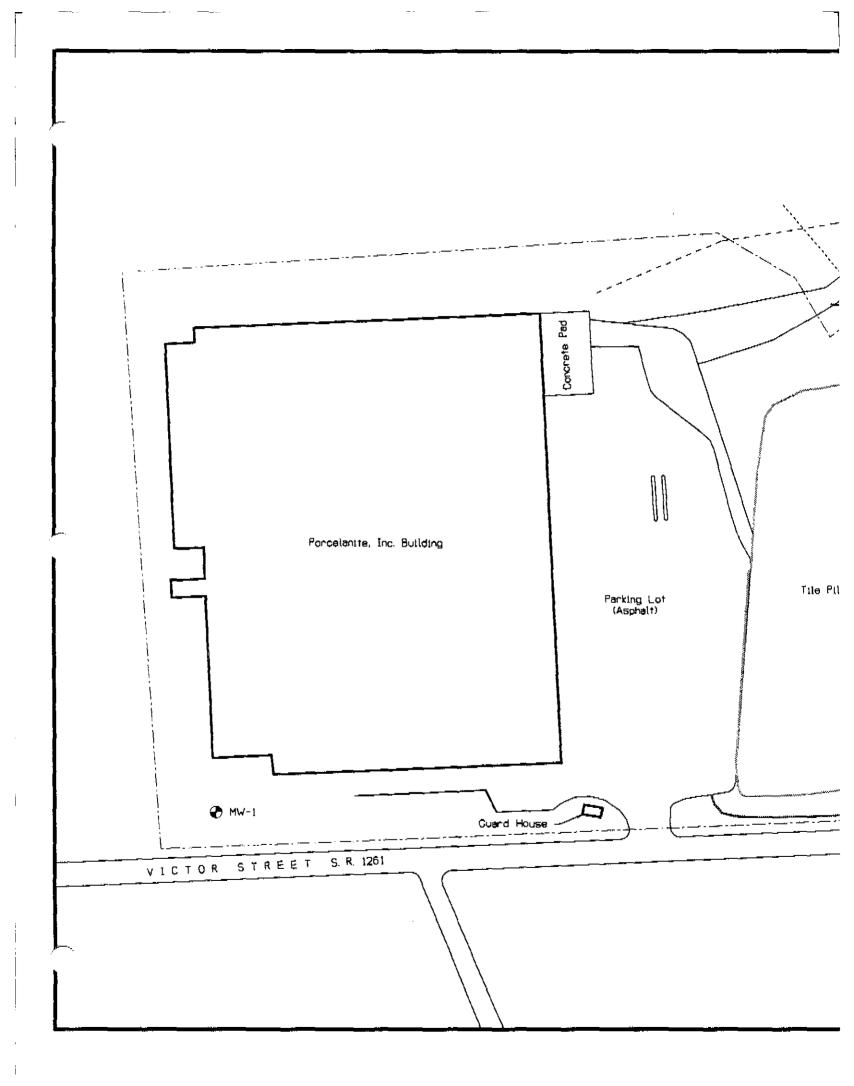
7. A Financial Assurance mechanism adopted by Mannington will be included.

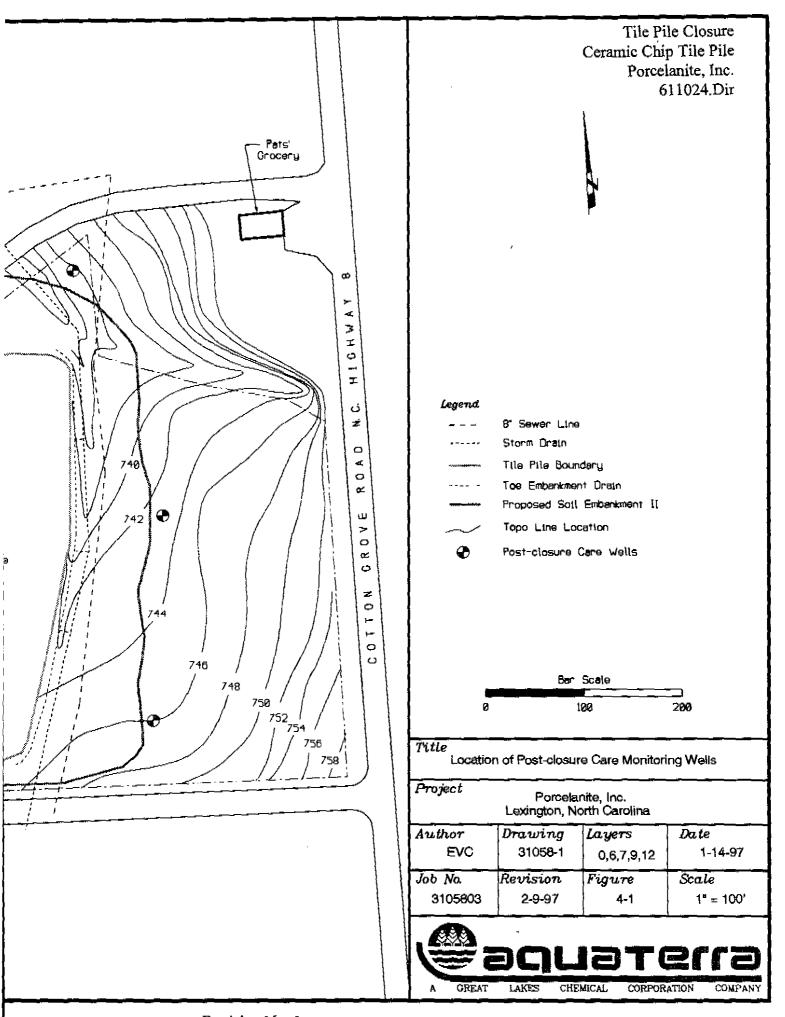
4.2 Ground Water Monitoring Plan

4.2.1 Ground Water Assessment To Date

Ground water monitoring has determined that the ground water downgradient of the tile pile is contaminated. The ground water has been found to contain boron, nickel, vanadium, and gross beta that exceed North Carolina ground water standards.

4.2.2 Ground Water Assessment Plan


Since there is contaminated ground water associated with the tile pile, there is little need for a ground water monitoring program to detect if hazardous waste or hazardous waste constituents have entered the ground water. Porcelanite proposes to modify the ground water monitoring program discussed in 40 CFR 265.91 and 40 CFR 265.92 in accordance with 40 CFR 265.90(d).


4.2.2.1 Number, Location, and Depth of Wells

Porcelanite has developed an alternate ground water monitoring system that addresses the requirements in 40 CFR 265.93(d)(3); that determines the rate and extent of migration and the concentration of the constituents in the ground water; that provides a written report per 40 CFR 265.93(d)(5); that monitors the plume extent, rate of migration, and concentration of the constituents; and that complies with the recordkeeping and reporting requirements in 40 CFR 265.94(b).

Porcelanite proposes to monitor one upgradient monitoring well (MW-1) and three downgradient monitoring wells. The downgradient monitoring wells will be new wells installed after the sloped cap installation is complete; and, they will replace monitoring wells MW-3, MW-7, MW-8, MW-21, MW-22, and MW-26A. The proposed locations are shown on Figure 4-1. The three new downgradient monitoring wells will be shallow wells.

Porcelanite proposes to sample the monitoring wells semiannually for the constituents determined to be present due to the tile pile (see Section 2.4 *Ground Water Assessment*).

The shallow wells (15 to 25 feet) will be constructed of schedule 40 two-inch PVC casing and screen. The PVC casing and screen will be connected by flush threaded connections. No PVC solvent or glue will be used to connect the pipe. Screens will consist of a 10-foot length of slotted or wire wrapped screen with screen openings of 0.010 inches.

The exact placement of the screen interval will depend on the water level encountered during the drilling.

4.2.2.2 Drilling and Well Installation

The drilling will be conducted with a rotary drill rig with hollow-stem augers. The hole will be drilled to a diameter of approximately 6 1/4 to 8 1/2 inches. Cuttings will be collected every five feet and logged by a geologist. The geologist will also record drilling rates, rod drops, etc. to help develop the geology of the boring.

Following the completion of the drilling, the monitoring well will be installed. All screens will have centralizers installed at their base and top to ensure that the screen will be centered within the boring. A sandpack consisting of clean washed sand and gravel containing less than five percent deleterious material by weight will be tremied around the screen and carried from two to four feet above the screen top. Deleterious materials are considered to be wood debris, other organic matter, heterogeneous material, and degradable materials.

Above the sandpack, bentonite clay will be placed to form a seal between the annular space and the well. After placement of the bentonite seal, a neat cement grout will be poured to ground surface. A lockable protective steel casing will be installed around the well. A concrete pad with dimensions of 3 feet by 3 feet by 6 inches thick will be poured as a base around the protective casing of the monitoring well.

Well locations to the nearest foot and vertical elevations to the nearest 0.01 foot will be surveyed by a registered surveyor in the State of North Carolina.

After the wells are installed, the wells will be cleaned of all clay, silt, or sand that may have accumulated in the well. The wells will be pumped or bailed for a sufficient length of time to settle the sandpack and remove any fines. The wells will be considered developed when the water removed from the well is reasonably free of sand, silt, and clay. All development water will be containerized and eventually discharged to the City of Lexington's waste water treatment plant.

No dispersing agents, acids, disinfectants, or other additives will be used during development or will at any other time be introduced to the well.

Each installed well shall be depicted in a well diagram. This diagram will graphically denote by depth from ground surface (unless otherwise specified):

- Screen location;
- bottom of boring;
- granular backfill;
- seals;
- grout;
- cave-in;
- height of casing stickup (above ground surface);
- protective casing details.

Upon completion of the monitoring wells, Aquaterra will submit Well Completion Form GW-1 for each well as required by North Carolina law. The originals will be submitted to the Division of Water Quality and copies will be submitted to the HWS.

4.2.2.3 Ground Water Sampling and Analytical Methods

Details of ground water sampling, including purging of the wells are contained in the latest ground water sampling and analysis plan (SAP) submitted on January 7, 1997, to the HWS (Groundwater Sampling and Analysis Plan, Porcelanite, Inc. (Formerly P&M Tile, Inc.), NCD 986 181 451, Lexington, North Carolina, dated January 7, 1997).

Porcelanite proposes to monitor the background well, MW-1, and the proposed three new downgradient replacement monitoring wells semiannually (see locations of monitoring wells on Figure 4-1). It is proposed to sample these wells in January and July of each year. The January sampling event and water level measurements will be used to develop the map of the ground water surface elevations, calculations of the rate of migration, extent of migration if any, concentration of analytes present, and discussion of the effectiveness of closure of the tile pile. This information will be presented in the semiannual post-closure care reports.

In the field, the samples will be analyzed for pH, specific conductance, and temperature in accordance with the January 7, 1997, SAP. The laboratory analysis will consist of total metals analysis of boron and lead and the radionuclied gross beta. The methods are reviewed in the SAP.

All data collected including copies of the semiannual reports will be maintained at the facility throughout the post-closure care period. The data will be maintained in the Environmental Health/Safety Engineer's office. The current EHS engineer's name and address:

Tony Shaw Porcelanite, Inc. Post Office Box 1777 Lexington, North Carolina 27293-1777

Phone #

(910) 242-5636

Fax#

(910) 242-5601

4.3 Inspection and Maintenance

Porcelanite will ensure that the closed tile pile is properly maintained by inspecting it regularly in the following areas:

- 1. Erosion damage
- 2. Vegetative cover
- 3. Run-on/run-off control system
- 4. Subsidence
- 5. Pavement wear and subsidence

The caps will be sloped to provide positive site drainage away from the tile pile as shown on the drawing. The sloped cap is designed so that the maximum drainage velocity leaving the cap is less than the velocity likely to cause erosion for the selected vegetation. The caps will be visually inspected annually to ensure that the positive drainage slopes are maintained. Should minor subsidence or spot irregularities be discovered, new topsoil will be placed on the slope cap, the area will be regraded, and the topsoil layer will be reseeded.

The sloped cap will also be protected from erosion by maintaining an appropriate vegetative cover. Maintenance activities for the vegetative cover will include mowing, seeding, and fertilizing during the year. The activities will be performed on an as-needed basis due to the seasonal nature of vegetation.

The paved parking lot surface (flat top surface cap) will be inspected for wear and subsidence. Areas of subsidence or wear that allow ponding and possible infiltration of the ponded waters will be patched or replaced as necessary. As necessary, the entire asphalt surface will be scal coated.

As discussed in Section 3.3.4 Subsidence, subsidence of the tile pile and caps are not expected since: (1) the tile pile material have settled over the 16 years since the last disposal of the chips, (2) the cap materials will be compacted, (3) runon will be controlled, (4) infiltration through the cap will be minimized, and (5) only light surcharge loads will be placed on the cap. However, the topsoil layer will not be compacted and may settle. The topsoil layer will be visually inspected by a professional engineer or professional geologist. If subsidence is observed, topsoil will be added, the topsoil layer graded to promote runoff, and reseeded to minimize erosion.

4.4 Site Security

Site security is provided by perimeter fencing of the Porcelanite property which includes the present tile pile and all the proposed area affected by closure. Gates are locked at all times with the exception of the main gate at the plant on Victor Street. A guard is on duty at the main gate to prevent unauthorized access.

During the closure process, the contractor will provide personnel to control unauthorized access at any points in the fence that are open to allow truck traffic.

4.5 Post-Closure Cost and Financial Assurance

4.5.1 Post-Closure Cost Estimate

The post-closure cost information presented is submitted according to the requirements of 40 CFR 265.144, Cost Estimate for Post-Closure Care. An estimated \$226,800 will be needed to perform post-closure care of the Porcelanite tile pile. These costs are broken down in more detail and summarized in Table 4-1.

These post-closure care estimates will be kept on file at the Porcelanite facility and will be revised whenever a change in the Post-Closure Care Plan affects the cost of post-closure. It will be adjusted annually from the date of its original development to reflect changes in the post-closure cost brought about by inflation. The Department of Commerce's Annual implicit Price Deflater for Gross National Product (published by U.S. Department of Commerce in its monthly publication "Survey of Current Business") will be used to make this adjustment.

4.5.2 Financial Assurance Mechanism

Mannington, as the operator of the tile pile, has retained responsibility for the post-closure care of the tile pile. Mannington, as the operator and submitter of the post-closure care plan and post-closure care plan, will continue to maintain the financial assurance and liability requirements in compliance with 40 CFR 265 Subpart H-Financial Requirements.

The financial assurance information is submitted according to the requirements of 40 CFR 265.145, Financial Assurance for Post-Closure Care. Mannington has reviewed the five mechanisms for financial assurance and has chosen a mechanism for the Lexington facility.

- 4.5.2a Post-Closure Trust Fund Not applicable.
- 4.5.2b Surety Bond Not applicable.
- 4.5.2c Post-Closure Letter of Credit
 Not applicable.
- 4.5.2d Post-Closure Insurance
 Not applicable.

Table 4-1. Cost Estimate for Post-Closure Care of Ceramic Chip Tile Pile, Porcelanite, Inc., Lexington, North Carolina.

Ι.	Two Semiannual Sampling Events of Monitoring Wells (includes equipment, analysis, labor, and report)	\$	2,600
2.	Maintain Grass Cover on Slope Surface Cap (includes mowing and fertilizing)	\$	1,200
3.	Inspections and Maintenance of Cap System • Porcelanite inspections • Asphalt and drain maintenance • PE or PG to do annual inspection Subtotal	\$ \$ \$	760 1,900 1,100 3,760
	Annual Total	\$	7,560
	Post-closure Care Period Multiplier		30 years
	TOTAL FOR 30 YEARS	\$2	226,800

Costs are in 1997 dollars 3105801

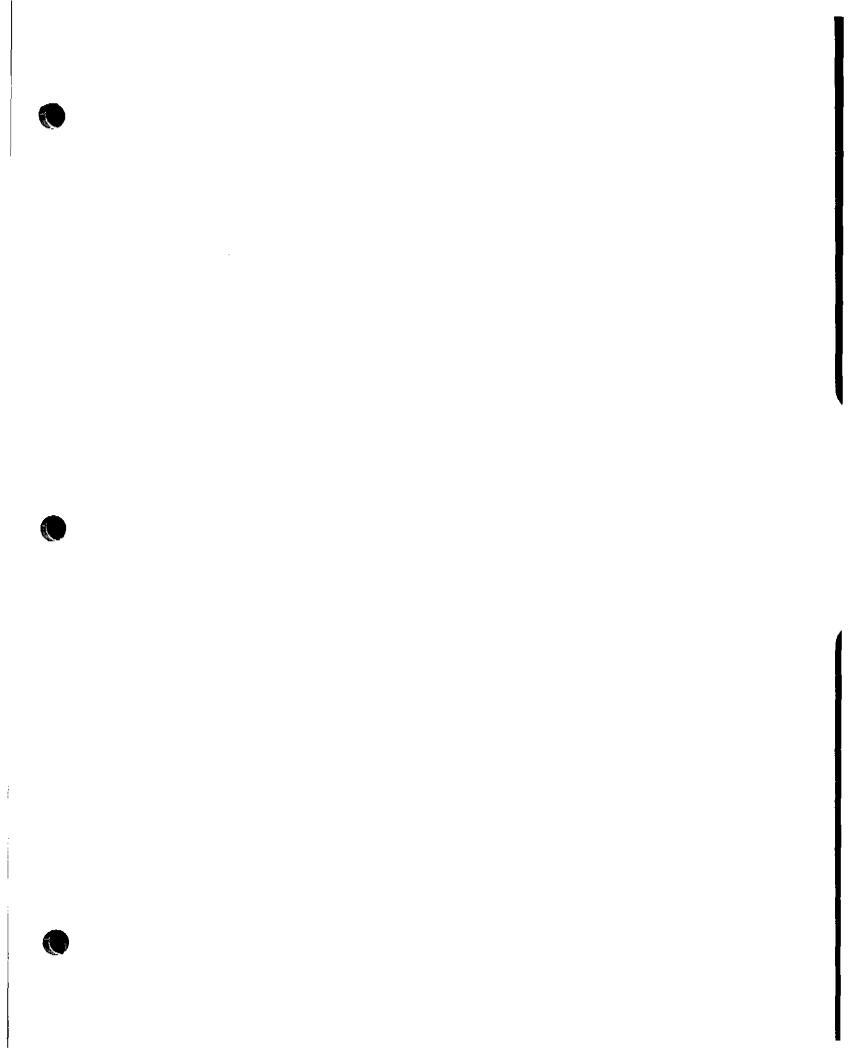
4.5.2e Financial Test and Corporate Guarantee for Post-Closure Care

Mannington meets the financial test criteria of 40 CFR 265.145. The following items have been submitted to the HWS for 1996 in accordance with Section 265.145. An updated financial assurance package will be submitted to the HWS as required in 1997 by Mannington. The items that will be addressed are:

- 1. A copy of a letter signed by Mannington's Chief Financial Officer that is worded as specified in Section 264.151(f).
- 2. A copy of the independent Certified Public Accountant's report on examination of Mannington's financial statement for the latest completed fiscal year.
- 3. A copy of the special report from Mannington's independent Certified Accountant to Mannington that:
 - (a) He has compared the data which the letter from the Chief Financial Officer specified as having been derived from the independently audited, year-end financial statements for the latest fiscal year with the amounts in such financial statements; and
 - (b) In connection with that procedure, no matters came to his attention which have caused him to believe that the specified data should be adjusted.

4.6 Certificate of Completion of Post-Closure Care

Within 60 days of completing the established post-closure care period for the tile pile Mannington and Porcelanite will submit to the HWS a certification by both Mannington and Porcelanite and an independent Registered Professional Engineer in the State of North Carolina that the tile pile post-closure care for the post-closure care period has been performed according to the Post-Closure Care Plan. Documentation supporting the independent registered professional engineer's certification will be furnished to the HWS (Regional Administrator) upon request.

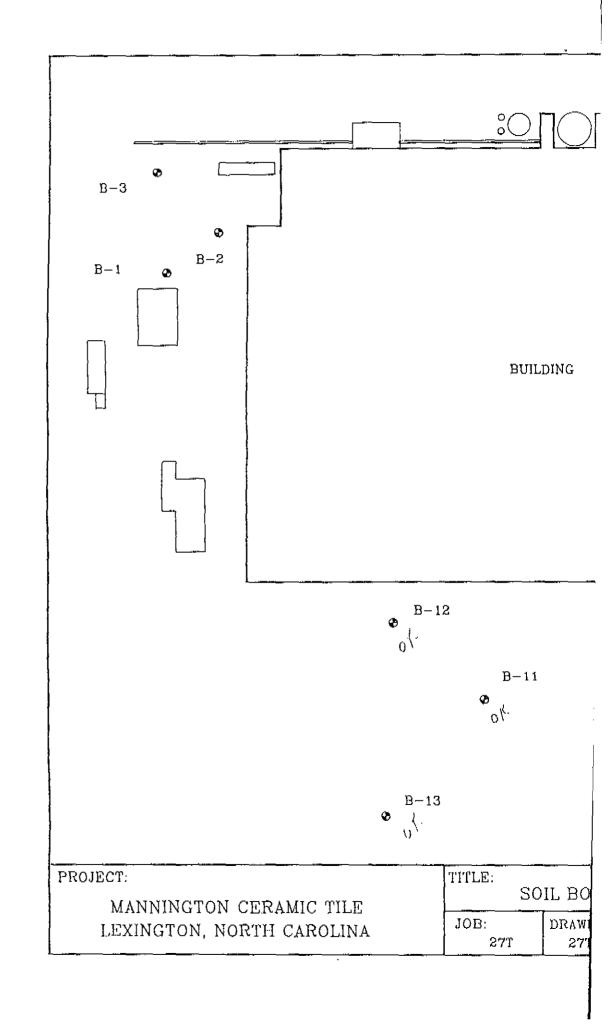

4.7 Notice to Local Land Authority

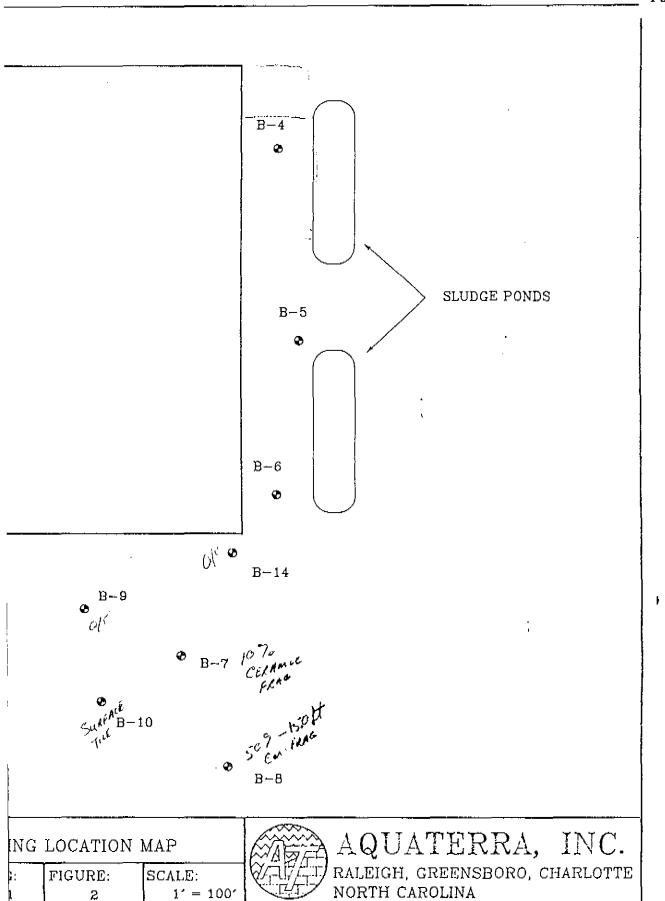
Porcelanite, within 60 days after nonclean closure is completed, will submit to the Davidson County Register of Deeds and to the HWS a survey plat indicating the location and dimensions of the tile pile with respect to permanently surveyed benchmarks. This plat will be prepared and certified by a registered professional land surveyor in the State of North Carolina. The plat will contain a note, prominently displayed, which states Porcelanite's obligation to restrict disturbances of the site in accordance with 40 CFR 264.117(c) if all the hazardous waste can not be cleaned up and the tile pile area must begin post-closure care.

Chapter 5 References

- Aquaterra, Inc., 1990, Soil Boring Assessment, Mannington Ceramic Tile, Lexington, North Carolina: Aquaterra, Inc. report number R835-90, Raleigh, North Carolina, January 31.
- Aquaterra, Inc., 1992, Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina: Aquaterra report number R1547-92, Raleigh, North Carolina, January 7.
- Aquaterra, Inc., 1992, Additional Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina: Aquaterra report number R1646-92, Raleigh, North Carolina, April 1.
- ENSCI Engineering Group, P.A., 1992, Comprehensive Tile Pile Testing Program and Treatability Study, Mannington Ceramic Tile, Lexington, North Carolina: High Point, North Carolina, October 20, 1992.
- ENSCI Engineering Group, P.A., 1993, Closure Plan for Scrap Tile Pile, Mannington Ceramic Tile, Lexington, North Carolina: High Point, North Carolina, December 21.
- ENSCI Engineering Group, P.A., 1994, P&M Tile Incorporated (Formerly Mannington Ceramic Tile), Lexington, North Carolina, Groundwater Assessment Plan, NCD 986 181 451: High Point, North Carolina, October 20, 1992.
- Tetra Technologies Group, P.A., 1996, 1995 Annual Groundwater Assessment Update Report, Former Wastewater Holding Ponds and Waste Ceramic Tile Pile P & M Tile, Inc. Facility, Lexington, North Carolina: High Point, North Carolina, March 14.
- Tetra Technologies Group, P.A., 1996, Second Quarter 1996 Groundwater Assessment Report, Porcelanite, Inc., Lexington, North Carolina: High Point, North Carolina, November 4.
- Tetra Technologies Group, P.A., 1996, Third Quarter 1996 Groundwater Assessment Report, Porcelanite, Inc., Lexington, North Carolina, High Point, North Carolina, November 4.
- Tetra Technologies Group, P.A., 1997, Groundwater Sampling and Analysis Plan, Porcelanite, Inc., (Formerly P&M Tile, Inc.), NCD 986 181 451, Lexington, North Carolina: High Point, North Carolina, January 7.

Revision No. 0 Page 5 - 1 Date: 1/10/97


APPENDIX A PREVIOUS INVESTIGATIONS


Tile Pile Closure 611024 February 11, 1997

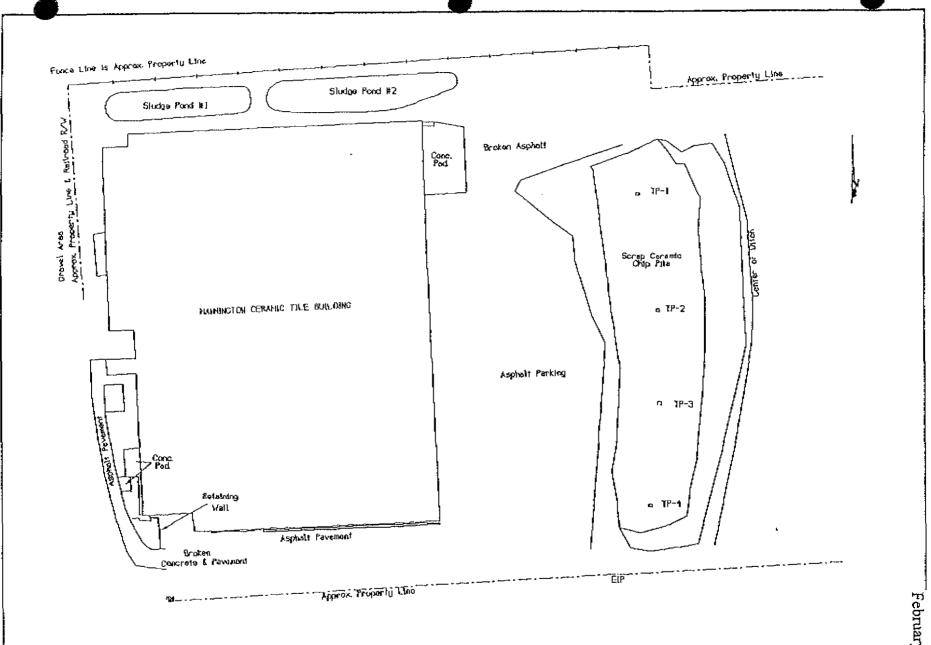
Appendix A

Aquaterra Report Number R835-90

Soil Boring Assessment Mannington Ceramic Tile Lexington, North Carolina January 31, 1990

Table 1	Total Metals Analysis From Soil Boring Assessment, Mannington Ceramic Tile, Lexington, N	orth Carolina

Location	Date	Depth	As	Ba	Cd	Cr	Hg	Pb	Ag	Se
B-1	11-29-89	2.5' - 4.0' 10.0' - 11.5'	< 0.50 < 0.50	< 10 < 10	< 0.10 < 0.10	< 0.50 < 0.50	<0.0005 < 0.0005	< 0.50 < 0.50	< 0.50 < 0.50	< 0.10 < 0.10
B-2	11-29-89	2.5' - 4.0'	< 0.50	< 10	< 0.10	< 0.50	< 0.0005	< 0.50	< 0.50	< 0.10
B-3	11-22-89	3.5' - 5.0'	< 1.0	< 10	< 0.50	< 1.0	< 0.2	< 1.0	< 1.0	< 0.50
B-4	11-22-89	6.0' - 7.5'	< 1.0	< 10	< 0.50	< 1.0	< 0.2	< 1.0	< 1.0	< 0.50
B-5	11-24-89	1' - 2.5' 6 - 7.5'	< 1.0 < 1.0	< 10 < 10	< 0.50 < 0.50	< 1.0 < 1.0	< 0.2 < 0.2	< 1.0 < 1.0	< 1.0 < 1.0	< 0.50 < 0.50
B-6	11-24-89	2.5' - 4' 17.5' - 19'	< 1.0 < 1.0	< 10	< 0.50 < 0.50	< 1.0 < 1.0	< 0.2 < 0.2	< 1.0 < 1.0	< 1.0 < 1.0	< 0.50 < 0.50
B-7	11-24-89	5' - 6.5'	< 1.0	< 10	< 0.50	< 1.0	< 0.2	< 1.0	< 1.0	< 0.50
B-8	11-27-89	7.5' - 9.0' 20.0' - 21.0'	< 0.50 < 0.50	< 10 < 10	0.2 < 0.10	< 1.0 < 0.50	< 0.2 < 0.0005	74 < 0.50	< 1.0 < 0.50	< 0.50 < 0.10
B-9	11-27-89	2.5' - 4.0'	< 0.50	< 10	< 0.10	< 0.50	< 0.0005	< 0.50	< 0.50	< 0.10
B-10	1-28-89	2.5' - 4.0'	< 0.50	< 10	< 0.10	< 0.50	< 0.0005	< 0.50	< 0.50	< 0.10
B-11	11-28-89	2.5' - 4.0'	< 0.50	< 10	< 0.10	< 0.50	< 0.0005	< 0.50	< 0.50	< 0.10
B-12	11-28-89	2.5' - 4.0'	< 0.50	< 10	< 0.10	< 0.50	< 0.0005	< 0.50	< 0.50	< 0.10
B-13	11-28-89	2.5' - 4.0'	< 0.50	< 10	< 0.10	< 0.50	< 0.0005	< 0.50	< 0.50	< 0.10
B-14	11-29-89	2.5' - 4.0'	< 0.50	< 10	< 0.10	< 0.50	< 0.0005	< 0.50	< 0.50	< 0.10


Analytical Laboratory: Industrial and Environmental Analysts, Cary, North Carolina Results in mg/kg from R835-90

Tile Pile Closure 611024 February 11, 1997

Appendix A

Aquaterra Report Number R1547-92

Sampling of Waste Ceramic Chip Tile Mannington Ceramic Tile Lexington, North Carolina January 7, 1992

AQUATERRA, INC. RALECCIA, CREENOSCOPO, CHARLOTTE NORTH CAROLINA	Author dig/JJ	Drawing 351	Layers	Date 01-6-92	Title	Test Pit Locations
NORTH CAROLINA	354	Povision.	Flore 2	Scalo 1" ≈ 116'	Project	Mannington Ceramic Tile Lexington, North Carolina
	1 22		<u> </u>	1 110	<u></u>	comigrant in our area

Tile Pile Closure 611024 February 11, 1997 Table 1 TCLP Metal Results from Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina

Parameters	TP-1	TP-2	TP-3	TP-4	Regulatory Level	
Arsenic	< 0.52	< 0.52	< 0.52	< 0.52	5.0	
Barium	6.7	3.4	2.2	4.6	100.0	
Cadmium	< 0.11	< 0.11	< 0.11	0.15	1.0	
Chromium	< 0.56	< 0.56	< 0.56	< 0.56	5.0	
Lead	47	51	63	130	5.0	
Mercury	< 0.017	< 0.017	< 0.017	< 0.017	0.2	
Selenium	< 0.30	< 0.30	< 0.30	< 0.30	1.0	
Silver	< 0.83	< 0.83	< 0.83	< 0.83	5.0	

All Units are mg/L

Laboratory Analytical Laboratory: AnalytiKEM, Inc., Rock Hill, South Carolina

from R1547-92

Table 2 Summary of Analytical Data from Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina

Parameter	TP-1	TP-2	TP-3	TP-4	Average
Metals					
Aluminum Antimony Barium Boron Calcium Chromium Cobalt Iron Lead Magnesium Nickel Potassium Praseodymium Silver Sodium Tin Titanium Vanadium	17000 < 2 490 53.0 22000 4.9 12.0 3900 1600 3900 8.3 < 100 < 10 < 4 370 < 5 100 10.0	19000 < 2 310 130 23000 6.4 26.0 2000 3100 4600 18.0 < 100 < 10 < 4 500 < 5 110 7.3	18000 < 2 220 200 24000 5.9 13.0 1300 3900 4800 < 4 < 100 < 10 < 4 510 < 5 110 8.5	22000 < 2 820 240 26000 4.2 23.0 1200 4000 4400 12.0 < 100 < 10 14.0 670 < 5 100 9.7	19000 < 2 535 156 23800 5.4 18.5 2100 3150 4420 10 < 100 < 10 5 512 < 5 105 8.9
Zinc Zirconium	2400 65.0	2000 67.0	2700 100	6100 150	3300 95.5
Inorganic					
Alkalinity Bromide Chloride Fluoride pH (units) Phosphates Sulfates	3700 4.4 34.0 8.8 8.8 250 1,200	3200 4.2 35.0 7.7 8.8 75.0 1,800	4000 3.2 34.0 8.0 8.9 100 170	3700 4.1 52.0 6.0 9.0 80 530	3650 4.0 38.8 7.6 8.9 126 925
Radionuclides (pCi/g)*				
Gross Alpha Gross Beta Radium 226 Radium 228	16 ± 6.0 34 ± 3.0 1.5 ± 0.2 1.2 ± 0.2	22 ± 7.0 30 ± 3.0 1.4 ± 0.1 1.2 ± 0.1	21 ± 7.0 35 ± 3.0 1.8 ± 0.2 1.3 ± 0.2	21 ± 7.0 39 ± 3.0 1.9 ± 0.2 1.3 ± 0.2	20 ± 6.7 35 ± 3.5 1.5 ± 0.2 1.2 ± 0.2

All units are mg/kg, except as noted.

Laboratory: AnalytiKEM, Inc.

Rock Hill, South Carolina * Teledyne Isotopes Westwood, New Jersey from 354R1547-92

Tile Pile Closure 611024 February 11, 1997

Appendix A

Aquaterra Report Number R1646-92

Additional Sampling of Waste Ceramic Chip Tile Mannington Ceramic Tile Lexington, North Carolina April 1, 1992

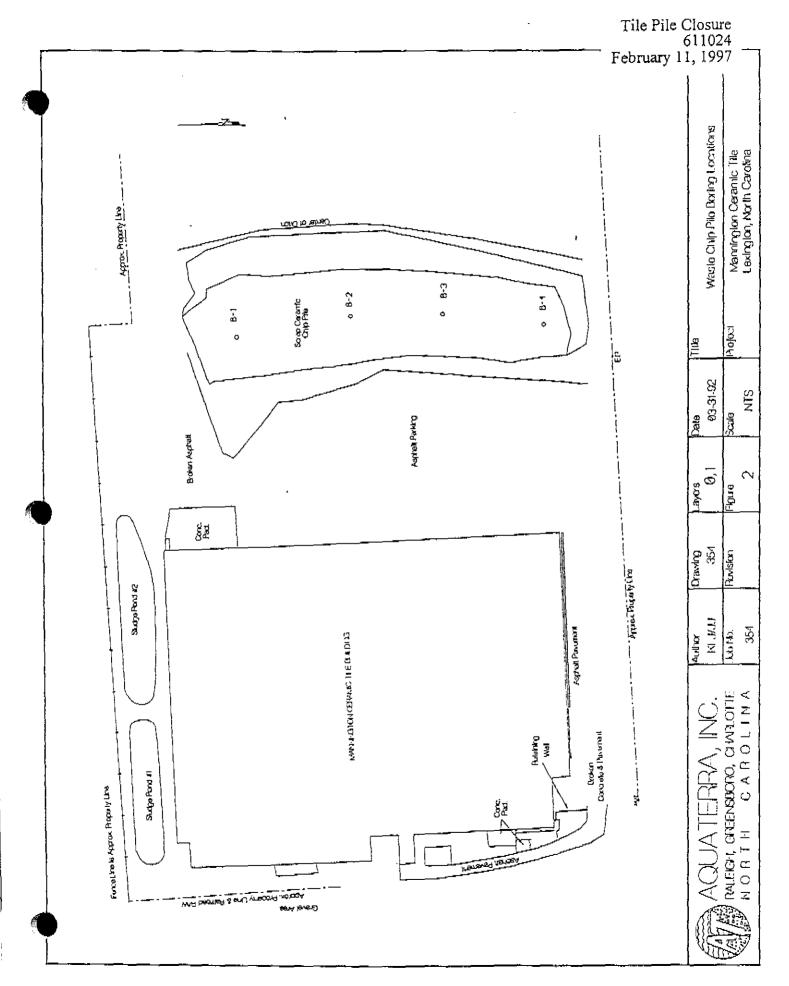


Table 1 Summary of Waste Ceramic Chip Pile Analytical Data from Additional Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina

Parameters	B-1	B-2	B-3	B- 4
Volatile Organics			, , , , ,	**************************************
Methylene Chloride	850	820	860	850
Semivolatile Organics				
Bis(2-ethylhexyl) phthalate	4600	1900	5300	3500
Formaldehyde	< 1100	< 1100	< 1100	< 1100

All units are µg/kg

Laboratory Analytical Laboratory:

AnalytiKEM, Inc.

Rock Hill, South Carolina

from R1646-92

Appendix A

ENSCI Report

Comprehensive Tile Pile Testing Program
And Treatability Study
Mannington Ceramic Tile
Lexington, North Carolina
October 20, 1992

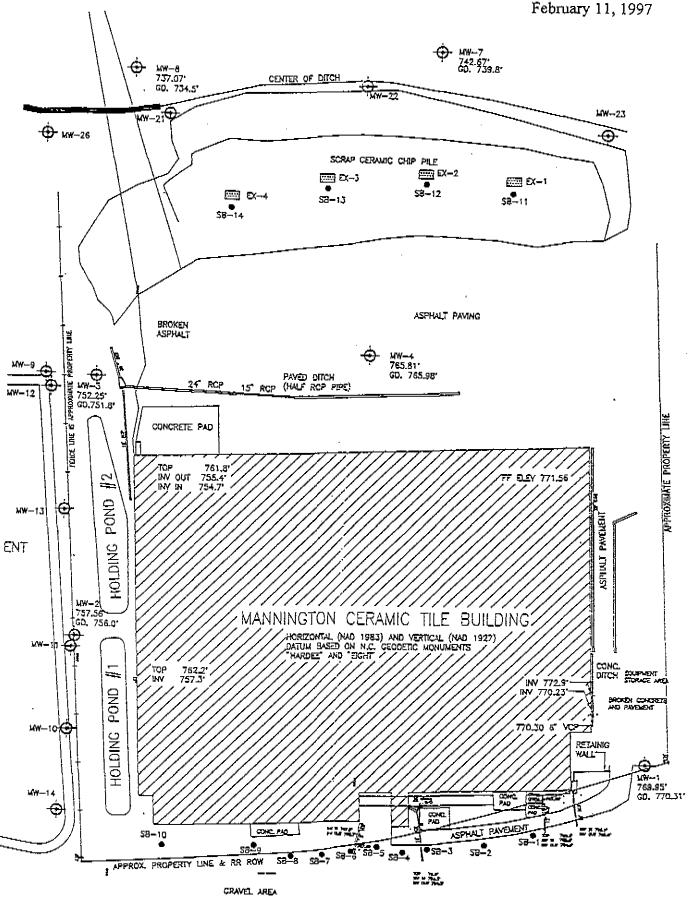


Table 1 Results of Soil Analysis for Metals Using TCLP from Comprehensive Tile Pile Testing Program and Treatability Study, Mannington Ceramic Tile, Lexington, North Carolina

Parameter	SB-13-40	SB-14-45
Arsenic	< 0.29	< 0.29*
Barium	< 5.2	< 5.2
Cadmium	< 0.050	< 0.050
Chromium	< 0.33	< 0.33
Lead	< 0.34	< 0.34
Mercury	< 0.018	< 0.018
Selenium	< 0.049	< 0.049
Silver	< 0.12	< 0.12

ENSCI October 20, 1992, Report

Appendix A

Terra Technologies Group Report

1995 Annual Groundwater Assessment Update Report
Former Wastewater Holding Ponds And Waste Ceramic Tile Pile
P & M Tile, Inc. Facility
Lexington, North Carolina
March 14, 1996

Table 4 1995 Year End Mean Values Exceeding 15A NCAC 2L Standards

Group A Wells (4 testing events)

Parameter	Standards	MW-7	MW-21	MW-22	MW-23	MW-26A
Boron	0.32	NA	7.79	5.74	Ν̈́A	47.73
Gross Beta	1.7*	NA	2.65	1.65	NA	19.48

Group B Wells (2 testing events)

Parameter	Standards	MW-9	MW-10	MW-12	MW-13	MW-25	M₩-28
Cobalt	0.025	BDL	BDL	.164	.035	BDL	BDL
Nickel	0.01	0.086	BDL	.123	BDL	BDL	BDL

Group C Wells
No Exceedences

Group D Wells <u>No Testing Performed In 1995</u> <u>Laboratory Did Not Meet Holding Times For December Samples</u>

Group E Wells (4 testing events)

Parameter	Standards	MW-1	MW-21	MW-22	MW-26A
Boron	0.32	.296	7.79	5.74	47.73
Cobalt	0.005	.034**	BDL	BDL	BDL
Gross Beta	1.7*	3.28	3.48	1.65	19.48

^{*- 2}L Standard is in pCi/L

^{**-} Mean based on three sampling events in 1995

Table A-1

March 1995 Quarterly Sampling Event

Analytical Results Exceeding 15A NCAC 2L Ground Water Standards

Results Reported In mg/L

Parameter	Standards	MW-1	MW-21	MW-22	MW-23	MW-26A
Boron	0.32	341	6.18	5.64	NA	80.8
NO3-N	10.0	NA.	BDL	.875	11.0	BDL
Gross Beta	1.7*	3.7	3.2	1.4	NA	20.4

^{*2}L Standard is in pCi/L

NA - No Analysis

Table A-2
June 1995 Quarterly Sampling Event
Analytical Results Exceeding 15A NCAC 2L Ground Water Standards
Results Reported In mg/L

Parameter	Standards	MW-1	MW-3	MW-7	MW-9	MW-10	MW-12	MW-12D
Boron	0.32	.202	NA	NA	NA.	NA	NA	NA
Cadmium	0.005	BDL	BDL.	BDL	BDL	BDL	0.010	0.012
Chromium	0.05	BDL	0.066	BDL	BDL	BDL	BDL	BDL
Cobalt	0.025	.033	BDL	BDL	BDL	BDL	0.210	0.244
Gross Beta	1.7*	3.1	NA	ΝA	NA	NA	NA	NA
Nickel	.01	BDL	BDL	BDL	.078	BDL	0.162	0.194
NO3-N	10.0	1.30	1.20	_5	2.80	4.10	2.90	5.30
Vanadium	0.02	BDL	BDL	.024	BDL	BDL	BDL	BDL

Table A-2 Continued

Parameter	Standards	MW-13	MW-21	MW-22	MW-23	MW-26A
Boron	0.32	NA	9.72	6.20	NA	37.0
Cadmium	0.005	BDL	BDĻ	BDL .	.010	BDL
Chromium	0.05	BDL	BDL	BDL	BDL	BDL
Cobalt	0.025	0.042	BDL	BDL	BDL	BDL
Gross Beta	1.7*	NA	3.3	BDL	NA	21.1
Nickel	.01	BDL	BDL	BDL	BDL	BDL
NO3-N	10.0	2.00	BDL	0.600	6.40	0.120
Vanadium	0.02	BDL	BDL	BDL	BDL	BDL

^{*2}L Standard is in pCi/L

NA - No Analysis

Table A-3
September 1995 Quarterly Sampling Event
Analytical Results Exceeding 15A NCAC 2L Ground Water Standards
Results Reported In mg/L

Parameter	Standards	MW-1	MW-7	MW-18	MW-21	MW-22	MW-23	MW-26A
Boron	0.32	0.31	NA	NA	11.2	4.89	NA	29.3
Cadmium	0.005	BDL	BDL	BDL	BDL	BDL	0.01	BDL
Gross Beta	1.7*	3.2	NA	NA	4.1	1.4	NА	21.8
Lead	0.015	0.0046	BDL	0.028	0.006	BDL	0.006	0.0034
Soluble Lead	0.015	NT	NT	BDL	NT	NT	NT	ТИ
Vanadium	0.02	BDL	0.024	BDL	BDL	BDL	BDL	BDL

^{*2}L Standard is in pCi/L

NA - No Analysis

Table A-4

December 1995 Quarterly Sampling Event Analytical Results Exceeding 15A NCAC 2L Ground Water Standards Results Reported In mg/L

Parameter	Standards	MW-1	MW-9	MW-12	MW-21	M₩-22	MW-25	MW-26A
Boron	0.32	_332	ŅĄ	NA	4.07	6.24	NA	43.8
Cadmium	0.005	BDL	.008	0.006	BDL	BDL	BDL	BDL
Cobalt	0.025	.036	BDL	0.117	BDL	BDL	BDL	BDL
Gross Alpha	15p Ci/L	1.9	7.0	16.5	BDL	3.5	1.9	5.6
Gross Beta	1.7*	3.1	NA	NA	BDL	3.8	NA	14.6
Sulfate	250	BDL	310	294	BDL	11.4	20_5	11.4
Titanium	0,1	BDL	BDL	BDL	BDL	BDL	0.178	BDL
Radium 226	5P Ci/L	1,0	1.0	1.0	.8	و0	1.0	1.7
Radium 228	5P Ci/L	BDL	BDL	1.9	BDL	BDL	BDL	2.1

Table A-4 Continued

Parameter	Standards	MW-28
Boron	0.32	NA
Cadmium	0.005	BDL
Cobalt	0.025	BDL
Gross Alpha	15p Ci/L	4.3
Gross Beta	1.7*	NA
Sulfate	250	392
Titanium	0.1	BDL
Radium 226	5P Ci/L	3.4**
Radium 228	5P Ci/L	2.0**

^{*2}L Standard is in pCi/L

^{** 2}L Standard for radium 226 and radium 228 (combined): 5p Ci/L NA - No Analysis

Appendix A

Terra Technologies Group Report

Second Quarter 1996 Groundwater Assessment Report Porcelanite, Inc. Lexington, North Carolina October 28, 1996

Table 4 Groundwater Analytical Results

MANUSANCIA C						\$66000000000000000000000000000000000000	eing Well Id	entification			e de la company	
WAY IN CAMPONE	(mg/L)	38(0)/241	MWZZ	SW23	2033/40	AT3V#0	MW#10	Massarta	New gra	1899.635	MWeis	2457/#18
Boron	0.32	0.209	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Berium	2.0	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Cadmium	0.005	BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.005	BDL	BDL	BDL
Chromlues	0.05	BDL	BDL	0.028	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Cobalt	0.025	0.037	BDL	BDL	BDL	BDL	BDL	BDL	0.099	0.032	BDL	BDL
Lead	0.015	BDL	0.003	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Mercury	0.0011	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Nickel	0.10	BDL	BDL	BDL	BDL	0.037	BDL	BDL	0.070	BDL	BDL	BDL
Silver	0.018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Praseodymium	0.050	BDL	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Vanadium	0.020	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Fluoride	2.0	BDL	BDL	BDL	BDL	0.430	2.60	BDL	0.380	0.10	0.100	BDL
Nitrale	10.0	1.10	1.73	0.925	0.060	3.20	1.88	1.78	2.45	1.35	5.88	1.60
Sulfate	250.0	BDL	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Bromide	0.50	BDL	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Gross Beta	0.5 pCi/L	3.1	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

Note: Results are reported in mg/L; 15A NCAC 2L standards for each compound are as shown, if no standard has been codified then the method detection limit is considered the standard.

February 11, 1997

Table 4 (cont.) Groundwater Analytical Results

	ZISANUAC :					Mosilorin	Wall Ident	lfication)			
PARAMITEE Par	ic std (mg/L)	MW#IB	MW#21	NW#22	MW423	MW#24	MW#28	MW#26A	MW#38	Travel. Blank	Field Blank
Boron	0.32	NR	8.47	4.04	NR	NR	NR	\$2.2	NR	BDL	BDL
Berlum	2.0	BDL	0.196	BDL	BDL	BDL	BDL	1.11	BDL	BDL	BDL
Cadmium	0.005	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chromium	0,05	BDL	BDL	BDL	0.014	BDL	0.014	BDL	BDL	BDL	BDL
Cobali	0.025	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Lead	0,015	0.005	BDL	BDL	BDL	BDL	0.0045	BDL	0.003	BDL	BDL
Mercury	0.0011	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Nickei	0.10	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Sliver	0.018	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Praseodymlum	0.050	NR	BDL	BDL	NR	NR	NR	BDL	NR	BDL	BDL
Vanadlum	0,020	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Fluoride	2.0	BDL	BDL	BDL	BDL	BDL	BDL	0.17	0.10	BDL	BDL
Nitrate	10.0	1.67	BDL	1.18	0,100	1.63	1.33	0.140	0.760	1.67	0.160
Sulfate	250.0	NR	12.6	6.27	NR	NR	NR	BDL	NR	BDL	BDL.
Bromide	0.50	NR	BDL	BDL	NR	NR	NR	BDL	NR	BDL	BDL
Gross Beta	0.5 pCi/L _v	NR	3.6	t.3	NR	NR	NR	14.6	NR	BDL	BDL

Note: Results are reported in mg/L; 15A NCAC 21, standards for each compound are as shown, if no standard has been codified then the method detection limit is considered the standard.

Appendix A

Terra Technologies Group Report

Third Quarter 1996 Groundwater Assessment Report Porcelanite, Inc. Lexington, North Carolina November 4, 1996

Table 3
Groundwater Analytical Results
September 18, 1996

	**ISN NCAC					ionitoring v	C0000000000000000000000000000000000000				
PARAMETER	(Light) M. SHI	MWat	MWer	MWAS	M(VIII)	MW#21	3(W#22	MW#23	MW#26A	MRLD	TRIP
Boron	0.32	0.240	NR	NR	NR	6:34	BDL	NR	102.6	BDL	BDL
Barium	2.0	NR	BDL	0.131	BDL	0.200	BDL	BDL	0.973	BDL	BDL
Cadmium	0.005	NR	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chromlum	0.05	NR	0.014	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Cobalt	0.025	NR	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Lead	0.015	NR	0.0037	0.004	0.0032	0.0047	0.0034	0.005	0.0067	0.0041	BDL
Mercury	0.0011	NR	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Nickel	0.10	NR	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Silver	0.018	NR	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Praseodymium	0.050	BDL	NR	NR	NR	BDL	BDL	NR	BDL	BDL	BDL
Vanadlum	0.620	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Fluoride	2.0	NR	0.190	0.140	BDL	0.120	0.140	BDL	1.80	BDL	BDL
Nitrate	10.0	NR	0.450	0.070	1.80	0.130	0.350	0.070	0.050	BDL	0.060
Sulfate	250.0	5.07	NR	NR	NR	10.8	BDL	NR	38.6	BDL	BDL
Bromlde	0.50	BDL	NR	NR	NR	BDL	BDL	NR	BDL	BDL	BDL
Gross Beta	0.5 pCi/L	3.7	NR	NR	NR	2.3	(C1.1	NR	20.5	BDL	BDL

Note: Results are reported in mg/L; 15A NCAC 2L standards for each compound are as shown, if no standard has been codified then the method detection limit is considered the standard.

APPENDIX B DECEMBER 1996 INVESTIGATION

Table 1 Analytical Results for Tile Pile Material Sampled on December 10, 1996, Porcelanite, Inc., Lexington, North Carolina

Parameter	SB-1-15' (mg/kg)	SB-4-10' (mg/kg)
Arsenic	< 1.03	< 1.10
Barium	659	401
Cadmium	0.905	1.84
Chromium	4.46	4.50
Lead	1090	17,400
Mercury	< 0.206	< 0.221
Selenium	< 1.03	< 1.10
Silver	< 1.03	< 1.10
Cobalt	14.5	9.84
Manganese	44.5	43.5
Nickel	14.3	2.10
Zinc	4900	3080
Titanium	120	77.2
Vanadium	15.8	11.2
Boron	426	90.8
Praseodymium	10.8	< 11.0
Bromide	< 10.0	< 10.0
Phenols	< 0.112	< 0.120
Sulfate	69.7	33. 9
Nitrate	4.40	0.420
Gross alpha ²	13.3	17.5
Gross bêta ²	14.9	16.7_

Aquaterra Job No. 3105801

611024.Dir

^{1 =} Less than or below detection limits 2 = Concentration in pCi/g (picocuries/gram) < = All metals analyses are totals.

Table 2 Analytical Results for Native Soils Sampled on December 10, 1996,

Porcelanite, Inc., Lexington, North Carolina SB-5-2.5 HA-2 HA-3 HA-4 SB-6-2.5 $\overline{\text{HA-1}}$ HA-5 (mg/kg) (mg/kg)(mg/kg) (mg/kg) (mg/kg)(mg/kg)(mg/kg)Parameter < 1.16 < 1.34 < 1.48 < 1.12 < 1.10 < 1.34 < 1.05 Arsenic 27.4 155 294 67.7 176 163 48.4 Barium 4.60 4.18 2.32 2.71 < 0.221 1.67 Cadmium 0.28329.0 31.2 9.12 20.8 55.1 122 Chromium. 1.08 19.7 501 7.54 20.1 55.0 12.1 18.8 Lead < 0.232 < 0.268 < 0.296< 0.224 < 0.221 0.338 < 0.211 Mercury Selenium < 1.16 < 1.34 < 1.48 < 1.12 < 1.10 < 1.34 < 1.05 < 1.34 < 1.48 < 1.12 < 1.10 < 1.34 Silver < 1.16 < 1.05 1.88 Cobalt 7.90 17.7 17.1 5.50 8.60 4.22 273 29.2 307 589 56.6 353 Manganese 15.4 2.95 7.98 6.14 5.94 2.64 12.0 3.27 Nickel 1,430 45.5 33.7 104 22.5 42.7 27.3 Zinc 19.1 312 232 33.8 Titanium 418 738 67.7 Vanadium 131 736 59.3 79.5 29.7 187 7.03 127 104 60.8 59.4 < 11.0 51.5 < 10.5 Boron < 11.6 < 13.4 23.1 < 11.2 12.5 Praseodymium 18.1 < 10.5 < 10.0 NR < 10.0 < 10.0 NR NR Bromide NR < 0.161 Phenols < 0.122 < 0.146< 0.122 < 0.119 < 0.146 < 0.115 Sulfate 173 205 285 190 241 95.1 94.0 0.953 0.893 2.16 2,48 2.87 2.47 Nitrate 0.713 Gross alpha² NR 7.2 NR NR NR 7.0 12.4 Gross beta' 8.5 NR NR NR NR 4.1 48.5

Aquaterra Job No. 3105801 611024.Dir

I = All metals analyses are totals

^{2 =} Concentration in pCi/g (picocuries/gram)

< = Less than or below detection limits

NR = Not requested

Table 3 TCLP Analytical Results for Composite Tile Material Sampled on December 10, 1996, Porcelanite, Inc., Lexington, North Carolina

Parameter	Comp-1 Chip Pile
Arsenic	< 0.010
Barium	1.87
Cadmium	0.011
Chromium	0.025
Lead	187
Mercury	< 0.0004
Selenium	< 0.100
Silver	< 0.010

< = Less than or below detection limits Results in mg/L

Aquaterra Job No. 3105801

611024.Dir

Boring /Well Construction Log

Well Construction Permit Number

37/4

Aquaterra, Inc.

L D. Number	SB-1		Purpose	soil/tile samples	
Project Name	Porcelanite Tile Inc.		Contractor	Engineering Tectonics	
Project No.	3105801		Registration No.		
Geologist	Cyrus F. Parker, Jr.		Driller	Ronnie	
Start Date	12/10/96 Complete Date	12/10/96	Equipment	Mobil B-50	

Drilling Method				
Comments		6.25" Hollow st	tem augers	
	.,			FID / PID
Well Construction Information		Depth		(ppm)
		From - To	Soil / Rock Description / Comments	@ Depth (ft.)
Borehole Dia.	6.25"	0-15'	white clay tile chips, dry	N/A
Riser Type	N/A	15-30'	white clay tile chips, dry / brown and tan	N/A
Diameter	N/A		sandy clay w/ green lenses, moist	N/A
Screen Type	N/A		tile ends ~ 30'	N/A
Diameter	N/A			N/A
Riser Interval	N/A		boring terminated @ 30'	N/A
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	30'			
R.P. Elevation	W. C. C. C. C. C. C. C. C. C. C. C. C. C.			
Datum				
Water Lev	el Information			
Date	W.L. Below R.P.			

R.P. - Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Boring / Well Construction Log

337.011	Construction	D	Mission In a se
well	Construction	Permit	Number

N/A

Aquaterra, Inc.

SB-2			Purpose	soil/tile samples	
Porcelanite Tile I	nc.		Contractor	Engineering Tectonics	
3105801			Registration No	0.	
Cyrus F. Parker,	Jr.		Driller	Ronnie	
12/10/96	Complete Date	12/10/96	Equipment	Mobil B-50	
	Porcelanite Tile 1 3105801 Cyrus F. Parker,	Porcelanite Tile Inc. 3105801 Cyrus F. Parker, Jr.	Porcelanite Tile Inc. 3105801 Cyrus F. Parker, Jr.	Porcelanite Tile Inc.Contractor3105801Registration NoCyrus F. Parker, Jr.Driller	Porcelanite Tile Inc.ContractorEngineering Tectonics3105801Registration No.Cyrus F. Parker, Jr.DrillerRonnie

Drilling Method	<u> </u>	6.25" Hollow St	em Auger	
Comments				
		""		FID / PID
Well Construction Information		Depth		(ppm)
		From - To	Soil / Rock Description / Comments	@ Depth (ft.)
Borehole Dia.	6.25"	0-10'	white clay tile chips, dry	
Riser Type	N/A	10-15'	white clay tile chips, moist	1 1 111111
Diameter	N/A	15'	brown tan sandy clay moist	
Screen Type	N/A			
Diameter	N/A		boring terminated @ 15'	
Riser Interval	N/A			
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	15'			
R.P. Elevation				
Datum				
Water Lev	el Information			
Date	W.L. Below R.P.			

R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Boring /Well Construction Log

Well Construction Permit Number

N/A

Aquaterra, Inc.

l. D. Number	SB-3			Purpose	soil/tile samples	
Project Name	Porcelanite Tile Inc.			Contractor	Engineering Tectonics	
Project No.	3105801			Registration No.	77 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Geologist	Cyrus F. Parker, Jr.			Driller	Ronnie	
Start Date	12/10/96 Co	omplete Date	12/10/96	- Equipment	Mobil B-50	

Drilling Method	nod 6.25" Hollow Stem Auger			
Comments				
THE LEAST OF THE STREET, STREE				
			, , , , , , , , , , , , , , , , , , ,	FID / PID
	nstruction mation	Depth From - To	Soil / Rock Description / Comments	(ppm) @ Depth (ft.)
Borebole Dia.	6.25"	0-51	white clay tiles, dry	
Riser Type	N/A	5-10'	white clay tiles, moist	
Diameter	N/A	10-15'	clay tiles (chips and powder) w/ brown tan sandy	
Ѕсгеел Туре	N/A		clay	
Diameter	N/A	15-20'	wet clay powder w/ brown sandy clay	
Riser Interval	N/A	20-25′	white and tan clayey sand, mica (saprolite) moist	
Screen Interval	N/A			
Slot Size	N/A		boring terminated @ 25'	
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	25'			
R.P. Elevation		_		
Datum	uroll l	-		
Water Leve	l Information	-		
Date	W.L. Below R.P.			
-	Į			-

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

MSL = Mean Sea Level

Boring / Well Construction Log

Well Construction Permit Number

	4
- ^	 4

Aquaterra, Inc.

I. D. Number	SB-4			Purpose	soil/tile samples	
Project Name	Porcelanite Tile 1	nc.		Contractor	Engineering Tectonics	
Project No.	3105801			Registration No.	•	
Geologist	Cyrus F. Parker,	Jr.		Driller	Ronnie	
Start Date	12/10/96	Complete Date	12/10/96	Equipment	Mobil B-50	
			12/10/96			

Drilling Method	Orilling Method 6.25" hollow stem auger			
Comments	-			
				FID / PID
	onstruction rmation	Depth From - To	Soil / Rock Description / Comments	(ppm) @ Depth (ft.)
Borchole Dia.	6.25"	0-5'	white to gray clay tile chips and powder, moist	
Riser Type	N/A	5-10'	white clay tile chips, cardboard joint @ 11'	
Diameter	N/A	10-18'	white clay tile chips, moist	
Screen Type	N/A	18-20'	brown/ tan clayey sand, wet	
Diameter	N/A			
Riser Interval	N/A		boring terminated @ 20'	
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	20'			
R.P. Elevation		-		
Datum		-		
Water Leve	el Information	-		
Date	W.L. Below R.P.	-		11000
		-		
		_		
	***************************************	-	1000	

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

MSL = Mean Sea Level

Boring /Well Construction Log

Well Construction Permit Number

- 3	F 4
Λ	1 11
41	

Aquaterra, Inc.

Geologist Cya	us F. Parker, Ji	" .	_ Driller	Ronnie	
			T. ***	Δ .	
Project No. 310)5801		Registration No.		
Project Name Por	celanite Tile In	c.	Contractor	Engineering Tectonics	
I. D. Number SB-	5		Purpose	soil/tile samples	

Drilling Method		6.25" hollow ste	m auger	
Comments				
The state of the s				SPT
	onstruction rmation	Depth From - To	Soil / Rock Description / Comments	blows per foot
Borchole Dia.	6.25"	0-2.5'	red & gray clay w/ dark green lenses, wet	1-2-8-13
Riser Type	N/A	2.5-5'	gray green clay w/ quartz pebbles & brown/red	9-5-7-9
Diameter	N/A		sand w/ mica (saprolite)	•
Screen Type	N/A	5-10'	rust colored saprolite, high mica and quartz content	16-26-50/6
Diameter	N/A	10-15'	rock chips similar to gneiss, high mica and quartz	50/5
Riser Interval	N/A		content	
Screen Interval	N/A			
Slot Size	N/A		Auger Refusal @ 16.5'	
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	16.5'			
R.P. Elevation				
Datum		-		
Water Lev	el Information	-		
Date	W.L. Below R.P.	_		
		-		
		-	·	
		-		

R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Leve!

Boring / Well Construction Log

Well	Construction	Permit	Number

Aquaterra, Inc.

I. D. Number	\$B-5			Purpose	soil/tile samples	
Project Name	Porcelanite Tile l	nc.		Contractor	Engineering Tectonics	
Project No.	3105801			Registration No.		-
Geologist	Cyrus F. Parker,	Jr.		 Driller	Ronnie	-
Start Date	12/10/96	Complete Date	12/10/96	Equipment	Mobil B-50	

Drilling Method		6.25" hollow ste	m auger	
Comments				
	, - <mark></mark>			
		• 5400		SPT
	onstruction ermation	Depth From - To	Soil / Rock Description / Comments	blows per foot
Borehole Dia.	6.25"	0- 2.5'	red clay w/ roots, moist	4-3-3-8
Riser Type	N/A	2.5-5'	red, tan, gray, & green clays w/ roots & small rocks	4-5-7-9
Diameter	N/A	5-10'	red clay w/ tan clay lenses, green micacious	5-8-11-14
Screen Type	N/A		saprolite w/ rust staining	
Diameter	N/A	10-15'	green micacious saprolite	50/4
Riser Interval	N/A			
Screen Interval	N/A		Auger Refusal @ 16'	
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	16'			
R.P. Elevation		-		
Datum		-		
Water Leve	el Information	-		
Date	W.L. Below R.P.	-		
		-		
		-		
		-		

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

MSL = Mean Sea Level

Boring /Well Construction Log

Well Construction Permit Number

٠.	
Λ	 4

Aquaterra, Inc.

. D. Number	HA-1		Purpose	soil sample	
Project Name	Porcelanite Tile Inc.		Contractor	NA .	
Project No.	3105801		Registration No.	NA	
Geologist	Cyrus F. Parker, Jr.		Driller	NA	
Start Date	12/11/96 Complete Date	12/11/96	Equipment	Hand Auger	

Drilling Method 3.25" Hand Auger		er		
Comments	7574			
<u> </u>	71,71,1			
	V			
				FID / PID
Well C	onstruction	Depth		(ppm)
Information		From - To	Soil / Rock Description / Comments	@ Depth (ft.)
Borchole Dia.	3.25"	0-1'	Red sandy clay moist	
Riser Type	N/A		augered down to 1.5' and water immediately entered	
Diameter	N/A		the hole	
Screen Type	N/A			
Diameter	N/A		boring terminated @ 1.5'	
Riser Interval	N/A			
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			. , , , , , , , , , , , , , , , , , , ,
Total Depth	1.5'			
R.P. Elevation				
Datum		_		
Water Lev	el Information	-		
Date	W.L. Below R.P.			
			110	
		-		

R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Boring /Well Construction Log

Well Construction Permit Number

 N_{z}

Aquaterra, Inc.

I. D. Number	HA-2			Purpose	soil sample
Project Name	Porcelanite Tile II	nc.		Contractor	NA NA
Project No.	3105801			Registration No.	NA NA
Geologist	Cyrus F. Parker,	Ir.		 Driller	NA
Start Date	12/10/96	Complete Date	12/10/96	Equipment	Hand Auger

Drilling Method		3.25" Hand Aug	er	
Comments				
				FID / PID
Well Co	onstruction	Depth		(ppm)
Info	rmation	From - To	Soil / Rock Description / Comments	@ Depth (ft.)
Borehole Dia.	3.25"	0-1'	red silty clay w/roots	
Riser Type	N/A	1-4'	red silty clay, moist	
Diameter	N/A			
Screen Type	N/A			
Diameter	N/A			
Riser Interval	N/A			
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	4' .			
R.P. Elevation		_		
Datum		-		
Water Leve	el Information	-		
Date	W.L. Below R.P.	-		
		-		
		-		
		-		

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

MSL = Mean Sea Level

Boring/Well Constr	uction I	Log
Well Construction Permit Number		N.

Aquaterra, Inc.

I. D. Number	HA-3		Purpose	soil sample	
Project Name	Porcelanite Tile Inc.		Contractor	NA	
Project No.	3105801		Registration No.	NA NA	
Geologist	Cyrus F. Parker, Jr.		Driller	NA NA	
Start Date	12/11/96 Complete Date	12/11/96	Equipment	Hand Auger	

Drilling Method		3.25" Hand Aug	er	
Comments	777.5			1 11 11 11 11 11 11 11 11 11 11 11 11 1
· ami **		1 mest.		FID / PID
	onstruction ormation	Depth From - To	Soil / Rock Description / Comments	(ppm)
Borchole Dia.	3.25"	0-2'	Red brown sandy clay	
Riser Type	N/A	2-3'	tan sandy & silty clay	
Diameter	N/A	3-4'	tan clay w/ gray lenses	
Screen Type	N/A_	4-5'	gray clay	
Diameter	N/A			
Riscr Interval	N/A		boring terminated @ 5'	
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	5'			
R.P. Elevation		_		
Datum		-		
Water Lev	el Information			
Date	W.L. Below R.P.	_		
		_		
		-		
		_		

R.P. = Reference Point

W.L. = Water Level

TBM = Temporary Benchmark

MSL = Mean Sea Level

Boring / Well Construction Log

Well Construction Permit Number

NA

Aquaterra, Inc.

I. D. Number	HA-4	Purpose	soil sample	
Project Name	Porcelanite Tile Inc.	Contractor	NA .	
Project No.	3105801	Registration No.	NA.	
Geologist	Cyrus F. Parker, Jr.	Driller	NA NA	
Start Date	12/11/96 Complete Date 12/11/96	Equipment	Hand Auger	

Drilling Method	100011110	3.25" Hand Aug	rer	
Comments				
				FID / PID
Well C	onstruction	Depth		(ppm)
Information		From - To	Soil / Rock Description / Comments	@ Depth (ft.)
Borehole Dia.	3.25"	0-4'	red clay, dry	
Riser Type	N/A	4-5'	red & tan clay w/ yellow sandy lenses dry	
Diameter	N/A	5-6'	gray clay, dry	
Screen Type	N/A	6-7 '	tan & gray clay	
Diameter	N/A			
Riser Interval	N/A		boring terminated @ 7'	
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	7'			
R.P. Elevation		_		
Datum				
Water Lev	el Information	_		
Date	W.L. Below R.P.	-		
		-		
		-		
				

R.P. = Reference Point

 $W.L. = Water\ Level$

TBM = Temporary Benchmark

MSL = Mean Sea Level

boring / wen Construction	rog
Well Construction Permit Number	NA

Aquaterra, Inc.

. D. Number	HA-5			Purpose	soil sample	
Project Name	Porcelanite Tile Inc.			Contractor	NA NA	
Project No.	3105801			Registration No.	NA NA	
Geologist	Cyrus F. Parker, Jr.			Driller	NA .	
Start Date	<i>12/11/96</i> Co	mplete Date	12/11/96	Equipment	Hand Auger	

Drilling Method		3.25" Hand Aug	er	· · · · · · · · · · · · · · · · · · ·
Соттель				
				FID / PID
Weil Co	onstruction	Depth		(ppm)
Info	rmation	From - To	Soil / Rock Description / Comments	@ Depth (ft.)
Borehole Dia.	3.25"	0-2"	red clay	
Riser Type	N/A	2"-7'	red clayey sand, dry	
Diameter	N/A			
Screen Type	N/A		boring terminated @ 7'	
Diameter	N/A			
Riser Interval	N/A			
Screen Interval	N/A			
Slot Size	N/A			
Grout Type	N/A			
Interval	N/A			
Bentonite Type	N/A			
Interval	N/A			
Filter Pack	N/A			
Interval	N/A			
Total Depth	7'			
R.P. Elevation		_		
Datum		-		
Water Lev	el Information	-		
Date	W.L. Below R.P.	_		
		-		
		-		
				

R.P. = Reference Point

W.L. = Water Level

 $TBM = Temporary\ Benchmark$

MSL = Mean Sea Level

Research & Analytical Laboratories, Inc.

Analytical/Process Consultations

Analytical Results for Selected Parameters & Sampling Locations for Project Identified as Porceianite Tile, [An Aquaterra Project #3105801, 10-11 December 1996]

<u>Parameter</u>	SB-1-15 (mg/kg)	SB-4-10 (mg/kg)	S8-5-2.5 (mg/kg)	SB-6-2.5 (mg/kg)	HA-2 <u>[mg/kg]</u>	HA-1 (mg/kg)	HA-3 [mg/kg)	HA-4 <u>[mk/kg)</u>	HA-5 <u>[mg/kg]</u>
Arsenic, Tot.	< 1.03	<1.10	<1.16	< 1.34	<1.12	< 1.48	<1.10	<1.34	< 1.05
Barium, Tot.	659	401	27.4	155	67.7	294	176	163	48.4
Cadmium, Tot.	0.905	1.84	4.60	4.18	2.71	2.32	< 0.221	1.67	0.283
Chromium, Tot.	4.46	4.50	20.8	29.0	56.1	31.2	9.12	122	1.08
Lead, Tot.	1090	17,400	20.1	19.7	55.0	501	7.54	12.1	18.8
Mercury, Tot.	< 0.206	< 0.221	< 0.232	< 0.268	< 0.224	< 0.296	< 0.221	0.339	< 0.211
Selenium, Tot.	< 1.03	<1.10	<1.16	< 1.34	< 1.12	< 1.48	< 1.10	<1.34	<1.05
Silver, Tot.	< 1.03	<1.10	<1.16	< 1.34	<1.12	<1.48	< 1.10	< 1.34	<1.05
Cobalt, Tot.	14.5	9.84	7.90	1.88	17.1	17.7	5.50	8.60	4.22
Manganese, Tot.	44.5	43.5	273	29.2	589	307	15.4	5 6 .6	353
Nickel, Tot.	14.3	2.10	6.14	2.95	5.94	7.98	2.64	12.0	3.27
Zinc, Tot.	4900	3080	45.5	33.7	104	1430	22.5	42.7	27.3
Titanium, Tot.	120	77.2	418	19.1	232	312	33.8	738	67.7
Vanadium, Tot.	15.8	11.2	131	736	79.5	59.3	29.7	197	7.03
Boron, Tot.	426	90.9	127	104	59.4	60.8	<11.0	51.5	<10.5
Praseodymium, Tot.	10.9	<11.0	<11.6	< 13.4	<11.2	23.1	12.5	18.1	<10.5
Bromide	< 10.0	< 10.0	< 10.0	<10.0	<10.0	NR	NR	NR	NR
Phenois	< 0.112	<0.120	<0.122	< 0.146	< 0.122	< 0.161	< 0.119	< 0.146	< 0.115
Sulfate	59.7	33.9	173	205	190	265	241	95.1	94.0
Nitrate	4.40	0.420	0.953	0.893	2.48	2.16	2.87	2.47	0.713
Gross alpha	13.3	17.5	7.2	NR	NR	NR	NR	7.0	12.4
Gross beta	14.9	16.7	8.5	NR	NR	NR	NA	4.1	46.5
Sample Number Sample Date Sample Time	288731/32 12/10/96 0830	288737/38 12/10/96 1025	288739/40 12/10/96 1115	288741/42 12/10/96 1155	288743/44 12/10/96 1320	288849 12/11/96 1200	288850 12/11/96 1235	288851/52 12/11/96 1324	288853/54 12/11/96 1404

mg/kg = milligram per kilogram = parts per million

= less than or below detection limits

NR = Not Requested

Research & Analytical Laboratories, Inc.

Analytical/Process Consultations

21 January 1997

Aquaterra, Inc. 4901 Waters Edge Drive

Raleigh, North Carolina 27606

Attention: Mr. Bryson Trexler

Project Number: 3105801 Project Name: Porcelanite Tile

Comp-1, Chip Pile(mg/l) <u>Parameter</u> Arsenic, TCLP <0.010 Barium, TCLP 1.87 Cadmium, TCLP 0.011 Chromium, TCLP 0.025 Lead, TCLP 187 Mercury, TCLP <0.0004 Selenium, TCLP <0.100 Silver, TCLP <0.010 Sample Number 288745 Sample Date 12/10/96 Sample Time 1330

mg/l = milligrams per liter = parts per million TCLP = Toxicity Characcteristic Leachate Procedure

= less than or below detection limits

aquamue 9.11 +

CHAIN-OF-CUSTODY RECORD ANALYTICAL REQUEST

> 4927 Νo

AODRESS:	occelanite Til			REPORT AFFILIA	TIONAG	<u>کری</u> OCATIO	N:			•				-		TURNA REQUE:	4	84	<u>يري</u>	Tuc	ሰላር	MIX.	<u> አ</u> ና	07 VI	<u>Trail</u>	دع
Lexic 108 HUMBER: 31058	ista North Con	100/100		PHONE	:	- 8:					ناجا					².O. # .		NG REF	ERENC	 :ε:	ζnc		0.	S 5 2		
SAMPLED BY [PRINT]: YRU SAMPLER'S SIGNATURE	s F. Parter, J F. PeL, L.	<u>c.</u>					-		lber (NTAI	NERS	> 12		ALYSES	REQUE	ST	13 14 14 V		7 3 3 0	چ چوکار				رن ريز	
Cyn Sampre Id	E PLL , L. SAMPLE LOCATION	DATE	TIME	N WATER	SOIL	OTHER	TOTAL	UNPRESERVED	H ₂ SO ₂	HNO3	ÄĊĹ	N _O OH	₹ 200 N		September 1	REQUE		15 15 15 15 15 15 15 15 15 15 15 15 15 1				13/3 13/3	2 3/k	5 5 2	REMAR	
50-1-15	Chippile	12-13-16	830a			X	4	4		08	3 <u>2</u>	73	1	BŽ	×	۲	χ	X	x	×	X	X	ļ			
20-9-FO	Chip Pila		926a			<u>X</u>	4	4			1	[33]	1/2	/X	x	፞፞፞፞፞፞፞	×	×	χ	x	x			₩/ ~ .		2 000
5B-3-5	Chip Pilk		9400			X	4	4	<u></u>		7.	35/	7 \$ {	X	χ.	×	χ	×	×	λ	×	X	'	ייייייי	Ca	erray nule:
58-4-10	Chip Pile		10254			×	4	4		<u> </u>	17:		132	<u> </u>	X	X	Υ	X	X	X	X	T	- '	19790	(n)	evia
B-5-2.5	Toc Chippile		1115a		X		4	4	<u> </u>		7	3 9/,	74	<u> </u>	X	Υ	χ	X	γ	χ	X	X				
3-6-2.5	Toe Chippile		1155a		X		4	4			70	<u> </u>	746	<u> 1</u> <u>x</u>	X	X	X	X	K	X						·
1A-Z	To-Chippile		120 p		Χ		4	4		<u>'</u>	74	3/	740	χ	X	X	χ	χ	X	X			_			
Comp-1	ChipPile		130p			X	4	4	ļ		2	157	74	16									X		-	
ADDINONAL COMMEN	_							RELIM	QUISH	E9 B)	/ AF	FILIATI	ON		ACC	EPTEC	BY /	AFFIL	ATIO	N		DAT		TIME		AIRBILL#
SN	ndus Coded W/	744			-		L,	n f	\ \ -	/A ₁	اهلک	₾_		7	Ku.)					4.	// ₀		12-10-16	,	
	C	y ic	Ĭ,						·												ļ				-	
ህሰውተቀ ተ ታይጣት ለትግዕሃ ይ	፡፡ ፡ የምርነወሽ ፖርሳውሃ ሀ ይዘ ነዘም 1 «ውርነው አጀርትውን	(ድረነው) አልቀቀ	ADV CALIBIE	የነና ብጠዋላ																	Ь			J	_l	

CHT: On VITARE	1				IRKS									AIRBILL#		
NINDAMA SDAY BOTHER ISPECTION		17	130 m	Les Ar	REMARKS									TIME	×28×	
- 12 Sow - 1		105.5		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	60,000			×	×					DATE	95/11/5,	
JORIMAL 178			Sinc.	SUPPLEASE OF SUPPLIES OF SUPPLEASE OF SUPPLEASE OF SUPPLEASE OF SUPPLEASE OF SUPPLI	2007 250	*	~	×	×		 					
ź	JE DAJE:	G REFEREN	المرين مرين مري	TO THE TENT	Park Park	× ×	× ×	×	بد بح				 	AFFILIATO		
TURNAROUND:	REQUESIED DUE DATE	NIIIII X	nuesr 100	Charles College	18 C. S. S. S. S. S. S. S. S. S. S. S. S. S.	×	× × × ×	×	ا ب				_	ACCEPTED BY / AFFILIATION		
Ĭ	EQ	0.	ANALYSES REQUEST	23	15.57.79 (15.00)	×		×	×					ACCEP	3	
			ANA.	- 3 OK > 12		×	×	\times	×		<u></u>			(1	
			NERS.		но⁰и						 	-		FILIATIO		
Ļ	10	5	NUMBER OF CONTAINERS		HÇT HMO ³						 ,			RELINQUISHED BY / AFFILIATION	my 1/2 Housen	
3rsson Traken	MIDCATION: Rabelst	859-998	IMBER O		POS ² H						 			AQUISHE	\$ \$	
1- 8	ટ્રે	6	X	2EBAED	JATOT 38%HU	7	<u> </u>	4	4					REEL	<u>}</u>	
<u> </u>	OCATION	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			OTHER	·										
REPORT TO:	AFFINATION/TOCATION:	FIGH. 7			MATER SOIL	×	~	~	~			,				
;					TIME	1200 p	235,	4-7	9.F.53					-5 !	4	
). }.f			-	٠ 1	DATE	加州								الهار	H =	
PROJECT NAME. POCCE ANITE TILL TAC.	Loxinsson, NC	0		CYRUS F. PARKE, SC. Cyn F. Park L.	SAMPLE LOCATION	£25-76a	Eofin	NEW HLY &	E of Building					Samples Galed	7	
PROJECT NAME.	ADORESS. LCXIN	JOS 205 801	SAMPLED BY (PRINT):	SAMPLEYS SIGNATURE:	SAMPLEID	128804 HA-1	250 HA-3	85/4R -4	853/HR. G	PC8			-	ADDIIONAL COMMENTS:		

Adolphia wastiga a compatible and the annual form.

North Carolina Department of Environment and Natural Resources

Dexter R. Matthews, Director

Division of Waste Management

Michael F. Easley, Governor William G. Ross Jr., Secretary

March 14, 2005

Tony Shaw Environmental/Safety Manager Porcelanite, Inc. 1327 Lincoln Drive High Point, North Carolina 27260-9945

Re:

Ceramic Tile Pile Closure Certification

EPA ID # NCD 986 181 451

Dear Tony Shaw:

The Hazardous Waste Section received the closure certification from the independent professional engineer and the owner/operator on May 13, 2004 that closure activities for the Ceramic Tile Pile was completed according to the approved closure plan. Additionally, Mr. Ernest Lawrence of the Section conducted a closure inspection on August 30, 2004, and found the facility to be in compliance with the approved closure plan.

Your certification of partial closure for the facility is accepted. A copy of this letter will be forwarded to our Financial Unit. They will address details concerning financial assurance for closure under a separate letter.

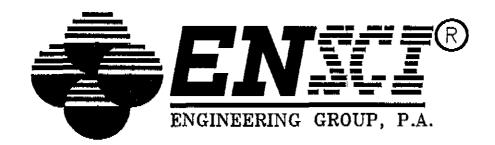
If you have any questions, please contact Karim Pathan at (919) 733-4996 extension 228.

Sincerely,

Robert L. Glaser Unit Supervisor

Facility Management Branch Hazardous Waste Section

cc:


Jon D. Johnston, US EPA, Region 4

Doug Holyfield Jesse Wells Jenny Lopp Ernest Lawrence Bud McCarty Robert Glaser 6

Karim Pathan

1646 Mail Service Center, Raleigh, North Carolina 27699-1646 Phone 919-733-4996 \ FAX 919-715-3605 \ Internet http://wastenotnc.org

An Equal Opportunity / Affirmative Action Employer - Printed on Dual Purpose Recycled Paper

CLOSURE REPORT FOR:

MANNINGTON CERAMIC TILE FACILITY

Closure Report For Settling Ponds

Mannington Ceramic Tile Facility Lexington, North Carolina

Prepared for

Mannington Ceramic Tile

June 29, 1993

Augustus M. Mergenthaler, P.E.

President

ENSCI Engineering Group, P.A.

AL Cox

President and General Manager

Mannington Ceramic Tile

ENSCI Engineering Group, P.A. 1108 Old Thomasville Road High Point, North Carolina 27260 (919) 883-7505

Table of Contents

1.	Introduction	
2.	Closure Methodology	
	2.1 Sludge Stabilization	
	2.2 Cover System	•
	2.2.1 Geo-Composite Layer (CLAYMAX))
	2.2.2 Fill Material	į
	2.2.3 Flexible Membrane Liner	ļ
	2.2.4 Sand Drainage Layer	
	2.2.5 Geotextile	
	2.2.6 Gravel Base	
	2.2.7 Asphalt Roadway	ì
	2.2.8 Slopes 5	,
	2.3 Decontamination of Closure Equipment	,
3.	Quality Assurance Testing	,
	3.1 Chemical Quality	
	3.2 Density	
	3.3 Hydraulic Conductivity 6	
4.	Site Inspection	j
5.	Certification of Closure	,

Tables

Table 1: Analytical Results for Soil Samples

Table 2: Analytical Results for Stabilized Material

Table 3: Schedule of Inspections

Figures

Figure 1: Topographical Map Figure 2: Facility Layout Figure 3: MAN4/As Built Figure 4: Survey Plate

Appendixes

Appendix A: DEHNR Provisions for Closure

Appendix B: Analytical Reports for Soil Samples

Appendix C: Analytical Reports for Stabilized Sludge Samples

Appendix D: Geo Composite Layer Certification Appendix E: Density Results For Fill Material

Appendix F: Flexible Membrane Liner Certification

Appendix G: Drainage Layer (Sand)

Appendix H: Gravel Base Density Testing

Appendix I: Asphalt Density Testing

Appendix J: Analytical Reports for Decontamination Water Appendix K: Disposal Manifests for Drummed Material

Appendix L: Analytical Reports for Fill Material

1. Introduction

ENSCI Engineering Group, P.A. was contracted by Mannington Ceramic Tile to close two settling ponds at their Lexington, North Carolina facility (see Figure 1). The ponds were closed in place in accordance with ENSCI's May 1992 Revised Closure Plan for Settling Ponds and the provisions to the Closure Plan which were issued to Mannington by the North Carolina Department of Environment, Health & Natural Resources (DEHNR), Division of Solid Waste Management on August 13, 1992 (see Appendix A).

The two settling ponds were located at the northern part of the subject site (see Figure 2). They were oriented with the long dimension east-west, and they were bounded on the south side by the main building and on the north by the property line. The ponds consisted of residual sludge from process water, up to 21 feet thick.

2. Closure Methodology

Closure of the two settling ponds included the following activities:

- · Stabilization of the settling pond sludge
- Installation of the cover system
- Decontamination of equipment

2.1 Sludge Stabilization

Sludge in the two settling ponds was stabilized between October 1992 and January 1993.

During all stabilization activities, a silt fence was in place on the downslope side of the ponds. Stabilization was performed by mechanically mixing the sludge with Type I portland cement in the ratio calculated during the treatability study (15 percent) such that long-term potential leachate generation is minimized. Sludge was first mixed with the portland cement using trackhoes. The sludge/portland mixture was then spread out within the settling ponds to a thickness of approximately 1 foot and mixed further with a tractor-mounted rototiller.

Prior to and during stabilization, soil samples were collected adjacent to the sludge (14 samples to assess the horizontal extent) and subadjacent to the sludge (6 samples to assess the vertical extent). The samples were analyzed using the methods indicated in the

DEHNR provisions (Appendix A). Based on the results of these samples, the areal and vertical extent of the sludge was determined (see Figure 3). All soil indicated to be contaminated was mixed with portland cement (and water, as necessary) to stabilize constituents as defined in the DEHNR provisions. Where possible, an additional 2 feet of "clean" soil on the periphery of contaminated soil was also mixed with portland cement and incorporated into the sludge ponds. Results of soil sample analyses are presented in Table 1A-D. Copies of the laboratory reports for these samples are included in Appendix B.

The sludge/portland mixture was tested periodically during stabilization for 16 metals (including the 8 primary RCRA metals) using the TCLP extraction method. Upon completion of stabilization 10 vertically composited samples (5 per pond) were collected and analyzed as specified in the DEHNR provisions. Results of analyses of the 10 vertically composited samples are presented in Table 2A-C. Copies of the original laboratory reports are included as Appendix C. An illustration of the extent of waste material is included as Figure 4.

2.2 Cover System

After stabilization was completed, the surface of the stabilized material was graded to a slope of 3 percent in preparation for the installation of the cover system. A survey was performed at this point and following placement of each layer of the cap to ensure that the slope remained constant at 3 percent at a minimum. Areas which did not meet this criterion were regraded following each survey event.

The cover system consisted of the following components:

- A layer of fill material
- CLAYMAX (geo-composite layer)
- A layer of fill material
- A flexible membrane liner
- A sand drainage layer
- Geotextile fabric
- Gravel base
- An asphalt roadway

Figure 3 presents a typical cross section of the cover and presents the areal extent of the cover system. The steps and procedures utilized to achieve the construction of the cover system are presented below.

2.2.1 Geo-Composite Layer (CLAYMAX)

Due to the increased elevation of the stabilized sludge caused by a greater sludge volume than previously estimated, and the limited availability of low hydraulic conductivity soil, the proposed system was modified. Instead, as provided for in the DEHNR provisions, CLAYMAX, a geo-composite layer with a hydraulic conductivity of 5 E-9 centimeters per second, was placed on top of the stabilized sludge (See Appendix D for Certifications).

2.2.2 Fill Material

A 6-inch lift of offsite borrow was placed above and below the Geo-Composite layer (CLAYMAX). The soil consisted of clay to clay loam textures. The soil was free of all organic materials, sod, peat, perishable, or other deleterious materials. No gravels or stones were allowed in the soil. The six-inch lift of soil was compacted by a minimum of six passes with sheeps foot and/or smooth roll compaction equipment and to a minimum density of 95 percent maximum dry density in accordance with DEHNR provisions. At no time was the minimum number of passes reduced. In accordance with ASTM D-698, the soil was compacted at no less than 2 percentage points below the optimum moisture content and no greater than 3 percentage points above the optimum moisture content. The results of density testing are summarized in Appendix E.

Upon completion of placement, the upper surface of the soil was compacted by three passes of a smooth drum roller to provide a smooth, flat surface for final grading. Grading was accomplished using a road motor grader. The soil was graded to a 3 percent slope in accordance with DEHNR provisions.

2.2.3 Flexible Membrane Liner

The flexible membrane liner (FML) consisted of a one piece of 30-mil very low density polyethylene (VLDPE) membrane material. The FML was placed in such a manner to provide a smooth, flat finished surface. All edges were anchored in a trench with minimum dimensions of 2 feet deep and 1 foot wide. Trench backfill materials consisted of fill materials mechanically tamped in place. The FML was placed as one piece, therefore there were no field seams. A copy of the Quality Control Certification is provided in Appendix F.

2.2.4 Sand Drainage Layer

A 12-inch layer of compacted sand was placed over the FML to provide drainage. The sand consisted of free-draining granular material with no more than 10 percent by weight passing the U.S. Standard No. 200 sieve. Results of a sieve analysis, presented in Appendix G, indicate that only 1.8 percent passed the #100 sieve. The sand was free of organic matter, sod, peat, perishable, or other deleterious materials. The hydraulic conductivity was calculated using the Hazen method to be between 4.1 X 10⁻² to 8.2 X 10⁻² centimeters per second. Sieve analysis and hydraulic conductivity calculations are included as Appendix G.

Placement of sand drain material was accomplished by end dumping at the edge of the excavation and pushing the sand over the membrane with a Caterpillar D-3 bulldozer. At no time was there less than 6 inches of material between the bottom of the tracks and the impervious membrane. No turning of equipment was allowed on the sand or fill material until there was a minimum depth of 1 foot of uncompacted sand over the membrane. No compaction equipment was allowed on the sand until there was a minimum of 14 inches of sand over the membrane. The sand layer was placed at a 3 percent slope minimum.

2.2.5 Geotextile

A geotextile fabric was placed over the drainage layer to prevent fines from the above layers from clogging the drainage layer. The geotextile was placed in such a manner to provide a smooth, flat finished surface. All field joints were overlapped a minimum of 1 foot. All edges were secured in an anchor trench with minimum dimensions of 1 foot deep and 6 inches wide. Trench backfill materials consisted of offsite materials mechanically tamped in place.

2.2.6 Gravel Base

A minimum of 6-inch aggregate base coarse was installed on the geotextile layer. Bags of sand were used to hold the geotextile in place prior to backfilling with gravel. Gravel was placed over the geotextile by end dumping and spreading over the fabric with a Caterpillar D-3 bulldozer. Following placement of the gravel, it was graded to a 3 percent slope. See Appendix H for Density Testing.

2.2.7 Asphalt Roadway

Asphalt was placed to a minimum thickness of 6 inches on the encapsulated material to allow for vehicular traffic. The elevations of the finished asphalt surface are presented in Figure 3. As illustrated, the asphalt layer was placed at the same minimum 3% or greater percent slope which was maintained throughout installation of the cover system. See Appendix I for Asphalt Density Testing.

2.2.8 Slopes

Erosion control Class A stone was used on all slopes. The slopes were placed a minimum of two horizontal to one vertical.

2.3 Decontamination of Closure Equipment

High-pressure steam and phosphate-free soap were used for onsite decontamination of equipment used for closure processes. A temporary decontamination pad was constructed on the parking area and lined with an impermeable plastic material to collect decontamination rinseate. This allowed rinseate to be collected without any runoff to unlined areas. The collected rinseate was pumped to drums and a tanker onsite. It was tested for the constituents specified in the DEHNR provisions to determine the appropriate means of disposal. Analytical results, included in Appendix J, indicated that the rinseate could be discharged to the Publicly Owned Treatment Works (POTW). Therefore, the water was discharged to the City of Lexington wastewater treatment system. The plastic liner on the decontamination pad was removed and disposed of at an offsite facility appropriately permitted to receive and dispose of these wastes. Two drums of debris containing Personal Protective Equipment (PPE) and plastic were disposed of at Laidlaw Environmental Services (see Appendix K for manifests).

3. Quality Assurance Testing

As specified in the May 1992 Closure Plan, several quality assurance tests were performed during sludge pond closure. These tests were performed to ensure the chemical quality, density, and hydraulic conductivity of borrow materials.

3.1 Chemical Quality

Borrow materials, which include fill soils were sampled and analyzed via SW-846 Methods 8240 and 8270 and the RCRA primary metals in TCLP extract. Results are presented in Appendix L. No contaminated borrow material was allowed onsite.

3.2 Density

All placement activities were continuously monitored by a qualified person familiar with soil placement and testing techniques and procedures. Onsite testing consisted of in-place density determination by the Nuclear Density Test method in accordance with ASTM D-3017.

Prior to placement activities, moisture/density tests were performed on representative samples of each material to be placed. The results of these tests were the basis for determining acceptable in-place density criteria.

Testing frequency was a minimum of one test per lift. Any in-place materials not meeting the minimum density requirements were recompacted. Upon completion of in-place testing, the hole created for the test were backfilled with commercially produced bentonite clay pellets, hydrated and hand compacted in a maximum of 2-inch lifts.

3.3 Hydraulic Conductivity

Due to the replacement of low hydraulic conductivity soils by the geotextile composite layer, no hydraulic conductivity testing was required. See Appendix D for certification of hydraulic conductivity of the geotextile composite layer.

4. Site Inspection

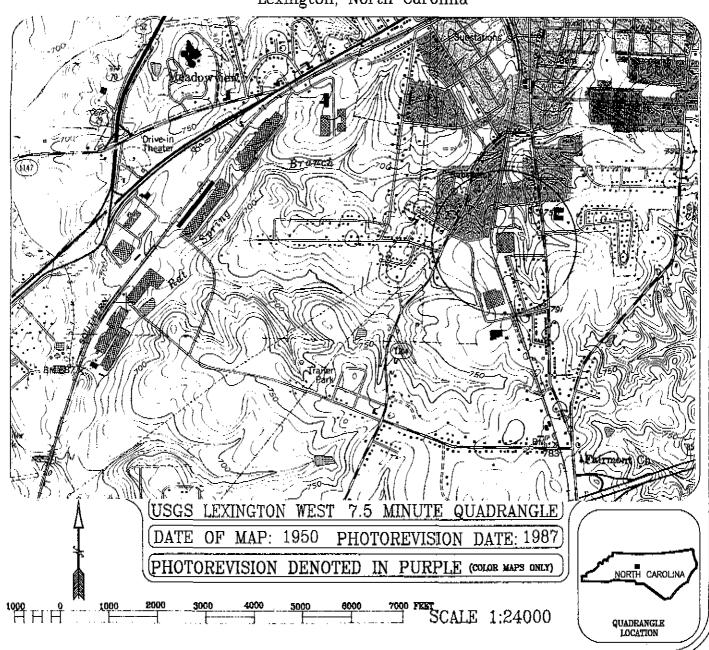
Site inspection by ENSCI Engineering Group, P.A. President Augustus M. Mergenthaler, a North Carolina Professional Engineer was performed at planned intervals during the project. Table 3 illustrates the schedule of these inspections.

5. Certification of Closure

The Hazardous Waste Management Units (sludge ponds) have been closed in accordance with the specifications in the approved Closure Plan and The Provision To Mannington Ceramic Tile's Revised Closure Plan letter from Jerome H. Rhodes, Chief, Hazardous Waste Section dated August 13, 1992.

Augustas M. Mergenthaler, P.E.

President


ENSCI Engineering Group, P.A.

Al Cox

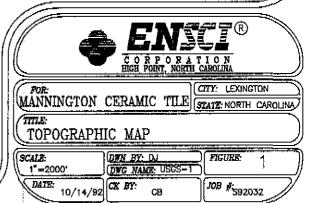
President & General Manager Mannington Ceramic Tile

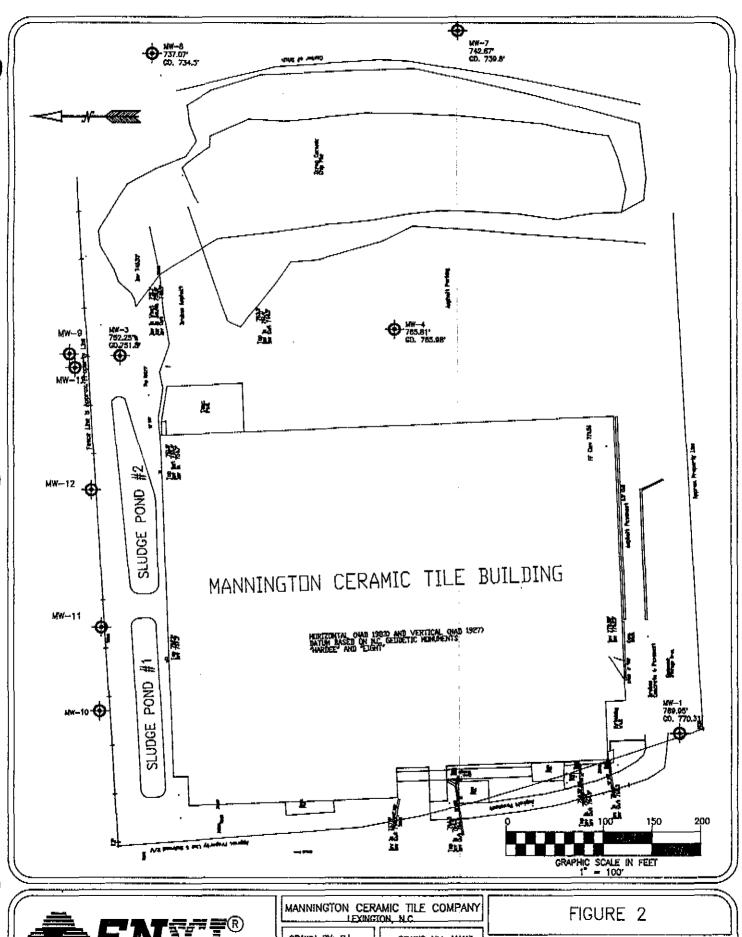
Mannington Ceramic Tile Company Lexington, North Carolina

ROAD CLASSIFICATION

HEAVY-DUTY

MEDIUM-DUTY


LIGHT-DUTY


FOOT TRAIL

WGN & JEEP TRACK

UNIMPROVED ROAD

UNIMPROVED ROAD

ENJIPR REING GROUP, P.A.

ORAWN BY: DJ

CHECKED BY: AM

DRAWG NM: MAN3

CB: AMM

IIILE:

FACILITY LAYOUT

FIGURE 3

Â

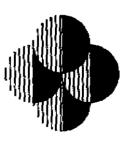
S:

AP FOR THE STABILIZED WASTE MATERIAL IS RUCTED AS FOLLOWS:

STE FILL CONSTRUCTED GENERALLY WITH 3% TOP SLOPE.

YMAX (JAMES CLEM CORP.) WITH HYDRAULIC CONDUCTIVITY 2x10(-9) cm/sec IS PLACED ABOVE THE WASTE. SOIL N 6") IS PLACED ABOVE AND BELOW THE CLAYMAX. SLOPE IS A MINIMUM 3%.

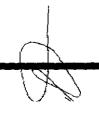
IDLINE @ VL(VLDPE), BY GUNDLE LINING SYSTEMS IS MIL. FLEXIBLE MEMBRANE LINER (FML) CONSTRUCTED A MINIMUM 3% SLOPE FOLLOWED BY:

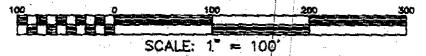

ATER THAN OR EQUAL TO ONE (1) FOOT OF MPACTED SAND FOR DRAINAGE WITH GREATER THAN EQUAL TO 3% SLOPE AND A MINIMUM "K" OF 1.0 E-2 //sec, FOLLOWED BY:

MIRA GEOTEXTILE FABRIC IS LOCATED ABOVE THE ND LAYER, FOLLOWED BY:

MINIMUM OF 6" AND MAXIMUM 18" OF AGGREGATE BASE URSE WAS PLACED IN 6" LIFTS UNDER THE ASPHALT. A MINIMUM 3% SLOPE, FOLLOWED BY:

(6) INCHES OF ASPHALT WITH AT LEAST 3% SLOPE.




FIGURE 4

NOTE: NO KNOWN GRID TIE AVAILABLE WITHIN 2000'.

SURVEY FOR

MANNINGTON CERAMIC TILE COMPANY

N.C. HWY. 8 LEXINGTON DAVIDSON COUNTY, N.C. FEBRUARY 9, 1993

MARK TERRY & Associates

REGISTERED LAND SURVEYOR 10705 H. Moin St., Sullo 300, Arthodol, NC 27283 Phone: (818) 431-2134 FAX: (819) 431-2138 GRANN BY: GAT SURVEYED BY: LMT

JOB NO.: 3049-40-77

Tables

TABLE 1A: Results of TCLP Metals for 'X' Confirmatory Soil Samples (mg/l)

SAMPLE	As	В	Ва	Cd	Co	Cr	Hg	Mn	Ni	Pb	i i i i i i i i i i i i i i i i i i i	Se	'n	Zu Zu
\$1		.42												7,7
S2		6.3				_								
S3		17					.0021						.086	
S4		3.2								.06			.037	
S5		.92						.61					.019	
S6 -		1.5						.45					.032	
S7		.66	1.5					3.7		.10			.015	
S8		4.2		.01				_						
S9		2.I										·-·		
S10		.58											.01	
S11		.42						· ·						
S12		.17	·										.028	
S13		.19								.088			.012	
S14	-	1.6		.007			.002						_	
NCAC 2L .0200	.05		1.0	.005		.05	.0011	.05	.15	.05		.01		5.0
Fed TCLP Limits	5		100	i		. 5.	0.2		7	5				.d

NA = Not Analyzed.

Table 1B

TCLP Metal Results for 'O' Confirmatory Soil Samples (mg/l)

SAMPLE	As	В	Ba	Cd	Co	Cr	Hg	Mn	Ni	Pb	Pr	.⇒.Se	SO ₄	Ti	Zn
B1		.81													
B2		4.3						3.0							
В3		2.6													
В4		1.0													
В5		5.4			-										
В6		1.5													
10 x NCAC 2L .0200	0.5		10.0	.05		.5	.011	.5	1.5	.5		.1	2500		50
Fed TCLP Limits	× , 5		100	1		5	0.2		7	5		. 1			

NA = Not Analyzed.

Results of 8240/8270 Analyses for Confirmatory Soil Samples (mg/kg)

TABLE 1C

		8240 (Vol	ntiles)	der 1800 ja v. (j. 1997) Maja (j. 1980) ja lija ja	8270
Sample =	Acetone	MEK	Methylene Chloride	Benzene	(Semi-Volatiles)
		CONFIRMATO	RY SOIL SAMPL	ES	
Sı					<u> </u>
S2				-	
S3	* -				
\$ 4	.200	1 16	.011		
\$5				:	
S6		.0069			
S7					
\$8		.0063			
S 9					
S10.	180, 181,				
\$11	····			1	
S12					
\$13					
S14				:	
B1:	n			-	
132					
В3	· · · · · · · · · · · · · · · · · · ·				
B4: :					
В5					
n6					
NCAC 2L .0200 Standard		0.005	.001		

^{*} Indicates constituent was detected in the lab blank.

TABLE 1D

Results of Radiological Analyses
on
Confirmatory Soil Samples (PiC/g)

Sample	Gross Alpha	Gross B	Ra 226	Ra 228
S1	15	42	.81	1.7
S2	13	44	.72	.88
S3	45	91	5.9	2.6
S4	22	45	1.1	1.3
S 5	27	73	1.0	3.2
S6	28	52	1.4	1.3
S7	13	51	.81	,71
S8	40	56	5.9	2.8
S9	36	83	.89	2.8
S10	42	67	2.1	3.5
S11	42	110	3.8	3.6
S12	36	75	1.1	2,1
S13	37	74	1.5	2,9
S14	20	26	1.6	1.7
B1	25	100	.99	1.9
B2	20	75	3.7	.91
В3	15	63	.67	1.0
B4	14	51	.69	.70
B 5	9.4	14	1.1	.75
В6	40	72	4,7	2.4

Table 2A

Results of TCLP Metals for Stabilized Sludge (mg/l)

SAMPLE	As	В	Ba	Cd	Co	Cr	Hg	Ma	Ni	Pb	Pr	Se	v	Ti	Zn
1		13.11							· 		.02		.01	.02	
2		19.30													
3		14.49													
4		22.65		.02											
5		1.53					.066							=	
6		1.24					.254		 		 			 	
7		14.68		.25											
8		17.75		.03							<u> </u>				
9		15.83		.07											
10		9.82		.02											
10 X NCAC 2L .0200 Standard	.5		10	.05		.5	.011	.5	1.5	5		:1 :		Les year Face The Control	

--- ---

Results of 8240/8270 Analyses for Stabilized Sludge (mg/kg)

TABLE 2B

CAMPI E		8240 (V	olatiles)			8270 (Semi-Volatiles)
SAMPLE	Acetone	МЕК	Methylene Chloride	Benzene		(Semi-volities)
10.00	du 160 11 11		lized Sludge			. Dasarumas u Tud
1	*-060					
2	*.099					
3	*.092					
4	*.160				<u></u>	
5	*.100					
6	*.048					
7	*.083			11 III ==		
8	*.190			· .		
9	*.096			1		
10	*.110					

^{*} Indicates constituent was detected in the lab blank.

TABLE 2C

Results of Radiological Analyses

on
Stabilized Sludge (PiC/g)

Sample	Gross Alpha	Gross B	Ra 226	Ra 228
1	50	30	4.59	.68
2_	50	40	3.50	.82
3	50	30	4.43	.83
h.h.i. 4 .	30	60	3.23	.84
5	40	30	3.56	.91
б	40	30	3.70	.92
7	40	30	3.30	1.02
8	70	40	3.15	1.22
9	60	40	2.87	1.15
10	50	30	1.78	1.19

Table 3: Schedule of Inspections

Project Stage	Month	Date(s)
	September 1992	17, 28
	October	7, 12, 15, 22, 28
Sludge Solidification	November	12, 16
	December	2, 29
	January 1993	6
	February	9, 15, 25
	March	2, 8, 11 (2 visits)
Cap Construction	April	1, 12
	Мау	11, 19

Appendix A

DEHNR Provisions for Closure

Derd copeer w.

Bob Cotten Q ENSCIE Glory House -

State of North Carolina

Department of Environment, Health, and Natural Resources
Division of Solid Waste Management

James G. Martin, Governor William W. Cobey, Jr., Secretary

August 13, 1992

William L. Meyer Director

CERTIFIED MAIL
RETURN RECEIPT REQUESTED

Mr. Albert R. Cox Jr., President Mannington Ceramic Tile P. O. Box 1777
Lexington, NC 27293-1777

Re: Closure Plan Approval

Mannington Ceramic Tile (MCT)

NCD986181451

Dear Mr. Cox:

This office has reviewed the May 1992 revised closure plan for your facility's sludge ponds.

This letter is to inform you that the public comment period for your revised closure plan dated May 1992 has ended and no comments were received. Your closure plan is hereby approved with the incorporation of the enclosed provisions. MCT can proceed with implementation of the plan. This letter and enclosure should be referenced in the professional engineer's closure certification acknowledging it as part of the approved closure plan.

Please be aware that you must still establish financial assurance for closure and post-closure care of the facility to satisfy the requirements of 40 CFR 265.143 and 265.145 referenced in 15A NCAC 13A .0010 or you will remain in violation of the Compliance Order with Administrative Penalty, Docket #90-164, dated June 11, 1990.

If you have any questions regarding the enclosed comments, please contact Rosemarie Sidorowicz at 919/733-2178.

P. O. Box 27687, Raleigh, North Carolina 27611-7687 Telephone 919-733-4996
An Equal Opportunity Affirmative Action Employer

Robbille

Mr. Albert R. Cox Jr. August 13, 1992 Page 2

Sincerely,

James 14. Render

Jerome H. Rhodes, Chief Hazardous Waste Section

JHR/RAS/mb MCTSPNOD.doc

Enclosure

cc: William F. Hammer
James A. Carter
Robert Glaser
Gray Stevens

R. Douglas Holyfield

Linda Mann Judy Bullock Steve Phibbs A. Karim Pathan

Rosemarie Sidorowicz

PROVISIONS TO MANNINGTON CERAMIC TILE'S REVISED CLOSURE PLAN

(This office has added these conditions in accordance with 265.112(d)(4))

- 1. Any piping that lead to the ponds, if present, must be properly removed. Porous piping containing hazardous constituents must be properly disposed of in accordance with applicable regulations. Non-porous piping must be properly decontaminated.
- 2. The area underneath any piping must not contain any contaminated or stabilized material that is left outside the cap. This must be shown by confirmatory samples.
- 3. The stabilized material, as stated in the revised closure plan, must be analyzed as follows:

Constituents^

Analytical Method*

numerophle overnies	PDN Mothed 9240
purgeable organics	EPA Method 8240
base/neutral/acid extractable organic	
arsenic	206.2
barium	200.7
cadmium	200.7
chromium	200.7
lead .	200.7
mercury	245.1
selenium	270.2
silver	200.7
cobalt	219.1 ' ·
manganese	200.7
nickel	249.1
zinc	200.7
sulfate	EPA Approved Method
titanium	200.7 or EPA Approved Method
vanadium	200.8
boron	200.7
praseodymium	200.7
bromine	9022a (SW-846)
gross alpha	9310 (SW-846)
gross beta (as indicated, in millirem	•
radium 226 and 228	7500 (Standard Methods)

NOTE: All of the metals must first be extracted by the TCLP procedure, and then have the resulting extract analyzed by the methods as indicated.

*The 200 series methods above are from EPA's Methods for Chemical Analysis of Water and Waste, 1982.

- 4. All material in the sludge ponds must be stabilized such that no leachate exceeds 10x the current drinking water standards.
- 5. Prior to implementing closure, the horizontal and vertical boundaries of the material in the ponds to be stabilized, must be identified.
- 6. Therefore, prior to stabilization MCT must obtain at least three confirmatory samples from beneath the vertical extent of the sludge material in each pond to be stabilized. These sample locations are denoted by a "o" on Figure 2 (attached) and will represent the constituent concentrations remaining "in-place".

The leachate from sample locations denoted by a "o" must not exceed 10x the current drinking water standards.

In addition, MCT must obtain at least fourteen (14) confirmatory samples from outside the horizontal extent of the sludge material in both ponds to be stabilized. These sample locations are denoted by an "x" on Figure 2 (attached).

If contamination+ is found in the "x" samples, this material must be removed or stabilized. No contaminated or stabilized material can be left outside the cap. Therefore, confirmatory soil samples, (x's), for metals must not exceed drinking water standards and for organics, concentrations over the applicable detection limits for the analytical methods stated in item 3 must not be exceeded.

As a result, the area to be stabilized may have to be expanded and additional confirmatory samples obtained.

NOTE: contamination+ for the purpose of the "x" samples means concentrations over the current drinking water standards and for organics, concentrations over the applicable detection limits for the analytical methods stated in item 3.

 Confirmatory samples (x's and o's) must be analyzed for the constituents listed in item 3 on the previous page of this letter.

In addition, the sampling and analysis of the stabilized waste as proposed on page 6 of the May 1992 closure plan, must also include the constituents listed in item 3 on the previous page of this letter.

- 8. As part of closure certification, the areal and vertical extent of the stabilized material must be shown in relation to the confirmatory samples obtained. In addition, a diagram indicating the area of the cap must also be provided.
- 9. The cap over the compacted*, stabilized material shall be constructed as follows:

- 1. Fill as necessary for grade (greater than or equal to 3%)
- 2. Greater than or equal to two (2) feet of compacted* soil to be placed in four equal lifts, that has an in place saturated hydraulic conductivity of less than or equal to 1.0 x 10 cm/sec or a geo-composite layer (e.g. claymax) and greater than or equal to 3% slope followed by;
- 3. 30 mil FML (flexible membrane liner) with greater than or equal to 3% slope followed by;
- 4. Greater than or equal to one (1) foot of dompacted* sand for drainage with greater than or equal to 3% slope and a minimum K of 1.0 E-2 cm/sec, followed by:
- Geotextile fabric to prevent the sand drain from clogging, followed by;
- 6. As proposed, 6* of aggregate base coarse with at least a 3* slope, followed by;
- 7. Six (6) inches of asphalt with at least a 3% slope.
- NOTE: compacted* for the purpose of this closure means 95% maximum proctor density. This is necessary due to the use of the cap as a road base.
- 10. If the final grade for the cap exceeds 5%, erosion control such as rip-rap must be used on any unpaved portion.
- 11. Fill material must only consist of non-hazardous borrow material.
- 12. Trench backfill materials must consist of non-hazardous excavated materials.
- 13. The sand drainage layer must slope to an exit drain.
- 14. Rinsate from the decontamination process should be collected such that there is no run-off to any unlined portion of the soil or parking area.
- 15. Before routing any decontamination rinsate to the POTW, a waste determination must be completed on the washdown. The rinsate must be sampled and analyzed for the list of constituents previously identified as being required for the confirmatory samples. If hazardous waste, it must be managed as such and not be sent directly to the POTW.

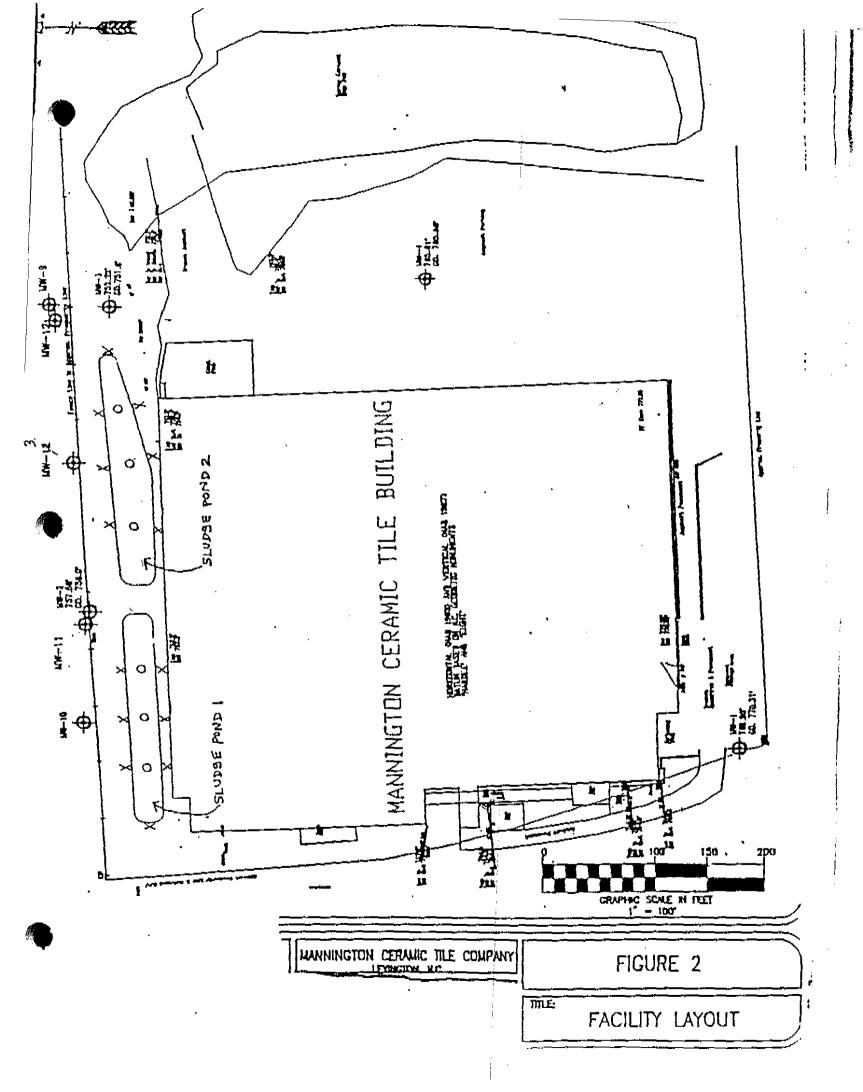
- 16. If rinsate is found to contain hazardous constituents, the impermeable plastic material used to line the decontamination pad must be properly removed and disposed of.
- 17. During mixing, it is suggested that steps are taken to avoid contamination of the area outside the ponds (e.g. use of plastic sheeting, silt fence, etc.).
- 18. The sludge pond closure cost estimate in Attachment D should be revised to include cost estimates for decontamination and propers disposal of materials used during closure. Cost estimates for sampling and analysis should be adjusted to reflect the additional confirmatory sampling.
- 19. The closure cost estimate will be revised no later then 30 days after a revision of the closure plan has been made that will increase the cost of closure.
- 20. In addition to the independent, registered, professional engineers signature, the closure certification must also be signed by the owner or operator of the facility.
- 21. Within 60 days of certification of closure, MCT must submit to the Davidson County Register of Deeds and to this office, a survey plat indicating the location and dimensions of the units with respect to the permanently surveyed benchmarks.
- 22. The notation in the deed to the facility property, or on some other instrument which is normally examined during a title search that is required by 40 CFR 265.119(b) must be recorded within 60 days of closure certification.
- 23. No later than 60 days after certification of closure, MCT must submit to the local zoning authority and this office a record of the type, location, and quantity of hazardous wastes disposed of within the sludge ponds.
- 24. Within 60 days of certification of closure, MCT must submit to this office a certification signed by the owner or operator, that the information required by 40 CFR 265.119(b) was recorded. A copy of the document in which the notations were placed must be provided to this office.
- 25. If any material besides asphalt will be the top layer for the cap, a revised diagram must be submitted to this office indicating where these components are to be placed prior to installation.
- 26. MCT must submit a separate plan to this office for post-closure care within 30 days of the date of this approval letter.

- 27. Page 12 of the closure plan states that MCT will monthly inspect the vegetative cover of the closed sludge ponds. All components of the cap (i.e. asphalt, vegetative cover, rip-rap must be inspected.
- 28. Page 12 of the closure plan also states that MCT will monthly inspect the run-on/run-off control systems for the closed sludge ponds. MCT must obtain approval from this office prior to closure completion of the location and construction designs of any type of run-on/run-off control systems.
- 29. MCT must maintain an on-site copy of the most current post-closure care plan and all revisions until certification of closure has been submitted and accepted by this office. One copy of the post-closure care plan and all revisions must be kept in the general manager's office and the plant engineer's office.

[40 CFR 265.118(b)]

30. Any hazardous material including rinsate, must be properly disposed of within ninety (90) days of generation. Closure must be completed within 180 days after the date of this approval letter.

[40 CFR 265.113]


31. A detailed schedule of the date of completion for each closure activity must be submitted to this office within 30 days of the date of this approval letter.

[40 CFR 265.112(b)(6) and (7)]

32. Employees and contract workers managing hazardous waste must have 40 hours of OSHA training and 8 hours of annual update. Personnel training records must be maintained on-site until closure of the facility.

[40 CFR 262.34 and 40 CFR 265.16]

- 33. Contaminated material must not be stockpiled outside of the waste management unit. Treatment must be done within the boundaries of the waste management unit.
- 34. Test ten (10) seam locations for seam integrity in the FML.

Appendix B

Analytical Reports for Soil Samples

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A82791-1

March 17, 1993

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile

Table

Reviewed & Approved by:

Carmine M. Fioriglio

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

		<u>Page</u>
I.	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
٧.	Laboratory Chronicle	5
VI.	Extraction Log	6
vII.	Outlier Summary	7
VIII.	Analytical Results	8 - 10
IX.	Quality Control Data	11

ì,

I. <u>Certification</u>

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038		· · · · · · · · · · · · · · · · · · ·	New Jersey	82869
Pennsylvania	68366				
S. Carolina	94004				
Tennessee	02908				
Vermont	*		······································		
Oklahoma	9107				

^{*} No certification numbers are issued for these states.

II. Definition of Terms

TC

ug

Toxic Characteristic

Micrograms

AnalytiKEM

Term	<u>Definition</u>
DI	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NA	Analysis not applicable to the sample matrix.
ND	Not Detected
NR	Not Requested
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
υ	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
mg/L	Milligrams of constituent per liter of TCLP Leachate; equivalent to parts-per-million (ppm).
CCC	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL '	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
TCLP	Toxic Characteristic Leachate Procedure
ZHE	Zero Headspace Extraction

III. Sample Designations

AnalytiKEM
Date Sampled

AnalytiKEM <u>Designation</u>	Client Designation	<u>Matrix</u>	Date <u>Sampled</u>
A82791-2	S1	Nonaqueous	10/12/92
A82791-3	S2	Nonaqueous	10/12/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

IV. Methodology

AnalytikEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

1

V. Laboratory Chronicle

AnalytiKEM

DATE

	I	rr
Date Sampled	10/12/92	
Receipt/Refrigeration	10/13/92	
TCLP Extractions		
TC Extraction	1/14/93	
Sample Preparations		
Metals: General Mercury Furnace	1/15/93 1/15/93 1/15/93	***************************************
<u>Analyses</u>		
Metals: General Mercury Furnace	1/17/93 1/15/93 1/17/93	
Laboratory Manager Review & Approval		Palmer, Jr. 7-93

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

VI. Extraction Log

AnalytiKEM

Sample Designation	TCLP		ion Fluid
<u>besignation</u>	Extraction, (g)	Type vo	olume (ml)
A82791-2	50	1	1,000
A82791-3	50	1	1,000

ţ

AnalytiKEM

Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP) VII.

No Compounds were reported above the Regulatory Limits for the following samples:

> A82791-2 S1 A82791-3 S2

١

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A82791-2

Client Designation: Sl

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	0.05
D005	Barium	< 1.0	< 1.0	1.0
D006	Cadmium	< 0.005	< 0.005	0.005
D007	Chromium	< 0.050	< 0.050	0.05
D008	Lead	< 0.050	< 0.050	0.05
D009	Mercury	< 0.0011	< 0.0011	0.0011
D010	Selenium	< 0.010	< 0.010	0.01
D011	Silver	< 0.050	< 0.050	0.05
	Vanadium	< 0.050	< 0.050	_ = =
	Cobalt	< 0.050	< 0.050	
	Titanium	< 0.050	< 0.050	
	Boron	< 0.10	0.43	
	Praseodymium	< 0.10	< 0.10	
Units		(mg/l)	(mg/l)	(mg/l)

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A82791-3

Client Designation:

<u> 52 _____</u>

EPA <u>Number</u>	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	0.05
D005	Barium	< 1.0	< 1.0	1.0
D006	Cadmium	< 0.005	< 0.005	0.005
D007	Chromium	< 0.050	< 0.050	0.05
р008	Lead	< 0.050	< 0.050	0.05
D009	Mercury	< 0.0011	< 0.0011	0.0011
D010	Selenium	< 0.010	< 0.010	0,01
D011	Silver	< 0.050	< 0.050	0.05
	Vanadium	< 0.050	< 0.050	=
	Cobalt	< 0.050	< 0.050	
	Titanium	< 0.050	< 0.050	
	Boron	< 0.10	6.3	
	Praseodymium	< 0.10	< 0.10	
Units		(mg/1)	(mg/l)	(mg/l)

Ŋ.

IX. Quality Control Data

AnalytiKEM

TCLP Procedure

<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A60651-11

<u>Parameter</u>	Amount <u>of Spike</u>	Recovery <u>MS</u>
Arsenic	300	108
Barium	300	99
Boron	300	97
Cadmium	300	100
Chromium	300	100
Cobalt	300	96
Lead	300	98
Mercury	20	81
Selenium	300	74
Silver	300	95
Vanadium	300	97
Titanium	300	95
Praseodymium	300	82
Units	(ug)	(%)

4

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A82824-1

March 17, 1993

Prepared for:

ENSCI 1108 Thomasville Road High Point NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (\$92032)

Reviewed &
Approved by:

Name: Carmine M. Fioriglio

Title: QA/QC Manager

13

AnalytiKEM

TABLE OF CONTENTS

		<u>Page</u>
I.	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
v .	Laboratory Chronicle	5
VI.	Extraction Log	6
VII.	Outlier Summary	7
VIII.	Analytical Results	8 - 9
IX.	Quality Control Data	10

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N, Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvania	68366				
S. Carolina	94004				
Tennessee	02908				
Vermont	×				
Oklahoma	9107				

^{*} No certification numbers are issued for these states.

II. Definition of Terms

AnalytiKEM

<u>Term</u>	<u>Definition</u>

DI Deionized Water

J Compound was detected at levels below the practical

quantitation limit. The level reported is approximate.

MS/MSD Matrix Spike/Matrix Spike Duplicate

NA Analysis not applicable to the sample matrix.

ND Not Detected

NR Not Requested

RPD Relative Percent Difference

RSD Relative Standard Deviation

U Compound was analyzed for but not detected. The preceding number

is the practical quantitation limit for the compound.

mg/L Milligrams of constituent per liter of TCLP Leachate; equivalent

to parts-per-million (ppm).

CCC Calibration Check Compound; used to verify the precision of a

GC/MS calibration curve.

SPCC System Performance Check Compound; used to verify the correct

operation of a GC/MS instrument.

PQL Practical Quantitation Limit; the minimum level at which

compounds can be dependably quantitated.

TCLP Toxic Characteristic Leachate Procedure

ZHE Zero Headspace Extraction

TC Toxic Characteristic

ug Micrograms

Test Report No. A82824 Page 3

Sample Designations III.

AnalytiKEM

AnalytiKEM

Client

Date

<u>Designation</u>

Ţ

Designation

<u>Matrix</u>

<u>Sampled</u>

A82824-1

\$3

Nonaqueous

10/20/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

IV. Methodology

٠,

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

V. Laboratory Chronicle

AnalytiKEM

DATE

	I ;	II
Date Sampled	10/20/92	
Receipt/Refrigeration	10/21/92	
TCLP Extractions		
TC Extraction	1/14/93	
Sample Preparations		
Metals: General Mercury Furnace	1/15/93 1/15/93 1/15/93	
<u>Analyses</u>		
Metals: General Mercury Furnace	1/17/93 1/15/93 1/17/93	
Laboratory Manager Review & Approval	(Signature) (Printed Name) (Date)	Falmer, Jr.

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A82824 Page 6

VI. Extraction Log

AnalytiKEM

Sample TCLP Extraction Fluid Extraction (g) Type Volume (ml)

A82824-1 50 1 1,000

"

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

AnalytiKEM Designation: A82824-1

Client Designation: S3

EPA HW Level Found in Regulatory
Number Contaminant TCLP Extract (mg/l) Level (mg/l)

D009 Mercury 0.0021 0.0011

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A82824-1

Client Designation: S3

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
D004 D005	Arsenic Barium	< 0.50 < 1.0	< 0.54 < 1.0	0.05 1.0
D006	Cadmium	< 0.005	< 0.005	0.005
D007 D008	Chromium Lead	< 0.050 < 0.050	< 0.050 < 0.050	0.05 0.05
D009	Mercury	< 0.0011	0.0021	0.0011
D010 D011	Şelenium Silver	< 0.010 < 0.050	< 0.010 < 0.050	0.01 0.05
D012	Cobalt	< 0.050	< 0.050	
DO16 DO17	Titanium Vanadium	< 0.050 < 0.050	0.086 < 0.050	
D017 D018	Boron	< 0.10	17	
D019	Praseodymium	< 0.10	< 0.10	- -
Units		(mg/l)	(mg/l)	(mg/l)

ų.

IX. Quality Control Data

AnalytiKEM

TCLP Procedure

<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A60651-11

Parameter	Amount <u>of Spike</u>	Recovery MS_
Arsenic	300	108
Barium	300	99
Boron	300	97
Cadmium	300	100
Chromium	300	100
Cobalt	300	96
Lead	300	98
Mercury	20	81
Selenium	300	74
Silver	300	; 95
Vanadium	300	97
Titanium	300	95
Praseodymium	300	82
Units	(ug)	. (%)

ķ

AnalytiKEM Inc. 28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60651

January 19, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed & Approved by:

Name: Carmine M. Piorighto

Title: QA/QC Manager

4

AnalytiKEM

TABLE OF CONTENTS

		Page
I.	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
٧.	Laboratory Chronicle	5
VI.	Extraction Log	6
VII.	Outlier Summary	7
VIII.	Analytical Results	8
IX,	Quality Control Data	9

.

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	рн-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117		:	Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038		: : :	New Jersey	82869
Pennsylvania	68366				
S, Carolina	94004				
Tennessee	02908				
Vermont	*				
Oklahoma	9107				

^{*} No certification numbers are issued for these states.

Micrograms

ug

II. <u>Definition of Terms</u>

AnalytiKEM

Term	<u>Definition</u>
DI	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NA	Analysis not applicable to the sample matrix.
ИД	Not Detected
NR	Not Requested
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
U	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
mg/L	Milligrams of constituent per liter of TCLP Leachate; equivalent to parts-per-million (ppm).
ccc	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL *j	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
TCLP	Toxic Characteristic Leachate Procedure
ZHE	Zero Headspace Extraction
TC	Toxic Characteristic

Test Report No. A60651 Page 3

III. Sample Designations

Sample Designations		AnalytiKEM	
AnalytiKEM	Client		Date
<u>Designation</u>	Designation	<u>Matrix</u>	Sampled
A60651-1	В5	Nonaqueous	12/28/92
A60651-2	s7	Nonaqueous	12/29/92
A60651-3	S 6	Nonaqueous	12/29/92
A60651-4	S 5	Nonaqueous	12/29/92
A60651-5	S8	Nonaqueous	12/29/92
A60651-6	\$9	Nonaqueous	12/29/92
A60651-7	S10	Nonaqueous	12/29/92
A60651-8	S 4	Nonaqueous	12/29/92
A60651-9	\$14	Nonaqueous	12/30/92
A60651-10	S12	Nonaqueous	12/30/92
A60651-11	s13	Nonaqueous	12/30/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

Test Report No. A60651 Page 4

IV. Methodology

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

V. Laboratory Chronicle

AnalytiKEM

DATE

	r ·	II
Date Sampled	12/28 - 12/30/92	
Receipt/Refrigeration	1/04/93	
TCLP Extractions		
TC Extraction	1/06/93	
Sample Preparations		
Metals: General Mercury Furnace Analyses	1/14/93 1/14/93 1/14/93	
Metals: General Mercury Furnace	1/14/93 1/15/93 1/15/93	
Laboratory Manager Review & Approval	(Signature) Edward J. (Date)	Pilmer, Jr.

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A60651 Page 6

VI. <u>Extraction Log</u>

AnalytiKEM

Sample	TCLP	Extraction Fluid	
<u>Designation</u>	Extraction, (g)	Type V	olume (ml)
A60651-1	500	1 .	1,000
A60651-2	500	1,	1,000
A60651-3	500	1	1,000
A60651-4	500	1	1,000
A60651-5	500	1	1,000
A60651-6	500	1	1,000
A60651-7	500	1	1,000
A60651-8	500	1	1,000
A60651-9	500	1	1,000
A60651-10	500	1	1,000
A60651-11	500	1	1,000

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A60651-1 **B**5 **s**7 A60651-2 A60651-3 S6 A60651-4 \$5 A60651-5 S8 A60651-6 \$9 A60651-7 \$10 A60651-8 S4 A60651-9 **S14** A60651-10 **S12** A60651-11 \$13

ţ.

AnalytiKEM

VIII. Analytical Results

TCLP Metals

AnalytiKEM Designation: A60651-1

Client Designation: B5

EPA Number	Parameter	Method Blank	Sample Res <u>ult</u>	Regulatory Level
21 22 22 22	24114110001	A 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	<u> </u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
8000	Lead	< 0.050	< 0.050	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
-	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	5,4	=
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.021	
Units		(mg/l)	(mg/l)	(mg/l)

AnalytiKEM Designation: A60651-2

EPA <u>Number</u> ,	<u>Parameter</u>	Method Blank	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	1.5	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	0.10	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
=	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	0.66	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.015	
Units		(mg/1)	(mg/l)	(mg/l)

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A60651-3

Client Designation: S6

EPA <u>Number</u>	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	< 0.050	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
-	Çobalt	< 0.050	< 0.050	
#	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	1.5	
-	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.032	
Units		(mg/l)	(mg/l)	(mg/l)

AnalytiKEM Designation: A60651-4

Client Designation: S5____

EPA <u>Number</u> ,	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmiun	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	< 0.050	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
-	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	0.92	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.019	
Units		(mg/1)	(mg/1)	(mg/l)

AnalytiKEM

VIII. Analytical Results (Cont'd)

TCLP_Metals

AnalytiKEM Designation: A60651-5

Client Designation: S8

EPA <u>Number</u>	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	0.010	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	< 0.050	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	4.2	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	< 0.010	
Units		(mg/l)	(mg/l)	(mg/l)

AnalytiKEM Designation: A60651-6

EPA <u>Number</u> ,	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
p004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	< 0.050	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
DOLL	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
	Vanadiwn	< 0.050	< 0.050	
	Boron	< 0.10	2.1	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	< 0.010	
Units		(mg/l)	(mg/l)	(mg/l)

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: _A60651-7

Client Designation: S10

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
р006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	0.34	5,0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	1.5	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	< 0.010	
Units		(mg/1)	(mg/l)	(mg/l)

AnalytiKEM Designation: A60651-8

EPA Number	<u>Parameter</u>	Method Blank	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	0.10	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	3.2	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.037	
Units		(mg/1)	(mg/1)	(mg/l)

Page 12

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A60651-9

Client Designation: S14

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	0.007	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	< 0.050	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1,0
DO11	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	1.6	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	< 0.010	
Units		(mg/l)	(mg/l)	(mg/l)

AnalytiKEM Designation: A60651-10

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	< 0.050	5.0
000g	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
-	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	0.17	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.028	
Units		(mg/l)	(mg/1)	(mg/1)

AnalytiKEM

VIII. Analytical Results (Cont'd)

TCLP Metals

AnalytiKEM Designation: A60651-11

Client Designation: S13

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
ססס	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	0.088	5,0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	0.19	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.012	
Units		(mg/l)	(mg/l)	(mg/l)

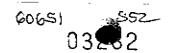
AnalytiKEM Designation: A60651-11 (Duplicate)

EPA <u>Number,</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barlum	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	0.077	5.0
D009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	0.18	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.016	* * *
Units		(mg/l)	(mg/l)	(mg/l)

IX. Quality Control Data

AnalytiKEM

TCLP Procedure


<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A60651-11

<u>Parameter</u>	Amount <u>of Spike</u>	Recovery <u>MS</u>
Arsenic	100	108
Barium	300	99
Boron	300	97
Cadmium	300	100
Chromium	300	100
Cobalt	300	96
Lead	300	98
Mercury	20	81
Selenium	100	74
Silver	300	95
Vanadium	300	97
Titanium	100	95
Praseodymium	100	82
Units	(ug)	(%)

Reorder: PJ Associates 803-329-2300

AKEM #1 12/89

Chain-of-Custody Record

					U	ilaiii C	,, ()	45100	.,	COOL	u			
•	Area: Drinking to ENSC1			Sa	ımple Coile	Hazardous octor:	tive_				Rock Hill, 303) 324	nsdale Road South Carolina 29731	Rock Hill, (803) 329-	Anderson Road BTC 53 South Carolina 29730
ITEM NUMBER	SAMPLE DESIGNATIO	N DA	TE TIME	MATRIX	Gigi Gigi	2 10 1 40 (1)		(R) (R)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(3 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5 ° 5		PARAMETERS	
1.	B5	12 m	1430	501/	G	2				1 3	1 1	8240,8270, 8 Re 226-228, Br.	soy Ar	, grard, sross R, valyses peratbul
2	57	12-1	1 1 1 4	11	G	, a	2			/ 3				
3	56	9.		te	G		2			/ 3				
4	55	. 9) å	G	2				1 3				
5	58	12	· Ki 2 1415	ч	6	â	2			1 3				
6	59	12	29 1440		6	2				/ 3				
7	510	12-	سريس کچھ			2			 	13				
8	54	13 -a	75	/\	6	ن م				13				
9	514	112 133	\$ 11.00	 	G	1 2	2			13				
10	512	12-9	1 1 2 2	(*	6	2				1 3		1		4
TRANSFER	ITEM NUMBER		RANSFERS NQUISHED		2	TRANSFERS			TIME	REMARI		turnama		
1	1-10	Steve	Stade	low	Pla	dy S	ere	12-30	140	}	1.0	turnama. # 3189	14	
2	1-10	Grad	y fa	~C	an.	Hules	مفك	12-30		<u></u>			_	
3	1-10	J. Wil	Dies		1/ 1/	M/M] 1]	رازي ر		lee	Model	in_	
1		/				1				SAMPLE	R'S SIG	NATURE		

White Laboratory Copy

Yellow Client Copy

ustody Record

	Area: Drinking										5/x	de	lmas	_	23		dale Road outh Carolina 29731	Sales Office 454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730
Project:	. 5920	132			Ап	alytiKe	EM Co	ntact:		40,	lley	,	·)3) 324-5 x: (803) :	310 324-8378	(803) 329-9690 Fax: (803) 329-9689
NUMBER	SAMPLE DESIGNATI			TIME	MATRIX	<u> </u>		10 A	,	$\overline{}$			\overline{Z}	$\overline{}$, ut . ut		PARAMETERS
	513		12-30	1215	5.1	G			7					1	3	/	8240, 8270 : (4 226-228; BGS	Ref metals, grossed, gross p. Dy. Analyse perathelist
2			<u> </u>			-										_		<u> </u>
4																		
5										_					:			
6																		
7	····					-	<u> </u>											
8		·	<u> </u>			<u>.</u>	ļ <u>-</u> .									- -		
9							ļ											
10		··																
TRANSFER	ITEM NUMBER		TRA	NSFERS UISHED				RANSF CEPTE		<u> </u>			TIME		MARKS		L turnan	med.
1	/	La	n Sto	de In	yla_	D	ra	dy	Ea	ب		2-30 92	1410	?	,	2	L turnari # 318	94
2	/	J.	seedy,	L) ma	Ja	net		m	les		12 pt	160	<u>_</u>				/ /
3	1	Ja	net l	Vin	les	1	_///	d/M	د		\	4/11	Mor	 			Stolely	
4 Beards	er: PJ Associates	902-220-22	100				19	Yhite I	shoret	oor Co		Yello	w Clia	<u> </u>		'S SIGN	41UHE	AKEN #1 12/89

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60651, Supplemental

February 4, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed & Approved by:

Name: Carmine M. Fioriglio

Title: QA/QC Manager

9

AnalytikEM

TABLE OF CONTENTS

		<u>Page</u>
ï.	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
٧.	Laboratory Chronicle	5
VI.	Extraction Log	6
VII.	Outlier Summary	7
VIII.	Analytical Results	8 - 11
IX.	Quality Control Data	12

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory.

Cherry Hill, NJ		Rock Hill, SC		Houston Analyti	cal, TX
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258		· ·	Wisconsin	998010530
N. Dakota	R-038		:	New Jersey	82869
Pennsylvania	68366		1		
S. Carolina	94004		1		
Tennessee	02908				
Vermont	*				
Oklahoma	9107				

^{*} No certification numbers are issued for these states.

II. <u>Definition of Terms</u>

AnalytikEM

Definition Term

DI Deionized Water

J Compound was detected at levels below the practical

quantitation limit. The level reported is approximate.

MS/MSD Matrix Spike/Matrix Spike Duplicate

ÑΑ Analysis not applicable to the sample matrix.

ND Not Detected

NR Not Requested

RPD Relative Percent Difference

Relative Standard Deviation RSD

Ų Compound was analyzed for but not detected. The preceding number

is the practical quantitation: limit for the compound.

mg/L Milligrams of constituent per liter of TCLP Leachate; equivalent

to parts-per-million (ppm).

CCC Calibration Check Compound; used to verify the precision of a

GC/MS calibration curve.

SPCC System Performance Check Compound; used to verify the correct

operation of a GC/MS instrument.

PQL Practical Quantitation Limit; the minimum level at which

compounds can be dependably quantitated.

TCLP Toxic Characteristic Leachate Procedure

ZHE Zero Headspace Extraction

Toxic Characteristic TC

Micrograms ug

III. Sample Designations

AnalytiKEM

AnalytiKEM <pre>Designation</pre>	Client <u>Designation</u>	<u>Matrix</u>	Date <u>Sampled</u>
A60651-1 A60651-2 A60651-3 A60651-4 A60651-5 A60651-6 A60651-7 A60651-8 A60651-9 A60651-10 A60651-11	85 S7 S6 S5 S8 S9 S10 S4 S14 S12 S13	Nonaqueous Nonaqueous Nonaqueous Nonaqueous Nonaqueous Nonaqueous Nonaqueous Nonaqueous Nonaqueous	12/28/92 12/29/92 12/29/92 12/29/92 12/29/92 12/29/92 12/29/92 12/29/92 12/29/92
WOOGDI-TI	27.2	Nonaqueous	12/30/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

4

IV. Methodology

4

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

V. Laboratory Chronicle

AnalytiKEM

DATE

	ı	II
Date Sampled	12/28 - 12/30/92	
Receipt/Refrigeration	1/04/93	
TCLP Extractions		
TC Extraction	1/06/93	
Sample Preparations		
Metals: General	1/14/93	
Analyses		
Metals: General	1/25/93	1. Non 1
Laboratory Manager (S Review & Approval (Prin	ignature) COULD ited Name) Edward J. (Date) /2/	Palmer, Jr.

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. Acutol Page 6

VI. Extraction Log

AnalytiKEM

Sample	TCLP	Extract	ion Fluid
<u>Designation</u>	Extraction, (g)	Type Vo	<u>lume (ml)</u>
A60651-1	50	1 :	1,000
A60651-2	50	1	1,000
A60651-3	50	1 !	1,000
A60651-4	50	1	1,000
A60651-5	50	1 :	1,000
A60651-6	50	1:	1,000
A60651-7	50	1	1,000
A60651-8	50	1	1,000
A60651-9	50	1.	1,000
A60651-10	50	1	1,000
A60651-11	50	1	1,000

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A60651-1 В5 A60651-2 **S7** A60651-3 **S**6 A60651-4 \$5 A60651-5 \$8 A60651-6 S 9 A60651-7 \$10 A60651-8 54 A60651-9 **S14** A60651-10 S12 A60651-11 S13

Ť

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A60651-1

Client Designation:

<u>B5</u>

EPA <u>Number</u>	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
	Manganese	< 0.15	0.46	
	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	3.2	
Units		(mg/l)	(mg/l)	(mg/1)

AnalytikEM Designation: A60651-2

Client Designation:

S.7.

EPA <u>Number</u>	<u>Parameter</u>	Method Blank	Sample <u>Result</u>	Regulatory Level
	Manganese	< 0.15	3.7	
	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	0.60	
Units		(mg/1)	(mg/1)	(mg/l)

4

AnalytiKEM Designation: A60651-3

Client Designation:

<u> 86 __</u>

EPA <u>Number</u>	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
	Manganese	< 0.15	0.45	
	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	0.43	
Units		(mg/l)	(mg/l)	(mg/l)

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A60651-4

Client Designation: <u>\$5</u>

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
=	Manganese	< 0.15	0.61	
	Nickel	< 0.40	< 0.40	 -
	Zinc	< 0.20	2.5	
Units		(mg/l)	(mg/l)	(mg/l)

AnalytikEM Designation: A60651-5

Client Designation:

<u>\$8</u>

EPA <u>Number</u>	<u>Parameter</u>	Method Blank	Sample <u>Result</u>	Regulatory <u>Level</u>
	Manganese	< 0.15	< 0.15	
-	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	3.6	- -
Units		(mg/1)	(mg/l)	(mg/l)
'}				

AnalytiKEM Designation: A60651-6

Client Designation:

EPA Number	Parameter	Method Blank	Sample <u>Result</u>	Regulatory <u>Level</u>
	Manganese	< 0.15	< 0.15	
	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	2.4	
Units		(mg/l)	(mg/l)	(mg/l)

Test Report No. A60651

Page 10

Analytical Results (Cont'd) .IIIy

AnalytikEM

TCLP Metals

AnalytikEM Designation: A60651-7

Client Designation:

\$10

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
	Managaga	< 0.15	< 0.15	
	Manganese Nickel	< 0.13	< 0.40	
	Zinc	< 0.20	0.81	
- 	ZINC	₹ 0.20	0,01	
Units		(mg/l)	(mg/l)	(mg/l)

AnalytiKEM Designation: A60651-8

Client Designation:

54

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
	Manganese	< 0.15	< 0.15	
	Nickel	< 0.40	< 0.40	
-	Zinc	< 0.20	0.44	
Units		(mg/1)	(mg/l)	(mg/1)

ļ

AnalytiKEM Designation: A60651-9

Client Designation:

<u> 514</u>

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
	Manganese	< 0.15	< 0.15	
	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	1.7	
Units		(mg/1)	(mg/l)	(mg/l)

VIII. Analytical Results (Cont'd)

AnalytikEM

TCLP Metals

AnalytiKEM Designation: A60651-10

Client Designation:

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
	Manganese	< 0.15	< 0.15	
	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	0.70	
Units		(mg/l)	(mg/l)	(mg/l)

S12

AnalytiKEM Designation: A60651-11

Client Designation:

_S13_____

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
	Manganese	< 0.15	< 0.15	
	Nickel	< 0.40	< 0.40	
	Zinc	< 0.20	< 0.20	 -
Units		(mg/1)	(mg/l)	(mg/1)

"

AnalytiKEM Designation: A60651-11 (Duplicate)

Client Designation:

<u>\$13</u>

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
	Manganese	< 0.15	< 0.15	
	Nickel	< 0.40	< 0.40	
-	Zinc	< 0.20	< 0.20	
Units		(mg/l)	(mg/l)	(mg/l)

IX. Quality Control Data

AnalytiKEM

TCLP Procedure


<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A60651-11

Parameter	Amount of Spike	Recovery <u>MS</u>
Manganese	300	102
Nickel	300	97
Zinc	300	100
Units	(ug)	(%)

[^]ASSOCIATES

10919 SAGEWIND DRIVE . HOUSTON, TEXAS 77089 . TELEPHONE (713) 996-5031

February 17, 1993

Mr. Steve Stadelman
ENSCI Corporation
1108 Old Thomasville Road
High Point, North Carolina 27260

Dear Mr. Stadelman:

Following are the results of the soil samples submitted to our laboratory for analyses on January 26, 1993:

P.O. #: 31998

SAMPLE I.D.

S4K

SIOR

SAMPLE I.D.

1/23/93

1/23/93

09:00

09:00

LAB NO.

G = 2710

G = 2711

TCLP INORGANIC (Leachate)

Lead, mg/l

0.06

<0.01

METHOD: EPA 1311/6010

Please contact me if you have any questions concerning these results.

Sincerely,

Edwin B. Smith, Jr. PhD

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A82929-1

March 17, 1993

Prepared for:

ENSCI 1108 Thomasville Road High Point NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed &
Approved by:

Name: Carmine M Fioriglio

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

	·	<u>Page</u>
I.	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
٧.	Laboratory Chronicle	5
VI,	Extraction Log	6
VII.	Outlier Summary	7
VIII.	Analytical Results	8
IX.	Quality Control Data	9

١

I. <u>Certification</u>

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory.

Cherry Hill, NJ		Rock Hill, SC	·	Nouston Analyt	ical, TX
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258		:	Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvania	68366		:		
S. Carolina	94004				
Tennessee	02908		-		
Vermont	*		1		
Oklahoma	9107		-		

^{*} No certification numbers are issued for these states.

II. <u>Definition of Terms</u>

Micrograms

ug

Term	<u>Definition</u>
DI	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate
Ν̈́Α	Analysis not applicable to the sample matrix.
ND	Not Detected
NR	Not Requested
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
υ	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
mg/L	Milligrams of constituent per liter of TCLP Leachate; equivalent to parts-per-million (ppm).
CCC	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL 3	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
TCLP	Toxic Characteristic Leachate Procedure
ZHE	Zero Headspace Extraction
TC	Toxic Characteristic

Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM

Client

Designation

<u>Designation</u>

<u>Matrix</u>

Date Sampled

A82929-1

S-11

Nonaqueous

11/16/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

÷

Page 4

IV. Methodology

AnalytikEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

*

V. <u>Laboratory Chronicle</u>

AnalytiKEM

DATE

	I ;	II
Date Sampled	11/16/92	
Receipt/Refrigeration	11/17/92	
TCLP Extractions		
TC Extraction	1/14/93	
Sample Preparations		
Metals: General Mercury Furnace	1/15/93 1/15/93 1/15/93	
<u>Analyses</u>		
Metals: General Mercury Furnace	$ \begin{array}{r} $	
	Signature) nted Name) (Date)	1 Paimer, Jr.

NOTE: "If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A82929 Page 6

VI. Extraction Log

AnalytiKEM

Sample TCLP Extraction Fluid Designation Extraction, (g) Type Volume (ml)

A82929-1 50 1 1,000

4

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A82929-1 S-11

4

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A82929-1

Client Designation: S-11

EPA Number	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.050	< 0.50	0.05
D005	Barium	< 1.0	< 1.0	1.0
D006	Cadmium	< 0.005	< 0.005	0,005
D007	Chromium	< 0.050	< 0.050	0.05
D008	Lead	< 0.050	< 0.050	0.05
D009	Mercury	< 0.0011	< 0.0011	0.0011
D010	Selenium	< 0.010	< 0.010	0.01
D011	Silver	< 0.050	< 0.050	0.05
	Cobalt	< 0.050	< 0.050	
	Titanium	< 0.050	< 0.050	= = =
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	0.42	
	Praseodymium	< 0.10	< 0.10	
Units		(mg/1)	(mg/l)	(mg/l)

m

Test Report No. A82929 Page 9

IX. Quality Control Data

AnalytiKEM

TCLP Procedure

<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A60651-11

Parameter	Amount of Spike	Recovery <u>MS</u>
Arsenic	300	108
Barium	300	99
Boron	300	97
Cadmium	300	100
Chromium	300	100
Cobalt	300	96
Lead	300	98
Mercury	20	81
Selenium	300	74
Silver	300	95
Vanadium	300	97
Titanium	300	95
Praseodymium	300	82
Units	(ug)	(%)

•)

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82791, Supplemental

November 19, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile

Reviewed & Muchael Monthly Ph. D. for Name: Carmine M. Fioriglio

Title: OA/OC Manager

,

AnalytiKEM

TABLE OF CONTENTS

		<u>Page</u>
I.	List of Certifications	1.
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
٧.	Laboratory Chronicle	5
VI.	Extraction Log	6
vII.	Outlier Summary	7
VIII.	Analytical Results	8 - 10
ΤX	Quality Control Data	11

'n

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117		·	Louisiana	92-07
New Jersey	04012		ļ.,	S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvani <i>a</i>	68366				
S. Carolina	94004				
Tennessee	02908	, , , , , , , , , , , , , , , , , , , ,			
Vermont	*				
Oklahoma	9107		1		

^{*} No certification numbers are issued for these states.

II. <u>Definition of Terms</u>

uġ

Micrograms

AnalytikEM

Term	<u>Definition</u>
DΪ	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NA	Analysis not applicable to the sample matrix.
NĎ	Not Detected
NR	Not Requested
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
U	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
mg/L	Milligrams of constituent per liter of TCLP Leachate; equivalent to parts-per-million (ppm).
ÇCC	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL *}	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
TCLP	Toxic Characteristic Leachate Procedure
ZHE	Zero Headspace Extraction
TC	Toxic Characteristic

Test Report No. A82791 Page 3

III. Sample Designations

*1

AnalytiKEM

AnalytiKEM Designation	Client Designation	<u>Matrix</u>	Date <u>Sampled</u>
A82791-1	в1	Nonaqueous	10/12/92
A82791-2	\$1	Nonaqueous	10/12/92
A82791-3	52	Nonaqueous	10/12/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

Test Report No. A82791 Page 4

IV. Methodology

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

٦,

V. Laboratory Chronicle

Analytik(EM

DATE

	I	II
Date Sampled	10/12/92	
Receipt/Refrigeration	10/13/92	
TCLP Extractions		
TC Extraction	10/13/92	
Sample Preparations		
Metals: General Mercury Furnace	11/16/92 11/16/92 11/14/92	
Analyses		
Metals: General Mercury Furnace	11/17/92 11/16/92 11/16/92	
Laboratory Manager Review & Approval	(Signature) (Printed Name) (Date)	ry/A, Pruna U/(9/97

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A82791 Page 6

VI. Extraction Log

<u>(</u>)

AnalytiKEM

Sample	TCLP	Extract	tion Fluid
<u>Designation</u>	Extraction, (g)	Type Vo	olume (ml)
A82791-1	100	1	2,000
A82791-2	100	1	2,000
A82791-3	100	1	2,000

j.

ř

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A82791-1 B1

A82791-2 S1

A82791-3 S2

4

Test Report No. A82791 Page 8

VIII. Analytical Results

5)

TCLP Metals

AnalytiKEM Designation: A82791-1

Client Designation: B1

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	0.54 Ü	0.54 U	5.0
D005	Barium	2.4 U	0.89 J	100
D006	Cadmium	០.11 ប	0.11 U	1.0
D007	Chromium	0.57 ປ	0.57 Ŭ	5.0
D008	Lead	០.57 ប	0.44 J	5.0
D009	Mercury	:0.025 U	0.025 ប	0.2
D010	Selenium	:0.33 U	0.33 U	1.0
D011	Silver	1.0 U	1.0 U	5.0
D012	Cobalt	10.056 U	០.056 ប	
D013	Manganese	0.019 U	0.024	
D014	Nickel	ั0.046 บ	0.046 U	
D015	Zinc	0.020 U	0,64	
D016	Titanium	้ 0.055 บ	0,055 ປ	
D017	Vanadium	0.054 U	0.054 U	
D018	Boron	0.028	0.81	
D019	Praseodymium	1.2 U	1.2 U	
Units		(mg/l)	(mg/l)	(mg/l)

AnalytikEM

Note: All results are corrected for spike recoveries.

ì.

Test Report No. A82791 Page 9

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

0

AnalytiKEM Designation: A82791-2

Client Designation: Sl

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	0.28 U	0.28 U	5.0
D005	Barium	4.8 U	2.2 ј	100
D006	Cadmium	0.051 U	0.051 U	J O
D007	Chromium	0.30 U	0.30 U	5.0
D008	Lead	0.30 U	0.30 บ	5.0
D009	Mercury	0.018 U	0.018 U	0.2
D010	Selenium	0.051 U	0.051 บ	1.0
D011	Silver	0.15 U	0.15 U	5.0
	Cobalt	0.05 2 U	0.052 U	
	Manganese	0.01 6 U	0.045	
	Nickel	0.040 U	0.040 U	
	Zînc	0.017 J	7.7	
	Titanium	0.051 U	0.051 U	
	Vanadium	0.050 U	0.050 U	
	Praseodymium	0.59 U	0.59 U	
Units		(mg/l)	(mg/1)	(mg/1)

Note: All results are corrected for spike recoveries.

Test Report No. A82791 Page 10

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A82791-3

Client Designation: S2

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	0.28 U	0.28 U	5.0
2005	Barium	4.8 U	0.89 J	100
D006	Cadmium	0.051 U	0.012 J	1.0
D007	Chromium	0.30 U	0.30 U	5.0
D008	Lead	0.30 U	0.30 U	5,0
D009	Mercury	0.018 U	0.018 U	0.2
D010	Selenium	0.051 บ	0.051 บ	1.0
D011	Silver	0.15 ປັ	0.15 U	5.0
	Cobalt	0.052 U	0.052 U	
	Manganese	0.016 U	0.015	
	Nickel	0.040 U	0.040 U	
	Zinc	0.017 J	2.5	
	Titanium	0.051 U	0.051 U	
	Vanadium	0.050 บ	0.050 ช	
	Praseodymium	0.59 и	0.59 U	
Units		(mg/l)	(mg/l)	(mg/l)

Note: All results are corrected for spike recoveries.

IX. Quality Control Data

AnalytiKEM

TCLP Procedure

<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A82832-1-1

<u>Parameter</u>	Amount <u>of Spike</u>	Recovery <u>MS</u>
Arsenic	300	106
Barium	300	104
Cadmium	300	99
Chromium	300	100
Cobalt	300	97
Lead	300	100
Manganese	300	92
Mercury	20	113
Nickel	300	101
Selenium	300	. 99
Silver	300	46
Vanadium	300	101
Zinc	300	100
Titanium	300	99
Praseodymium	300	101
Units	(ppb)	(%)

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690 Fax: 803/324-3982

Garage

TEST REPORT NO. A82824

November 5, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed & Approved by: 4

Name: Carmine M. F

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

		<u>Page</u>
I.	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
ν.	Laboratory Chronicle	5
VI.	Extraction Log	6
VII.	Outlier Summary	7
VIII.	Analytical Results	8 - 9
тx	Quality Control Data	10

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	иј117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvania	68366				
S. Carolina	94004				
Tennessee	02908				
Vermont	*				
 Oklahoma	9107			1	

^{*} No certification numbers are issued for these states.

II. Definition of Terms

AnalytiKEM

Definition Term

DΙ Deionized Water

J Compound was detected at levels below the practical

quantitation limit. The level reported is approximate.

MS/MSD Matrix Spike/Matrix Spike Duplicate

NA Analysis not applicable to the sample matrix.

ND Not Detected

NR Not Requested

RPD Relative Percent Difference

RSD Relative Standard Deviation

U Compound was analyzed for but not detected. The preceding number

is the practical quantitation limit for the compound.

Milligrams of constituent per liter of TCLP Leachate; equivalent mg/L

to parts-per-million (ppm).

CCC Calibration Check Compound; used to verify the precision of a

GC/MS calibration curve.

SPCC System Performance Check Compound; used to verify the correct

operation of a GC/MS instrument.

POL Practical Quantitation Limit; the minimum level at which

compounds can be dependably quantitated.

TCLP Toxic Characteristic Leachate Procedure

ZHE Zero Headspace Extraction

TC Toxic Characteristic

ug Micrograms Test Report No. A82824 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM	Client	<u>Matrix</u>	Date
Designation	Designation		<u>Sampled</u>
A82824-1	S3	Nonaqueous	10/20/92
A82824-2	B2	Nonaqueous	10/20/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

Test Report No. A82824 Page 4

IV. Methodology

4

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

V. Laboratory Chronicle

AnalytiKEM

DATE

	I	II
Date Sampled	10/20/92	
Receipt/Refrigeration	10/21/92	
TCLP Extractions		
TC Extraction	10/22/92	
Sample Preparations		
Metals:		
General Mercury	<u>10/23/92</u> 10/23/92	
Analyses		
Metals:		
General	<u>10/23, 24, 26/92</u> 10/23/92	
Mercury		h Mari
Laboratory Manager	(Signature) All A	E Thold for
Review & Approval	(Printed Name) Gregory A	7-92

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A82824 Page 6

VI. Extraction Log

AnalytiKEM

Sample	TCLP		tion Fluid
<u>Designation</u>	<u>Extraction, (g)</u>		olume (ml)
A82824-1	100	1	2,000
A82824-2	100	1	2,000

¥

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A82824-1 S3 A82824-2 B2

٩.

Test Report No. A82824 Page 8

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A82824-1

Client Designation: S3

EPA Number	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.54	< 0.54	5.0
D005	Barium	< 2.4	2.7	100
D006	Cadmium	< 0.11	< 0.11	1.0
D007	Chromium	< 0.57	< 0.57	5.0
D008	Lead	< 0.57	< 0.57	5.0
D009	Mercury	< 0.019	< 0.019	0,2
D010	Selenium	< 0.33	< 0,33	1.0
D011	Silver	< 1.0	< 1.0	5,0
D012	Cobalt	< 0.056	0.074	
D013	Manganese	< 0.019	5.3	
D014	Nickel	< 0.46	< 0.46	
D015	Zinc	< 0.20	31	
D016	Titanium	< 0.055	< 0.055	
D017	Vanadium	< 0.054	< 0.054	
D018	Boron	< 0.020	13	
D019	Praseodymium	< 0.71	< 0.71	
Units		(mg/1)	(mg/l)	(mg/l)

Note: All results are corrected for spike recoveries.

ι

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A82824-2

Client Designation: B2

EPA <u>Number</u>	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.54	< 0.54	5.0
D005	Barium	< 2.4	< 2.4	100
D006	Cadmium	< 0.11	< 0.11	1.0
D007	Chromium	< 0.57	< 0.57	5.0
D008	Lead	< 0.57	< 0.57	5.0
D009	Mercury	< 0.019	< 0.019	0.2
D010	Selenium	< 0.33	< 0.33	1.0
D011	Silver	< 1.0	< 1.0	5.0
D012	Cobalt	< 0.056	< 0.056	- + -
D013	Manganese	< 0.019	3.0	
D014	Nickel	< 0.46	< 0,46	
D015	Zinc	< 0.20	0,35	
DO16	Titanium	< 0.055	< 0.055	
DO17	Vanadium	< 0.054	< 0.054	-
D018	Boron	< 0.020	4.3	
DO19	Praseodymium	< 0.71	< 0.71	
Units		(mg/1)	(mg/l)	(mg/1)

Note: All results are corrected for spike recoveries.

Test Report No. A82824

Page 10

IX. Quality Control Data

AnalytiKEM

TCLP Procedure

<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A82791-3

<u>Parameter</u>	Amount <u>of Spike</u>	Recovery <u>MS</u>
Arsenic	300	92
Barium	300	85
Boron	300	98
Cadmium	300	89
Chromium	300	87
Cobalt	300	90
Lead	300	87
Manganese	300	79
Mercury	20	107
Nickel	300	87
Selenium	300	92
Silver	300	50
Vanadium	300	92
Zinc	300	34
Titanium	300	91
Praseodymium ф	300	84
Units	(ppb)	(%)
r <u>y</u>		

 $[\]phi$ Spike performed on sample A82791-2.

Chain-of-Custody Record

828 24

Client		/	·		Saı	mple C	ollector	. <u>5</u>	tao				- 	Roc	atory I Vernsdale Road KHill, South Carolina 29 324-5310	Sales Office 454 South Anderson Re Rock Hill, South Carolii (803) 329-9690	
Proje	ct: <u>5920</u>	132-			An	elytiKE	M Cont	act:	Hol	<u> </u>	. <u>-</u>			, ,	(803) 324-8378	Fax: (803) 329-9689	
ITEM NUMBER	SAMPLE DESIGNATIO		DATE	TIME	MATRIX		College of	And Section 1	i ki si	Rich Rich	(E.S.)	(R) (R) (R) (R) (R) (R) (R) (R) (R) (R)	(K. 12)	, j, j,	de de la companya de	PARAMETERS	
1	53		10-20	11:45	Son /	G		3.					2	, \	8240,8270	pross &, radium 226, rad Metals by TCLP, sulfate bbs	: 223 Ly I
2	B2		10-20	10:30	Sail	G		3					7	i`.	1	11	
3																	
4																	
5							_										·
6																	
7										!							·
8		<u> </u>			·	•									·		
9	·																
10		-							ļ	<u> </u>	·						
TRANSFER	ITEM NUMBER		TRAI RELING	NSFERS UISHED				NSFERS				TIME	REA	MARKS	12 # 31	682	·····
1	1-2	SH	eve c	Staje	4/mon	D	lask	La) ~~	= 0	5-21 9 <u>2</u> -1	125	*	1-0			
2	1-2_	J.	only	5	ne	7a	ne	$\frac{2\omega}{\omega}$	<u>ut</u>	ا ا ا	92	(45	4	,	/ //	, ,	
3				`		(<u> </u>		12	In Sale	lun	
4	rder: PJ Associates (903-324-23					₩h	ite Labora	itory Co	эру	Yello	w Clie				AKE	M ≠1 12/

SAMPLE RECEIPT CHECKLIST

Clie	nt: ENSCI!	
Proj Numb	ect Mannington Tile Son	/ Laboratory 8 282 4
1.	Shipped	Notes:
2.	Hand Delivered COC Present on Receipt	Notes:
-	No COC	Moces.
3.	COC Tape on Shipping	Notes:
	Container No COC Tape on Shipping	Notes:
4.	Container Samples Broken/Leaking Sample Intact on Receipt	Notes:
	Other (See Notes)	
5.	Ambient on Receipt Chilled on Receipt	Notes:
6.	Samples Preserved Correctly	Notes:
	Improper Preservatives	
	N/A (None Recommended)	·
7.	Other (See Notes) Received Within Holding	Notes:
· · -	Time	1000
	Not Received Within	
	Holding Time	
	N/A (None Recommended)	
8.	Other (See Notes)	Notes:
B	COC Tapes on Samples No COC Tapes on Samples	Notes:
9.	Discrepancies Between COC	Notes:
_	and Sample Labels	
	No Discrepancies Noted	
-	N/A (No COC Received)	
Addi	tional Comments:	
		:
		:
-		
Date	ected and Logged in by: //// /Time: 1921/52 6:45	g Danell _

91

AnalytiKEM Inc.

454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690 Fax: 803/324-3982

TEST REPORT NO. A83007

December 28, 1992

Prepared for:

ENSCT 1108 Thomasville Road High Point NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed &
Approved by:

Name: Carmine M. Fioriglio

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

		<u>Page</u>	:
r.	List of Certifications	1	
II.	Definition of Terms	2	
III.	Sample Designations	3	
IV.	Methodology	4	
V.	Laboratory Chronicle	5	
VI.	Extraction Log	6	
VII.	Outlier Summary	7	
VIII.	Analytical Results	8 - 9	9
IX.	Quality Control Data	10	

4

I. <u>Certification</u>

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analyt	Lcal, TX
State	Cert #	State	Cert #	State	Cert #
Arkansas	h	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvaniä	68366		1		
S. Carolina	94004		: ! !		
<u> Fennessee</u>	02908] : 1		
Vermont	*				
Oklahoma	9107				

^{*} No certification numbers are issued for these states.

II. <u>Definition of Terms</u>

AnalytiKEM

Definition Term DΤ Deionized Water J Compound was detected at levels below the practical quantitation limit. The level reported is approximate. MS/MSD Matrix Spike/Matrix Spike Duplicate Analysis not applicable to the sample matrix. NA ND Not Detected NR Not Requested Relative Percent Difference RPD RSD Relative Standard Deviation U Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound. Milligrams of constituent per liter of TCLP Leachate; equivalent mg/L to parts-per-million (ppm).

CCC Calibration Check Compound; used to verify the precision of a

GC/MS calibration curve.

SPCC System Performance Check Compound; used to verify the correct

operation of a GC/MS instrument.

PQL Practical Quantitation Limit; the minimum level at which

compounds can be dependably quantitated.

TCLP Toxic Characteristic Leachate Procedure

ZHE Zero Headspace Extraction

TC Toxic Characteristic

ug Micrograms

Test Report No. A83007 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM Designation Client

<u>Designation</u>

<u>Matrix</u>

Date Sampled

A83007-1

Ļ

В3

Nonaqueous

12/04/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

Test Report No. A83007 Page 4

IV. Methodology

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

V. Laboratory Chronicle

AnalytiKEM

DATE

	I	II
Date Sampled	12/04/92	
Receipt/Refrigeration	<u>12/08/92</u>	
TCLP Extractions		
TC Extraction	12/09/92	12/11/92
Sample Preparations		
Metals: General Mercury Furnace	12/10/92 12/10/92	12/15, 12/17/92
<u>Analyses</u>		
Metals: General Mercury Furnace	12/10/92 12/10/92	12/14-12/16/92
Laboratory Manager Review & Approval		A. Pruna

NOTE: The fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A83007 Page 6

VI. Extraction Log

AnalytikEM

SampleTGLPExtraction FluidDesignationExtraction, (g)Type Volume (ml)

A83007-1

100

1

2,000

ij

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A83007-1 B3

ŋ.

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A83007-1

Client Designation: _B3

EPA <u>Number</u>	<u>Parameter</u>	Method Blank	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	0.05
D005	Barium	< 2.0	< 2.0	1.0
D006	Cadmium	< 0.050	< 0.050	1.0
D007	Chromium	< 0.30	< 0.30	5.0
D008	Lead	< 0.050	< 0.050	0.05
D000	Mercury	< 0.020	< 0.020	0.2
D010	Selenium	< 0.050	< 0.050	1.0
D011	Silver	< 0.070	< 0.070	5.0
	Cobalt	< 0.050	< 0.050	
	Manganese	< 0.015	0.032	
	Nickel	< 0.080	< 0.080	0.15
	Zinc	< 0.020	0.23 *	5.0
	Titanium	< 0.050	< 0.050	-
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.020	2.6	=
	Praseodymium	< 0.60	< 0,60	
Units		(mg/l)	(mg/l)	(mg/l)

^{*} Analyzed by MSA.

VIII. Analytical Results (Cont'd)

AnalytiKEM

TCLP Metals

AnalytikEM Designation: <u>A83007-1 (Duplicate)</u>

Client Designation: B3

EPA <u>Number</u>	<u>Parameter</u>	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory <u>Level</u>
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 2.0	< 2.0	100
D006	Cadmium	< 0.050	< 0.050	1.0
D007	Chromium	< 0.30	< 0.30	5.0
D008	Lead	< 0.050	< 0.050	5.0
D009	Mercury	< 0.020	< 0.020	0.2
D010	Selenium	< 0.050	< 0.050	1.0
D011	Silver	< 0.070	< 0.070	5.0
	Cobalt	< 0.050	< 0.050	
	Manganese	< 0.015	0.027	
-	Nickel	< 0.080	< 0.080	
	Zinc	< 0.020	0.20 *	
	Titanium	< 0.050	< 0.050	
	Vanadium	< 0.050	< 0.050	=
	Boron	< 0.020	2.7	-
	Praseodymium	< 0.60	< 0.60	
Units		(mg/l)	(mg/l)	(mg/1)

 $[\]star$ Analyzed by MSA.

")

IX. Quality Control Data

AnalytiKEM

TCLP Procedure

<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A83007-1

<u>Parameter</u>	Amount <u>of Spike</u>	Recovery <u>MS</u>
Arsenic	300	105
Barium	300	119
Cadmium	300	112
Cadmium ф	300	104
Chromium	300	111
Chromium φ	300	104
Cobalt	300	98
Cobalt φ	300	96
Lead	300	122
Lead ϕ	300	97
Manganese	300	107
Mercury	20	102
Nicke1	300	109
Selenium	300	108
Silver	300	27
Vanadium	300	. 95
Zinc	300	115
Zinc ϕ	300	102
T1tanium	300	94
Praseodymium	300	101
Units	(dqq)	(%)

 $[\]phi$ Spike performed on DI Water.

Chain-of-Custody Record

02614

Client: .	n Area: Drinking ENSC : S9203	/			roundwater San	nole C	ollect	or:	Ste	ve	Sta Ily	de	lma,		80 (80 Fa	24 Ve ck Hil 3) 32 c: (80	ry rnsdale Road II, South Carolina 29731 4-5310 3) 324-8378	Sales Office 454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690 Fax: (803) 329-9689
ITEM NUMBER	SAMPLE DESIGNATIO)N	DATE	TIME	MATRIX		County of	g red viet	30 00 00 30 00 00	, ki e	iro)	12°	No.	() () () () () () () () () ()	98 PM 25	37	, retain	PARAMETERS
1.	<i>B</i> 3		12-7- 92	1600	SOIL	G			3					2			Analyses per 8240, 8270, oabls	atheted sheet by RUIS governs, BJO
3																		
4			· · ·			<u> </u>												
5 6						ļ	_		_									
7		 -	<u> </u>															
8							٠.											
9		-							-			-	-					· · · · · · · ·
10						<u> </u>											<u> </u>	
TRANSFER	ITEM NUMBER		TRA	ISFERS UISHED	ВҮ			RANSF CEPTI		<u> </u>	Ţ	DATE	TIME		MARKS		P.O. # 3,	
1	/	lfi	lu to	mely	1	J.	laa	ly	Lan	<u>, e</u>		2=7 92_	/21	}			Rush turna	roud on metals.
2		12	ody	Ta		- S.	Si	rwy	11		1	2-7 72	(73	ᅿ		1.£	1/1	1
3) 						<u>. </u>	-			SÆ	MPI FR	S SIG	A MANUE	
4 Beard	er: PJ Associales 8	03.220.220		. 				/hite i	shoret	on Co	nv.	Vello	w Cile	<u>L</u>				AKEM #1 12/89

SAMPLE RECEIPT CHECKLIST

ient: <u>ENSC/</u>	
oject mber: <u>592032</u>	Laboratory Number: 83007
Shipped Hand Delivered	Notes:
COC Present on Receipt No COC	Notes:
COC Tape on Shipping Container	Notes:
No COC Tape on Shipping Container	Notes:
Samples Broken/Leaking Sample Intact on Receipt	Notes:
Other (See Notes) Ambient on Receipt Chilled on Receipt	Notes:
Samples Preserved Correctly Improper Preservatives	Notes:
N/A (None Recommended) Other (See Notes)	
Received Within Holding Time Not Received Within	Notes:
Holding Time N/A (None Recommended)	
Other (See Notes) COC Tapes on Samples No COC Tapes on Samples	Notes:
Discrepancies Between COC and Sample Labels	Notes:
/_No Discrepancies Noted N/A (No COC Received)	
	2
Inspected and Logged in by: A so Date/Time: /2-8-92 //:20 A.M.	aures

AnalytiKEM Inc.

11 ...

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60646

January 16, 1993

Prepared for: .

ENSCI Corporation 1108 Old Thomasville Road High Point NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed & Approved by:

Name:

<u>Fioríglio</u> Carmine M.

Title: <u>QA/QC Manager</u>

AnalytiKEM

TABLE OF CONTENTS

		Pag
I,	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
٧.	Laboratory Chronicle	5
VI.	Extraction Log	6
VII.	Outlier Summary	7
VIII.	Analytical Results	8
IX.	Ouality Control Data	9

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX		
State	Cert #	State	Cert #	State	Cert #	
Arkansas	*	S. Carolina	46067	N. Dakota	R-006	
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403	
Florida	880985G	New Jersey	79795	Texas Water Commission	*	
Massachusetts	NJ117			Louisiana	92-07	
New Jersey	04012		·	S. Carolina	82011	
New York	10815			N. Carolina	367	
N. Carolina	258			Wisconsin	998010530	
N. Dakota	R-038			New Jersey	82869	
Pennsylvania	68366					
S. Carolina	94004					
Tennessee	02908					
Vermont	*					
Oklahoma	9107					

^{*} No certification numbers are issued for these states.

Micrograms

ug

II. <u>Definition of Terms</u>

AnalytiKEM

Term	<u>Definition</u>
DΪ	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate
NA	Analysis not applicable to the sample matrix.
ND	Not Detected
NR	Not Requested
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
υ	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
mg/L	Milligrams of constituent per liter of TCLP Leachate; equivalent to parts-per-million (ppm).
CCC	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL '3	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
TCLP	Toxic Characteristic Leachate Procedure
ZHĒ	Zero Headspace Extraction
TC	Toxic Characteristic

Test Report No. A60646 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM Designation Client

Designation

Matrix

Date Sampled

A60646-1

4

 (\cdot,\cdot)

'...

Β4

Nonaqueous

12/16/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

IV. Methodology

Ŋ.

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

V. Laboratory Chronicle

AnalytiKEM

DATE

	I	II
Date Sampled	12/16/92	v,
Receipt/Refrigeration	12/18/92	
TCLP Extractions		
TC Extraction	12/21/92	
Sample Preparations	· · · · · · · · · · · · · · · · · · ·	
Metals: General Mercury Furnace	$\begin{array}{r} 12/23/92 & & 1/5/93 \\ \hline & 1/5/93 & \\ \hline & 12/26/92 & \\ \end{array}$	
Analyses		
Metals: General	1/4 - 1/6/93 & 12/28/92	
Mercury Furnace	12/26/92 1/5/93	
Laboratory Manager Review & Approval	(Signature) (Printed Name) (Date) (Date)	Dalmer, Jr.

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A60646 Page 6

VI. Extraction Log

AnalytiKEM

Sample <u>Designation</u>

4

TCLP Extraction. (g) Extraction Fluid Type Volume (ml)

A60646-1

100

1:

2,000

4)

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A60646-1 B4

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A60646-1

Client Designation: _B4

EPA <u>Number</u>	Parameter	Method <u>Blank</u>	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.050	< 0.050	0.05
D005	Barium	< 1.0	< 1.0	1,0
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5,0
D008	Lead	< 0.050	< 0.050	0.05
D003	Mercury	< 0.0011	< 0.0011;	0.2
			< 0.0011*	
D010	Selenium	< 0.010	< 0.010	1,0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.025	< 0.025	
	Manganese	< 0.050	< 0.050	
	Nickel	< 0.15	< 0.15	0.15
	Zinc	< 5.0	< 5.0	5.0
	Titanium	< 0.010	< 0.010	=
== = =	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	1.0	
	Praseodymium	< 0.10	< 0.10	-
Units		(mg/l)	(mg/l)	(mg/l)

)

^{*} Duplicate analysis.

AnalytiKEM

IX. Quality Control Data

TCLP Procedure

Metals

Aqueous Matrix Spike Recovery Data

<u>Parameter</u>	Sample <u>Spiked</u>	Amount of Spike	Recovery <u>MS</u>
Arsenic	A60646-1	300	108
Barium	A60645-1	300	110
Boron	A60645-1	300	116
Boron	DI Water	300	100
Cadmiun	A60645-1	300	97
Chromium	A60645-l	300	99
Cobalt	A60645-1	300	85
Ľęad	A60645-1	300	93
Manganese	A60644-1	300	102
Mercury	A60646-1	20	99
Nickel	A60645-1	300	96
Selenium	A60646-1	300	81
Silver	A60645 - 1	300	104
Silver	DI Water	300	95
Vanadium	A60645-1	300	93
Zinc	A60645-1	300	96
Titanium	A60645 -1	300	93
Praseodymium	A60645-1	300	104
Units ,		(ug)	(%)

Chain-of-Custody Record

Program /	Area: Drinking Water	Wastewater Groundwater Solid and Hazardous Waste	Laboratory	Sales Office
Client:	ENSCI	Sample Collector: Steve Stadelman	2324 Vernsdale Road Rock Hill, South Carelina 29731 (803) 324-5310	454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690
Project: _	592032	AnalytiKEM Contact: Holly	Fax: (803) 324-8378	Fax: (803) 329-9689

ITEM NUMBER	SAMPLE DESIGNATION	DATE	TIME	MATRIX	\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	SO CO HE VIE			NO /	(E) /S		PARAMETERS
2 3	.B4	12.16	1600	Sril	G		2			l	3	analyses per attrebed sheet
2												
3												
												RESULTS DUE BY
5												RESULTS DUE BY
6			: 									
7 8												
y.												:
9												
10												

THANSPER	ITEM NUMBER	TRANSFERS RELINQUISHED BY	TRANSFERS ACCEPTED BY	DATE	TIME	P.O. # 31868
1	/	Star Hodeln	Dans Williams	12-17	1330	
2		Du Thillain	S. Laures	777		
3	l	S. Sawy 1	FEO EX	12-17-	5:30 V.m.	Stille Statelon
4_	/	FEO CX	1.4/0	12/10	$a_{g_{\parallel}}$	SAMPLER'S SIGNATURE

Reorder: PJ Associates 803-329-2300

te Laboratory Copy

Yellow Client Copy

AKEM #1 12/89

ANALYTIKEM SAMPLE RECEIPT CHECKLIST

AnalytiKEM

CLIENT NAME	ENSCI ANALYTIKEN NO	60646	
PROJECT NAME			
		COMMENTS	
5213654 B	SHIPPED SS AIR BILL # HAND-DELIVERED		
ž. <u> </u>	COC PRESENT ON RECEIPT NO COC ON RECEIPT COC TAPE ON CONTAINERS/COOLERS	•	
	NO COC TAPE ON CONTAINERS/COOLERS		
3.	SAMPLE(S) INTACT ON RECEIPT SAMPLE(S) BROKEN/LEAKING OTHER (SEE COMMENTS)		
4	PROPER TEMPERATURE IMPROPER TEMPERATURE		
\$	PROPERLY PRESERVED IMPROPERLY PRESERVED NA		
6.	RECEIVED WITHIN HOLDING TIME NOT RECEIVED WITHIN HOLDING TIME NA		
7	DISCREPANCIES BETWEEN COC AND SAMPLE LABELS		
8	NO DISCREPANCIES NOTED		
SAMPLES INSPECTE	D AND LOGGED BY:		
DATE/TIME:	12/18/92 100)		

VIII. Analytical Results

AnalytiKEM

TCLP Metals

AnalytiKEM Designation: A60651-1___

Client Designation: B5

EPA <u>Number</u>	<u>Parameter</u>	Method Blank	Sample <u>Result</u>	Regulatory Level
D004	Arsenic	< 0.050	< 0.050	5.0
D005	Barium	< 1.0	< 1.0	100
D006	Cadmium	< 0.005	< 0.005	1.0
D007	Chromium	< 0.050	< 0.050	5.0
D008	Lead	< 0.050	< 0.050	5.0
0009	Mercury	< 0.0011	< 0.0011	0.2
D010	Selenium	< 0.010	< 0.010	1.0
D011	Silver	< 0.050	< 0.050	5.0
	Cobalt	< 0.050	< 0.050	3.0
	Vanadium	< 0.050	< 0.050	
	Boron	< 0.10	5.4	
	Praseodymium	< 0.10	< 0.10	
	Titanium	< 0.010	0.021	+ - -
Units		(mg/l)	(mg/l)	(mg/l)

AnalytiKEM Designation: A60651-2

Client Designation: S7

EPA Method Sample Regulatory Number, <u>Parameter</u> <u>Blank</u> Result <u>Level</u> D004 Arsenic < 0.050 < 0.050 5.0 D005 Barium < 1.0 1.5 100 D006 Cadmium < 0.005< 0.005 1.0 D007 Chromium < 0.050 < 0.050 5.0 B000 Lead < 0.0500.10 5.0 D009 Mercury < 0.0011< 0.00110.2 D010 Selenium < 0.010 < 0.010 1.0 D011 Silver < 0.050 < 0.050 5.0 ---Cobalt < 0.050 < 0.050 Vanadium ----< 0.050< 0.050 Boron ---< 0.10 0.66 ----Praseodymium < 0.10 < 0.10 Titanium < 0.010 0.015 ---Units (mg/1)(mg/l)(mg/1)

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82918

November 23, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NG 27260

Attention: Steven Stadelman

Project: S92032

Reviewed & Approved by:

Carmine M.

Title: <u>QA/QC Manager</u>

AnalytiKEM

TABLE OF CONTENTS

		Page
ľ.	List of Certifications	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
V.	Laboratory Chronicle	5
VI.	Extraction Log	6
VII.	Outlier Summary	7
VIII.	Analytical Results	8
IX.	Quality Control Data	9

41

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analyt	ical, TX
State	Cert #	State	Cert #	State	Cert #
Arkansas	×	S. Carolina	46067	N. Dakota	R-006
Connecticut	РН-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission	*
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvania ?	68366				
S. Carolina	94004				
Tennessee	02908				
Vermont	ж				
Oklahoma	9107				

^{*} No certification numbers are issued for these states.

II. Definition of Terms

AnalytiKEM

<u>Term</u> <u>Definition</u>

DI Deionized Water

J Compound was detected at levels below the practical

quantitation limit. The level reported is approximate.

MS/MSD Matrix Spike/Matrix Spike Duplicate

NA Analysis not applicable to the sample matrix.

ND Not Detected

NR Not Requested

RPD Relative Percent Difference

RSD Relative Standard Deviation

U Compound was analyzed for but not detected. The preceding number

is the practical quantitation limit for the compound.

mg/L Milligrams of constituent per liter of TCLP Leachate; equivalent

to parts-per-million (ppm).

CCC Calibration Check Compound; used to verify the precision of a

GC/MS calibration curve.

SPCC System Performance Check Compound; used to verify the correct

operation of a GC/MS instrument.

PQL Practical Quantitation Limit; the minimum level at which

compounds can be dependably quantitated.

TCLP Toxic Characteristic Leachate Procedure

ZHE Zero Headspace Extraction

TC Toxic Characteristic

ug Micrograms

Test Report No. A82918 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM Designation Client

<u>Designation</u> $\underline{\mathtt{Matrix}}$

Date Sampled

A82918-1

B6-R2

Nonaqueous

11/09/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

7

Test Report No. A82918 Page 4

IV. Methodology

AnalytiKEM

All analysis are performed in accordance with methodologies found in the following publications:

- Federal Register, Vol. 55, No. 126, June 29, 1990.
- 40 CFR, Part 216, Appendix 2, Method 1311.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Second Edition, 1982.
- Test Methods for Evaluating Solid Waste, USEPA, SW-846, Third Edition, 1982.
- Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, USEPA, March 1983.

١,

V. Laboratory Chronicle

AnalytikEM

<u>DATE</u>

	ı	II
Date Sampled	11/09/9	92
Receipt/Refrigeration	11/13/9	92
TCLP Extractions		•
TC Extraction	11/16/9	92
Sample Preparations		•
Metals: General Mercury Furnace	11/18/9 11/18/9	92
Analyses		
Metals: General Mercury Furnace	11/18/9 11/19/9 11/18/9	92
Laboratory Manager Review & Approval	(Signature) _ (Printed Name) _ (Date) _	Gregory A. Pruna

NOTE: If fractions are reextracted and reanalyzed because the initial endeavors failed to meet the required quality control criteria, the dates of reextraction and/or reanalysis will be entered in column II additionally.

Test Report No. A82918 Page 6

VI. Extraction Log

AnalytikEM

Sample TCLP Extraction Fluid Extraction (g) Type Volume (ml)

A82918-1 100 1 2,000

7

Test Report No. A82918 Page 7

AnalytiKEM

VII. Outlier Summary: Toxicity Characteristic Leachate Procedure (TCLP)

No Compounds were reported above the Regulatory Limits for the following samples:

A82918-1 B6-R2

Ļ

VIII. Analytical Results

TCLP Metals

AnalytikEM Designation: A82918-1

Client Designation: <u>B6-R2</u>

EPA Number	Parameter	Method <u>Blank</u>	Sample Result	Regulatory Level
D004	Arsenic	< 0.28	< 0.28	0.50
D005	Barium	< 4.8	< 4.8	10
D006	Cadmium	< 0.051	< 0.051	0.10
D007	Chromium	< 0.30	< 0.30	0.50
	Cobalt	< 0.052	< 0.052	
800d	Lead	< 0.30	< 0.30	0.50
	Manganese	< 0.016	0.041	
D009	Mercury	< 0.018	< 0.018	0.020
=	Nickel	< 0.040	< 0.040	
D010	Selenium	< 0.051	< 0.051	0.10
D011	Silver	< 0.15	< 0.15	0.50
	Vanadium	< 0.050	< 0.050	
-	Zinc	< 0.020	2,2	
	Titanium	< 0.051	< 0.051	
	Praseodynium	< 0.59	< 0.59	
Units		(mg/l)	(mg/1)	(mg/1)

AnalytiKEM

'n

Note: All results are corrected for spike recoveries.

AnalytiKEM

IX. Quality Control Data

TCLP Procedure

<u>Metals</u>

Aqueous Matrix Spike Recovery Data

Sample Spiked A82832-1

<u>Parameter</u>	Amount of Spike	Recovery <u>MS</u>
Arsenic	300	. 106
Barium	300	104
Cadmium	300	. 99
Chromium	300	100
Cobalt	300	97
Lead	300	100
Manganese	300	92
Mercury	200	113
Nickel	300	101
Selenium	300	99
Silver	300	46
Vanadium	300	101
Zinc	300	100
Titanium	300	99
Praseodynium	300	101
Units	(ppb)	(%)

Ā

Chain-of-Custody Record 829/8

	ım Area: Drinking										, ,	r			:	orato: 324 Ve	ry rnsdale Road	Sales Office 454 South Anderson Road BTC 532
	: <u>FNSC</u> :: <u>S92</u> 0										tadel ~ 1			-	(8)	03) 32	l, South Carolina 29731 4-5310 3) 324-8378	Rock Hill, South Carolina 29730 (803) 329-9690 Fax: (803) 329-9689
ITEM NUMBER	SAMPLE DESIGNATI	-		TIME	MATRIX			<u> </u>	, ,			7	$\overline{}$		$\overline{/}$	7		PARAMETERS
1	BE-82		11-9-	1330	501/	G											metals per	attacked sheet
2				<u>-</u>														
3											-							
4			-					-		-								
5																		
6																		
7																		
8	·····																	
9					<u> </u>													
10										-								
THANSPEH	ITEM NUMBER			NSFERS UISHED				ANSF	ERS ED BY		DA	TE	TIME	RE	MARK	S	3-dry 1 5.# 31	THT.
1	1	St	are 1	Jack	lma	Sk		Sai	V40)	1_	11-	2	1610			P.C	5.# 31	767
2																/	n ne.	Л
3										-						H	w. Starlill	
4										· —				SAI	MPLÆF	t'S SIC	INATURE	
Page	rdas: D I Appociatos 6	202 220 220		-			100	bila I	shorate	on Co	- Nu 3	'ello	w Ciler	at Con	~			AKEM #1 12/8

SAMPLE RECEIPT CHECKLIST

31767	Laboratory 82918
Shipped	Notes:
	1
COC Present on Receipt No COC	Notes:
COC Tape on Shipping Container	Notes:
No COC Tape on Shipping Container	Notes:
Samples Broken/Leaking Sample Intact on Receipt	Notes:
Ambient on Receipt	Notes:
Samples Preserved Correctly	Notes:
N/A (None Recommended)	
Received Within Holding	Notes:
:-	
Holding TimeN/A (None Recommended)	
	Notes:
COC Tapes on Samples No COC Tapes on Samples	noces:
and Sample Labels No Discrepancies Noted	Notes:
N/A (No COC Received)	
onal Comments:	
	Hand Delivered COC Present on Receipt No COC COC Tape on Shipping Container No COC Tape on Shipping Container Samples Broken/Leaking Sample Intact on Receipt Other (See Notes) Ambient on Receipt Chilled on Receipt Samples Preserved Correctly Improper Preservatives N/A (None Recommended) Other (See Notes) Received Within Holding Time Not Received Within Holding Time N/A (None Recommended) Other (See Notes) COC Tapes on Samples No COC Tapes on Samples Discrepancies Between COC and Sample Labels No Discrepancies Noted N/A (No COC Received)

SAMPLE RECEIPT CHECKLIST

Client:	ENSCI			
Project Number:	31767	Laboratory Number:	82918	
1	_Shipped _Hand Delivered	Notes:		
2	COC Present on Receipt	Notes:		
3.	_NO COC COC Tape on Shipping Container	Notes:		
	_No COC Tape on Shipping _Container	Notes:		
4.	Samples Broken/Leaking Sample Intact on Receipt	Notes:		
5	Other (See Notes) Ambient on Receipt Chilled on Receipt	Notes:		
6.	Samples Preserved Correctly Improper Preservatives	Notes:		
	N/A (None Recommended) Other (See Notes)	:		
7.	Received Within Holding Time	Notes:		
	_Not Received Within _Holding Time _N/A (None Recommended)			
	Other (See Notes)	37 - 4		
8	_COC Tapes on Samples No COC Tapes on Samples	Notes:	· <u>, </u>	
9	Discrepancies Between COC and Sample Labels No Discrepancies Noted	Notes:		
	N/A (No COC Received)			
Addition	al Comments:			
	D	<i>p</i> .		
Inspecte	d and Logged in by:	awyes		

ASSOCIATES
10919 SAGEWIND DRIVE - HOUSTON, TEXAS 77089 - TELEPHONE (713) 996-5031

November 6, 1992

Mr. Steve Stadelman ENSCI Corporation 1108 Old Thomasville Road High Point, North Carolina 27260

Dear Mr. Stadelman:

Following are the results of the solid sample submitted to our laboratory for analyses on November 3, 1992:

P.O. #: 31728

SAMPLE I.D.

B6-R2

11/1/92 11:30

LAB NO.

F - 9747

TCLP INORGANICS (Leachate)

Arsenic, mg/l	<0.01
Barium, mg/l	0.08
Boron, mg/l	1.50
Cadmium, mg/l	<0.005
Chromium, mg/l	<0.01
Cobalt, mg/l	<0.01
Lead, mg/l	0.02
Manganese, mg/l	0.07
Mercury, mg/l	<0.002
Nickel, mg/l	<0.01
Praseodymium, mg/l	0.01
Selenium, mg/l	<0.01
Silver, mg/l	<0.01
Titanium, mg/l	<0.01
Vanadium, mg/l	<0.06
Zinc, mg/l	<0.01

METHOD: EPA 1311/6010/7471

Please contact me if you have any questions concerning these results.

Sincerely,

Edwin B. Smith, Jr. PhD.

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60651, Revision

February 2, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (\$92032)

Reviewed & Approved by: Saudef Miller

Name: <u>Carmine M. Fioriglio</u>

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

		<u>rage</u>
I.	Certification	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
ν.	Analytical Results	5 - 8
VT	Quality Control Data	9 - 13

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	≯ c	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission *	
Massachusetts	NJ117		i	Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815		<u>'</u>	N. Carolina	367
N. Carolina	258		· 	Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvania	68366				
S. Carolina ,	94004				
Tennessee	02908	:			
Vermont	*				
Oklahoma	9107		:		

^{*} No certification numbers are issued for these states.

AnalytiKEM

II. <u>Definition of Terms</u>

Term	<u>Definition</u>
D	Detected; result must be greater than zero.
DI	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate.
NA	Analysis not applicable to the sample matrix.
ND	Not Detected
NR	Not Requested
NTU	Nephelometric Turbidity Units
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
U	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
ppb	Parts-per-billion; may be converted to ppm by dividing by 1,000.
ppm	Parts-per-million; may be converted to ppb by multiplying by 1,000.
ug/1 ^{*)}	Micrograms of constituent per liter of sample; equivalent to parts-per-billion.
ug/kg	Micrograms of constituent per kilogram of sample; equivalent to parts-per-billion.
ug/kg dw	Micrograms of constituent per kilogram of sample reported on a dry weight basis.
ccc	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
В	Analyte detected in associated bA60646k as well as the sample. It indicates possible/probable bA60646k contamination.

Test Report No. A60651 Page 3

III. Sample Designations

 $\{(\cdot\})$

Sample Designat	<u>ions</u>		AnalytiKEM
AnalytiKEM	Client		Date
<u>Designation</u>	<u>Designation</u>	<u>Matrix</u>	Sampled
A60651-1	B5	Nonaqueous	12/28/92
A60651-2	S 7	Nonaqueous	12/29/92
A60651-3	S 6	Nonaqueous	12/29/92
A60651-4	\$ 5	Nonaqueous	12/29/92
A60651-5	S 8	Nonaqueous	12/29/92
A60651-6	\$ 9	Nonaqueous	12/29/92
A60651-7	S10	Nonaqueous	12/29/92
A60651-8	S4	Nonaqueous	12/29/92
A60651-9	S1 4	Nonaqueous	12/30/92
A60651-10	S12	Nonaqueous	12/30/92
A60651-11	\$13	Nonaqueous	12/30/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

7

IV. Methodology

AnalytiKEM

<u>Volatiles</u>

Method 5030, <u>Purge and Trap</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8240, <u>Gas Chromatography/Mass Spectrometry for Volatile Organics</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Semivolatiles |

Method 3550, <u>Sonication Extraction</u>. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8270, <u>Gas Chromatography/Mass Spectrometry for Semivolatile Organics:</u>
<u>Capillary Column Technique</u>, Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all
promulgated revisions.

General Chemistry

Method 9056, Anion Chromatography Method, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

V. Analytical Results

Volatile Organics

AnalytiKEM

<u>Parameter</u>	Method Blank 1	A60651-1 B5	A60651-2 S7
Chloromethane	< 10	< 10	< 10
Bromomethane	< 10	< 10	< 10
Vinyl Chloride	< 10	< 10	< 10
Chloroethane	< 10	< 10	< 10
Methylene Chloride	10	6.8	< 5.0
2-Propanone (Acetone)	< 100	< 100	< 100
Carbon Disulfide	< 5.0	< 5.0	< 5.0
l,l-Dichloroethene	< 5.0	< 5.0	< 5.0
l,l-Dichloroethane	< 5.0	< 5.0	< 5.0
trans-1,2-Dichloroethene	< 5.0	< 5.0	< 5.0
Chloroform	< 5.0	< 5,0	< 5.0
1,2-Dichloroethane	< 5.0	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 100	< 100
1,1,1-Trichloroethane	< 5.0	< 5.0	< 5.0
Carbon Tetrachloride	< 5.0	< 5.0	< 5.0
Vinyl Acetate	< 50	< 50	< 50
Bromodichloromethane	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
Trichloroethene	< 5.0	< 5.0	< 5.0
Dibromochloromethane	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	< 5.0	< 5.0	< 5.0
Benzene	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10	< 10
Bromoform	< 5.0	< 5.0	< 5.0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50	< 50
2-Hexanone	< 50	< 50	< 50
Tetrachloroethene	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	< 5.0	< 5.0	< 5.0
Toluene	< 5.0	< 5.0	< 5.0
Chlorobenzene	< 5.0	< 5.0	< 5.0
Ethylbenzene	< 5.0	< 5.0	< 5.0
Styrene	< 5.0	< 5.0	< 5.0
m-Xylene	< 5.0	< 5.0	< 5.0
o,p-Xylene	< 5.0	< 5.0	< 5.0
Units	(ug/l)	(ug/kg)	(ug/kg)

AnalytiKEM

Volatile Organics

<u>Parameter</u>	Method Blank 2	A60651-3 S6	A60651-7 S10
Chloromethane	< 10	< 10	< 10
Bromomethane	< 10	< 10	< 10
Vinyl Chloride	< 10	< 10	< 10
Chloroethane	< 10	< 10	< 10
Methylene Chloride	< 5.0	6.9	< 5,0
2-Propanone (Acetone)	< 100	< 100	< 100
Carbon Disulfide	< 5.0	< 5.0	< 5.0
1,1-Dichloroethene	< 5.0	< 5.0	< 5.0
1,1-Dichloroethane	< 5.0	< 5.0	< 5,0
trans-1,2-Dichloroethene	< 5.0	< 5.0	< 5.0
Chloroform	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	< 5.0	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 1.00	< 100
l,l,l-Trichloroethane	< 5.0	< 5.0	< 5,0
Carbon Tetrachloride	< 5.0	< 5.0	< 5,0
Vinyl Acetate	< 50	< 50	< 5.0
Bromodichloromethane	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
Trichloroethene	< 5.0	< 5.0	< 5.0
Dibromochloromethane	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	< 5.0	< 5.0	< 5.0
Benzene	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10	< 10
Bromoform	< 5.0	< 5.0	< 5.0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50	< 50
2-Hexanone	< 50	< 50	< 50
Tetrachloroethene	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	< 5.0	< 5.0	< 5.0
Toluene	< 5.0	< 5.0	< 5.0
Chlorobenzene	< 5.0	< 5.0	< 5.0
Ethylbenzene	< 5.0	< 5.0	< 5.0
Styrene	< 5.0	< 5.0	< 5.0
m-Xylene	< 5.0	< 5.0	< 5.0
o,p-Xylene	< 5.0	< 5.0	< 5.0
Units	(ug/1)	(ug/kg)	(ug/kg)

AnalytiKEM

Volatile Organics

<u>Parameter</u>	Method <u>Blank 3</u>	A60651-4 <u>S5</u>	A60651-6 S9
Chloromethane	< 10	< 10	< 10
Bromomethane	< 10	< 10	< 10
Vinyl Chloride	< 10	< 10	< 10
Chloroethane	< 10	< 10	< 10
Methylene Chloride	< 5.0	< 5.0	< 5.0
2-Propanone (Acetone)	< 100	< 100	< 100
l,1-Dichloroethene	< 5.0	< 5.0	< 5.0
l,l-Dichloroethane	< 5.0	< 5.0	< 5.0
trans-1,2-Dichloroethene	< 5.0	< 5.0	< 5.0
Chloroform	< 5.0	< 5.0	< 5.0
l,2-Dichloroethane	< 5.0	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 100	< 100
l,l,l-Trichloroethane	< 5.0	< 5.0	< 5.0
Carbon Tetrachloride	< 5.0	< 5.0	< 5.0
Vinyl Acetate	< 50	< 50	< 50
Bromodichloromethane	< 5.0	< 5.0	< 5.0
l,2-Dichloropropane	< 5.0	< 5.0	< 5,0
cis-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
Trichloroethene	< 5.0	< 5.0	< 5.0
Dibromochloromethane	< 5,0	< 5.0	< 5.0
1,1,2-Trichloroethane	< 5.0	< 5.0	< 5.0
Benzene	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10	< 10
Bromoform	< 5.0	< 5.0	< 5.0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50	< 50
2-Hexanone	< 50	< 50	< 50
Tetrachloroethene	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	< 5.0	< 5.0	< 5.0
Toluene	< 5.0	< 5.0	< 5.0
Chlorobenzene	< 5.0	< 5.0	< 5.0
Ethylbenzene	< 5.0	< 5.0	< 5.0
Styrene	< 5.0	< 5.0	< 5.0
m-Xylene	< 5.0	< 5.0	< 5.0
o,p-Xylene	< 5.0	< 5.0	< 5.0
Units	(ug/l)	(ug/kg)	(ug/kg)

Volatile Organics

AnalytiKEM

<u>Parameter</u>	Method Blank 3	A60651-10 S12	A60651-11 <u>S13</u>
Chloromethane	< 10	< 10	< 10
Bromomethane	< 10	< 10	< 10
Vinyl Chloride	< 10	< 10	< 10
Chloroethane	< 10	< 10	< 10
Methylene Chloride	< 5.0	< 5.0	< 5.0
2-Propanone (Acetone)	< 100	< 100	< 100
1,1-Dichloroethene	< 5.0	< 5.0	< 5.0
1,1-Dichloroethane	< 5.0	< 5.0	< 5.0
trans-1,2-Dichloroethene	< 5.0	< 5.0	< 5.0
Chloroform	< 5.0	< 5,0	< 5.0
1,2-Dichloroethane	< 5.0	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 100	< 100
1,1,1-Trichloroethane	< 5.0	< 5.0	< 5.0
Carbon Tetrachloride	< 5.0	< 5.0	< 5.0
Vinyl Acetate	< 50	< 50	< 50
Bromodichloromethane	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
Trichloroethene	< 5.0	< 5.0	< 5.0
Dibromochloromethane	< 5.0	< 5.0	< 5.0
1,1,2-Trichloroethane	< 5.0	< 5.0	< 5.0
Benzene	< 5.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10	< 10
Bromoform	< 5.0	< 5.0	< 5.0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50	< 50
2-Hexanone	< 50	< 50	< 50
Tetrachloroethene	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	< 5.0	< 5.0	< 5.0
Toluene	< 5.0	< 5.0	< 5.0
Chlorobenzene	< 5.0	< 5.0	< 5.0
Ethylbenzene	< 5.0	< 5,0	< 5.0
Styrene	< 5.0	< 5.0	< 5.0
m-Xylene	< 5.0	< 5.0	< 5.0
o,p-Xylene	< 5.0	< 5.0	< 5.0
Units	(ug/1)	(ug/kg)	(ug/kg)

AnalytiKEM

Volatile Organics

Sample Designation

<u>Parameter</u>	Method Blank 4	A60651-5 S8	A60651-8 <u>S4</u>
Chloromethane	< 10	< 10	< 10
Bromomethane	< 10	< 10	< 10
Vinyl Chloride	< 10	< 10	< 10
Chloroethane	< 10	< 10	< 10
Methylene Chloride	< 5.0	6.3	< 5.0
2-Propanone (Acetone)	< 100	< 100	200
1,1-Dichloroethene	< 5.0	< 5.0	< 5.0
1,1-Dichloroethane	< 5.0	< 5.0	< 5.0
trans-1,2-Dichloroethene	< 5.0	< 5.0	< 5.0
Chloroform	< 5.0	< 5.0	< 5.0
1,2-Dichloroethane	< 5.0	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 100	160
1,1,1-Trichloroethane	< 5.0	< 5.0	< 5.0
Carbon Tetrachloride	< 5.0	< 5.0	< 5.0
Vinyl Acetate	< 50	< 50	< 50
Bromodichloromethane	< 5.0	< 5.0	< 5.0
1,2-Dichloropropane	< 5.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
Trichloroethene	< 5.0	< 5.0	< 5.0
Dibromochloromethane	< 5.0	< 5.0	< 5.0
1,1,2 Trichloroethane	< 5.0	< 5.0	< 5.0
Benzene	< 5.0	< 5.0	11
trans-1,3-Dichloropropene	< 5.0	< 5.0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10	< 10
Bromoform	< 5.0	< 5.0	< 5.0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50	< 50
2-Hexanone	< 50	< 50	< 50
Tetrachloroethene	< 5.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	< 5.0	< 5.0	< 5.0
Toluene	< 5.0	< 5.0	< 5.0
Chlorobenzene	< 5.0	< 5.0	< 5.0
Ethylbenzene	< 5.0	< 5.0	< 5.0
Styrene	< 5.0	< 5.0	< 5.0
m-Xylene	< 5.0	< 5.0	< 5.0
o,p-Xylene	< 5.0	< 5.0	< 5.0
Units	(ug/1)	(ug/kg)	(ug/kg)

٠. ·

AnalytiKEM

Volatile Organics

Sample Designation

Parameter	Method Blank 4	A60651-9 S14
Chloromethane	< 10	< 10
Bromomethane	< 10	< 10
Vinyl Chloride	< 10	< 10
Chloroethane	< 10	< 10
Methylene Chloride	< 5.0	< 5.0
2-Propanone (Acetone)	< 100	< 100
,	•	
1,1-Dichloroethene	< 5.0	< 5.0
l,l-Dichloroethane	< 5,0	< 5.0
trans-1,2-Dichloroethene	< 5.0	< 5.0
Chloroform	< 5.0	< 5.0
1,2-Dichloroethane	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 100
1,1,1-Trichloroethane	< 5.0	< 5.0
Carbon Tetrachloride	< 5.0	< 5.0
Vinyl Acetate	< 50	< 50
Bromodichloromethane	< 5.0	< 5.0
1,2-Dichloropropane	< 5.0	< 5.0
cis-1,3-Dichloropropene	< 5.0	< 5.0
Trichloroethene	< 5,0	< 5.0
	3.10	, 510
Dibromochloromethane	< 5.0	< 5.0
1,1,2-Trichloroethane	< 5.0	< 5.0
Benzene	< 5.0	< 5.0
trans-1,3-Dichloropropene	< 5.0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10
Bromoform	< 5.0	< 5.0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50
2-Hexanone	< 50:	< 50
Tetrachloroethene	< 5,0	< 5,0
1,1,2,2-Tetrachloroethane	< 5,0	< 5.0
Toluene	< 5.0	< 5.0
Chlorobenzene	< 5∴0	< 5.0
Ethylbenzene	< 5.0	< 5.0
Styrene	< 5.0	< 5.0
m-Xylene	< 5,0	< 5,0
o,p-Xylene	< 5.0	< 5.0
Units	(ug/1)	(ug/kg)

()

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

Sample Designation

	Method	A60651-1	A60651-2
<u>Parameter</u>	<u>Blank</u>	<u>B5</u>	<u>s7</u>
N-Nitrosodimethylamine	< 330	< 330	< 330
Phenol	< 330	< 330	< 330
Bis(2-chloroethyl) Ether	< 330	< 330	< 330
2-Chlorophenol	< 330	< 330	< 330
1,3-Dichlorobenzene	< 330	< 330	< 330
1,4-Dichlorobenzene	< 330	< 330	< 330
Benzyl Alcohol	< 330	< 330	< 330
1,2-Dichlorobenzene	< 330	< 330	< 330
2-Methylphenol	< 330	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330	< 330
4-Methylphenol	< 330	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330	< 330
Hexachloroethane	< 330	< 330	< 330
Nitrobenzene	< 330	< 330	< 330
Isophorone	< 330	< 330	< 330
2-Nitrophenol	< 330	< 330	< 330
2,4-Dimethylphenol	< 330	< 330	< 330
Benzoic Acid	< 1,600	< 1,600	< 1,600
Bis(2-chloroethoxy)methane	< 330	< 330	< 330
2,4-Dichlorophenol	< 330	< 330	< 330
1,2,4-Trichlorobenzene	< 330	< 330	< 330
Naphthalene	< 330	< 330	< 330
4-Chloroaniline	< 330	< 330	< 330
Hexachlorobutadiene	< 330	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330	< 330
2-Methylnaphthalene	< 330	< 330	< 330
Hexachlorocyclopentadiene	< 330	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330	< 330
2,4,5-Trichlorophenol	< 1,600	< 1,600	< 1,600
2-Chloronaphthalene	< 330	< 330	< 330
2-Nitroaniline	< 1,600	< 1,600	< 1,600
Dimethyl Phthalate	< 330	< 330	< 330
Acenaphthylene	< 330	< 330	< 330
3-Nitroaniline	< 1,600	< 1,600	< 1,600
Acenaphthene	< 330	< 330	< 330
2,4-Dinitrophenol	< 1,600	< 1,600	< 1,600
Units	(ug/kg)	(ug/kg)	(ug/kg)

× •

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

<u>Parameter</u>	Method Blank	A60651-1 B5	A60651-2 S7
4-Nitrophenol	< 1,600	< 1,600	< 1,600
Dibenzofuran	< 330	< 330	< 330
2,4-Dinitrotoluene	< 330	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330	< 330
Diethyl Phthalate	< 330	< 330	< 330
4-Chlorophenyl Phenyl Ether	< 330	< 330	< 330
Fluorene	< 330	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330	< 330
Hexachlorobenzene	< 330	< 330	< 330
Pentachlorophenol	< 1,600	< 330	< 330
Phenanthrene	< 330	< 330	< 330
Anthracene	< 330	< 330	< 330
Dibutyl Phthalate	< 330	< 330	< 330
Fluoranthene	< 330	< 330	< 330
Benzidine	< 3,300	< 3,300	< 3,300
Pyrene	< 330	< 330	< 330
Butylbenzyl Phthalate	< 330	< 330	< 330
3,3'-Dichlorobenzidine	< 660	< 660	< 660
Benzo(a)anthracene	< 3 30	< 330	< 330
Bis(2-ethylhexyl) Phthalate	< 3 30	< 330	< 330
Chrysene	< 3 30	< 330	< 330
Dioctyl Phthalate	< 330	< 330	< 330
Benzo(b) fluoranthene	< 330	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330	< 330
Benzo(a)pyrene	< 330	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330	< 330
Dibenzo(a,h)anthracene	< 3 30	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330	< 330
Units	(ug/kg)	(ug/kg)	(ug/kg)

. 1

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

<u>Parameter</u>	Method Blank	A60651-3 <u>86</u>	A60651-4 S5
N-Nitrosodimethylamine	< 330	< 330	< 330
Phenol	< 330	< 330	< 330
Bis(2-chloroethyl) Ether	< 330	< 330	< 330
2-Chlorophenol	< 330	< 330	< 330
1,3-Dichlorobenzene	< 330	< 330	< 330
1,4-Dichlorobenzene	< 330	< 330	< 330
Benzyl Alcohol	< 330	< 330	< 330
1,2-Dichlorobenzene	< 330	< 330	< 330
2-Methylphenol	< 330	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330	< 330
4-Methylphenol	< 330	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330	< 330
Hexachloroethane	< 330	< 330	< 330
Nitrobenzene	< 330	< 330	< 330
Isophorone	< 330	< 330	< 330
2-Nitrophenol	< 330	< 330	< 330
2,4-Dimethylphenol	< 330	< 330	< 330
Benzoic Acid	< 1,600	< 1,600	< 1,600
Bis(2-chloroethoxy)methane	< 330	< 330	< 330
2,4-Dichlorophenol	< 330	< 330	< 330
1,2,4 Trichlorobenzene	< 330	< 330	< 330
Naphthalene	< 330	< 330	< 330
4-Chloroaniline	< 330	< 330	< 330
Hexachlorobutadiene	< 330	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330	< 330
2-Methylnaphthalene	< 330	< 330	< 330
Hexachlorocyclopentadiene	< 330	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330	< 330
2,4,5-Trichlorophenol	< 1,600	< 1,600	< 1,600
2-Chloronaphthalene	< 330	< 330	< 330
2-Nitroaniline	< 1,600	< 1,600	< 1,600
Dimethyl Phthalate	< 330	< 330	< 330
Acenaphthylene	< 330	< 330	< 330
3-Nitroaniline	< 1,600	< 1,600	< 1,600
Acenaphthene	< 330	< 330	< 330
2,4-Dinitrophenol	< 1,600	< 1,600	< 1,600
Units	(ug/kg)	(ug/kg)	(ug/kg)

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

<u>Parameter</u>	Method <u>Blank</u>	A60651-3 S6	A60651-4
4-Nitrophenol	< 1,600	< 1,600	< 1,600
Dibenzofuran	< 330	< 330	< 330
2,4-Dinitrotoluene	< 330	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330	< 330
Diethyl Phthalate	< 330	< 330	< 330
4-Chlorophenyl Phenyl Ether	< 330	< 330	< 330
Fluorene	< 330	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330	< 330
Hexachlorobenzene	< 330	< 330	< 330
Pentachlorophenol	< 1,600	< 1,600	< 1,600
Phenanthrene	< 330	< 330	< 330
Anthracene	< 330	< 330	< 330
Dibutyl Phthalate	< 330	< 330	< 330
Fluoranthene	< 330	< 330	< 330
Benzidine	< 3,300	< 3,300	< 3,300
Pyrene	< 330	< 330	< 330
Butylbenzyl Phthalate	< 330	< 330	< 330
3,3'-Dichlorobenzidine	< 660	< 660	< 660
Benzo(a)anthracene	< 330	< 330	< 330
Bis(2-ethylhexyl) Phthalate	< 330	< 330	< 330
Chrysene	< 330	< 330	< 330
Dioctyl Phthalate	< 330	< 330	< 330
Benzo(b)fluoranthene	< 330	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330	< 330
Benzo(a)pyrene	< 330	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330	< 330
Dibenzo(a,h)anthracene	< 330	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330	< 330
Units	(ug/kg)	(ug/kg)	(ug/kg)

 C_{i}^{*}

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

<u>Parameter</u>	Method Blank	A60651-5 S8	A60651-6
	. 222	. 220	- 220
N-NitrosodimethylamIne	< 330	< 330	< 330
Phenol	< 330 < 330	< 330 < 330	< 330 < 330
Bis(2-chloroethyl) Ether	< 330 < 330	< 330 < 330	< 330 < 330
2-Chlorophenol 1,3-Dichlorobenzene	< 330	< 330	< 330
1,3-bichiolopenzene	< 330	/ 230	< 550
1,4-Dichlorobenzene	< 330	< 330	< 330
Benyzyl Alcohol	< 330	< 330	< 330
1,2-Dichlorobenzene	< 330	< 330	< 330
2-Methylphenol	< 330	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330	< 330
4-Methylphenol	< 330	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330	< 330
Hexachloroethane	< 330	< 330	< 330
Nitrobenzene	< 330	< 330	< 330
Isophorone	< 330	< 330	< 330
2-Nitrophenol	< 330	< 330	< 330
2,4-Dimethylphenol	< 330	< 330	< 330
Benzoic Acid	< 1,600	< 1,600	< 1,600
Bis(2-chloroethoxy)methane	< 330	< 330	< 330
2,4-Dichlorophenol	< 330	< 330	< 330
1,2,4-Trichlorobenzene	< 330	< 330	< 330
Naphthalene	< 330	< 330	< 330
4-Chloroaniline	< 330	< 330	< 330
Hexachlorobutadiene	< 330	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330	< 330
2-Methylnaphthalene	< 330	< 330	< 330
Hexachlorocyclopentadiene	< 330	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330	< 330
2,4,5-Trichlorophenol	< 1,600		< 1,600
2-Chloronaphthalene	< 330	< 1,600 < 330	-
2-Nitroaniline	•		< 330
Dimethyl Phthalate	< 1,600	< 1,600	< 1,600
-	< 330	< 330	< 330
Acenaphthylene 3-Nitroaniline	< 330	< 330	< 330
Acenaphthene	< 1,600 < 330	< 1,600 < 330	< 1,600 < 330
2,4-Dinitrophenol	< 1,600	< 1,600	< 1,600
Units	(ug/kg)	(ug/kg)	(ug/kg)

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

<u>Parameter</u>	Method Blank	A60651-5 S8	A60651-6 89
4-Nitrophenol	< 1,600	< 1,600	< 1,600
Dibenzofuran	< 330	< 330	< 330
2,4-Dinitrotoluene	< 3.30	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330	< 330
Diethyl Phthalate	< 330	< 330	< 330
4-Chlorophenyl Phenyl Ether	< 330	< 330	< 330
Fluorene	< 3'30	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330	< 330
Hexachlorobenzene	< 330	< 330	< 330
Pentachlorophenol	< 1,600	< 330	< 330
Phenanthrene	< 330	< 330	< 330
Anthracene	< 330	< 330	< 330
Dibutyl Phthalate	< 330	< 330	< 330
Fluoranthene	< 330	< 330	< 330
Benzidine	< 3,300	< 3,300	< 3,300
Pyrene	< 330	< 330	< 330
Butylbenzyl Phthalate	< 330	< 330	< 330
3,3'-Dichlorobenzidine	< 660	< 660	< 660
Benzo(a)anthracene	< 330	< 330	< 330
Bis(2-ethylhexyl) Phthalate	< 330	< 330	< 330
Chrysene	< 330	< 330	< 330
Dioctyl Phthalate	< 330	< 330	< 330
Benzo(b)fluoranthene	< 330	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330	< 330
Benzo(a)pyrene	< 330	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330	< 330
Dibenzo(a,h)anthracene	< 330	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330	< 330
Units	(ug/kg)	(ug/kg)	(ug/kg)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

<u>Parameter</u>	Method <u>Blank</u>	A60651-7 S10	A60651-8 S4
N-Nitrosodimethylamine	< 330	< 330	< 330
Phenol	< 330	< 330	< 330
Bis(2-chloroethyl) Ether	< 330	< 330	< 330
2-Chlorophenol	< 330	< 330	< 330
1,3-Dichlorobenzene	< 330	< 330	< 330
1,4-Dichlorobenzene	< 330	< 330	< 330
Benzyl Alcohol	< 330	< 330	< 330
l,2-Dichlorobenzene	< 330	< 330	< 330
2-Methylphenol	< 330	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330	< 330
4-Methylphenol	< 330	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330	< 330
Hexachloroethane	< 330	< 330	< 330
Nitrobenzene	< 330	< 330	< 330
Isophorone	< 330	< 330	< 330
2-Nitrophenol	< 330	< 330	< 330
2,4-Dimethylphenol	< 330	< 330	< 330
Benzoic Acid	< 1,600	< 1,600	< 1,600
${ t Bis(2 ext{-}chloroethoxy)}$ methane	< 330	< 330	< 330
2,4-Di _, chlorophenol	< 330	< 330	< 330
1,2,4-Trichlorobenzene	< 330	< 330	< 330
Naphthalene	< 330	< 330	< 330
4-Chloroaniline	< 330	< 330	< 330
Hexachlorobutadiene	< 330	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330	< 330
2-Methylnaphthalene	< 330	< 330	< 330
Hexachlorocyclopentadiene	< 330	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330	< 330
2,4,5-Trichlorophenol	< 1,600	< 1,600	< 1,600
2-Chloronaphthalene	< 330	< 330	< 330
2-Nitroaniline	< 1,600	< 1,600	< 1,600
Dimethyl Phthalate	< 330	< 330	< 330
Acenaphthylene	< 330	< 330	< 330
3-Nitroaniline	< 1,600	< 1,600	< 1,600
Acenaphthene	< 330	< 330	< 330
2,4-Dinitrophenol	< 1,600	< 1,600	< 1,600
Units	(ug/kg)	(ug/kg)	(ug/kg)

 $\langle \cdot \rangle$

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

Parameter	Method <u>Blank</u>	A60651-7 S10	A60651-8 S4
4-Nitrophenol	< 1,600	< 1,600	< 1,600
Dibenzofuran	< 330	< 330	< 330
2,4-Dinitrotoluene	< 330	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330	< 330
Diethyl Phthalate	< 330	< 330	< 330
4-Chlorophenyl Phenyl Ether	< 330	< 330	< 330
Fluorene	< 330	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330	< 330
Hexachlorobenzene	< 330	< 330	< 330
Pentachlorophenol	< 1,600	< 1,600	< 1,600
Phenanthrene	< 330	< 330	< 330
Anthracene	< 330	< 330	< 330
Dibutyl Phthalate	< 330	< 330	< 330
Fluoranthene	< 330	< 330	< 330
Benzidine	< 3,300	< 3,300	< 3,300
Pyrene	< 330	< 330	< 330
Butylbenzyl Phthalate	< 330	< 330	< 330
3,3'-Dichlorobenzidine	< 660	< 660	< 660
Benzo(a)anthracene	< 330	< 330	< 330
Bis(2-ethylhexyl) Phthalate	< 330	< 330	< 330
Chrysene	< 330	< 330	< 330
Dioctyl Phthalate	< 330	< 330	< 330
Benzo(b) fluoranthene	< 330	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330	< 330
Benzo(a)pyrene	< 330	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330	< 330
Dibenzo(a,h)anthracene	< 330	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330	< 330
Units	(ug/kg)	(ug/kg)	(ug/kg)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

<u>Parameter</u>	Method Blank	A60651-9 <u>S14</u>	A60651-10 <u>S12</u>
N-Nitrosodimethylamine	< 330	< 330	< 330
Pheno1	< 330	< 330	< 330
Bis(2-chloroethyl) Ether	< 330	< 330	< 330
2-Chlorophenol	< 330	< 330	< 330
1,3-Dichlorobenzene	< 330	< 330	< 330
1,4-Dichlorobenzene	< 330	< 330	< 330
Benzyl Alcohol	< 330	< 330	< 330
1,2-Dichlorobenzene	< 330	< 330	< 330
2-Methylphenol	< 330	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330	< 330
4-Methylphenol	< 330	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330	< 330
Hexachloroethane	< 330	< 330	< 330
Nitrobenzene	< 330	< 330	< 330
Isophorone	< 330	< 330	< 330
2-Nitrophenol	< 330	< 330	< 330
2,4-Dimethylphenol	< 330	< 330	< 330
Benzoic Acid	< 1,600	< 1,600	< 1,600
Bis(2-chloroethoxy)methane	< 330	< 330	< 330
2,4-Dichlorophenol	< 330	< 330	< 330
1,2,4-Trichlorobenzene	< 330	< 330	< 330
Naphthalene	< 330	< 330	< 330
4-Chloroaniline	< 330	< 330	< 330
Hexachlorobutadiene	< 330	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330	< 330
2-Methylnaphthalene	< 330	< 330	< 330
Hexachlorocyclopentadiene	< 330	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330	< 330
2,4,5-Trichlorophenol	< 1,600	< 1,600	< 1,600
2-Chloronaphthalene	< 330	< 330	< 330
2-Nitroaniline	< 1,600	< 1,600	< 1,600
Dimethyl Phthalate	< 330	< 330	< 330
Acenaphthylene	< 330	< 330	< 330
3-Nitroaniline	< 1,600	< 1,600	< 1,600
Acenaphthene	< 330	< 330	< 330
2,4-Dinitrophenol	< 1,600	< 1,600	< 1,600
Units	(ug/kg)	(ug/kg)	(ug/kg)

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

<u>Parameter</u>	Method Blank	A60651-9 S14	A60651-10 S12
4-Nitrophenol	< 1,600	< 1,600	< 1,600
Dibenzofuran	< 330	< 330	< 330
2,4-Dinitrotoluene	< 330	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330	< 330
Diethyl Phthalate	< 330	< 330	< 330
4-Chlorophenyl Phenyl Ether	< 330	< 330	< 330
Fluorene	< 330	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330	< 330
Hexachlorobenzene	< 330	< 330	< 330
Pentachlorophenol	< 1,600	< 1,600	< 1,600
Phenanthrene	< 330	< 330	< 330
Anthracene	< 330	< 330	< 330
Dibutyl Phthalate	< 330	< 330	< 330
Fluoranthene	< 330	< 330	< 330
Benzidine	< 3,300	< 3,300	< 3,300
Pyrene	< 330	< 330	< 330
Butylbenzyl Phthalate	< 330	< 330	< 330
3,3'-Dichlorobenzidine	< 660	< 660	< 660
Benzo(a)anthracene	< 330	< 330	< 330
Bis(2-ethylhexyl) Phthalate	< 330	< 330	< 330
Chrysene	< 330	< 330	< 330
Dioctyl Phthalate	< 330	< 330	< 330
Benzo(b)fluoranthene	< 330	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330	< 330
Benzo(a)pyrene	< 330	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330	< 330
Dibenzo(a,h)anthracene	< 330	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330	< 330
Units	(ug/kg)	(ug/kg)	(ug/kg)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

Davassas	Method	A60651-11
<u>Parameter</u>	<u>Blank</u>	<u>\$13</u>
N-Nitrosodimethylamine	< 330	< 330
Phenol	< 330	< 330
Bis(2-chloroethyl) Ether	< 330	< 330
2-Chlorophenol	< 330	< 330
1,3-Dichlorobenzene	< 330	< 330
2,7	1 350	. 550
1,4-Dichlorobenzene	< 330	< 330
Benzyl Alcohol	< 330	< 330
1,2-Dichlorobenzene	< 330	< 330
2-Methylphenol	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330
y		
4-Methylphenol	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330
Hexachloroethane	< 330	< 330
Nitrobenzene	< 330	< 330
Isophorone	< 330	< 330
0 Wiennah - 1	. 500	. 220
2-Nitrophenol	< 330	< 330
2,4-Dimethylphenol	< 330	< 330
Benzoic Acid	< 1,600	< 1,600
Bis(2-chloroethoxy)methane	< 330	< 330
2,4-Dichlorophenol	< 330	< 330
1,2,4-Trichlorobenzene	< 330	< 330
Naphthalene	< 330	< 330
4-Chloroaniline	< 330	< 330
Hexachlorobutadiene	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330
2-Methylnaphthalene	< 330	< 330
2 y 2 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1 y 1	, 550	7 550
Hexachlorocyclopentadiene	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330
2,4,5-Trichlorophenol	< 1,600	< 1,600
2-Chloronaphthalene	< 330	< 330
2-Nitroaniline	< 1,600	< 1,600
Dimethyl Phchalate	< 330	< 330
Acenaphthylene	< :330	< 330
3-Nitroaniline	< 1,600	< 1,600
Acenaphthene	< 330	< 330
2,4-Dinitrophenol	< 1,600	< 1,600
77 f A	, , , , , ,	, ,,
Units	(ug/kg)	(ug/kg)

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

Sample Designation

<u>Parameter</u>	Method Blank	A60651-11 S13
4-Nitrophenol	< 1,600	< 1,600
Dibenzofuran	< 330	< 330
2,4-Dinitrotoluene	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330
Diethyl Phthalate	< 330	< 330
A Chlomotony Thomas Patro	- 220	- 220
4-Chlorophenyl Phenyl Ether	< 330	< 330
Fluorene	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330
Hexachlorobenzene	< 330	< 330
Pentachlorophenol	< 1,600	< 1,600
Phenanthrene	< 330	< 330
Anthracene	< 330	< 330
Dibutyl Phthalate	< 330	< 330
Fluoranthene	< 330	< 330
Benzidine	< 3,300	< 3,300
Pyrene	< 330	< 330
Butylbenzyl Phthalate	< 330	< 330
3 31 Nighlarahangidine	< 660	- (()
3,3'-Dichlorobenzidine	< 660 < 330	< 660
Benzo(a) anthracene		< 330
Bis(2-ethylhexyl) Phthalate	< 330	< 330
Chrysene	< 330	< 330
Dioctyl Phthalate	< 330	< 330
Benzo(b)fluoranthene	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330
Benzo(a)pyrene	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330
Dibenzo(a,h)anthracene	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330
Units	(ug/kg)	(ug/kg)

0

AnalytiKEM

General Chemistry

Parameter

Sample Designation	Bromide, by IC	Sulfate, by IC
Method Blank	< 1,000	< 1,000
A60651-1 B5	< 1,000	110,000
A60651-2 \$7	< 1,000	600,000
A60651-3 S6	< 1,000	110,000
A60651-4 S5	1,000	2,000
A60651-5 S8	< 1,000	110,000
A60651-6 \$9	< 1,000	42,000
A60651-7 S10	< 1,000	83,000
A60651-8 S4	< 1,000	120,000
A60651-9 S14	< 1,000	67,000
A60651-10 S12	< 1,000	23,000
A60651-11 S13	< 1,000	11,000
Units	(ug/kg)	(ug/kg)

٩.

÷

VI. Quality Control Data

AnalytiKEM

Volatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A60651-1

					Control L	<u>imits</u>
Parameter	Amount of Spike	Reco <u>MS</u>	wery MSD	RPD	Recovery	Max. RPD
1,1-Dichloroethene	0.25	89	93	5	59-172	22
Trichloroethene (TCE)	0.25	106	108	2	62-137	24
Chlorobenzene	0.25	102	108	6	60-133	21
Toluene	0.25	102	106	4	59-139	21
Benzene	0.25	111	100	10	66-142	21
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: __0 out of _10 outside control limits

RPD: 0 out of 5 outside control limits

1

Test Report No. A60651 Page 25

VI. Quality Control Data (Cont'd)

AnalytiKEM

Volatile Organics

()

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample Designation	1,2-Dichloroethane-d ₄ (0.25 ug Added)	Toluene-d ₈ (0.25 ug Added)	4-Bromofluorobenzene (0.25 ug Added)
Method Blank 1	96	100	94
Method Blank 2	99	100	105
Method Blank 3	97	101	117
Method Blank 4	100	102	89
A60651-1 Spike	99	98	109
A60651-1 Spike Dup.	103	98	108
A60651-1	99	98	94
A60651-2	96	100	101
A60651-3	97	98	110
A60651-4	97	102	108
A60651-5	101	107	83
A60651-6	97	99	110
A60651-7	101	98	109
A60651-8	111	110	91
A60651-9	102	109	94
A60651-10	99	101	103
A60651-11	100	100	114
Units	(%)	(%)	(%)
Control Limits	70-121	81-117	74-121

__O out of __51_ surrogate recoveries are outside control limits.

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A60651-2

					Control L	<u>imits</u>
	Amount	Reco	very			Max.
<u>Parameter</u>	of Spike	<u>MS</u>	MSD	<u>RPD</u>	Recovery	RPD
1,4-Dichlorobenzene	100	59	56	5	28-104	27
N-Nitrosodipropylamine	100	58	52	11	41-126	38
1,2,4-Trichlorobenzene	100	68	63	8	38-107	23
Acenaphthene	100	94	83	12	31-137	19
2,4-Dinitrotoluene	100	75	75	0	28-89	47
Pyrene	100	129	123	5	35-142	36
Phenol	200	61	57	7	26-90	35
2-Chlorophenol	200	67	70	4	25-102	50
4-Chloro-3-methylphenol	200	58	53	9	26-103	33
4-Nitrophenol	200	49	46	6	11-114	50
Pentachlorophenol	200	95	92	3	17-109	47
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: $\underline{0}$ out of $\underline{22}$ outside control limits

RPD: 0 out of 11 outside control limits

1.)

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample <u>Designation</u>	2-Fluorophenol (200 ug Added)	Phenol-d ₅ (200 ug Added)	2,4,6-Tribromophenol (200 ug Added)
	, A. W.	44	4 B
Method Blank	27	31	67
A60651-2 Spike	75	64	105
A60651-2 Spike Dup.	71	58	93
A60651-1	28	36	57
A60651-2	7 7	69	77
A60651-3	28	42	54
A60651-4	29	33	53
A60651-5	27	30	37
A60651-6	28	35	52
A60651-7	32	40	54
A60651-8 ,	26	37	46
A60651-9	26	26	51
A60651-10	25	27	48
A60651-11	32	48	49
Units	(%)	(%)	(%)
Control Limits	25-121	24-113	19-122

Surrogate Recovery

Sample Designation	Nitrobenzene-d ₅ (100 ug Added)	2-Fluorobiphenyl (100 ug Added)	Terphenyl-d ₁₄ (100 ug Added)
Method Blank	34	67	82
A60651-2 Spike	71	74	122
A60651-2 Spike D	oup. 62	. 70	120
A60651-1	41	65	79
A60651-2	76	, 75	122
A60651-3	42	47	96
A60651-4	45	43	103
A60651-5	24	34	43
A60651-6	42	64	74
A60651-7	46	60	76
A60651-8	45	44	87
A60651-9	33	46	90
A60651-10	35	41	86
A60651-11	38	42	79
Units	(%)	(%)	(%)
Control Limits	23-120	30-115	18-137

__O out of __84 surrogate recoveries are outside control limits.

Test Report No. A60651 Page 28

VI. Quality Control Data (Cont'd)

AnalytiKEM

General Chemistry

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A60651-1

<u>Parameter</u>	Amount <u>of Spike</u>	Reco <u>MS</u>	very <u>MSD</u>	<u>RPD</u>	Control L Recovery	imits Max. RPD
Sulfate	1.00	97	98	1	75-125	20
Bromide	75	99	99	0	75-125	20
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: 0 out of 4 outside control limits

RPD: __O out of __2 outside control limits

4

Chain-of-Custody Record

								. •.							·			
Client: _	Area: Drinking \ EVSC /			<u>-</u> -	Sai	mple Col	lector:	54	ve 5			<u>^</u>	23 Ro (80	ock Hill, 03) 324	nsdale Road , South Carolina 2973 -5310			rson Road BTC 532 Carolina 29730
Project:	59203	<u></u>	·		An	alytiKEM	Contact:		Ho11	<u>ey</u>	_ 		Fa	x: (803) 324-8378		Fax: (803) 329-	9689
ITEM	SAMPLE DESIGNATIO	N	DATE	TIME	MATRIX	/s ⁱ	S C SHO LIST		River S		No.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,			RAMETERS	
2 3	B5		2-28 92	1430	Sei/	G		2				1	3		8240,8270 Ra 276-728, B	7868 30,504	mehls, grandys	rid, sross B,
22	57	j	2-29 92	1030	11	G		2				/	3		\			<u> </u>
3	56		2-29 42	1215	le	G		2				1	3					
4	55		929 92	1360	· ·	6		2				1	3	j				
	58	/	92	1915	<u> </u>	6		ړ				1	3					
6	59		2.29 92	1445	t e	6		2					3					
7	510		2-29 92	1515		C		2				1	3			·		
8	54	. [160		6		2				1	3					
9	514	10 10	12	1100	C.	۵		2				1	3			4		``
10	512		2-30 92	1150	1.	6		2				1	3					ię.
TRANSFER NUMBER	ITEM NUMBER	RE		ISFERS JISHED I	вү		TRANSF		 \	ĺ	TIME		MARKS		turnan. # 312	ud		
1	1-10	Steve		tak	lma_	Li	edy	La	ne_	12-30	1400	?		1.0	# 312	894	1	
2	1-10	Gro	dy	Ja	, o	Jan	WW.)mi	les	, ,	160			., .				
3	1-10	J.W.	De	in		<u> </u>	M/M	0		1007]		1	I tu	Spoli	Lu		
4	•	1					, " \]					SA	MPLER	'S SIG	NATURE			

AKEM #1 12/89

Reorder: PJ Associates 803-329-2300

ustody Record

Client: _	Area: Drinking N			Sa	imple C	Collect	tor: _	olic W <u>SA</u>	ve	5/ 1	de	/ma_	<u>-</u>	Ro (80	84 Ve ck Hili 3) 32	rnsdale Road 1, South Carolina 29731 4-5310	Sales Office 454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690
Project:	5920	5-3-		Аг	alytiKl	EM Co	ntact	:	40	11×y			_	Fa	c: (80)	3) 324-8378	Fax: (803) 329-9689
ITEM	SAMPLE DESIGNATIO	DAT	ETIME	MATRIX			_/.					7	$\overline{}$	1 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(v)	au ,	PARAMETERS
2	513	12-3 92	215	5/	G			1					1	3		RA 226-228; BG 52	exp metals, gross of, grossp 24. Analyse pur theleds
2								<u> </u>									, , , , , , , , , , , , , , , , , , ,
3																	
4	· · · · · · · · · · · · · · · · ·								<u> </u>								
5								 	<u> </u>								
6				 		1	 	 						 			
7	<u></u>				- .	 			-						-		
8					1											-	
9						 					 						
10					 												
TRANSFER	ITEM NUMBER		ANSFERS QUISHED				RANSI	FERS	<u> </u>	1	DATE	TIME		MARKS		st turnaro	and.
1	/	Agn En	belo	ntra-	1	ra	Ly	E	بر	/;	2-30	1400)	,	~ ~	sL turnaro	04
2	,	Red	1 X	ane	\mathcal{D}_{n}	net	Tu.	In	les		12.00 22		-				77
3		Janet	Win	les	7	\mathbb{Z}_{N}	W/W	D						1.2	Ju	Stolen	
Δ		1					1					·	SAI	WPLEH	's sic	GNATURE	

White Laboratory Copy

Yellow Client Copy

AnalytiKEM Inc. 28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60646, Revision

February 2, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (\$92032)

Reviewed & Approved by: Jude Mills The January Name: Carmine M. Fioriglio

Title: QA/QC Manager

AnalytikEM

TABLE OF CONTENTS

		1080
I.	Certification	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	. 4
V.	Analytical Results	5 - 8
Vï.	Quality Control Data	9 - 1

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX				
State	Cert #	State	Cert #	State	Cert #			
Arkansas	*	S. Carolina	46067	N. Dakota	R-006			
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403			
Florida	880985G	New Jersey	79795	Texas Water Co	mmission *			
Massachusetts	NJ117			Louisiana	92-07			
New Jersey	04012			S. Carolina	82011			
New York	10815			N. Carolina	367			
N. Carolina	258		· · · · · · · · · · · · · · · · · · ·	Wisconsin	998010530			
N. Dakota	R-038			New Jersey	82869			
Pennsylvania	68366		<u> </u>					
S. Carolina	94004							
Tennessee	02908							
Vermont	*		·					
Oklahoma	9107							

^{*} No certification numbers are issued for these states.

AnalytiKEM

II. <u>Definition of Terms</u>

<u>Definition</u>
Detected; result must be greater than zero.
Deionized Water
Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
Matrix Spike/Matrix Spike Duplicate.
Analysis not applicable to the sample matrix.
Not Detected
Not Requested
Nephelometric Turbidity Units
Relative Percent Difference
Relative Standard Deviation
Compound was analyzed for but not detected. The preceding numbers is the practical quantitation limit for the compound.
Parts-per-billion; may be converted to ppm by dividing by 1,000.
Parts-per-million; may be converted to ppb by multiplying by 1,000.
Micrograms of constituent per liter of sample; equivalent to parts-per-billion.
Micrograms of constituent per kilogram of sample; equivalent to parts-per-billion.
Micrograms of constituent per kilogram of sample reported on a dry weight basis.
Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
Analyte detected in associated bA60646k as well as the sample. It indicates possible/probable bA60646k contamination.

Test Report No. A60646 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM Designation

Client

<u>Designation</u>

Matrix

Date <u>Sampled</u>

A60646-1

В4

Nonaqueous

12/16/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

IV. Methodology

AnalytiKEM

<u>Volatiles</u>

Method 5030, <u>Purge and Trap</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8240, <u>Gas Chromatography/Mass Spectrometry for Volatile Organics</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

<u>Semivolatiles</u>

. . *

Method 3550, Sonication Extraction, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics: Capillary Column Technique, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

General Chemistry

Method 9056, Anion Chromatography Method, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

V. Analytical Results

Volatile Organics

AnalytiKEM

Sample Designation

<u>Parameter</u>	Method Blank	A60646-1 <u>B4</u>
Chloromethane	< 10	< 10
Bromomethane	< 10	< 10
Vinyl Chloride	< 10	< 10
Chloroethane	< 10	< 10
Methylene Chloride	< 5.0	< 5.0
2-Propanone (Acetone)	< 100	< 100
Carbon Disulfide	< 5;0	< 5.0
1,1-Dichloroethene	< 5;0	< 5.0
1,1-Dichloroethane	< 5.0	< 5.0
trans-1,2-Dichloroethene	< 5.0	< 5.0
Chloroform	< 5.0	< 5.0
1,2-Dichloroethane	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 100
1,1,1-Trichloroethane	< 5,0	< 5.0
Carbon Tetrachloride	< 5.0	< 5.0
Vinyl Acetate	< 50	< 50
Bromodichloromethane	< 5;₊0	< 5.0
l,2-Dichloropropane	< 5.0	< 5.0
cis-1,3-Dichloropropene	< 5'.0	< 5.0
Trichloroethene	< 5, 0	< 5.0
Dibromochloromethane	< 5, 0	< 5.0
1,1,2-Trichloroethane	< 5¦.0	< 5.0
Benzenè	< 5ị.0	< 5.0
trans-1,3-Dichloropropene	< 5,0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10
Bromoform	< 5,0	< 5.0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50
2-Hexanone	< 50	< 50
Tetrachloroethene	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	< 5.0	< 5.0
Toluene	< 5.0	< 5.0
Chlorobenzene	< 5.0	< 5.0
Ethylbenzene	< \$.0	< 5.0
Styrene	< 5.0	< 5.0
m-Xylene	< 5.0	< 5,0
o,p-Xylene	< 5.0	< 5.0
Units	(ug/l)	(ug/kg)

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

Sample Designation

	-	
	Method	A60646-1
Parameter	<u>Blank</u>	<u>B4</u>
		
N-Nitrosodimethylamine	< 330	< 330
Phenol	< 330	< 330
Bis(2-chloroethyl) Ether	< 330	< 330
2-Chlorophenol	< 330	< 330
1,3-Dichlorobenzene	< 330	< 330
a, b browned obtained	4 430	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,4-Dichlorobenzene	< 330	< 330
Benzyl Alcohol	< 330	< 330
1,2-Dichlorobenzene	< 330	< 330
2-Methylphenol	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330
Did (Dillotottoplop) 1) Milliot	7 700	, 330
4-Methylphenol	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330
Hexachloroethane	< 330	< 330
Nitrobenzene	< 330	< 330
Isophorone	< 330	< 330
0 M511	- 220	~ 22A
2-Nitrophenol	< 330 < 330	< 330
2,4-Dimethylphenol		< 330
Benzoic Acid	< 1,600	< 1,600
Bis(2-chloroethoxy)methane	< 330	< 330
2,4-Dichlorophenol	< 330	< 330
1 0 / Twishlawshanger	- '220	- 220
1,2,4-Trichlorobenzene	< 330	< 330
Naphthalene	< 330	< 330
4-Chloroaniline	< 330	< 330
Hexachlorobutadiene	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330
2-Methylnaphthalene	< 330	
	1	
Hexachlorocyclopentadiene	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330
2,4,5-Trichlorophenol	< 1,600	< 1,600
2-Chloronaphthalene	< 330	< 330
2-Nitroaniline	< 1,600	< 1,600
Dimethyl Phthalate	< 330	< 330
Acenaphthylene	< 330	< 330
3-Nitroaniline	< 1,600	< 1,600
Acenaphthene	< 330	< 330
2,4-Dinitrophenol	< 1,600	< 1,600
-	1	
Units	(ug/kg)	(ug/kg)
	- J. J.	. 0, 0,

AnalytiKEM

V. Analytical Results (Cont'd)

Semivolatile Organics (Page 2 of 2)

Sample Designation

Parameter	Method <u>Blank</u>	A60646-1 B4
4-Nitrophenol	< 1,600	< 1,600
Dibenzofuran	< 330	< 330
2,4-Dinitrotoluene	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330
Diethyl Phthalate	< 330	< 330
4-Chlorophenyl Phenyl Ether	< 330	< 330
Fluorene	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330
Hexachlorobenzene	< 330	< 330
Pentachlorophenol	< 1,600	< 1,600
Phenanthrene	< 330	< 330
Anthracene	< 330	< 330
Dibutyl Phthalate	< 330	< 330
Fluoranthene	< 330	< 330
Benzidine	< 3,300	< 3,300
Pyrene	< 330	< 330
Butylbenzyl Phthalate	< '330	< 330
3,3'-Dichlorobenzidine	< 660	< 660
Benzo(a)anthracene	< 330	< 330
Bis(2-ethylhexyl) Phthalate	< 330	< 330
Chrysene	< 330	< 330
Dioctyl Phthalate	< 330	< 330
Benzo(b) fluoranthene	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330
Benzo(a)pyrene	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330
Dibenzo(a,h)anthracene	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330
Units	(ug/kg)	(ug/kg)

V. Analytical Results (Cont'd)

AnalytiKEM

General Chemistry

Sample Designation

Parameter	Method <u>Blank</u>	A60646-1 <u>B4</u>		
Bromide, by IC Sulfate, by IC	< 1,000 < 1,000	< 1,000 30,000		
Units	(ug/kg)	(ug/kg)		

Ŋ.

VI. Quality Control Data

AnalytiKEM

Volatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A29123-2

					Control L	<u>imits</u>
	Amount	Reco	very			Max.
<u>Parameter</u>	of Spike	<u>MS</u>	MSD	<u>RPD</u>	Recovery	<u>RPD</u>
1,1-Dichloroethene	0.25	98	94	5	59-172	22
Trichloroethene (TCE)	0.25	97	94	3	62-137	24
Benzene	0.25	92	94	2	60-133	21
Toluene	0.25	89	89	0	59-139	21
Chlorobenzene	0.25	100	96	3	66-142	21
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: __0 out of _10 outside control limits

RPD: 0 out of 5 outside control limits

Test Report No. A60646 Page 10

VI. Quality Control Data (Cont'd)

AnalytiKEM

Volatile Organics

**

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample <u>Designation</u>	1,2-Dichloroethane-d ₄ (0,25 ug Added)	Toluene-d _s (0.25 ug Added)	4-Bromofluorobenzen (0.25 ug Added)		
Method Blank	114	97	98		
A29123-2 Spike	99	98	109		
A29123-2 Spike Dup.	103	98	108		
A60646-1	113	94	94		
Units	(%)	(%)	(%)		
Control Limits	70-121	81-117	74-121		

_____ out of _____ surrogate recoveries are outside control limits.

Test Report No. A60646 Page 11

VI. Quality Control Data (Cont'd)

AnalytikEM

Semivolatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A9434-2

					Control L	imits
	Amount	Reco	very			Max.
Parameter	<u>of Spike</u>	<u>MS</u>	MSD	<u>RPD</u>	Recovery	RPD
1,4-Dichlorobenzene	100	55	62	12	28-104	27
N-Nitrosodipropylamine	100	68	67	1	41-126	38
1,2,4-Trichlorobenzene	100	52	62	18	38-107	23
Acenaphthene	100	87	8 9	2	31-137	19
2,4-Dinitrotoluene	100	81	7 7	13	28-89	47
Pyrene	100	103	121	16	35-142	36
Phenol	200	59	5 9	0	26-90	35
2-Chlorophenol	200	53	54	2	25-102	50
4-Chloro-3-methylphenol	200	57	56	2	26-103	33
4-Nitrophenol	200	75	6,5	14	11-114	50
Pentachlorophenol	200	58	58	0	17-109	47
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: 0 out of 22 outside control limits

RPD: 0 out of 11 outside control limits

 $\langle \cdot \cdot \rangle$

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample <u>Designation</u>	2-Fluorophenol (200 ug Added)	Phenol-d ₅ (200 ug Added)	2,4,6-Tribromophenol (200 ug Added)		
Method Blank	88	- 52	73		
A9434-2 Spike	76	79	90		
A9434-2 Spike Dup.	82	82	82		
A60646-1	112	112	57		
Units	(%)	(%)	(%)		
Control Limits	25-121	24-113	19-122		

Surrogate Recovery

Sample <u>Designation</u>	Nitrobenzene-d ₅ (100 ug Added)	2-Fluorobiphenyl (100 ug Added)	Terphenyl-d ₁₄ (100 ug Added)
Method Blank	114	. 43	86
A9434-2 Spike	85	86	84
A9434-2 Spike Dup.	100	93	125
A60646-1	83	75	103
Units	(%)	(%)	(%)
Control Limits	23-120	30-115	18-137

0 out of 24 surrogate recoveries are outside control limits.

Test Report No. A60646 Page 13

VI. Quality Control Data (Cont'd)

AnalytiKEM

General Chemistry

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A60646-1

					Control I	<u>imits</u>
<u>Parameter</u>	Amount <u>of Spike</u>	Reco <u>MS</u>	wery MSD	RPD	Recovery	Max. RPD
Sulfate, by IC	100	91	95	4	75-125	20
Bromide, by IC	75	95	94	1	75-125	20
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: 0 out of 4 outside control limits

RPD: 0 out of 2 outside control limits

ij

28 Springdale Road Cherry Hill, New Jersey 08003 (609) 751-1122 • (215) 923-2068 Fax: (609) 751-0824

Chain-of-Custody

454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690

Client AVOLYTICEM_			Proiect:	6065	Ho					Analy	ytiKEM Contact ACAFOE LEVIN
SAMPLE DESIGNATION	DATE	MATRIX	// Vials				-,- -	,	NaO, m.		PARAMETERS
60646-1	12/16/92	solid									Radium 226, Radium 228, Gross Alpha
•											D
Field Measurements:	<u> </u>) 	ield Condition								
Data Sheets: Y N		16. F	Heir Collotti								
Filtered: Y Not Requi	red		pecial Instru Petection Lim			_ 		···			
Relinquished By:		Time/Date:			Receiv	ed By:				Tir	me/Date:
My pro		1710 IZ	43/92		Ain	boyse	<u>گ</u> ر	<u> </u>			
U					<u> </u>		Lan	Δ			224-92 1200

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690 Fax: 803/324-3982

TEST REPORT NO. A82824

November 5, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed & Approved by:

Title: OA/QC Manager

AnalytikEM

TABLE OF CONTENTS

	•	<u>Page</u>
ĭ.	Certification	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
ν.	Analytical Results	5 - 8
VI.	Quality Control Data	9 - 13

1

I. Certification

AnalytikEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX		
State	Cert #	State	Cert #	State	Cert #	
Arkansas	*	S. Carolina	46067	N. Dakota	R-006	
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403	
Florida	880985G	New Jersey	79795	Texas Water Commission *		
Massachusetts	NJ117		i .	Louisiana	92-07	
New Jersey	04012		:	S. Carolina	82011	
New York	10815		: :	N. Carolina	367	
N. Carolina	258			Wisconsin	998010530	
N. Dakota	R-038			New Jersey	82869	
Pennsylvania	68366		i			
S, Carolina	94004		1			
Tennessee	02908					
Vermont	*		!			
Oklahoma	9107					

^{*} No certification numbers are issued for these states.

II. <u>Definition of Terms</u>

<u>Term</u>	<u>Definition</u>
D	Detected; result must be greater than zero.
DΪ	Deionized Water
ĭ	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate.
NA	Analysis not applicable to the sample matrix.
ND	Not Detected
nr	Not Requested
ŊŢU	Nephelometric Turbidity Units
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
υ	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
ppb	Parts-per-billion; may be converted to ppm by dividing by 1,000.
ppm	Parts-per-million; may be converted to ppb by multiplying by 1,000.
ug/1")	Micrograms of constituent per liter of sample; equivalent to parts-per-billion.
ug/kg	Micrograms of constituent per kilogram of sample; equivalent to parts-per-billion.
ug/kg dw	Micrograms of constituent per kilogram of sample reported on a dry weight basis.
ccc	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
В	Analyte detected in associated blank as well as the sample. It indicates possible/probable blank contamination.

Client

 s_3

Б2

Designation

III. Sample Designations

AnalytiKEM

A82824-1

A82824-2

Designation

	AnalytiKEM
<u>Matrix</u>	Date <u>Sampled</u>
Nonaqueous Nonaqueous	10/20/92 10/20/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

IV. Methodology

AnalytikEM

Volatiles

Method 5030, <u>Purge and Trap</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8240, <u>Gas Chromatography/Mass Spectrometry for Volatile Organics</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

<u>Semivolatiles</u>

Method 3550, <u>Sonication Extraction</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8270, Gas Chromatography/Mass Spectrometry for Semivolatile Organics: Capillary Column Technique, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

General Chemistry

Method 9056, Anion Chromatography Method, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

V. Analytical Results

Volatile Organics

AnalytiKEM

Sample Designation

	•		
	Method	A82824-1	A82824-2
<u>Parameter</u>	<u>Blank</u>	<u>s</u> 3	<u>B2</u>
Chloromethane	< 1,000	< 1,000	< 1,000
Bromomethane	< 1,000	< 1,000	< 1,000
Vinyl Chloride	< 1,000	< 1,000	< 1,000
Chloroethane	< 1,000	< 1,000	< 1,000
Methylene Chloride	< 500	< 500	< 500
2-Propanone (Acetone)	<10,000	< 10,000	< 10,000
Carbon Disulfide	< 500	< 500	< 500
1,1-Dichloroethene	< 500	< 500	< 500
l,1-Dichloroethane	< 500	< 500	< 500
trans-1,2-Dichloroethene	< 500	< 500	< 500
Chloroform	< 500	< 500	< 500
1,2-Dichloroethane	< 500	< 500	< 500
2-Butanone (MEK)	<10,000	< 10,000	< 10,000
1 7 7 9 9 1 1			- -
1,1,1-Trichloroethane	< 500	< 500	< 500
Carbon Tetrachloride	< 500	< 500	< 500
Vinyl Acetate	< 5,000	< 5,000	< 5,000
Bromodichloromethane	< 500	< 500	< 500
1,2-Dichloropropane	< 500	< 500	< 500
trans-1,3-Dichloropropene	< 500	< 500	< 500
Trichloroethene	< 500	< 500	< 500
Dibromochloromethane	< 500	< 500	< 500
1,1,2-Trichloroethane	< 500	< 500	< 500
Benzene	< 500	< 500	< 500
cis-1,3-Dichloropropene	< 500	< 500	< 500
2-Chloroethyl Vinyl Ether	< 1,000	< 1,000	< 1,000
Bromoform	< 500	< 500	< 500
4-Methyl-2-Pentanone (MIBK)	< 5,000	< 5,000	< 5,000
2-Hexanone	< 5,000	< 5,000	< 5,000
Tetrachloroethene	< 500	< 500	< 500
1,1,2,2-Tetrachloroethane	< 500	< 500	< 500
Toluene	< 500	< 500	< 500
Chlorobenzene	< 500	< 500	< 500
Ethylbenzene	< 500	< 500	< 500
Styrene	< 500	< 500	< 500
m,p-Xylene	< 500	< 500	
o-Xylene	< 500	< 500	< 500 < 500
-			
Units	(ug/kg)	(ug/kg)	(ug/kg)

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

Sample Designation	S	amp	1e	Desig	nation
--------------------	---	-----	----	-------	--------

<u>Parameter</u>	Method <u>Blank</u>	A82824-1 <u>S3</u>	A82824-2 B2	
N-Nitrosodimethylamine	< 500	< 500	< 500	
Phenol	< 500	< 500	< 500	
Bis(2-chloroethyl) Ether	< 500	< 500	< 500	
2-Chlorophenol	< 500	< 500	< 500	
1,3-Dichlorobenzene	< 500	< 500	< 500	
1,4-Dichlorobenzene	< 500	< 500	< 500	
Benzyl Alcohol	< 500	< 500	< 500	
1,2-Dichlorobenzene	< 500	< 500	< 500	
2-Methylphenol	< 500	< 500	< 500	
Bis(2-chloroisopropyl) Ether	< 500	< 500	< 500	
4-Methylphenol	< 500	< 500	< 500	
N-Nitrosodipropylamine	< 500	< 500	< 500	
Hexachloroethane	< 500	< 500	< 500	
Nitrobenzene	< 500	< 500	< 500	
Isophorone	< 500	< 500	< 500	
2-Nitrophenol	< 500	< 500	< 500	
2,4-Dimethylphenol	< 500	< 500	< 500	
Benzoic Acid	< 2,500	< 2,500	< 2,500	
Bis(2-chloroethoxy)methane	< 500	< 500	< 500	
2,4-Dichlorophenol	< 500	< 500	< 500	
1,2,4-Trichlorobenzene	< 500	< 500	< 500	
Naphthalene	< 500	< 500	< 500	
4-Chloroaniline	< 500	< 500	< 500	
Hexachlorobutadiene	< 500	< 500	< 500	
4-Chloro-3-methylphenol	< 500	< 500	< 500	
2-Methylnaphthalene	< 500	< 500	< 500	
Hexachlorocyclopentadiene	< 500	< 500	< 500	
2,4,6-Trichlorophenol	< 500	< 500	< 500	
2,4,5-Trichlorophenol	< 2,500	< 2,500	< 2,500	
2-Chloronaphthalene	< 500	< 500	< 500	
2-Nitroaniline	< 2,500	< 2,500	< 2,500	
Dimethyl Phthalate	< 500	< 500	< 500	
Acenaphthylene	< 500	< 500	< 500	
3-Nitroaniline	< 2,500	< 2,500	< 2,500	
Acenaphthene	< 500 ·	< [*] 500	< 500	
2,4-Dinitrophenol	< 2,500	< 2,500	< 2,500	
Units	(ug/kg)	(ug/kg)	(ug/kg)	

 $\langle \cdot, \cdot \rangle$

10

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

Sample Designation

<u>Parameter</u>	Method <u>Blank</u>	A82824-1 <u>S3</u>	A82824-2 B2
4-Nitrophenol	< 2,500	< 2,500	< 2,500
Dibenzofuran	< 500	< 500	< 500
2,4-Dinitrotoluene	< 500	< 500	< 500
2,6-Dinitrotoluene	< 500	< 500	< 500
Diethyl Phthalate	< 500	< 500	< 500
4-Chlorophenyl Phenyl Ether	< 500	< 500	< 500
Fluorene	< 500	< 500	< 500
4-Nitroamiline	< 2,500	< 2,500	< 2,500
4,6-Dinitro-2-methylphenol	< 2,500	< 2,500	< 2,500
N-Nitrosodiphenylamine	< 500	< 500	< 500
4-Bromophenyl Phenyl Ether	< 500	< 500	< 500
Hexachlorobenzene	< 500	< 500	< 500
Pentachlorophenol	< 500	< 500	< 500
Phenanthrene	< 500	< 500	< 500
Anthracene	< 500	< 500	< 500
Dibutyl Phthalate	< 500	< 500	< 500
Fluoranthene	< 500	< 500	< 500
Benzidine	< 2,500	< 2,500	< 2,500
Pyrene	< 500	< 500	< 500
Butylbenzyl Phthalate	< 500	< 500	< 500
3,3'9Dichlorobenzidine	< 1,000	< 1,000	< 1,000
Benzo(a)anthracene	< 500	< 500	< 500
Bis(2-ethylhexyl) Phthalate	< 500	< 500	< 500
Chrysene	< 500	< 500	< 500
Dioctyl Phthalate	< 500	< 500	< 500
Benzo(b)fluoranthene	< 500	< 500	< 500
Benzo(k) fluoranthene	< 500	< 500	< 500
Benzo(a)pyrene	< 500	< 500	< 500
Indeno(1,2,3-cd)pyrene	< 500	< 500	< 500
Dibenzo(a,h)anthracene	< 500	< 500	< 500
Benzo(g,h,i)perylene	< 500	< 500	< 500
Units	(ug/kg)	(ug/kg)	(ug/kg)

V. Analytical Results (Cont'd)

AnalytiKEM

General Chemistry

Sample Designation

Parameter	Method	A82824-1	A82824-2
	<u>Blank</u>	S3	B2
Sulfate, by IC	< 1,000	100,000	21,000
Bromide, by IC	< 1,000	< 1,000	< 1,000
Units	(ug/kg)	(ug/kg)	(ug/kg)

1

i D

16.

O

VI. Quality Control Data

AnalytiKEM

Volatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A82824-1

	Amount	Reco	verv		Control Limits
Parameter	<u>of Spike</u>		MSD	RPD	Recovery
1,1-Dichloroethene	0.25	98	85	14	D-234
Trichloroethene (TCE)	0.25	103	106	3	71-157
Chlorobenzene	0.25	106	111	5	37-160
Toluene	0,25	108	115	6	47-150
Benzene	0.25	110	118	7	37-151
Units	(ug)	(%)	(%)	(%)	(%)

Recovery: __0_ out of _10_ outside control limits

VI. Quality Control Data (Cont'd)

AnalytiKEM

Volatile Organics

(2)

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample <u>Designation</u>	1,2-Dichloroethane-d, (50 ppb Added)	Toluene-d ₈ (50 ppb Added)	4-Bromofluorobenzene (50 ppb Added)
Method Blank	102	104	113
A82824-1 Spike	94	99	102
A82824-1 Spike	Dup. 99	104	108
A82824-l	90	91	105
A82824-2	92	94	102
Units	(%)	(%)	(%)
Control Limits	62-152	57-159	62-148

⁰ out of 15 surrogate recoveries are outside control limits.

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A82824-1

					Control L	imits
	Amount	Reco	very			Max.
<u>Parameter</u>	of Spike	<u>MS</u>	<u>MSD</u>	RPD	Recovery	RPD
1,4-Dichlorobenzene	50	71	71	0	18-120	43
N-Nitrosodipropylamine	50	104	103	1	10-156	31
1,2,4-Trichlorobenzene	50	73	73	O.	24-161	17
Acenaphthene	50	84	82	2	10-151	16
2,4-Dinitrotoluene	50	64	61	5	10-197	33
Pyrene	50	106	106	0	10-167	31
Phenol	100	67	66	1	10-141	41
2-Chlorophenol	100	58	57	2	33-101	19
4-Chloro-3-methylphenol	100	63	53	17	26-117	25
4-Nitrophenol	100	34	18	61.	10-221	36
4-Nitrophenol φ	100	95			10-221	36
Pentachlorophenol	100	61	. 59	3	10-179	16
Units	(ppb)	(%)	(%)	(%)	(%)	(%)

φ Spike performed on DI Water.

Ą

Recovery: 0 out of 23 outside control limits

RPD: 1 out of 11 outside control limits

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

()

 \odot

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample	2-Fluorophenol	Phenol-d ₅	2,4,6-Tribromophenol
Designation	(200 ppb Added)	(200 ppb Added) (200 ppb Added)
		7.6	0.7
Method Blank	68	76	91
A82824-1 Spike	68	72	78
A82824-1 Spike Dup	. 68	72	47
A82824-1	79	88	61
A82824-2	89	102	63
Units	(%)	(%)	(%)
Control Limits	27-106	. 30-88	42-89
CONCLOT LIMICS	2/-106	. 20-00	42-89

Surrogate Recovery

Sample <u>Designation</u>	Nitrobenzene-d ₅ (100 ppb Added)	2-Fluorobiphenyl (100 ppb Added)	
Method Blank	72	81	130
A82824-1 Spike	75	83	100
A82824-1 Spike Dup	. 71	79	100
A82824-1	95	72	96
A82824-2	101	76	102
•		•	
Unit\$	(%)	(%)	(%)
Control Limits	34-107	10-157	10-175

_______ out of _____ 30 surrogate recoveries are outside control limits.

VI. Quality Control Data (Cont'd)

AnalytiKEM

General Chemistry

30

(5)

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A28611-65

					Control L	<u>imits</u>
	Amount	Reco	very			Max.
<u>Parameter</u>	<u>of Spike</u>	<u>MS</u>	MSD	RPD	Recovery	RPD
Sulfate	100	98	97	1	75-125	20
Bromide	75	98	100	2	75-125	20
Units	(ug)	(%)	(%)	(%).	(%)	(%)

Recovery: 0 out of 4 outside control limits

RPD: 0 out of 2 outside control limits

Chain-of-Custody Record

828 74

							Labora 2324	ntory Vernsdale Road	Sales Office 454 South Anderson Road BTC 53							
	:: <u>EVS</u> C. ot: <u>592</u> 0												(803)	Hill, South Carolina 29731 324-5310 (803) 324-8378	Rock Hill, South Carolina 29730 (803) 329-9690 Fax: (803) 329-9689	
ITEM NUMBER	SAMPLE DESIGNATIO		DATE	TIME	MATRIX		Jendo de la constanta	040 C			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		\$ 25 7 ° 3	ist in the second secon	PARAMETERS	
1	53		10-20 92	11:45	Sn/	G		3,				2	4	(5055 d, 5055 8240,8270, met	A, radium 226, radio 223 Is by TCLP, Sulfat & bramin by E	
2	ВЭ		10-20 92	30: د/	Sul	G		3				ک	1		u u	
3	·														·	
4																
5																
6																
7-	· ·			·												
8																
9				!												
10																
TRANSFER	ITEM NUMBER	F		NSFERS UISHED				SFERS TED BY	<u> </u>	1	TIME	REA	MARKS	# 3168	:2	
1	1-2	Sple	י שעי	Stac	tq/man	Js.	ady	La) e	(5-2) 92	125		10			
2	/-2_	de	adj	5	he_	Ja	neb	$\frac{\omega}{\omega}$	مىلىم	92	(450	•	,	/ ///	· · ·	
3		Ĺ		`						 		بين	// MDI E010	in Stoleling	w	
4						·				Valle	ow Cile			Court of the	AKEM #1 12	
Rec	order: PJ Associates I	803-329-2300	0				White	Labora	lory Copy	Tell	-4 01101	Jop	,			

SAMPLE RECEIPT CHECKLIST

client: ENSCI	
Project Mannington Tile So.	/ Laboratory 8 282 4
1Shipped Hand Delivered	Notes:
2 No COC Present on Receipt	Notes:
COC Tape on Shipping Container	Notes:
No COC Tape on Shipping Container	Notes:
4. Samples Broken/Leaking Sample Intact on Receipt	Notes:
Other (See Notes)	
5. Ambient on Receipt Chilled on Receipt	Notes:
6. Samples Preserved Correctly	Notes:
Improper Preservatives	
N/A (None Recommended)	
Other (See Notes) 7. Received Within Holding	Notes:
Time	Notes:
Not Received Within	
Holding Time	i
N/A (None Recommended) Other (See Notes)	
8. COC Tapes on Samples	Notes:
No COC Tapes on Samples	Mores:
9. Discrepancies Between COC	Notes:
and Sample Labels	
No Discrepancies Noted	
N/A (No COC Received)	
Additional Comments:	
W.	7/>
Inspected and Logged in by: Date/Time: 19/21/92 6145	g Danell

 $\langle \hat{\mathbb{Q}} \rangle$

 $\langle \cdot \rangle$

 $\langle \cdot \cdot \rangle$

529-18210

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82791

October 22, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile

Reviewed & Approved by:

Name:

Carmine M.

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

		P	12	<u>e</u>
I.	Certification		1	
II.	Definition of Terms		2	
ΠI.	Sample Designations		3	
IV.	Methodology		4	
v.	Analytical Results	5	-	8
377	Outlity Control Data	9	_	1

()

4

I. <u>Certification</u>

()

0

()

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ	<u></u>	Rock Hill, SC		Houston Analytical, Tx			
State	Cert #	State	Cert #	State	Cert #		
Arkansas	*	S. Carolina	46067	N. Dakota	R-006		
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403		
Florida	880985G	New Jersey	79795	Texas Water C	ommission *		
Massachusetts	NJ117			Louisiana *			
New Jersey	04012						
New York	10815						
N. Carolina	258		<u> </u>				
N. Dakota	R-038						
Pennsylvania	68366						
S. Carolina 🤊	94004						
Tennessee	02908						
Vermont	*	or its					

^{*} No certification numbers are issued for these states.

<u>Definition</u> of Terms

II.

AnalytiKEM

<u>Term</u>	<u>Definition</u>
D	Detected; result must be greater than zero.
ÐΙ	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate.
NA	Analysis not applicable to the sample matrix.
ИD	Not Detected
NR	Not Requested
NTU	Nephelometric Turbidity Units
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
TON	Threshold Odor Number
U	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
ppb	Parts-per-billion; may be converted to ppm by dividing by 1,000.
ppm ·	Parts-per-million; may be converted to ppb by multiplying by 1,000.
ug/l	Micrograms of constituent per liter of sample; equivalent to parts-per-billion.
ug/kg	Micrograms of constituent per kilogram of sample; equivalent to parts-per-billion.
ug/kg dw	Micrograms of constituent per kilogram of sample reported on a dry weight basis.
CCC	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
В	Analyte detected in associated blank as well as the sample. It indicates possible/probable blank contamination.

Test Report No. A82791 Page 3

III. Sample Designations

4

 \circ

 $f_{i,j}^{(i)}$

 $\langle \cdot \rangle$

			Analyunevi
AnalytiKEM Designation	Client <u>Designation</u>	Matrix	Date <u>Sampled</u>
A82791-1	B1	Nonaqueous	10/12/92
A82791-2	S1	Nonaqueous	10/12/92
A82791-3	S2	Nonaqueous	10/12/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

Test Report No. A82791 Page 4

IV. Methodology

AnalytikEM

Volatiles

Method 5030, <u>Purge and Trap</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8240, <u>Gas Chromatography/Mass Spectrometry for Volatile Organics</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

<u>Semivolatiles</u>

Method 3550, <u>Sonication Extraction</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8270, <u>Gas Chromatography/Mass Spectrometry for Semivolatile Organics:</u>
<u>Capillary Column Technique</u>, Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all
promulgated revisions.

General Chemistry

Method 9056, Anion Chromatography Method, Test Methods for Evaluating Solid Wasten Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

V. Analytical Results

Volatile Organics

AnalytiKEM

Sample Designation

<u>Parameter</u>	Method Blank		A82791-1 B1	A82791	-2	A82791-3 <u>S2</u>	3
Chloromethane	1,000	U	1,000 U	1,000	U	1,000 t	J
Bromomethane	1,000	U	1,000 U	1,000		1,000 t	
Vinyl Chloride	1,000	U	1,000 U	1,000	U	1,000 t	
Chloroethane	1,000	U	1,000 ປ	1,000	U	1,000 ປ	ĭ
Methylene Chloride	500	U	190 J	200	J	220 J	J
2-Propanone (Acetone)	10,000	บ	10,000 U	10,000	บ	10,000 l	J
Carbon Disulfide	500	U	500 บ	500	U	500 t	J
1,1-Dichloroethene	500	U	500 U	500	υ	500 l	J
l,l-Dichloroethane	500	Ü	500 บ	500		500 l	
trans-1,2-Dichloroethene	500	U	500 U	500		500 t	
Chloroform	500	U	500 U	500		500 T	
1,2-Dichloroethane	500	U	500 ช	500		500 t	
2-Butanone (MEK)	10,000	Ŭ	10,000 U	10,000	U	10,000 τ	J
1,1,1-Trichloroethane	500	U	. 500 ช	500	U	500 t	J
Carbon Tetrachloride	500	ซ	500 U	500		500 t	j
Vinyl Acetate	5,000	U	5,000 U	5,000	U	5,000 ₹	J
Bromodichloromethane	500	υ	500 U	500	Ų	500 t	
1,2-Dichloropropane	500	υ	500 U	500		500 เ	
trans-1,3-Dichloropropene	500	U	500 U	500		500 t	
Trichloroethene	500	υ	500 U	500	บ	500 t	J
Dibromochloromethane	500	υ	500 บ	500	U	500 t	J
1,1,2-Trichloroethane	500	Ų	500 ປ	500	U	500 t	J
Benzene	500	Ų	500 ປ	500	U	500 t	J
cis-1,3-Dichloropropene	500	U	500 บ	500	U	500 l	J
2-Chloroethyl Vinyl Ether	1,000	U	. 1,000 U	1,000	Ų	1,000 t	J
Bromoform	4.7	J	500 U	500	U	500 l	J
4-Methyl-2-Pentanone (MIBK)	5,000	บ	5,000 U	5,000	U	5,000 t	J
2-Hexanone	5,000	U	5,000 U	5,000	Ù	5,000 t	J
Tetrachloroethene	500	U	500 T	500		500 t	
1,1,2,2-Tetrachloroethane	500	Ų	500 U	500		500 t	
Toluene	500	U	500 บ	500	U	500 l	J
Chlorobenzene	500	Ų	500 U	500		500 T	
Ethylbenzene	500	U	500 ซ	500		500 t	
Styrene	500	U	500 U	500		500 T	
m,p-Xylene	500	U ·		500		500 T	
o-Xylene	500	υ	500 U	500	U	500 t	J
Units	(ug/kg)		(ug/kg)	(ug/	kg)	(ug/kg	g)

 $\xi()$

Ç.

0

0

....

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

Sample Designation

<u>Parameter</u>	Method Blank	A82791-1 Bl	A82791-2 S1	A82791-3 S2
				
N-Nitrosodimethylamine	500 บ	500 U	500 บ	500 U
Pheno1	500 U	500 บ	500 บ	500 บ
Bis(2-chloroethyl) Ether	500 U	500 U	500 U	500 บ
2-Chlorophenol	500 U	500 บ	500 U	500 U
1,3-Dichlorobenzene	500 ซ	500 ປ	500 U	500 U
1,4-Dichlorobenzene	500 ซ	500 บ	500 ບ	500 T
Benzyl Alcohol	500 U	500 ປ	500 U	500 U
1,2-Dichlorobenzene	500 U	5 00 Ų	500 บ	500 U
2-Methylphenol	500 U	. 500 บ	500 ซ	500 U
Bis(2-chloroisopropyl) Ether	500 บ	500 ບ	500 U	500 บ
4-Methylphenol	500 บ	500 U	500 U	500 บ
N-Nitrosodipropylamine	500 U	500 U	500 บ	500 U
Hexachloroethane	500 U	500 U	500 U	500 U
Nitrobenzene	500 บ	500 ប	500 U	500 U
Isophorone	500 U	500 ບ	500 U	500 U
2-Nitrophenol	500 U	500 ບ	500 U	500 U
2,4-Dimethylphenol	500 U	500 U	500 บ	500 บ
Benzoic Acid	2,500 U	220 J	92 J	2,500 U
Bis(2-chloroethoxy)methane	500 U	500 บ	500 U	້500 ປ
2,4-Dichlorophenol	500 U	500 U	500 U	500 U
1,2,44Trichlorobenzene	500 บั	. 500 U	500 U	500 U
Naphthalene	500 U	500 บ	500 บ	500 U
4-Chloroaniline	500 U	500 บ	500 ช	500 U
Hexachlorobutadiene	500 U	່ 500 ບ	500 บ	500 บ
4-Chloro-3-methylphenol	500 U	500 ບ	500 U	500 U
2-Methylnaphthalene	500 Ŭ	500 U	500 U	500 U
Hexachlorocyclopentadiene	500 บ	500 บ	500 ບ	500 ປ
2,4,6-Trichlorophenol	500 ປ	500 U	500 υ	500 บ
2,4,5-Trichlorophenol	2,500 U	2,500 U	2,500 ປ	2,500 U
2-Chloronaphthalene	້500 ປ	້500 ບ	, 500 υ	500 U
2-Nitroaniline	2,500 U	2,500 U	2,500 U	2,500 ຫ
Dimethyl Phthalate	500 บ	500 ປ	500 U	500 บ
Acenaphthylene	500 U	500 U	500 U	500 U
3-Nitroaniline	2,500 U	2,500 U	2,500 U	2,500 Ū
Acenaphthene	2,500 υ 500 υ	500 U	500 U	500 U
2,4-Dinitrophenol	2,500 U	2,500 U	2,500 U	2,500 U
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)

 $\langle 1 \rangle$

13

C)

Ç.

7

V. Analytical Results (Cont'd)

7.5

63

(2

Units

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

	Sample Designation					
Parameter	Method <u>Blank</u>	A82791-1 Bl	A82791-2 <u>S1</u>	A82791-3 S2		
4-Nitrophenol	2,500 U	2,500 U	2,500 U	2,500 U		
Dibenzofuran	500 ບ	500 บ	500 U	500 U		
2,4-Dinitrotoluene	500 บ	500 U	500 บ	500 บ		
2,6-Dinitrotoluene	500 U	500 บ	500 ช	500 U		
Diethyl Phthalate	500 ช	500 ປັ	500 U	500 U		
4-Chlorophenyl Phenyl Ether	500 บ	500 บ	500 ប	500 ช		
Fluorene	500 บ	500 U	500 T	500 U		
4-Nitroaniline	2,500 U	2,500 U	2,500 U	2,500 U		
4,6-Dinitro-2-methylphenol	2,500 U	.2,500 ℧	2,500 ซ	2,500 U		
N-Nitrosodiphenylamine	500 U	500 ບ	500 ປ	500 ช		
4-Bromophenyl Phenyl Ether	500 U	500 บ	500 บ	500 ซ		
Hexachlorobenzene	500 U	່ 500 ປ	500 บ	500 ซ		
Pentachlorophenol	500 U	500 U	500 ซ	500 U		
Phenanthrene	500 บ	500 บ	500 U	500 U		
Anthracene	500 บ	500 ប	500 บ	500 บ		
Dibutyl Phthalate	240 J	180 J	210 Ј	180 J		
Fluoranthene	500 บ	500 บ	500 U	500 บ		
Benzidine	2,500 U	2,500 U	2,500 U	2,500 U		
Pyrene	500 U	500 U	500 U	500 U		
Butylbenzyl Phthalate	500 T	500 ປ	500 U	500 บ		
3,3'-Dichlorobenzidine	1,000 ປ	1,000 U	1,000 U	1,000 ប		
Benzo(a)anthracene	500 บ	500 ซ	500 U	50 0 U		
Bis(2-ethylhexyl) Phthalate	77 J	74 J	E 88	70 J		
Chrysene	500 บ	500 U	500 U	500 ບ		
Dioctyl Phthalate	500 ซ	500 บ	500 U	500 U		
Benzo(b)fluoranthene	500 U	500 U	500 U	500 ປ		
Benzo(k)fluoranthene	500 บ	500 บ	500 U	500 บ		
Benzo(a)pyrene	500 ບ	500 บ	500 ซ	500 U		
Indeno(1,2,3-cd)pyrene	500 U	500 U	500 U	500 บ		
Dibenzo(a,h)anthracene	500 U	500 U	500 U	500 ช		
Benzo(g,h,i)perylene	500 ປ	500 U	500 U	500 U		

(ug/kg) (ug/kg)

(ug/kg)

(ug/kg)

Test Report No. A82791 Page 8

V. Analytical Results (Cont'd)

AnalytiKEM

General Chemistry

1

Sample Designation

<u>Parameter</u>	Method	A82791-1	A82791-2	A82791-3
	<u>Blank</u>	B1	<u>S1</u>	S2
Bromide, by IC	1,000 U	1,000 U	1,000 U	1,000 U
Sulfate, by IC	1,000 U	27,000	24,000	150,000
Units	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)

Note: The Bromide and Sulfate analyses were performed at our Cherry Hill, NJ facility.

Note: The radioactivity analyses were subcontracted to Teledyne Isotopes. Please see the attached copy of their report.

Test Report No. A82791 Page 9

VI. Quality Control Data

Ç)

C

AnalytiKEM

Volatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A82714-6

					Control Limits
<u>Parameter</u>	Amount of Spike	Reco MS	MSD	RPD	Recovery
1,1-Dichloroethene	0.25	90	91	1	D-234
Trichloroethene (TCE)	0.25	97	100	3	71-157
Benzene	0.25	94	96	2	37-151
Toluene	0.25	96	95	1	47-150
Chlorobenzene	0.25	97	96	1	37-160
Units	(ug)	(%)	(%)	(%)	(%)

Recovery: __0 out of _10 outside control limits

٠,

*

Test Report No. A82791 Page 10

VI. Quality Control Data (Cont'd)

AnalytiKEM

Volatile Organics

"}

 $\langle \underline{\cdot} \rangle$

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample <u>Designation</u>	1,2-Dichloroethane-d ₄ (50 ppb Added)	Toluene-d _s (50 ppb Added)	4-Bromofluorobenzene (50 ppb Added)
Method Blank	73	71	80
A82714-6 Spike	96	94	98
A82714-6 Spike Dup.	92	93	98
A82791-1	96	93	97
A82791-2	98	94	99
A82791-3	97	91	98
Units	(%)	(%)	(%)
Control Limits	70-121	81-117	74-121

__0 out of __18 surrogate recoveries are outside control limits.

Test Report No. A82791 Page 11

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

 \bigcirc

 $f_{\rm A}$

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked <u>A82682-1</u>

					Control L	imits
	Amount	Reco	very			Max.
<u>Parameter</u>	of Spike	<u>MS</u>	MSD	RPD	<u>Recovery</u>	RPD
1,4-Dichlorobenzene	50	74	66	11	18-120	43
N-Nitrosodipropylamine	50	44	65	38	10-156	31
1,2,4-Trichlorobenzene	50	82	72	13	24-161	17
Acenaphthene	50	97	90	7	10-151	16
2,4-Dinitrotoluene	50	70	71	1	10-197	33
Pyrene	50	109	104	5	10-167	31
Pheno1	100	71	66	7	10-141	41
2-Chlorophenol	100	72	65	10	33-101	19
4-Chloro-3-methylphenol	100	74	64	14	26-117	25
4-Nitrophenol	100	60	58	5	10-221	36
Pentachlorophenol	100	82	83	1	10-179	16
Units	(ppb)	(%)	(%)	(%)	(%)	(%)

Recovery: __0 out of _22 outside control limits

RPD: • ____ out of ____ outside control limits

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample <u>Designation</u>	2-Fluorophenol (200 ppb Added)	Phenol-d _s (200 ppb Added)	2,4,6-Tribromophenol (200 ppb Added)
	a a.		
Method Blank	50	51	53
A82682-1 Spike	61	68	67
A82682-1 Spike Dup.	59	67	46
A82791-1	53	53	60
A82791-2	41	42	51
A82791-3	39	39	52
Units	(%)	(%)	(%)
Control Limits	27-106	30-88	42-89

Surrogate Recovery

Sample <u>Designation</u>	Nitrobenzene-d ₅ (100 ppb Added)	2-Fluorobiphenyl (100 ppb Added)	Terphenyl-d ₁₄ (100 ppb Added)
Method Blank	38	44	68
A82682-1 Spike	75	· 89	100
A82682-1 Spike Dup	. 69	84	96
A82791-1	46	52	93
A82791-2	34	39	84
A82791 3	32	39	82
Units	(%)	(%)	(%)
Control Limits	34-107	10-157	10-175

__1_ out of __36_ surrogate recoveries are outside control limits.

Test Report No. A82791 Page 13

VI. Quality Control Data (Cont'd)

AnalytiKEM

General Chemistry

 \mathbb{C}^{γ}

()

 $\{ \}$

17

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A60624-1

					Control L	<u>imits</u>
	Amount	Reco	very			Max.
<u>Parameter</u>	<u>of Spike</u>	<u>MS</u>	<u>MSD</u>	<u>RPD</u>	Recovery	RPD
				_		
Bromide	75	97	97	0	75-125	20
Sulfate	100	93	92	1	75-125	20
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: __0_ out of __4_ outside control limits

RPD: __O out of __2 outside control limits

()

Chain-of-Custody Record

	_	n Area: Drinking												, ,				1	orator	y msda le Road	Sales Office 454 South Anderson Road BTC 532
	Client: .	ENSC.		·- <u>-</u>										e/z			_	Ro	ck Hill	South Carolina 29731	Rock Hill, South Carolina 29730
	Project	Mann	instru		T.L.	′ 		Anal	ytiKE!	M Col	ntact:		\mathcal{I}	- ean	1	le.1				i-5310 i) 324-8378	(803) 329-9690 Fax: (803) 329-9689
ļ				Τ							~	,,	,	, 						://	
	ITEM	SAMPLE		DA	TE	rime	MATE	aix Xie	,	100 mg	Se Jest						<u>k</u> ,	/s .j		Y/	PARAMETERS
		DESIGNATIO				ļ					£/_	69/5	78°/		Ž	Z//	75		37/	/	
	^1 .	B(10-1	242 /	(125	Sni					1								8240	
\	2	B1			16	::28					2						<u></u> ,			8270	
) 3	B1	<u></u>		16	: 35	{										1			meths by	TCLP
\ /	4	ВІ			1/2	1:40												/		\$ sulfate a	end brames by IC Scan
(5	B1			16	1:40								:			/			gross alpha, gro	t CLP and brampe by IC Scan is Leta, radium 276 + 228
	6	51		1	7	7:25				-		1								8240	
	7	5-{		ļ (17	2:30	<u> </u>	<u> </u>			2							<u> </u>		827o	···
\rangle	8	51	···-		1	7:3L											1			nutals by	TCLP
ን	9 .	51			1	7:42												1		sulfat & broman	e by IC scan
(2 10	1			1	7:42	<u> </u>										_			gress whole gross	TCLP y IC Scan s Leta, radium 226 + 228
	STER	ПЕМ		 ТІ	RANS	FERS				TF	RANSF	ERS					REI	MARK		<u></u>	
	TRANSFER	NUMBER		RELII	NQUIS	SHED E	3Y		A	AC	CEPTE	DBY			ATE						
	1	1-10	bell	eve	<u>کری</u>	700	e/m	ar	Duri	<u> </u>	TRE	, , - 			42	1:55					
	2		V De	-	R	100		_	Jan	-	<u>ل</u>	Lint	مىك	10		4:35 ->*				11/1	ρ
	3					<u>.</u>		_	(7		1	1/2	[] h.le)	
ļ	- 	 															56	UD! FF	'S SIG	NATURE	

Chain-of-Custody Record

Progr	am Area: Drinking	Water Waster	water G	iroundwater	Solid	and H	azard	ous W	aste				t	rato	•	Sales Office
Clien	ENS(1	J. 7		Sa	Sample Collector: Stade Iman AnalytiKEM Contact: Jean N.								2324 Vernsdale Road Rock Hill, South Carolina 29731 (803) 324-5310 Fax: (803) 324-8378			454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690 Fax: (803) 329-9689
Proje	ect:	3 100 1 1	رد.	An	анушка	m Co	ntact:			, , , , , , , , , , , , , , , , , , ,		_				
ITEM	SAMPLE DESIGNATIO	DATI	TIME	MATRIX	/	Greto de	d tri viet			/ /			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, 5 0 7		PARAMETERS
1	-52	12 P	16:54					1							8240	
2	52		17:00				2								8270	
2)3	52		17:03						ļļ			1			netal by 7	TLIP
14	<i>5</i> 2	1	17:08					ļ					1		sulfit & bromin	rossleh , radia 226+228
/5	52	1	17:08					<u> </u>				1			50055 alpha, 9	nosibeta, radia 226+228
6	· · · · · · · · · · · · · · · · · · ·		<u> </u>		<u> </u>											
7	<u></u>			<u> </u>	<u> </u>				l							
8																
9												: !				
10													_			
TRANSFER	ITEM NUMBER		ANSFERS QUISHED				RANSE	FERS ED BY		1	TIME	RE	MARKS	3		
1	1-5	find	tade	louse_		<u>-</u>	M	lla		10-13						
2		Lem	alle	\ 	Janet Winders						43	1		A4	2 1/1	A
3					{										re Hodel	ue_
4												SAI	MPLER	rs sid	ENATURE	

SAMPLE RECEIPT CHECKLIST

Client: 82/91	
Project Monnington Til	C Number: 8279
1. Shipped	Notes:
Hand Delivered COC Present on Receipt No COC	Notes
3COC Tape on Shipping	Notes:
No COC Tape on Shipping Container	Notes:
4Samples Broken/LeakingSample Intact on Receipt	Notes:
Other (See Notes) 5. Ambient on Receipt Chilled on Receipt	Notes:
6. Samples Preserved Correctly	Notes:
Improper Preservatives N/A (None Recommended) Other (See Notes)	
7. Received Within Holding Time	Notes:
Not Received Within Holding Time N/A (None Recommended) Qther (See Notes)	
8. COC Tapes on Samples No COC Tapes on Samples	Notes:
9. Discrepancies Between COC and Sample Labels	Notes:
No Discrepancies Noted N/A (No COC Received)	
Additional Comments:	
Inspected and Logged in by:	ui donauma
Date/Time: 10//3 530 p	

ì.

AnalytiKEM Inc. 28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60646, Supplemental

January 24, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

The Radiological analyses were subcontracted to Teledyne Isotopes. Please see the attached copy of their report.

Reviewed &

Approved by:

Name:

Title: <u>QA/QC Manager</u>

REPORT OF ANALYSIS 20 JANUARY 1993

**TELEDYNE ISOTOPES

50 Van Buren Ave., P.O. Box 1235 Westwood, N.J. 07675-1235 Phone: 201/664-7070 FAX: 201/664-5586 TELECYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 01/19/93

HORK ORDER NUMBER

CUSTONER P.O. NUMBER

DATE RECEIVED - DELIVERY DATE

PAGE 1

ATTN: Q A DEPT ANALYTIKEM INC 28 SPRINGDALE ROAD 3-5557

12/24/92

01/27/93

CHERRY HILL NJ

08003

501105

TELEDYNE			COLL	ECTION-DAT	ſĘ		MTD-COUNT									
SAMPLE .	CUSTOMER'S IDENTIFICATION	A T Z NUM	TRATZ BTAC	S' TIME DATE	T [HE	NUCLIDE	ACTIVITY (PCI/GM DRY)	NUCL-UNIT-X U/X ⇒	TIME DATE TIME	VOLUME - UNITS	LAB.					
	46-1		12/16		O	R-A	1.4 +-0.5 E 0	ī	01/06		3					
					G	R-B	5.1 +-0.4 E 0	ı l	01/06		3					
					R	A-226	6.9 +-0.7 E-0	1	01/08		4					
					R	:A-228	7.0 +-1.3 E-0	1	01/08		4					

LAST PAGE OF PEPORT

APPROVED BY J. GUENTHER 01/19/93

SEND 1 COPIES TO ANIBBS ATTNI Q A DEPT

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB. 4 - GEYLII GAMHA SPEC LAB. 5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

4

AnalytiKEM Inc. 28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60646, Supplemental

January 24, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

The Radiological analyses were subcontracted to Teledyne Isotopes. Please see the attached copy of their report.

Reviewed & Approved by: _

Name: Carmine M. Floriglio

Title: QA/QC Manager

REPORT OF ANALYSIS

20 JANUARY 1993

**TELEDYNE ISOTOPES

50 Van Buren Ave., P.O. Box 1235 Westwood, N.J. 07675-1235 Phone: 201/664-7070 FAX: 201/664-5586

TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 01/19/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

ATTNI Q A DEPT ANALYTIKEM INC 28 SPRINGDALE ROAD 3-5557

12/24/92

01/27/93

CHERRY HILL NJ 08003

SOLIDS

TELEOYNE SAMPLE	CUSTOMER'S	STA	COLLECTION-P	STOP	ACTIVITY	NUCL-UNIT-X	MID-COUNT TIME	VOLUME - UNITS	
NUMBER	IDENTIFICATION	NUM	DATE TIME DAT	E TIME MUCLIDE	(PCT/GM DRY)	U/M *	DATE TIME	ASH-WGHT-4 *	LAB.
99486 606	646-1		12/16	GR-A	1.4 +-0.5 E 0	1	01/06		3
				GR-B	5.1 +-0.4 E 0	l l	01/06		3
				RA-226	6.9 +-0.7 E-0	1	01/08		4
				RA-228	7.0 +-1.3 E-0	11	01/08		4

LAST PAGE OF REPORT

APPROVED BY J. GUENTHER 01/19/93

SEND 1 COPIES TO ANIBBS ATTN: Q A DEPT

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB. 4 - GE(LI) GAMMA SPEC LAB.

5 - TRITTUM GAS/L.S. LAR. 6 - ALPHA SPEC LAR.

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82824, Supplemental

November 18, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile

The Radioactivity analyses were subcontracted to Teledyne Isotopes, Laboratories. Please see attached copy of their report.

Reviewed & Michael Shroth Ph. 1) for Name: Carmine M. Fioriglio

Title: QA/QC Manager

REPORT OF ANALYSIS 11 NOVEMBER 1992

**TELEDYNE ISOTOPES

50 Van Buren Ave., P.O. Box 1235 Westwood, N.J. 07675-1235 Phone: 201/664-7070 FAX: 201/664-5586 TELEDYNE ISOTOPFS

REPORT OF ANALYSIS

RUN DATE 11/10/92

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

PATTI DE ANDINO

3-4534

10/23/92

11/25/92

ANALYTIKEM INC 2324 VERNSDALE ROAD ROCK HILL SC

29731

SOIL

TELEDYNE		_		ON-DAT				•			COUNT		
SAMPLE Number	CUSTOMER'S IDENTIFICATION		IRT : Time	ST DATE	TIME	NUCLINE	ACTIV (PCI/GM	-	NUCL-UNIT-% U/M *		ME TIME	VOLUME - UNITS ASH-WGHT-% *	LA8.
93817 82	2824-0 NO 1	10/	, 0		6	R-A	4.5 +-1	.0 E 0	1	11/0	2		3
•		•				R-B	9-1 +-0	_	-	11/0	12		3
					R	A-226	5.9 +-0	.9 E 0	0	11/0	15		4
					R	A-228	2.6 +-0	.3 E 0	0	11/0	15		4
93818 82	8824-0 NO 2	10/	20		G	R-A	2.0 +-0	-7 E 0	1	11/0	2		3
					G	R-B	7.5 +-0	.5 E 0	1	11/0	12	-	3
					R	A-226	3.7 +-0	.6 € 0	0	11/0	15		4
					R	A-228	9.1 +-1	-		11/0	15		4
										Δ		1 -	

LAST PAGE OF REPORT

APPROVED BY J. GUENTHER 11/10/92

SEND 1 COPIES TO ANIBBT PATTI DE ANDINO

3 - RADIO CHEMISTRY LAB. 4 - GEILLI GAMMA SPEC LAB. 5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB. 2 - GAS LAB.

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82824, Supplemental

November 18, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NG 27260

Attention: Steven Stadelman

Project: Mannington Tile

The Radioactivity analyses were subcontracted to Teledyne Isotopes, Laboratories. Please see attached copy of their report.

Reviewed Approved	by: Michael Shometh Ph. D. yo
:	Carmine M. Fioriglio
Title: _	QA/QC Manager

REPORT OF ANALYSIS 11 NOVEMBER 1992

***TELEDYNE ISOTOPES

50 Van Buren Ave., P.O. Box 1235 Westwood, N.J. 07675-1235 Phone: 201/664-7070 FAX: 201/664-5586 TELEDYNE ISOTOPFS

REPORT OF ANALYSIS

DELIVERY DATE

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED

PAGE 1

RUN DATE 11/10/92

PATTI DE ANDINO ANALYTIKEH INC 2324 VERNSDALE ROAD 3-4534

10/23/92

11/25/92

ROCK HILL SC

29731

5 0 1 L

TELEDYNE Sample	CUSTOMER'S	STA START	ECTION-DATE Stop		ACTIVITY	NUCL-UNIT-X	KID-C	4E	VOLUME - UNITS	
NUMBER	IDENTIFICATION	NUM DATE	TIME DATE TIME	NUCLIDE	(PCI/GM DRY)	U/8 *	DATE	TIME	¥2H-ACH1-% \$	LAB.
93817 82	824-0 NG 1	10/20	G	R-A	4.5 +-].0 E 0	1	11/02	2	•	3
•			G	R-B	9.1 +-0.5 E 0	1	11/02	2		3
			R	A-226	5.9 +-0.9 E 0	σ	11/09	5		4
			R	A-228	2.6 +-0.3 E 0	0	11/05	5		4
93818 82	824-0 NG 2	10/20	G	R-A	2.0 +-0.7 E 0	1	11/02	2		3
			G	R-B	7.5 +-0.5 E 0	1	11/02	2		3
	•		R	A-226	3.7 +-0.6 E 0	0	11/09	5		4
			R	A-228	9.1 +-1.5 E-0	1	11/05	5		4
							Ωa		1	

LAST PAGE OF REPORT

APPROVED BY J. GUENTHER 11/10/92

SEND 1 COPIES TO ANIBST PATTI DE ANOINO

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB. 4 - GE(L]) GAMMA SPEC LAB.

5 - TRITTUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82929, Supplemental

December 16, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Note: The Radioactivity analyses were subcontracted to Teledyne Isotopes. Please the attached copy of their report.

Reviewed Approved	
Name:	Carmine M. Fioriglio
Title: _	QA/QC Manager

7

AnalytiKEM

I. Sample Designations

AnalytiKEM Designation Client

<u>Designation</u>

Matrix

Date <u>Sampled</u>

A82929-1

S-11

Nonaqueous

11/16/92

Note: Samples will be held for 30 days beyond the test report date

unless otherwise requested.

REPORT OF ANALYSIS

2 DECEMBER 1992

TELEDYNE ISOTOPES

50 Van Buren Ave., P.O. Box 1235 Westwood, N.J. 07675-1235 Phone: 201/664-7070 FAX: 201/664-5586

REPORT OF ANALYSIS

TELEDYNE ISOTOPES

RUN DATE 12/01/92

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

PATTI DE ANDINO

3-4954

11/18/92

12/21/92

ANALYTIKEH INC 2324 VERNSDALE ROAD ROCK HILL SC

29731

SOIL

TELEDYNE Sample	CUSTOMER'S	STA	COLLECTI: START	DN-DATE STOP		ACTIVITY	NUCL-UNIT-%	MID-COUNT Time	VOLUME - UNITS	
NUMBER	IDENTIFICATION	NUM	DATE TIRE	DATE TIME	NUCLIDE	(PCI/GM DRY)	U/M ≎	DATE TIME	ASH-WGHT-% »	LAB.
96143	82929-1		11/16	G	R-A	4.2 +~1.0 E 0	1	11/23		3
				G	R-B	1.1 +-0.1 E 0	2	11/23		3
				R	A-226	3.8 +-0.4 € 0	0	11/24		4
•				R	A-228	3.6 +-0.4 E 0	0	11/24		4

LAST PAGE OF REPORT

APPROVED BY 0. GUENTHER 12/01/92

SEND 1 COPIES TO ANIBST PATTI DE ANDINO

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB. 4 - GE(LI) GAMMA SPEC LAB. 5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82929, Supplemental

December 16, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Note: The Radioactivity analyses were subcontracted to Teledyne Isotopes. Please the attached copy of their report.

Reviewed & Approved by

Name: <u>Carmine M. Fioriglio</u>

Title: <u>QA/QC Manager</u>

.

:

AnalytiKEM

I. Sample Designations

AnalytiKEM <u>Designation</u> Client

<u>Designation</u>

<u>Matrix</u>

Date Sampled

A82929-1

S-11

Nonaqueous

11/16/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

*

REPORT OF ANALYSIS

2 DECEMBER 1992

TELEDYNE ISOTOPES

50 Van Buren Ave., P.O. Box 1235 Westwood, N.J. 07675-1235 Phone: 201/664-7070 FAX: 201/664-5586

TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 12/01/92

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

PATTI DE ANDINO

3-4954

11/18/92

12/21/92

ANALYTIKEM INC 2324 VERNSDALE ROAD ROCK HILL SC

29731

SOIL در

TELEDYNE	COLLECTION-DA	iTE		MID-COUNT	
SAMPLE CUSTOMER'S NUMBER IDENTIFICATION	STA START S NUM DATE TIME DATE	TOP TIME NUCLIDE	ACTIVITY NUCL-UNIT-5 (PCI/GM DRY) U/M *		OLUME - UNITS SH-WGHT-%
96143 82929-1	11/16	GR-A	4.2 +-1.0 E 01	11/23	3
		GR−B	1.1 +-0.1 E 02	11/23	3
-		RA-226	3.8 +-0.4 E 00	11/24	4
-		RA-228	3.6 +-0.4 E 00	11/24	4

LAST PAGE OF REPORT

APPROVED BY D. GUENTHER 12/01/92

SEND 1 COPIES TO ANIBEST PATTI DE ANDINO

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB.

4 - GE(LI) GAMMA SPEC LAB. 5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690 Fax: 803/324-3982

TEST REPORT NO. A83007

December 28, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (\$92032)

Reviewed & Approved by:

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

		<u> Page</u>
I.	Certification	1
II.	Definition of Terms	2
III.	Sample Designations	3
IV.	Methodology	4
٧,	Analytical Results	5 - 8
VT	Quality Control Data	9 - 13

₹,₹

0

I. Certification

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX		
State	Cert #	State	Cert #	State	Cert #	
Arkansas	*	S. Carolina	46067	N. Dakota	R-006	
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403	
Florida	880985G	New Jersey	79795	Texas Water Commission *		
Massachusetts	NJ117			Louisiana	92-07	
New Jersey	04012			S. Carolina	82011	
New York	10815			N. Carolina	367	
N. Carolina	258			Wisconsin	998010530	
N. Dakota	R-038			New Jersey	82869	
Pennsylvania	68366					
S. Carolina	94004					
Tennessee	02908					
Vermont	*					
Oklahoma	9107					

^{*} No certification numbers are issued for these states.

AnalytiKEM

II. <u>Definition of Terms</u>

 $(\ ,\)$

 \odot

Term	<u>Definition</u>
D	Detected; result must be greater than zero.
DI	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate.
NA	Analysis not applicable to the sample matrix.
ND	Not Detected
NR	Not Requested
NTU	Nephelometric Turbidity Units
RPD	Relative Percent Difference
RSĎ	Relative Standard Deviation
υ	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
ppb	Parts-per-billion; may be converted to ppm by dividing by 1,000.
Ppm	Parts-per-million; may be converted to ppb by multiplying by 1,000.
ug/1 [*]	Micrograms of constituent per liter of sample; equivalent to parts-per-billion.
ug/kg	Micrograms of constituent per kilogram of sample; equivalent to parts-per-billion.
ug/kg dw	Micrograms of constituent per kilogram of sample reported on a dry weight basis.
ccc	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
В	Analyte detected in associated blank as well as the sample. It indicates possible/probable blank contamination,

Test Report No. A83007 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM <u>Designation</u> Client

Designation

 $\underline{\mathtt{Matrix}}$

Date <u>Sampled</u>

A83007-1

 $\{\cdot\}$

В3

Nonaqueous

12/04/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

IV. Methodology

 \odot

 C^{α}

1.1

AnalytiKEM

<u>Volatiles</u>

Method 5030, <u>Purge and Trap</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8240, <u>Gas Chromatography/Mass Spectrometry for Volatile Organics</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

<u>Semivolatiles</u>

Method 3550, <u>Sonication Extraction</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8270, <u>Gas Chromatography/Mass Spectrometry for Semivolatile Organics:</u>
<u>Capillary Column Technique</u>, Test Methods for Evaluating Solid Waste,
Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all
promulgated revisions.

General Chemistry

Method 9056, Anion Chromatography Method, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

V. Analytical Results

 \mathbb{C}^{n}

AnalytiKEM

Volatile Organics

Sample Designation

<u>Parameter</u>	Method <u>Blank</u>	A83007-1 <u>B3</u>
Chloromethane	< 10	< 10
Bromomethane	< 10	< 10
Vinyl Chloride	< 10	< 10
Chloroethane	< 10	< 10
Methylene Chloride	< 5.0	< 5.0
2-Propanone (Acetone)	< 100	< 100
Carbon Disulfide	< 5.0	6.3
l,l-Dichloroethene	< 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0
1,1-Dichloroethane	< '5.0	< 5.0
trans-1,2-Dichloroethene	< 5.0	< 5.0
Chloroform	< :5.0 < :5.0	< 5.0
1,2-Dichloroethane	< 5.0	< 5.0
2-Butanone (MEK)	< 100	< 100
l,l,l-Trichloroethane	< 5.0	< 5.0
Carbon Tetrachloride	< 5.0	< 5,0
Vinyl Acetate	< 50	< 50
Bromodichloromethane	< 5.0	< 5.0
1,2-Dichloropropane	< 5.0	< 5.0
trans-1,3-Dichloropropene	< 5.0	< 5.0
Trichloroethene	< 5.0	< 5.0
Dibromochloromethane	< , 5.0	< 5.0
1,1,2-Trichloroethane	< 5.0	< 5.0
Benzene	< 5.0	< 5.0
cis-1,3-Dichloropropene	< , 5.0	< 5.0
2-Chloroethyl Vinyl Ether	< 10	< 10
Bromoform	< 5.0	< 5,0
4-Methyl-2-Pentanone (MIBK)	< 50	< 50
2-Hexanone	< 50	< 50
Tetrachloroethene	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	< 5.0	< 5.0
Toluene	< 5.0	< 5.0
Chlorobenzene	< 5.0	< 5.0
Ethylbenzene	< 5.0	< 5.0
Styrene	< . 5.0	< 5,0
m,p-Xylene	< 5.0	< 5.0
o-Xylene	< 5.0	< 5.0
Units	(ug/1)	(ug/kg)

V. Analytical Results (Cont'd)

 $\langle \cdot \cdot \rangle$

(

 $f_{\pm}^{\rm max}$

Semivolatile Organics (Page 1 of 2)

<u>Parameter</u>	Method Blank	A83007-1 <u>B3</u>
N-Nitrosodimethylamine	< 330	< 330
Phenol	< 330	< 330
Bis(2-chloroethyl) Ether	< 330	< 330
2-Chlorophenol	< 330	< 330
1,3-Dichlorobenzene	< 330	< 330
l,4-Dichlorobenzene	< , 330	< 330
Benzyl Alcohol	< 330	< 330
1,2-Dichlorobenzene	< 330	< 330
2-Methylphenol	< 330	< 330
Bis(2-chloroisopropyl) Ether	< 330	< 330
4-Methylphenol	< 330	< 330
N-Nitrosodipropylamine	< 330	< 330
Hexachloroethane	< 330	< 330
Nitrobenzene	< 330	< 330
Isophorone	< 330	< 330
2-Nitrophenol	< 330	< 330
2,4-Dimethylphenol	< 330	< 330
Benzoic Acid	< 1,600	< 1,600
Bis(2-chloroethoxy)methane	< 330	< 330
2,4-Dichlorophenol	< 330	< 330
1,2,4-Trichlorobenzene	< < 330	< 330
Naphthalene	< 330	< 330
4-Chloroaniline	<. 330	< 330
Hexachlorobutadiene	< 330	< 330
4-Chloro-3-methylphenol	< 330	< 330
2-Methylnaphthalene	< 330	< 330
Hexachlorocyclopentadiene	< 330	< 330
2,4,6-Trichlorophenol	< 330	< 330
2,4,5-Trichlorophenol	< 1,600	< 1,600
2-Chloronaphthalene	< 330	< 330
2-Nitroaniline	< 1,600	< 1,600
Dimethyl Phthalate	< 330	< 330
Acenaphthylene	< 330	< 330
3-Nitroaniline	< 1.600	< 1,600
Acenaphthene	< 330	< 330
2,4-Dinitrophenol	< 1,600	< 1,600
Units	(ug/kg)	(ug/kg)

V. Analytical Results (Cont'd)

()

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

<u>Parameter</u>	Method Blank	A83007-1 <u>B3</u>
4-Nitrophenol	< 1,600	< 1,600
Dibenzofuran	< 330	< 330
2,4-Dinitrotoluene	< 330	< 330
2,6-Dinitrotoluene	< 330	< 330
Diethyl Phthalate	< ' 330	< 330
4-Chlorophenyl Phenyl Ether	< 330	< 330
Fluorene	< 330	< 330
4-Nitroaniline	< 1,600	< 1,600
4,6-Dinitro-2-methylphenol	< 1,600	< 1,600
N-Nitrosodiphenylamine	< 330	< 330
4-Bromophenyl Phenyl Ether	< 330	< 330
Hexachlorobenzene	< 330	< 330
Pentachlorophenol	< 330	< 330
Phenanthrene	< ! 330	< 330
Anthracene	< 330	< 330
Wiffitacene	330	< 330
Dibutyl Phthalate	< 330	< 330
Fluoranthene	< 330	< 330
Benzidine	< 1,600	< 1,600
Pyrene	< 330	< 330
Butylbenzyl Phthalate	< ! 330	< 330
3,3'-Dichlorobenzidine	.< 660	< 660
	< 330	< 660 < 330
Benzo(a) anthracene	l l	
Bis(2-ethylhexyl) Phthalate	< 330 < 330	< 330
Chrysene	· ·	< 330
Dioctyl Phthalate	< 330	< 330
Benzo(b)fluoranthene	< 330	< 330
Benzo(k)fluoranthene	< 330	< 330
Benzo(a)pyrene	< 330	< 330
Indeno(1,2,3-cd)pyrene	< 330	< 330
Dibenzo(a,h)anthracene	< 330	< 330
Benzo(g,h,i)perylene	< 330	< 330
Units	(ug/kg)	(ug/kg)

V. Analytical Results (Cont'd)

AnalytikEM

General Chemistry

<u>Parameter</u>	Method <u>Blank</u>	A83007-1 <u>B3</u>
Bromide, by IC	< 1,000	< 1,000
Sulfate, by IC	< 1,000	61,000
Units	(ug/kg)	(ug/kg)

VI. Quality Control Data (Cont'd)

AnalytiKEM

Volatile Organics

Nonaqueous Surrogate Recovery Data

Surrogate	Recovery

Sample Designation	1,2-Dichloroethane-d ₄ (100 ppb Added)	Toluene-d ₈ (100 ppb Added)	4-Bromofluorobenzene (100 ppb Added)
Method Blank	103	110	100
A83020-5 Spike	114	106	102
A83020-5 Spike Dup.	117	108	104
A83007-1	104	106	101
Units	(8)	(%)	(%)
Control Limits	70-121	81-117	74-121
	•		

__O out of __12_ surrogate recoveries are outside control limits.

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A83027-2

			į		Control L	<u>imits</u>
	Amount	Reco	very			Max.
Parameter	<u>of Spike</u>	<u>MS</u>	<u>MSD</u>	RPD	Recovery	RPD
1,4-Dichlorobenzene	50	67	62	8	18-120	43
N-Nitrosodipropylamine	50	88	79	11	10-156	31
1,2,4-Trichlorobenzene	50	81	76	6	24-161	17
Acenaphthene	50	86	78	10	10-151	16
2,4-Dinitrotoluene	50	79	. 72	9	10-197	33
Pyrene	50	79	. 74	6	10-167	31
Phenol	100	70	68	3	10-141	41
2-Chlorophenol	100	64	62	3	33-101	19
4-Chloro-3-methylphenol	100	82	72	13	26-117	25
4-Nitrophenol	100	52	40	12	10-221	36
Pentachlorophenol	100	53	34	44	10-179	16
Pentachlorophenol o	100	90			10-179	16
Units	(ppb)	(多)	(%)	(%)	(%)	(%)

φ Spike performed on DI Water.

4

()

Recovery: 0 out of 23 outside control limits

RPD: ____ out of __ll_ outside control limits

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample	2-Fluorophenol	Phenol-d ₅	2,4,6-Tribromophenol
<u>Designation</u>	(200 ppb Added)	(200 ppb Added	(200 ppb Added)
Method Blank	56	72	46
A83027-2 Spike	67	. 75	74
A83027-2 Spike Dup.	64	69	70
A83007-1	67	. 68	64
Units	(%)	(%)	(%)
Control Limits	27-106	30-88	42-89

Surrogate Recovery

Sample Designation	Nitrobenzene-d ₅ (100 ppb Added)	2-Fluorobiphenyl (100 ppb Added)	Terphenyl-d ₁₄ (100 ppb Added)
Method Blank	70	82	102
A83027-2 Spike	74	. 70	72
A83027-2 Spike Dug	o. 73	69	69
A83007-1	64	75	92
Units	(%)	(%)	(%)
Control Limits	34-107	10-157	10-175

 $[\]underline{0}$ out of $\underline{24}$ surrogate recoveries are outside control limits.

VI. Quality Control Data (Cont'd)

AnalytikeM

General Chemistry

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A83007-1

	Amount	Reco	very		Control I	<u>imits</u> Max.
Parameter	of Spike	MS	MSD	RPD	Recovery	RPD
Sulfate, by IC Bromide, by IC	100 75	97 99	99 99	2 '	75-125 75-125	20 20
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: __0_ out of __4_ outside control limits

RPD: 0 out of 2 outside control limits

4

1

 \supset

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690

TEST REPORT NO. A82929

November 28, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

Reviewed &
Approved by:

Name: Carmine M. Fioriglio

Title: QA/QC Manager

 $t^{\frac{1}{2}}$

ĆĊ.

AnalytiKEM

TABLE OF CONTENTS

		•	<u>Page</u>
I.	Certification		1
II.	Definition of Terms		2
III.	Sample Designations		3
IV.	Methodology		4
ν.	Analytical Results		5 - 8
VT	Quality Control Data	1	9 - 1

0

42

I. <u>Certification</u>

 \bigcirc

AnalytiKEM, Inc. Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytiKEM Laboratory. Analyses performed at multiple AnalytiKEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Co	mmission *
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815		<u>:</u>	N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038			New Jersey	82869
Pennsylvania	68366		; ;		
S. Carolina	94004				
Tennessee	02908		· :		
Vermont	*		!		
Oklahoma	9107		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		

^{*} No certification numbers are issued for these states.

AnalytiKEM

II. <u>Definition of Terms</u>

 \bigcirc

Term	<u>Definition</u>
D	Detected; result must be greater than zero.
DI	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate.
ŇΑ	Analysis not applicable to the sample matrix.
ND	Not Detected
ΝŔ	Not Requested
NTU	Nephelometric Turbidity Units
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
υ	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
ррЬ	Parts-per-billion; may be converted to ppm by dividing by 1,000.
ppm	Parts-per-million; may be converted to ppb by multiplying by 1,000.
ug/l 🤨	Micrograms of constituent per liter of sample; equivalent to parts-per-billion.
ug/kg	Micrograms of constituent per kilogram of sample; equivalent to parts-per-billion.
ug/kg dw	Micrograms of constituent per kilogram of sample reported on a dry weight basis.
CCC	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
В	Analyte detected in associated blank as well as the sample. It indicates possible/probable blank contamination.

Test Report No. A82929 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM

Client

<u>Designation</u> <u>Designation</u>

Matrix

Date Sampled

A82929-1

S-11

Nonaqueous

11/16/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

 \mathbb{C}^{n}

(2)

3.7

. 7

Ø

: 13 :

 V_{2}

13

· · ·

Test Report No. A82929 Page 4

IV. Methodology

AnalytiKEM

<u>Volatiles</u>

Method 5030, <u>Purge and Trap</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8240, <u>Gas Chromatography/Mass Spectrometry for Volatile Organics</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

<u>Semivolatiles</u>

Method 3550, Sonication Extraction, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8270, <u>Gas Chromatography/Mass Spectrometry for Semivolatile Organics:</u> <u>Capillary Column Technique</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

General Chemistry

Method 9056, Anion Chromatography Method, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Ø

()

4/5

e del

V. Analytical Results

Volatile Organics

Sample Designation

<u>Parameter</u>	Method Blank	A82929-1 <u>S-11</u>
Chloromethane	< 1 _i ,000	< 1,000
Bromomethane	< 1,000	< 1,000
Vinyl Chloride	< 1,000	< 1,000
Chloroethane	< 1,000	< 1,000
Methylene Chloride	< 500	< 500
2-Propanone (Acetone)	< 10,000	< 10,000
2 Tropunone (necesite)	< 10,000	< 10,000
Carbon Disulfide	< 500	< 500
l,l-Dichloroethene	< 500	< 500
1,1-Dichloroethane	< \ 500	< 500
trans-1,2-Dichloroethene	< 500	< 500
Chloroform	< 500	< 500
1,2-Dichloroethane	< 500	< 500
2-Butanone (MEK)	< 10,000	< 10,000
Z pacations (max)	< 10,000	< 10,000
1,1,1-Trichloroethane	< 500	< 500
Carbon Tetrachloride	< 500	< 500
Vinyl Acetate	< 5,000	< 5,000
Bromodichloromethane	< 500	< 500
1,2-Dichloropropane	< 500	< 500
trans-1,3-Dichloropropene	< 500	
Trichloroethene		< 500
* Truitoroe (Nelle	< 500	< 500
Dibromochloromethane	< 500	< 500
1,1,2-Trichloroethane	,∍<* 500	< 500
Benzene	< 500	< 500
cis-1,3-Dichloropropene	< 500	
2-Chloroethyl Vinyl Ether		< 500
Bromoform		< 1,000
DI OMOTOTIM	< 500	< 500
4-Methyl-2-Pentanone (MIBK)	< 5,000	< 5,000
2-Hexanone	< 5,000	< 5,000
Tetrachloroethene	< 500	< 500 < 500
1,1,2,2-Tetrachloroethane	=	
Toluene		< 500
Totagne	< 500	< 500
Chlorobenzene	< 500	< 500
Ethylbenzene	< 500	< 500
Styrene	< 500	< 500
m,p-Xylene	< 500	< 500
o-Xylene	< 500	< 500
ac not many and a second	, ,000	~ 500
Units	(ug/kg)	(ug/kg)

O.

4

 \circ .

0.1

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 1 of 2)

<u>Parameter</u>	Method Blank	A82929-1 S-11
I de a mino do I	DIGIIK	0 · 11
N-Nitrosodimethylamine	< 500	< 500
Phenol	< 500	< 500
Bis(2-chloroethyl) Ether	< 500	< 500
2-Chlorophenol	< 500	< 500
1,3-Dichlorobenzene	< 500	< 500
1,4-Dichlorobenzene	< 500	< 500
Benzyl Alcohol	< 500	< 500
1,2-Dichlorobenzene	< 500	< 500
2-Methylphenol	< <u>500</u>	< 500
Bis(2-chloroisopropyl) Ether	< 500	< 500
4-Methylphenol	< 500	< 500
N-Nitrosodipropylamine	< 500	< 500
Hexachloroethane	< 500	< 500
Nitrobenzene	< 500	< 500
Isophorone	< 500	< 500
2-Nitrophenol	< 500	< 500
2,4-Dimethylphenol	< 500	< 500
Benzoic Acid	< 2,500	< 2,500
Bis(2-chloroethoxy)methane	< 500	< 500
2,4-Dichlorophenol	< 500	< 500
1,2,4-Trichlorobenzene	< 500	< 500
Naphthalene	< 500	< 500
4-Chloroaniline	< 500	< 500
Hexachlorobutadiene	< 500	< 500
4-Chloro-3-methylphenol	< 500	< 500
2-Methylnaphthalene	< 500	< 500
Hexachlorocyclopentadiene	< 500	< 500
2,4,6-Trichlorophenol	< 500	< 500
2,4,5-Trichlorophenol	< 2,500	< 2,500
2-Chloronaphthalene	< 500	< 500
2-Nitroaniline	< 2,500	< 2,500
Dimethyl Phthalate	< 500	< 500
Acenaphthylene	< 500	< 500
3-Nitroaniline	< 2,500	< 2,500
Acenaphthene	< 500	< 500
2,4-Dinitrophenol	< 2,500	< 2,500
Units	(ug/kg)	(ug/kg)

AnalytikEM

V. Analytical Results (Cont'd)

 $\langle C \rangle$

Semivolatile Organics (Page 2 of 2)

<u>Parameter</u>	Method <u>Blank</u>	A82929-1 S-11
4-Nitrophenol	< 2,500	< 2,500
Dibenzofuran	< 500	< 500
2,4-Dinitrotoluene	< 500	< 500
2,6-Dinitrotoluene	< 500	< 500
Diethyl Phthalate	< 500	< 500
4-Chlorophenyl Phenyl Ether	< 500	< 500
Fluorene	< 500	< 500
4-Nitroaniline	< 2,500	< 2,500
4,6-Dinitro-2-methylphenol	< 2,500	< 2,500
N-Nitrosodiphenylamine	< 500	< 500
4-Bromophenyl Phenyl Ether	< 500	< 500
Hexachlorobenzene	< 500	< 500
Pentachlorophenol	< 500	< 500
Phenanthrene	< 500	< 500
Anthracene	< 500	< 500
Dibutyl Phthalate	< 500	< 500
Fluoranthene	< 500	< 500
Benzidine	< 2,500	< 2,500
Pyrene	< 500	< 500
Butylbenzyl Phthalate	< 500	< 500
3,3'-Dichlorobenzidine	< 1,000	< 1,000
Benzo(a)anthracene	< 500	< 500
Bis(2-ethylhexyl) Phthalate	< 500	< 500
Chrysene	< 500	< 500
Dioctyl Phthalate	< 500	< 500
Benzo(b)fluoranthene	< 500	< 500
Benzo(k)fluoranthene	< 500	< 500
Benzo(a)pyrene	< 500	< 500
Indeno(1,2,3-cd)pyrene	< , 500	< 500
Dibenzo(a,h)anthracene	< 500	< 500
Benzo(g,h,i)perylene	< 500	< 500
Units	(ug/kg)	(ug/kg)

Test Report No. A82929 Page 8

V. Analytical Results (Cont'd)

AnalytiKEM

General Chemistry

Sample Designation

<u>Parameter</u>	Method Blank	A82929-1 <u>S-11</u>		
Fluoride	< 500	< 500		
Chloride	< 500	49,000		
Nitrite	< 500	< 500		
Bromide	< 1,000	< 1,000		
Nitrate	< 500	< 500		
Phosphate	< 1,000	< 1,000		
Sulfate	< 1,000	14,000		
Units	(ug/kg)	(ug/kg)		

Note: The IC Scan analysis was performed at our Cherry Hill, NJ facility.

VI. Quality Control Data

AnalytiKEM

Volatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A82927-6

					Control Limits
Parameter	Amount of Spike	Reco MS	MSD	RPD	Recovery
1,1-Dichloroethene	0.25	96	97	1	D-234
Trichloroethene (TCE)	0.25	98	99	1	71 - 157
Benzene	0,25	94	97	3	37-160
Toluene	0.25	96	98	2	47-150
Chlorobenzene	0.25	91	92	1	37-151
Units	(ppb)	(%)	(%)	(%)	(%)

Recovery: __0 out of _10 outside control limits

4

 \mathbb{C}^{s}

Test Report No. A82929 Page 10

VI. Quality Control Data (Cont'd)

AnalytiKEM

Volatile Organics

 $\{C\}$

Nonaqueous Surrogate Recovery Data

	1	Surrogate Kecove	<u>ry</u>
Sample Designation	1,2-Dichloroethane-d ₄ (50 ppb Added)	Toluene-d ₈ (50 ppb Added)	4-Bromofluorobenzen (50 ppb Added)
Method Blank A82927-6 Spike A82927-6 Spike Dup. A82929-1	87 93 94 89	93 87 88 97	91 81 82 97
Units	(%)	(%)	(%)
Control Limits	62-152	57-159	62-148

__O_ out of __12_ surrogate recoveries are outside control limits.

O.

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A82899-1

			'		Control L	<u>imits</u>
	Amount	Reco	very			Max.
<u>Parameter</u>	of Spike	<u>MS</u>	<u>MSD</u>	<u>rpd</u>	Recovery	RPD
1,4-Dichlorobenzene	50	53	65	20	18-120	43
N-Nitrosodipropylamine	50	74	85	14	10-156	31
1,2,4-Trichlorobenzene	50	51	60	16	24-161	1.7
Acenaphthene	50	67	75	11	10-151	16
2,4-Dinitrotoluene	50	54	61	12	10-197	33
Pyrene	50	74	[80	8	10-167	31
Phenol	100	56	65	15	10-141	41
2-Chlorophenol	100	48	- 57	17	33-101	19
4-Chloro-3-methylphenol	100	59	64	8	26-117	25
4-Nitrophenol	100	40	34	16	10-221	36
Pentachlorophenol	100	44	49	11	10-179	16
Units	(dąq)	(%)	(%)	(%)	(%)	(%)

Recovery: 0 out of 22 outside control limits

RPD: 0 out of 11 outside control limits

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

 $\langle \cdot \rangle$

 $\{j\}$

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample	2-Fluorophenol	Phenol-d ₅ 2	,4,6-Tribromophenol
<u>Designation</u>	(200 ppb Added)	(200 ppb Added)	(200 ppb Added)
		1	
Method Blank	86	87	90
A82899-1 Spike	52	58	59
A82899-1 Spike Dup.	64	69	63
A82929-1	80	80	74
Units	(%)	(%)	(%)
Control Limits	27-106	30-88	42-89

Surrogate Recovery

-	Nitrobenzene-d ₅ (100 ppb <u>Added)</u>	2-Fluorobiphenyl (100 ppb Added)	
Method Blank	87	88	101
A82899-1 Spike	62	· 57	71
A82899-1 Spike Dup.	69	64	79
A82929-1	78	74	101
Units	(%)	(%)	(%)
Control Limits	34-107	10-157	10-175

VI. Quality Control Data (Cont'd)

AnalytiKEM

General Chemistry

 \bigcirc

4.77

(')

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A28551-3

		_			Control L	
	Amount	Reco	very			Max.
<u>Parameter</u>	<u>of Spike</u>	<u>MS</u>	MSD	RPD	Recovery	RPD
Fluoride	10	122	116	5	75-125	20
Chloride	15	93	93	0	75-125	20
Nitrite	10	99	99	0	75-125	20
Bromide	75	98	98	0	75-125	20
Nitrate	20	94	94	0	75-125	20
Phosphate	50	108	107	1	75-125	20
Sulfate	100	117	112	4	75-125	20
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: __0 out of __14 outside control limits

RPD: ____0 out of ___7 outside control limits

A

7

Chain-of-Custody Record # 82929

	Area: Drinking Water Waslewater Groundwater Solid and Hazardous Waste SG. ENSC! Sample Collector: Stere Stadelman S92032 AnalytiKEM Contact: Beky								23 Rd (8	ock Hill 03) 324	nsdale Road , South Carolina 29731	Sales Office 454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690 Fax: (803) 329-9689						
ITEM	SAMPLE DESIGNATIO		DATE	TIME	MATRIX	/	Control	o relate		3/80 69	N. S. S. S. S. S. S. S. S. S. S. S. S. S.		 	(K) (V)	, ; , y	5/ 5 6 / 6	Age of the state o	PARAMETERS
1 2	5-11		11-16	0950	501	G								1	2	3		Atachel sheet by TCLP, gross of the, Rodin 224/2
3						-					ļ							
4 5	···-	· · · · · · · · · · · · · · · · · · ·						· 										· · · · · · · · · · · · · · · · · · ·
6						-												
8																		- · · · · · · · · · · · · · · · · · · ·
9													-					
TRANSFER	ITEM NUMBER			NSFERS UISHED	вү	. .l		RANSF				DATE	TIME		MARK		o.# 3178	8 /
1	1	54	eve -	Stag	le Ionan	Sc	o V	1- =	fon	<u></u>	/	11/9	10:4			3-	0.# 3178 day TAT	
3		رى كلحد	14	for	y	S.	Sai	wye	<u> </u>			117/12	1:30 P.m.		£	1		<u></u>
4			<u></u> -											SÁ	AA MPLEI	400 SIG	SNATURE	(III

SAMPLE RECEIPT CHECKLIST

Client: <u>ENSC/</u>	
Project Number: <u>592032</u>	Laboratory 82929
1Shipped Hand Delivered	Notes:
2. COC Present on Receipt No COC	Notes:
3COC Tape on Shipping Container	Notes:
No COC Tape on Shipping Container	Notes:
4. Samples Broken/Leaking Sample Intact on Receipt	Notes:
Other (See Notes) 5. Ambient on Receipt	Notes:
6Chilled on Receipt	Notes:
Correctly Improper Preservatives N/A (None Recommended)	
Other (See Notes) 7. Received Within Holding	Notes:
Time Not Received Within Holding Time	
N/A (None Recommended) Other (See Notes)	
8. COC Tapes on Samples No COC Tapes on Samples	Notes:
	Notes:
No Discrepancies Noted N/A (No COC Received)	
Additional Comments:	<u>.</u>
A	
Inspected and Logged in by: S. S. Date/Time: 11-17-92 13(00)	auryes

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690 Fax: 803/324-3982

TEST REPORT NO. A82832

November 4, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stackman

Project: Mannington

Reviewed &
Approved by:

Name: Carmine M. Fioriglio

Title: QA/QC Manager

AnalytiKEM

TABLE OF CONTENTS

		. <u> </u>	<u> </u>	2
I.	Certification		1	
II.	Definition of Terms	:	2	
III.	Sample Designations		3	
IV.	Methodology		4	
v.	Analytical Results	5	-	8
VI.	Quality Control Data	, 9		13

I. Certification

AnalytiKEM, Inc.; Current Certifications/Regulatory Approvals

Tabulated below are the current laboratory certifications that are held by each AnalytikEM Laboratory. Analyses performed at multiple AnalytikEM locations will be noted in the test report.

Cherry Hill, NJ		Rock Hill, SC		Houston Analytical, TX	
State	Cert #	State	Cert #	State	Cert #
Arkansas	*	S. Carolina	46067	N. Dakota	R-006
Connecticut	PH-0715	N. Carolina	316	Oklahoma	8403
Florida	880985G	New Jersey	79795	Texas Water Commission *	
Massachusetts	NJ117			Louisiana	92-07
New Jersey	04012			S. Carolina	82011
New York	10815			N. Carolina	367
N. Carolina	258			Wisconsin	998010530
N. Dakota	R-038		. <u>.</u>	New Jersey	82869
Pennsylvania	68366				
S. Carolina	94004				
Tennessee	02908		. : 		
Vermont	*				
Oklahoma	9107		!		

^{*} No certification numbers are issued for these states.

AnalytiKEM

II. <u>Definition of Terms</u>

Term	<u>Definition</u>
D	Detected; result must be greater than zero.
DI	Deionized Water
J	Compound was detected at levels below the practical quantitation limit. The level reported is approximate.
MS/MSD	Matrix Spike/Matrix Spike Duplicate.
NA	Analysis not applicable to the sample matrix.
ND	Not Detected
NR	Not Requested
NTU	Nephelometric Turbidity Units
RPD	Relative Percent Difference
RSD	Relative Standard Deviation
υ	Compound was analyzed for but not detected. The preceding number is the practical quantitation limit for the compound.
ppb	Parts-per-billion; may be converted to ppm by dividing by 1,000.
ppm	Parts-per-million; may be converted to ppb by multiplying by 1,000.
ug/1 🦫	Micrograms of constituent per liter of sample; equivalent to parts-per-billion.
ug/kg	Micrograms of constituent per kilogram of sample; equivalent to parts-per-billion.
ug/kg đw	Micrograms of constituent per kilogram of sample reported on a dry weight basis.
ccc	Calibration Check Compound; used to verify the precision of a GC/MS calibration curve.
SPCC	System Performance Check Compound; used to verify the correct operation of a GC/MS instrument.
PQL	Practical Quantitation Limit; the minimum level at which compounds can be dependably quantitated.
В	Analyte detected in associated blank as well as the sample. It indicates possible/probable blank contamination.

. :

Test Report No. A82832 Page 3

III. Sample Designations

AnalytiKEM

AnalytiKEM Designation

 \bigcirc

Client

<u>Designation</u> <u>M</u>

Matrix

Date <u>Sampled</u>

A82832-1

•

B-6

Nonaqueous

10/23/92

Note: Samples will be held for 30 days beyond the test report date unless otherwise requested.

Test Report No. A82832 Page 4

IV. Methodology

O

AnalytiKEM

Volatiles

Method 5030, <u>Purge and Trap</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8240, Gas Chromatography/Mass Spectrometry for Volatile Organics, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

<u>Semivolatiles</u>

Method 3550, <u>Sonication Extraction</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

Method 8270, <u>Gas Chromatography/Mass Spectrometry for Semivolatile Organics: Capillary Column Technique</u>, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

General Chemistry

Method 9056, Anion Chromatography Method, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, Third Edition, USEPA, 1986, with all promulgated revisions.

1

V. Analytical Results

27

Volatile Organics

AnalytiKEM

Sample	<u>Designation</u>

Parameter	Method <u>Blank</u>	A82832-1 B-6
Chloromethane	< 1,000	< 1,000
Bromomethane	< 1,000	< 1,000
Vinyl Chloride	< 1,000	< 1,000
Chloroethane	< 1,000	< 1,000
Methylene Chloride	< 500	660
2-Propanone (Acetone)	<10,000	< 10,000
Carbon Disulfide	< 500	< 500
l,l-Dichloroethene	< 500	< 500
1,1-Dichloroethane	< 500	< 500
trans-1,2-Dichloroethene	< 500	< 500
Chloroform	< 500 j	< 500
1,2-Dichloroethane	< 500	< 500
2-Butanone (MEK)	<10,000	< 10,000
1,1,1-Trichloroethane	< 500	< 500
Carbon Tetrachloride	< 500	< 500
Vinyl Acetate	< 5,000	< 5,000
Bromodichloromethane	< 500;	< 500
1,2-Dichloropropane	< 500 ¹	< 500
trans-1,3-Dichloropropene	< 500	< 500
Trichloroethene	< 500	< 500
Dibromochloromethane	< 500	< 500
1,1,2-Trichloroethane	< 500	< 500
Benzeile	< 500.	< 500
cis-1,3-Dichloropropene	< 5.00	< 500
2-Chloroethyl Vinyl Ether	< 1,000	< 1,000
Bromoform	< 500	< 500
4-Methyl-2-Pentanone (MIBK)	< 5,000	< 5,000
2-Hexanone	< 5,000	< 5,000
Tetrachloroethene	< 500	< 500
1,1,2,2-Tetrachloroethane	< 500	< 500
Toluene	< 500	< 500
Chlorobenzene	< 500	< 500
Ethylbenzene	< 500	< 500
Styrene	< 500	< 500
m-Xylene	< 500	< 500
o,p-Xylene	< 500	< 500
Units	(ug/kg)	(ug/kg)

V. Analytical Results (Cont'd)

Semivolatile Organics (Page 1 of 2)

	Sample <u>r</u>	esignation
	Method	A82832-1
Parameter	Blank	<u>B-6</u>
N-Nitrosodimethylamine	< 500	< 500
Phenol	< 500	< 500
Bis(2-chloroethyl) Ether	< 500	< 500
2-Chlorophenol	< 500	< 500
1,3-Dichlorobenzene	< 500	< 500
1,4-Dichlorobenzene	< 500	< 500
Benzyl Alcohol	< 500	< 500
1,2-Dichlorobenzene	< 500	< 500
2-Methylphenol	< 500	< 500
Bis(2-chloroisopropyl) Ether	< 500	< 500
4-Methylphenol	< 500	< 500
N-Nitrosodipropylamine	< 500	< 500
Hexachloroethane	< 500	< 500
Nitrobenzene	< 500	< 500
Isophorone	< 500	< 500
2-Nitrophenol	< 500	< 500
2,4-Dimethylphenol	< 500	< 500
Benzoic Acid	< 2,500	< 2,500
Bis(2-chloroethoxy)methane	< 500	< 500
2,4-Dichlorophenol	< 500	< 500
1,2,4 Trichlorobenzene	< 500	< 500
Naphthalene	< 500	< 500
4-Chloroaniline	< 500	< 500
Hexachlorobutadiene	< 500	< 500
4-Chloro-3-methylphenol	< 500	< 500
2-Methylnaphthalene	< 500	< 500
Hexachlorocyclopentadiene	< 500	< 500
2,4,6-Trichlorophenol	< 500	< 500
2,4,5-Trichlorophenol	< 2,500	< 2,500
2-Chloronaphthalene	< 500	< 500
2-Nitroaniline	< 2,500	< 2,500
Dimethyl Phthalate	< 500	< 500
Acenaphthylene	< 500	< 500
3-Nitroaniline	< 2,500	< 2,500
Acenaphthene	< 500	< [′] 500
2,4-Dinitrophenol	< 2,500	< 2,500
Units	(ug/kg)	(ug/kg)

V. Analytical Results (Cont'd)

AnalytiKEM

Semivolatile Organics (Page 2 of 2)

	Sample Designation		
	Method	A82832-1	
Parameter	<u>Blank</u>	<u>B-6</u>	
4-Nitrophenol	< 2,500	< 2,500	
Dibenzofuran	< 500	· < 500	
2,4-Dinitrotoluene	< 500	< 500	
2,6-Dinitrotoluene	< 500	< 500	
Diethyl Phthalate	< 500	< 500	
4-Chlorophenyl Phenyl Ether	< 500	< 500	
Fluorene	< 500	< 500	
4-Nitroaniline	< 2,500	< 2,500	
4,6-Dinitro-2-methylphenol	< 2,500	< 2,500	
N-Nitrosodiphenylamine	< 500	. < 500	
4-Bromophenyl Phenyl Ether	< 500	< 500	
Hexachlorobenzene	< 500	< 500	
Pentachlorophenol	< 500	< 500	
Phenanthrene	< 500	< 500	
Anthracene	< 500	< 500	
Dibutyl Phthalate	< 500	< 500	
Fluoranthene	< 500	< 500	
Benzidine	< 2,500	< 2,500	
Pyrene	< 500	< 500	
Butylbenzyl Phthalate	< 500	< 500	
3,3'-Dichlorobenzidine	< 1,000	< 1,000	
Benzo(a)anthracene	< 500	< 500	
Bis(2-ethylhexyl) Phthalate	< 500	< 500	
Chrysene	< 500	< 500	
Dioctyl Phthalate	< 500	< 500	
Benzo(b)fluoranthene	< 500	< 500	
Benzo(k)fluoranthene	< 500	< 500	
Benzo(a)pyrene	< 500	< 500	
Indeno(1,2,3-cd)pyrene	< 500	< 500	
Dibenzo(a,h)anthracene	< 500	< 500	
Benzo(g,h,i)perylene	< 500	< 500	
Units	(ug/kg)	(ug/kg)	

Test Report No. A82832" Page 8

V. Analytical Results (Cont'd)

AnalytiKEM

General Chemistry

()

Sample Designation

<u>Parameter</u>	Method <u>Blank</u>	A82832-1 B-6	
Sulfate, by IC Bromide, by IC	< 1,000 < 1,000	120,000 < 1,000	
Units	(ug/kg)	(ug/kg)	

Note: The IC scan was performed at our Cherry Hill, NJ facility.

VI. Quality Control Data

AnalytiKEM

Volatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A74241-REC

	4 4 -	7 7			Control Limits
Parameter	Amount <u>of Spike</u>	Reco	MSD	RPD	Recovery
1,1-Dichloroethene	0.25	84	101	18	D-234
Trichloroethene (TCE)	0.25	98	100	2	71-157
Chlorobenzene	0.25	97	102	5	37-160
Toluene	0,25	98	102	4	47-150
Benzene	0.25	99	102	3	37-151
Units	(ug)	(%)	(%)	(%)	(%)

Recovery: 0 out of 10 outside control limits

VI. Quality Control Data (Cont'd)

AnalytiKEM

Volatile Organics

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample	1,2-Dichloroethane-d ₄	Toluene-d ₈ (50 ppb Added)	4-Bromofluorobenzene
<u>Designation</u>	(50 ppb Added)		(50 ppb Added)
Method Blank	102	104	113
A74241-REC Spike	87	87	91
A74241-REC Spike Du	p. 86	89	94
A82832-1	94	97	108
Units	(%)	(%)	(%)
Control Limits	62-152	57-159	62-148

0 out of 12 surrogate recoveries are outside control limits.

...

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A82824-1

	Amount	Reco			Control L	<u>imits</u> Max.
<u>Parameter</u>	of Spike	MS	MSD	<u>RPD</u>	Recovery	RPD
1,4-Dichlorobenzene	50	71	71	0	18-120	43
N-Nitrosodipropylamine	50	104	103	1,	10-156	31
1,2,4-Trichlorobenzene	50	73	73	0	24-161	17
Acenaphthene	50	84	82	2	10-151	16
2,4-Dinitrotoluene	50	64	61	5	10-197	33
Pyrene	50	106	106	0	10-167	31
Phenol	1.00	67	66	1	10-141	41
2-Chlorophenol	100	58	57	2	33-101	19
4-Chloro-3-methylphenol	100	63	53	17	26- 117	25
4-Nitrophenol	100	34	18	61	10-221	36
4-Nitrophenol φ	100	95			10-221	36
Pentachlorophenol	100	61	: 59	3	10-179	16
Units	(ug)	(%)	(%)	(%)	(%)	(%)

 $\boldsymbol{\varphi}$ Spike performed on DI Water.

Recovery: 0 out of 23 outside control limits

RPD: ____ out of ___1_ outside control limits

Test Report No. A82832

Page 12

VI. Quality Control Data (Cont'd)

AnalytiKEM

Semivolatile Organics

Nonaqueous Surrogate Recovery Data

Surrogate Recovery

Sample	2-Fluorophenol	Phenol-d ₅	2,4,6-Tribromophenol
<u>Designation</u>	(200 ppb <u>Added)</u>	<u>(200 ppb Added)</u>	(200 ppb Added)
		T.	
Method Blank	75	75	79
A82824-1 Spike	68	72	78
A82824-1 Spike Dup.	68	72	47
A82832-1	63	65	53
Units	(%)	(%)	(\$)
Control Limits	27-106	30-88	42-89

Surrogate Recovery

Sample <u>Designation</u>	Nitrobenzene-d ₅ (100 ppb Added)	2-Fluorobiphenyl (100 ppb Added)	Terphenyl-d ₁₄ (100 ppb Added)
Method Blank	74	80	103
A82824-1 Spike	75	83	100
A82824-1 Spike Dup	. 71	79	100
A82832-1	62	68	82
Units	(%)	(%)	(%)
Control Limits	34-107	10-157	10-175

______ out of ____24_ surrogate recoveries are outside control limits.

Test Report No. A82832 Page 13

VI. Quality Control Data (Cont'd)

AnalytiKEM

General Chemistry

Nonaqueous Matrix Spike/Matrix Spike Duplicate Recovery Data

Sample Spiked A28611-361

					Control L	imits
	Amount	Reco	very		i	Max.
<u>Parameter</u>	<u>of Spike</u>	<u>MS</u>	MSD	RPD	Recovery	RPD
Sulfate	100	99	97	2	.75-125	20
Bromide	75	101	99	3	75-125	20
Units	(ug)	(%)	(%)	(%)	(%)	(%)

Recovery: 0 out of 4 outside control limits

RPD: ______ out of _____ outside control limits

Chain-of-Custody Record

82832

•	em Area: Drinking : ENSCT ct: Mayn7												23 Ri (8	ock Hil 03) 32	ry msdale Road I, South Carolina 29731 4-5310 3) 324-8378	Sales Office 454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690 Fax: (803) 329-9689
ITEM NUMBER	SAMPLE DESIGNATIO	DATE	TIME	MATRIX		$\overline{}$		$\overline{}$	7		(E)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	035/	\$ 55 J		PARAMETERS
	B-6	10/23	0950	Siloz	G		-					Z	1		Analyses Attached	Per
2				:1			-			-		<u>.</u>	•		Attached	Sheet
7																
5										<u> </u>	<u> </u>					
0 7	· 				 	-				 		i				
8 9			†										-			
9					<u> </u>					<u> </u>						
าบ					[<u> </u>						
TRANSFER NUMBER	ITEM NUMBÉR		NSFERS WISHED				RANSFER CEPTED			DATE		REI	MARK Post	\$ ‡	45	ay TAT
1		Our-	862	45	8	A	Lo	y		10/27	5:15 PA] '	. U	31/	185 280	•
2	1	Scott	Lon	g	L.C.	944	<u>ids</u>			19/2	2:	b	U) I 6		
3 ~4												<u> </u>	VPLE#	r's sic	GNATURE	

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690 Fax: 803/324-3982

TEST REPORT NO. A82832, Supplemental

November 18, 1992

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil

The Gross Alpha, Gross Beta and Radium 226,228 analyses were subcontracted to Teledyne Isotopes, Laboratories. Please see attached copy of their report.

Reviewed &
Approved by: Muchael Shroth Mr.). for
Name: Carmine M. Fioriglio

Title: <u>QA/QC Manager</u>

SAMPLE RECEIPT CHECKLIST

Client:	815Cl		
roject umber: 7	mington Sile	Laboratory Number:	80832
	ipped nd Delivered	Notes:	
. <u>V</u> co	C Present on Receipt	Notes:	
co	Tape on Shipping	Notes:	
No	COC Tap: on Shipping	Notes:	
Sar	mples Broken/Leaking mple Intact on Receipt	Notes:	
ot.	her (See Notes) pient on Receipt illed on Receipt	Notes:	
·San	mples Preserved rrectly	Notes:	
N/	proper Preservatives A (None Recommended) her (See Notes)		
	seived Within Holding	Notes:	
но	t Received Within lding Time		
oz	A (None Recommended) her (See Notes)		
No	Coc Tapes on Samples	Notes:	
an	screpancies Between COC d Sample Labels Discrepancies Noted	Notes:	
	A (No COC Received)		
		•	
dditional C	comments:		

REPORT OF AN ALYSIS 13 NOVEMBER 1992

**TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 11/12/92

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

PATTI DE ANDINO ANALYTIKEM INC 2324 VERNSDALE ROAD 3-4562

10/27/92

11/29/92

ROCK HILL SC 29731

" S O L 1 O S

TELEDYNE			COL	LECTION-	DATE				HID-COUNT		
SAMPLE Number	CUSTOMER'S IDENTIFICATION	STA Num	STAR Date	TIME DA	STOP TE TIME	NUCLIOE	ACTIVITY (PCI/GM DRY)	%-TINU-JOUM \$ 4\U	TIME DATE TIME	VOLUME - UNITS ASH-WGHT-% ☆	LAB.
94012 8	2832-1		10/23	0950		GR-A	4.0 +-1.0 E 0	1	11/09		3
						GR-B	7.2 +-0.4 E 0	1	11/09		3
-						RA-226	4.7 +-0.7 E 0	0	11/05		4
						R A-228	2.4 +-0.2 E 0	0	11/05		4

LAST PAGE OF REPORT

APPROVED BY J. GUENTHER 11/12/92

SEND 1 COPIES TO AN133T PATTI DE ANDINO

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB. 4 - GEILII GAMMA SPEC LAB. 5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

REPORT OF ANALYSIS 4 NOVEMBER 1992

**TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 11/04/92

HORK ORDER NUMBER

CUSTOMER P.O. MUMBER

DATE RECEIVED DELIVERY DATE PAGE]

PATTI DE ANDINO ANALYTIKEM INC 2324 VERNSDALE ROAD ROCK HILL SC

3-4379

10/15/92

10/28/92

29731

SOIL

TELEDYNE Sample Wumber	: CUSTOMER'S IDENTIFICATION	COLLECTION-DA STA START S NUM DATE TIME DATE	TOP	ACTIVITY NUCL-UNIT-% (PCI/GM DRY) U/M ≠		VOLUME - UNITS ASH-HGHT-% ⇒ LAB.
93051	82791-1	10/12	GR-A GR-B RA-226 RA-228	2.5 +-0.8 E 01 1.0 +-0.1 E 02 9.9 +-1.0 E-01 1.9 +-0.2 E 00	10/22 10/22 10/30 10/30	3 3 4 4
93052	82791-2 5	10/12	GR-A GR-B RA-226 RA-228	1.5 +-0.6 E 01 4.2 +-0.4 E 01 8.1 +-0.9 E-01 1.7 +-0.2 E 00	10/22 10/22 10/30 10/30	3 3 4 . 4
93053	82791-3	10/12	GR-A GR-B RA-276 RA-228	1.3 +-0.6 E 01 4.4 +-0.4 E 01 7.2 +-0.8 E-01 8.8 +-1.5 E-01	10/22 10/22 10/30 10/30	3 3 4 4

LAST PAGE OF REPORT

APPROVED BY J. GUENTHER 11/04/92

SEND 1 COPIES TO ANIBBT PATTI DE ANDINO

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB. 4 - GEILII GAKMA SPEC LAB.

5 - TPITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB. *

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60651, Supplemental

February 1, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NG 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (\$92032)

The Radiological analyses was subcontracted to Teledyne Isotopes. Please see attached copy of their report.

> Reviewed & Approved by:

Title: <u>QA/QC Manager</u>

REPORT OF AN ALYSIS 27 JANUARY 1993

**TELEDYNE ISOTOPES

REPORT OF AMALYSIS

RUN DATE 01/27/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

ATTN: O A DEPT ANALYTIKEM INC 28 SPRINGDALE ROAD CHERRY HILL NJ

3-5807

08003

01/07/93

02/09/93

S 0 1 L

TELEOYNE Sample Number	CUS1		SAA STAR		OP	ACTIVITY (PCI/GM DRY)	NUCL-UNIT-X U/M •	MID-COUNT TIRE DATE TIME	YOLUME - UNITS ASH-WGHT-₹ ◆	LA8.
00665	60651-01	سر دن مع	12/28		GR-A	9.4 +-5.3 E 0	0	01/15		3
00007	00031-01	,	12,20		GR-8	1.4 +-0.3 E 0		01/15		3
					RA-226	1.1 +-0.1 E 0		01/21		4
					RA-228	7.5 +-1.6 E-0		01/21		4
		17								
00666	60651-02	5 /	12/29		GR-A	1.3 +-0.6 € 0	1	01/15		3
					GR+B	5.1 +-0.4 E 0	1	01/15		3
					RA-226	8.1 +-0.8 E-0	1	01/21		4
					RA-228	7.1 +-1.1 E-0	1	01/21		4
		1					_			_
00667	60651-03	26	12/29		GR-A	2.8 +-0.8 E 0		01/15		3
				•	GR-B			01/15		3
				, i	RA-226	1.4 +-0.1 E 0		01/21		4
		_			RA-228	1.3 +-0.2 E 0	0	01/21		4
*	60651-04	<5			- 5 4			A1 /15		
00668	60651-04	3)	- 12/29		GR-A	2.7 +-0.8 E 0		01/15		3
					GR-8	7.3 +-0.5 E 0		01/15	· · · · · · · ·	,
						1.0 +-0.1 E 0		01/21		4
					RA-228	3.2 +-0.3 E 0	0	01/21 -		-
****	60651-05	58	12/20		GR-A	4.0 +-1.0 E 0	t	01/15		3
00004	00001-00		12/29		GR-B	5.6 +-0.4 E 0		01/15		ź
					RA-226	5.9 +-0.6 E 0		01/21		4
					RA-228	2.8 +-0.3 E 0		01/21		4
		~0			KA-220	2.0 4-0.5 6 0	v	01721		•
00670	60651-06	57	12/29		GR-A	3.6 +-0.9 E 0	1	01/15		3
00010	00671-06	: ب	14/27		GR-B	8.3 +-0.5 E 0	-	01/15		3
					RA-226	8.9 +-1.0 E-0		01/21		4
					RA-228	2.8 +-0.3 E 0		01/21		4

REPORT OF ANALYSIS

RUN DATE 01/27/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 2

THEO A C INTTA ANALYTIKEM INC 28 SPRINGDALE ROAD CHERRY HILL NJ

3-5807

01/07/93

02/09/93

SOIL

TELEDYN Sample Nomber	cus	TOMER'S	STA START	CTION-BATE STOP IME DATE TIME	NUCLIDE	ACTIVITY PCI/GH DRYI	NUCL-UNIT-X U/M *	MID-COUNT TIME DATE TIME	VOLUME - UNITS ASH-WGHT-∜ Ф	LAB.
00671	60651-07	5/0	12/29			2 +-1.0 E €		01/15		3
		_				5.7 +-0.4 E (01/15		3
					_	2+1 +-0+2 E (01/21		4
				R	A-228	3.5 +-0.4 E (00	01/21		4
		54		_			_ 4			_
00612	60651-08	77	12/29			1.2 +-0.7 E		01/15		3
		·			-	•5 +-0•4 € (-	01/15		3
					-	.1 +-0.1 E (01/21		4
				R	A-228 1	l.3 +-0.1 € 0	00	01/21		4
		Cut	22.122		м .		n	01/15		
00673	60651-09	514	12/30			.0 +-0.7 E	_	01/15		,
						.6 +-0.3 E	-	01/15		3
						+-0.2 E (01/21		4
				R	A-228]	.7 +-0.2 E ()0	01/21		4
20121		··· <i>5</i> 12·	1.12.12.12	_						-
008/4	60651-10		12/30			6 +-0.9 E		01/15		2
						1.5 +-0.5 E (_	01/15		₫.
						•1 +-0•1 E		01/21		4
		~ ~		R	A-228 2	!•1 +-0.2 E ()0	01/21		4
		5/3		_						
00675	60651-11	-, -	12/30			.7 +-0.9 E	-	01/15		3
				·		1.4 +-0.5 E (01/15		3
						.5 +-0.2 E C		01/21		
				Ra	A-228 2	1.9 +-0.3 E 0	10	01/21	. /	4
								A-Mar	1000	

LAST PAGE OF REPORT

APPROVED BY K. GUENTHER 01/27/93

SEND 1 COPIES TO ANIBAS ATTN: Q A DEPT

08003

2 - GAS LAB.

3 - RADIO CHEMISTRY LAB. 4 - GE(LI) GARNA SPEC LAB. 5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

Reorder: PJ Associates 803-329-2300

AKEM #1 12/89

	Area: Drinking t	Water Was						azardol			(ta)	مدان	lens	<u> </u>	23		ry rnsdałe Road , South Carolina 29731	454		rson Road BTC 532 a Carolina 29730
	59203							or: ntaci: _						<u></u>	(80	3) 32	4-5310 3) 324-8378	(80	(3) 329-9690 x: (803) 329-	
ITEM	SAMPLE DESIGNATIO	N DA	ATE 7	ME .	MATRIX		Carlos S	a ril vieto		Fro to a	RO'		(E.S.)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1.4. E		PARAM		
1	85		.)) 2	1430	501/	G			2					1	3		8240,8270, Ra 226-228, Br.	sa _y	ehro, ga Analys	ard, sposs &,
2	57	9	-29	1030	11	G			2					7	3					1
3	56	12:	-15	215	u	G			2					1	3	 i				
4	55	1	79 12	1300	r	6			2		3			1	3					
5	58	4 '	12 /	14/15	ч	6			اد					1	3	- ·				
6	5 9		24/	445	(e	6			2					1	3					
7	510		-25 2 /	515		C			2			_		1	3					
8	54	9	-19 -2 /	600		C		-	2					-] -	3	<u>-</u> -		7. T000 = 150		
9	514		12 1	1100	ď	G			2					1	3					
10	512		-ju -	1150	C*	4			2					1	3			(k
TRANSFER	ITEM NUMBER		ransi Inguis	FEAS SHED E	ЭΥ	0		RANSFE CEPTEL		 l	- 1		TIME		MARKS		L turnaru 4. # 318			
1	1-10	Steve	11	like	lma_	L	lar	ly)	a	ne_	٠ ١	-30 92	Ha	}		1.0	0. # 318	94		
2	1-10	Groo	ly	Lan	ــــــــ	Ja	n. A		ب ليد	les	1:	2-30 12	1605							
3	1-10	J.W.	D	· •		/	1/10		2_			. I	Ligy		1	leu	Mode	len	<u></u>	
4		/	. –				, •	1)			1	ייי וייי 		SAI	MPLET	rs sid	SNATURE			

White Laboratory Copy

Yellow Citent Copy

Chain-of-Custody Record

 Solid and Hazardous Wast
--

imple Collector: Steve Stadelman

islytiKEM Contact:

Laboratory

2324 Vernsdale Road Rock Hill, South Carolina 29731

(803) 324-5310 Fax: (803) 324-8378 Sales Office

454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690

Fax: (803) 329-9689

	4 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N. S. S. S. S. S. S. S. S. S. S. S. S. S.	Series.	King's	/kg/	Right See	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		PARAMETERS
C		2					1	3	8240, 8270, TELP mehls, grand, sross 8, Ra 226-228, Br, Soy. Analyses peratoded
G		2			 		1	3	
IGI		2					1	3	
16		2				 	1	3	
(2					1	3	
6		2					1	3	
C		2					l	₹	
6		2				_!		3	
٦		2					1	3	
4		2					1	3	Y

!	TRANSFERS ACCEPTED BY	DATE	TIME	Rush turnariad
	Prady Jane	42-30	140	1.0. # 31894
ا	Jan Nu Duntes	12-30	1605	
ļ	MINIMA	לאטור	Lin	Ster Stodelin
		 		SAMPLER'S SIGNATURE
_	· ····································			Barrie de com

White Laboratory Copy

Yellow Cilent Copy

Program					Sa	mpte C	o!lecto	r:	SH	~ -	Stade			_	23 Ro	ck Hil	ry rnsdale Road I, South Carolina 29731 4-5310	Sales Office 454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690
Project:	5920	132-			An	alytiKE	M Con	tact: .		4011	ley_		<u> </u>	_ {			3) 324-8378	Fax: (803) 329-9689
NUMBER	SAMPLE DESIGNATIO		DATE	TIME	MATRIX		Che Carl	ri visio		3 kg /	RO 127	/ 3/3				15.5		PARAMETERS
1	513		12-30	1215	5.1	C			2			1		1	3		Ra 226-128; Bass	est metals, grossed, gross p. gross p. Analyse purathelysel
2												1						,
3																		
4																		
5																		
6																		
7																		
8				- = " "								T						
9																		
10					<u> </u>													
TRANSFER	ITEM NUMBER		TRAI RELING	NSFERS UISHED				ANSFI		}	DATE	T	IME		AARK:		sh turnaro	and,
1	/	La	Sto	lelm	rta_	H	100	lys	Ea	Le	92	1/1	400	þ	·	0	sL turnaro . #318	011
2		1	ade	L	one	Da	wh	$ \mathcal{Q} $	in	les		_	605					17
3	<u> </u>	Da	net l	Din	les	1	1/14	Mr)		14141	<u> </u>	ı	 			Stodelin	
4		/		· · ·			7	Ì						SAN	APLER	'S SIC	INATURE	
Reorde	r: PJ Associates i	803-329-23	00			<u> </u>	WI	ılte L	aboral	ary Cam	v Yel	ow	Client	Conv	,			AKEM #1 12/89

AnalytiKEM Inc. 28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60651, Supplemental

February 1, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

The Radiological analyses was subcontracted to Teledyne Isotopes. Please see attached copy of their report.

Reviewed & Approved by:

Name: <u>Carmine M. Fioriglio</u>

Title: __QA/QC Manager

REPORT OF AN ALYSIS 27 JANUARY 1993

TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 01/27/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

ATTN: Q A DEPT ANALYTIKEM INC 28 SPRINGDALE ROAD 3-5807

01/07/93

02/09/93

CHERRY HILL NJ

08003

S 0 1 L

TELEDYNE Sample Wumber	E CUSTOMER'S IDENTIFICATION	STA STA		E OP Time Nuclide	ACTIVITY (PCI/GM DRY)	NUCL-UNIT-X U/M *	MID-COUNT TIME DATE TIME	VOLUME - UNITS ASH-WGHT-% 0	LAB.
00665	60651-01	12/2	3	GR-A GR-B	9.4 +-5.3 E 00 1.4 +-0.3 E 00	<u> </u>	01/15 01/15		3
				R A-226 R A-228	1.1 +-0.1 E 00 7.5 +-1.6 E-0		01/21 01/21		•
00666	60651-02	12/2	9	GR-A GR-8	1.3 +-0.6 E 01 5.1 +-0.4 E 01		01/15 01/15		3 3
				RA-226 RA-228	8.1 +-0.8 E-01 7.1 +-1.1 E-01	•	01/21 01/21		4
00667	60651-03	12/2	,	GR-A GR-B	2.8 +-0.8 E 01 5.2 +-0.4 E 01	1	01/15 01/15		3
				R A-226 R A-228	1.4 +-0.1 E 00 1.3 +-0.2 E 00		01/21 01/21		7
00668	60651-04	12/2	i ·	GR-A GR-8	7.3 +-0.5 E 0	1	01/15 01/15		3
	•	·		R A-226 R A-228	1.0 +-0.1 E 00 3.2 +-0.3 E 00		01/21 01/21 ~		4
00669	60651-05	12/2)	GR-A GR-B	4.0 +-1.0 E 03 5.6 +-0.4 E 01	į	01/15 01/15		3
				RA-226 RA-228	5+9 +-0+6 E 00 2+8 +-0+3 E 00		01/21 01/21		4
00670	60651-06	12/2	3	GR-A GR-8	3.6 +-0.9 E 0: 8.3 +-0.5 E 0:]	01/15 01/15 01/21		3 3
				R A- 226 R A- 228	8.9 +-1.0 E-0; 2.8 +-0.3 E 0		01/21		4

REPORT OF ANALYSIS

RUN DATE 01/27/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 2

ATTNE O A DEPT ANALYTIKEM INC 28 SPRINGDALE ROAD 3-5807

01/07/93

02/09/93

CHERRY HILL NJ 08003

\$ 0 1 L

TELEOYNE SAMPLE	CUSTOMER'S STA	COLLECTION-DATE START STOP		ACTIVITY NUCL-	MID-COUNT UNIT-% TIME	VOLUME - UNITS
NOMBER	IDENTIFICATION NUM	T STAD SHIT STAD I	INE MUCTIOE	(PCI/GH DRY) U/	M O DATE TIME	ASH-WGHT-% + LAB.
00671 6065	1-07	12/29	GR-A	4.2 +-1.0 E 01	01/15	3
			GR-B	6.7 +-0.4 E 01	01/15	. 3
			RA-226	2.1 +-0.2 E 00	01/21	4
			R A-228	3.5 +-0.4 E 00	01/21	4
00672 6065	1-08	12/29	GR-A	2.2 +-0.7 E 01	01/15	3
			GR-B	4.5 +-0.4 E 01	01/15	3 3
			RA-226	1.1 +-0.1 E 00	01/21	4
			RA-228	1.3 +-0.1 E 00	01/21	4
00673 6065	1-09	12/30	GR-A	2.0 +-0.7 E 01	01/15	3
			GR-B	2.6 +-0.3 E 01	01/15	3
			RA-226	1.6 +-0.2 E 00	01/21	4
			RA-228	1.7 +-0.2 E 00	01/21	4
00674 6065	1-10	12/30	GR-A	3.6.+-0.9_E 01	01/15	3
			GR-B	7.5 +-0.5 E 01	01/15	
	•		RA-226	1.10.1 E 00	01/21	
			RA-228	2.1 +-0.2 E 00	01/21	4
00615 6065	1-11	12/30	GR-A	3.7 +-0.9 E 01	01/15	3
			GR-B	7.4 +-0.5 E 01	01/15	3
			RA-226	1.5 +-0.2 E 00	01/21	4
			RA-228	2.9 +-0.3 E 00	01/21	4

LAST PAGE OF REPORT

APPROVED BY \$ GUENTHER 01/27/93

SEND 1 COPIES TO ANIBAS ATTN: Q A DEPT

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB. 4 - GE(LI) GAMMA SPEC LAB.

5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

	Area: Drinking \	Water Wast					azardous or:		5ta	de	<u>lma</u>	<u>^</u>	23 Ro	ock Hill,	nsdale Road South Carolina 29	9731	Rock Hill, Son	derson Road BTC 532 uth Carolina 29730
Project:	59203	عا		An	alytiKi	EM Con	ntact:	Ho	lley	· 				03) 324 DX: (803	324-8378		(803) 329-969 Fax: (803) 32	
NUMBER	SAMPLE DESIGNATIO	N DAT	E TIME	MATRIX		Series of the	. M. 1849 559	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	/kg/	(1 mg/ 1 mg	No.		200	() () () () () () () () () ()			ARAMETERS	
	B5	12.5	1430	501/	C			2				1	3		8240,827 Ra 221-228	Br,50	y And	raid, sous &,
2	57	ه-درا و	· / /	11	G			2		 		1	3				<u></u>	· • · · · · · · · · · · · · · · · · · ·
3	56	12-1		u				2				1	3					
	55	. 9:		, 4	6		j					1	3					
5	58	12	75		6		i					1	3			· 		
6	59	12:	1440		6		5	,				1	3					
7.	510	12-		"	C	,	2					1	₹					
8	54	/2 ~ 4.	7		C		0					- <i>f</i>	3					
9,	514	10 13	9 1100	ır	G		1	2				1	3)
10	512	12- 4 :			4		2	-				1	3					<i>k</i>
TRANSFER NUMBER	ITEM NUMBER		ANSFERS IQUISHED		0		IANSFERS]		TIME	RE	MARK:		turna,	road		
1	1-10	Steve	Stock	lan	E	lad	ly)	ere	1	2-30 92	1400			1.0	turna,	189.	4	
2	1-10	Grad	y fa	,a_	B	n 1		مفل		2-30	160	<u>}</u>					-	
3	1-10	D.W.	Din.		1	1/18/	(m)		j		161		1	leu	Mo	lele	, u	
		7				-404	-		—ť	1-4-	***	SÁ	MPLES	'S SIG	NATURE			

ustody Record

Program Client: Project:	~/20 -				Sa		olieci	tor:	ous W	w	5/2 1/4.	de.	/max	- _	23 Rd (84	ck Hill 3) 32-	y nedale Road i, South Carolina 29731 I-5310 3) 324-8378	Sales Office 454 South Anderson Rock Hill, South Ca (803) 329-9690 Fax: (803) 329-9685	rolina 29730
NUMBER NUMBER	SAMPLE DESIGNATIO		DATE		MATRIX				, 	Se de la constitución de la cons			7	- **/\$	\overline{Z}	S. S. S.	07/	PARAMETERS	
	513		12-30	1215	5.1	G	-		2					!	3		Ra 226-128; Base	ex metals, gross	d, group,
	······································															 			
5 B		·				 													
7																			
9						- 													
10						<u> </u>				<u> </u>	<u></u>					· · · · · · ·			
TRANSFER NUMBER	ITEM NUMBER		TRAI RELING	NSFERS UISHED		 /)		RANSI CEPT	_)_	İ	DATE	TIME	RE	MARKS	-	sh turnaro	and.	
1 2	/	Age.	Sto	de los	otrano	1	ra	Ly	Lan	la.		19 30	14A 160	I	/	20.	sh turnaro	94	
3	1	Ja	net l	Din	lis	7		N/m	۵			491			MPLER	// /S SIG	Hodelor		
4 Reorde	r: PJ Associates 8	03-329-23	00	· -		L	Y	Apire	Labora	tory Co	РРУ	Yello	w Ciles	<u> </u>				,	KEM #1 12/89

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60651, Supplemental

February 1, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

The Radiological analyses was subcontracted to Teledyne Isotopes. Please see attached copy of their report.

Reviewed & Approved by:

Name: Carmine M.-Fioriglio

Title: <u>QA/QC Manager</u>

REPORT OF AN ALYSIS 27 JANUARY 1993

TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 01/27/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

ATTN: O A DEPT ANALYTIKEM INC 28 SPRINGDALE ROAD 3-5807

01/07/93 02/09/93

28 SPRINGDALE ROAD CHERRY HILL NJ 08003

S 0 1 L

TELEDYNE		COLLECTION-DA	TE		MID-COUNT	
SAMPLE	CUSTOMER'S	STA START ST	TOP	ACTIVITY NUCL-UNIT-X		YOLUME - UNITS
NUMBER	IDENTIFICATION	NUM DATE TIME DATE	TIME MUCLIDE	(PCI/GM DRY) U/M *	DATE TIME A	LSH-WGHT-∜ + LAB.
00665	60651-01	12/28	GR-A	9.4 +-5.3 E 00	01/15	3
			GR-8	1.4 +-0.3 E 01	01/15	3
			RA-226	1.1 +-0.1 E 00	01/21	4
			R A-228	7.5 +-1.6 E-01	01/21	•
00666	60651-02	12/29	GR-A	1.3 +-0.6 E 01	01/15	3
			GR-8	5.1 +-0.4 E 01	01/15	3
			8 A-226	8.1 +-0.8 E-01	01/21	4
			R A-228	7.1 +-1.1 E-01	01/21	4
00667	60651-03	12/29	GR-A	2.8 +-0.8 E 01	01/15	. 3
	*****		GR-B	5.2 +-0.4 E 01	01/15	3
			RA-226	1.4 +-0.1 E 00	01/71	•
			RA-228	1.3 +-0.2 E 00	01/21	4
00668	60651-04	12/29	· - ·· —GR₩A- ··		01/15	3
*****			GR-8	7.3 +-0.5 E 01	01/15	3
	•		RA-226	1.0 +-0.1 E 00	01/21	4
	•		RA-228	3.2 +-0.3 E 00	01/21 -	4
00669	60651-05	12/29	GR-A	4.0 +-1.0 E 01	01/15	3
			GR-B	5.6 +-0.4 E 01	01/15	3
			RA-226	5.9 +-0.6 E 00	01/21	4
			RA-228	2.8 +-0.3 E 00	01/21	4
00670	60651-06	12/29	GR-A	3.6 +-0.9 E 01	01/15	3
000.0		44/4/	GR-B	8.3 +-0.5 E 01	01/15	3
			RA-226	8.9 +-1.0 E-01	01/21	4
			RA-228	2.8 +-0.3 E 00	01/21	4

REPORT OF ANALYSIS

. RUN DATE 01/27/93

WORK GROEP NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 2

ATTNI Q A DEPT

1 - ---

3-5807

01/07/93

02/09/93

ANALYTIKEM INC 28 SPRINGDALE ROAD CHERRY HILL NJ

08003

5 0 T L

TELEDYNI	F	COL	LECTION-DATE				HID-COUNT		
SAMPLE Number	CUSTOMER'S	STA STAF NUM DATE	T STOP TIME DATE TIME	NUCLIDE	ACTIVITY (PCI/GM DRY)	NUCL-UNIT-X U/M *	TIME DATE TIME	YOLUME - UNITS ASH-WGHT-% *	LAB.
00671	60651-07	12/29	1	GR-A	4.2 +-1.0 E 0	1	01/15		3
****		22. 0		GR-B	6.7 +-0.4 E 0		01/15		3
				RA-226	2.1 +-0.2 E 0	-	01/21		4
				RA-228	3.5 +-0.4 E 0		01/21		4
00672	60651-08	12/29	•	GR-A	2.2 +-0.7 E 0	1	01/15		3
		••-		GR-B	4.5 +-0.4 E 0		01/15		3
				RA-226	1.1 +-0.1 E 0	0	01/21		4
				RA-228	1.3 +-0.1 E 0	10	01/21		4
00673	60651-09	12/30)	GR-A	2.0 +-0.7 E 0	1	01/15		3
555.5				GR-8	2.6 +-0.3 E 0	1	01/15		3
				RA-226	1.6 +-0.2 E 0	10	01/21		4
	•			RA-228	1.7 +-0.2 E 0	10	01/21		4
00674	60651-10	12/30	, = =	GR=A	-3.6-+-0.9-E-0	1	01/15		3
200.,	00421 14			GR-B	7.5 +-0.5 E 0		01/15		3
	•			RA-226	1.1 +-0.1 E 0		01/21		4
				RA-228	2.1 +-0.2 E 0		01/21		4
00675	60651-11	12/30	1	GR-A	3.7 +-0.9 E 0	11	01/15	٠.	3
				GR-B	7.4 +-0.5 E 0		01/15		3
				RA-226	1.5 +-0.2 E 0		01/21		4
				RA-228	2.9 +-0.3 E 0		01/21	-	4
							Or-11/1/2	U Doo	

LAST PAGE OF REPORT

APPROVED BY %. GUENTHER 01/27/93

SEND 1 COPIES TO AN133S ATTN: Q A GEPT

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB.

4 - GETLII GAMMA SPEC LAB.

5 - TRITIUM GAS/L.S. LAB. 6 - ALPHA SPEC LAB.

Chain-of-Custody Record

Program Area: Drinking Water	Wastewater Groundwater Solid and Hazardous Waste	Laboratory	Sales Office
Client: EVSc/	Sample Collector: Skve Stadelman	2324 Vernsdale Road Rock Hill, South Carolina 29731	454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730
Project: 592032	AnatytiKEM Contact: Holley	(803) 324-5310 Fax: (803) 324-8378	(803) 329-9690 Fax: (803) 329-9689

TEM NUMBER	SAMPLE DESIGNATION	DATE	TIME	MATRIX		Green .	is it		Street	Nico)		**************************************			PARAMETERS
	B5	ルング デス	1430	501/	C			2				1	3		Re 221-228, Br. Say Analyses peratoded
温を行って	57	12-29	1030	//	G			2				1	3	: !	- Lac
9	56	12-29	1215	te	G			2				1	3		
	55.	42	1300	ά	6			2				1	3		
5	58	12.19	اهيد مندا	ч	6			۵				1	3		
6	59	12:29	1445	ti	6			اد				1	3		
7.	510	12-29	1515	11	C			2				l	3		
8	54	42	164		6			2			 	- <u></u>	3		
9	514	1230	1100	ŧſ	G			2]		 	1	3		
វ្	512	12-30	1190		6			2				1	3		£

TRANSFER	ITEM NUMBER	TRANSFERS RELINQUISHED BY	TRANSFERS ACCEPTED BY	DATE	l	Rush turnarend	
1	1-10	Steve Studylma	Grady Jare	12-30	140	P.O. # 31894	
2	1-10	Grody Fara	Janet Wenter	12-30	1605		
3	1-10	Quantin	Ministra	Hules	\mathcal{U}_{8l}	Ster Spoletin	
4	}	7		1		SAMPLER'S SIGNATURE	
Reord	er: PJ Associates	803-329-2300	White Laboratory Copy	Yello	w Cilen	il Copy	AKEM #1 12/89

Reorder: PJ Associates 603-329-2300

AKEM #1 12/89

ustody Record

Client: _	a Area: Drinking '			Sa	mple C	ollecto	or:	Steve	بهرك	ade	lman	·	Ro	24 Ve ck Hü	ry msdale Road I, South Carolina 29731 4-5310	Sales Office 454 South Anderson Road BTC 532 Rock Hill, South Carolina 29730 (803) 329-9690		
Project: 592032 A				An	nalytiKEM Contact: Holley						 =	_	Fa	k: (80	3) 324-8378	Fax: (803) 329-9689		
NUMBER	SAMPLE DESIGNATIO	N DATE	TIME	MATRIX		Se se s	en vie				 kg/ 			13		PARAMETERS		
	513	12-30 92	1215	5.1/	a			2				Ì	3		Ra 226-228; Bass	oy. Analyse prothebyse		
	<u></u>																	
6																		
7 8		· ·	· · · · · · · · · · · · · · · · · ·			 												
9																		
10			<u> </u>	<u> </u>	<u> </u>							!						
TRANSFER NUMBER	ITEM NUMBER		TRANSFERS RELINQUISHED BY			ACCEPTED BY					TIME		Kush turnarowd. P.U. # 31894					
1	/	Agn Sto	Egn Stolelman			Grady are				92	1911	þ	,	94				
2		Frade	Frady Long			Janet Winles				12.0		-	/	<i>' '</i>				
3	1	Janet 1	Janet Winles			Mulus				14/14	illor		1					
4	;	7										SA	SAMPLER'S SIGNATURE					

White Laboratory Copy

Yellow Client Copy

AnalytiKEM Inc. 454 S. Anderson Road, BTC 532 Rock Hill, SC 29730 803/329-9690 Fax: 803/324-3982

TEST REPORT NO. A83007, Supplemental

January 12, 1993

Prepared for:

ENSCI 1108 Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

The Radiological analyses were subcontracted to Teledyne Isotopes. Note: Please see the attached copy of their report.

> Reviewed & Approved by:

Carmine M. Fioriglio

Title: <u>QA/QC Manager</u>

REPORT OF ANALYSIS 8 JANUARY 1993

TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 01/07/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

PATTI DE ANDINO ANALYTIKEM INC 2324 VERNSDALE ROAD ROCK HILL SC 3-5322

12/10/92

01/13/93

SDIL

TELEDYNE SAMPLE NUMBER	CUSTOMER'S IDENT[FICATION	STA MUM	COLLECTION-DA START S DATE TIME DATE	TOP		TRUCO-CIM BAIT X-TIRU-L BAIT BTAC * A\U	VOLUME - UNITS ASH-WGHT-% C LAB.
98105 8	3007-1		12/04	GR-A GR-B RA-226 RA-228	1.5 +-0.6 E 01 6.3 +-0.4 E 01 6.7 +-0.9 E-01 1.0 +-0.2 E 00	12/16 12/16 12/24 12/24	3 3 4 4

LAST PAGE OF REPORT

APPONUED BY 1. CHENTHED 01/07

SENO 1 COPIES TO AN133T PATTI DE ANDINO

29731

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB.

4 - GEKLII GAMMA SPEC LAB.

5 - TRITIUM GAS/L.S. LAB.

6 - ALPHA SPEC LAB.

3

AnalytiKEM Inc.

28 Springdale Road Cherry Hill, NJ 08003 609/751-1122 1-800-TRY-LAB1 Fax: 609/751-0824

TEST REPORT NO. A60646, Supplemental

 $\mathbb{R}+$

January 24, 1993

Prepared for:

ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Attention: Steven Stadelman

Project: Mannington Tile Soil (S92032)

The Radiological analyses were subcontracted to Teledyne Isotopes. Please see the attached copy of their report.

Reviewed & Approved by:

Name:

Carmine M. Floriglio

Title:

QA/QC Manager

REPORT OF ANALYSIS 20 JANUARY 1993

**TELEDYNE ISOTOPES

REPORT OF ANALYSIS

RUN DATE 01/19/93

WORK ORDER NUMBER

CUSTOMER P.O. NUMBER

DATE RECEIVED DELIVERY DATE

PAGE 1

ATTN: Q A DEPT ANALYTIKER INC 28 SPRINGDALE ROAD CHERRY HILL NJ

3-5557

12/24/92

01/27/93

S O L I O S

TELEDYNE				CTION-D					HID-COUNT		
SAMPLE NUMBER	CUSTOMER'S IDENTIFICATION	S T A Num	START DATE T	THE DAT	STOP TIME	NUCLIDE	ACTIVITY (PCI/GM DRY)	NUCL÷UNIT-% U/M ÷	TIME DATE TIME	A2K-MCH1-4 ↓ A0frwe - Anji2	LAB.
99486 60	646-1		12/16		1	GR-A	1.4 +-0.5 E 0	1	01/06		3
						GR-B	5.1 +-0.4 E 0	1	01/06		3
					1	RA-226	6.9 +-0.7 E-0	1	01/08		4
						RA-228	7.0 +-1.3 E-0	-1	01/08		4
									n / i	t	

LAST PAGE OF PEPORT

APPROVED BY J. GUENTHER 01/19/93

SENO I COPIES TO ANIBBS ATTNO Q A DEPT

08003

2 - GAS LAB. 3 - RADIO CHEMISTRY LAB.

4 - GE(LII GAMMA SPEC LAB. 5 - TRITIUM GAS/L.S. LAR. 6 - ALPHA SPEC LAR.

Appendix C

Analytical Reports for Stabilized Sludge Samples

February 18, 1993

Mr. Steve Stadelman ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Dear Mr. Stadelman:

Enclosed is the report for ten soil samples received at Enseco-Rocky Mountain Analytical Laboratory on January 6, 1993.

Included with the report is a quality control summary.

Please call if you have any questions.

Sincerely,

Nancy Voiland-Dow Project Administrator

NVD/nvd Enclosures

RMAL #027566

ANALYTICAL RESULTS

FOR

ENSCI Corporation

ENSECO-RMAL NO. 027566

FEBRUARY 18, 1993

Reviewed by:

Nancy Voiland-Dow

ENSCI Corporation Job #S92032

Einseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

I. OVERVIEW

On January 6, 1993, Enseco-Rocky Mountain Amalytical Laboratory received ten soil samples from ENSCI Corporation.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
- II. Sample Description Information/Analytical Test Requests
- III. Analytical Results
- IV. Quality Control Report

DISCUSSION

The samples for this project were originally received at the laboratory on January 6, 1993 and were logged in on RMAL project 027019. With permission from Steve Stadelman at ENSCI Corporation, these samples were relogged under RMAL project 027566 for the Radium 226 analysis only. All other requested analyses have been reported under RMAL project 027019.

A reagent blank is analyzed with all radiochemistry parameters and must be within established control limits. The results for Radium 226 are calculated by subtracting the reagent blank.

II. SAMPLE DESCRIPTION INFORMATION/ANALYTICAL TEST REQUESTS

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

りんの一個

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

"}

SAMPLE DESCRIPTION INFORMATION for ENSCI Corporation

Lab ID	Client ID	Matrix	Sampled Date Time	Received Date
Lan In	Citetic 10	Hatt I.A	Dace time	Date
027566-0001-SA	1	\$01L	02 JAN 93 09:30	
027566-0002-SA	2	SOIL	02 JAN 93 10:00	
027566-0003-SA	3	SOIL		06 JAN 93
027566-0004-\$A	10	SOIL	03 JAN 93 09:30	⊢06 JAN 93
027566-0005-SA	9	SOIL	03 JAN 93 10:00	06 JAN 93
027566-0006-SA	8	SOIL	03 JAN 93 10:30	06 JAN 93
027566-0007-SA	7	SOIL	03 JAN 93 10:45	06 JAN 93
027566-0008-SA	6	SOIL	03 JAN 93 11:00	06 JAN 93
027566-0009-SA	5	SOIL	03 JAN 93 11:15	06 JAN 93
027566-0010-SA	4	SOIL	03 JAN 93 11:45	06 JAN 93

ANALYTICAL TEST REQUESTS for ENSCI Corporation

Lab ID: 027566	Group Code	Analysis Description	Custom Test?
			
0001 - 0010	Α	Radium-226 in soil/ Radon De-emanation Prep - Radium-226 in soil/ Radon De-emanation	N N

III. ANALYTICAL RESULTS

The analytical results for this project are presented in the following data tables. Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin. The date prepared is typically the date an extraction or digestion was initiated. For volatile organic compounds in water, the date prepared is the date the screening of the sample was performed.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL does not routinely blank-correct analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.5, May, 1992.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section IV.

Client Name: ENSCI Corporation
Client ID: 1
Lab ID: 027566-0001-SA
Matrix: SOIL
Authorized: 10 FEB 93

)

Sampled: 02 JAN 93

Received: 06 JAN 93

Parameter

+/- 2 Sigma Uncertainty Result

Units

Analytical Method

Analyzed Date

Radium-226

+/-5.3E-1 4.59E+0

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 2 Lab ID: 027566-0002-SA Matrix: SOIL

Authorized:

SOIL 10 FEB 93

Sampled: 02 JAN 93

Received: 06 JAN 93

Parameter

3

+/- 2 Sigma Result Uncertainty

Analytical Method

Analyzed Date

Radium-226

3.50E+0 +/-4.8E-1

pCi/g

Units

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation
Client ID: 3
Lab ID: 027566-0003-SA
Matrix: SOIL

Authorized:

10 FEB 93

4

Sampled: 02 JAN 93

Received: 06 JAN 93

Parameter

+/- 2 Sigma Result Uncertainty

Analytical Method Units

Analyzed Date

Radium-226

+/-4.9E-14.43E+0

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 10 Lab ID: 027566-0004-SA

Matrix: SOIL Authorized: 10 FEB 93

4

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter

+/- 2 Sigma Result Uncertainty

Analytical Method Units

Analyzed Date

Radium-226

1.78E+0 +/-3.0E-1

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 9 Lab ID: 027566-0005-SA

027566-0005-SA

4

Matrix:

SOIL

Authorized: 10 FEB 93 Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter

Result

+/- 2 Sigma Uncertainty

Units

Analytical Method

Analyzed Date

Radium-226

2.87E+0 +/-3.6E-1

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 8 Lab ID: 027566-0006-SA

Matrix:

SOIL

Authorized:

10 FEB 93

1)

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter

+/- 2 Sigma Result Uncertainty

Units

Analytical Method

Analyzed Date

Radium-226

3.15E+0 +/-3.6E-1

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 7 Lab ID: 027566-0007-SA Matrix: SOIL

Authorized:

10 FEB 93

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter

+/- 2 Sigma Result Uncertainty

Analytical Method Units

Analyzed Date

Radium-226

3.30E+0 +/-4.0E-1

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 6 Lab ID: 027566-0008-SA

Matrix:

Authorized:

SOIL 10 FEB 93

"}

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter

Result

+/- 2 Sigma Uncertainty

Units

Analytical Method

Analyzed Date

Radium-226

3.70E+0

+/-4.4E-1

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 5

Lab ID: 027566-0009-SA

SOIL

Matrix: Authorized:

10 FEB 93

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter

+/- 2 Sigma Uncertainty Result

Units

Analytical Method

Analyzed Date

Radium-226

3.56E+0 +/-3.7E-1

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

Client Name: ENSCI Corporation Client ID: 4 Lab ID: 027566-0010-SA Matrix: SOIL

ď,

Authorized:

SOIL 10 FEB 93

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter

Result

+/- 2 Sigma Uncertainty

Analytical Method Units

Analyzed Date

Radium-226

3.23E+0 +/-3.6E-1

pCi/g

EPA Ra-01

12 FEB 93

Reported By: Mark Stella

IV. QUALITY CONTROL REPORT

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

The standard laboratory QC package is designed to:

- 1) establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- 2) assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench,
 - 🤼 and
- 4) provide a standard set of reportables which assures the client of the quality of his data.

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of Duplicate Control Samples (DCS) at frequent, well-defined intervals. Each DCS is a well-characterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the DCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For each batch of samples analyzed, an additional control measure is taken in the form of a Single Control Sample (SCS). The SCS consists of a control matrix that is spiked with surrogate compounds appropriate to the method being used. In cases where no surrogate is available, (e.g., metals or conventional analyses) a single DCS serves as the control sample. An SCS is prepared for each sample lot for which the DCS pair are not analyzed. The recovery of the SCS is charted in exactly the same manner as described for the DCS, and provides a daily check on the performance of the method.

Accuracy for DCS and SCS is measured by Percent Recovery.

Precision for DCS is measured by Relative Percent Difference (RPD).

$$RPD = \frac{ | Measured Concentration DCS1 - Measured Concentration DCS2 |}{(Measured Concentration DCS1 + Measured Concentration DCS2)/2} X 100$$

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

QC LOT ASSIGNMENT REPORT Radiochemistry

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
027566-0001-SA	SOLID	RA226-S	05 FEB 93-9A	_
027566-0002-SA	SOLID	RA226-S	05 FEB 93-9A	_
027566-0003-SA	SOLID	RA226-\$	05 FEB 93-9A	_
027566-0004-SA	SOLID	RA226-S	05 FEB 93-9A	-
027566-0005-SA	SOLID	RA226-\$	05 FEB 93-9A	_
027566-0006-SA	SOLID	RA226-S	05 FEB 93-9A	_
027566-0007 - SA	SOLID	RA226-S	05 FEB 93-9A	_
02 7566- 0008-SA	SOLID	RA226-\$	05 FEB 93-9A	_
027566-0009-SA	SOLID	RA226-S	05 FEB 93-9A	_
027566-0010-SA	SOLID	RA226-S	05 FEB 93-9A	-

4

RADIOCHEMISTRY QUALITY CONTROL REPORT

Parameter: Radium 226

QC Lot# 05-Feb-93 -9A

Units: pCi/g Matrix: SOIL

DUPLICATE CONTROL SAMPLE REPORT

SAMPLE	Activity +/- 2s	units	Spike Activity +/- 2 s	units
DCS1 DCS2	4.9E+02 +/- 2E 4.7E+02 +/- 2E	, -	5.00E+02 +/- 6E+ 5.00E+02 +/- 6E+	01 pCi/g

Duplicate Control Sample # 1				Duplicate Control Sample # 2			Duplicate Control Sample Statistics		
		Spike	Accuracy		Spike	Ассигасу	Accuracy	DCS Precision (RPE))
Analyte	Activity +/- 2 sigma	Activity	(%)	Activity +/- 2 sigma	Activity	(%)	Meon % Limits	RPD Limits	
Radium 226	4.9E+02 +/- 2E+01 pCVg	5.0E+02 pCi/g	98%	4.7E+02 +/- 2E+01 pCi		95%	97% 70-130	4% 20%	7

Chain-of-Custody Record

Cllen	am Area: Drinking 1: $ENSC$ act: $S9203$					Hazardous sclor:		Stad Rugie 1c Son	() m a : 11 !C!!		ock 188, 103) 324	nsdalo Road South Carolina 29731	Sales Office 454 South Anderson Road BTC: Rock 188, South Carolina 2973 (803) 329-9690 Fax; (803) 329-9689
TEM	SAMPLE DESIGNATIO	DATE	TIME	XINTAM	List Ge	3 20 13 4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5		(14 / 14 / 14 / 14 / 14 / 14 / 14 / 14	(10 m)	\$ 15 / E	100 m		PARAMETERS
1	/		0930							12		ANALYXIS P.	RATABLE SMULLE
2 2	2	1-2.93	1000							12		۵.	SHEET
3	3	13-93	/e3u		_	2				14			
4	# 10)-j -j _j	0130										
5	9	1797	1000			_ _ 4	<u>'</u>				.		
6	8	1-3 1)	7076							1			
7	7	ر ۶ - و - ا	10-15			<u> </u> 2				_/_	.†		
8	6	7-3-91	100				4	. <u> </u>		/	 		
9	5	V-3·¥3	1115		_		_ _			/			
10	4	1-3-91	1145			1 4	/			/	<u> </u>		
TAAMSPER	ITEM NUMBER		NSFENS			TRANSFERS ACCEPTED D		DATE		ПЕМАВН	PO	. # 3/90	4
1	1-10	Stan	1h	blec	7	1-17-		1 7 3	1600		Puc	Laruana	d on metals
2				1	Munit		267)2	1-693	Olin	} '			,
3			·			<u>'`'U'</u>	10'				1/2	In Strele	tre
4] 					SÁMPLÉ	n's sid	NATUNÉ	
Πe	Order: PJ Associatos 80	33-329-2300	_ · · · ·			While Labe	INTOIN CORY	Yello	w Cller	d Copy			AKEM #1 1

February 11, 1993

Mr. Steve Stadelman ENSCI Corporation 1108 Old Thomasville Road High Point, NC 27260

Dear Mr. Stadelman:

Enclosed is the report for ten soil samples received at Enseco-Rocky Mountain Analytical Laboratory on January 6, 1993.

Included with the report is a quality control summary.

Please call if you have any questions.

Sincerely,

Nancy Voiland-Dow Project Administrator

NVD/nvd Enclosures

RMAL #027019

ANALYTICAL RESULTS

FOR

ENSCI Corporation ENSECO-RMAL NO. 027019

FEBRUARY 11, 1993

Reviewed by:

1

Nancy Voiland-Dow

ENSCI Corporation Job #S92032

Hoseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002 303/421-6611 Fax: 303/431-7171

OVERVIEW

On January 6, 1993, Enseco-Rocky Mountain Analytical Laboratory received ten soil samples from ENSCI Corporation.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- I. Overview
- II. Sample Description Information/Analytical Test Requests
- III. Analytical Results
- IV. Quality Control Report

DISCUSSION

The percent recovery of one or more acid surrogates was outside the Enseco advisory acceptance criteria for the Method 8270 analysis of RMAL samples 027019-0001 through -0010. These sample surrogate recoveries suggest a matrix interference. As discussed with Steve Stadelman and Henry Havener of ENSCI Corporation on January 15, 1993, these samples were not repreped and the original sample data were reported.

A matrix spike was performed for the TCLP-Praseodymium (141) analysis of RMAL sample 027019-0005.

As discussed with Steve Stadelman on February 10, 1993, the Radium 226 analyses of RMAL samples 027019-0001 through -0010 were cancelled. These samples were relogged under RMAL project 027566. The Radium 226 analytical data will be reported under this new project.

Samples within this project have been analyzed for TCLP as in 40 CFR Part 261, Appendix II, and corrected in the Federal Register, November 24, 1992 (57 FR 55114.) TCLP leachates are prepared using Method 1311 and analyzed using Methods 6010, 7470, and 7740 for metals, 8240 for volatiles,

8270 for semivolatiles, 8080 for pesticides, and 8150 for herbicides. Every effort was made to achieve reporting limits below the regulated limit on each sample. However, as with all environmental analyses, matrix interferences or target compounds may be present in some samples which limit the effectiveness of the analytical method to achieve these limits.

The final TCLP rule of November 24, 1992, contains a requirement that a matrix spike be analyzed for each analytical batch; however, bias correction using the matrix spike recoveries, is not required by the US EPA. In accordance with this rule, all data reported have not been corrected for bias. The results from the QC sample analyses (surrogates, lab controls and matrix spikes) are contained in the report, should these data be of interest in adjusting reported values. As stated in Method 1311, use of alternate methods may be needed when the recovery of the matrix spike is below the expected analytical performance.

Ţ

II. SAMPLE DESCRIPTION INFORMATION/ANALYTICAL TEST REQUESTS

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

*

SAMPLE DESCRIPTION INFORMATION for ENSCI Corporation

			Sampled	Received
Lab ID	Client ID	Matrix	Date Time	Date
027019-0001-SA 027019-0002-SA 027019-0003-SA 027019-0004-SA 027019-0005-SA 027019-0006-SA 027019-0007-SA 027019-0008-SA 027019-0009-SA 027019-0010-SA	1 2 3 10 9 9 8 7 6 5 4	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	03 JAN 93 09:30 03 JAN 93 10:00 03 JAN 93 10:00 03 JAN 93 10:30 03 JAN 93 10:40 03 JAN 93 11:00 03 JAN 93 11:10	0 06 JAN 93 0 06 JAN 93 0 06 JAN 93 0 06 JAN 93 0 06 JAN 93

")

ANALYTICAL TEST REQUESTS for ENSCI Corporation

Lab ID:	Group	Analysis Description	Custom
027019	Code		Test?
0001 - 0010	A	Digestion for Metals from a TCLP leachate TCLP Extraction / Extractable Organics & Metals Volatile Organics Target Compound List (TCL) GC Screen For Low Level Soils TCL Semivolatile Organics Prep - Semivolatile Organics by GC/MS Sulfate, Ion Chromatography Deionized Water Leach Bromide by IC Gross Alpha/Beta-Gas Proportional Counter Prep- Gross Alpha/Beta-Gas Proportional Counter Radium-226 in soil/ Radon De-emanation Prep - Radium-226 in soil/ Radon De-emanation Radium-228 in soil/ Gamma Spec Prep - Radium-228 in soil/ Gamma Spec Metals, ICP/MS-Bromine ICP/MS DI Leach ICP/MS Metals (TCLP Leachate)- Praseodymium (141)	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

4

III, ANALYTICAL RESULTS

The state of the s

The analytical results for this project are presented in the following data tables. Each data table includes sample identification information, and when available and appropriate, dates sampled, received, authorized, prepared and analyzed. The authorization data is the date when the project was defined by the client such that laboratory work could begin. The date prepared is typically the date an extraction or digestion was initiated. For volatile organic compounds in water, the date prepared is the date the screening of the sample was performed.

Data sheets contain a listing of the parameters measured in each test, the analytical results and the Enseco reporting limit. Reporting limits are adjusted to reflect dilution of the sample, when appropriate. Solid and waste samples are reported on an "as received" basis, i.e. no correction is made for moisture content.

Enseco-RMAL does not routinely blank-correct analytical data. Uncorrected analytical results are reported, along with associated blank results, for all organic and metals analyses. Analytical results and blank results are reported for conventional inorganic parameters as specified in the method. This policy is described in detail in the Enseco Incorporated Quality Assurance Program Plan for Environmental Chemical Monitoring, Revision 3.5, May, 1992.

In addition, surrogate recovery data is presented for all GC/MS analyses. The surrogate recovery is an indication of the affect of the sample matrix on the performance of the method. The results from the Standard Enseco QA/QC Program, which generates data which are independent of matrix effects, is given in Section IV.

The analytical data reported are subject to the following limitations of the analytical methodology:

GC/MS

Volatile Organics

a) The cis- and trans-isomers of 1,2-dichloroethene cannot be distinguished using EPA Method 624 or 8240. All dichloroethene present is reported as 1,2-dichloroethene (total).

Semivolatile Organics

- a) Benzo(b) and benzo(k) fluoranthene cannot be differentiated based on their mass spectra; retention times are almost identical. The isomer which is the closest in retention time to the sample is reported.
- b) 1,2-diphenylhydrazine is measured as azobenzene.
- c) Diphenylamine cannot be distinguished from N-nitrosodiphenylamine.
- d) 3-Methyl phenol and 4-methyl phenol cannot be differentiated based on their mass spectra and retention times are almost identical. Results are reported as 3/4-methyl phenol (or m&p-cresols).
- e) Several Appendix IX and Refinery List compounds are not consistently recovered using Method 8270, and reporting limits cannot be established. These compounds include: dimethoate, famphur, hexachlorophene, 4-nitroquinoline-1-oxide, 4-phenylenedianine, and benzenethiol.
- f) Two Refinery List compounds, pyridine and quinoline, are not recovered after alumina column cleanup.

Client Name: ENSCI Corporation Client ID: 1 Lab ID: 027019-0001-SA Matrix: SOIL

Authorized:

SOIL 06 JAN 93 Sampled: 02 JAN 93 Prepared: 08 JAN 93 Received: 06 JAN 93 Analyzed: 12 JAN 93

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane	60 ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 10 10 5.0 5.0 5.0 10 5.0
1,1-Dichloroethene 1,2-Dichloroethene (total)	ND ND	ug/kg ug/kg	5.0 5.0
1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 10 5.0
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 5.0 10
Surrogate	Recovery		
Toluene-d8 4-Bromofluorobenzene	99 95	% %	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Client Name: ENSCI Corporation Client ID: 1 Lab ID: 027019-0001-SA Matrix: SOIL

Authorized:

SOIL 06 JAN 93

Sampled: 02 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 12 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

99

%

ND = Not detected . NA = Not applicable

Reported By: Debbie Coyle

4

Client Name: ENSCI Corporation Client ID: 2 Lab ID: 027019-0002-SA Matrix: SOIL 027019-0002-SA SOIL 06 JAN 93 Sampled: 02 JAN 93 Prepared: 08 JAN 93 Received: 06 JAN 93 Analyzed: 12 JAN 93 Authorized:

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane	99 ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 10 10 5.0 5.0 10 5.0 5.0 5.0
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0 5.0
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 10 10
Surrogate	Recovery		
Toluene-d8 4-Bromofluorobenzene	100 102	% %	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Client Name: ENSCI Corporation Client ID: 2

Lab ID:

027019-0002-SA

Matrix:

SOIL

Authorized:

06 JAN 93

Sampled: 02 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 12 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

99

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

4

Client Name: ENSCI Corporation Client ID: 3 Lab ID: 027019-0003-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 02 JAN 93 Received: 06 JAN 93 Prepared: 08 JAN 93 Analyzed: 12 JAN 93

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane	92 ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 10 10 5.0 10 5.0 10 5.0 5.0 5.0
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 10 10
Surrogate	Recovery		
Toluene-d8 4-Bromofluorobenzene	93 102	% %	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Client Name: ENSCI Corporation
Client ID: 3
Lab ID: 027019-0003-SA
Matrix: SOIL

06 JAN 93 Authorized:

Sampled: 02 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 12 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

92

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

n

Client Name: ENSCI Corporation Client ID: 10 Lab ID: 027019-0004-SA Matrix: SOIL SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 08 JAN 93 Received: 06 JAN 93 Analyzed: 12 JAN 93 Authorized:

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane	110 ND ND ND ND 12 ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 10 10 5.0 5.0 5.0 10 5.0 5.0
1,1-Dichloroethene 1,2-Dichloroethene	ND	ug/kg	5.0
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0 10
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 10 10
Surrogate	Recovery		
Toluene-d8 4-Bromofluorobenzene	103 101	% %	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Client Name: ENSCI Corporation
Client ID: 10
Lab ID: 027019-0004-SA
Matrix: SOIL

06 JAN 93 Authorized:

Sampled: 03 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 12 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

100

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

4

Client Name: ENSCI Corporation Client ID: 9

027019-0005-SA

Lab ID: Matrix: Authorized: SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 08 JAN 93 Received: 06 JAN 93 Analyzed: 12 JAN 93

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane	96 ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 10 5.0 5.0 5.0 10
Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentañone	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0 10
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 5.0 10
Surrogate	Recovery		
Toluene-d8 4-Bromofluorobenzene	100 100	% %	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle Approved By: Shawn Kassner

Client Name: ENSCI Corporation Client ID: 9
Lab ID: 027019-0005-SA

Matrix:

Authorized:

\$01L 06 JAN 93

Sampled: 03 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 12 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

99

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

4

Client Name: ENSCI Corporation

Client ID: Lab ID: Matrix: Authorized: 027019-0006-SA SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 08 JAN 93 Received: 06 JAN 93 Analyzed: 12 JAN 93

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone	190	ug/kg	10
Benzene	ND	ug/kg	5.0
Bromodichloromethane	ND	ug/kg	5.0
Bromoform	ND	ug/kg	_5.0
Bromomethane	ND	ug/kg	10
2-Butanone (MEK) Carbon disulfide	22 ND	ug/kg	10
Carbon disdiffde Carbon tetrachloride	ND ND	ug/kg	5.0
Chlorobenzene	ND	ug/kg	5.0 5.0
Chloroethane	ND	ug/kg ug/kg	10
Chloroform	ND	ug/kg ug/kg	5.0
Chloromethane	NĎ	ug/kg	10
Dibromochloromethane	ÖЙ	ug/kg	Ί.0
1,1-Dichloroethane	ЙĎ	ug/kg	5.0
1,2-Dichloroethane	ЙŌ	ug/kg	5.0
1,1-Dichloroethene	NĎ	ug/kg	5.0
1,2-Dichloroethene		<u>.</u>	
(total)	ND	ug/kg	5.0
1,2-Dichloropropane	ND	ug/kg	5.0
cis-1,3-Dichloropropene	ND	ug/kg	5.0
trans-1,3-Dichloropropene	ND	ug/kg	5.0
Ethylbenzene 2-Hexanone	ND ND	ug/kg	5.0
Methylene chloride	ND	ug/kg	10 5.0
4-Methyl-2-pentanone	טא	ug/kg	5.0
(MIBK)	ND	ug/kg	10
Styrene	ND	ug/kg	5.0
1,1,2,2-Tetrachloroethane	ND	ug/kg ug/kg	5.0
Tetrachloroethene	ЙĎ	ug/kg	5.0
Toluene	ЙĎ	ug/kg	5.0
1,I,1-Trichloroethane	ND	ug/kg	5.0
1,1,2-Trichloroethane	ND	uğ/kğ	5.0
Trichloroethene	ND	ug/kg	5.0
Vinyl acetate	ИD	ug/kg	10
Vinyl chloride	ЙĎ	ug/kg	10
Xylenes (total)	ND	ug/kg	5.0
Surrogate	Recovery		
Toluene-d8	102	0/	
4-Bromofluorobenzene	103 101	% %	
A. DI OMOT I doi opelivelle	TOI	/0	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Approved By: Shawn Kassner

Client Name: ENSCI Corporation Client ID: 8 Lab ID: 027019-0006-SA

Matrix: Authorized:

SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 12 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

98

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

ij

Client Name: ENSCI Corporation

027019-0007-SA

Client ID: Lab ID: Matrix: Authorized:

SOIL 06 JAN 93

Sampled: 03 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 13 JAN 93

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone	83	ug/kg	10
Benzene Bromodichloromethane	ND	ug/kg	5.0
Bromoform	ND ND	ug/kg ug/kg	5.0 5.0
Bromomethane	ND	ug/kg	10
2-Butanone (MEK)	ND	ug/kg	ĩŏ
Carbon disulfide	ND	ug/kg	5.0
Carbon tetrachloride	ND	ug/kg	5.0
Chlorobenzene Chloroethane	ND	ug/kg	15.0
Chloroform	ND ND	ug/kg ug/kg	10 5.0
Chloromethane	ND	ug/kg	10
Dibromochloromethane	ЙĎ	ug/kg	Ί.0
1,1-Dichloroethane	ИD	ug/kg	5.0
1,2-Dichloroethane	ND	ug/kg	5.0
1,1-Dichloroethene	ND	ug/kg	5.0
1,2-Dichloroethene (total)	ND	ug/kg	5.0
1,2-Dichloropropane	ND	ug/kg	5.0
cis-1,3-Dichloropropene	ЙĎ	ug/kg	5.0
trans-1,3-Dichloropropene	ND	ug/kg	5.0
Ethylbenzene	ЙĎ	ug/kg	5.0
2-Hexanone	ИD	ug/kg	10
Methylene chlonide 4-Methyl-2-pentanone	ИD	ug/kg	5.0
(MIBK)	ND	ug/kg	10
Styrene	ЙĎ	ug/kg	Ť.0
1,1,2,2-Tetrachloroethane	ND	ug/kg	5.0
Tétrachloroethene	ЙĎ	ug/kg	5.0
Toluene 1,1,1-Trichloroethane	ND ND	ug/kg	5.0
1,1,2-Trichloroethane	DND DN	ug/kg ug/kg	5.0 5.0
Trichloroethene	ЙĎ	ug/kg ug/kg	5.0
Vinyl acetate	ΝĎ	ug/kg	10
Vinyl chloride	ИD	ug/kg	10
Xylenes (total)	ND	ug/kg	5.0
Surrogate	Recovery		
Toluene-d8	101	%	
4-Bromofluorobenzene	iŏô	%	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Client Name: ENSCI Corporation Client ID: 7

Lab ID:

027019-0007-SA

Matrix: Authorized:

SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 13 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

99

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

4

Client Name: ENSCI Corporation

6 027019-0008-SA

Client ID: Lab ID: Matrix: SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 08 JAN 93 Received: 06 JAN 93 Analyzed: 13 JAN 93 Authorized:

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene	48 ND ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 10 10 5.0 10 5.0 10 5.0 10 5.0 5.0 5.0
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	NO NO NO NO NO NO NO NO NO	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 5.0 10 10
Surrogate Toluene-d8	Recovery	. %	
4-Bromofluorobenzene	93 105	% %	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Client Name: ENSCI Corporation
Client ID: 6
Lab ID: 027019-0008-SA

SOIL Matrix: 06 JAN 93 Authorized:

Sampled: 03 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 13 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

93

. %

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

4

Client Name: ENSCI Corporation Client ID: 5 Lab ID: 027019-0009-SA Matrix: SOIL SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 08 JAN 93 Received: 06 JAN 93 Analyzed: 13 JAN 93 Authorized:

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane	100 ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 10 10 5.0 5.0 10 5.0 5.0 5.0
1,1-Dichloroethene 1,2-Dichloroethene	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0 5.0
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 5.0 10
Surrogate	Recovery		
Toluene-d8 4-Bromofluorobenzene	99 102	% %	
/ A 2	6-33		

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle Approved By: Shawn Kassner

Client Name: ENSCI Corporation Client ID: 5 Lab ID: 027019-0009-SA

Matrix: Authorized:

SOIL 06 JAN 93

Received: 06 JAN 93 Analyzed: 13 JAN 93

Sampled: 03 JAN 93 Prepared: 08 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

101

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

15

Client Name: ENSCI Corporation Client ID: 4 Lab ID: 027019-0010-SA

Sampled: 03 JAN 93 Received: 06 JAN 93 Prepared: 08 JAN 93 Analyzed: 13 JAN 93 Matrix: SOIL 06 JAN 93 Authorized:

Parameter	Result	Wet wt. Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene	160 ND ND ND 16 ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 10 5.0 5.0 10 5.0 5.0 5.0
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	5.0 5.0 5.0 5.0 5.0 10
(MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	10 5.0 5.0 5.0 5.0 5.0 5.0 10
Surrogate	Recovery	1	
Toluene-d8 4-Bromofluorobenzene	98 103	% %	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

Client Name: ENSCI Corporation
Client ID: 4
Lab ID: 027019-0010-SA
Matrix: SOIL

Authorized:

SOIL 06 JAN 93

Sampled: 03 JAN 93 Prepared: 08 JAN 93

Received: 06 JAN 93 Analyzed: 13 JAN 93

Surrogate

Recovery

1,2-Dichloroethane-d4

97

%

ND = Not detected NA = Not applicable

Reported By: Debbie Coyle

12

Method 8270

Client Name: ENSCI Corporation Client ID: 1 Lab ID: 027019-0001-SA

Matrix:

SOIL 06 JAN 93 Sampled: 02 JAN 93 Prepared: 12 JAN 93 Authorized:

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	ND	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
methane 2,4-Dichlorophenol 1,2,4-Trichlorophenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600 330 1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 1 Lab ID: 027019-0001-SA Matrix: SOIL

Sampled: 02 JAN 93 Prepared: 12 JAN 93 SOIL 06 JAN 93 Authorized:

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 660 330 330 330 330
Surrogate	Recovery	1	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-dl4 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	76 74 84 22 ND 14	% % % % % %	
ND = Not detected NA = Not applicable			
Reported By: Philip Tallarico	Approved	By: Richa	ırd Murphy

Method 8270

Client Name: ENSCI Corporation Client ID: 2

2 027019-0002-SA Lab ID: Matrix: Sampled: 02 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93 SOIL Authorized: 06 JAN 93

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	ND	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
methane 2,4-Dichlorophenol 1,2,4-Trichloropenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol	ND ND ND ND ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600 330 1600 160
Dibenzofuran	ЙĎ	ug/kg	330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 2__

Reported By: Philip Tallarico

Lab ID: Matrix:

2 027019-0002-SA

Authorized:

SOIL 06 JAN 93

Sampled: 02 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 330 330 330 330 330
Surrogate	Recovery		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol ND = Not detected	80 75 64 42 ND 32	% % % %	
NA = Not applicable	 		

Method 8270

Client Name: ENSCI Corporation Client ID: 3 Lab ID: 027019-0003-SA Matrix: SOIL Authorized: 06 JAN 93

3 027019-0003-SA SOIL 06 JAN 93

Sampled: 02 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	ND	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600
Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 1600 330 1600 1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 3

3 027019-0003-SA

Lab ID: Matrix: Sampled: 02 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93 SOIL Authorized: 06 JAN 93

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a) anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene Benzo(g,h,i) perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 330 330 330 330 330
Surrogate	Recovery		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol ND = Not detected NA = Not applicable	76 75 66 41 ND 43	9/0 9/0 9/0 9/0 9/0 9/0 9/0	

Reported By: Philip Tallarico

Method 8270

Matrix: SOIL

Authorized: 06 JAN 93 Sampled: 03 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	ND	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
methane 2,4-Dichlorophenol 1,2,4-Trichlorophenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600 330 1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation

Reported By: Philip Tallarico

Client ID: 10

i . . . i

Lab ID:

027019-0004-SA Matrix: SOIL

Sampled: 03 JAN 93 Prepared: 12 JAN 93 06 JAN 93 Authorized:

Received: 06 JAN 93 Analyzed: 14 JAN 93

Reporting Parameter Result Units Limit ND 2,4-Dinitrotoluene ug/kg 330 2,6-Dinitrotoluene Diethyl phthalate ug/kg ug/kg ND 330 ND 330 4-Chlorophenyl ug/kg ug/kg phenyl ether ND 330 330 Fluorene ND 4-Nitroaniline ND ug/kg 1600 4,6-Dinitro-2-methylphenol ND ug/kg 1600 N-Nitrosodiphenylamine ND ug/kg 330 4-Bromophenyl phenyl ether ND ug/kg 330 Hexachlorobenzene ND ug/kg 330 Pentachlorophenol ND ug/kg 1600 Phenanthrene ND ug/kg 330 Anthracene ND ug/kg 330 330 330 Di-n-butyl phthalate ND ug/kg Fluoranthene ND uğ/kğ Pyrene ND 330 ug/kġ Butyl benzyl phthalate ND ug/kg 330 3,3'-Dichlorobenzidine ND ug/kg 660 Benzo(a)anthracene bis(2-Ethylhexyl) ND ug/kg 330 phthalate 🦡 ND ug/kg 330 Chrysene ND ug/kg 330 Di-n-octyl phthalate ND ug/kg 330 Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ND 330 ND 330 330 ИD 330 ND ND 330 Benzo(g,h,i)perylene 330 ND Surrogate Recovery %%%%%%% Nitrobenzene-d5 86 2-Fluorobiphenyl 82 Terphenyl-d14 70 Phenol-d5 47 2-Fluorophenol ND 2,4,6-Tribromophenol 31 ND = Not detected NA = Not applicable

Method 8270

Client Name: ENSCI Corporation
Client ID: 9
Lab ID: 027019-0005-SA
Matrix: SOIL Sampled: 03 JAN 93 Prepared: 12 JAN 93 SOIL 06 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93 Authorized:

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	МĎ	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	NN X X X X X X X X X X X X X X X X X X	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600 330 1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation
Client ID: 9
Lab ID: 027019-0005-SA
Matrix: SOIL

027019-0005-SA SOIL 06 JAN 93

Authorized:

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Sampled: 03 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 330 330 330 330 330
Surrogate	Recovery		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	65 68 64 51 ND 40	% % % % %	

Method 8270

Client Name: ENSCI Corporation
Client ID: 8
Lab ID: 027019-0006-SA
Matrix: SOIL

SOIL 06 JAN 93 Authorized:

Sampled: 03 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Phenol ND	Parameter	Result	Units	Reporting Limit
Chlorophenol		ND	ug/kg	330
1,4-Dichlorobenzene	ether			
1,4-Dichlorobenzene				
Bénzyl alcohol ND ug/kg 330 1,2-Dichlorobenzene ND ug/kg 330 2-Methylphenol ND ug/kg 330 bis(2-Chloroisopropyl) ether ND ug/kg 330 4-Methylphenol ND ug/kg 330 N-Nitroso-di- n-propylamine ND ug/kg 330 N-Nitrobenzene ND ug/kg 330 Hexachloroethane ND ug/kg 330 Isophorone ND ug/kg 330 Ly-4-Tothoroh ND <td></td> <td></td> <td>ug/kg</td> <td></td>			ug/kg	
1,2-Dichlorobenzene			ug/kg	
2-Methylphenol ND			ug/kg	
bis(2-Chloroisopropyl) ether ether ND ug/kg 330 N-Methylphenol ND ug/kg 330 N-Nitroso-di- n-propylamine ND ug/kg 330 Hexachloroethane ND ug/kg 330 Isophorone ND ug/kg 330 Isophorone ND ug/kg 330 Z-Nitrophenol ND ug/kg 330 Z-Nitrophenol ND ug/kg 330 Z-N-Dimethylphenol ND ug/kg 330 Z-A-Dimethylphenol ND ug/kg 330 Z-A-Dinthorophenol ND ug/kg 330 Z-A-Dichlorophenol ND ug/kg 330 Z-A-Dichlorophenol ND ug/kg 330 Z-A-Trichlorophenol ND ug/kg 330 X-Chloroaniline ND ug/kg 330 X-Chloroaniline ND ug/kg 330 X-Chloro-3-methylphenol ND ug/kg 330 X-Chloro-3-methylphenol ND ug/kg 330 X-Chloro-3-methylphenol ND ug/kg 330 X-Chlorophenol ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Chloronaphthalene ND ug/kg 330 X-Nitroaniline ND ug/kg 330 X-Nitroaniline ND ug/kg 330 X-Chlorophenol ND ug/kg 330				
ether ND ug/kg 330 4-Methylphenol ND ug/kg 330 N-Nitroso-di- n-propylamine ND ug/kg 330 Hexachloroethane ND ug/kg 330 Nitrobenzene ND ug/kg 330 Isophorone ND ug/kg 330 2-Nitrophenol ND ug/kg 330 2-Nitrophenol ND ug/kg 330 2-A-Dimethylphenol ND ug/kg 330 Benzoic acid ND ug/kg 330 Benzoic acid ND ug/kg 330 Benzoic acid ND ug/kg 330 bis(2-Chloroethoxy) methane ND ug/kg 330 2,4-Dichlorophenol ND ug/kg 330 1,2,4-Trichlorophenol ND ug/kg 330 Naphthalene ND ug/kg 330 4-Chloroaniline ND ug/kg 330 4-Chloroaniline<		110	ug/ kg	550
A-Methylphenol ND		ND	ua/ka	330
N-Nitroso-di- n-propylamine				
Hexachloroethane	N-Nitroso-di-		J. J	
Nitrobenzene ND ug/kg 330 Isophorone ND ug/kg 330 2-Nitrophenol ND ug/kg 330 2,4-Dimethylphenol ND ug/kg 330 Benzoic acid ND ug/kg 1600 bis(2-Chloroethoxy) methane ND ug/kg 330 2,4-Dichlorophenol ND ug/kg 330 1,2,4-Trichlorobenzene ND ug/kg 330 Naphthalene ND ug/kg 330 4-Chloroaniline ND ug/kg 330 Hexachlorobutadiene ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 330 2,-Nitroaniline ND ug/kg 330			ug/kg	
Isophorone				
2-Nitrophenol ND				
2,4-Dimethylphenol ND ug/kg 330 Benzoic acid ND ug/kg 1600 bis(2-Chloroethoxy) methane ND ug/kg 330 2,4-Dichlorophenol ND ug/kg 330 1,2,4-Trichlorobenzene ND ug/kg 330 Naphthalene ND ug/kg 330 4-Chloroaniline ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 330 2,-Nitroaniline ND ug/kg 330 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 330 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitropheno				
Benzoic acid ND				
bis(2-Chloroethoxy) methane ND ug/kg 330 2,4-Dichlorophenol ND ug/kg 330 1,2,4-Trichlorobenzene ND ug/kg 330 Naphthalene ND ug/kg 330 A-Chloroaniline ND ug/kg 330 Hexachlorobutadiene ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-4,6-Trichlorophenol ND ug/kg 330 2-4,5-Trichlorophenol ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 2-Nitroaniline ND ug/kg 330 3-Nitroaniline ND ug/kg 330 <	Ponzoic acid			
methane ND ug/kg 330 2,4-Dichlorophenol ND ug/kg 330 1,2,4-Trichlorobenzene ND ug/kg 330 Naphthalene ND ug/kg 330 4-Chloroaniline ND ug/kg 330 Hexachlorobutadiene ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 Hexachlorocyclopentadiene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 1600 2-Nitroaniline ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 1600 Acenaphthene </td <td></td> <td>ЦŲ</td> <td>ug/ky</td> <td>1000</td>		ЦŲ	ug/ky	1000
2,4-Dichlorophenol ND ug/kg 330 1,2,4-Trichlorobenzene ND ug/kg 330 Naphthalene ND ug/kg 330 4-Chloroaniline ND ug/kg 330 Hexachlorobutadiene ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND <td>methane</td> <td>ND</td> <td>ug/ka</td> <td>330</td>	methane	ND	ug/ka	330
1,2,4-Trichlorobenzene ND ug/kg 330 Naphthalene ND ug/kg 330 4-Chloroaniline ND ug/kg 330 Hexachlorobutadiene ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 1600 Acenaphthene ND ug/kg 1600 A-Nitrophenol ND ug/kg 1600			ua/ka	
Naphthalene ND ug/kg 330 4-Chloroaniline ND ug/kg 330 Hexachlorobutadiene ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 Hexachlorocyclopentadiene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600			ug/kg	
4-Chloroaniline ND ug/kg 330 Hexachlorobutadiene ND ug/kg 330 4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 2-A-Trichlorophenol ND ug/kg 1600 2-A-Trichlorophenol ND ug/kg 1600 2-Chloronaphthalene ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600				
4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 Hexachlorocyclopentadiene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 1600 2,4,5-Trichlorophenol ND ug/kg 1600 2-Chloronaphthalene ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	4-Chloroaniline	ND ·		330
4-Chloro-3-methylphenol ND ug/kg 330 2-Methylnaphthalene ND ug/kg 330 Hexachlorocyclopentadiene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 1600 2,4,5-Trichlorophenol ND ug/kg 1600 2-Chloronaphthalene ND ug/kg 1600 2-Nitroaniline ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	Hexachlorobutadiene	ND		330
Hexachlorocyclopentadiene ND ug/kg 330 2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 1600 2-Chloronaphthalene ND ug/kg 330 2-Nitroaniline ND ug/kg 1600 Dimethyl phthalate ND ug/kg 330 Acenaphthylene ND ug/kg 1600 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	4-Chloro-3-methylphenol			
2,4,6-Trichlorophenol ND ug/kg 330 2,4,5-Trichlorophenol ND ug/kg 1600 2-Chloronaphthalene ND ug/kg 330 2-Nitroaniline ND ug/kg 1600 Dimethyl phthalate ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	2-Methylnaphthalene		ug/kg	
2,4,5-Trichlorophenol ND ug/kg 1600 2-Chloronaphthalene ND ug/kg 330 2-Nitroaniline ND ug/kg 1600 Dimethyl phthalate ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	Hexachlorocyclopentadiene		ug/kg	
2-Chloronaphthalene ND ug/kg 330 2-Nitroaniline ND ug/kg 1600 Dimethyl phthalate ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	2,4,6-irichlorophenoi			
2-Nitroaniline ND ug/kg 1600 Dimethyl phthalate ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	2,4,5-irichiorophenoi			
Dimethyl phthalate ND ug/kg 330 Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	2-Unioronaphichaiene 2-Nitroaniline			
Acenaphthylene ND ug/kg 330 3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600				
3-Nitroaniline ND ug/kg 1600 Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	Acenaphthylene		ug/kg ua/ka	
Acenaphthene ND ug/kg 330 2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600	3-Nitroaniline			
2,4-Dinitrophenol ND ug/kg 1600 4-Nitrophenol ND ug/kg 1600			ug/kg	330
			ug/kg	
Dibenzoturan ND ug/kg 330				
	Dibenzoturan	ND	ug/kg	330

(continued on following:page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 8 Lab ID: 027019-0006-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 03 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate * Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 330 330 330 330 330
Surrogate	Recovery		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol ND = Not detected	82 78 68 44 ND 24	% % % %	
NO = NOT Gerecred	•		

NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 7 Lab ID: 027019-0007-SA Matrix: SOIL Matrix: SOIL Authorized: 06 JAN 93 Sampled: 03 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	DM	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600
Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg	330 1600 1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 7 Lab ID: 027019-0007-SA Matrix: SOIL Sampled: 03 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93 06 JAN 93 Authorized:

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
4-Chlorophenyl phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(x)fluoranthene Benzo(x)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 330 330 330 330 330
Surrogate	Recovery		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol ND = Not detected	77 76 61 32 ND 16	% % % % %	

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 6 Lab ID: 027019-0008-SA Matrix: SOIL

Matrix: SOIL Authorized: 06 JAN 93 Sampled: 03 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	ND	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
bis(2-Chloroethoxy) methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	ND ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600 330 1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 6 Lab ID: 027019-0008-SA Matrix: SOIL Authorized: 06 JAN 93 Sampled: 03 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ON	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 330 330 330 330 330
Surrogate	Recovery	•	
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	74 70 65 36 ND 32	% % % %	

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 5 Lab ID: 027019-0009-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 03 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	ND	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran	NO NO NO NO NO NO NO NO NO NO NO NO NO N	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600 330 1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 5 Lab ID: 027019-0009-SA Matrix: SOIL SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93 Authorized:

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate * Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(g,h,i)perylene	ND NDD NDD NDD NDD NDD NDD NDD NDD NDD	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 330 330
Surrogate	Recovery		
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol ND = Not detected NA = Not applicable	75 70 63 34 ND 20	% % % %	

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 4 Lab ID: 027019-0010-SA Matrix: SOIL SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: 12 JAN 93 Received: 06 JAN 93 Analyzed: 14 JAN 93 Authorized:

Parameter	Result	Units	Reporting Limit
Phenol bis(2-Chloroethyl)	ND	ug/kg	330
ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330
ether 4-Methylphenol N-Nitroso-di-	ND ND	ug/kg ug/kg	330 330
n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 1600
methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 330 330 330 330 330 330 1600 330 1600 330 1600
4-Nitrophenol Dibenzofuran	ND ND	ug/kg ug/kg	1600 330

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

Method 8270

Client Name: ENSCI Corporation Client ID: 4

027019-0010-SA

Lab ID: Matrix: Authorized:

SOIL 06 JAN 93

Sampled: 03 JAN 93 Prepared: 12 JAN 93

Received: 06 JAN 93 Analyzed: 14 JAN 93

Parameter	Result	Units	Reporting Limit
2,4-Dinitrotoluene 2,6-Dinitrotoluene Diethyl phthalate 4-Chlorophenyl	ND ND ND	ug/kg ug/kg ug/kg	330 330 330
phenyl ether Fluorene 4-Nitroaniline 4,6-Dinitro-	ND ND ND	ug/kg ug/kg ug/kg	330 330 1600
2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl	ND ND	ug/kg ug/kg	1600 330
phenyl ether Hexachlorobenzene Pentachlorophenol Phenanthrene Anthracene Di-n-butyl phthalate Fluoranthene Pyrene Butyl benzyl phthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene bis(2-Ethylhexyl) phthalate Chrysene Di-n-octyl phthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene		ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	330 330 1600 330 330 330 330 330 330 330 330 330
Benzo(g,h,i)perylene Surrogate	ND Recovery	ug/kg	330
Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol 2,4,6-Tribromophenol	70 67 71 34 ND 21	% % % %	

ND = Not detected NA = Not applicable

Reported By: Philip Tallarico

ICP/MS Metals

Total Metals

Client Name: ENSCI Corporation Client ID: 1 Lab ID: 027019-0001-SA

Authorized:

Matrix:

SOIL 06 JAN 93

Sampled: 02 JAN 93 Prepared: See Below

Received: 06 JAN 93

Analyzed: See Below

Parameter

Result

Units

Reporting Analytical Limit Method

Prepared Analyzed Date Date

Bromine (81)

0.063

mg/kg

0.025

RMAL

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

Approved By: Richard Persichitte

Total Metals

Client Name: ENSCI Corporation Client ID: 2 Lab ID: 027019-0002-SA

Matrix: Authorized:

SOIL

06 JAN 93

Sampled: 02 JAN 93 Prepared: See Below Received: 06 JAN 93 Analyzed: See Below

Parameter

Result

Units

Reporting Limit

Analytical Method

Prepared Analyzed Date

Date

Bromine (81)

0.11

mg/kg

0.025

RMAL

12 JAN 93 12 JAN 93

4

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

Total Metals

Client Name: ENSCI Corporation Client ID: 3

Lab ID:

027019-0003-SA

Matrix: Authorized:

SOIL 06 JAN 93 Sampled: 02 JAN 93 Prepared: See Below

Received: 06 JAN 93

Analyzed: See Below

Units

Reporting Limit

Analytical Method

Prepared Analyzed Date

Date

Parameter

Bromine (81)

Result

0.098

mg/kg

0.025

RMAL

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

•

Total Metals

Client Name: ENSCI Corporation Client ID: 10 Lab ID: 027019-0004-SA

Matrix:

SOIL

Received: 06 JAN 93

Authorized:

06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Analyzed: See Below

Parameter

Result

Units

Reporting Limit Analytical Method Prepared Analyzed Date Date

Bromine (81)

0.10

mg/kg

0.025 RMAL

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

4

Total Metals

Client Name: ENSCI Corporation Client ID: 9

027019-0005-SA

Lab ID: Matrix:

SOIL

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Authorized:

06 JAN 93

Reporting Analytical Limit Method

Prepared Analyzed Date

Date

Parameter

Bromine (81)

Result

0.090

Units mg/kg

0.025

RMAL

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

4

Total Metals

Client Name: ENSCI Corporation Client ID: 8 Lab ID: 027019-0006-SA

Matrix:

SOIL 06 JAN 93 Authorized:

Sampled: 03 JAN 93

Prepared: See Below

Reporting

Received: 06 JAN 93

Analyzed: See Below

Parameter

Result

Units

Limit

Bromine (81)

0.10

mg/kg

0.025

RMAL

Analytical Method

12 JAN 93 12 JAN 93

Prepared Analyzed Date Date

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

η.

Total Metals

Client Name: ENSCI Corporation Client ID: 7

Lab ID:

027019-0007-SA

Matrix:

Authorized:

SOIL 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Method

Reporting Analytical

Received: 06 JAN 93 Analyzed: See Below

Date

Prepared Analyzed Date

Bromine (81)

Parameter

0.11

Result

mg/kg

Units

0.025

Limit

RMAL.

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

4

Total Metals

Client Name: ENSCI Corporation

Client ID:

027019-0008-SA

Lab ID: Matrix:

SOIL

Sampled: 03 JAN 93

Received: 06 JAN 93

Authorized:

06 JAN 93

Prepared: See Below

Analyzed: See Below

Result

Units

Reporting Limit

Analytical Method

Prepared Analyzed Date Date

Parameter Bromine (81)

0.090

mg/kg

0.025

RMAL

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

Total Metals

Client Name: ENSCI Corporation Client ID: 5 Lab ID: 027019-0009-SA

Matrix: Authorized:

SOIL 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter

Result

Units

Reporting Limit

Analytical Method

Prepared Analyzed Date Date

Bromine (81)

0.090

mg/kg

0.025

RMAL

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

'n

Total Metals

Client Name: ENSCI Corporation Client ID: 4 Lab ID: 027019-0010-SA

Matrix:

SOIL 06 JAN 93 Authorized:

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Reporting Analytical Limit Method Limit

Date

Prepared Analyzed Date Date

Parameter

Bromine (81)

Result

0.11

Units mg/kg

0.025

RMAL

12 JAN 93 12 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

"

Richard Persichitte Approved By:

TCLP Leachate

Client Name: ENSCI Corporation

Client ID:

027019-0001-SA Lab ID:

Matrix:

SOIL

Sampled: 02 JAN 93 Received: 06 JAN 93 Authorized: 06 JAN 93

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below

Parameter

Result

Units

Reporting Analytical Limit Method

Prepared Analyzed Date Date

Praseodymium (141)

ND

mg/L

0.00050 6020

12 JAN 93 14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

4

Approved By:

Richard Persichitte

TCLP Leachate

Client Name: ENSCI Corporation

Client ID: Lab ID:

2 027019-0002-SA

Matrix:

SOIL

Sampled: 02 JAN 93 | Received: 06 JAN 93 | Authorized: 06 JAN 93 |

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below

Parameter

Result

Units

Reporting Analytical Limit Method

Prepared Analyzed Date

Date

Praseodymium (141)

ND

mg/L

0.00050 6020

12 JAN 93 14 JAN 93

Ţ

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

TCLP Leachate

Client Name: ENSCI Corporation Client ID: 3

027019-0003-SA Lab ID:

Matrix: SOIL Sampled: 02 JAN 93 Received: 06 JAN 93

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below

Authorized: 06 JAN 93

Reporting Analytical Prepared Analyzed Limit Date Parameter Result Units Method Date

Praseodymium (141) ND 0.00050 6020 12 JAN 93 14 JAN 93 mg/L

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

TCLP Leachate

Result

Parameter

Client Name: ENSCI Corporation Client ID: 10 Lab ID: 027019-0004-SA Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below Sampled: 03 JAN 93 Received: 06 JAN 93 Matrix: SOIL Authorized: 06 JAN 93

Units

Reporting Analytical Limit Method Prepared Analyzed Date Date

12 JAN 93 14 JAN 93 0.00050 6020 ND mg/L Praseodymium (141)

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

٩

TCLP Leachate

Client Name: ENSCI Corporation Client ID: 9

Lab ID:

027019-0005-SA

Matrix:

Praseodymium (141)

SOIL

Sampled: 03 JAN 93 Received: 06 JAN 93

Authorized: 06 JAN 93

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below

Parameter

Result

Units

Reporting Analytical Limit Method

Prepared Analyzed Date Date

ND

mg/L

0.00050 6020

12 JAN 93 14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

4

TCLP Leachate

Client Name: ENSCI Corporation Client ID: 8 Lab ID: 027019-0006-SA

027019-0006-SA SOIL

Matrix:

Sampled: 03 JAN 93 Received: 06 JAN 93 Authorized: 06 JAN 93

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below

Parameter

Result

Units

Reporting Limit

Analytical Method

Prepared Date Analyzed Date

Praseodymium (141)

ND

mg/L

0.00050 6020

12 JAN 93 14 JAN 93

ND = Not detected NA = Not applicable

ii i

Reported By: Scott Heideman

*}

TCLP Leachate

Client Name: ENSCI Corporation Client ID: 7

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below Sampled: 03 JAN 93 Received: 06 JAN 93 Authorized: 06 JAN 93 027019-0007-SA Lab ID: Matrix: SOIL

Prepared Analyzed Reporting Analytical Limit Method Date Date Result Units Parameter

12 JAN 93 14 JAN 93 0.00050 6020 mg/L ND Praseodymium (141)

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

}

TCLP Leachate

Client Name: ENSCI Corporation Client ID: 6 Lab ID: 027019-0008-SA

Sampled: 03 JAN 93 Received: 06 JAN 93 Authorized: 06 JAN 93

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below

Matrix:

SOIL

Parameter

Result

Units

Reporting Analytical Limit Method

Prepared Analyzed Date Date

Praseodymium (141)

ИD

mg/L

0.00050 6020

12 JAN 93 14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

4

TCLP Leachate

Client Name: ENSCI Corporation

Client ID:

Sampled: 03 JAN 93 Received: 06 JAN 93 Authorized: 06 JAN 93 Leached: 12 JAN 93 027019-0009-SA Lab ID: Matrix: Prepared: See Below Analyzed: See Below SOIL

Reporting Analytical Limit Method Prepared Analyzed Date Date Units Result Parameter

12 JAN 93 14 JAN 93 0.00050 6020 mg/L ND Praseodymium (141)

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

.)

Richard Persichitte Approved By:

TCLP Leachate

Client Name: ENSCI Corporation Client ID: 4

027019-0010-SA

Sampled: 03 JAN 93 Received: 06 JAN 93 Authorized: 06 JAN 93

Leached: 12 JAN 93 Prepared: See Below Analyzed: See Below

Lab ID: Matrix:

SOIL

Prepared Analyzed Date Date

Parameter

Praseodymium (141)

Result

ND

Units

mg/L

0.00050 6020

Reporting Analytical Limit Method

12 JAN 93 14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Scott Heideman

4

Client Name: ENSCI Corporation Client ID: 1 Lab ID: 027019-0001-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 02 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Bromide	ND	mg/kg	1.0	300.0 Mod.		13 JAN 93
Sulfate	ND	mg/kg	25.0	300.0 Mod.		14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

4

Client Name: ENSCI Corporation Client ID: 2 Lab ID: 027019-0002-SA Matrix: SOIL Authorized: 06 JAN 93 Sampled: 02 JAN 93 Prepared: See Below Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Bromide	ND	mg/kg	1.0	300.0 Mod.		13 JAN 93
Sulfate	ND	mg/kg	25.0	300.0 Mod.		14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

Client Name: ENSCI Corporation Client ID: 3 Lab ID: 027019-0003-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 02 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limi t	Analytical Method	Prepared Date	Analyzed Date
Bromide	DN	mg/kg	1.0	300.0 Mod.		13 JAN 93
Sulfate	DN	mg/kg	25.0	300.0 Mod.		14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

4)

Client Name: ENSCI Corporation Client ID: 10 Lab ID: 027019-0004-SA Matrix: SOIL

Authorized:

SOIL 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Bromide	ND	mg/kg	1.0	300.0 Mod.	12 JAN 93	13 JAN 93
Sulfate	ND	mg/kg	25.0	300.0 Mod.	12 JAN 93	14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

7

Client Name: ENSCI Corporation Client ID: 9 Lab ID: 027019-0005-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Bromide	ND	mg/kg	1.0	300.0 Mod.		13 JAN 93
Sulfate	ND	mg/kg	25.0	300.0 Mod.		14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

Y

Client Name: ENSCI Corporation Client ID: 8

027019-0006-SA

Lab ID: Matrix: Authorized:

SOIL 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared A Date	nalyzed Date
Bromide	ND	mg/kg	1.0	300.0 Mod.	12 JAN 93 1	
Sulfate	ND	mg/kg	25.0	300.0 Mod.	12 JAN 93 1	

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

١,

A Corning Company

General Inorganics

Client Name: ENSCI Corporation

Client ID:

027019-0007-SA

Lab ID: Matrix:

SOIL

Received: 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below 06 JAN 93 Authorized: Analyzed: See Below Analytical Method Reporting Prepared Analyzed Parameter Result Units Limit Date Date

mg/kg mg/kg 300.0 Mod. 300.0 Mod. 12 JAN 93 13 JAN 93 12 JAN 93 14 JAN 93 Bromide ND 1.0 ND Sulfate 25.0

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

1

Client Name: ENSCI Corporation Client ID: 6 Lab ID: 027019-0008-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Bromide	ND	mg/kg	1.0	300.0 Mod.	12 JAN 93	13 JAN 93
Sulfate	ND	mg/kg	25.0	300.0 Mod.	12 JAN 93	14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

ń

Client Name: ENSCI Corporation Client ID: 5 Lab ID: 027019-0009-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 03 JAN 93 Prepared: See Below

Received: 06 JAN 93 Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Bromide	ND	mg/kg	1.0	300.0 Mod.	12 JAN 93	13 JAN 93
Sulfate	ND	mg/kg	25.0	300.0 Mod.	12 JAN 93	14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

4

Client Name: ENSCI Corporation

Client ID: 4 Lab ID: 027

027019-0010-SA

Matrix: Authorized: SOIL 06 JAN 93 Sampled: 03 JAN 93 Prepared: See Below Received: 06 JAN 93 Analyzed: See Below

Reporting Analytical Prepared Analyzed
Parameter Result Units Limit Method Date Date

Bromide ND mg/kg 1.0 300.0 Mod. 12 JAN 93 13 JAN 93 Sulfate ND mg/kg 25.0 300.0 Mod. 12 JAN 93 14 JAN 93

ND = Not detected NA = Not applicable

Reported By: Kirsten Meier

7

Client Name: ENSCI Corporation
Client ID: 1
Lab ID: 027019-0001-SA
Matrix: SOIL

SÖIL 06 JAN 93 Authorized:

Sampled: 02 JAN 93

Received: 06 JAN 93

		. / O Sigma		Annlutianl	Analyzad
Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta Radium-228(Actinium	5E+01 3E+01	+/- 2E+01 +/- 3E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
-228)	6.8E-1	+/-1.3E-1	pCi/g	GAMMA SPEC	18 JAN 93

Reported By: Brett Allison

Client Name: ENSCI Corporation
Client ID: 2
Lab ID: 027019-0002-SA
Matrix: SOIL Client ID: 2 Lab ID: 027019-0002-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 02 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	5E+01 4E+01	+/- 2E+01 +/- 2E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	8.2E-1	+/-1.2E-1	pCi/g	GAMMA SPEC	18 JAN 93

Reported By: Brett Allison

Client Name: ENSCI Corporation Client ID: 3 Lab ID: 027019-0003-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 02 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	5E+01 3E+01	+/- 2E+01 +/- 2E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	8.3E-1	+/-1.0E-1	pCi/g	GAMMA SPEC	18 JAN 93

Reported By: Brett Allison

Client Name: ENSCI Corporation Client ID: 10 Lab ID: 027019-0004-SA Matrix: SOIL Authorized: 06 JAN 93

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	5E+01 3E+01	+/- 2E+01 +/- 3E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	1.19E+0	+/-1.7E-1	pCi/g	GAMMA SPEC	18 JAN 93

Reported By: Brett Allison

Sampled: 03 JAN 93

Client Name: ENSCI Corporation Client ID: 9 Lab ID: 027019-0005-SA Matrix: SOIL Authorized: 06 JAN 93

"]

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta Radium-228(Actinium -228)	6E+01 4E+01	+/- 2E+01 +/- 2E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
	1.15E+0	+/ - 1.0E-1	pCi/g	GAMMA SPEC	18 JAN 93

Reported By: Brett Allison

Client Name: ENSCI Corporation Client ID: 8 Lab ID: 027019-0006-SA Matrix: SOIL Authorized: 06 JAN 93

4

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	7E+01 4E+01	+/- 2E+01 +/- 2E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	1.22E+0	+/-1.6E-1	pCi/g	GAMMA SPEC	18 JAN 93

Reported By: Brett Allison

Client Name: ENSCI Corporation
Client ID: 7
Lab ID: 027019-0007-SA
Matrix: SOIL

027019-0007-SA SOIL 06 JAN 93

Authorized:

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	4E+01 3E+01	+/- 2E+01 +/- 2E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	1.02E+0	+/-1.2E-1	pCi/g	GAMMA SPEC	18 JAN 93

Reported By: Brett Allison

Radiochemistry

Client Name: ENSCI Corporation Client ID: 6 Lab ID: 027019-0008-SA Matrix: SOIL Authorized: 06 JAN 93

6 027019-0008-SA SOIL 06 JAN 93

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	4E+01 3E+01	+/- 2E+01 +/- 3E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	9.2E-1	+/-1.1E-1	pCi/g	GAMMA SPEC	19 JAN 93

Reported By: Brett Allison

Approved By: Robert Shannon

Radiochemistry

Client Name: ENSCI Corporation Client ID: 5 Lab ID: 027019-0009-SA Matrix: SOIL Authorized: 06 JAN 93

"

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	4E+01 3E+01	+/- 2E+01 +/- 3E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	9.1E-1	+/-1.0E-1	pCi/g	GAMMA SPEC	19 JAN 93

Reported By: Brett Allison

Approved By: Robert Shannon

Radiochemistry

Client Name: ENSCI Corporation Client ID: 4 Lab ID: 027019-0010-SA Matrix: SOIL Authorized: 06 JAN 93

ď,

Sampled: 03 JAN 93

Received: 06 JAN 93

Parameter	Result	+/- 2 Sigma Uncertainty	Units	Analytical Method	Analyzed Date
Gross Alpha Gross Beta	3E+01 6E+01	+/- 2E+01 +/- 3E+01	pCi/g pCi/g	DIRECT COUNT DIRECT COUNT	12 JAN 93 12 JAN 93
Radium-228(Actinium -228)	8.4E-1	+/-1.0E-1	pCi/g	GAMMA SPEC	19 JAN 93

Reported By: Brett Allison

Approved By: Robert Shannon

IV. QUALITY CONTROL REPORT

The Enseco laboratories operate under a vigorous QA/QC program designed to ensure the generation of scientifically valid, legally defensible data by monitoring every aspect of laboratory operations. Routine QA/QC procedures include the use of approved methodologies, independent verification of analytical standards, use of duplicate Laboratory Control Samples to assess the precision and accuracy of the methodology on a routine basis, and a rigorous system of data review.

In addition, the Enseco laboratories maintain a comprehensive set of certifications from both state and federal governmental agencies which require frequent analyses of blind audit samples. Enseco - Rocky Mountain Analytical Laboratory is certified by the EPA under the EPA/CLP program for both Organic and Inorganic analyses, under the USATHAMA (U.S. Army) program, by the Army Corps of Engineers, and the states of Colorado, New Jersey, New York, Utah, and Florida, among others.

The standard laboratory QC package is designed to:

- establish a strong, cost-effective QC program that ensures the generation of scientifically valid, legally defensible data
- 2) assess the laboratory's performance of the analytical method using control limits generated with a well-defined matrix
- 3) establish clear-cut guidelines for acceptability of analytical data so that QC decisions can be made immediately at the bench, and
- 4) provide a standard set of reportables which assures the client of the quality of his data.

The Enseco QC program is based upon monitoring the precision and accuracy of an analytical method by analyzing a set of Duplicate Control Samples (DCS) at frequent, well-defined intervals. Each DCS is a well-characterized matrix which is spiked with target compounds at 5-100 times the reporting limit, depending upon the methodology being monitored. The purpose of the DCS is not to duplicate the sample matrix, but rather to provide an interference-free, homogeneous matrix from which to gather data to establish control limits. These limits are used to determine whether data generated by the laboratory on any given day is in control.

Control limits for accuracy (percent recovery) are based on the average, historical percent recovery +/- 3 standard deviation units. Control limits for precision (relative percent difference) range from 0 (identical duplicate DCS results) to the average, historical relative percent difference + 3 standard deviation units. These control limits are fairly narrow based on the consistency of the matrix being monitored and are updated on a quarterly basis.

For each batch of samples analyzed, an additional control measure is taken in the form of a Single Control Sample (SCS). The SCS consists of a control matrix that is spiked with surrogate compounds appropriate to the method being used. In cases where no surrogate is available, (e.g., metals or conventional analyses) a single DCS serves as the control sample. An SCS is prepared for each sample lot for which the DCS pair are not analyzed. The recovery of the SCS is charted in exactly the same manner as described for the DCS, and provides a daily check on the performance of the method.

Accuracy for DCS and SCS is measured by Percent Recovery.

Precision for DCS is measured by Relative Percent Difference (RPD).

All samples analyzed concurrently by the same test are assigned the same QC lot number. Projects which contain numerous samples, analyzed over several days, may have multiple QC lot numbers associated with each test. The QC information which follows includes a listing of the QC lot numbers associated with each of the samples reported, DCS and SCS (where applicable) recoveries from the QC lots associated with the samples, and control limits for these lots. The QC data is reported by test code, in the order that the tests are reported in the analytical results section of this report.

4

OC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
027019-0001-SA 027019-0002-SA 027019-0003-SA 027019-0004-SA 027019-0005-SA 027019-0006-SA 027019-0008-SA 027019-0009-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	8240-SL 8240-SL 8240-SL 8240-SL 8240-SL 8240-SL 8240-SL 8240-SL 8240-SL	11 JAN 93-D 11 JAN 93-D 11 JAN 93-D 11 JAN 93-D 11 JAN 93-D 11 JAN 93-D 11 JAN 93-D 11 JAN 93-D 11 JAN 93-D	12 JAN 93-D 12 JAN 93-D 12 JAN 93-D 12 JAN 93-D 12 JAN 93-D 12 JAN 93-D 12 JAN 93-D 12 JAN 93-D 12 JAN 93-D
027019-0010-SA	SOIL	8240-SL	11 JAN 93-D	12 JAN 93-D

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

+ 55

Analyte	Conc Spiked	entration DCS1	Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li	1
Category: 8240-SL Matrix: SOIL QC Lot: 11 JAN 93-D Concentration Units: ug/kg								
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	50 50 50 50 50	39.9 44.9 43.9 44.8 43.5	39.3 45.1 44.2 46.2 45.1	39.6 45.0 44.0 45.5 44.3	79 90 88 91 89	75-121 75-108 81-118 83-115 81-115	1.5 0.4 0.7 3.1 3.6	18 11 15 14 14

Calculations are performed before rounding to avoid round-off errors in calculated results.

"}

METHOD BLANK REPORT Volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 8240CPL-TCL-S Matrix: SOIL QC Lot: 11 JAN 93-D QC Ru	n: 12 JAN 93-D		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride		ug/kkgggggggggggggggggggggggggggggggggg	10 5.00 10 5.00 10 5.00 5.00 5.00 5.00 5
Vinyl chloride Xylenes (total)	ND ND	ug/kg ug/kg	10 5.0

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC/MS

027019-0001-SA	2 JAN 93-8A
027019-0003-SA SOIL 8270-S 12 JAN 93-8A 12 JAN 93-8A	2 JAN 93-8A 2 JAN 93-8A 2 JAN 93-8A 2 JAN 93-8A 2 JAN 93-8A 2 JAN 93-8A 2 JAN 93-8A 2 JAN 93-8A 2 JAN 93-8A

4

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC/MS

		entratio				uracy	Preci	
Analyte	Spiked	DCS1	Measured DCS2	AVG	DCS	age(%) Limits	(RPD) DCS L	
Category: 8270-S Matrix: SOIL QC Lot: 12 JAN 93-8A Concentration Units: ug/kg								
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-	6670 6670 3330	4970 5080 2510	5840 5860 2860	5400 5470 2680	81 82 81	40-116 42-114 52-108	16 14 13	20 14 16
n-propylamine 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	3330 3330 6670 3330 6670 3330 6670 3330	2280 2520 5000 2680 6090 2580 5230 3020	2590 2950 5880 3040 6800 2810 6440 3360	2440 2740 5440 2860 6440 2700 5840 3190	73 82 82 86 97 81 87 96	55-108 54-102 49-121 60-103 33-120 61-106 21-139 51-126	13 16 16 13 11 8.5 21	15 16 19 17 24 15 31

Calculations are performed before rounding to avoid round-off errors in calculated results.

QC LOT ASSIGNMENT REPORT Inorganic-CLP

'}

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
	QC Matrix SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID	QC Category ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S ICPMSGLP-S ICPMSMI-AT ICPMSGLP-S	(DCS) 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A 12 JAN 93-9A	
027019-0009-SA 027019-0010-SA	AQUÉOUS SÓLID	ICPMSMI-AT ICPMSGLP⊣S	12 JAN 93-9M 12 JAN 93-9A	12 JAN 93-9M 12 JAN 93-9A
027019-0010-SA	AQUEOUS	ICPMSMI-AT	12 JAN 93-9M	12 JAN 93-9M

DUPLICATE CONTROL SAMPLE REPORT Inorganic-CLP

Analyte		ncentratio				uracy	Precis	
Analyte	Spiked	DC\$1	Measured DCS2	AVG	DCS	age(%) Limits	(RPD) DCS L	
Category: ICPMSGLP-S Matrix: SOLID QC Lot: 12 JAN 93-9A Concentration Units: mg/kg								
Bromine (81)	2.5	2.4	2.3	2.4	94	85-115	2.4	20
Category: ICPMSMI-AT Matrix: AQUEOUS QC Lot: 12 JAN 93-9M Concentration Units: mg/L								
Arsenic Barium Cadmium Chromium Copper Lead Nickel Selenium Silver Zinc Praseodymium (141)	0.0474 2.04 0.498 0.510 0.519 0.50 0.497 0.0526 0.498 3.32 0.10	NA NA NA NA O.493 NA NA NA NA	NA NA NA NA NA O.488 NA NA NA NA NA	NC NC NC NC NC 0.491 NC NC NC NC	NC NC NC NC NC NC NC NC NC	75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125 75-125	NC NC NC NC O.9 NC NC NC NC NC	20 20 20 20 20 20 20 20 20 20

ND = Not detected NC = Not calculated, calculation not applicable NA = Not applicable

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Inorganic-CLP

Analyte	Result	Units	Reporting Limit
Test: ICPMS-BR-GLP-S Matrix: SOIL QC Lot: 12 JAN 93-9A QC Run: Bromine (81)	12 JAN 93-9A ND	mg/kg	0.025
Test: ICPMS-MICH-TCLP-L Matrix: SOIL QC Lot: 12 JAN 93-9M QC Run: Praseodymium (141)	12 JAN 93-9M ND	mg/L	0.00050
Test: ICPMS-MICH-TCLP-L Matrix: SOIL QC Lot: 12 JAN 93-9M QC Run: Praseodymium (141)	12 JAN 93-9M ND	mg/L	0.00050

MATRIX SPECIFIC QC ASSIGNMENT REPORT Inorganic-CLP

QC SAMPLE TYPE

TEST

LABORATORY SAMPLE NUMBER QC Lot

MATRIX SPIKE

ICPMS-MICH-TCLP-L

027019-0005-MS

12 JAN 93-9M

4

MATRIX SPIKE REPORT Inorganic-CLP

Concentration
Matrix Amount %
Analyte Sample Spike Spiked Rec

Test: ICPMS-MICH-TCLP-L

Matrix SOIL

Sample: 027019-0005

Units: mg/L

: •

Praseodymium (141) ND 0.096 0.10 96

ND = Not detected NC = Not calculated, calculation not applicable

All calculations are performed before rounding to avoid round-off errors in calculated results.

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

4

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
027019-0001-SA 027019-0001-SA 027019-0002-SA 027019-0003-SA 027019-0003-SA 027019-0004-SA 027019-0004-SA 027019-0005-SA 027019-0005-SA 027019-0006-SA 027019-0007-SA 027019-0007-SA 027019-0008-SA 027019-0008-SA 027019-0009-SA 027019-0009-SA 027019-0010-SA	SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS SOLID AQUEOUS	S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A S04-IC-S BR-IC-A	14 JAN 93-9A 13 JAN 93-9A 14 JAN 93-9A 13 JAN 93-9A 14 JAN 93-9A 13 JAN 93-9A 14 JAN 93-9A 13 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A 14 JAN 93-9A	11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A 11 JAN 93-9A
0E1013-0010-3M	Vágroo2	DIV- IO-N	13 JAN 93-9A	11 JAN 93-9A

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

Analyte	Conce Spiked	entration DCS1	Measured DCS2	AVG	Acci Avera DCS	uracy age(%) Limits	Precis (RPD) DCS Li	
Category: SO4-IC-S Matrix: SOLID QC Lot: 14 JAN 93-9A Concentration Units: mg/kg Sulfate	100	98.9	98.8	98.8	99	75-125	0.1	15
Category: BR-IC-A Matrix: AQUEOUS QC Lot: 13 JAN 93-9A Concentration Units: mg/L Bromide	10	9.94	9.96	9.95	100	90-110	0.1	20
Calculations are performed befo	ore rounding	to avoi	d round-of	f error	s in c	alculate	d resul	ts.

4

METHOD BLANK REPORT Wet Chemistry Analysis and Preparation

)

Analyte	Result	Units	Reporting Limit
Test: SO4-IC-S Matrix: SOIL QC Lot: 14 JAN 93-9A QC Run: Sulfate	11 JAN 93-9A ND	mg/kg	25.0
Test: BR-IC-S Matrix: SOIL QC Lot: 13 JAN 93-9A QC Run: Bromide	11 JAN 93-9A ND	mg/kg	1.0

QC LOT ASSIGNMENT REPORT Radiochemistry

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
027019-0001-SA	SOLID	GAB-S	12 JAN 93-9A	
027019-0001-SA	SOLID	RA228-S	18 JAN 93-9A	_
027019-0002-SA	\$OLID	GAB-S	12 JAN 93-9A	_
027019-0002-SA	SOLID	RA228-S	18 JAN 93-9A	-
027019-0003-SA	SOLID	GAB-S	12 JAN 93-9A	_
027019-0003-SA	SOLID	RA228-S	18 JAN 93-9A	_
027019-0004-SA	SOLID	GAB-S	12 JAN 93-9A	_
027019-0004-SA	SOLID	RA228-S	18 JAN 93-9A	
027019-0005-SA	SOLID	GAB-S	12 JAN 93-9A	_
027019-0005-SA	SOLID	RA228-S	18 JAN 93-9A	_
027019-0006-SA	SOLID	GAB-S	12 JAN 93-9A	_
027019-0006-SA	SOLID	RA228-S	18 JAN 93-9A	-
027019-0007-SA	SOLID	GAB-\$	12 JAN 93-9A	_
027019-0007-SA	SOLID	RA228-S	18 JAN 93-9A	_
027019-0008-SA	SOLID	GAB-S	12 JAN 93-9A	_
027019-0008-SA	SOLID	RA228-S	19 JAN 93-9A	-
027019-0009-SA	SOLID	GAB-S	12 JAN 93-9A	ш.
027019-0009-SA	SOLID	RA228-S	18 JAN 93-9A	-
027019-0010-SA	SOLID	GAB-S	12 JAN 93-9A	_
027019-0010-\$A	SOLID	RA228-\$	18 JAN 93-9A	-

Radiochemistry Quality Control Report

Parameter: Gross Alpha and Beta QC Lot # 12-Jan-93 -9A

Matrix: SOIL

Control Sample Report

	Observed			
Test	Activity +/-	2s units	Spike Activity +/- 2s	บทits

Am-241	144 +/-	3 pCi / std	135 +/-	4 pCi / std
Sr-90	86 +/-	2 pCi / std	92 +/-	3 pCi / std

Control Sample Statistics

	Accuracy	
Test	Mean %	Limits
Gross Alpha	106%	70% - 130%
Gross Beta	93%	70% - 130%

RADIOCHEMISTRY QUALITY CONTROL REPORT FOR GAMMA SPECTRAL ANALYSIS

Analyst: BA

Units: Bq

Standard: Analytics

SRNS # 43563-288

DUPLICATE COUNT REPORT

QC LOT#

18-Jan-93 -9A

COUNT DATA

STANDARD DATA

		C			1173.24 keV		SRNS # 435	63-288		
		E COUNT DATE S		Activity +/- 2		Centroid	∆ keV	Activity	+/- 2σ	Bq
Count 1	Cobalt 60	18-Jan-93	07:44	1.66E+03 +/-	6E+01 Bq		-0.12 keV		03 +/- 7E+0	
Count 2	Cobalt 60	18-Jan-93	16:27	1.62E+03 +/-	4E+01 Bq	1173.20	-0.04 keV	1.63E+	03 +/- 7E+0	1 Bq

A	CCURACY	MEAN ACCURACY	REL. % DIFFERENCE		
Count 1	101.8%	100.6%	2.4%		
Count 2	99.4%				

RADIOCHEMISTRY QUALITY CONTROL REPORT FOR GAMMA SPECTRAL ANALYSIS

Analyst: BA

Units: Bq

Standard: Analytics

SRNS # 43563-288

DUPLICATE COUNT REPORT

QC LOT#

19-Jan-93 -9A

COUNT DATA

STANDARD DATA

		C	COUNT			1173.24 keV		SRNS # 4356	3-288	
	RADIONUCLIDE CO	•		Activity +/- 2		Centroid	ΔkeV	Activity	+/- 2 σ	Bq
Count 1	Cobalt 60	19-Jan-93	09:12	1.63E+03 +/-	4E+01 Bq		0.19 keV	1.63E+0		
Count 2	Cobalt 60	19-Jan-93	15:41	1.59E+03 +/-	4E+01 Bq	1173.57	0.33 keV	1.63E+0	3 +/- 7E+0	l Bq

A	CCURACY	MEAN ACCURACY	REL. % DIFFERENCE	
Count 1	100.4%	99.1%	2.5%	
Count 2	97.9%			

Chain-of-Custody Record

6/0	Clien	t:	rea: Drinking = N S C 5920	/	Wastewa	ater G				ous Waste Steve Greg Jon		tade usse Son	e)ma, 11 'ell		Rock Hi (803) 32	ernsdate Road It, South Carolina 29731	Sales Office 454 South Anderson Road BTC 5 Rock Hill, South Carolina 29730 (803) 329-9690 Fax: (803) 329-9689	
2	ITEM		SAMPLE DESIGNATIO)N	DATE	TIME	MATRIX	/s	STO STORY AND STORY OF THE STOR	\$ 18 60 King							PARAMETERS	
)(1		<i>i</i>		1-293		501			3				12		9240,8270, M. ANALYSES PE	RATACIO GrENA FA SHEET	ر د. د
ე2	2	2		·	1-2-93	1000				3				1 6	2		SHEET	
13	3	3			12-93	1				2				1 4	1			
ÞĊ	4	110	10		ŧ i	0930				4				1				
ÍS	5	2	7		1-3 92	1600				4				1				
مان	6	8			1393	1076				4				7				
23	7_	.7			1-3-73	1045			-	4				1			7	
K	8	6			1-3 93	1100				4				/				
79	9	5			1-3-93	1115				4				7	-			
10	10	4		· · · · · ·	1-3-93	1145				4				7				
	TRANSFER		ITEM NUMBER		TRAN RELINQI	SFERS UISHED	Вү		THANS:				TIME	REMAR	P. I). # 3/90	4	
	1		1-10	h	tu /	Bi	1he	1.				7)	1600		Rus	1 turnarm	d on metuls	
	2							humi		nuron 7	7.	1-633	09:62			En Strele		
	4								<u>-</u>				 	SAMPL	ER'S SI	GNATURE		
	Rec	order: F	PJ Associates B	03-329-230			· l		White	Laboratory C	———— Юру	Yello	w Clien	t Copy		 	AKEM #1 13	2:8

ASSOCIATES
10919 SAGEWIND DRIVE • HOUSTON, TEXAS 77089 • TELEPHONE (713) 896-5031

January 22, 1993

Mr. Steve Stadelman

ENSCI Corporation
1108 Old Thomasville Road

High Point, North Carolina 27260

Dear Mr. Stadelman:

Following are the results of the soil samples submitted to our laboratory for analyses on January 19, 1993:

P.O. #: 31965

SAMPLE I.D.	#1 1/18/93 08:45	#2 1/18/93 09:00	#3 1/18/93 09:15
LAB NO.	G-2476	G-2477	G-2478
TCLP INORGANICS (Leachate)			
Arsenic, mg/l Barium, mg/l Boron, mg/l Cadmium, mg/l Chromium, mg/l Cobalt, mg/l Lead, mg/l Manganese, mg/l Mercury, mg/l Nickel, mg/l Praseodymium, mg/l Selenium, mg/l Silver, mg/l Titanium, mg/l Vanadium, mg/l	<0.01 2.80 13.11 <0.01 0.04 <0.01 <0.01 <0.01 <0.002 <0.01 0.02 <0.01 0.02 0.01 0.02 0.01	<0.01 2.58 19.30 <0.01 <0.01 <0.01 <0.04 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 2.77 14.49 <0.01 0.01 <0.01 <0.01 <0.002 <0.01 <0.01 <0.01 <0.01 <0.01
Zinc, mg/l	0.02	0.02	0.01

Page 2

		1	
SAMPLE I.D.	#4	#5	#6
	1/18/93	1/18/93	1/18/93
	09:30	09:45	10:00
LAB NO.	G-2479	G-2480	G-2481
TCLP INORGANICS (Leachate))	· ·	
Arsenic, mg/l	<0.01	0.04	0.04
Barium, mg/l	2.28	4.92	4.68
Boron, mg/l	22.65	29.34	20.03
Cadmium, mg/l	<0.01	0.08	0.05
Chromium, mg/1	<0.01	<0.01	<0.01
Cobalt, mg/l	0.02	0.30	0.23
Lead, mg/l	<0.01	11.11	7.08
Manganese, mg/l	0.11	0.75	0.54
Mercury, mg/l	<0.002	<0.002	<0.002
Nickel, mg/l	0.01	0.04	0.04
Praseodymium, mg/l	<0.01	<0.01	<0.01
Selenium, mg/l	<0.01	<0.01	<0.01
Silver, mg/l	<0.01	<0.01	<0.01
Titanium, mg/l	<0.01	<0.01	<0.01
Vanadium, mg/l	<0.01	<0.01	<0.01
Zinc, mg/l	0.06	364.27	70.75
Zino, mg, i	0.00	304.27	70.75
SAMPLE I.D.	#7	# o	" 0
Stateda Y.D.	•	#8	#9
	1/18/93	1/18/93	1/18/93
Ph.	10:15	10:30	
LAB NO.	C-2492	C 0400	C 2404
MAD NO.	G-2482	G-2483	G-2484
TCLP INORGANICS (Leachate))		
Arsenic, mg/l	0.05	<0.01	<0.01
Barium, mg/l	2.69	2.46	3.00
Boron, mg/l	14.68	17.75	15.83
Cadmium, mg/l	<0.01	<0.01	0.01
Chromium, mg/l	<0.01	<0.01	<0.01
Cobalt, mg/l	0.25	0.03	0.07
Lead, mg/1	<0.01	<0.01	0.14
Manganese, mg/l	0.29	0.12	0.27
Mercury, mg/l	<0.002	<0.002	<0.002
Nickel, mg/l	0.01	<0.01	0.03
Praseodymium, mg/l	<0.01	<0.01	<0.01
Selenium, mg/l	<0.01	<0.01	<0.01
Silver, mg/l	<0.01	<0.01	<0.01
Titanium, mg/l	<0.01	<0.01	<0.01
Vanadium, mg/l	<0.01	<0.01	<0.01
Zinc, mg/l	0.78	0.07	4.62
/ "" -	/	. 0.07	4.07

SAMPLE I.D.	#10 1/18/93 11:00
LAB NO.	G-2485
TCLP INORGANICS (Leachate)	
Arsenic, mg/l Barium, mg/l Boron, mg/l Cadmium, mg/l Chromium, mg/l Cobalt, mg/l Lead, mg/l Manganese, mg/l Mercury, mg/l Nickel, mg/l Praseodymium, mg/l Selenium, mg/l Silver, mg/l Titanium, mg/l Vanadium, mg/l Zinc, mg/l	0.06 1.81 9.82 <0.01 0.02 0.02 <0.01 <0.01 <0.001 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

METHODS: EPA 1311/6010/7471

Please contact me if you have any questions concerning these results.

Sincerely,

Edwin B. Smith, Jr. PhD

Shipping Address:

EFENTASS.

33/9 Duchustking DR.

PENNANCY, TX. 7758/

ATT. David Burnette.

Phone (7/3)996-5031

•	•		, , , , , ,	4,137:11-25-31	
	CITATIN OF	CUSTODY RE	CORD		
Company Name & Address ENSCI Corpora 1108 old Thom High Point INC	tia masville Rd.	# of Containers		Remarks I Analysis Requ	
Sta. Date Time comp C	Grab Station / Sample Location / #		[TCLP Metals per a Hacken	1 tist (Radium)
1-18-43 0845	(3 - 2476 /	7 7			((
1-18-43 8900	G-2477 2	1 /		11	//
1-18-43 0915	6-2478 3	/_/		t	<i>(</i> 1
1-18-93 0930	G-2479 4	7 7			
1-18-93 0945	(7-2480 5			4	4
1-18-13 1000	G-2481 6	, 7		Ç!	
1-18-93 1015	6-2482 7	/ /			а
1-18-93 1030	G-24838	1.1			Et.
1-18-43	G-2484 9	/ /			
178-93 1100	G-2485 10				æ
	·				
				4	
Relinguished by:	Date: Time: Recieved 1-18-93 1600	by:	Relinquished b	y: Date:	Time:
Relinquished by:	Date: Time: Recieved	pA: *	Relinguished b	y: Date:	Time:
Relinquished by:	Date: Time: Recieved	for Laborat	ory by:	Date:	Time:
Remarks: Rush turnaround-res	cults bey end of work on	Friday 1-	18-93, P.O.	TF 31965	-
Send results to	: Stere Stadelman	0			

10919 SAGEWIND DRIVE . HOUSTON, TEXAS 77089 . TELEPHONE (713) 996-5031

January 29, 1993

Mr. Steve Stadelman ENSCI Corporation_ 1108 Old Thomasville Road High Point, North Carolina 27260

Dear Mr. Stadelman:

Following are the results of the soil samples submitted to our laboratory for analyses on January 26, 1993:

P.O. #: 31998

SAMPLE I.D.	S4R 1/23/93 09:00	S10R 1/23/93 09:00	E1 1/23/93 10:00
LAB NO.	G-2710	G-2711	G-2712
TCLP INORGANICS (Leachate	;)		
Arsenic, mg/l	<0.01	0.07	<0.01
Barium, mg/l	0.16	0.21	1.41
Boron, mg/l	1.01	0 - 41	0.95
Cadmium, mg/l	<0.01	<0.01	<0.01
Chromium, mg/l	<0.01	<0.01	<0.01
Cobalt, mg/l	<0.01	<0.01	0.07
Lead, mg/l	0.06	<0.01	<0.01
Manganese, mg/l	0.05	0.06	1.65
Mercury, mg/l	0.006	<0.002	<0.002
Nickel, mg/l	<0.01	<0.01	0.01
Praseodymium, mg/l	<0.01	<0.01	<0.01
Selenium, mg/l	0.10	0.10	0.07
Silver, mg/l	<0.01	<0.01	<0.01
Titanium, mg/l	<0.01	0.01	<0.01
Vanadium, mg/l	<0.01	<0.01	<0.01
Zinc, mg/l	1.07	0.78	5.35

Page 2

SAMPLE I.D.	E2 1/23/93 10:15	E3 1/23/93 11:30	E4 1/23/93 12:00
LAB NO.	G-2713	G-2714	G-2715
TCLP INORGANICS (Leachate)			
Arsenic, mg/l Barium, mg/l Boron, mg/l Cadmium, mg/l Chromium, mg/l Cobalt, mg/l Lead, mg/l Manganese, mg/l Mercury, mg/l Nickel, mg/l Praseodymium, mg/l Selenium, mg/l Silver, mg/l Titanium, mg/l Vanadium, mg/l Zinc, mg/l	<0.01 0.18 2.05 <0.01 <0.01 <0.01 <0.03 <0.002 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.09 0.12 2.18 <0.01 <0.01 <0.07 <0.01 0.123 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.49 5.20 <0.01 <0.01 <0.028 0.01 0.004 0.01 <0.01 <0.01 <0.01 <0.01 <0.01
SAMPLE I.D.	E5 1/23/93 12:30	6 1/23/93 13:00	5 1/23/93 13:00
LAB NO.	G-2716	G-2717	G-2718
TCLP INORGANICS (Leachate)			
Arsenic, mg/l Barium, mg/l Boron, mg/l Cadmium, mg/l Chromium, mg/l Cobalt, mg/l Lead, mg/l Manganese, mg/l Mercury, mg/l Nickel, mg/l Praseodymium, mg/l Selenium, mg/l Silver, mg/l Titanium, mg/l Vanadium, mg/l	0.01 0.29 0.83 <0.01 <0.01 <0.03 0.08 0.345 <0.01 <0.01 <0.01 <0.01	<0.01 1.92 1.24 <0.01 0.09 <0.01 0.03 <0.01 0.254 <0.01 <0.01 <0.01 <0.01	0.07 2.14 1.53 <0.01 0.10 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
<pre>vanadium, mg/1 Zinc, mg/1</pre>	<0.01 0.04	<0.01 <0.01	<0.01 <0.01

Page 3

METHODS: EPA 1311/6010/7471

Please contact me if you have any questions concerning these results.

sincerely,

Edwin B. Smith, Jr. PhD

Shipping Address:

EFEGY-135.

3319 Dudustring DR

PENGARD, TX. 27581

ATT. David Burnette

Phone (713) 996-5031

CHAIN OF CUSTODY RECORD

							CHAIN OF		V I	KE	CORD						-
Company Name & Address ENSCI Corporation 1108 61d Thomasville Red High Point, NC 27260			# of Conta- iners	/		}/	//	//	//		emarks (sis Requ						
Sta.	Date	Time	comp	Grab	Stat Loca	ion tion	/ Sample		 	[]\$	11	/.	/	./	1.0		
	1-28-93	0900		2	ĺ		54R	7	7	Τ		6	5	<u> 11</u> 0	TCLP mets	1 per no	thought short
	1-23-53		· · · · · · · · · · · · · · · · · · ·	×			5102	1	7			_ -	+ -		6-27	1	
	123-53			×			ε !			\mathbb{Z}					6-27	12	
	1-23-13	1015		×			EZ			7					6.2		
	1-23-93	//3°		×			E3								5-2	714	
	V-23-93	1200		×			E4								(5.3	า/5	
	1-23-93	1230		×			ES			1		_ _	_ _	_	<u> </u>	طال	
	1-23-42	1300	F				. 6	·	_			_ _	_ _		Gia	רור	
	1-23-93	1300		<u> </u>	•			·	_		_		4_	<u> </u>	G-6	3718	
<u> </u>	<u> </u>			· 	· · · · · · · · · · · · · · · · · · ·		• • ····									 	
<u> </u>	 							<u> </u>			_	_ _		_			
							, 						_	-	·		
											_	_ _	_ _	-	·		
			-		· · · · · ·									1.,	<u> </u>		
Reling		del	ac_		ite: 1		Recieved	by:			Kel⊥	nqu	115	hec	l by:	Date:	Time:
Reling	ulshed	by:		Da	te: 1	'ime:	Recieved	Бу:	,	-	Reli	nqu	iis	hed	by:	Uate:	Tume:
Relinq	ulshed	by:	· • • • • • • • • • • • • • • • • • • •	Oa	te: 1	'ime:	Recieved	for La	bo	rat	огу	by:				Date:	Time:
Remark:	s: /	ush.	farn	avour	nd.	Seni	d results	40	5	te	10	Sto	scl	e/r	man. P.C	, # 3	1998

Appendix D

Geo Composite Layer Certification

March 1, 1993

H. Havener
ENSCI Corporation
1108 Old Thomasville Rd.
High Point, NC 27260

Re: Certification for Mannington Ceramic Tile, Project #20650

Dear H. Havener:

We herein certify that the Claymax 500SP rolls shipped under Shippers number(s) 617 meet(s) or exceed(s) the minimum or maximum values outlined below with a 95% confidence level.

The certification is based on quality control testing performed by the Clem Corporation on the specific manufactured Lot from which the delivered material was produced. Bentonite property testing was conducted on bentonite removed from the finished product. All quality control testing was performed in strict accordance with the Clem Corporation Quality Management Manual.

PROPERTY/METHOD	SPECIFICATION	TYPICAL VALUES
Hydraulic conductivity/ ASTM 5084 modified	5 X 10(-9) cm/sec @ 2 psi eff. stress	2.0 X 10 (-9) cm/sec @ 2 psi
Hydraulic conductivity on overlapped seams ASTM 5084	5 X 10(-9) cm/sec @ 2 psi eff. stress	3.0 X 10 (-9) cm/sec 0 2 psi
Bentonite Free Swell/ USP NF XVII	30 ml min.	35-40 ml
Bentonite Fluid Loss/ API 13A	15 ml max.	10-13 ml
Bentonite pH/ ASTM D4972	8.5-10.5	9.0 - 9.5
Bentonite unit weight reported @ 20% M.C.	0.95 psf min.	1.02 psf
Roll width	13.5 feet min.	13.6 feet
Roll length	per project requirements	100 feet
Sincerely,		

Thomas N. Dobras, P.E.

Technical Manager, James Clem Corporation

N

January 28, 1993

H. Havener ENSCI Corporation 1108 Old Thomasville Rd. High Point, NC 27260

Re: Certification for Mannington Ceramic Tile, project #20650

Dear Mr. Havener:

We herein certify that the Claymax 200R rolls shipped under Shippers πumber(s) 571 meet or exceed the minimum or maximum values outlined below with a 95% confidence level.

The certification is based on quality control testing performed by the Clem Corporation on the specific manufactured Lot from which the delivered material was produced. Bentonite property testing was conducted on bentonite removed from the finished product. All quality control testing was performed in strict accordance with the Clem Corporation Quality Management Manual.

PROPERTY/METHOD	SPECIFICATION	TYPICAL VALUES
Hydraulic conductivity/ ASTM 5084 modified	5 X 10(-9) cm/sec @ 2 psi eff. stress	2.0 X 10 (-9) cm/sec @ 2 psi
Hydraulic conductivity on overlapped seams ASTM 5084	5 X 10(-9) cm/sec @ 2 psi eff. stress	3.0 X 10 (-9) cm/sec @ 2 psi
Bentonite Free Swell/ USP NF XVII	27 ml min.	35-40 ml
Bentonite Fluid Loss/ API 13A	15 ml max.	10-13 ml
Bentonite pH/ ASTM D4972	8.5-10.5	9.0 - 9.5
Bentonite unit weight reported @ 20% M.C.	0.95 psf min.	1.02 psf
Roll width	13.5 feet min.	13.6 feet
Roll length	per project requirements	100 feet
Sincerely,	•	

- '

Thomas N. Dobras, P.E.

Technical Manager, James Clem Corporation

//*/////p.)* Date

Appendix E

Density Results For Fill Material

LAW ENGINEERING

7347-F WEST FRIENDLY AVENUE, GREENSBORO, NC 27410

REPORT OF FIELD DENSITY STS

CLIENT:

ENSCI CORPORATION

MAR 1 9 1993

JOB NO.: 257-2219

PROJECT:

MANNINGTON TILE

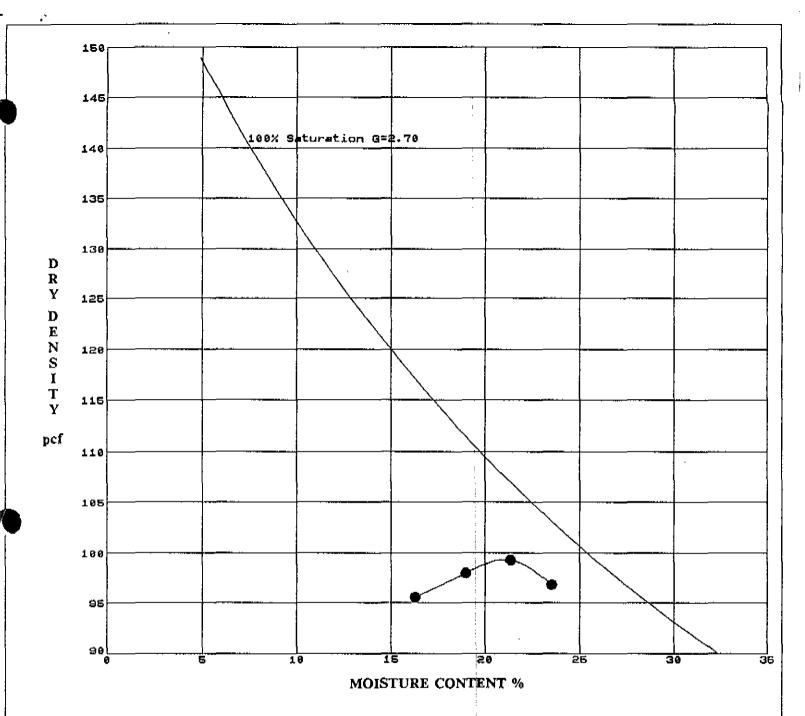
LEXINGTON, NORTH CAROLINA

TEST NUMBER	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	PROCTOR NUMBER	COMPACTION (%)	SPECIFIED COMPACTION (%)	TEST METHOD	ELEVATION OR DEPTH
-		Tests	Performed	on 03/10/	93		
1	23.7	98.6	1	99	95	1	
2	25.9	95.0	1	96	95	1	
TEST LO	CATIONS:						
1	95'W &	20'N OF N	ORTHEAST C	ORNER			
1 2				CORNER			
				!			
				i			
				!			
				!		•	
				i i			
		!	·	:		J	

TEST COMPARED TO:

PROCTOR NUMBER MAXIMUM DRY DENSITY (PCF) OPTIMUM MOISTURE (%)

REMARKS


Performed In General Accordance With:

1 - ASTM D2937

1 99.3 21.3

RESPECTFULLY SUBMITTED:

Told Parson THOMAS C. PEGRAM, JR., E.I.T.

SOURCE: ONSITE

CURVE NO.: 1

DESCRIPTION: RED BROWN SLIGHTLY MICACEOUS CLAYEY SILT

MAXIMUM DRY DENSITY, pof: 99.3 OPTIMIUM MOISTURE CONTENT, %: 21.3 NATURAL MOISTURE CONTENT, %:

CLIENT NAME: ENSCI CORPORATION

March 1993

MANNINGTON TILE- LEXINGTON, NORTH CAROLINA 257-2219-01

ASTM D-698 PROCTOR COMPACTION TEST

LAW ENGINEERING- GREENSBORO, NC

Appendix F

Flexible Membrane Liner Certification

Gundle Lining Construction Corp

19103 Gundle Road Houston, Texas 77073-3598 U.S.A. Phone: (713) 443-8564 Toll Free: (800) 435-2008 Telex: 166657 GUNDLE HOU FAX: (713) 875-6010

February 10, 1993

Henry Havener MANNINGTON CERAMIC TILE C/O ENSCI, Corp. 20 Victor Street Lexington, NC 27587

RE: Quality Control Certification

Dear Mr. Havener:

This is to certify that each seam was tested within Gundle Quality Control procedures to ensure you a quality product.

"Hot wedge welds are pressure tested, pressurizing the gap created by the split face design of the hot wedge."

If you have any questions concerning this matter, please do not hesitate to contact me at (800) 285-8336, extension 863.

Sincerely,

Paul Rone ' Fabrication Manager

PR/rmb

CC:

Travis Teykl

Job File

Appendix G

Drainage Layer (Sand)

W. R. BONSAL COMPANY
Preliminary Test on Fine Aggregate

Date 3-/2-93	
Car No. Under Drain sand	
Shipped to	
Destination	
Lab. No.	
Ret. on 1/4 in	
Color beige	
Elutristion 0, 7	
Retained per ct. Ret.	per ct. Pass
No. 4 4.75 homper ct. No. 4 0	100.0
No. 82.76 pm " No. 8 /3.2	<u>86.8</u>
No. 16 115 mm " " No. 16 35.6	64.4
No. 30 1 65.6	<u>34.4</u>
No. 50/2, 303 mm " " No. 50 91.0	9.0
No. 100 1 100 1 100 98.2	<u> 1.8</u>
Total per ct. Pass	
Р. м. <u>Зо Н</u>	
Remarks:	

dio " 0.32 mm

Hydraulic conductivity calculation

The grain size distribution curve was plotted and the following determined:

d10 = .32 mm = . 032cm = fine sand

The hydraulic conductivity was calculated using the Hazen method (ref. Fetter, 1988).

K (am/sec) = C (d10)2

dio = . 032cm

C = 40-80 for fine sand

 $K = 4.1 \times 10^{-2}$ cm/sec using C = 40 $K = 8.2 \times 10^{-2}$ cm/sec using C = 80

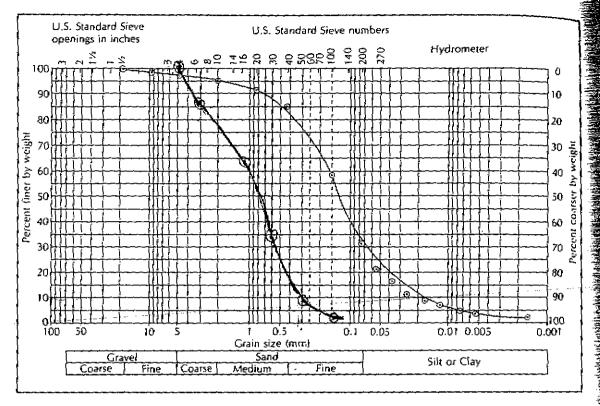


FIGURE 4.4 Grain-size distribution curve of a silty fine to medium sand.

Clays and some clay-rich or organic soils can have very high porosities. Organic materials do not pack very closely because of their irregular shapes. The dispersive effect of the electrostatic charge present on the surfaces of certain book-shaped clay minerals causes clay particles to be repelled by each other. The result is a relatively large proportion of void space.

The general range of porosity that can be expected for some typical sediments is listed in Table 4.2.

TABLE 4.2 Porosity ranges for sediments (1-4)

Well sorted sand or gravel Sand and gravel, mixed	25–50% 20–35%
Clacial till	10-20%
Silt	35-50%
Clay	33-60%

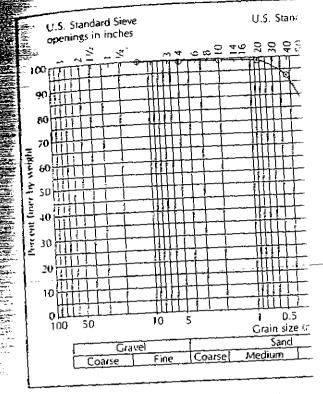
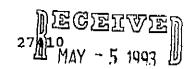


FIGURE 4.5 Grain-size distribution curve of a fine sa:

4.1.3 POROSITY OF SEE

Sedimentary rocks are fort as diagenesis. A sediment, which chemically precipitated material, and physicochemical reactions withe sediment. This includes comparial, and transformation of mineral Compaction reduces pore volume. The deposition of cementing matereduce porosity, although the dissoluted will increase porosity. The preserved in the sedimentary rock. The influenced by the grain size, sizinal sediment. Diagenesis is a controsity of a sedimentary rock will be is especially true of fine-grained sediments.


Appendix H

Gravel Base Density Testing

LAW ENGINEERING

7347-F WEST FRIENDLY AVENUE, GREENSBORO, NC

REPORT OF FIELD DENSITY TESTS

CLIENT:

ENSCI CORPORATION

JOB NO.: 257-2219

PROJECT:

MANNINGTON TILE

LEXINGTON, NORTH CAROLINA

	TEST NUMBER	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	PROCTOR NUMBER	COMPACTION (%)	SPECIFIED COMPACTION (%)	TEST METHOD	ELEVATION OR DEPTH
	3 4 5	6.2 6.1 6.0	Tests 144.3 142.5 145.4	Performed 2 2 2 2	on 04/19/ 100+ 100+ 100+	93	2 2 2	GRADE GRADE GRADE
		:			· · · · · · · · · · · · · · · · · · ·	·		
	TEST LO	CATIONS: AT STAT	TON 40+04	AND 16'N	OF CENTERL	INE OF ROAL)	
Ĭ	4 5	AT STAT AT STAT		AND 2'N OF AND 11'N O		E OF ROAD NE OF ROAD		s.
			,		:	•		

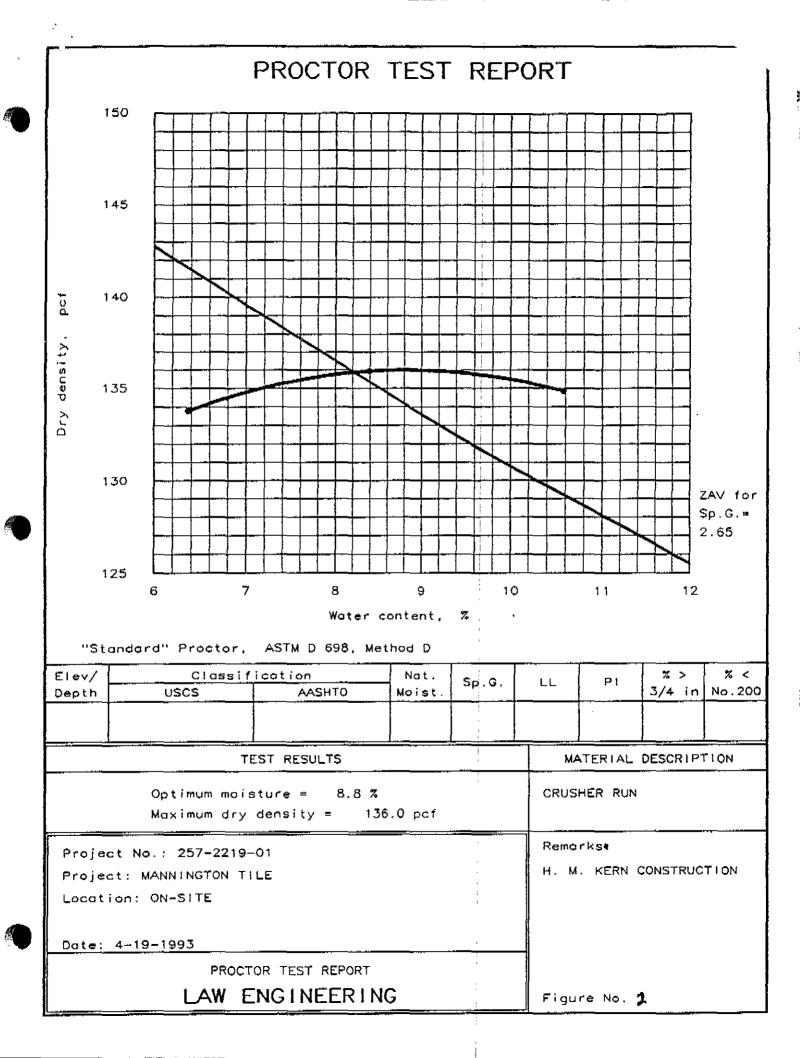
TEST COMPARED TO:

PROCTOR! NUMBER MAXIMUM DRY DENSITY (PCF)

OPTIMUM MOISTURE (%) REMARKS

Performed In General Accordance With: 2 - ASTM D1556

Z ... ASIN


2

136.0

8.8

RESPECTFULLY SUBMITTED:

THOMAS C. PEGRAM, JR., E.I.T.

Appendix I

Asphalt Density Testing

Ensci Corporation 1108 Old Thomasville Rd. High Point, N.C. 28260

Attention: Mr. Steve Stadelman

Reference: Bituminous Concrete Testing Services

Mannington Ceramic Tile Lexington, North Carolina

S&ME, Inc. Job. No. 1353-93-351

(Report 1)

Gentlemen:

S&ME. Inc. is providing asphalt testing services on part-time on call basis at the referenced project. This letter summarizes nuclear density tests performed on bituminous concrete materials on April 27, 1993.

During this reporting period an engineering technician from our office visited the site and performed fourteen (14) nuclear density tests (test 1 through 14). The field density tests were performed on the pavement areas from Station 00 + 00 to 4 + 00. All tests indicate densities ranging between 95 and 98 percent of maximum theoretical specific gravity of I-2 surface course. The results of the asphalt density tests performed on the bituminous concrete materials are enclosed for your review.

S&ME appreciate the opportunity to be of service to you. If you should have any questions or need additional information, please free to contact us at your convenience.

> Very truly yours, S&ME, Inc.

Dennis L. Apperson

Staff Engineer

Gilberto Ramos, P.E.

Construction Services Manager N.C. Registration No. 17344

DLA/vrw

Enclosures:

Field Density Tests (test 1 through 14)

REPORT OF FIELD DENSITY TESTS

CLIENT: Ensci Corporation

DATE: May 6, 1993

PROJECT: Mannington Ceramic Tile, Lexington, NC

JOB NO. 1353-93-351

	TEST #	WET WEIGHT	PERCENT MOISTURE	DRY DENSITY	OPTIMUM DENSITY	OPTIMUM MOISTURE	PERCENT COMPACTION	LOCATION PERFORMED AT:	DEPTH/ ELEVATION
=====	 . /27/03								
	4/27/93 1	140.5			144.1		98	Station 00+00, 20' left of CL	1-2
	2	139.4			144.1		97	Station 00+10, 20' left of CL	1-2
	3	137.5			144.1		96	Station 00+20, 20' left of CL	1-2
	4	138.7			144.1		96	Station 00+30, 20' left of CL	1-2
	5	140.9			144.1		98	Station 00+40, 20' left of CL	1-2
	6	137.3			144.1		95	Station 00+50, 20' left of CL	1-2
	7	138.2			144.1		96	Station 00+60, 20' left of CL	1-2
	8	141.5			144.1		98	Station 00+70, 20' left of CL	1-5
	9	138.7			144.1		96	Station 00+80, 20' left of CL	1-2
	10	141.7			144.1		98	Station 00+90, 20' left of CL	1-2
	11	139,5			144.1		97	Station 01+00, 20' left of CL	r-2
	12	140.2			144.1		97	Station 02+00, 20' left of CL	r - 2
	13	140.8			144.1		98	Station 03+00, 20' left of CL	1-2
	14	141.7			144.1		98	Station 04+00, 20' left of CL	I - S

RESPECTFULLY SUBMITTED S & M E, INC.

Sain Reper

Ensci Corporation 1108 Old Thomasville Rd. High Point, N.C. 28260

Attention: Mr. Steve Stadelman

Reference: Bituminous Concrete Testing Services

Mannington Ceramic Tile Lexington, North Carolina

S&ME, Inc. Job. No. 1353-93-351 (Report 2)

Gentlemen:

S&ME, Inc. has provided asphalt testing services on part-time on call basis for the referenced project. This letter summarizes nuclear density tests performed on bituminous concrete materials on April 24, 1993.

During this reporting period an engineering technician from our office visited the site and performed fifteen (15) nuclear density tests (test 15 through 29). The field density tests were performed on the pavement areas from Station 00 + 00 to 4 + 00. All tests indicate densities ranging between 88 and 96 percent of Maximum Theoretical Specific Gravity of Base Surface Course. The results of the asphalt density tests performed on the bituminous concrete materials are enclosed for your review.

S&ME appreciate the opportunity to be of service to you. If you should have any questions or need additional information, please free to contact us at your convenience.

Very truly yours,

S&ME. Inc.

Dennis L. Apperson

Staff Engineer

Gilberto Ramos, P.E.

Construction Services Manager

N.C. Registration No. 17344

DLA/vrw

Enclosures:

Field Density Tests (test 15 through 29)

REPORT OF FIELD DENSITY TESTS

CLIENT: ENSCI Corporation

DATE: June 14, 1993

PROJECT: Mannington Ceramic Tile

JOB NO. 1353-93-351

	TEST #	WET	PERCENT	DRY	OPTIMUM	OPTIMUM	PERCENT	LOCATION	DEPTH/
		WEIGHT	MOISTURE	DENSITY	DENSITY	MOISTURE	COMPACTION	PERFORMED AT:	ELEVATION
22200				=======					
	4/23/93 15	141.5		;	161.0		88	Station 0+00	Base
	16	144.8			161.0		90	Station 0+00	Base
	17	141.7			161.0		88	Station 0+00	8ase
	18	151.5			161.0		94	Station 2+00, 20' Lt of CL	Base
	19	154.1			161.0		96	Station 3+00, 20' Lt of CL	Base
	20	150.8			161.0		94	Station 4+00, 20' Lt of CL	8ase
	21	146.5			161.0		91	Station 0+00, 15' Lt of CL	Base
	22	150.6			161.0		94	Station 1+00, 15' Lt of CL	8ase
	23	147.3			161.0		92	Station 2+00, 15' Lt of CL	Sase
	24	147.3			161.0		92	Station 3+00, 15' Lt of CL	Base
	25	147.6			161.0		93	Station 4+00, 15' Lt of CL	9ase
	26	150.3			161.0		93	Station 0+00, 5' Lt of CL	8ase
	27	151.3			161.0		94	Station 1+00, 5' Lt of CL	Base
	28	147.7			161.0		92	Station 2+00, 5' Lt of CL	Base
	29	147.4			161.0		92	Station 3+00, 5' Lt of CL	Base

RESPECTFULLY SUBMITTED

S & M E, INC.

Appendix J

Analytical Reports for Decontamination Water

Chemical Analysis for Selected Parameters from Samples Identified as RM03-021 - Tafffor Transman-Homemontion_Project)

			Detection		'		Detaction
ı.	Volatile Organics Method 8240	Concontration (mq/1)	Limit <u>(mq/l)</u>	Ţν.	BNA - Organics Metho <u>d 8270</u>	Concentration (mg/l)	Limit (mg/l)
	Methylene Chloride	BDI. BDL	0.010		4-Chloro-3-methylphenol 2-Chlorophenol	BOL	0.010
	Trichlorofluoromethane 1,1-Dichloroethene	BDL	0.010 0.010		2,4-Dichlorophenol	BDL	0.010
	1,1-Dichloroethane	BDL	0.010		2,4-Dimethylphenol	nor 	0.010
	Chloroform	BOL	0.010		2,4-Dinitrophenol	BDL	0.010
	Carbon Totrachloride	BDL	0.010		2-Methyl=4.6-dinitrophenol	BDL	0.050
	1,2-Dichloropropane	BDL	0.010		2-Nitrophenol	BDL BDL	0.050
	Trichloroethene	BDI.	0.010		4-Nitrophenol		0.010
	Dibromochloromethane	BDL	0.010		Pentachlorophenol	BDL.	0.050
	1,1,2-Trichloroethane	BDL	0.010		Pheno)		0.050
	Tetrachloroethene	BDL	0.010		2,4,6-Trichlorophenol	BDL	0.010
	Chlorobenzene	DDL	0.010		Acenaphthene	BDL BDL	0.010
	Trans-1,2-Dichloroethene	BDL	0.010		Acenaphthylana	BDL	0.010
	1,2-Dichloroethane	BDI.	0.010		Anthracene	BDL.	0.010 0.010
	1,1,1-Trichloroethano	BDL	0.010		Benziding	BOL.	
	Bromodichloromethane	BDI.	0.010		Benzo(a)anthracene	BDL BDL	0.050 0.010
	Cis-1,3-Dichlropropens	BDI.	0.010		Benzo(a)pyrano	BDI.	0.010
	Benzane	BDL	0.010		Benzo(b)fluoranthene	BDL	
	Trans-1,3-Dichloropropens	, BDL	0.010		Benzo(ghi)perylanc	BDL	0.010 0.010
	Bromoform	BDL	0.010		Benzo(k)fluoranthene	BDL	0.010
	1,1,2,2-Tetrachlorocthane		0.010		Renzy butyl phthelete	BDL	0.010
	Toluene	BDL	0.010		Bis(2-chlorosthoxy)methane	BDL	0.010
	Ethyl Benzene	BDL	0.010		Bis(2-chloroothyl)ether	BDL	0.010
	Chloromethane	BDL	0.010		Bis(2-chloroisopropyl)ether	BDL	0.010
	Bromomethane	BOL	0.010		Bis(2-ethyl-hexyl)phthalate	BDL	0.010
	Vinyl Chloride	BDL	0.010		4-Bromophenyl phonyl other	BDL	0.010
	Chloroothane	BOL	0.010		2-Chloronaphthalenc	BDL	0.010
	Acetone	BOL	0.100		4-Chlorophenyl phenyl ether	BDL	0.010
	Carbon Disulfide	BDL	0.010		Chrysens	BDL	0.010
a	Vinyl AcetAte	BDL	0.010		Dibenzo(a,h)anthracene	BDL	0.010
	2-Butanone	BDL	0.100		1,2-Dichlorobenzene	BDL,	0.010
	4-Methyl-2-Pentanone	- BDL	0.010		1,3-Dichlorobenzene	BDL	0.010
	2-Hexanone	BDL	0.010		l,4-Dichlorobenzenc	BDL	0.010
	Styrene	BDL	0.010		3,3-Dichlorobenzidinc	BDL	0.020
	Total Xylenes	BDL.	0.010		Diethyl phthalato	BDL	0.010
					Dimethyl phthalats	BDL	0.010
Ι.	Inorganica				Di-N-Butyl phthalate	BDL,	0.010
	Arsenic	BDL	0.010		2,4-Dinitrotoluene	BDĹ	0.010
	Rarium	0.250	0.1		2,6-Dimitrotoluene	BD1.	0.010
	Cadmium	BDL	0.005		Di-N-Octyl phthalato	BDL	0.010
	Chromium	BDL	0.020		1,2-Diphenylhydrazino	BDL	0.050
	Load	DDL	0.050		Fluoranthene	BOL	0.010
	Mercuzy	BDL	0.00020		Pluorene	BOL	0.010
	Sclenium	BDL	0.005		Hexachlorobenzene	BDL	0.010
	Silver	BDL	0.010		Hexachlorobutadiene	BOL	0.010
	Cobalt	BDL	0.025		Hexachlorocyclopentadiena	BDL	0.010
	Manganese	0.030	0.010		Hexachloroethane	BDI.	0.010
	Nickel	BDL	0.050		Indeno(1,2,3-cd) pyrene	BOL	0.010
	Zinc	0.030	0.020		Isophorone	BDL	0.010
	Sulfate	124	10		Naphthalena	BOL	0.010
	Titanium	BDL 40.7	0.050		Nitrobenzene	BDI,	0.010
	Boyon	40.7 BDL	0.010		N-Nitrosodimethylamine	BDL	0.010
	Vanadium Pracoodumium		0.040		N=Nitrosodi-n-propylamine	ROL	0.010
	Praseodymium	BDL	0.20		N-Nitrosodiphenylamine Phenanthrone	BDL BDL	0.010
	Bromida	BDL	0.50		Pytene Pytene	BOL	0.010
III.	Radiological				1,2,4-Trichlorobenzeno	BDL	0.010 0.010
	Method 900(pci/1)				1/1/4 111011010000000000	5011	0.010
	Gross alpha	1.7					
	Gross Beta	15.4					
	Radium 226	0.7	0.2				
	Radium 228	0.7	0.7				

BDL - Below Detection Limits

MM/1 = milligrams per liter = parts per million poi/1 = picocuries per liter BNA = Base Noutral/Acid Extractable

RAL # = 162529

II

RESEARCH & ANALYTICAL LABORATORIES, INC. Analytical/Process Consultations Phone (919) 996-2841

CHAIN OF CUSTODY RECORD

												<u> </u>	YAT	-R/1	<u>WAS</u>	IE)	<u> </u>	EH		MISC.		
·	<u> </u>		(0)		and funker	SEBS						T/			1/3	7		[]				
SAMPLERS (S	Mu .) [M. 1]	(1)	no	lelm	NO. OF CONTAINERS			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
SAMPLE NO.	DATE	TIME	COMP	GRAL	STATION LOCATION			\\$\\\		\$\\$	79.	9/3/ 3/3/	13].	\\ \?	<u> </u>			//	\mathbb{Z}	REQUESTED	ANALYSIS	
162529	3-11-93	<i>] 30</i>		χ	agarns	8		ν							6					analyses pera	theled st	1
	<u> </u>		-			- 	-	-			+		+	\dashv	-		-					-
			-					-	H			\vdash	+			Н				· ·		
													<u> </u>]
			_				_	_	Ц	4		\perp	\bot	-	_		_	-			- 	_
			-	\blacksquare			-		$\left \cdot \right $		+		╁	\vdash	╁	H	-	+-				-
																	\perp					
			ļ.							_	-		-	1	-		_]
	<u> </u>		<u> </u>	\dashv			_	_	H	+	+		-		-	-	╬	+-	$\left\ \cdot \right\ $		 –	
-						-	Ì															
			_								-		-		_		_ _					_
			├	\vdash			-	-		\dashv	+	\vdash	_	\dashv	╁	1		+	H			-
			_					\top									-					
																Ц	\prod					
RELINQUISHE	DBY	3- 11 9-3	IME	RE	PECEIVED BY RESCEIVED BY	EMARKS	:	R. N	j.	Ħ	- 3	33	17									
RELINQUISHE	D BY	DATE/TI	IME	RE	ECEIVEDUBY U		(ĮΝ	-	T	C	·ę					-					

Appendix K

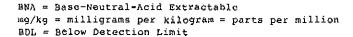
Disposal Manifests for Drummed Material

Principal and order of the second of the sec		HAS FORTH ADDITIONS OMB (60) 2050 (0038 Expires 5 30 94
	Generator's US EPA ID No. C. D. 9.8.6. 1.8.1.4.5.18.6	
Generator's Name and Mailing Address	MANNING TON CERAMI 20 VICTOR 57,	CTILE A. State Manifest Document Number
4. Generator's Phane (919) 249 3931	LEXINGTON NC 272	8. State Generator's ID
5. Transporter 1 Company Name ENSCI COBPORATION	W.C.D. 9.86.1.7.	1.0.3.1 D. Transporter's Phone 9/9 883 7505
7. Transporter 2 Company Name ENSCI CORPORATION	8. US EPA ID Number	F. State Transporter's ID 1.0.3.1 F. Transporter's Phone 9/9 883 7505
9. Designated Facility Name and Site Address LAIDLAW ENVIRONMENTAL SERVIC RT, II BOX 3 WATEINGTON INDUST REIDSVILLE NC 27320 11. US DOT Description (Including Proper Shipping Name HM) a. HAZARDOUS WASTE SE	US EPA ID Number رحم کے	G. State Facility's ID
REIDSVILLE NC 27320		8.45.1 919-34Z 6106
11. US DOT Description (Including Proper Shipping Nar		12. Containers 13, 14, 1. No. Type Quantity Wt/Vol Waste No.
». X HAZARDOUS WASTE SO ORM-E ER6-31 NA9189 (Coptoins lea	ed)	0.0.2 D.MO 0.1 50 P DOOR
G G b.		
A R C.		
d.		
Additional Descriptions for Materials Listed Above RVE M & 101		K. Handling Codes for Wastes Listed Above
15. Special Handling Instructions and Additional Inform PO# 325/3 EMEXGENCY CONTACT: PRET		ENISCI CORPORATION 1108 OLD THOMPSVILLE RP HIGH POINT NC 27260
16, GENERATOR'S CERTIFICATION: I hereby declare the packed, marked, and labeled, and are in all respects in profit of the mail along a quantity generator, I certify that I have economically practicable and that I have selected the pathreat to human health and the environment; OR, if I along the provincement of the provincement of the provincement of the provincement.	at the contents of this consignment are fully and a coper condition for transport by highway according to a a program in place to reduce the volume and procticable method of treatment, storage, or disp am a small quahtity generator, I have made a c	courately described above by proper shipping name and are classified, to applicable international and national governmental regulations. It taxicity of waste generated to the degree I have determined to be osal currently available to me which minimizes the present and future good faith effort to minimize my waste generation and select the best
waste management method that is eveilable to me and the Printed/Typed Name Ton 4 SHAW	Signoture Signoture	Marith Day Year 4 129 183
T 17. Transporter 1 Acknowledgement of Receipt of Materials A Printed/Typed Name 18. Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of Materials A Printed/Typed Name 18. Printed/Typed Name 18. Printed/Typed Name	Signorine	Doe Got Month Day Year My 12.5 F.3
18. Transporter 2 Acknowledgement of Receipt of Mate	Signature for	might Month Day Your
19. Discrepancy Indication Space		
Facility Owner or Operator: Certification of receipt	of hazardous materials covered by this manif	est except as noted in Item 19.
entertytysed Name CUCV FOR	ever Zz	Month Doy Yis
	TRANSPORTER #1	

			Ť
ENVIRONMENTAL SERVICES			y

	mer Notific ents with Original Signa	cation And (hires will be Accepted	Certificati	on	-FO	RM A
- Genera t or	Name/Location: _	MIRNINGTON	CERAMIC	TILE		
EPA I.D. N	Number: NCD98	6181451				
Waste Pro	file or ARF Design	ation: RVEI	n a 101			
	lumber:	. ^	0001	<u></u>		
EPA Hazar	dous Waste Numb	per(s): <u>Doos</u>				
	lysis Attached?		NO	<u> </u>	On file at facility.	
If you go standards)	enerate a hazardou , mark the stateme	nt below.			vaste (the waste has no applicable treatment	· ·
waste	is not restricted as sp	scified in 40 CFR 268, S	abpart D and all app	licable pro	hibitions set forth in 40 CFR 268.32 or RCRA Section 3	3004 (d).
If you go the statemore require tre	ent below. Note: A atment or be varia	s waste that is restri all appropriate standanced for others. In th	ards must be acco is case, all applic	ounted fo cable cate	he waste has applicable treatment standards), r. A waste may pass one or more standards an gories must be checked.	ıd
waste standa descri	is subject to the treatr and, by the appropriate bed under Category 4	nent standards specified regulatory treatment m below.	l in 40 CFR 268, Sub ethod: qualifies for	part D. Wa a variance	nowledge of the waste to support this notification that aste must be treated to the appropriate regulatory trea as described by Category 3 below; or meets the stand.	tment ard as
charac	teristic debris; §	aste contains the followi 268.45(b) (2)-Debris con native treatment standar	ntaminated with list	ed waste; 🕹	eatment (check all that apply): V § 268.45(b) (1)-Tox: § 268.45(b) (3)-Cyanide reactive debris. This hazar	icity rdous
теspondi	ng Treatment Standar	d(s) <u>45 CFR 26</u>	8-41 NWII	1 5 pa	M	
If you ge extension u other applie (3a) Re	enerate a waste wh under 40 CFR 268.5 cable variance), ma estricted Waste Varian	s, a nationwide variar ark the statement be- ace Notification	treatment prior to nce under 40 CFI low and list the a	R 268 Sub ppropriat	sposal because of a variance (including a case- part C, a no migration petition under 40 CFR to te variance in the space provided.	
knowie C, or a	edge of the waste to su case-by-case extension		nat this waste is sub or an exemption und	ject to a na ler 40 CFR		
, ,	azardous Debris Exte		h.i	lacelé ebas	t I have made the necessary submittals to my operating	~
record therefo	, or files maintained p ore this hazardous deb	ursuant to 40 CFR 268.7 ris shipment qualifies fo	(a) (5), as described or the one-year gene	in the May	y 15. 1992 Federal Register (57 FR 20769), and	Ŗ
	able Variance (Give th - & -93	e date the waste is subje	ect to prohibitions)			
	Waste Certificati	on (Category 4)				
waste meet	s the standards as ; pass one or more s	generated, mark the	statement below	. Note: A	ne waste has applicable treatment standards), a All appropriate standards must be accounted fo d for others. In this case, all applicable categor	r A
throug Subpar accurat impriso	h knowledge of the wa t D and all applicable te, and complete. I am onment.	iste to support this certifications in the second control of the second certification is the second certification of the second certification is second certification.	Ecation that the was 40 CFR 268.32 or R nificant penalties fo	ste complies CRA Sectio or submittin	aste through analysis and testing or is with the treatment standards specified in 40 CFR 268 on 3004(d). I believe that the information I submitted is a gain a false certification including the possibility of fine a requiring treatment)	s true,
		<i>N</i>				
SIGNAT	TURE: J-	- Illu	<u> </u>		DATE: 4/29/93	
PRINT	MAME. TONY	SHAW		!	THE ENVIRONMENTAL MG	e

Appendix L


Analytical Reports for Fill Materials

Chemical Analysis for Selected Parameters from Stockpile Soil Sample (RAL #162528, Ensci Corporation Job #RM03-021, 11 March 1993)

		Detection Limit		Concentration	Detect: Limit
Volatile Organics <u>Method 8240</u>	Concentration (mg/kg)	Limit (mg/kg)	III. BNA - Organics Method <u>8270</u>	(mg/kg)	(mg/kg
Methylene Chloride	BDL	0.010	4-Chioro-3-methylphenol	LOG	0.33
Trichlorofluoromethane	BDL	0.010	2-Chlorophenol	BDL	0.33
1.1-Dichloroethene	BOL	0.010	2,4-Dichlorophenol	BDL	0.33
1,1-Dichloroethane	BDL	0.010	2,4-Dimethylphenol	BDL	0.33
Chloroform	BDL	0.010	2,4-Dinitrophenol	BDI.	1.65
Carbon Tetrachloride			2-Methyl-4,6-dinitrophenol		
	BOL	0.010	• · · · · · · · · · · · · · · · · · ·	BDI"	1.65
1,2-Dichloropropane	BDL	0.010	2-Nithrophenol	BDL	0.33
Trichloroethene	BDL	0.010	4-Nitrophenol	BDL	1.65
Dibromochloromethane	BDL	0.010	Pentachlorophenol	BDL	1.65
1,1,2-Trichloroethane	BDL	0.010	Phenol.	BDL	0.33
Tetrachloroethene	BDL	0.010	2,4,6-Trichlorophenol	BDL	0.33
Chlorobenzene	BDL	0.010	Acenaphthene	BDL	0.33
Trans-1,2-Dichloroethene	BDL	0.010	Acenaphthylene	BDL	0.33
1,2-Dichloroethane	BDL	0.010	Anthracene	BDL	0.33
1,1,1-Trichloroethane	BDL	0.010	Benzi <mark>di</mark> ne	BDL	1.65
Bromodichloromethane	BDL	0.010	Benzo(a)anthracene	BDL	0.33
Cis-1,3-Dichlropropene	BDL	0.010	Benzo(a)pyrene	BDL	0.33
Benzene	BDL	0.010	Benzo(b)fluoranthene	BDL	0.33
Trans-1,3-Dichloropropene		0.010	Benzo(ghi)perylene	BDL	0.33
			Benzo(k)fluoranthene		
Bromoform	BDL	0.010	,	BDL	0.33
1,1,2,2-Tetrachloroethane		0.010	Benzy butyl phthalate	BDL	0.33
Toluene	BDL	0.010	Bis(2-chloroethoxy)methane	BDI.	0.33
Ethyl Benzene	BDL	0.010	Bis(2-chloroethyl)ether	BDL	0.33
Chloromethane	BDL	0.010	Bis(2-chloroisopropyl)ether	BDL	0.33
Bromomethane	BDI.	0.010	Bis(2-ethyl-hexyl)phthalate	BoL	0.33
Vinyl Chloride	BDL	0.010	4-Bromophenyl phenyl ether	BDL	0.33
Chloroethane	BDL	0.010	2-Chloronaphthalene	BDL	0.33
Acetone	BDL	0.200	4-Chlorophenyl phenyl ether	BDL	0.33
Carbon Disulfide	BDL	0.010	Chrysene	BOL	0.33
Vinyl Acetate	BDI,	0.010	Dibenzo(a,h)anthracene	BDL	0.33
2-Butanone	BDI.	0.200	1.2-Dichlorobenzene	BDL	0,33
4-Methyl-2-Pentanone	- BDL	0.010	1,3-Dichlorobenzene	BDL	0.33
2-Hexanone	BDL	0.010	1,4-Dichlorobenzene	BDL	0.33
	BDL	0.010	3,3-Dichlorobenzidine		
Styrene			·	BDL	0.66
Total Xylenes	BDL	0.010	Diethyl phthalate	BDL	0.33
			Dimethyl phthalate	BDL	0.33
. TCLP Metals			Di-N-Butyl phthalate	BDL	0.33
			2,4-Danitrotoluene	BDL	0.33
Arsenic	BDL	0.010	2,6-Djinitrotoluene	BDL	0.33
Barium	0.892	0.100	Di-N-Octyl phthalate	BDL	0.33
Çadmium	BDL	0.010	1,2-Diphenylhydrazine	BDI,	1.65
Chromium	BDL	0.020	Fluoranthene	BDL	0.33
Lead	0.169	0.100	Pluorene	BOL	0.33
Mercury	BDL	0.002	Hexachlorobenzene	BDL	0.33
Selenium	BDL	0.010	Hexachlorobutadiene	BDL	0.33
Silver	BOL	0.010	Hexachlorocyclopentadiene	BDL	0.33
		-	Hexachloroethane	BDL	0.33
			Indeno(1,2,3-cd) pyrene	BDL	0.33
			Isophorone	BDL	0.33
			Naphthalene	BDL	0.33
			Nitropeuseue Nabuchateue	BDL	0.33
•					
			N-Nitrosodimethylamine	BDL	0.33
			N-Nitrosodi-n-propylamine	BDL	0.33
			N-Nitrosodiphenylamine	BDL	0.33
			Phenapthrene Pyrene	BDL BDL	0.33 0.33

RESEARCH & ANALYTICAL LABORATORIES, INC. Analytical/Process Consultations

CHAIN OF CUSTODY RECORD

Phone (919) 996-2841

		,			_						[ATE					R	MISC.	
JOB NO.	PROJECT	NAME ENSC MO3	:1	د) ا کر	rep. I - list		ZERS			/2						[]				
SAMPLERS (S	IGNATURE	la.	Ú.		Toseke		NO. OF CONTAINERS													-
SAMPLE NO.	DATE	TIME	саме	GRAB	STATION LOCATION		-	1	/\$/X	\$\\$\	795 77	73).	77 77	18]]	//	\mathbb{Z}	//	//	REQUESTED ANALYS	SIS
	3-11-93	1100	X		Sail		2								floor				8240, 8270, RCKA M	11/2
162528	 		-	_					<u> </u>	_	-	-		1.	4	1	1	╄		
		<u> </u>	 					╁╌╁╴	\perp	_	┼-┟-	╀	-	+		H		+		
			+					╀┼	+-	+	+	╁	┞╌┼╌	╁┪	+	╂┤	-	+		
			╁┤	\dashv	<u></u>			╁┼	-	+	╁	-	 	╁┤	+	╂╢	+	+		
	 		╅┈	-				+	╅┈		1-	╁		╁╌╂	+	╂┤		十		
	 	 	\dagger	_				1	+-	十	†-†	+		╂╾┼	+		-	+		
		<u> </u>	-					1-1			11						** -		!'':'':= ======================	
]						11		Ц		_		
ļ	-	<u> </u>	\perp					- -		_ _	- -	\downarrow	<u> </u>	-	_			╄		
	<u> </u>	ļ	4-4					$\!$	-		-	-		╂┈┤			-	╀		
ļ	 -	 						╁┼	+		╁┼	+	╁┼	╀┤	-			+		
 	 	 	+	\dashv				$\dagger \dagger$	+		╫	+	╂┼	+		H	\dashv	+		
<u></u>	-	 	+ 1	+	<u></u>					+	╂╌╂╴			╁╅	1	1	+	+-		
			\top				-			十		1		1	十	Ħ	_	+		
			Ħ							┪				T			\top			
RELIMQUISH	D BY	DATE/T	IME	RE	ECEIVED BY	REMAF	RKS:													
RELINQUISHE	dela-	3 11		$ \gamma $	Mandada Com		1.0). A	<i>f</i> :	33.	316	,								
RELINQUISHE		DATE/T	IME	RE	Many Adoption															
					Ť						F (

March 17, 2003

Memo

To: Rosemarie Roberts

From: Sandra Moore

Re: Proposed Modifications to the Closure Plan

Porcelanite, Inc Lexington, NC

I reviewed the partial soil investigation information for the closed sludge ponds presented in Porcelanite's "Proposed Modification to the Closure Plan". Below are my comments on a constituent by constituent basis. My comments are based on the assumption that the soil sample locations and depths were adequate and appropriate to determine the extent of contamination in the sludge pond area. Also, since I did not have a copy of Figures 2 and 3, which depict the locations of the soil samples, or the historical sampling data, I assumed that the text is correct when it refers to soil boring locations and constituent concentrations. Please let me know if there are any issues that we need to discuss concerning the site and my comments.

- 1. Analytical Methods 200.7 and 200.8 are both ICP methods and are basically equivalent. Method 200.8 is an ICP-MS method that is generally more sensitive. I do not see a problem with using either the 200.7 or 200.8 method.
- 2. EPA Methods 9056 and 300.1 both analyze for inorganic ions by ion chromotography so they should be equivalent.
- 3. Arsenic- I concur with the conclusion that no further investigation or remediation is warranted since all 53 soil samples and the four background samples were below the PQL (0.894 and 3.75 mg/kg range) and arsenic was not detected in the groundwater above the detection limit (PQL was 0.005 mg/L and 2L standard is 0.01 mg/L). Even though the soil PQLs are above the Region 9 residential PRG of 0.39 mg/kg, if the average soil concentration for the site fell between 0.894 mg/kg and 3.75 mg/kg, the risk from arsenic exposure to soil would fall in the range of 10 E-5 to 10 E-6. From a risk management standpoint, it would not be reasonable to require remediation for arsenic at these levels.
- 4. Barium- I concur with the conclusion that no further investigation or remediation is warranted based on the frequency of detection of barium in soil above the SSL of 848 mg/kg (1/53) and that no concentrations exceeded the EPA Region 9 residential PRG of 5500 mg/k). Also, barium has not been detected above the 2L groundwater standard.
- 5. Boron-Based on the soil data for this area it would appear that no further investigation or remediation is warranted. However, I can not make a definitive determination without more information since boron was detected above the 2L in four adjacent wells. The information I would need to make a determination would be the following: i) What is the background concentration for boron at the site? ii) What were the concentrations of boron detected in the four wells? iii) Is there another potential source of groundwater contamination adjacent to the sludge ponds? If there are no other suspected sources and the boron background concentration is close to the concentration in the four wells, I would concur with the no

- further action determination. If there is not a boron background groundwater concentration and the boron concentrations in the four wells are less than the EPA Region 9 tap water values of 7 mg/L, I would conclude no further action.
- 6. Methods 9056 and 300.1 specifically analyze for bromide, not bromine. I would have Porcelanite confirm in writing that the lab used the appropriate method (either 9056 or 300.1 or equivalent bromide method) to analyze for bromide, not bromine, in the soil samples. I believe that Porcelanite confirmed that bromide was analyzed for and not detected above the PQL, therefore no further action is warranted.
- 7. Cadmium- I concur with the conclusion that no further soil investigation or remediation is warranted. They did not state whether or not cadmium had been detected in the groundwater so I am assuming that it has not been detected or that it has not been analyzed for.
- 8. Chromium- I concur with the conclusion that no further soil investigation or remediation is warranted. Since only two of the 53 soil samples were marginally (33.6 and 33.3 mg/k) above the SSL of 27.2 mg/kg and chromium has not been detected in the groundwater above the 2L, I do not believe soil removal is necessary for chromium unless other constituents are present that are greater than soil cleanup goals.
- 9. Cobalt- I concur with the conclusion that no further investigation is warranted and that the soil exceeding the SCSs should be removed and properly disposed. I would evaluate the groundwater cobalt levels as suggested above with boron in comment #5 to ensure that there is not another source of cobalt to groundwater in this area. The Region 9 tap water concentration for cobalt is 0.73 ug/kg or ppm. The lab detection limit was the default NCGS. I would compare the concentrations detected in the groundwater to the Region 9 tap water PRG. If it is below, I would conclude no further action.
- 10. Lead- I concur with the conclusion that no further investigation is warranted for the sludge pond area and that the soil exceeding the SCSs should be removed and properly disposed. For Porcelanite's information, the EPA Region 9 soil action levels for lead are 400 mg/kg and 750 mg/kg for protection residential and industrial human receptors, respectively.
- 11. Manganese- I concur with the conclusion that no further investigation is warranted and that the soil exceeding the SCSs should be removed and properly disposed. I would evaluate the groundwater manganese levels as suggested above with boron (comment #5) and cobalt (comment #9) to ensure that there is not another source of manganese to groundwater in this area. The Region 9 tap water concentration for manganese is 0.88 mg/L.
- 12. Mercury- All nine detections of mercury in soil were well below the EPA Region 9 residential PRG for soil mercury of 23 mg/kg. Unless mercury has been detected in the groundwater downgradient of the sludge ponds, I would concur that no further action is warranted. If mercury was not analyzed for in downgradient groundwater wells but there is not a suspected source, I would also concur that NFA was necessary.
- 13. Nickel- I concur that no further action is warranted.
- 14. Selenium- I concur that no further action is warranted.
- 15. Silver- I concur that no further action is warranted.
- 16. Sulfate- I concur that no further action is warranted since only the one holding time was exceeded (out of 53 and the fact that it has not been detected above the 2L standard in groundwater).
- 17. Titanium- Since there is not a 2L standard for titanium, I'm assuming that Porcelanite is referring to the PQL when they state that "past groundwater sampling indicates that titanium

has not exceeded NCGS standards in the adjacent monitoring well." If that is the case then I concur that no further investigation is warranted.

م راه سده ه

- 18. Vanadium- Since there is not a 2L standard for vanadium, I assume Porcelanite is referring to the PQL when they state that "past ground water sampling indicates that vanadium has not exceeded NCGS standards in the adjacent monitoring wells." If that is the case, I concur that no further investigation is warranted. There is an EPA Region 9 tap water concentration of 0.26 mg/L for vanadium that could be used for screening purposes.
- 19. Zinc- I concur with the conclusion that no further investigation is warranted and that the soil exceeding the SCSs should be removed and properly disposed. I would evaluate the groundwater zinc to ensure that there is not another source of zinc to groundwater in this area.
- 20. Gross Alpha- I concur with the conclusion that no further investigation or remediation is warranted.
- 21. Gross Beta- I concur with the conclusion that no further investigation is warranted in this area; however, I would evaluate the groundwater gross beta levels as suggested to ensure that there is not another source of gross beta to groundwater in this area since past groundwater sampling indicates that gross beta has exceeded NCGS in the adjacent monitoring wells.
- 22. Radium 226 and Radium 228- I concur with the conclusion that no further investigation or remediation is warranted; however, I would check and see if there have been any detections in groundwater in downgradient wells.

July 14, 2004

Ms. Elizabeth Cannon- Section Chief North Carolina Department of Environment and Natural Resources Hazardous Waste Section Post Office Box 27687 Raleigh, North Carolina 27611-7687

Reference:

Revised Closure Plan

Former Settling Ponds

Porcelanite, Inc.

Lexington, North Carolina

NCD 986 181 451

Waters Edge Job No. R1-21

Dear Ms. Cannon:

We had an April 1, 2004 meeting with a representative from the North Carolina Department of Environment and Natural Resources (NCDENR), Hazardous Waste Section (HWS), concerning the closure status of the former settling ponds at the Porcelanite facility located in Lexington, North Carolina (see Figure 1). We were attempting to determine the most prudent approach to document closure of this hazardous waste management unit (HWMU). This HWMU had undergone partial closure according to the May 1992 Revised Closure Plan submitted by ENSCI which was documented in a June 29, 1993 Closure Report for Settling Ponds. Based upon continued negotiations with NCDENR, it was decided to purse a modified closure using risk-based concentrations (RBCs).

Based on some additional sampling outside of the former settling ponds, it appeared that some of the settling pond material had overflowed over the ponds during their operation. Several investigative efforts were conducted to determine the horizontal and vertical extent of the affected soil. Also, during this time period, NCDENR began to adopt a RBC approach to determining remedial thresholds. These levels were finally accepted by both Porcelanite and NCDENR and are shown in Table 1 and locations shown in Figure 2 along with the results of the soil investigative efforts. Based upon these levels, Porcelanite has removed almost all of the affected soils, which were disposed in an approved landfill with disposal manifests shown in Appendix A. There were a few soil samples, which slightly exceeded isolated RBCs (see Figures 3 and 4). The area of affected soil removed is shown in Figure 5.

Subsequent to these efforts, based upon direction from NCDENR, we provided a November 5, 2002 modified risk assessment to justify our position that the remaining slight exceedances should remain in place (see supporting documentation in Appendix B). This risk assessment was subsequently accepted by representatives of NCDENR and would comprise our modification to the existing closure plan.

If you have any questions regarding this report or require additional information, please call me at 919.859.9987.

Sincerely,

WATERS EDGE ENVIRONMENTAL, LLC

Phillip L. Rahh, P.G.

President

04-074/PLR

Figures

Figure No.	<u>Title</u>
1 2 3 4 5	Project Location Map Soil Boring Location Map Soil Boring Exceedance Location Map – 1 ft depth Soil Boring Exceedance Location Map – 3-6 ft depth Area of Excavation

Tables

Table No.	<u>Title</u>
1	Soil Sampling Analytical Results

Appendices

<u>Appendix</u>	<u>Title</u>
A B	Landfill Disposal Manifests Modified Risk Assessment – supporting documentation

Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

	SSL Protective of Ground Water/Region 9 Risk-	Mathod Detection Limit	Site Specific Background	Soll Closure		ι - · · · ·	T		T		<u>-</u>							I	
Parameter	Based Concentration (RBC)	(MDL) (mg/kg)	Levels* + 2X S.D. (mg/kg)	Standard	SS-1 0 - 1' 5/27/94	SS-2 0 - 1' 11/4/99	88-3 0 - 1' 11/4/99	SS-4 0 - 1' 11/4/99	38-4-2 3' 9/13/02	SS-4-2 5' 9/13/02	SS-5 0 - 1' 11/4/99	SS-6 0 - 1' 11/4/99	SS-7 0 - 1' 11/4/99	98-7-2 3' 9/13/02	SS-7-2 5' 9/13/02	SS-8 0 - 1' 5/27/94	SS-9 0 - 1' 5/27/94	SS-16 0 - 1' 11/10/99	SS-17 0 - 1' 11/10/99
inorganics (mg/Kg)								,								, ——	·	
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<3.62	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA	<3.73	<3.75	<1.13	<1.15
Barium	848/5,400 mg/kg*	Method 200.7	83.07	848	80.1	246	149	47.7	NA	NA	373	64.3	146	NA	NA	186	31.7	25.3	21.8
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	26	30.9	61.9	74.2	NA	NA	<10.5	31.6	<12.7	NA	NA	61.2	11.2	18.2	<11.5
Bromide	NL	EPA Method 300	DL (Method 300)	PQL (10)	<10	<10	<10	<10	NA	NA	<10	<10	<10	NA	NA	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^s	Method 200.7	0.796	2.72	<0.725	0.712	0.696	0.623	NA	NA	0.335	0.249	0.329	NA	NΑ	<0.746	<0.806	<0.113	<1.15
Chromium	27.2/30 mg/kg*	Method 200.7	27.3	27.2	8.19	15.4	33.6	33.3	8.39	6.74	4.81	8.58	13.2	NA	NA	8.58	4.04	8.03	6.71
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	<3.62	19.9	11.3	6.48	NA	NA	20.9	6.96	19.9	NA	NA	14	<4.04	1.58	1.26
Lead	270/400 mg/kg²	Method 200.7	71.98	270	93.4	225	207	18.5	NA	NA	155	145	397	<11.8	12.6	996	42.7	10.5	25.5
Manganese	65,2/NL mg/kg	Method 200.7	384.53	384.5	82.4	392	298	201	NA	NA	312	290	286	NA	NA	122	278	58.4	35.1
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	<0.145	0.901	1.28	0.855	NA	NA	0.855	0.413	0.662	NA	NA	<0.149	<0.172	0.476	0.652
Nickel	56.4/1,600 mg/kg*	Method 200.7	10.51	56.4	3,12	13.3	8.77	6.48	NA	NA	7.32	3.73	10.0	NA	NA	7.31	<4.04	2.26	1.72
Setenium	12,2/390 mg/kg ^a	Method 200.7	2.99	12.2	<1.45	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA	<1.49	<1.50	2.37	1.72
Silver	0.223/390 mg/kg*	Method 200.7	0.61	PQL	<0.725	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA	<0.746	<0.807	<1.13	<1.15
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	168	49.9	<25	97.5	NA	NA	48.2	51.8	<25	NA	NA	537	172	27.6	<250
Titanium	NL	Method 200.7	996.31	996,00	92.2	789	1,040	948	NA	NA	59	453	130	NA	NA	118	36.1	39.3	43.5
Vanadium	NL/550	Method 200.7	184.91	550	33.8	66	151	173	NA	NA	12.2	56	37.6	NA	NA	33.2	9.62	28.7	21.6
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	388	2,290	625	330	NA	NA	3,680	269	855	NA	NA	5,230	39.6	62.3	111
Radionuclides																			
Gross Alpha (pCl/g)	50	Method 9310	33.47	50	15.4	7.7	9.3	10.6	NA	NA	10.8	19.5	7.7	NA	NA	16.3	8	29.1	28.8
Gross Beta (pCi/g)	50	Method 9310	48.92	48.92	38.6	13,3	12.9	8.9	NA	NA	27.2	32.1	20.7	NA	NA	29	33.3	38.1	47.9
Praseodymium	NL	Method 1620	MDL	MDL	<6.71	<11.9	<12.9	<12.2	NA	NA	<10.4	<12.2	<12.7	NA	NA	<7.48	<7.52	<11.3	<11.5
Radium 226 (pCi/g)	5°	Method 9315	1,33	5	0.6	0.7	1.4	1.5	NA	NA	1.2	1.0	1.6	NA	NA	2.2	1.2	0.7	1.1
Radium 228 (pCi/g)	5°	Method 9315	1.09	5	1.1	<1.0	<1.0	<0.9	NA	NA	<0.9	<1.0	<1.0	NA	NA	1.2	<0.8	<1.0	<1.0

^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Solls and Sediments at Hazardous Waste Sites. December 1995.

^{** =} past holding time for analysis

^{***} Considered Statistical Outlyer - not used

a = NC Hazardous Waste Section Target Remediation Guidelines

b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

DL = Detection Limit

NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence

NL = No Level

Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

<u></u>	SSL Protective of Ground Water/Region 9 Risk-	Method: Detection Limit	Site Specific Background	Soll Closure						, ——							······································		,
Parameter	Based Concentration (RBC)	(MDL) (mg/kg)	Leveis* + 2X S.D. (mg/kg)	Standard	85-18 0 - 1' 11/10/99	SS-19 0 - 1' 11/10/99	\$\$-20 0 - 1' 11/10/99	88-21 0 - 1' 11/10/99	SS-22 0 - 1' 11/4/99	SS-23 0 - 1' 11/18/99	88-24 0 - 1' 11/18/99	SS-24 3' 11/18/99	SS-24-2 4' 9/13/02	88-24-2 6' 9/13/02	SS-25 0 - 1' 11/4/99	SS-25 3' 11/18/99	SS-26 0 - 1' 11/10/99	SS-27 0 - 1' 1/19/00	SS-28 0 - 1' 1/19/00
inorganics (mg/Kg)																		
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<1.16	<1.00	<1.01	<1.09	<1.14	<0.894	<0.942	<0.972	NA	NA	<1.15	<1.25	<1.01	<1.13	<1.11
Barium	848/5,400 mg/kg*	Method 200.7	83.07	848	19.2	20.1	15.3	12	1,490	47	64.8	260	NA	NA	54.4	78.7	135	18.1	8.3
Boron	20.5/5,500 mg/kg*	Method 200.7	77.26	77.24	13.1	<10	<10.1	13.6	33.8	<8.94	11.1	44.2	NA	NA	27.2	70.4	<10.1	6.09	7.41
Bromide	NL	EPA Method 300	DL (Method 300)	PQL (10)	<10	<10	<10	<10	<10	<10	<10	<10	NA	NA	<10	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	<0.116	<0.100	<0.101	<0.109	1.37	0.335	0.168	0.331	NA	NA	0.228	0.318	<0.101	<0.113	<0.111
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	8.95	3.11	2.71	10.1	8.32	18.3	17	15.9	NA	NA	9.44	21	4.65	6.66	4.65
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	1.63	2.0	1.51	1.53	39,5	2,000	203	285	11.4	9.96	3.23	3.37	6.27	1.35	<1.11
Lead	270/400 mg/kg ^a	Method 200.7	71,98	270	6.16	9.02	12.7	7.08	6,830	3.58	65.9	972	372	170	19.4	20.2	65.2	17.2	6.19
Manganese	65.2/NL mg/kg [®]	Method 200.7	384.53	384.5	33.4	161	172	42.7	225	193	267	235	NA	NA	180	97	189	51.5	37.2
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	0.488	<0.200	<0.201	<0.218	2.62	<0.179	<0.189	<0.194	NA	NA	1,28	0.404	4.02	0.904	0.592
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	1.76	<1.0	<1.01	2.29	23.8	50.2	12.9	17.7	NA	NA	3.68	4.24	2.82	1.58	1.22
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	1.51	<1.0	<1.01	2.51	1.48	1.52	<0.942	<0.972	NA	NA	<1.15	<1.25	<1.01	<1.13	<1.11
Silver	0.223/390 mg/kg ⁸	Method 200.7	0.61	PQL	<1.16	<1.0	<1.01	<1.09	<1.14	<0.894	<0.942	<0.972	NA	ΝA	<1.15	<1.25	<1.01	<1.13	<1.11
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	48.1	<100	<100	<25	34.8	35	25.8	53	NA	NA	30.9	62.8	<250	100	275
Titanium	NL.	Method 200.7	996.31	996.00	21.9	15.5	17	34.4	46.4	543	639	451	NA	NA	317	398	23.8	106	57.5
Vanadium	NL/550	Method 200.7	184,91	550	27.8	6.91	4.83	30	17.9	51.5	32.7	31.2	NA	NA	44.2	117	9.2	26.3	26.9
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	34.3	13.1	21.5	17.2	7,020	28.7	131	1,200	1,070	710	40	417	885	13.1	12.3
Radionuclides																			
Gross Alpha (pCi/g)	50	Method 9310	33,47	50	23.3	14.8	11.1	22.8	11.6	1.9	2.1	8.9	NA	NA	20.2	22.8	15.4	NA	NA
Gross Beta (pCi/g)	50	Method 9310	48.92	48.92	36.6	40.3	36	38.1	24.4	9.9	8.6	16.3	NA	NA	29.8	17.3	43.5	NA	NA
Praseodymium	NL	Method 1620	MDL	MDL	<11.6	<10.0	<10.1	<10.9	<11.4	NA	<9.42	<9.63	NA	NA	<11.5	<12.5	<10.1	NA	NA
Radium 226 (pCi/g)	5°	Method 9315	1,33	5	2.4	1.1	0.9	0.6	0.9	1.1	0.5	0.9	NA	NA	1.3	0.5	0.8	NA	NA
Radium 228 (pCi/g)	5°	Method 9315	1.09	5	1.0	1.1	<1.0	1.5	1.0	<1.1	<1.0	<1.1	NA	NA	<1.0	<1.1	<1.0	NA	NA

^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites. December 1995.

^{** =} past holding time for analysis

^{***} Considered Statistical Outlyer - not used

a = NC Hazardous Waste Section Target Remediation Guidelines

b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dllution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

DL = Detection Limit

NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence

NL = No Level

Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

	SSL Protective of Ground Water/Region 9 Risk-	Method Detection Limit	Site Specific Background	Soll Closure		<u> </u>			 									г	
Parameter	Based Concentration (RBC)	(MDL) (mg/kg)	Levels* + 2X S.D. (mg/kg)	Standard	SS-29 0 - 1 ¹ 1/19/00	88-30 0 - 1' 1/19/00	SS-31 0 - 1' 1/19/00	SS-32 0 - 1' 1/19/00	SS-33 0 - 1' 1/19/00	SS-33 3' 1/19/00	\$\$-34 0 - 1' 1/19/00	SS-34 3' 1/19/00	SS-35 0 - 1' 1/19/00	SS-35 3' 1/19/00	\$5-36 0 - 1' 1/19/00	3S-36 3' 1/19/00	58-36-2 3' 9/13/02	\$\$-37 0 - 1' 1/19/00	88-37 3' 1/19/00
Inorganics (mg/Kg	1																		
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<1.13	<1.07	<1.05	<1.04	<0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20
Barium	848/5,400 mg/kg ⁸	Method 200.7	83.07	848	13	22.9	30	25.8	25.5	25.2	39.9	29.9	23.1	17.2	690	10.2	NA	14.6	5.4
Boron	20.5/5,500 mg/kg*	Method 200.7	77.26	77.24	11.8	7.72	8.05	<5.19	<5.20	12.5	<5.30	19.0	107	31.9	56	22.4	NA	32.3	22.0
Bromide	NL	EPA Method 300	DL (Method 300)	PQL (10)	<10	<10	<10	<10	<10	##	<10	**	<10	**	<10	##	NA	<10	**
Cadmium	2.72/39 mg/kg*	Method 200.7	0.796	2.72	<0.113	<0.107	<0.105	<0.104	<0.098	0.159	<0.106	<0.105	<0.122	0.226	<0,126	0,162	NA	<0.120	<0.120
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	7.13	7.29	6.66	4.15	6.97	11.0	5.08	8.42	17.1	12.2	13.2	3.86	NA	10.2	3.6
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	1.92	1.29	4.23	2.7	2.26	2.35	4.45	3,05	3.42	1.86	3,42	1.87	NA	1.32	<1.20
Lead	270/400 mg/kg ^a	Method 200.7	71.98	270	4.87	3.75	15.9	9.12	10.5	5.44	12.5	8.21	17.5	9.16	23.5	7.36	NA	7.46	4.2
Manganese	65,2/NL mg/kg*	Method 200.7	384.53	384.5	87.9	26.5	298	305	408	73.5	164	105	120	62.7	91.5	168	NA	28.9	47.1
Mercury	0.0154/23 mg/kg ^a	Method 200,7	1.22	1.23	2.19	0.858	0.918	0.624	1,41	**	0.425	**	3.87	**	1.43	**	NA	2.65	**
Nickel	56.4/1,600 mg/kg ^a	Method 200,7	10.51	56.4	1,81	1.29	1.16	<1.04	<0.982	1.71	1.17	2.63	5.74	3.01	4.43	1.64	NA	1.56	<1.20
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	<1.13	<1.07	<1.05	<1.04	<0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20
Silver	0.223/390 mg/kg*	Method 200.7	0.61	PQL	<1.13	<1.07	<1.05	<1.04	<0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	<25	43	<250	43.4	<250	**	<250	**	67	**	5,560	**	101	36.8	••
Titanium	NL	Method 200.7	996.31	996.00	137	51.3	61.1	42.8	34.2	13.3	81.7	16.4	339	150	187	47.2	NA	62.2	22.9
Vanadium	NL/550	Method 200.7	184.91	550	29.2	19	12.2	6.74	6.09	21.0	8.69	22.9	210	66.1	87.7	23.8	NA	34.2	14.7
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	25.4	11.7	9.31	4.15	21.6	60.3	15.5	8.1	21.7	23.7	37.1	33.0	NA	11.4	19.9
Radionuclides																			
Gross Alpha (pCi/g)	50	Method 9310	33.47	50	NA	NA	NA	NA	12.7	16.8	17.7	14.1	18.4	19.0	84.8	30.4	NA	27.2	38.2
Gross Beta (pCi/g)	60	Method 9310	48.92	48.92	NA	NA	NA .	NA	39.4	32.5	42.8	32.6	15.7	23.7	48.7	55,6	NA	34.7	42.5
Praseodymium	NL	Method 1620	MDL	MDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 226 (pCi/g)	5°	Method 9315	1.33	5	NA	NA	NA	NA	0.5	1.2	1.4	1.0	1.0	0.9	0.5	0.8	NA	0.7	0.6
Radium 228 (pCi/g)	5°	Method 9315	1.09	5	NA	NA	NA	NA	<1.0	<1.1	<1.1	<1.0	<1.0	<1.1	1.1	<1.0	NA	1.0	<1.0

^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites. December 1995.

^{** =} past holding time for analysis

^{***} Considered Statistical Outlyer - not used

a = NC Hazardous Waste Section Target Remediation Guidelines

b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

DL = Detection Limit

NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence

NL = No Level

Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

Parameter	SSL Protective of Ground Water/Region 9 Risk: Based Concentration (RBC)	Method Detection Limit (MDL) (mg/kg)	Site Specific Background Levels* + 2X S.D. (mg/kg)	Soll Closure Standard	88-38	SS-38	SS-39	SS-39	SS-40	88-40	\$5-41	8S-41	\$8-42	SS-43	SS-43	BG-1	BG-2	G8-3	GS-4
			<u></u>		1/19/00	1/19/00	2/17/00	2/17/00	2/17/00	2/17/00	2/17/00	2/17/00	2/17/00	2/17/00	2/17/00	11/10/99	11/10/99	11/18/99	11/18/99
inorganics (mg/Kg	}			r							· · · · · ·				· · · ·	·			
Arsenic	5.24/0.39 mg/kg*	Method 200.7	0.61	PQL	<1.01	<0.982	<0.953	<1.05	<0.939	<1.13	<1.08	<1.04	<0.971	<1.03	<1.11	<1.18	<1.09	<1.15	<1.12
Barium	848/5,400 mg/kg*	Method 200.7	83.07	848	25	4.62	40.2	<4.19	39.5	63.5	435	50.6	140	34.8	55.1	19.2	43.12	67.4	45
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	6.55	<9.82	<9.53	<10.5	<9.39	<11.3	<10.8	<10.4	13.0	<10.3	<11.1	24.3	<10.9	42.4	57.3
Bromide	NL	EPA Method 300	DL (Method 300)	PQL (10)	<10	##	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	<0.101	<0.098	<0.095	<0.105	<0.094	<0.113	<0.108	<0.104	<0.097	<0.103	<0.111	<0.118	<0.109	0.23	0.504
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	8.07	3,14	12.7	<1.05	16.7	3.16	4.53	8.14	11.8	6.82	8.64	11.5	6.76	18.8	20.6
Cobalt	22/4,700 mg/kg*	Method 200.7	39.49	39.50	2.82	1.18	6.00	<1.05	8.07	9.59	5.82	10.5	9.42	3.82	3.77	2.0	2.94	8.64	20.4
Lead	270/400 mg/kg ^a	Method 200.7	71.98	270	7.77	5.5	4.67	<0.523	1.03	11.5	44.6	20.5	239	16.8	32.7	13.4	13.2	44.1	52.7
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	90.5	42.0	219	<1.05	234	4.21	E19	153	142	302	119	42.5	123	183	305
Mercury	0.0154/23 mg/kg*	Method 200.7	1.22	1.23	0.942	**	<0.191	<0.209	<0.188	<0.226	0.307	<0.209	<0.194	<0.206	<0.221	5.54***	0.862	<0.231	<0224
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	1.72	<0.982	6.96	<1.05	9.95	3.50	1.94	2.19	6.31	1.76	2.66	2.82	2.73	6.34	8.28
Selenium	12.2/390 mg/kg ⁶	Method 200.7	2.99	12.2	<1.01	<0.982	<0.953	<1.05	<0.939	<1.13	<1.08	<1.04	<0.971	<1.03	<1.11	2.47	1.2	<1.15	<1.12
Silver	0,223/390 mg/kg ^a	Method 200.7	0.61	PQL	<1.01	<0.982	<0.953	<1.05	<0.939	<1.13	<1.08	<1.04	<0.971	<1.03	<1.11	<1.18	<1.09	<1.15	<1.12
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	37.3	**	<25	<25	<25	<25	<25	<25	<25	<25	<25	<100	<100	27	57.7
Titanium	NL	Method 200.7	996.31	996.00	47.2	13.4	357	<10.5	384	356	24.8	26.9	84.7	22.3	26.3	65.7	181	644	649
Vanadium	NL/550	Method 200.7	184.91	550	16.6	9.53	20.6	1.46	22.5	33.4	7.87	16.0	20.1	12.2	25.6	45.2	27.6	89.4	148
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	6.56	7.76	34.9	2.83	26.2	32.3	390	78.8	258	21.2	9.60	149	124	124	101
Radionuclides																			
Gross Alpha (pCi/g)	50	Method 9310	33.47	50	16.1	13.6	<2.3	<2.0	<2.2	20.3	19.8	10.0	7.9	13.3	27.4	22.4	23.5	7.9	6.1
Gross Beta (pCi/g)	50	Method 9310	48.92	48.92	40.6	38.9	9.1	2	10.8	29.6	30.0	16.1	14.0	37.6	37.6	31	33.2	6.2	6.8
Praseodymium	NL	Method 1620	MDL	MDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<11.8	<10.9	<11.5	<11.2
Radium 226 (pCi/g)	5°	Method 9315	1.33	5	0.7	0.7	0.2	<0.3	<0.4	1.3	0.8	1.5	1.0	0.7	0.5	1	1.1	0.6	0.7
Radium 228 (pCi/g)	5°	Method 9315	1.09	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.1	<1.1	<1.1	<1.1	1.0	1.8	<1.0	0.9	<1.1	<1.0

^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites. December 1995.

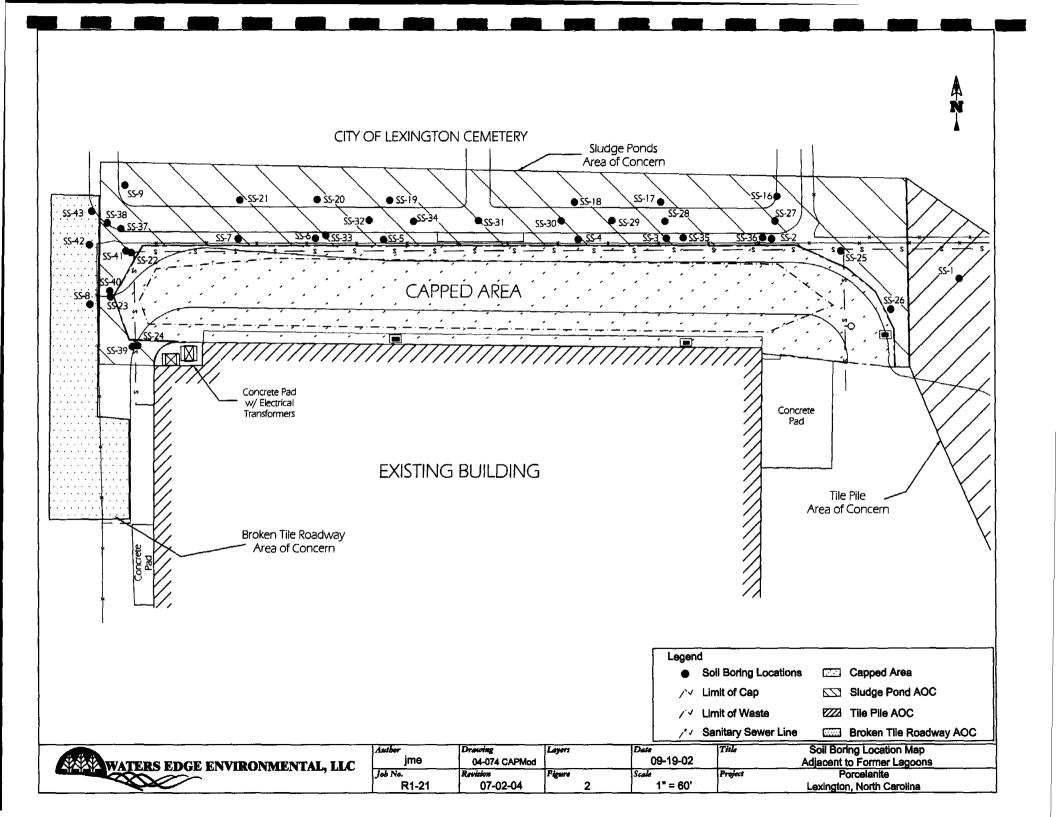
^{** =} past holding time for analysis

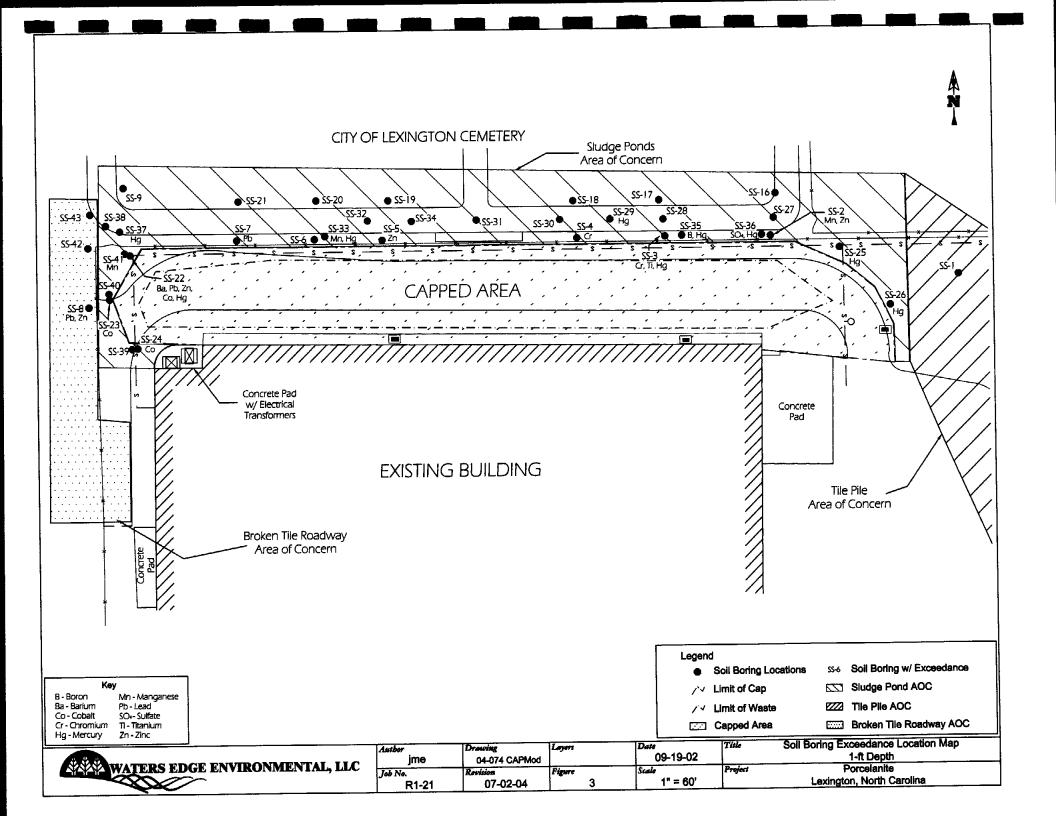
^{***} Considered Statistical Outlyer - not used

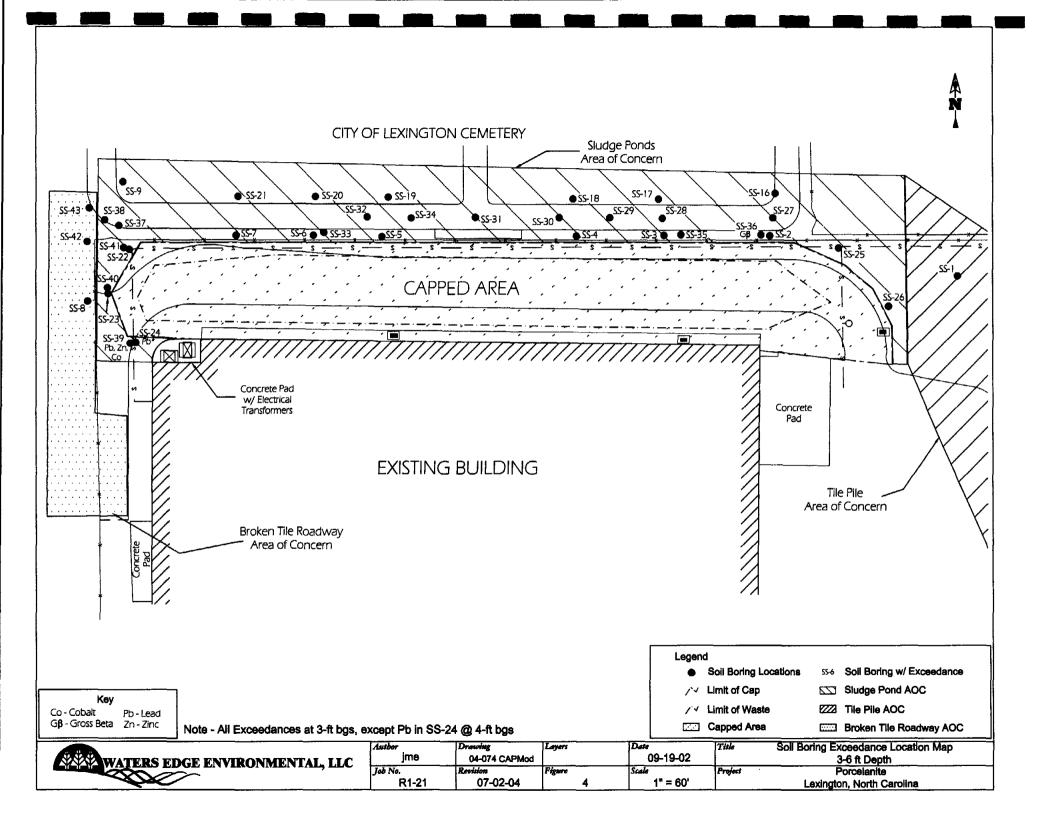
a = NC Hazardous Waste Section Target Remediation Guidelines

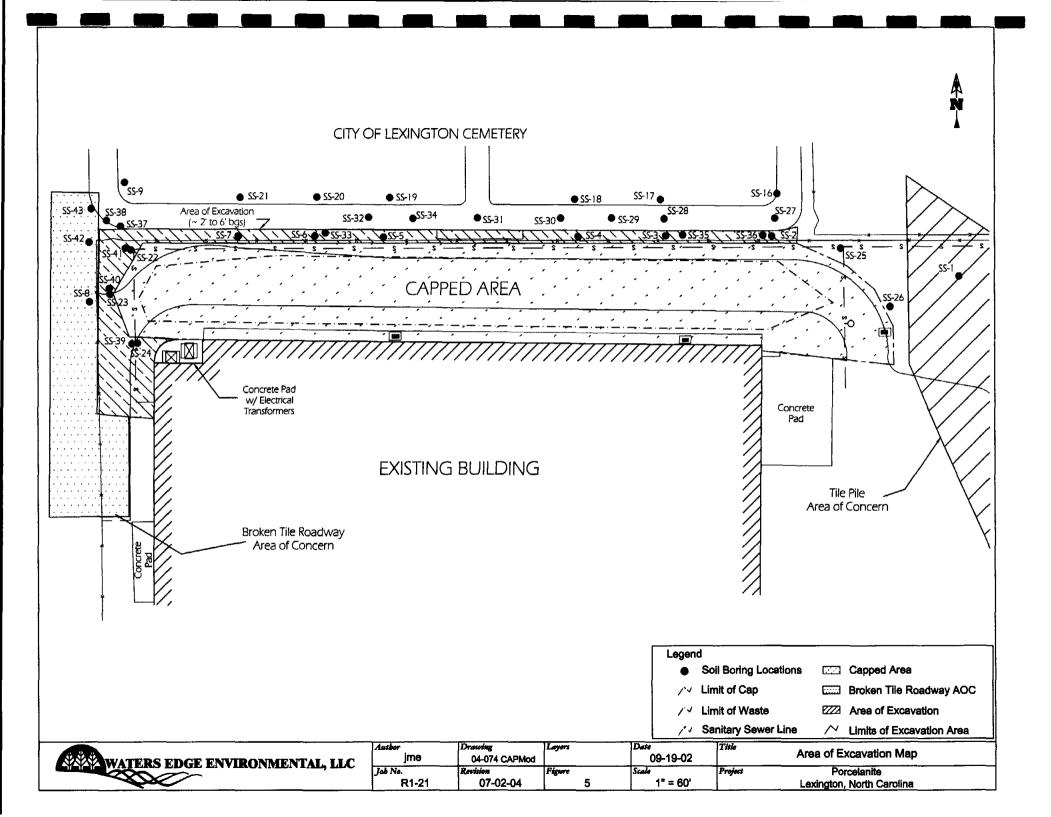
b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence


DL = Detection Limit


NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence


NL = No Level



	jme	R1-21	22947	1-24-01	Project Location Map
WATERS EDGE ENVIRONMENTAL, LLC	Ja6 №. R1-21	Revision 11-1-02	Figure 1	Scale 1"=2000'	Porcelanite, Inc. Lexington, North Carolina

Pledmont Landfill and Recycling Center 9900 Freeman Road Kernereville, NC 27284 810-595-8677

A Waste Management Company

NON-HAZARDOUS MANIFEST

53369

G	ENERATOR			
Generator Poscelanite Inc.	L.D. #		····	
Address 20 Victor St. Setimpton, nc 27292	Generato (If diffe	r's Shipping Lo rent from gene	cation of Waste rator address)	
	_eeenbbA			
Phone 336-434-7750	Phone			
Description of Waste Materials	Profile Number	Total Quantity	Unit of Measure	Container Type
Qui P	CM1569	•	Zons	Dumps
			·.,	
		, , , , , , , , , , , , , , , , , , ,		<i>*</i>
Er. C.D. McManus Generator Authorized Agant Name (Print) Transporter Name Low Co. Address Section St. High Forint, N.C. I hereby acknowledge receipt of the above-des materials for transport from the generator site above.	Driver No Truck No Truck Ty dribed i hereby a listed were rea	mber pe soknowledge the lived from the	2001C	Delivery Date 13 RCL XX escribed materials and were trens- n listed below.
Rannie BROWZE 16.26	OD Pon	m Ba		0.26.2
Driver Signature Shipment	·			Delivery Date
Site Name PIEDMONT LANDFILL AND REAddress 9900 FREEMAN ROAD, KERNI Disposal Location: SAME I hereby acknowledge receipt of the above-descriptions.	ERSVILLE, NC	TER Phone	Number (91	0) 595-8677
Pledmont Landfill and Recycling Cente 9900 Freeman Road Kernersville, NC 27284	r ·	Bust	in li)/26/00
Authorized Agent	Signatu	re		Receipt Date

Piedmont Landfill and Recycling Center

9900 Freeman Road Kerneraville, NC 27284 910-595-6677

A Waste Management Company

NON-HAZARDOUS MANIFEST

53370

GEN	ERATOR			
Generator Porcelonite Inc.	L.D. #			
ionerator December 1				
doress ZO Victor St. Serneton nc	Generator (f diffe	r's Shipping Loi rant from genet	eation of Waste, ator address)	
Seventar, 112	•			
771 11711 7753				
Thone 336.434.7750	_ Phone			
Description of	Profile	Total	Unit of	Container
Vaste Materiala	Number	Quantity	Measure	Тура
ا ا ا	CM1569		Sans	Dung
,,**.				
			1	
neceby certify that the above-described materials a			delland by 10	CCD Dest 201 At
ony applicable state law, have been fully and socur- condition for transportation according to applicable to	regulations.			
Generator Authorized Agent Heme (Print)	Signature		1	Delivery Date
IKAI	NSPORTER	<u>{ </u>		
ransporter Name South Lo.	_ Driver Na	ime (Print)	Banic.	Beauti
ddress Brentwood St	Truck No	mbor Sec	· • •	· <u></u>
High Point 1 c	1.			
The same of the sa	Truck Ty	pe		
hereby acknowledge receipt of the above-describe				scribed meterials
naterials for transport from the generator sita lists	portes' wh		the destination	and ware trans- n listed below,
Kamus Brander	Pom	- Bree	14-10	. 29 00
Priver Signature Shipment Date	Driver S	ignature		Delivery Date
DES	TINATION			
			•	
Site Name PIEDMONT LANDFILL AND RECY	CLING CEN	TEB Phone	Number <u>(91</u>	0) 695-6677
ddress 9900 FREEMAN ROAD, KERNERS	SVILLE, NC	27284		
leposal Location: SAME		- 12		
hereby acknowledge receipt of the above-describe	d materials.			
Piedmont Landfill and Recycling Center			 .	
9900 Freeman Road Kernersville, NC 27284	90	21300		10/201
Authbrized Agent	ت کے ا			Deaning Dean
the state of the s	Signatul	· 65		Receipt Date/

Pledmont Landill and Recycling Center 9900 Fraemen Resd Kernersville, NC 27284 910-595-6877

A Waste Management Company NON-HAZARDOUS MANIFEST

; GE	NERATOR			
Generator Povelante Inc. Address Zavistar St. Salington, Nc.		or's Shipping Loc erent from gener		
Phone 336.434:7750	Phone _			
Description of Waste Materials	Profile Number	Total Guentity	Unit of Measure	Container Type
Inil marine	CM1569		1 tomas	Augo
			73.02	
3				
				
I hereby certify that the above-described materials any applicable state law, have been fully and accurate condition for transportation according to applicable Fire DM Muny. Generator Authorized Agent Name (Print) TRA Transporter Name Andrews D. Address 2718 Murkowic D. I hereby acknowledge receipt of the above-describe materials for transport from the generator site list above. Driver Signature Shipment Date	Signature Signature NSFORTE Driver Ne Truck Nu Truck Ty ad hereby : were read ported will	Muma American American American American American Acknowledge tha	t the above-dead the destination	Delivery Date
Site Name PIEDMONT LANDFILL AND RECY Address 9900 FREEMAN ROAD, KERNERS Disposal Location SAME Thereby acknowledge receipt of the above-described	SVILLE, NC :		Number <u>(910</u>) 595-867 7
Second Road Kernersville, NC 27284 Authorized Agent	Signatur	Bu	Q-1	<u> </u>

Pledmont Landfill and Recycling Center 9900 Freeman Road Kernersville, NC 27284 910-595-6677

BOY, 214

Δ	Wasta	Manag	ement	Сотрапу
А	Marie	manag	Ailleill	Company

NON-HAZARDOUS MANIFEST

53378

G	ENERATOR			00070
Generator Povelonite Anc				
Generator Novekonite the	L.D. #			
Address 70 Mich St. Sexunation, 1 C 27292	Generato	r's Shipping Los rent from gener	eten of Waste	· · · · · · · · · · · · · · · · · · ·
Sewington, 1 C 27292	(u adia	_	•	
,	Address	·		
Phone	Phone			
Description of	Profile	Total	Unit of	Container
Wzało Materials	Number	Quantity	Measure	Тура
Loil	CM1569		Jons	Dump
	:			1
	† 			
	-			
	<	<u> </u>		
				<u> </u>
	1		<u> </u>	1
any applicable state law, have been fully and according to applicable on the state of the state	ie regulations.	1		, , ,
Generator Authorized Agent Name (Print)		D. Ir Leav	homus	70 26 °C
				Delivery Date
	ANSPORTER			
Transporter Name South Co.	Driver Na	me (Print) 🔏	nhir	BRREW
Address Brancoo St				
Hab Point, 1c		•		
· A				
l hereby acknowledge receipt of the above-descr malerials for transport from the generator site li	ribed I hereby a	cknowledge tha lived from the	il the sbove-de: benerator sile	scribed materials and ware trans-
10.26.0	ported will	hour inclident to	the destination	listed below.
Oriver Signature Shipment D	Mark Color V	MANUEL HOR	26/5	10.30. Delivery Date
		Aubinia		Delivery Date
Di	STINATION			
Site Name <u>PIEDMONT LANDFILL AND REC</u>	YCLING CENT	ER Phone	Number (91)	0) 595-6677
Address 9900 FREEMAN ROAD, KERNE				
	The Later 140 E	. r & U MP		
Disposal Location: SAME				
hereby acknowledge receipt of the above-describ	bed materials,		•	
Pledmont Landfill and Recycling Center 1900 Freeman Road (ernersville, NC 27284		(1) (1)	1-	(1/2) D
Authorized Agent	Cinnette			
·	Şignətun	#		Receipt Date

Piedmont Landfill and Recycling Center 9900 Freeman Road Kernereville, NC 27284 910-595-6677 A Waste Management Company NON-HAZAR

NON-HAZARDOUS MANIFEST

GE	NEHATOR					
Generator Porcelonite m.	L.D. #		1. 2. 6			
Servação, 1C	Generato (II diffe	r's Shipping Loo rent from genera	etion of Watte ator address)	Mass)		
Phone 336:434-7750	Phone					
Description of Vasis Materials	Profile Number	ie Total Quantity	Unit of Mensure	Container Typs		
Sol	K.M1569	17.73	tons	Dum		
				140		
Generator Authorized Agent Name (Print)	Signeture		names	10-26. Delivery Date		
	NSPORTER	₹				
Fransporter Name A+ DEnv.	Driver Na	ima (Print) <u>Gu</u>	y Summ	0125		
Address 2718 mahanie Dr.	_ Truck Nu	mber	2			
High Point 1.	Truck Ty	DB				
hereby acknowledge receipt of the above-describe materials for transport from the generator site lists above.	ported will	eknowledge that elved from the t thout incident to	ieneralor sile The destination	and were trans		
Drivep Signature Shipment Date		ignature		Delivery Date		
DES	TINATION					
Bite Name PIEDMONT LANDFILL AND RECY	CLING CENT	ΓΕ R Phone N	lumbar(910) 595-6677		
44 9000 COLEMAN BOAD WEBSIER	SVILLE NC 2	•				
darees bood PREEMAIN HUAD, KENNERS						
Disposal Location: SAME						
Disposal Location: SAME hereby acknowledge receipt of the above-describe Pledmont Landfill and Recycling Center						
Disposal Location: SAME hereby acknowledge receipt of the above-describe		71. O.	(0(76/20		

myselfe I delivered to this facility on this date times in populated hexardous, toxic, radioactive westes or subminimize to other more slipwable weates. I also agree to remove any non-ellowable wastes I bring to this lacility, or pay, all costs for proper removal of such wastes, upon request from this facility."

DRIVER: PLEASE SIGN HERE

5551369

Piedmont Landfill 9900 Freeman Road Kernsrsville, NC 27284-0000

Page: 01 of 01

0217307

ORIGINAL

	And Short			UNIU III
COUTHCO ENTERPRISES	4604 EA	B 1:46PM	2:10PM	10/30/20
ORCELANITE		GROSS Lbs		.540.00IN-
& D	0004461	NET Lbs	: 28	, 760.00
IC PUBLIC WEIGHMASTER EXP.	5/30/01			
MICA ALAYNE BURTON		ADJUSTED L	bs : 28	,760.00
AVIDSON COUNTY		NEW TOTAL STREET	OTHERNINEORMA	ПОИ
HVIDSDN COONIY		CM 1569 MANIF 5	 ,	

WASTE MANAGEMENT. 2, 1.0, 865

691		WASTE		14.38		生物的人 加克	PARAMOUNIALEAS	4127
r Popular	All pursues	e didication	i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de				NAME OF THE PARTY	
					Manager,	Walter Land	CONTRACTOR OF THE SAME OF THE	1
are a last the last of				भारता द्वार्याच्या इतिहासिका । हा			in De outbrooksingtigen eter	

"I gertify that the waste I delivered to this facility on this date does not contain any regulated hazardous, tailo, sationative wastes of substances; or other non-allowable wastes, I also agree to romove it of manifellowable wastes I bring to this facility, or pay all costs for proper removal of such wastes, upon request from this facility."

DRIVER: PLEASE SIGN HERE

5550932

Piedmont Landfill 9900 Freeman Road

Kernersville, NC 27284-0000

Page: 01 of 01

RATION DE L'ARREST

0216874

'ORIGINAL

SOUTHOO ENTERPRISES	4602	oporatio Bun	12:14PM	12:47PM	10/26/200
PORCELANITE	n Victoria de la compansión de la compan	No section 1	GROSS Lbs		450.00IN-2 880.000UT-
A & D	0004461		NET Lbs	: 43,	,580.00
NC PUBLIC HEIGHMASTER EXP. 06 PLEASE FOLLOW ALL REQUEST BY	5/30/01				
PDEMSELTATION HEL REGUEST BY			ADJUSTED LE	s : 43,	582.00

DAVIDSON COUNTY

WASTE MANAGEMENT, 2, 1.0, 885

•	SECULO MATERIAL PROTECTION OF THE PROTECTION OF	THE COAMIDATE MERSURE	THATE SEED OF THE THOUSE THE
	601 -SPECIAL WASTE	21.79 TONS	

"I certify that the waste I delivered to this locitity on this date does inst contain any requisited hazardous, texic, redisative wastes of authorism or other non-allowable westes. I also agree to remove any non-allowable wastes I bring to this facility, or pay all costs for proper removal of such wastes, upon request from this facility."

DRIVER: PLEASE SIGN HERE

5551125

Piedmont Landfill 9900 Freeman Road kernersville, NC 27284-0000

Page: 01 of 01

然为(cxc) 通用的数

Ø217Ø66

ORIBINAL

	GPASS I he			. 56	740 001N-1
A&D ENVIRONMENTAL	D-2	EAB	1:30PM	1:31PM	10/27/2000
		ORE NATOR	HEALTH WAR	ANGEL OF THE	AN LOS BRANCH

PORCELANITE

GROSS Lbs

TARE Lbs

29,540.00BUT-0

NET Lbs

27, 200.00

A & D

0004461

AUBLIC/WEIGHMASTER EXP. 6/30/01

ADJUSTED Lbs

27, 200.00

BURTON

THE RESIDENCE OF THE PROPERTY

DAVIDSON COUNTY

WASTE MANAGEMENTET. 2, 1.0, 885

7.	MAJERN	CONTRICTED	NAME	AND DEPOSIT OF THE PERSON OF T	がところのからに可以		
681	-8PECIAL	WASTE		13.60	TONS		, .
							:
1							
							١.

"I certify that the waste I delivered to this facility on this data does not contain any regulated hazardous, took, radioscure wastes or substances, or other non-allowable wastes. I also agree to remove any non-allowable wastes I bring to this facility, or pay all costs for proper removal of such wastes, upon request from this facility."

DRIVER: PLEASE SIGN HERE

Jus Summers

5550916

Piedmont Landfill 9900 Freeman Road Kernersville, NC 27284-0000

Page: 01 of 01

0216858

ORIGINAL

Research District Control of the Con		TO EXCHANGE		, armatar	成於在北京的	
A&D ENVIRONMENTAL	D-2	NJB	11:59AM	18:14PM	10/26/2000	ı

PORCELANITE

DROSS Lbs

65,000.00IN-1

TARE Lbs

29,540.00001-

NET Los

35,460.00

A & D

0004451

NC PUBLIC WEIGHMOSTER EXP. 06/30/01 PLEASE FOLLOW ALL REQUEST BY PLF

NINA BUTLER

ADJUSTED Lbs

35, 460, 20

DAVIDSON COUNTY

WASTE MANAGEMERIE7. 2, 1.0, 885

STATE OF THE PROPERTY OF THE P	STATE CHANGE TANK	MERCHIE	3000000	ESCHIENCEN THREE WAS	
681 -SPECIAL WASTE	17.73	ENOT			
		1			
	l I	i			1

THE STATE OF THE S

Proposed Modification to the Closure Plan
Lagoon Closure Activities
Porcelanite, Inc.
Lexington, North Carolina
November 5, 2002

Prepared For

Porcelanite, Inc. Lexington, North Carolina

Prepared By

Waters Edge Environmental, LLC Raleigh, North Carolina

Table of Contents

1	Ba	ckground	1
2	Sit	e Setting	2
2	2.1	Topographic Setting	2
	2.2	Geologic Setting	2
	2.3	Hydrogeologic Setting	2
3		il Boring Investigations	3
4		mited Risk-Based Assessment	3
•	4.1	Arsenic	3
	4.2	Barium	4
	4.3	Boron	4
	4.4	Bromide	4
	4.5	Cadmium	<i>4</i> <i>5</i>
	4.6	Chromium	5
	4.7	Cobalt	5
	4.8	Lead	6
	4.9	Manganese	6
	4.10	Mercury	6
	4.11	Nickel	6
	4.12	Selenium	7
	4.13	Silver	7
	4.14	Sulfate	7
	4.15	Titanium	8
	4.16	Vanadium	8
	4.17	Zinc	8
	4.18	Gross Alpha	8
	4.19	Gross Beta	9
	4.20	Radium 226 and Radium 228	9
5		roposed Activities to Meet Closure Objectives and Modification of losure Plan	9

Figures

Figure No.	<u>Title</u>
1 2 3 4 5 6	Project Location Map Site Location Map with Background Borings Soil Boring Location Map Adjacent to Former Sludge Ponds Soil Boring Exceedance Location Map- 1' Depth Soil Boring Exceedance Map- 3-6' Depth "x" Confirmatory Sample Location Map

Tables

<u>Table</u>	<u>Title</u>
1	Soil Sampling Analytical Results versus Soil Closure Standard

Appendix

<u>Appendix</u>	<u>Title</u>
Α	Porcelanite Mercury Correspondence

2 Site Setting

2.1 Topographic Setting

The site is located in the central portion of the Piedmont Physiographic province in North Carolina. The Piedmont region is characterized by rolling hill topography. This topography was developed by tectonic uplift and subsequent erosion of the region between the Blue Ridge Mountains and the Atlantic Ocean.

The site lies on the margin of a minor first order stream known as Walltown Drain. Site topography is dictated by the stream valley and is characterized by an average topographic grade of approximately 0.085 foot per foot (ft/ft) sloping to the northeast.

2.2 Geologic Setting

The site is situated in the eastern portion of the Charlotte Lithotectonic Belt, which is a zone of regionally metamorphosed amphibolite facies igneous rocks with a similar character, bounded on the east and west sides by shear zones. According to the Charlotte geologic quadrangle map, Late Proterozoic aged undivided metavolcanic rocks underlie the site. However, bedrock ideologies encountered at the site consist of massive, quartz-potassium feldspar-muscovite granite to granodiorite that are likely associated with the Pennsylvanian to Permian aged Churchland Pluton.

2.3 Hydrogeologic Setting

As is typical of the Piedmont Physiographic Province, ground water occurs in two aquifers at the site. These include the unconsolidated (regolith) shallow aquifer water table and the underlying fractured bedrock deep aguifer. These two aguifers are directly interconnected and are not separated by a confining layer at the site. The regolith zone acts as the storage reservoir for the underlying bedrock zone, thus recharging the bedrock aquifer in response to any withdrawal of water from the bedrock. Ground water in the shallow aquifer has been mapped to illustrate the direction and gradient of ground water flow from the most recent quarterly sampling round in September 2002 (see the Third Quarter 2002 Monitoring Report for Porcelanite, Inc. submitted by Waters Edge on October 30, 2002). Ground water in the aquifer flows toward the northeast under a hydraulic gradient measured at 0.030 ft/ft. The local point of shallow ground water discharge from the aquifer appears to be Walltown Drain. Recharge to the aquifer occurs as surface water infiltrates through the unconsolidated (regolith) zone from higher topographic regions southwest of the site. Based upon slug testing conducted on existing monitoring wells at the site, the hydraulic conductivity of the regolith water table aquifer is approximately 0.4 ft/day.

Ground water monitoring has been conducted at the site since 1989. A total of 18 monitoring wells are currently being utilized to monitor the ground water including eight wells hydraulically cross-gradient and downgradient of the closed sludge ponds (MW-3A, MW-9, MW-10, MW-11, MW-12, MW-13, MW-14 and MW-28). It is estimated that the shallow ground water at the site is approximately 20 feet below ground surface (bgs) in the area of the closed sludge ponds.

3 Soil Boring Investigations

Since 1994, a total of 53 borings have been conducted adjacent to the former lagoons, which are depicted in Figures 2 and 3. We have also conducted four background soil borings at areas on the site, which are felt to be background borings unaffected by past operations (see Figure 2). Most of the borings were sampled for the constituent list presented as part of closure, which is comprised of 17 inorganic constituents and originally 5 radionucleides. Praseodymium was subsequently dropped at a point during these investigation activities since it was not detected in the soils. These borings were sampled at 1' bgs, with selected samples at 3' bgs dependant on whether the 1' interval met the SCS being negotiated at that point in time. Additional borings have been performed at several locations to depths of up to 6' bgs for the purpose of determining the vertical extent of contamination at locations with SCS exceedances at the 3' depth. The results are summarized in Table 1 and the current closure standard exceedances for the 1' and 3'-6' depths are depicted in Figure 4 and 5 respectively.

4 Limited Risk-Based Assessment

Based on the current soil boring cleanup objectives proposed by NCDENR, we have included a discussion of the soil analytical results versus the SCS objective on a constituent by constituent basis.

4.1 Arsenic

All 53 investigation soil samples collected adjacent to the former sludge ponds and four background soil borings were below the PQL ranging between 0.894 mg/kg and 3.75 mg/kg. Since all results were below the PQL, this meets the arsenic SCS proposed by NCDENR even though all of the PQLs would be above the Region 9 Residential Preliminary Remediation Goal (PRG) of 0.39 mg/kg; however, all of the arsenic levels are below the Region 9 Industrial PRG of 2.7 mg/kg.

4.9 Manganese

Three of the 53 investigation soil borings exceed the manganese SCS of 384.5 mg/kg. This is at SS-2 (0-1' bgs) at 392 mg/kg, SS-33 (0-1' bgs) at 408 mg/kg and SS-41 (0-1' bgs) at 519 mg/kg. SS-35 is adjacent to SS-3 and meets the manganese SCS at 3' bgs, SS-33 met the manganese SCS at 3' bgs and SS-41 met the manganese SCS at 3' bgs, therefore the extent appears to be very limited. These manganese levels are below the industrial and residential soil ingestion levels of 47,000 mg/kg and 1,800 mg/kg respectively. Past ground water sampling indicates that manganese has been detected above NCGS standards in the adjacent monitoring wells (MW-3A, MW-9, MW-12, MW28). Further investigation is not warranted and the soil exceeding the SCSs will be removed and disposed in accordance with local, state and federal regulations at SS-2, SS-33 and SS-41.

4.10 Mercury

Nine of the 53 investigation soil borings exceed the mercury SCS of 1.23 mg/kg. This is at SS-3 (0-1' bgs) at 1.28 mg/kg, SS-22 (0-1' bgs) at 2.62 mg/kg, SS-25 (0-1' bgs) at 1.28 mg/kg, SS-26 (0-1' bgs) at 4.02 mg/kg, SS-29 (0-1' bgs) at 2.19 mg/kg, SS-33 (0-1' bgs) at 1.41 mg/kg, SS-35 (0-1' bgs) at 3.67 mg/kg, SS-36 (0-1' bgs) at 1.43 mg/kg, and SS-37 (0-1' bgs) at 2.65 mg/kg. These mercury levels are all below one of the background soil samples, which detected 5.54 mg/kg but was considered a statistical outlier. Porcelanite has also documented (attached document in Appendix A) that mercury was never contained in any of their processes or waste materials. Therefore, we would conclude that the detection of mercury in these soil samples are due to background conditions and no further consideration be given to further investigation or remediation.

4.11 Nickel

All 53 investigation soil borings were less than the nickel SCS of 56.4 mg/kg. Past ground water sampling indicates that nickel has not exceeded NCGS standards in the adjacent monitoring wells. No further investigation or remediation is warranted.

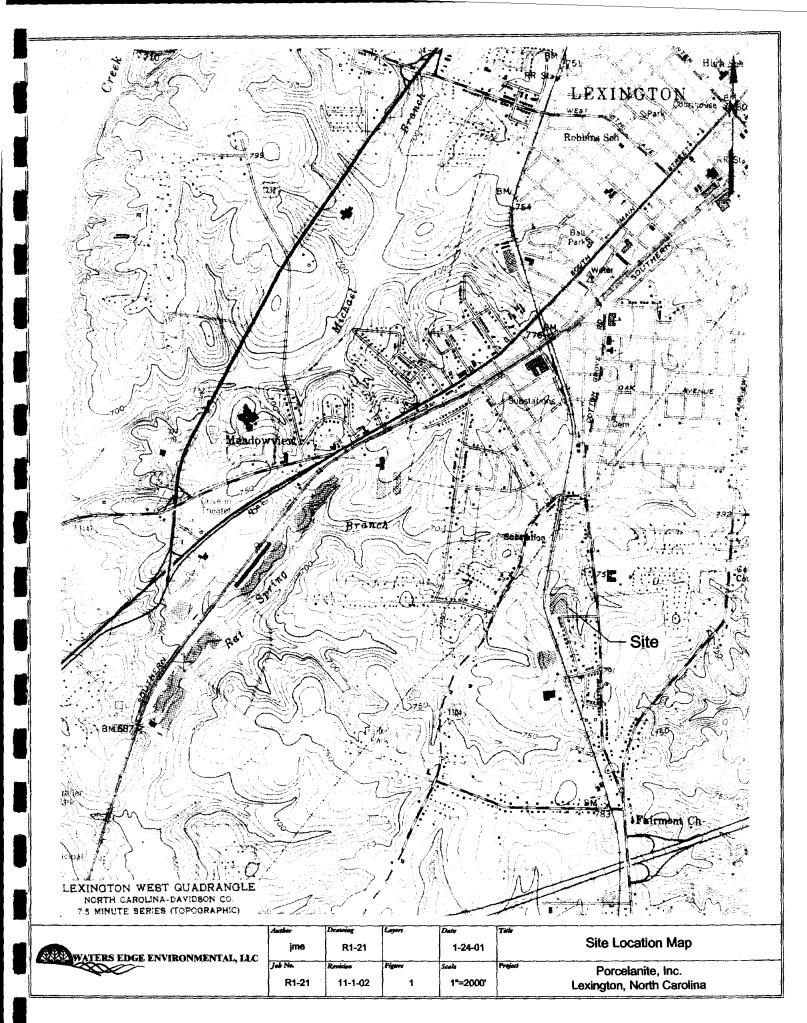
4.12 Selenium

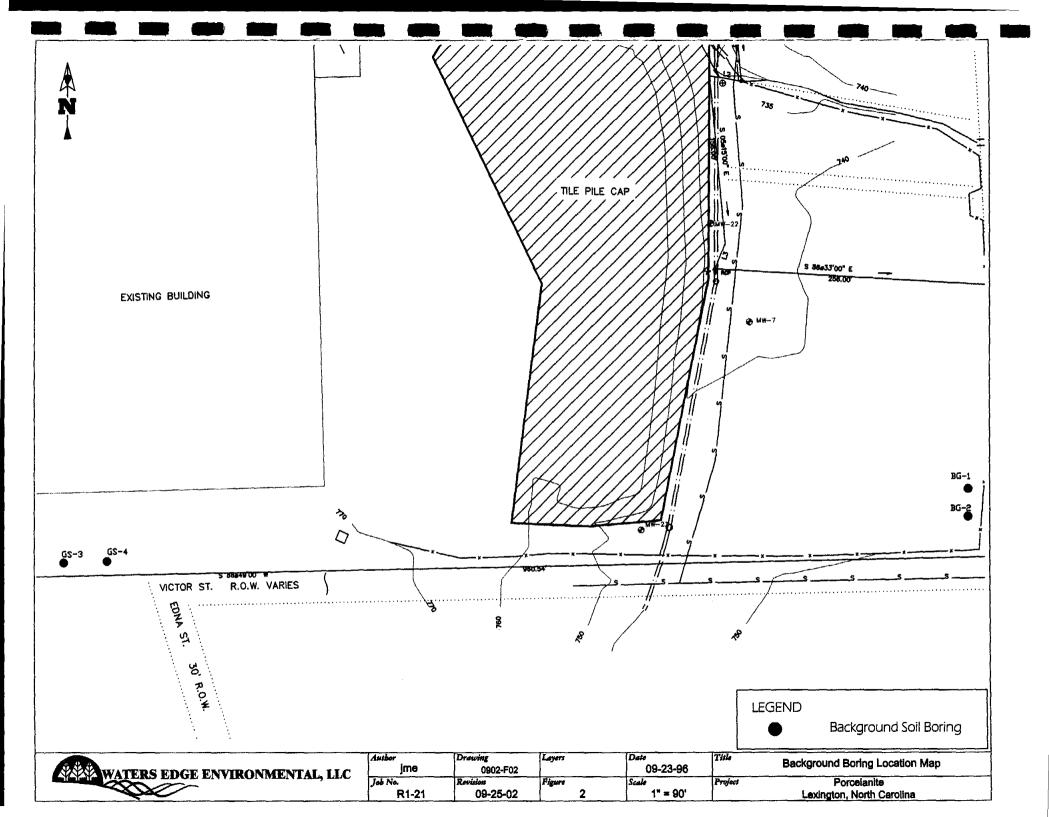
All 53 investigation soil borings were less than the selenium SCS of 12.2 mg/kg. Past ground water sampling indicates that selenium has not exceeded NCGS standards in the adjacent monitoring wells. No further investigation or remediation is warranted.

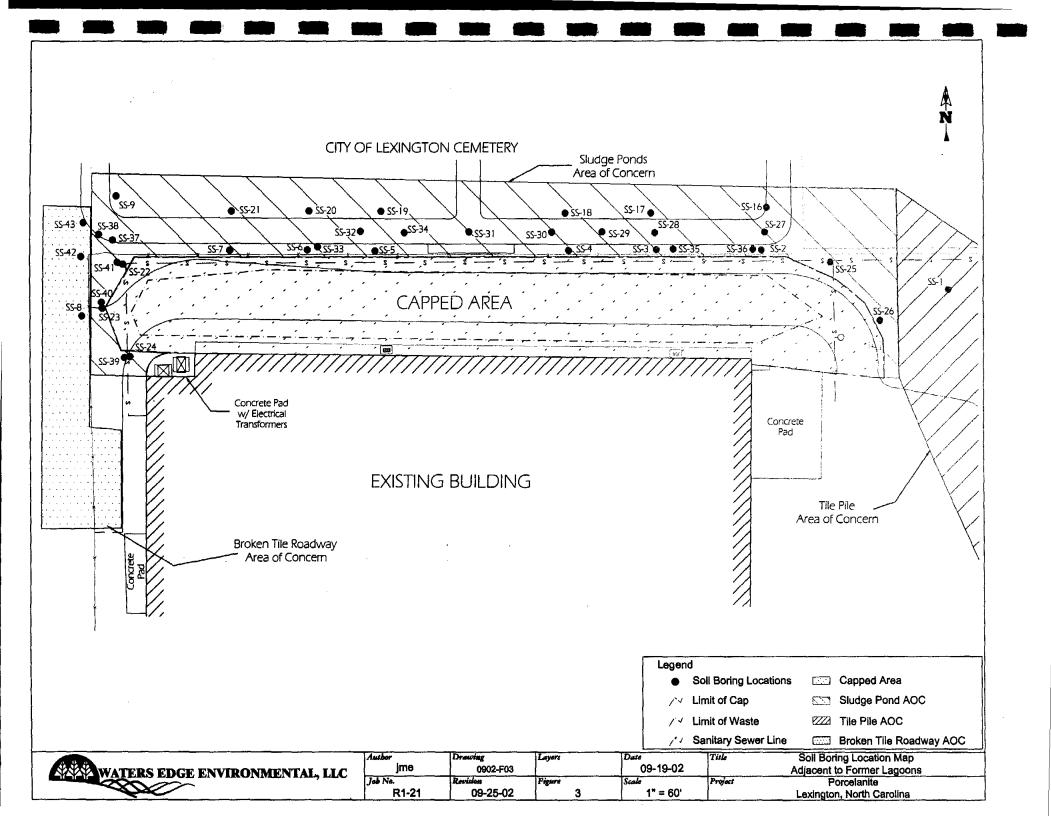
4.16 Vanadium

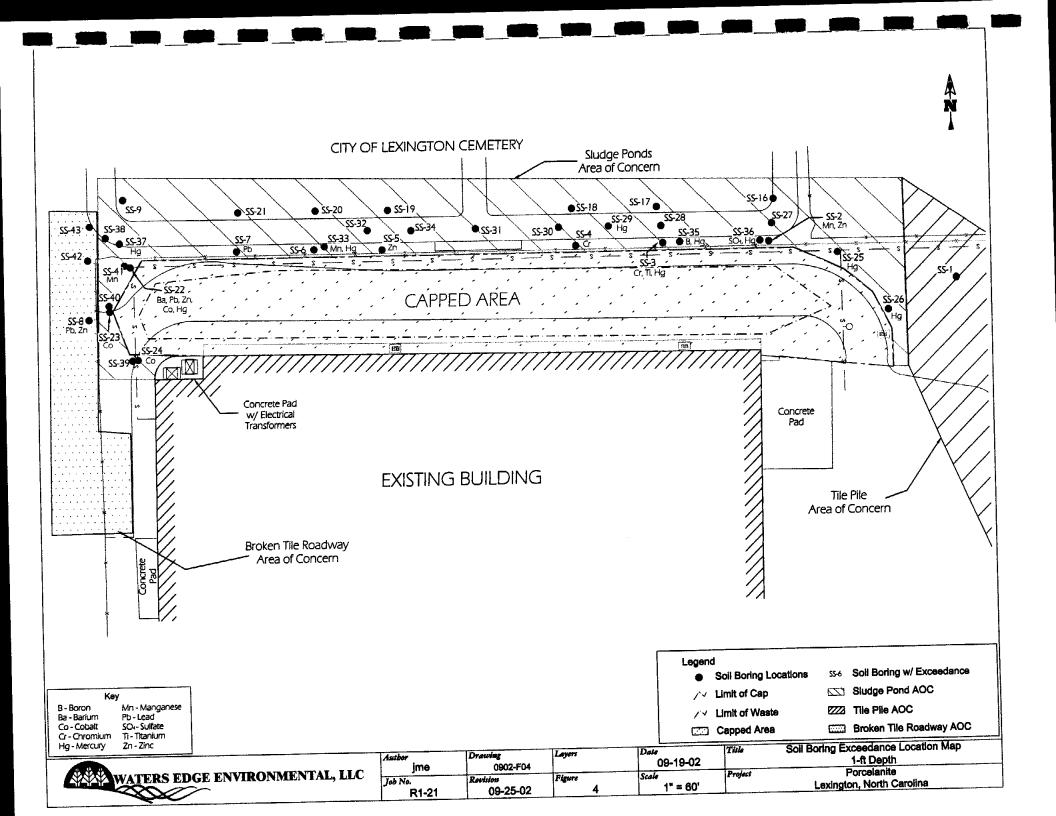
All 53 investigation soil borings were less than the vanadium SCS at 550 mg/kg. Past ground water sampling indicates that vanadium has not exceeded NCGS standards in the adjacent monitoring wells. No further investigation or remediation is warranted.

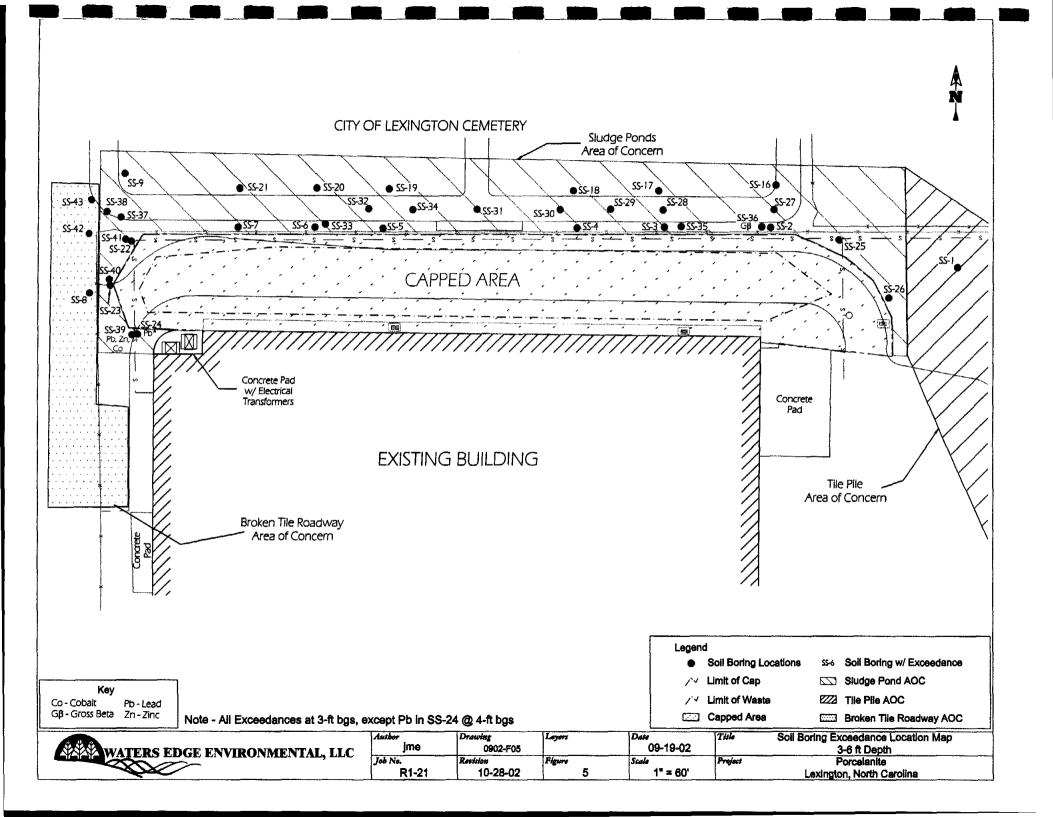
4.17 Zinc


Five of the 53 investigation soil borings exceed the zinc SCS of 1,100 mg/kg. This is at SS-2 (0-1' bgs) at 2,290 mg/kg, SS-5 (0-1' bgs) at 3,680 mg/kg, SS-8 (0-1' bgs) at 5,230 mg/kg, SS-22 (0-1' bgs) at 7,020 mg/kg, and SS-24 (3' bgs) at 1,200 mg/kg. SS-36 is adjacent to SS-2 and meets the zinc SCS at 3' bgs, SS-34 is adjacent to SS-5 and meets the zinc SCS at 3' bgs, SS-8 is not considered part of the sludge pond closure process and will be handled as another area of concern in future investigation activities (e.g. broken tile roadway), SS-41 is adjacent to SS-22 and meets the zinc SCS at 3' bgs and SS-24 meets the SCS at 4' and 6' bgs (1,070 mg/kg and 710 mg/kg respectively). These zinc levels are below the industrial and residential soil ingestion levels of 610,000 mg/kg and 23,000 mg/kg respectively. Past ground water sampling indicates that zinc has been detected above NCGS standards in the adjacent monitoring well MW-12. Further investigation is not warranted and the soil will be removed and disposed in accordance with local, state and federal regulations at SS-2, SS-5, SS-22 and SS-24.


4.18 Gross Alpha


One of the 53 investigation soil borings exceeds the gross alpha SCS of 50 pCi/g. This is at SS-36 (0-1' bgs) at 64.8 pCi/g. SS-36 at 3' bgs meets the gross alpha SCS, therefore the extent appears to be very limited. There are no published industrial and residential soil ingestion levels for gross alpha. Past ground water sampling indicates that gross alpha has not exceeded NCGS standards in the adjacent monitoring wells. No further investigation or remediation is warranted due to the limited SCS exceedances.


4.19 Gross Beta


One of the 53 investigation soil borings exceeds the gross beta SCS of 50 pCi/g. This is at SS-36 (3' bgs) at 55.6 pCi/g. There is no deeper boring; however, this only exceedance is very close to the SCS. There are no published industrial and residential soil ingestion levels for any gross beta. Past ground water sampling indicates that gross beta has exceeded NCGS standards in the adjacent monitoring wells (MW-1, MW-3A, MW-9, MW-12 and MW-28). No further investigation or remediation is warranted due to the limited SCS exceedances.

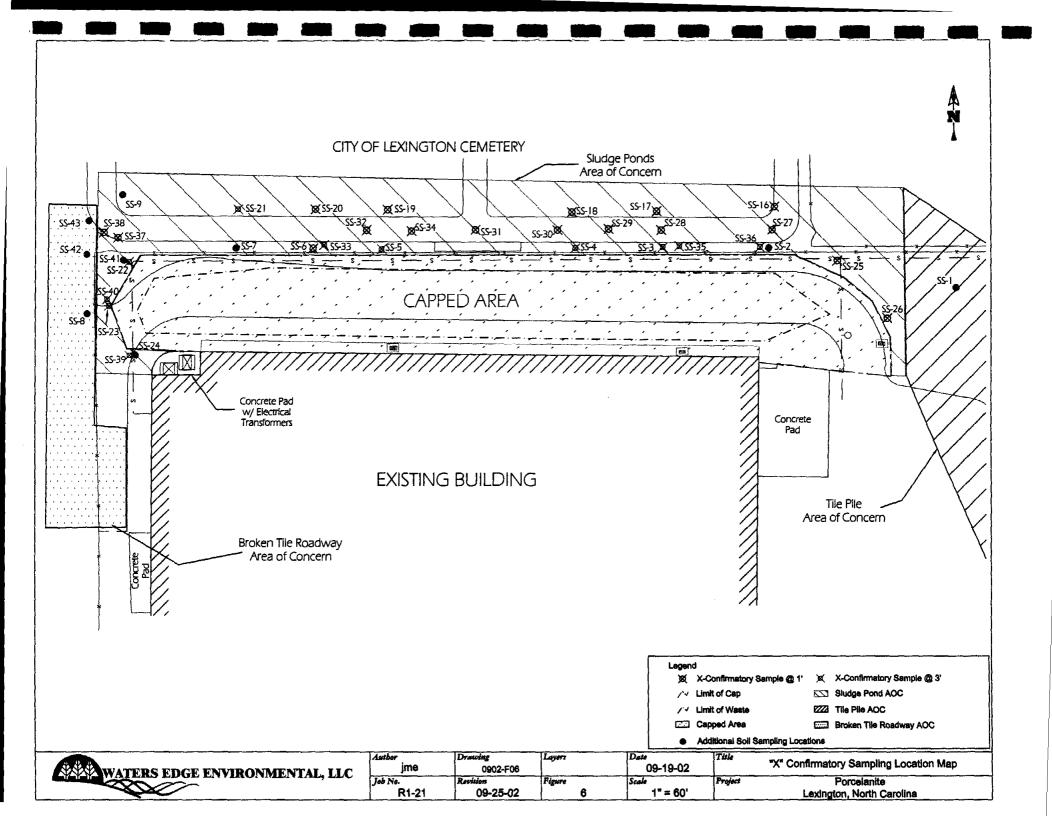


Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

ſ 	SSL Protective of Ground Water/Region # Risk-	Mathod Detection Limit	Site Specific Background	Solf Closure						 									
Parameter	Based Concentration (RBC)	(MDL) (mg/kg)	Levels* + 2X S.D. (mg/kg)	Standard	88-1 0 - 1' 5/27/94	SS-2 0 - 1' 11/4/99	SS-3 0 - 1' 11/4/99	88-4 0 - 1' 11/4/99	SS-4-2 3' 9/13/02	SS-4-2 5' 9/13/02	SS-5 0 - 1' 11/4/99	SS-6 0 - 1' 11/4/99	SS-7 0 - 1' 11/4/99	SS-7-2 3' 9/13/02	88-7-2 5' 9/13/02	SS-8 0 - 1' 5/27/94	SS-9 0 - 1' 5/27/94	88-16 0 - 1' 11/10/99	SS-17 0 - 1' 11/10/99
Inorganics (mg/Kg	1)	,	r ————										,		,				
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<3.62	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA	<3.73	<3.75	<1.13	<1.15
Barlum	848/5,400 mg/kg ^a	Method 200.7	83.07	848	80.1	246	149	47.7	NA	NA	373	64.3	146	NA	NA	186	31.7	25.3	21.8
Boron	20.5/5,500 mg/kg ^s	Method 200.7	77.26	77.24	26	30.9	61.9	74.2	NA	NA	<10.5	31.6	<12.7	NA	NA	61.2	11.2	18.2	<11.5
Bromide	NL	EPA Method 300	DL (Method 300)	PQL (10)	<10	<10	<10	<10	NA	NA	<10	<10	<10	NA	NA .	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	<0.725	0.712	0.696	0.623	NA	NA	0.335	0.249	0.329	NA	NA	<0.746	<0.806	<0.113	<1.15
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	8,19	15.4	33.6	33.3	8.39	6.74	4.81	8.58	13.2	NA	NA	8.58	4.04	8.03	6.71
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39,49	39.50	<3.62	19.9	11.3	6.48	NΑ	NA	20.9	6.96	19.9	NA	NA	14	<4.04	1.58	1.26
Lead	270/400 mg/kg ^s	Method 200.7	71.98	270	93.4	225	207	18.5	NA	NA	155	145	397	<11.8	12.6	996	42.7	10.5	25,5
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	82.4	392	298	201	NA	NA	312	290	285	NA	NA	122	278	58.4	35.1
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	<0.145	0.901	1.28	0.855	NA	NA	0.855	0.413	0.662	NA	NA	<0.149	<0.172	0.476	0.652
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	3.12	13.3	8.77	6.48	NA	NA	7.32	3.73	10.0	NA	NA.	7.31	<4.04	2.26	1.72
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	<1.45	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA	<1.49	<1.50	2.37	1.72
Silver	0.223/390 mg/kg ^a	Method 200.7	0.61	PQL	<0.725	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA	<0.746	<0.807	<1.13	<1.15
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	168	49.9	<25	97.5	NA	NA	48.2	51.8	<25	NA	NA	537	172	27.6	<250
Titanium	NL	Method 200.7	996.31	996.00	92.2	789	1,040	948	NA	NA	59	453	130	NA	NA	118	36.1	39.3	43.5
Vanadium	NL/550	Method 200.7	184.91	550	33.8	66	151	173	NA	NA	12.2	56	37.6	NA	NA	33.2	9.62	28.7	21.6
Zinc	1,100/23,000 mg/kg	Method 200,7	163.71	1,100	388	2,290	625	330	NA	NA	3,680	269	855	NA	NA	5,230	39.6	62.3	111
Radionuclides																			
Gross Alpha (pCi/g)	50	Method 9310	33.47	50	15.4	7 .7	9.3	10.6	NA	NA	10.8	19.5	7.7	NA	NA	16.3	8	29.1	28.8
Gross Beta (pCi/g)	50	Method 9310	48.92	48.92	38.6	13.3	12.9	8.9	NA	NA	27.2	32.1	20.7	NA	NA	29	33.3	38.1	47.9
Praseodymium	NL	Method 1620	MDL	MDL	<6.71	<11.9	<12.9	<12.2	NA	NA	<10.4	<12.2	<12.7	NA	NA	<7.46	<7.52	<11.3	<11.5
Radium 226 (pCi/g)	5°	Method 9315	1.33	5	0.6	0.7	1.4	1.5	NA	NA -	1.2	1.0	1.6	NA	NA	2.2	1.2	0.7	1.1
Radium 228 (pCi/g)	5°	Method 9315	1.09	5	1.1	<1.0	<1.0	<0.9	NA	NA	<0.9	<1.0	<1.0	NA	NA	1.2	<0.8	<1.0	<1.0

^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites. December 1995.

^{** =} past holding time for analysis

^{***} Considered Statistical Outlyer - not used

a = NC Hazardous Waste Section Target Remediation Guidelines

b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

DL = Detection Limit

NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence

NL = No Level

Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

	SSL Protective of Ground Water/Region 9 Risk-	Mathod Detection Limit	Site Specific Beckground	Soll Closure			,			T									,
Parameter	Based Concentration (RBC)	(MDL) (mg/kg)	Levels* + 2X S.D. (mg/kg)	Standard	SS-18 0 - 1' 11/10/99	SS-19 0 - 1' 11/10/99	SS-20 0 - 1' 11/10/99	SS-21 0 - 1' 11/10/99	SS-22 0 - 1' 11/4/99	SS-23 0 - 1' 11/18/99	SS-24 0 - 1' 11/18/99	88-24 3' 11/18/99	SS-24-2 4' 9/13/02	8S-24-2 6' 9/13/02	SS-25 0 - 1' 11/4/99	SS-25 3' 11/18/99	33-26 0 - 1' 11/10/99	88-27 0 - 1' 1/19/00	SS-28 0 - 1' 1/19/00
Inorganics (mg/Kg	}																		
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<1.16	<1.00	<1.01	<1.09	<1.14	<0.894	<0.942	<0.972	NA	NA	<1.15	<1.25	<1.01	<1.13	<1.11
Barium	848/5,400 mg/kg ^a	Method 200.7	83.07	848	19.2	20.1	15.3	12	1,490	47	64.8	260	NA	NA	54.4	78.7	135	18.1	8.3
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	13.1	<10	<10.1	13.6	33.8	<8.94	11.1	44.2	NA	NA	27.2	70.4	<10.1	6.09	7.41
Bromide	NL	EPA Method 300	DL (Method 300)	PQL (10)	<10	<10	<10	<10	<10	<10	<10	<10	NA	NA	<10	<10	<10	<10	<10
Cedmium	2.72/39 mg/kg*	Method 200.7	0.796	2.72	<0.116	<0.100	<0.101	<0.109	1.37	0.335	0,168	0.331	NA	NA	0.228	0.318	<0.101	<0.113	<0.111
Chromium	27.2/30 mg/kg ⁴	Method 200.7	27.3	27.2	8.95	3.11	2.71	10,1	8.32	18.3	17	15.9	NA	NA	9,44	21	4.65	6.66	4.65
Cobalt	22/4,700 mg/kg"	Method 200.7	39.49	39.50	1.63	2.0	1.51	1.53	39.5	2,000	203	285	11,4	9.96	3.23	3.37	6.27	1.35	<1.11
Lead	270/400 mg/kg ⁴	Method 200.7	71.98	270	8.16	9.02	12.7	7.08	6,830	3.58	65.9	972	372	170	19.4	20.2	65.2	17.2	6.19
Manganese	65.2/NL mg/kg*	Method 200.7	384.53	384.5	33.4	161	172	42.7	225	193	267	235	NA	NA	180	97	189	51.5	37.2
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	0.488	<0.200	<0.201	<0.218	2.62	<0.179	<0.189	<0.194	NA	NA	1.28	0.404	4.02	0.904	0.592
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	1.76	<1.0	<1.01	2.29	23.8	50.2	12.9	17.7	NA	NA	3.68	4.24	2.82	1.58	1.22
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	1.51	<1.0	<1.01	2.51	1.48	1.52	<0.942	<0.972	NA	NA	<1.15	<1.25	<1.01	<1.13	<1,11
Silver	0.223/390 mg/kg*	Method 200.7	0,61	PQL	<1.18	<1.0	<1.01	<1.09	<1.14	<0.894	<0.942	<0.972	NA	NA	<1.15	<1.25	<1.01	<1,13	<1.11
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	48.1	<100	<100	<25	34.8	35	25.8	53	NA	NA	30.9	62.8	<250	100	275
Titanium	NL	Method 200.7	996.31	996.00	21.9	15.5	17	34.4	46.4	543	639	451	NA	NA	317	398	23,8	106	57.5
Vanadium	NL/550	Method 200.7	184.91	550	27.8	6.91	4.83	30	17.9	51.5	32.7	31.2	NA	NA	44.2	117	9.2	26.3	26.9
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	34.3	13.1	21.5	17.2	7,020	28.7	131	1,200	1,070	710	40	417	885	13.1	12.3
Radionuciides				7															
Gross Alpha (pCi/g)	50	Method 9310	33.47	50	23.3	14.8	11.1	22.8	11.6	1.9	2.1	8,9	NA	NA	20.2	22.8	15.4	NA	NA
Gross Beta (pCi/g)	50	Method 9310	48.92	48.92	36.6	40.3	36	38.1	24.4	9.9	8.6	16.3	NA	NA	29.8	17.3	43,5	NA	NA
Praseodymium	NL	Method 1620	MDL	MDL	<11.6	<10.0	<10.1	<10.9	<11.4	NA	<9.42	<9.63	NA	NA	<11.5	<12.5	<10.1	NA	NA
Radium 226 (pCi/g)	5 ^c	Method 9315	1.33	5	2.4	1.1	0.9	0.6	0.9	1.1	0.5	0.9	NA	NA	1.3	0.5	0.8	NA	NA
Radium 228 (pCi/g)	5°	Method 9315	1.09	5	1.0	1.1	<1.0	1.5	1.0	<1.1	<1.0	<1.1	NA	NA	<1.0	<1.1	<1.0	NA	NA

^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Solls and Sediments at Hazardous Waste Sites. December 1995.

^{** =} past holding time for analysis

^{***} Considered Statistical Outlyer - not used

a = NC Hazardous Waste Section Target Remediation Guidelines

b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

DL = Detection Limit

NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence

NL = No Level

Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

	SSL Protective of Ground Water/Region 9 Risk-	Method Detection Limit	Site Specific Background	Soll Closure			·		, <u></u>		,								
Parameter	Based Concentration (RBC)	(MDL) (mg/kg)	Levels* + 2X S.D. (mg/kg)	Standard	88-29 0 - 1' 1/19/00	\$8-30 0 - 1' 1/19/00	SS-31 0 - 1' 1/19/00	88-32 0 - 1' 1/19/00	SS-33 0 - 1' 1/19/00	SS-33 3' 1/19/00	88-34 0 - 1' 1/19/00	SS-34 3' 1/19/00	88-35 0 - 1' 1/19/00	SS-35 3' 1/19/00	38-36 0 - 1' 1/19/00	3S-36 3' 1/19/00	SS-36-2 3' 9/13/02	SS-37 0 - 1' 1/19/00	SS-37 3' 1/19/00
inorganics (mg/Kg)																		
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<1.13	<1.07	<1.05	<1.04	<0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20
Barium	848/5,400 mg/kg*	Method 200.7	83.07	848	13	22.9	30	25.8	25.5	25.2	39.9	29.9	23.1	17.2	690	10.2	NA	14.6	5.4
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	11.8	7.72	8.05	<5.19	<5.20	12.5	<5.30	19.0	107	31.9	56	22.4	NA	32.3	22.0
Bromide	NL	EPA Method 300	Di. (Method 300)	PQL (10)	<10	<10	<10	<10	<10	**	<10	**	<10	**	<10	**	NA	<10	**
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	<0.113	<0.107	<0.105	<0.104	<0.098	0.159	<0.106	<0.105	<0.122	0.226	<0.126	0.162	NA	<0.120	<0.120
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	7.13	7.29	6.66	4.15	6.97	11.0	5.08	8.42	17.1	12.2	13.2	3.86	NA	10.2	3.6
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	1.92	1,29	4.23	2.7	2.26	2.35	4,45	3.05	3.42	1.86	3.42	1.87	NA	1.32	<1.20
Lead	270/400 mg/kg ^a	Method 200,7	71.98	270	4.87	3.75	15.9	9.12	10.5	5.44	12.5	8.21	17.5	9.16	23.5	7.36	NA	7.48	4.2
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	87.9	26.5	298	305	408	73.5	164	105	120	62.7	91.5	168	NA	28.9	47.1
Mercury	0.0154/23 mg/kg ^a	Method 200,7	1.22	1.23	2.19	0.858	0.918	0,624	1.41	**	0.425	**	3.67	**	1.43	**	NA	2.65	**
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	1.81	1.29	1.16	<1.04	<0.982	1.71	1.17	2.63	5.74	3.01	4.43	1.64	NA	1.56	<1.20
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	<1.13	<1.07	<1.05	<1.04	<0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20
Silver	0.223/390 mg/kg*	Method 200.7	0.61	PQL	<1.13	<1.07	<1.05	<1.04	<0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	<25	43	<250	43.4	<250	**	<250	**	67	**	5,560	**	101	36.8	**
Titanium	NL	Method 200.7	996.31	996.00	137	51.3	61.1	42.8	34.2	13.3	81.7	16.4	339	150	187	47.2	NA	62.2	22.9
Vanadium	NL/550	Method 200,7	184.91	550	29.2	19	12.2	6.74	6.09	21.0	8.69	22.9	210	66.1	87.7	23.8	NA	34.2	14.7
Zinc	1,100/23,000 mg/kg	Method 200,7	163.71	1,100	25.4	11.7	9.31	4.15	21.6	60.3	15.5	8.1	21.7	23.7	37.1	33.0	NA	11.4	19.9
Radionucildes				·												<u> </u>	<u> </u>		
Gross Alpha (pCi/g)	50	Method 9310	33.47	50	NA	NA	NA	NA	12.7	16.8	17.7	14.1	18.4	19.0	84,8	30.4	NA	27.2	38.2
Gross Beta (pCl/g)	50	Method 9310	48.92	48.92	NA	NA	NA	NA	39.4	32.5	42.8	32.6	15.7	23.7	48.7	55.6	NA	34.7	42.5
Praseodymium	NL NL	Method 1620	MDL	MDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 226 (pCi/g)	5°	Method 9315	1.33	5	NA	NA	NA	NA	0.5	1.2	1.4	1.0	1.0	0.9	0.5	0.8	NA	0.7	0.6
Radium 228 (pCi/g)	5 ^c	Method 9315	1.09	5	NA	NA	NA	NA	<1.0	<1.1	<1.1	<1.0	<1.0	<1.1	1,1	<1.0	NA	1.0	<1.0

^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites. December 1995.

^{** =} past holding time for analysis

^{***} Considered Statistical Outlyer - not used

a = NC Hazardous Waste Section Target Remediation Guidelines

b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

DL = Detection Limit

NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence

NL = No Level

Table 1- Soil Sampling Analytical Results Versus Soil Closure Standard, Porcelanite, Inc., Lexington, NC

	SSL Protective of Ground Water/Region 9 Risk.	Mathod Detection Limit	Site Specific Background	Solf Closure		Γ			 -	r							<u> </u>		
Parameter	Based Concentration (RBC)	(MDL) (mg/kg)	Levels* + 2X S.D. (mg/kg)	Standard	SS-38 0 - 1' 1/19/00	88-38 3' 1/19/00	SS-39 0 - 1' 2/17/00	88-39 3' 2/17/00	SS-40 0 - 1' 2/17/00	\$\$-40 3' 2/17/00	88-41 0 - 1' 2/17/00	89-41 3' 2/17/00	SS-42 0 - 1' 2/17/00	8S-43 0 - 1' 2/17/00	SS-43 3' 2/17/00	BG-1	BG-2 11/10/99	GS-3 11/18/99	GS-4 11/18/99
inorganics (mg/Kg	ų													,					
Arsenic	5.24/0.39 mg/kg*	Method 200.7	0.61	PQL	<1.01	<0.982	<0.953	<1.05	<0.939	<1.13	<1.08	<1.04	<0.971	<1.03	<1.11	<1.18	<1.09	<1.15	<1.12
Barium	848/5,400 mg/kg ^a	Method 200.7	83.07	848	25	4.62	40.2	<4.19	39.5	63.5	435	50.6	140	34.8	55.1	19.2	43.12	67.4	45
Boron	20.5/5,500 mg/kg ⁸	Method 200.7	77.26	77.24	6.55	<9.82	<9.53	<10.5	<9.39	<11.3	<10.8	<10.4	13.0	<10.3	<11.1	24.3	<10.9	42.4	57.3
Bromide	NL	EPA Method 300	DL (Method 300)	PQL (10)	<10	**	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	<0.101	<0.098	<0.095	<0.105	<0.094	<0.113	<0.108	<0.104	<0.097	<0.103	<0.111	<0.118	<0.109	0.23	0.504
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	8.07	3.14	12.7	<1.05	16.7	3.16	4.53	8.14	11.8	6.82	8.64	11.5	6.76	18.8	20.6
Cobalt	22/4,700 mg/kg*	Method 200.7	39.49	39.50	2.82	1.18	6.00	<1.05	8.07	9.59	5.82	10.5	9.42	3.82	3.77	2.0	2.94	8.64	20.4
Lead	270/400 mg/kg ^a	Method 200.7	71,98	270	7.77	5.5	4.67	<0.523	1.03	11.5	44.6	20.5	239	16.8	32.7	13.4	13.2	44.1	52.7
Manganese	65.2/NL mg/kg*	Method 200.7	384.53	384.5	90.5	42.0	219	<1.05	234	4.21	810	153	142	302	119	42.5	123	183	305
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	0.942	**	<0.191	<0.209	<0.188	<0.226	0.307	<0.209	<0.194	<0.206	<0.221	5.54***	0.862	<0.231	<0224
Nickel	56.4/1,600 mg/kg*	Method 200.7	10.51	56.4	1.72	<0.982	6.96	<1.05	9.95	3.50	1.94	2.19	6.31	1.76	2.66	2.82	2.73	6.34	8.28
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	<1.01	<0.982	<0.953	<1.05	<0.939	<1.13	<1.08	<1.04	<0.971	<1.03	<1.11	2.47	1.2	<1.15	<1.12
Silver	0.223/390 mg/kg ^a	Method 200.7	0.61	PQL	<1.01	<0.982	<0.953	<1.05	<0.939	<1.13	<1.08	<1.04	<0,971	<1.03	<1.11	<1.18	<1.09	<1.15	<1.12
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	37.3	**	<25	<25	<25	<25	<25	<25	<25	<25	<25	<100	<100	27	57.7
Titanium	NL	Method 200.7	996.31	996.00	47.2	13.4	357	<10.5	384	356	24.8	26.9	84.7	22.3	26.3	65.7	181	644	649
Vanadium	NL/550	Method 200.7	184.91	550	16.6	9.53	20.6	1.46	22.5	33.4	7.87	16.0	20.1	12.2	25.6	45.2	27.6	89.4	148
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	6.56	7.76	34.9	2.83	26.2	32.3	390	78.8	258	21.2	9.60	149	124	124	101
Radionuclides																			
Gross Alpha (pCi/g)	50	Method 9310	33.47	50	16.1	13.6	<2.3	<2.0	<2.2	20.3	19.8	10.0	7.9	13.3	27.4	22.4	23.5	7.9	6.1
Gross Beta (pCi/g)	50	Method 9310	48.92	48.92	40.6	38.9	9.1	2	10.8	29.6	30.0	16.1	14.0	37.6	37.6	31	33.2	6.2	6.8
Praseodymium	NL	Method 1620	MDL	MDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ŊĀ	<11.8	<10.9	<11.5	<11.2
Radium 226 (pCi/g)	5°	Method 9315	1.33	5	0.7	0.7	0.2	<0.3	<0.4	1.3	0.8	1.5	1.0	0.7	0,5	1	1.1	0.6	0.7
Radium 228 (pCi/g)	5°	Method 9315	1.09	5	<1.0	<1.0	<1.0	<1.0	<1.0	<1.1	<1.1	<1.1	<1.1	1.0	1.8	<1.0	0.9	<1.1	<1.0

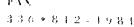
^{* =} EPA Engineering Forum Issue. Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites. December 1995.

^{** =} past holding time for analysis

^{***} Considered Statistical Outlyer - not used

a = NC Hazardous Waste Section Target Remediation Guidelines

b = North Carolina Groundwater Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg


c = reference September 3, 2002 DENR Correspondence

DL = Detection Limit

NA = Not Analyzed per December 6, 1999 & September 3, 2002 DENR Correspondence

NL = No Level

November 4, 2002

Mr. Bob Glaser H W Facility Management Branch Manager NC Department of Environment & Natural Resources 401 Oberlin Road Raleigh, NC 27605

Re: Porcelanite Tile, Inc.

20 Victor Street

Lexington, NC 27292

EPA ID No. NCD 986 181 451

Dear Mr. Glaser,

This response represents information concerning the Lagoon closure efforts underway at the Porcelanite Tile Facility (formally Mannington Ceramic Tile, Inc.) located in Lexington, Davidson County, in regards to mercury. Mercury was exhibited in soil analytical testing conducted around the Lagoon closure, as well as, background sampling conducted at this location. Research of material safety data sheets for material used during production of ceramic tile at this facility indicate that mercury appears to have never been used, nor was it a part of any material used for manufacturing ceramic tile. The presence of mercury is unknown to anyone who was involved with production at this facility.

S. . 1

Mannington would therefore conclude that mercury is naturally occurring and not due to any of Mannington's past manufacturing or disposal activities.

Sincerely,

Tony Shaw

Environmental/Safety Manager Mannington Wood Division

North Carolina Department of Environment and Natural Resources

Dexter R. Matthews, Director

Division of Waste Management

Michael F. Easley, Governor William G. Ross Jr., Secretary

August 10, 2005

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Tony Shaw Environmental/Safety Manager Mannington 1327 Lincoln Drive High Point, North Carolina 27260-9945

Re:

Approval of the Settling Ponds Closure Plan

Porcelanite, Inc.

EPA ID # NCD 986 181 451

Dear Mr. Shaw:

This letter is to notify you that the modified closure plan dated November 5, 2002 for the two settling ponds has been reviewed and a public notice of closure was placed in the Lexington Dispatch on August 18, 2004. A comment period of thirty (30) days has since passed without any comments. This office now gives final approval of the modified closure plan which includes risk based cleanup levels for the soil at the site.

It is the understanding of the North Carolina Hazardous Waste Section (HWS) that all closure activities have been completed, including the removal of contaminated soil above the risk-based cleanup levels. Once Porcelanite submits a closure certification report documenting that all closure activities are complete, including the removal of contaminated soil the HWS will issue a closure certification acceptance letter. The certification of closure report must include the survey plat as required by 40 CFR 265.115 and 265.116 respectively.

If you have any questions, please contact Karim Pathan at (919) 508-8558.

Sincerely,

Facility Management Branch Head

Hazardous Waste Section

cc: Narindar Kumar, US EPA, Region 4

Alan Klimek, DWQ

Ernie Lawrence, Waste Management Specialist Robert Hyatt, Davidson County Manager

R. Duke Whisenant Lexington City Manager Diane Crouse, Davidson County Health Director

Phil Rahn, Water Edge Environmental, Raleigh

rc:

Bud McCarty

Liz Cannon Robert L. Glaser

Karim Pathan

1646 Mail Service Center, Raleigh, North Carolina 27699-1646 Phone 919-508-8400 \ FAX 919-715-3605 \ Internet http://wastenotnc.org

An Equal Opportunity / Affirmative Action Employer - Printed on Dual Purpose Recycled Paper

North Carolina Department of Environment and Natural Resources

Dexter R. Matthews, Director

Division of Waste Management

Michael F. Easley, Governor William G. Ross Jr., Secretary

February 1, 2006

Mr. Tony Shaw Environmental/Safety Manager Mannington 1327 Lincoln Drive High Point, North Carolina 27260-9945

Re:

Settling Ponds Closure Certification

Porcelanite, Inc., Lexington EPA ID # NCD 986 181 451

Dear Mr. Shaw:

The Hazardous Waste Section (HWS) has reviewed the closure report and the August 9, 2005 closure certification report for the Porcelanite site in Lexington. Because of the several modifications to the closure plan, the closure report includes several documents including: a) the June 20, 1993 Closure report for the Porcelanite settling ponds; b) the proposed modification to the Closure Plan dated November 5, 2002; c) the memo from Sandra Moore to Rosemarie Roberts dated March 17, 2003 discussing the rational for the amended closure performance standards; d) July 14, 2004 revised Closure Plan; and e) the August 9, 2005 report documenting additional soil excavation. All of these documents together satisfy the closure and closure certification requirements for the settling ponds.

Since the closure certification was submitted Mr. Ernest Lawrence of the HWS conducted a closure inspection on January 5, 2006, and found the facility to be in compliance with the approved closure plan.

With the completion of these activities the HWS accepts the closure certification for the two settling ponds. A copy of this letter will be forwarded to our Financial Unit. They will address details concerning financial assurance for closure under a separate letter.

If you have any questions, please contact Karim Pathan at (919) 508-8558.

Sincerely,

Robert L. Glaser Unit Supervisor

Facility Management Branch Hazardous Waste Section

cc:

Jon D. Johnston, US EPA, Region 4

Doug Holyfield Jesse Wells Jenny Lopp Ernest Lawrence rc:

Bud McCarty, Robert Glasen Mary Siedlecki M3
Karim Pathan

1646 Mail Service Center, Raleigh, North Carolina 27699-1646 Phone 919-508-8400 \ FAX 919-715-3605 \ Internet http://wastenotnc.org

An Equal Opportunity / Affirmative Action Employer - Printed on Dual Purpose Recycled Paper

Appendix I-2- Post-Closure Care Plans for SWMU-2 and SWMU-3

Post-Closure Care Plan for Settling Ponds—Revision #6
Porcelanite, Inc.
Lexington, North Carolina
February 14, 2005

Prepared For

Department of Environment, Health and Natural Resources Raleigh, North Carolina

Prepared By

Waters Edge Environmental, LLC Raleigh, North Carolina 4901 WATERS EDGE DRIVE, SUITE 201 • RALEIGH, NC 27606 • PHONE 919.859.9987 • FAX 919.859.9930

February 14, 2005

Mr. Bob Glaser
North Carolina Department of Environment
and Natural Resources
Hazardous Waste Section
Post Office Box 27687
Raleigh, North Carolina 27611-7687

Reference:

Post-Closure Care Plan - Revision #6

Settling Ponds Porcelanite, Inc.

Lexington, North Carolina

NCD 986 181 451

Waters Edge Job No. R1-21

Dear Mr. Glaser:

Waters Edge Environmental, LLC (Waters Edge) has been authorized to prepare and submit this document for Mannington Mills, Inc. and Porcelanite, Inc. Mannington Mills, Inc., as operator and Porcelanite, Inc., as owner, are submitting this revised Post-Closure Care Plan for the settling ponds located in Lexington, North Carolina.

If you have any questions regarding this report or require additional information, please call me at 919.859.9987.

Sincerely,

WATERS EDGE ENVIRONMENTAL, LLC

Phillip L. Rahn, P.G.

President

05-023/PLR/aht

Table of Contents

1	Introduction	
	1.1 Wastewater Treatment Process Description	1
	1.2 Closure Plan Development	1
2	-	2 3 3 4 4 4 5 5
	2.4.2b Surety Bond 2.4.2c Post-Closure Letter of Credit 2.4.2d Post-Closure Insurance 2.4.2e Financial Test and Corporate Guarantee for Post-Closure Plan 2.5 Certification of Completion of Post-Closure Care 2.6 Notice to Local Land Authority 2.7 Record Keeping and Reporting Requirements	5 5 5 5 6 6
3	Costs	7

Figures

Figure No.	<u>Title</u>
1 2	Project Location Map Site Location Map

Appendix

<u>Appendix</u> <u>Title</u>

A Inspection Form

Post-Closure Care Plan for Settling Ponds—Revision #6 Porcelanite, Inc. Lexington, North Carolina February 14, 2005

1 Introduction

Porcelanite, Inc. (Porcelanite 1995-present) (formerly Mannington Ceramic Tile 1986-1995) operated a ceramic tile manufacturing facility located in Lexington, North Carolina (see Figure 1). Prior to 1990, wastewater used in the manufacturing process was treated in settling ponds. ENSCI Corporation developed a May 1992 Revised Closure Plan for these settling ponds, which have now been closed with a closure certification correspondence submitted to the North Carolina Department of Environment & Natural Resources (NCDENR). On March 26, 1996, NCDENR completed a comprehensive ground water monitoring evaluation that was documented in a November 8, 1996, correspondence to Mannington. This correspondence also commented on the November 17, 1992, Post-Closure Care Plan for the settling ponds. Mannington is submitting this Revised Post-Closure Care Plan reflecting recommendations made during several meetings with NCDENR over the course of the last year and to provide more consistency with the most recently approved Sampling and Analysis Plan (SAP). This document addresses post-closure care for the settling ponds in accordance with the landfill requirements listed in 40 CFR 265.310.

1.1 Wastewater Treatment Process Description

Prior to January 1, 1990, Mannington discharged wastewater from its Lexington, North Carolina, facility into Rat Spring Branch, located in the Yadkin-Pee Dee River Basin, pursuant to National Pollutant Discharge Elimination System (NPDES) permit #NC0006459 (reissued April 24, 1986, with expiration April 30, 1991). The wastewater treatment process under this permit consisted of passing the water through a series of holding ponds that allowed solids to settle before discharge into Rat Spring Branch (see Figure 1).

On January 1, 1990, after substantial modification of the wastewater treatment system, Mannington voluntarily stopped this discharge and began discharging its wastewater into the City of Lexington POTW. The modified pretreatment process consisted of an opentop solids precipitating tank with pH control. Solids generated under the system were ran through a filter press and subsequently transported to the Kernersville Landfill for disposal based on approval from the Solid Waste Management Branch.

Revision No. 6 Date: 2/14/05 Approved By: 12

Revised Settling Ponds Post Closure Care Plan Porcelanite, Inc. Lexington, NC 05-023 February 14, 2005 Page 2 of 7

1.2 Closure Plan Development

Mannington contracted ENSCI Corporation to provide environmental consulting services concerning the closure and post-closure care of the settling ponds. ENSCI partially closed the ponds in accordance with the May 1992 *Revised Closure Plan*. Based upon continued negotiations with NCDENR, it was decided to present a modified closure using risk-based concentrations (RBCs).

Based on some additional sampling outside of the former settling ponds, it was determined that some of the settling pond material may have overflowed over the ponds during their operation. Several investigative efforts were conducted to determine the horizontal and vertical extent of the affected soil. Also, during this time period, NCDENR began to adopt a RBC approach to determining remedial thresholds. Both Mannington and NCDENR finally accepted these levels. Based upon these levels, Mannington removed all of the affected soils per NCDENR. Again, based upon direction from NCDENR, Mannington provided NCDENR with a November 5, 2002 modified risk assessment. Based upon these documents, a revised closure certification was submitted. A figure depicting the closed settling ponds and monitoring well network is shown in Figure 2.

2 Post-Closure Care Plan

This revised *Post-Closure Care Plan* has been developed to address the ongoing activities as well as supplement the modifications proposed in the SAP. The following items are included in this plan:

- The name, address, and phone number of the contact for the hazardous waste disposal unit during the post-closure care period.
- The address where copies of the *Revised Post-Closure Care Plan* will be maintained.
- A description of the planned inspection and maintenance activities as well as schedule for the cover system, security fence, and monitoring wells.
- A post-closure care cost estimate for the closed unit and a description of the financial assurance mechanism adopted by Mannington.
- Recordkeeping and reporting requirements during post-closure care.

Date: 2/14/05 Approved By: M

Revision No. 6

Revised Settling Ponds Post Closure Care Plan Porcelanite, Inc. Lexington, NC 05-023 February 14, 2005 Page 3 of 7

2.1 Post-Closure Care Plan Contacts and Maintenance

During the post-closure care period, the environmental coordinator is the contact person for the hazardous waste disposal unit. The current environmental manager, Mr. Tony Shaw, may be reached as follows:

Mr. Tony Shaw Phone#
Mannington Wood Floors
1327 Lincoln Drive
High Point, N.C. 27260

Phone# (336) 812-4908 Fax# (336) 812-4981

E-mail Tony_Shaw@mannington.com

Mannington will maintain a copy of the approved Revised Post-Closure Care Plan and all revisions until the end of the post-closure care period. One copy of the Revised Post-Closure Care Plan and all revisions will be kept in the office of Mr. Tony Shaw at the following address:

Mr. Tony Shaw
Mannington Wood Floors
1327 Lincoln Drive
High Point, N.C. 27260
Phone# (336) 812-4908
Fax# (336) 812-4981

The person responsible for updating the post-closure care plan will be Mr. Shaw or his designee. As the post-closure care plan is updated or amended, the date and number of the revision will be placed on the lower left corner of each revised page; the revision will be noted on the Plan's title page.

2.2 Ground Water Monitoring Activities

During the post-closure care period, ground water monitoring will be conducted using procedures and scheduling in accordance with the most currently approved SAP. The ground water will be analyzed for the parameters specified in the most currently approved SAP. The SAP upon approval by NCDENR may be modified as required based on the results of this program. Figure 2 depicts the current monitoring well network at the facility.

Sampling will be conducted for the duration of the post closure care period. The results of these sampling events will be documented in ground water monitoring reports. Mannington will continue to implement the current and any updated ground water assessment plans during the post-closure period.

Approved By:

Revision No. 6

Date: 2/14/05

Revised Settling Ponds Post Closure Care Plan
Porcelanite, Inc.
Lexington, NC
05-023
February 14, 2005
Page 4 of 7

2.3 Planned Inspection and Maintenance

To ensure that the closed settling ponds are properly maintained, Mannington will inspect the following areas quarterly to determine any required maintenance: (A copy of the inspection report which has both Tile Pile and Lagoon is attached in Appendix A)

- asphalt roadway cover
- run-on/run-off control system
- Subsidence
- security fence
- monitoring wells

The cover was sloped to provide positive site drainage away from the closed settling ponds. The cover will be visually inspected quarterly to ensure that the asphalt cap is maintained.

As previously discussed in the Closure Plan, subsidence of the compacted fill and asphalt cap is not expected since the waste was stabilized, fill and cover system materials were compacted, run-on is controlled, infiltration through the cap is minimized, and no surcharge load is placed on the cap. Inspections will be conducted during the post-closure care period for cracks or erosion from run-off; if noted, they will be immediately repaired.

2.4 Cost Estimate and Financial Assurance Mechanism

2.4.1 Post-Closure Cost Estimate

The post-closure cost information is submitted in accordance with the requirements of 40 CFR 265.144. An estimated \$60,000 (based on 30 years) will be needed to perform annual post-closure care. These costs are broken down in more detail in Section 3. However, the cost for post closure care may change once the ground water assessment has been completed. Therefore, the post-closure care cost estimate may require an amendment once the ground water assessment is completed.

The post-closure cost estimate will be kept on file at Mannington Wood Floors in High Point, NC with Mannington's site manager and will be revised within thirty (30) days in the event that a change in the post-closure care plan affects the cost of post-closure care. It will be adjusted annually within thirty (30) days after Mannington's fiscal year and concurrent with submission of the updated information to the DSWM as specified in 265.145 (e)(5) from the date of its original development to reflect changes caused by

Date: 2/14/05 Approved By: Management

Revision No. 6

Revised Settling Ponds Post Closure Care Plan
Porcelanite, Inc.
Lexington, NC
05-023
February 14, 2005
Page 5 of 7

inflation. The Department of Commerce's Annual Implicit Price Deflator for Gross National Product will be used to make this or any corresponding adjustment.

2.4.2 Financial Assurance Mechanism

Financial assurance information has been submitted in accordance with the requirements of 40 CFR 265.145. Mannington has reviewed the five mechanisms for financial assurance and has chosen a mechanism for the Lexington facility.

2.4.2a Post-Closure Trust Fund

Not applicable.

2.4.2b Surety Bond

Not applicable.

2.4.2c Post-Closure Letter of Credit

Not applicable.

2.4.2d Post-Closure Insurance

Not applicable.

2.4.2e Financial Test and Corporate Guarantee for Post-Closure Plan

Mannington meets the financial test criteria of 40 CFR 265.145(e). In accordance with Section 265, Mannington has provided the following items to the NCDENR:

- 1. The Corporate Guarantee for Closure or Post-Closure Care, using the language specified in 40 CFR 264.151(h).
- 2. A letter signed by Mannington's Chief Financial Officer in support of the Corporate Guarantee that is worded as specified in Section 264.151(f).
- 3. A copy of the report from an independent certified public accountant who examined Mannington's financial statement for the most recent fiscal year.
- 4. A copy of the special report from Mannington's independent certified accountant to Mannington that:

Approved By:

Revision No. 6

Date: 2/14/05

Revised Settling Ponds Post Closure Care Plan
Porcelanite, Inc.
Lexington, NC
05-023
February 14, 2005
Page 6 of 7

- (a) He has compared the data which the letter from the Chief Financial Officer specified as having been derived from the independently audited, year-end financial statements for the latest fiscal year with the amounts in such financial statements; and
- (b) In connection with that procedure, no matters came to his attention which has caused him to believe that the specified data should be adjusted.

2.5 Certification of Completion of Post-Closure Care

Within 60 days after completing the established post-closure care period for the settling ponds, Mannington will submit to the NCDENR, by registered mail, a certification that the post-closure care for the post-closure care period was performed in accordance with the specifications in the approved post-closure care plan. The certification will be signed by the owner or operator and an independent registered professional engineer. Documentation specified in 40 CFR 265.120 will be furnished to the NCDENR upon request.

2.6 Notice to Local Land Authority

Mannington did within 60 days after non-clean closure was completed submit to the Davidson County Register of Deeds and to the HWS a survey plat indicating the location and dimensions of the Settling Ponds with respect to permanently surveyed benchmarks. This plat was prepared and certified by a registered professional land surveyor in the State of North Carolina. The plat contained a note, prominently displayed, which states Porcelanite's obligation to restrict disturbances of the site in accordance with 40 CFR 264.117(c).

2.7 Record Keeping and Reporting Requirements

All records and reports from inspections, maintenance, and ground water monitoring will be maintained by the Mannington site manager at Mannington Wood Floors in High Point, NC for the duration of the 30-year post-closure care period. Updates on costs of the post-closure care period, as discussed in Section 2.4.1, will also be maintained.

The ground water monitoring reports discussed in Section 2.2 will be forwarded to the implementing agency within 90 days of completion.

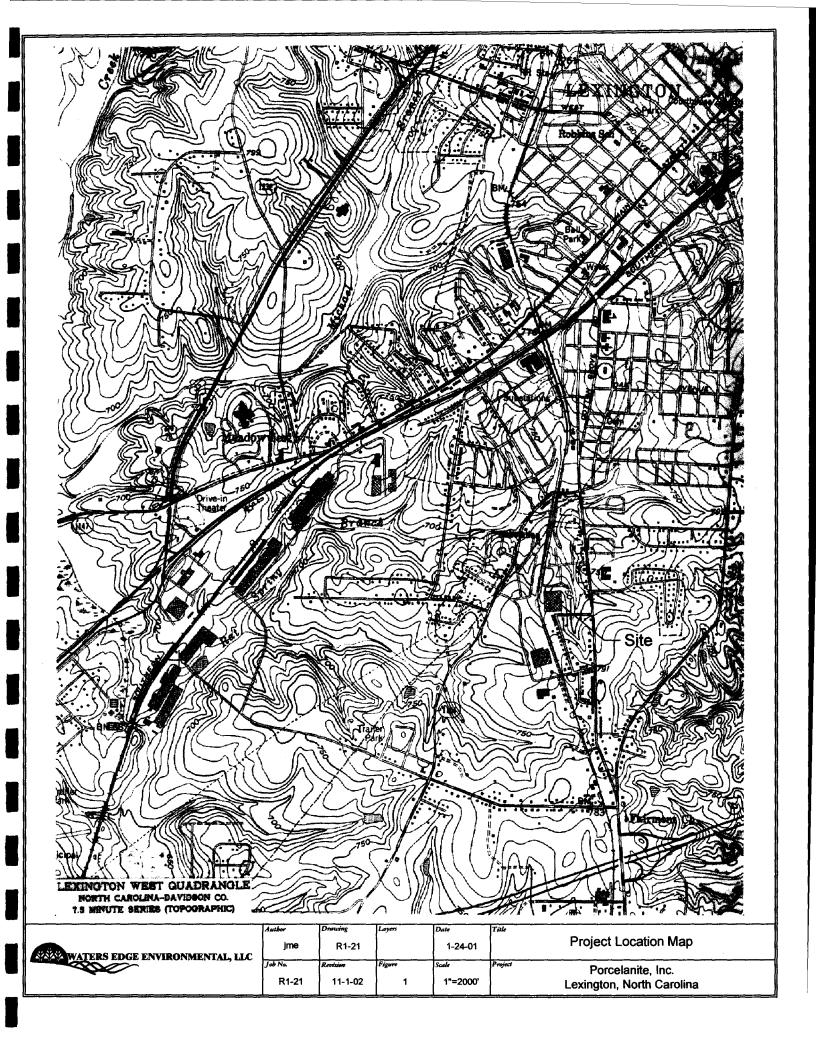
Revision No. 6 Date: 2/14/05 Approved By

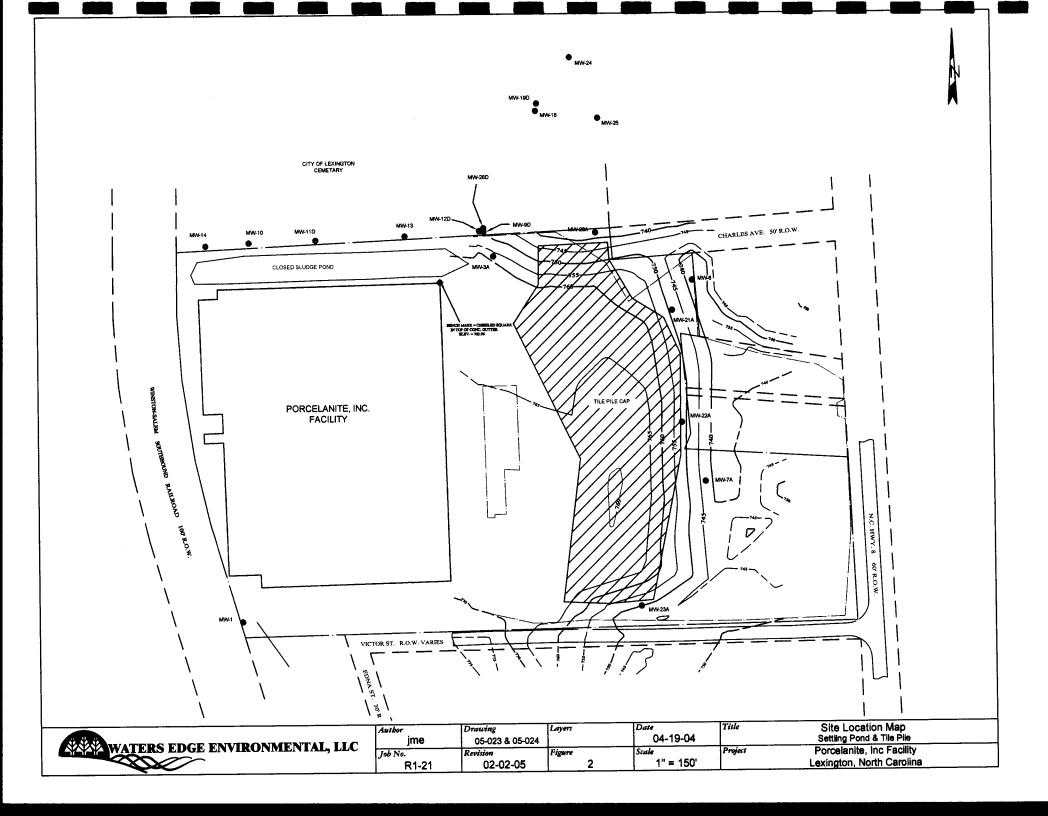
Revised Settling Ponds Post Closure Care Plan
Porcelanite, Inc.
Lexington, NC
05-023
February 14, 2005
Page 7 of 7

3 Costs

1.

Settling Ponds Post-Closure Care Costs (current dollars)

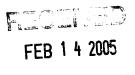

 Ground Water Monitoring Semi-Annual compliance monitoring and report Inspections * Maintain Cover System (contingency) 	\$ 1,500 \$ 100 \$ 400
Annual Total	\$ 2,000
Total Cost for 30-Year Post-Closure Care Period	\$60,000


Site ground water assessment (Tile Pile and Settling Ponds) estimate cost: \$ 20,000

Date: 2/14/05

Approved By 2/1/2

^{*} The quarterly Tile Pile and Lagoon inspections will be completed at the same time by an independent inspector.



Appendix A Quarterly Inspection Log Porcelanite Tile Plant

Lexington, North Carolina Davidson County

Settling Ponds

	1 ^s Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Asphalt roadway cover	Quartor	Quartor	Quartor	Quarter
Run-on/Run-off Control System				
Subsidence				
•				
Security Fence				
Monitoring wells				
Tile Pile				
The File				
	1 st	2^{nd}	3 rd	4 th
	Quarter	Quarter	Quarter	Quarter
Erosion Damage				
Vegetative/Stone/or asphalt Cover	<u> </u>			
Run-on/Run-off Control System				
Subsidence				
Monitoring wells				
Security Fence				
	1 st	2 nd	3 rd	4 th
	Quarter	Quarter	Quarter	Quarter
Date of inspections:				
Inspected By:				

Hazardous Wacta Scotton

Post-Closure Care Plan – Revision #5
Ceramic Chip Tile Pile
Porcelanite, Inc.
Lexington, North Carolina
February 14, 2005

Prepared For

Department of Environment, Health and Natural Resources Raleigh, North Carolina

Prepared By

Waters Edge Environmental, LLC Raleigh, North Carolina February 14, 2005

Mr. Bob Glaser
North Carolina Department of Environment
and Natural Resources
Hazardous Waste Section
Post Office Box 27687
Raleigh, North Carolina 27611-7687

Reference:

Post-Closure Care Plan - Revision #5

Ceramic Chip Tile Pile

Porcelanite, Inc.

Lexington, North Carolina

NCD 986 181 451

Waters Edge Job No. R1-21

Dear Mr. Glaser:

Waters Edge Environmental, LLC (Waters Edge) has been authorized to prepare and submit this document for Mannington Mills, Inc. and Porcelanite, Inc. Mannington Mills, Inc., as operator and Porcelanite, Inc., as owner, are submitting this revised Post-Closure Care Plan for the ceramic chip tile pile located in Lexington, North Carolina.

If you have any questions regarding this report or require additional information, please call me at 919.859.9987.

Sincerely,

WATERS EDGE ENVIRONMENTAL, LLC

Phillip L. Rahn, P.G.

President

05-024/PLR/aht

Table of Contents

1	Introduction	1
2	Post Closure Care Plan	
	2.1 Inspection and Maintenance	2
	2.2 Site Security	2
	2.3 Post-Closure Cost and Financial Assurance	3
	2.3.1 Post-Closure Cost Estimate	3
	2.3.2 Financial Assurance Mechanism	3
	2.3.2a Post-Closure Trust Fund	3
	2.3.2b Surety Bond	3
	2.3.2c Post-Closure Letter of Credit	3
	2.3.2d Post-Closure Insurance	3
	2.3.2e Financial Test and Corporate Guarantee for Post-Closure Care	4
	2.4 Certificate of Completion of Post-Closure Care	4
	2.5 Notice to Local Land Authority	4

Figures

Figure No. Title

1 Project Location Map
2 Site Location Map

Appendix

<u>Appendix</u> <u>Title</u>

A Inspection Form

Post-Closure Care Plan-Revision #5 Ceramic Tile Pile Porcelanite, Inc. Lexington, North Carolina February 14, 2005

1 Introduction

Porcelanite, Inc. (Porcelanite, 1995-present) (formerly Mannington Ceramic Tile 1986-1995) operated a ceramic tile manufacturing facility located in Lexington, North Carolina. Off-specification tile was stored in a pile located in the eastern portion of the site as shown in Figure 1. Based upon several investigatory efforts, it has been determined that the tile material exhibited the characteristics of a hazardous waste for lead and must be closed in accordance with the applicable regulations of the North Carolina Department of Environment, & Natural Resources (NCDENR). A closure plan and a certification of closure have been submitted to the NCDENR under separate cover for the closure of the tile pile. This document addresses post-closure care for the tile pile in accordance with the landfill requirements listed in 40 CFR 265.310. The following items are included:

- 1. Ground Water Monitoring Plan All ground water monitoring will be conducted in accordance with the most recent ground water Sampling & Analysis Plan (SAP).
- 2. A description of the planned maintenance activities and frequencies at which they will be performed for the cap, security fence and monitoring wells.
- 3. The name, addresses, and phones number of the person or office to contact about the hazardous waste disposal unit during the post-closure care period.
- 4. Recordkeeping and reporting during post-closure:
 - ground water monitoring data and evaluation of data;
 - annual report until closure is complete;
 - updates on costs of post-closure care: and
 - All records will be maintained for the post closure care period.
- 5. Copies of the Post-Closure Care Plan will be maintained at:

Mr. Tony Shaw Phone# (336) 812-4908 Mannington Wood Floors Fax# (336) 812-4981

1327 Lincoln Drive E-mail Tony_Shaw@mannington.com

High Point, N.C. 27260

The person responsible for updating the Post-Closure Care Plan will be the facility representative mentioned or his designee. As the Post-Closure Care Plan is updated or amended, the date and number of the revision will be noted on the plan's title page.

Revision No. 5 Date: 2/14/05 Approved B

Revised Tile Post Closure Care Plan Porcelanite, Inc. 05-024 February 14, 2005 Page 2 of 5

6. A Financial Assurance mechanism adopted by Mannington will be included.

2 Post Closure Care Plan

2.1 Inspection and Maintenance

Mannington will ensure that the closed tile pile is properly maintained by inspecting it quarterly in the following areas: (A copy of the inspection form is attached Appendix A)

- 1. Erosion damage
- 2. Vegetative/stone/or asphalt cover
- 3. Run-on/run-off control system
- 4. Subsidence
- 5. Monitoring wells
- 6. Security fence

The caps were sloped to provide positive site drainage away from the tile pile as shown on the drawings in the Closure Plan (see site map in Figure 2). The sloped cap is designed so that the maximum drainage velocity leaving the cap is less than the velocity likely to cause erosion for the selected vegetation. The cap will be visually inspected quarterly to ensure that the positive drainage slopes are maintained. Should minor subsidence or spot irregularities be discovered, new topsoil will be placed on the slope cap, the area will be regraded, and the topsoil layer will be reseeded.

The sloped cap will also be protected from erosion by maintaining an appropriate vegetative cover (grass appropriate too the piedmont area). Maintenance activities for the vegetative cover will include mowing, seeding, and fertilizing during the year. The activities will be performed on an as-needed basis due to the seasonal nature of vegetation.

The flat top surface cap will be quarterly inspected for subsidence. Areas of subsidence that allow ponding and possible infiltration of the ponded waters will be repaired as necessary.

As previously discussed in the tile pile closure plan, subsidence of the tile pile and caps are not expected since: (1) the tile pile material have settled over the 16 years since the last disposal of the chips, (2) the cap materials will be compacted, (3) run-on will be controlled, (4) infiltration through the cap will be minimized, and (5) only light surcharge loads will be placed on the cap.

2.2 Site Security

Site security is provided by perimeter fencing of the property, which includes the present tile pile and all the proposed area affected by closure.

Revision No. <u>5</u> Date: 2/14/05 Approved By: <u>1/1/2</u>

Revised Tile Post Closure Care Plan Porcelanite, Inc. 05-024 February 14, 2005 Page 3 of 5

2.3 Post-Closure Cost and Financial Assurance

2.3.1 Post-Closure Cost Estimate

The post-closure cost information presented is submitted according to the requirements of 40 CFR 265.144, Cost Estimate for Post-Closure Care. An estimated \$75,000 (based on 30 years) will be needed to perform post-closure care of the Mannington tile pile. These costs are broken down in more detail and summarized in Table 1.

These post-closure care estimates will be kept on file by the Mannington site manager and will be revised whenever a change in the Post-Closure Care Plan affects the cost of post-closure. It will be adjusted annually from the date of its original development to reflect changes in the post-closure cost brought about by inflation. The Department of Commerce's Annual implicit Price Deflater for Gross National Product (published by U.S. Department of Commerce in its monthly publication "Survey of Current Business") will be used to make this adjustment.

2.3.2 Financial Assurance Mechanism

Mannington, as the operator of the tile pile, has retained responsibility for the post-closure care of the tile pile. Mannington, as the operator and submitter of the post-closure care plan, will continue to maintain the financial assurance and liability requirements in compliance with 40 CFR 265 Subpart H-Financial Requirements.

The financial assurance information is submitted according to the requirements of 40 CFR 265.145, *Financial Assurance for Post-Closure Care*. Mannington has reviewed the five mechanisms for financial assurance and has chosen a mechanism for the Lexington facility.

Date: 2/14/05

- 2.3.2a Post-Closure Trust Fund Not applicable.
- 2.3.2b Surety Bond
 Not applicable.
- 2.3.2c Post-Closure Letter of Credit
 Not applicable.
- 2.3.2d Post-Closure Insurance
 Not applicable.

Approved By:

Revision No. 5

Revised Tile Post Closure Care Plan Porcelanite, Inc. 05-024 February 14, 2005 Page 4 of 5

2.3.2e Financial Test and Corporate Guarantee for Post-Closure Care

Mannington meets the financial test criteria of 40 CFR 265.145. The following items have been submitted to the HWS for 1996 in accordance with Section 265.145. An updated financial assurance package will be submitted to the HWS as required in 1997 by Mannington. The items that will be addressed are:

- 1. A copy of a letter signed by Mannington's Chief Financial Officer that is worded as specified in Section 264.151(f).
- 2. A copy of the independent Certified Public Accountant's report on examination of Mannington's financial statement for the latest completed fiscal year.
- 3. A copy of the special report from Mannington's independent Certified Accountant to Mannington that:
 - (a) He has compared the data which the letter from the Chief Financial Officer specified as having been derived from the independently audited, year-end financial statements for the latest fiscal year with the amounts in such financial statements; and
 - (b) In connection with that procedure, no matters came to his attention, which has caused him to believe that the specified data should be adjusted.

2.4 Certificate of Completion of Post-Closure Care

Within 60 days of completing the established post-closure care period for the tile pile Mannington will submit to the HWS a certification by both Mannington and Porcelanite and an independent Registered Professional Engineer in the State of North Carolina that the tile pile post-closure care for the post-closure care period has been performed according to the Post-Closure Care Plan. Documentation supporting the independent registered professional engineer's certification will be furnished to the HWS (Regional Administrator) upon request.

2.5 Notice to Local Land Authority

Mannington did within 60 days after non-clean closure was completed submit to the Davidson County Register of Deeds and to the HWS a survey plat indicating the location and dimensions of the tile pile with respect to permanently surveyed benchmarks. This plat will be prepared and certified by a registered professional land surveyor in the State of North Carolina. The plat contained a note, prominently displayed, which states Porcelanite's obligation to restrict disturbances of the site in accordance with 40 CFR 264.117(c).

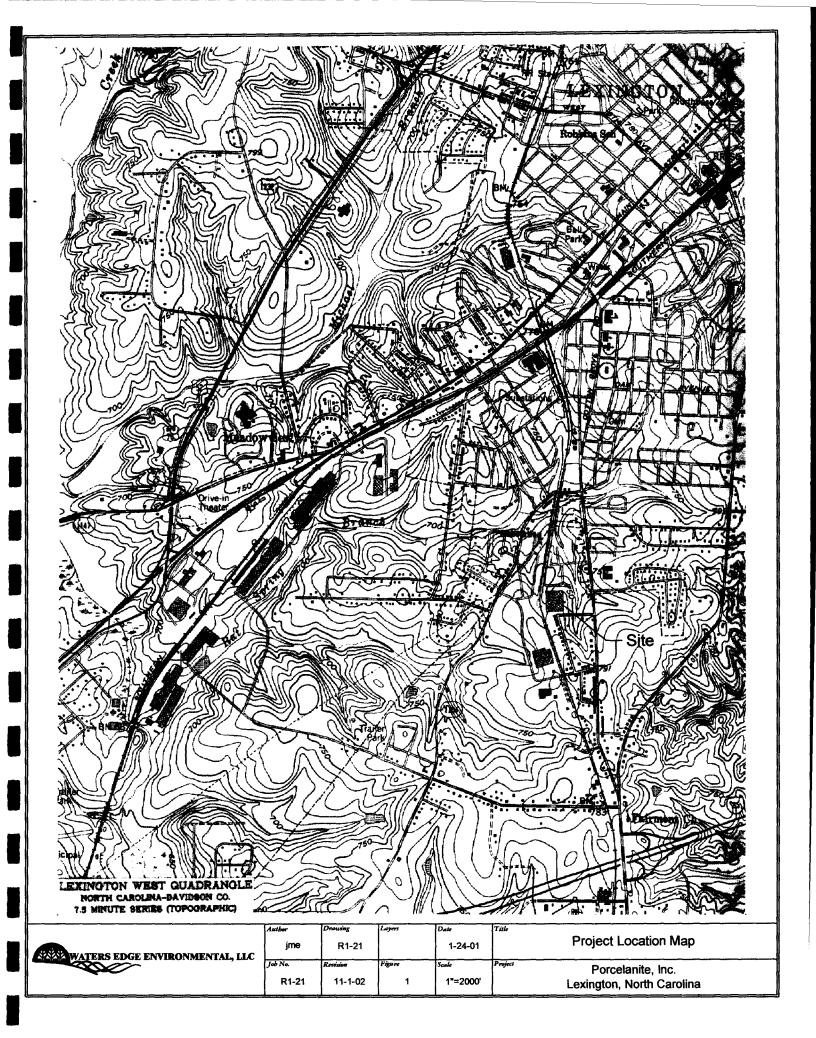
Revision No. 5 Date: 2/14/05 Approved By: 2/14/05

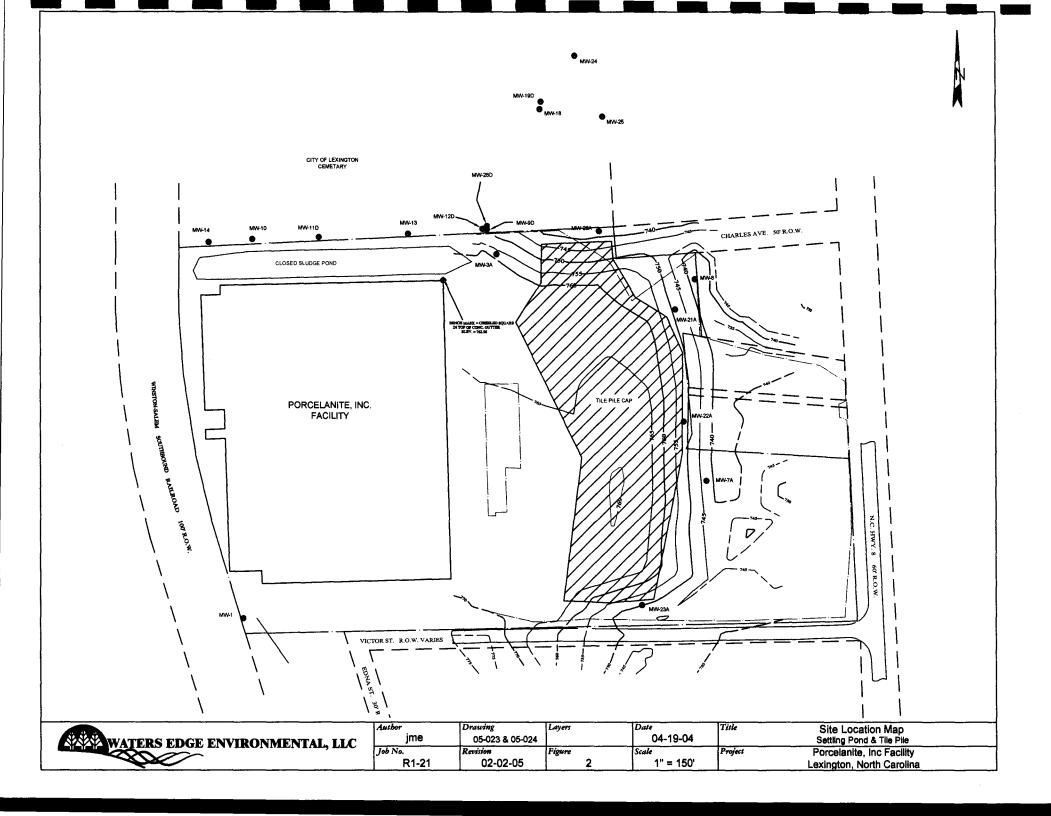
Revised Tile Post Closure Care Plan Porcelanite, Inc. 05-024 February 14, 2005 Page 5 of 5

3 Cost

Cost Estimate¹ for Post-Closure Care of Ceramic Chip Tile Pile (current dollars)

1.	Sampling Events of Monitoring Wells (includes equipment, analysis, labor, and report)	\$ 1,500
2.	Maintain Cover on slope, surface cap including inspection and maintenance of cap system • Quarterly Inspections-\$ 200 annual * • Mowing - \$500 annual • Contingency \$300 annual	\$ 1,000
	Annual Total	\$ 2,500
	Total Cost for 30-Year Post-Closure Care Period	\$ 75,000


Additional cost: Ground water assessment estimated cost for entire site is \$ 20,000


Approved By:

Revision No. 5

Date: 2/14/05

^{*} The quarterly Tile Pile and Lagoon inspections will be completed at the same time by an independent inspector.

Appendix A Quarterly Inspection Log Porcelanite Tile Plant

Lexington, North Carolina Davidson County

Settling Ponds

	1 ^s Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Asphalt roadway cover				
Run-on/Run-off Control System				
Subsidence				
Security Fence		-		
Monitoring wells				
Tile Pile				
	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Erosion Damage				
Vegetative/Stone/or asphalt Cover				
Run-on/Run-off Control System				
Subsidence				
Monitoring wells				
Security Fence				
	, st			
	1 st Quarter	2 nd Quarter	3 rd Quarter	4 th Quarter
Date of inspections:				
Inspected By:				

Appendix I-3- Hazardous Waste Facility Certification of Liability Insurance Policy

HAZARDOUS WASTE FACILITY CERTIFICATE OF LIABILITY INSURANCE

- 1. Indian Harbor Insurance Company, the Insurer of Seaview House, 70 Seaview Avenue, Stamford, CT 06902-6040, hereby certifies that it has issued liability insurance covering bodily injury and property damage to Mannington Mills, Inc., the Insured, of 75 Mannington Mills Road, Salem, NJ 08079 in connection with the Insured's obligation to demonstrate financial responsibility under 40 CFR 264.147 or 265.147. The coverage applies at EPA ID#NCD986181451, Porcelanite, Inc., 20 Victor Street, Lexington, NC 27292 for sudden accidental occurrences. If coverage is for multiple facilities and the coverage is different for different facilities, indicate which facility(ies) are insured for sudden accidental occurrences, which are insured for nonsudden accidental occurrences, and which are insured for both. The limits of liability are \$1,000,0000 each occurrence and \$2,000,0000 annual aggregate, exclusive of legal defense costs. The coverage is provided under policy number PEC000801603 issued on December 31, 2015. The effective date of said policy is December 31, 2015.
- 2. The Insurer further certifies the following with respect to the insurance described in Paragraph 1:
 - (a) Bankruptcy or insolvency of the Insured shall not relieve the Insurer of its obligations under the policy.
 - (b) The Insurer is liable for the payment of amounts within any deductible applicable to the policy, with a right of reimbursement by the Insured for any such payment made by the Insurer. This provision does not apply with respect to that amount of any deductible for which coverage is demonstrated as specified in 40 CFR 264.147(f) or 265.147(f).
 - (c) Whenever requested by "Secretary" of the Department of Environment and Natural Resources (DENR), the Insurer agrees to furnish to the "Secretary" a signed duplicate original of the policy and all endorsements.
 - (d) Cancellation of the insurance, whether by the Insurer, the Insured, a parent corporation providing insurance coverage for its subsidiary, or by a firm having an insurable interest in and obtaining liability insurance on behalf of the owner or operator of the hazardous waste management facility, will be effective only upon written notice and only after the expiration of 60 days after a copy of such written notice is received by the Secretary.
 - (e) Any other termination of the insurance will be effective only upon written notice and only after the expiration of thirty (30) days after a copy of such written notice is received by the Secretary.

I hereby certify that the wording of this instrument is identical to the wording specified in 40 CFR 264.151(j) as such regulation was constituted on the date first above written, and that the Insurer is licensed to transact the business of insurance, or eligible to provide insurance as an excess or surplus lines insurer, in one or more States.

(Signature of Authorized Representative of Insurer)

Date

Anthony Gentile, Vice President

Authorized Representative of

Indian Harbor Insurance Company

c/o XL Catlin 505 Eagleview Boulevard Exton, PA 19341-0636

Appendix I-4- Indian Harbor Policy Endorsement (#31)

ENDORSEMENT #031

This endorsement, effective 12:01 a.m., December 31, 2015 forms a part of Policy No. PEC000801603 issued to MANNINGTON MILLS, INC. by Indian Harbor Insurance Company.

THIS ENDORSEMENT CHANGES THE POLICY. PLEASE READ IT CAREFULLY.

RCRA AMENDATORY ENDORSEMENT

This endorsement modifies insurance provided under the following:

POLLUTION AND REMEDIATION LEGAL LIABILITY POLICY

The INSURED and the Company agree to the following Policy change(s).

Item 3. Limits of Liability, of the Declarations, is amended by the addition of the following:

- (i) The Dedicated Annual Sublimits of Liability set forth below can only be reduced by LOSS or REMEDIATION EXPENSE required to satisfy the INSURED's Resource Conservation and Recovery Act (RCRA) Hazardous Waste financial responsibility obligations for the COVERED LOCATION listed in the Location Schedule below.
- (ii) Except as outlined in Item (i) above, the Dedicated Annual Sublimits of Liability set forth below are not available to satisfy any coverage otherwise afforded by this Policy.
- (iii) Any LOSS or REMEDIATION EXPENSE described in Item (i) above that exceed the Dedicated Annual Sublimits of Liability set forth below are subject to the Limits of Liability outlined in Items 3.a. and 3.b. of the Declarations.
- (iv) Notwithstanding the terms and conditions in Items (i), (ii), and (iii) above, the maximum Limits of Liability applicable under this Policy will not exceed the Aggregate Liability shown in Item 3.b. of the Declarations.

Dedicated Annual Sublimits of Liability:

\$1,000,000 LOSS or REMEDIATION EXPENSE for each POLLUTION CONDITION \$2,000,000 LOSS or REMEDIATION EXPENSE Aggregate Liability

In consideration of the above Dedicated Annual Sublimits of Liability and the five (5) year POLICY PERIOD, the above Dedicated Annual Sublimits of Liability provides an overall POLICY PERIOD Dedicated Sublimits of Liability of \$1,000,000 each POLLUTION CONDITION / \$10,000,000 Aggregate Liability under this Policy for the INSURED's financial responsibility obligations outlined in item (i) above. This overall POLICY PERIOD Dedicated Sublimits of Liability are not available to satisfy any coverage otherwise afforded by this Policy.

Solely with regards to any POLLUTION CONDITION associated with the Ceramic Tile Pile Unit covered under this Policy for the INSURED's RCRA financial responsibility obligations for the COVERED LOCATION listed in the Location Schedule below, the INSURED and the Company agree to the following Policy change(s):

Item 4. Self-Insured Retention Amount, of the Declarations, is deleted in its entirety and replaced with the following:

4. Deductible:

\$ 100,000 each POLLUTION CONDITION

MANUS-US (01/10)

Page 1
© 2010 X.L. America, Inc. All Rights Reserved.
May not be copied without permission.

MCAN 02/01/2016

LEGAL EXPENSE, as well as LOSS and REMEDIATION EXPENSE, shall be included within the Deductible.

Section VI. LIMITS OF LIABILITY AND SELF-INSURED RETENTION, Paragraphs A. and B. are deleted in their entirety and replaced with the following:

- A. The Company will pay one hundred percent (100%) of all covered LOSS, REMEDIATION EXPENSE, LEGAL EXPENSE and any other coverages afforded by endorsement attached to this Policy subject to the Limits of Liability stated in Item 3. of the Declarations and the other terms and conditions of this Policy.
- B. The applicable Deductible stated in Item 4. of the Declarations shall apply.

It is further agreed that the term "Self-Insured Retention Amount" referenced throughout this Policy and Declarations is amended to read "Deductible". The Company is liable for the payment of amounts within the Deductible applicable to this Policy, with a right of reimbursement from any INSURED for payment made by the Company.

If the Company advances all or part of the Deductible, the INSURED will immediately reimburse the Company for all sums advanced upon the Company's request. If the INSURED does not reimburse the Company for a Deductible payment made within the time frame stated by the Company or there is the commencement of a proceeding under bankruptcy or insolvency laws by or against the INSURED, the Company reserves the right to require collateral as financial security in an amount and form acceptable to the Company for all present and future financial obligations of the INSURED to the Company. In the event of a collateral demand by the Company, the INSURED will immediately deliver such collateral to the Company.

Location Schedule:

20 Victor Street Lexington, NC 27292

All other terms and conditions remain the same.

MANUS-US (01/10)

Part J Other Federal Laws

Part J- Other Federal Laws

Acronym List

NCDENR North Carolina Department of Environment and Natural Resources

NCDEQ North Carolina Department of Environmental Quality (formerly

NCDENR, and renamed effective September 18, 2015).

USFWS United States Fish and Wildlife Service

Waters Edge Environmental, LLC

Part J- Other Federal Laws

Based on the Module J Checklist provided by NCDEQ, on behalf of this Part B application, Waters Edge has contacted the following agencies to provide demonstration with applicable Federal laws or is of the opinion that some laws do not apply:

- Wild and Scenic Rivers Act- Waters Edge requested State Wild and Scenic Rivers Act information twice via email and received no response
- National Historic Preservation Act of 1966- This is not applicable at this site
- Endangered Species Act-
 - 1. Allen Ratzlaff, a Fish and Wildlife Biologist with the USFWS, responded electronically stating "no federally listed species or their habitats occur in the project area. Therefore, we believe the requirements under Section 7 of the of the Endangered Species Act of 1973 are fulfilled."
 - 2. Mr. David Cox with the NC Wildlife Resources Commission was contacted by electronic mail on January 24, 2017 for information regarding any National or State Wildlife Refuges, State lands designated for wildlife or game management, Migratory pathways and feeding areas critical for maintenance of anadromous fish species within river reaches or Areas in lakes in which fish spend extended periods of time, or Spawning areas critical for the maintenance of fish/shellfish species within river or lake waters. Ms. Olivia Munzer, Western Piedmont Habitat Conservation Coordinator, responded electronically stating "There are no national refuges or state-owned, wildlife-designated or management lands within 1.0 mile of the site. However, lands managed by Davidson County as Open-Space are located with 1.0 mile of the site. There are no migratory or feeding grounds for anadromous fish or spawning areas critical for the maintenance of fish/shellfish species, or large lakes or reservoirs with areas that fish spend extended periods of time occur[sic] within 1.0 mile of the Facility.
- Coastal Zone Management Act- This does not apply at this site
- Fish and Wildlife Coordination Act- This does not apply at this site

Part K Certification

RCRA Part B Post-Closure Permit Application
Part K-Certification
Former Porcelanite Facility
Lexington, Davidson County, North Carolina
March 6, 2017

Part K - Certification

Former Porcelanite Facility, Lexington, North Carolina

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Mr. Dave Kitts Vice-President-Environment Mannington Mills, Inc. 75 Mannington Mills Road Salem, NJ 08079

Date

Mr. Alejandro Sanchez President Condumex, Inc. 2590 114th Street, Suite 200 Grand Prairie, Texas 27505

Date

Part L Information Requirements for Solid Waste Management Units

Part L - Information Requirements for Solid Waste Management Units

Table of Contents

L-1		um Information Requirements for Solid Waste Management Units	_
ī	`	(Us) and Areas of Concern (AOCs)	1
L	-1a Desc (AO	cription of Solid Waste Management Units (SWMUs) and Areas of Conc Cs)	<i>2</i>
	L-1a (1)	SWMU-1 - Wastewater Pretreatment System Operational History	2
	L-1a (2)	SWMU-2 - Sludge Settling Ponds Operational History and Closure Activities	3
	L-1a (3)	SWMU-3 – Waste Ceramic Tile Pile Operational History	4
	L-1a (4)	SWMU-4 - 20 Cubic Yard Sludge Roll-off Container Operational and S Assessment History	Site 5
	L-1a (5)	SWMU-5 - 20 Cubic Yard Floor Sweeping Roll-Off Container Operation History	onal 6
	L-1a (6)	SWMU-6 – Baghouse Operational History	7
	L-1a (7)	SWMU-7 - Walltown Branch History	8
	L-1a (8)	SWMU-8 - Off-Specification Tile Accumulation Roll-Off Container Operation and Site Assessment History	onal 9
	L-1a (9)	SWMU-9 - Filter Cake Waste Pile Area Operational History	10
	L-1a (10)	SWMU-10 - Maintenance Building Waste Management Areas Operation History	onal 11
	L-1a (11)	SWMU-11 - Spray Line Area Wastewater Sumps Operational History	13
	L-1a (12)	AOC-1 Area of Discharge North of the Ceramic Tile Pile Operational History	14
	L-1a (13)	AOC-2 Broken Ceramic Tile Roadway Operational History	15
	L-1a (14)	AOC-3 -Former UST and AST Area Operational History	16
L	-1b Info	rmation Pertaining to Releases	17
	L-1b (1)	Wastewater Pretreatment System (SWMU-1)	17
	L-1b (2)	Two (2) Sludge Settling Ponds (SWMU-2)	17
	L-1b (3)	Waste Ceramic Tile Pile (SWMU-3)	18
	L-1b (4)	Walltown Branch (SWMU-7), a previously piped-in stream	20
	L-1b (5)	Area of Discharge from the Tile Pile (AOC-1)	20
	L-1b (6)	Broken Ceramic Tile Roadway(AOC-2)	20
L	-1c Sam	pling and Analysis	20
	L-1c (1)	SWMU-1 Site Assessment History	20
	I -1c (2)	SWMII-2 Site Assessment History	22

L-1c (3) SWMU-3 Site Assessment History	28
L-1c (4) SWMU-7 Site Assessment History	42
L-1c (5) AOC-1 Site Assessment History	47
L-1c (6) AOC-2 Site Assessment History	49
L-1-d Additional Requirements	50
L-1d (1) Ongoing Sampling	50
L-1d (2) Cost Estimate for Assessment and Remediation of SWMUs and AOCs	50

Figures	
L-1	SWMU and AOC Location Map
L-2	SWMU-3 and AOC-1 Past Soil Sample Location and RCRA Closure Cap
	Delineation Map
L-3	AOC-2 Soil Sample Location Map
L-4	SWMU-2 and AOC-2 Past Soil Sample Location Map with Current PSRG
	Exceedances
L-5	Site Background Boring Location Map
L-6	SWMU-3/AOC-1 Current PSRG Exceedances at Perimeter of Cap Location Map
L-7	SWMU-7 Past Surface Water/Sediment Sample Location Map with 2B and Risk
	Based Exceedances

Tables

<u>rabies</u>	
Table L-1	SWMU/AOC Identification and Past and Current Status
Table L-2	SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus 1993 Soil
	Closure Standards
Table L-3	SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG
	Standards
Table L-4	Soil Analytical Results Versus Current PSRG Standards
Table L-5	SWMU-3 Past Inorganic Soil Sampling Analytical Results Versus 1997 Soil
	Closure Standards
Table L-6	SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG
	Standards
Table L-7	SWMU-3 Past Soil TCLP Analytical Results Summary
Table L-8	SWMU-3 Past VOC, SVOC and Other Compounds Results Versus Current PSRG
	Standards
Table L-9	SWMU-7 Past Surface Water Results Versus 2B and Risk Based Standards
Table L-10	SWMU-7 Past Sediment Results Versus Current PSRG Standards
Table L-11	AOC-1 Past Inorganic Soil Sampling Results Versus Current PSRG Standards
Table L-12	AOC-2 Past Inorganic Soil Sampling Results Versus Current PSRG Standards

Appendix L-1 March 5, 2015 SWMU #1 and SWMU #11 Initial & Interim Investigation Results

Acronym List

ACL Alternative Concentration Limits

AOC Area of Concern

BGS below ground surface

BQL below quantitation limits

CAP Corrective Action Plan

°C Celsius

COCs Constituents of Concern

CS Confirmatory Sampling

EP Extraction Procedure

Ft/ft Foot per foot

HWMU Hazardous Waste Management Unit

HWS Hazardous Waste Section

IHSB Inactive Hazardous Sites Branch

Mannington Mannington Ceramic Tile

MCL Maximum Contaminant Level

mg/kg milligrams per kilograms or parts per million

NC North Carolina

NCDEHNR North Carolina Department of Environment, Health, and Natural

Resources

NCDENR North Carolina Department of Environment and Natural Resources

NCDEQ North Carolina Department of Environmental Quality (formerly

NCDENR, and renamed effective September 18, 2015).

NCGS North Carolina Groundwater Standards

NFA No Further Action

Porcelanite Porcelanite, Inc.

PGW Protection of Groundwater

POTW Publicly-Owned Treatment Works

PQL Practical Quantitation Limit

PPM Priority Pollutant Metals

PSRG Preliminary Soil Remediation Goal

PVC Polyvinyl Chloride

RCRA Resource Conservation Recovery Act

RFI Recommend Further Investigation and RCRA Facility

Investigation

SAP Sampling and Analysis Plan

SIC Standard Industrial Classification

SVOCs Semivolatile Organic Compounds

SWMU Solid Waste Management Units

TCLP Toxicity Characteristic Leaching Procedure

USEPA United States Environmental Protection Agency

VOCs Volatile Organic Compounds

VSI Visual Site Inspection

Waters Edge Waters Edge Environmental, LLC

Part L - Information Requirements for Solid Waste Management Units

L-1 Minimum Information Requirements for Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs)

An RFA report was completed on April 29, 2004 by an EPA contractor (Booz Allen, 2004) and finally submitted on February 16, 2005 (see Appendix B-1). The RFA identified eleven (11) SWMUs and three (3) AOCs as depicted on Figure L-1. Based on the 2005 RFA, Table L-1 lists the SWMUs and AOCs identified along with the recommended course of action in 2004 and after reevaluation in 2016. Portions of the following SWMU and AOC descriptions and past investigation summaries are directly referenced from the February 2005 RFA.

Table L-1 SWMU/AOC Identification and Past Status

Unit	Name	2005
SWMU-1	Wastewater Pretreatment System	CS
SWMU-2	Sludge Settling Ponds (Regulated)	NFA
SWMU-3	Ceramic Tile Pile (Regulated)	NFA
SWMU-4	20 cubic yard Sludge Roll-Off Container	NFA
SWMU-5	20 cubic yard Floor Sweeping Roll–Off Container	NFA
SWMU-6	Baghouse	CS
SWMU-7	Walltown Branch	RFI
SWMU-8	Off-Spec Tile Accumulation Roll-Off	NFA
SWMU-9	Filter Cake Waste Pile Area	NFA
SWMU-10	Maintenance Building Waste Management	NFA
SWMU-11	Spray Line Area Sumps	CS
AOC-1	Area of Discharge from Tile Pile	RFI
AOC-2	Broken Ceramic Tile Roadway	CS
AOC-3	Former UST and AST Area	NFA

Notes:

CS = Confirmatory Sampling

NFA = No Further Action

RFI = *Recommended Further Investigation*

These determinations of CS, NFA or RFI are excerpted from the Booz Allen 2005 RFA

L-1a Description of Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs)

At the request of Ms. Mary Siedlecki with the NCDEQ, this Section includes a description of all eleven (11) SWMUs and three (3) AOCs that are listed in Table L-1. There are also numerous refences to the previous names of the current NCDEQ including NCDENR and NCDEHNR; however, for consistency, we will use NCDEQ throughout this document. The locations of the SWMUs and AOCs are shown on Figure L-1 with current photodocumentation of the existing SWMUs and AOCs or areas of former SWMUs shown in Appendix A-1. Four (4) SWMUs and two (2) AOCs are currently recommended for additional investigation. SWMU-1 was identified as the Wastewater Pretreatment System, SWMU-2 was identified as the two Sludge Settling Ponds, SWMU-3 was identified as the Ceramic Tile Pile (the latter two are both regulated units), and SWMU-7 was identified as Walltown Branch, a previously piped-in stream. Two AOCs were identified as an Area of Discharge from the Tile Pile (AOC-1) and the Broken Ceramic Tile Roadway (AOC-2). SWMU-2 and SWMU-3 have successfully undergone closure which has been accepted by NCDEQ. Portions of the following SWMU and AOC descriptions and past investigation summaries are directly referenced from the February 2005 RFA.

L-1a (1) SWMU-1 - Wastewater Pretreatment System Operational History

TYPE OF UNIT: Wastewater Pretreatment System comprised of holding tanks with secondary containment, precipitation tanks, a filter press, and a sump.

PERIOD OF OPERATION: January 1989 to 1999 (facility permanently shut down) **PHYSICAL DESCRIPTION AND CONDITION:**

Historically, wastewater generated by the tile manufacturing operations was discharged to the Sludge Settling Ponds ("SWMU-2"). In 1988, a substantial modification of the wastewater treatment system at the Facility occurred in that all wastewater which had previously been discharged to the Sludge Settling Ponds ("SWMU-2") was channeled to a new Wastewater Pretreatment System ("SWMU-1" - see Figure L-1) (ENSCI, 1993).

SWMU-1 was located in a 60-foot long by 30-foot wide by 25-foot high room in the northwest corner of the former Main Process Building. The floor of this room was covered in tile and a sump 6 inches wide and 12 inches deep bisected the room into eastern and western halves. According to Facility representatives, this sump collected wastewater spilled during treatment so it could be pumped back into the holding tanks. The two halves of the room formed two distinct areas with the holding tank area in the eastern half and the precipitation tank/filter press area in the western half. The holding tank area was a rectangular area surrounded by a six-foot high, concrete secondary containment wall that was 55 feet long and 25 feet wide. This area contained two 3,000-gallon fiberglass tanks that received wastewater from the process area. According to facility representatives, wastewater was primarily generated by spray lines used to cool the fired tiles that exited the kilns. The tiles were conveyed from the tile presses via a conveyor belt to the spray lines

where water and glaze were applied to "green" tile before being sent to the kilns. The water from the spray heads was captured beneath the conveyor belt through floor grates that covered a series of subsurface trenches. This wastewater was conveyed to the holding tanks by a series of open trenches and grate-covered sumps that made up the Spray Line Area Sumps (SWMU-11) (Booz Allen, 2003).

The western portion of the wastewater treatment room contained four (4) precipitating tanks of various sizes (estimated to be between 250- and 500-gallon capacity) located in the northwestern corner of the room, and a filter press located in the west-central portion of the room. Wastewater from the holding tanks was pumped to the precipitation tanks where solids were allowed to settle. Flocculent was added to increase the rate of precipitation and pH adjusting solutions were added. At the time of the September 2003 RCRA VSI, four (4) drums of chemicals were stored near the precipitation tanks. Two (2) of the drums, labeled Selfloc and PolySep 1127, were described as flocculants by facility representatives. The other two (2) drums, one unlabeled and one labeled as caustic soda, were described as pH adjusting solutions by facility representatives. Treated wastewater from the precipitation tanks was discharged under a POTW permit to the City of Lexington sewer system. In the past, some of the treated wastewater was reclaimed and returned to the spray lines. Sludge from the precipitation tanks was pumped to the filter press, where additional water was extracted from the solids by compressing it into a filter cake. The extracted water was returned to the precipitating tanks. The filter cake left the filter press via a conveyer belt that dropped it through a hole in the western wall of the Main Process Building, into the Filter Cake Waste Pile Area (SWMU-9) (Booz Allen, 2003).

Information pertaining to releases and a detailed site assessment history of SWMU-1 are provided in Sections L-1b (1) and L-1c (1), respectively.

L-1a (2) SWMU-2 - Sludge Settling Ponds Operational History and Closure Activities

TYPE OF UNIT: Surface Impoundments

PERIOD OF OPERATION: 1972 to 1989 (capped in 1993)

PHYSICAL DESCRIPTION AND CONDITION:

SWMU-2 consisted of two surface impoundments estimated at 130' (L) x 30' (W) each (based on preliminary assessment figures) located in the northwestern corner of the Facility, between the northern property boundary and the northern wall of the former Main Building as shown on Figure L-1. Previous calculations indicated a total volume for both ponds to be approximately 8,240 cubic yards, consisting of approximately 3,625 cubic yards in the Western Pond and approximately 4,615 cubic yards in the Eastern Pond. Prior to January 1, 1989, wastewater treatment conducted at the Facility consisted of passing wastewater through a series of two Sludge Settling Ponds (SWMU-2), allowing solids to settle prior to discharge. After wastewater passed through the second (eastern) settling pond, Mid-State Tile and subsequently Mannington

discharged wastewater directly into Rat Spring Branch of the Yadkin-Pee Dee River Basin pursuant to NPDES permit #NC0006459 (ENSCI, 1993, 1994).

Prior to 1990, the clay and silica used at the Facility likely contained hazardous constituents such as lead and chromium. In addition, according to Facility representatives, the pH of the incoming wastewater was usually in the range of 4 to 6. A site assessment of the Facility, prepared by Mannington, and dated April 12, 1990, consisted of a field investigation in which samples were collected from the Sludge Settling Ponds. TCLP analysis results detected leachable lead levels in the sludge ranging from 230 mg/L to 1,230 mg/L, which is well above the 5.0 mg/L threshold for a characteristic hazardous waste. All VOCs and SVOCs were BDL with the exception of methylene chloride, acetone, and carbon disulfide, which are considered laboratory artifacts. As a result, the solid waste (i.e., sludge) disposed in the Sludge Settling Ponds was a characteristic hazardous waste (D008) (NCDEQ, 1990b; ENSCI, 1993, 1994).

In July 1993, Mannington completed closure of the Sludge Settling Ponds (SWMU-2) according to the NCDEQ approved Closure Plan. Mannington submitted a certified closure report to NCDEQ on November 9, 2005, which NCDEQ subsequently accepted on February 1, 2006. As a result of closure activities, sludge was removed from both sludge ponds and stabilized with Portland Cement, such that the waste passed TCLP for lead. The stabilized material was placed back into the ponds and the area was capped with a RCRA compliant cap. According to facility representatives, the cap included a 30-millimeter synthetic liner and an asphalt cap that serves as the top layer. Additionally, all piping associated with the sludge ponds was removed. Some of the surrounding soils north and west of the Sludge Settling Ponds were excavated and placed on the Ceramic Tile Pile ("SWMU-3") prior to its closure in 1997. According to a September 1992 Consent Agreement, sludge from SWMU-2 was also deposited in SWMU-3. At the time of the September 2003 VSI, the asphalt cover appeared to be in good condition with no significant cracks, staining, or erosion identified (Booz Allen RFI, 2005).

Information pertaining to releases and a detailed site assessment history of SWMU-2 are provided in Sections L-1b (2) and L-1c (2), respectively.

L-1a (3) SWMU-3 – Waste Ceramic Tile Pile Operational History

TYPE OF UNIT: Waste Ceramic Tile Pile

PERIOD OF OPERATION: 1950s or 1960s to 1990 (capped in 1995)

PHYSICAL DESCRIPTION AND CONDITION:

SWMU-3 is located east of the former Main Process Building and immediately west of the Walltown Branch (SWMU-7). The unit extends approximately 12 feet north of the southern property fence line to the Area of Discharge from the Ceramic Tile Pile (AOC-1) to Rat Springs Branch as shown on Figures L-1 and L-2. The total volume of the unit is estimated at approximately 260,000 tons (*Transmittal of Revised Closure and Post-Closure Care Plans*, July

30, 1997). The Facility used the unit to store off-specification unfired and fired glazed ceramic tile. Additionally, in the early 1990s, soil north of SWMU-2 exhibiting elevated lead and zinc concentrations was excavated and placed on top of the Ceramic Tile Pile prior to closure of the unit, as was material from the Broken Tile Roadway (AOC-2). In 1990, Mannington stopped depositing waste tile material in SWMU-3 (NCDEQ, 1990d, 1990e, and 1990f).

Information pertaining to releases and a detailed site assessment history of SWMU-3 are provided in Sections L-1b (3) and L-1c (3), respectively.

L-1a (4) SWMU-4 - 20 Cubic Yard Sludge Roll-off Container Operational and Site Assessment History

TYPE OF UNIT: 20 Cubic Yard Sludge Roll-off Container

PERIOD OF OPERATION: 1990-1999 (according to facility representative)

PHYSICAL DESCRIPTION AND CONDITION:

A concrete pad with no secondary containment where 20 cubic yard steel roll-off containers were placed to receive sludge filter cake from SWMU-1 was situated adjacent to the western wall of the Main Building. This unit is referred to as SWMU-4 ("SWMU-4") and is located, approximately 40 feet south of the Filter Cake Waste Pile Area ("SWMU-9") as shown on Figure L-1. The concrete pad was approximately 15 feet wide and 40 feet long. At the time of the September 2003 VSI, no roll-off box was present at SWMU-4 and the concrete pad was in fair condition. Some cracks in the concrete pad and some vegetation growing in the cracks were noted by Booz Allen during its September 2003 site visit (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

According to facility representatives, a small front-end loader (e.g., Bobcat®) was used to transfer the sludge from the Filter Cake Waste Pile Area (SWMU-9) to roll-off containers in SWMU-4. Once the roll-off container was full, it was sent to the Kernersville, NC landfill (Subtitle D operated by Waste Management, Inc.) for disposal.

SWMU-4 Site Assessment History

In 1990, samples were collected from the filter cake and were analyzed for RCRA primary metals in extracted leachate (EP Toxicity via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The filter cake waste stream samples contained bis(2-ethylhexyl) phthalate at a concentration of 1.5 mg/kg. All other constituents were ND. Based on these sampling results, it was determined by NCDEQ that the filter cake waste stream was a nonhazardous waste that could be disposed of in a Subtitle D landfill. According to facility representatives, the solids generated by the filter press were characterized annually to ensure that the wastes were nonhazardous (USEPA, 1993).

HISTORY AND/OR EVIDENCE OF RELEASE(S):

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. Finally, at the time of the September 2003 VSI, no visual evidence of a release (i.e., staining) was observed.

RECOMMENDATION: No Further Action (X)

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS:

The 2005 RFA recommended no further action and Waters Edge concurs with this recommendation.

L-1a (5) SWMU-5 - 20 Cubic Yard Floor Sweeping Roll-Off Container Operational History

TYPE OF UNIT: 20 Cubic Yard Sludge Roll-off Container

PERIOD OF OPERATION: 1990 -1999 (facility permanently shut-down)

PHYSICAL DESCRIPTION AND CONDITION:

This unit was located adjacent to the eastern central wall of the former Main Process Building and consisted of a 20-cubic yard steel roll-off container ("SWMU-5") placed on the asphalt parking area (see Figure L-1). Floor sweepings from the Main Process Building, containing dust, small tile pieces, and other wastes spilled on the floor during tile manufacturing operations, and were swept up daily and deposited in SWMU-5. According to facility representatives, a tarpaulin was used to cover the top of the roll-off container. At the time of the September 2003 VSI, the area where the roll-off container was formerly located appeared to be in good condition (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED

The waste stream managed by this unit consisted of daily sweepings from the floor of the process area in the former Main Process Building. According to correspondence from NCDEQ to Mannington in 1990, as much as 5,000 pounds per week of floor sweepings were generated by ceramic tile manufacturing operations.

SWMU-5 Site Assessment History

In 1990, floor sweeping samples were collected and were analyzed for RCRA primary metals using the EP Toxicity Test (EP Toxicity via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The floor sweepings samples contained 1,1,1-trichloroethane (0.087 mg/kg), bis(2-ethylhexyl) phthalate (15 mg/kg), and benzyl butyl

phthalate (3.6 mg/kg). In addition, the extractable leachate from the floor sweepings sample also contained 0.84 mg/L of lead. Based on these sampling results, NCDENR determined that the floor sweepings were a nonhazardous waste (USEPA, 1993; NCDEQ, 1990d, 1990e, 1990f).

HISTORY AND/OR EVIDENCE OF RELEASE(S)

No evidence of a release from this unit was identified in the available file material. In addition, according to Facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. Finally, at the time of the September 2003 VSI, no visual evidence of a release (i.e., staining) was observed.

RECOMMENDATION No Further Action (X)

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS

The 2005 RFA recommended no further action and Waters Edge concurs with this recommendation.

L-1a (6) SWMU-6 – Baghouse Operational History

TYPE OF UNIT: Baghouse

PERIOD OF OPERATION: 1960s to 1999 (facility permanently shut-down)

PHYSICAL DESCRIPTION AND CONDITION:

The Baghouse ("SWMU-6") was historically located at the southwest corner of the former Main Process Building (see Figure L-1). The remaining footprint of the Baghouse is located above a concrete pad, which is approximately 2 feet high by 30 feet long by 8 feet wide. The Baghouse was used to collect particulates originating from the process area generated during production of the green tile. The unit operated under Air Permit #S408RS, issued by the City of Lexington. The dates of this permit are unknown. No information on the physical characteristics of this unit was identified in the available file material and Facility representatives could not provide any specific details. In addition, no information regarding the waste management practices associated with this unit, such as handling and disposal of spent filters, was available. Finally, no information on permit conditions or violations was identified in the available file material. According to Facility representatives, the particulates captured by this unit were recycled back into the raw materials stage of the tile production process. The unit was reportedly removed in 1999 or 2000 and was not present at the time of the September 2003 VSI. No information regarding the removal of this unit was identified in the available file material and Facility representatives could only provide the removal date (Booz Allen, 2003; Mannington 1992).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

According to facility representatives, this unit captured dust generated during production of the "green" tile, primarily from the pressing operations that molded raw materials into various sizes of tile. Facility representatives also indicated the dust collected by this unit was generated prior to addition of lead-containing glaze. Therefore, no hazardous waste was managed by this unit (Booz Allen, 2003; Mannington 1992).

No evidence of a release from this unit was identified in the available file material. In addition, according to Facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. At the time of the September 2003 VSI, no visual evidence of a release (i.e., staining) was observed.

RECOMMENDATION: No Further Action (X)

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS

The 2005 RFA recommended no further action and Waters Edge concurs with this recommendation.

L-1a (7) SWMU-7 - Walltown Branch History

TYPE OF UNIT: Surface Water Drainage Ditch PERIOD OF OPERATION: 1960s to present

PHYSICAL DESCRIPTION AND CONDITION:

Walltown Branch ("SWMU-7") is located immediately east of the Ceramic Tile Pile (SWMU-3) and drains to the north of the Facility approximately 0.5 miles to Rat Springs Branch, which flows to the southwest approximately 2 miles to Swearing Creek, a tributary of the Yadkin River. As of 1997, the NCDEQ Winston-Salem Regional Water Quality Office classified Rat Springs Branch as a "C" surface water designation (Aquaterra, 1997 - Tile Pile Closure Plan). The Walltown Branch was enclosed in pipe in 1992-1993 under a Nationwide 26 permit from the USACE. This permit was issued based on the determination by the USACE that no significant wetlands were present at the site (Aquaterra, 1997 - Tile Pile Closure Plan). The piping was installed to prevent surface water runoff from SWMU-3 to discharge into the creek. At the time the piping was installed at Walltown Branch, a permanent 25-foot easement was conveyed to the City of Lexington. A sanitary sewer line and storm sewer line also run parallel to SWMU-7 northward across the eastern portion of the property and a permanent 25-foot easement for these lines was also conveyed to the City of Lexington (Aquaterra, 1997b, 2000; Booz Allen, 2003; Mannington, 2004).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

This unit was not designed to manage or handle waste. This unit is a tributary that was located on the Facility property prior to the property being purchased or the Facility being operated. SWMU-3 is located west and adjacent to the Walltown Branch as shown on Figure L-1. SWMU-3 is upgradient of the Walltown Branch. Prior to its enclosure, runoff from the Ceramic Tile Pile and the Facility entered into the Walltown Branch. As a result, according to Booz Allen, SWMU-7 may have received hazardous constituents from the waste tile fragments primarily consisting of RCRA metals such as lead (Booz Allen, 2003).

Information pertaining to releases and a detailed site assessment history for SWMU-7 are provided in Sections L-1b (4) and L-1c (4), respectively.

L-1a (8) SWMU-8 - Off-Specification Tile Accumulation Roll-Off Container Operational and Site Assessment History

TYPE OF UNIT: 40 Cubic Yard Roll-off Container

PERIOD OF OPERATION: 1990-1999 (facility permanently shut-down)

PHYSICAL DESCRIPTION AND CONDITION:

A 40-cubic yard roll-off container that was situated on an asphalt surface was located on the asphalt roadway covering the area formerly occupied by the Sludge Settling Ponds (SWMU-2), adjacent to the north central wall of the Main Process Building ("SWMU-8") (see Figure L-1). According to facility representatives, once waste tile was no longer deposited in the Ceramic Tile Pile (SWMU-3), this unit was used to store broken and off-specification tile from the manufacturing operation before it was disposed off-site. At the time of the September 2003 VSI, the roll-off container associated with this unit was no longer present at the facility; however, a metal frame structure with a corrugated metal roof was observed in the unit location. According to Booz Allen, Facility representatives indicated that the metal frame roof was installed at an unknown date to cover the roll-off container (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

According to several RCRA Inspection Reports, after closure of the Ceramic Tile Pile (SWMU-3) in 1990, ceramic tile wastes accumulated at the facility were stored in this roll off container before being transported to the Davidson County landfill (Subtitle D) for disposal. The waste stream managed by this unit consisted of unfired and fired ceramic tile and chips that were rejected during quality control inspections because they did not meet technical specifications. According to correspondence from NCDEQ to Mannington in 1990, as much as 20,000 pounds per week of unfired glaze ceramic tile and 110,000 pounds per week of fired glaze ceramic tile were generated by ceramic tile manufacturing operations (USEPA, 1991; NCDEQ, 1990d, 1990e, 1990f).

SWMU-8 Site Assessment History

In 1990, samples were collected from each of the fired and unfired tile waste streams. The samples were analyzed for RCRA primary metals in extracted leachate (EP toxicity characteristic via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The samples collected from the fired glaze ceramic tile waste stream were ND. The unfired glaze ceramic tile waste stream samples contained bis(2-ethylhexyl) phthalate at a concentration of 5.6 mg/kg. All other constituents in all of the waste stream samples were ND. Based on these sampling results, it was determined by NCDEQ that the fired and unfired glaze ceramic tile waste streams were nonhazardous waste that could be disposed of in a Subtitle D landfill. As a result, waste from SWMU-8 was sent to the Davidson County landfill for disposal (USEPA, 1991; NCDEQ, 1990d, 1990e, 1990f).

No evidence of a release from this unit was identified in the available file material. In addition, according to facility representatives, no releases of nonhazardous or hazardous waste from this unit have ever occurred. Finally, at the time of the VSI, no visual evidence of a release (i.e., staining) was observed.

RECOMMENDATION: No Further Action (X)

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS:

The 2005 RFA recommended no further action and Waters Edge concurs with this recommendation.

L-1a (9) SWMU-9 - Filter Cake Waste Pile Area Operational History

TYPE OF UNIT: Waste Pile

PERIOD OF OPERATION: 1988/89 -1999 (facility permanently shut down)

PHYSICAL DESCRIPTION AND CONDITION:

SWMU-9 is the former location of the discharged waste cake from the Facility filter press (see Figure L-1). The unit is comprised of a concrete floor, three (3) partial concrete walls with three (3) partial metal sides, and a roof. The unit dimensions are 8 feet wide by 8 feet deep by 10 feet tall. A conveyer belt extends from the filter press unit located in the Wastewater Pretreatment System (SWMU-1) room through the west wall of the former Main Process Building, which was used to convey the filter cake outside to the floor of the unit. The open western wall of SWMU-9 was used to allow a front-end loader (e.g., Bobcat®) to transfer the filter cake waste pile to the 20-Cubic Yard Sludge Roll-Off Container (SWMU-4) for disposal. At the time of its inspection, Booz Allen reported the unit contained residual solids and observed staining on the concrete floor from the filter press (Booz Allen, 2003).

SWMU-9 Site Assessment History

The filter press received wastewater from the Facility spray lines and sump pumps. In 1990, samples were collected from the filter cake and were analyzed for RCRA primary metals in extracted leachate (EP toxicity via EPA Method 1310), VOCs (EPA Method 8240), and base neutral extractable compounds (EPA Method 8270). The filter cake waste stream samples contained bis(2-ethylhexyl) phthalate at a concentration of 1.5 mg/kg. All other constituents were ND. Based on these sampling results, it was determined by NCDEQ that the filter cake waste stream was nonhazardous waste and could be disposed of in a Subtitle D landfill. According to facility representatives, the solids generated by the filter press were characterized annually to ensure that the wastes were nonhazardous (NCDEQ, 1993).

No evidence of a release from this unit was identified in the available file material. According to Booz Allen's 2003 report, facility representatives told them the conveyor deposited solids from the filter press outside of the covered unit to an area as far as the chain-link fence located parallel to the Facility's western property line. Also, runoff from rain events may have allowed the filter cake and residual materials to leach onto the surrounding soils. An asphalt cover was reportedly added to AOC-2 to inhibit impact from the solids or potential runoff. Finally, solids and residual dust were identified on the concrete floor and walls and on the soils directly in front of the unit at the time of the VSI (Booz Allen, 2003).

RECOMMENDATION: No Further Action (X)

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS:

The 2005 RFA recommended no further action other than improved storage procedures to prevent further release of the filter cake solids to the soils in front of the unit. Now that there are no longer filter cake solids remaining and the building and all structures have been demolished, Waters Edge concurs that no further action is recommended.

L-1a (10) SWMU-10 - Maintenance Building Waste Management Areas Operational History

TYPE OF UNIT:

- a. Drum Storage Area
- b. Parts Washer

PERIOD OF OPERATION: 1960s to 1999 (facility permanently shut-down)

PHYSICAL DESCRIPTION AND CONDITION:

The former Maintenance Building Waste Management Areas ("SWMU-10") were located in the southwest corner of the facility property, west of the Former UST and AST Area (AOC-3) and east of the Baghouse (SWMU-6) (see Figure L-1). The former Maintenance Building is a metal,

enclosed building with two large rolling bay doors and a concrete floor. The building is approximately 40 feet long by 40 feet wide by 20 feet high. The Facility, according to Booz Allen, reportedly ceased using this building in 2000 (& related production operation ceased in 1999). The building was used to store chemicals, such as wastewater treatment chemicals, bulk chemicals, solvents, used oil, and lubricants which were used at the facility to perform maintenance on forklifts. The chemicals were stored primarily in 55-gallon drums, which were stored in various locations inside the Maintenance Building. A parts washing tank was also stored in the former Maintenance Building. Finally, a subsurface work area that was used to allow mechanics better access to the forklifts was located in the western central portion of the former Maintenance Building. The subsurface work area was approximately 4 feet wide by 8 feet long by 3 feet deep. Booz Allen observed dark staining on the concrete west of the two bay doors and some minor staining in the subsurface work area (Booz Allen, 2003; USEPA, 1991, 1992a, 1993).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED

The Booz Allen report indicates the Facility used the former Maintenance Building to store 55-gallon drums containing chemicals used at the facility. The chemicals stored included wastewater treatment chemicals, bulk chemicals, and used oil. According to a RCRA Inspection Report dated December 4, 1991, wastes generated at this unit included flammable waste petroleum naphthalene (D001) used in a parts washing tank, and used oil stored in drums generated by routine maintenance activities. Spent parts washing solvents and used oil were removed from the site monthly for recycling/reprocessing. According to a RCRA Inspection Report dated May 27, 1994, the Facility eventually eliminated the parts washers, thereby eliminating the generation of flammable waste petroleum naphthalene (D001) (Booz Allen, 2003; USEPA, 1991, 1992a, 1993).

SWMU-10 Site Assessment History

No evidence of a release from this unit was identified in the available file material. Additionally, according to Facility representatives in communicating with Booz Allen, no releases of nonhazardous or hazardous waste from this unit have ever occurred. At the time of the September 2003 VSI, Booz Allen observed dark staining on the concrete west of the two bay doors and some minor staining in the subsurface work area. However, it should be noted that the staining did not extend off of the concrete surfaces and no cracks were identified in the concrete. According to Facility representatives in communicating with Booz Allen, the source of this staining is not known. At the time of the September 2003 VSI, the staining appeared to be due to rusting of the metal walls of SWMU-10, according to Booz Allen. (Booz Allen, 2003).

RECOMMENDATION: No Further Action (X)

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS

The 2005 RFA recommended no further action and Waters Edge concurs with this recommendation.

L-1a (11) SWMU-11 - Spray Line Area Wastewater Sumps Operational History

TYPE OF UNIT: Wastewater Sumps

PERIOD OF OPERATION: 1960s or 1970s to 1999 (facility permanently shut-down)

PHYSICAL DESCRIPTION AND CONDITION:

The spray lines and associated sumps ("SWMU-11") were previously located in one of the large process rooms in the northern portion of the former Main Process Building. According to Booz Allen, Facility representatives reported that the tiles were conveyed from the tile presses via a conveyor belt to the spray lines where water and glaze were applied to "green" tile before they were sent to the kilns. The water from the spray heads was captured beneath the conveyor belt through several floor grates, which covered a series of subsurface trenches. The wastewater was then channeled, by use of sumps, to the Wastewater Pretreatment System (SWMU-1) or, historically, to the Sludge Settling Ponds (SWMU-2) to be treated and disposed. According to Booz Allen, Facility representatives advised them that some of the wastewater from the Wastewater Pretreatment System (SWMU-1) was also looped back into the spray lines. At the time of the September 2003 VSI, the spray lines and equipment were no longer present. The equipment was reportedly removed in 2000 and transferred to another Porcelanite company facility. During the September 2003 VSI, Booz Allen reported that the area appeared to be in good condition; however, the unit was overflowing with water so the bottom and sides of the sump could not be inspected. The trenches were overflowing with water that, according to Facility representatives, originated from water leaks in the roof of the building (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

SWMU-11 managed wastewater generated by the spray lines. According to Booz Allen's report of conversations with Facility representatives, the wastewater contained high concentrations of solids, primarily clay and silica, raw materials used to make the tile, as well as glaze and stain overspray from the coloring of unfired tile. The clay, silica, and glaze formerly contained metals such as lead and chromium. In addition, the wastewater entering the Wastewater Pretreatment System (SWMU-1) from the Spray Line Area Sumps (SWMU-11) had a pH in the range of 4-6 (e.g. nonhazardous characteristic) (Booz Allen, 2003; Mannington, 2004).

SWMU-11 Site Assessment History

No evidence of a release from this unit was identified in the available file material. In addition, according to Booz Allen's report of conversations with Facility representatives, no releases of nonhazardous or hazardous waste from this unit have occurred. Finally, at the time of the VSI, Booz Allen saw no visual evidence of a release (i.e., staining) was observed; however, the unit was overflowing with water so the bottom and sides of the sump could not be inspected (Booz Allen, 2003; Mannington, 2004).

The 2005 RFA stated that because the unit was filled with water at the time of the September 2003 VSI, a more thorough inspection of this unit was recommended. Based on this recommendation, on February 10, 2015, a Waters Edge environmental technician and vacuum truck were mobilized to the facility. Both sumps and trenches were cleaned of debris and also pumped out and then a squeegee was used to expose the floor of the sumps and trenches. The sump walls, the sumps, and the trenches were determined by Waters Edge personnel to be intact and there were no indications of cracking that would jeopardize the integrity of the unit. Photo documentation collected by Waters Edge and provided to NCDEQ included the following (see Appendix L-1):

- Photograph #5 and #6 Surficial Condition of Spray Line Trench Area
- Photograph #7 and #8 Spray Line Sump Walls Depicting Non-Cracked Condition
- Photograph #9, #10 and #11 Non-Cracked Condition of Spray Line Sump Floor
- Photograph #12 and #13 Non-Cracked Condition of Spray Line Trench Bottom

As such, Waters Edge recommended no further action required for SWMU-11. In a May 7, 2015 NCDEQ correspondence, NCDEQ concurred with this conclusion.

L-1a (12) AOC-1 Area of Discharge North of the Ceramic Tile Pile Operational History

Our first point for this Section involves a clarification of the description of this particular area. In the 2005 RFA, AOC-1 is described as an "Area of Discharge from the Sludge Settling Ponds to Rat Springs Branch"; however, the associated figure in the 2005 RFA clearly depicts an area north of the Ceramic Tile Pile. Based on a discussion with NCDEQ, it was determined that the figure depicting the area north of the Ceramic Tile Pile was correct and accurately characterized AOC-1 as discussed in this Section.

TYPE OF UNIT: Discharge Area from the Ceramic Tile Pile

PERIOD OF OPERATION: 1972 to 1990 (No wastewater discharge received after 1990)

PHYSICAL DESCRIPTION AND CONDITION:

The Area of Discharge from the Ceramic Tile Pile ("AOC-1") is located adjacent to the northeast corner of the Facility property line (see Figure L-1) (Aquaterra, 1997b; Booz Allen, 2003). A description of the operational history of the Ceramic Tile Pile has been previously discussed in Section L-1a (3). AOC-1 represents an area impacted from constituents from SWMU-3 that have migrated to the north.

Information pertaining to releases and a detailed site assessment history of AOC-1 are provided in Sections L-1b (5) and L-1c (5), respectively.

L-1a (13) AOC-2 Broken Ceramic Tile Roadway Operational History

TYPE OF UNIT: Road paved with broken ceramic tile

PERIOD OF OPERATION: Unknown date prior 1992 to present

PHYSICAL DESCRIPTION AND CONDITION:

The Broken Ceramic Tile Roadway constitutes Area of Concern 2 ("AOC-2"). It consists of an eight-foot wide roadway that begins in the northwest corner of the property beneath the asphalt cap constructed as part of the Sludge Settling Ponds (SWMU-2) closure activities, extends south for approximately 500 feet and terminates in the vicinity of the Baghouse (SWMU-6) and the Maintenance Building Waste Management Areas (SWMU-10) (see Figures L-1 and L-3). AOC-2 was partially constructed of waste tile fragments that were applied to the ground in the 1980s. During Sludge Settling Pond closure activities in the early 1990s, the northern portion of the roadway was excavated and placed on the tile pile. There was reportedly a confirmatory sample collected when the excavation was halted; however, this information cannot presently be documented. This excavated portion and the remainder of AOC-2 was subsequently covered with asphalt and gravel. The asphalt portion of the roadway is located on the north and south ends of the roadway. The gravel-covered portion of this unit is located in the middle portion of the road near the Filter Cake Waste Pile Area (SWMU-9) and the 20-Cubic Yard Sludge Container (SWMU-4). At the time of the September 2003 VSI, Booz Allen reported that the roadway appeared to be in good physical condition, with little significant cracking or deterioration of the asphalt (ENSCI, 1992; Booz Allen, 2003; ENSCI, 1994).

Information pertaining to releases and a detailed site assessment history of AOC-2 are provided in Sections L-1b (6) and L-1c (6), respectively.

L-1a (14) AOC-3 -Former UST and AST Area Operational History

TYPE OF UNIT: USTs and ASTs

PERIOD OF OPERATION: Unknown (Estimated 1960s) to 1989

PHYSICAL DESCRIPTION AND CONDITION:

Area of Concern 3 is comprised of the former UST and AST Area ("AOC-3"). AOC-3 is located in the southwest portion of the Facility, between the road running parallel to the southern wall of the former Main Building and Victor Street (see Figure L-1). The Maintenance Building Waste Management Areas (SWMU-10) are located immediately west of AOC-3. In 2003, AOC-3 was a grass-covered area with a short concrete curb running along the northern edge of the area and a barbed-wire topped fence, marking the facility property boundary on the southern edge of the area (Aquaterra, 1990a; NCDEQ, 1990a; Booz Allen, 2003).

According to Mr. Tony Shaw representing Mannington, two (2) steel, 2,000-gallon USTs were installed at an unknown time that was estimated to be in the 1960's. These USTs were used to store gasoline and #2 fuel oil that was used in vehicles operated at the facility. In November 1989, the USTs and associated piping were removed and soil samples were collected from the excavation. Initially, four soil samples were collected by Aquaterra, Inc., from the bottom of the excavation, which ranged from 9 to 15 feet bgs. The samples were analyzed for TPHs via EPA Methods 3550 and 5030. After the excavation of additional impacted soil in the western portion of the pit, the excavation was backfilled with clean fill. On May 29, 1990, NCDEQ issued a letter indicating that the UST system had been closed in accordance with UST regulations (40 CFR Subpart 280.71 and 280.72) (Aquaterra, 1990a; NCDEQ, 1990a; Booz Allen, 2003).

According to Mr. Tony Shaw representing the Facility, in 1993, a 750-gallon steel AST was installed in the location formerly occupied by the USTs. The AST was surrounded by a steel secondary containment system. This AST was used to store diesel fuel for facility vehicles. At some point between 1999 and 2000 (full facility closure), Facility representatives indicated that the AST was removed and that no releases or staining were observed during removal activities; however, no sampling was conducted (Booz Allen, 2003).

WASTES AND/OR HAZARDOUS CONSTITUENTS MANAGED:

No wastes were managed at this unit; however, the gasoline, #2 fuel oil, and diesel fuel stored in the USTs and AST all contain hazardous constituents, such as benzene, toluene, ethylbenzene, and xylene (Aquaterra, 1990a; NCDEQ, 1990a; Booz Allen, 2003).

RECOMMENDATION: No Further Action (X)

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS

The 2005 RFA recommended no further action and Waters Edge concurs with this recommendation.

L-1b Information Pertaining to Releases

Based on the 2005 RFA, a total of eleven (11) SWMUs and three (3) AOCs had been identified at the Facility as summarized in Table L-1 and as depicted on Figure L-1. Four (4) SWMUs and two (2) AOCs are currently under evaluation for possible additional assessment including the following:

- Waste Water Pretreatment System (SWMU-1)
- Two (2) Sludge Settling Ponds (SWMU-2)
- Ceramic Tile Pile (SWMU-3)
- Walltown Branch (SWMU-7)
- Area of Discharge from the Tile Pile (AOC-1)
- Broken Ceramic Tile Roadway(AOC-2)

Note: As described in Section L-1a (11)- SWMU-11 was recommended for NFA determination which was agreed upon in a May 7, 2015 NCDEQ correspondence.

L-1b (1) Wastewater Pretreatment System (SWMU-1)

Previously, SWMU-1 received wastewater that was primarily generated by spray lines associated with the tile manufacturing operation. According to facility representatives, the wastewater contained high concentrations of solids which primarily consisted of clay and silica raw materials used to manufacture the tile.

Prior to 1990, the clay and silica contained hazardous constituents such as lead and chromium; however, it is unclear if SWMU-1 received wastewater contaminated with metals. If this unit did receive wastewater contaminated with metals, there is potential that it would be characteristic for toxicity, most likely for lead (D008); however, no sampling data was available to confirm this possibility. In addition, the pH of the incoming wastewater was usually in the range of 4 to 6. As a result, caustic soda was added to neutralize the pH to a nominal range of 7 to 8 before discharge to the sanitary sewer system (ENSCI, 1993; Booz Allen, 2003; Mannington, 2004). The City of Lexington POTW sampled this discharge regularly per their permit to assure no lead was present.

L-1b (2) Two (2) Sludge Settling Ponds (SWMU-2)

SWMU-2 consisted of two surface impoundments estimated at 130' (L) x 30' (W) each (based on preliminary assessment figures) located in the northwestern corner of the Facility, between the northern property boundary and the northern wall of the former Main Building. Prior to January 1,

1989, wastewater treatment conducted at the Facility consisted of passing wastewater through a series of two Sludge Settling Ponds (SWMU-2), allowing solids to settle prior to discharge. After wastewater passed through the second (eastern) settling pond, the wastewater discharged directly into Rat Spring Branch of the Yadkin-Pee Dee River Basin.

Prior to 1990, the clay and silica used at the Facility likely contained hazardous constituents such as lead and chromium. In addition, according to Facility representatives, the pH of the incoming wastewater was usually in the range of 4 to 6. A site assessment of the Facility dated April 12, 1990, consisted of a field investigation in which samples were collected from the Sludge Settling Ponds. TCLP analysis results detected leachable lead levels in the sludge ranging from 230 mg/L to 1,230 mg/L, which is well above the 5.0 mg/L threshold for a characteristic hazardous waste. All VOCs and SVOCs were BDL with the exception of methylene chloride, acetone, and carbon disulfide, which are considered laboratory artifacts. As a result, the solid waste (i.e., sludge) disposed in the Sludge Settling Ponds was a characteristic hazardous waste (D008) (NCDEQ, 1990b; ENSCI, 1993, 1994).

In July 1993, Mannington completed closure of the Sludge Settling Ponds (SWMU-2) according to the NCDEQ approved Closure Plan. Mannington submitted a certified closure report to NCDEQ on November 9, 2005, which NCDEQ subsequently accepted on February 1, 2006. As a result of closure activities, sludge was removed from both sludge ponds and stabilized with Portland Cement, such that the waste passed TCLP for lead. The stabilized material was placed back into the ponds and the area was capped with a RCRA compliant cap. According to facility representatives, the cap included a 30-millimeter synthetic liner and an asphalt cap that serves as the top layer. Additionally, all piping associated with the sludge ponds was removed. Some of the surrounding soils north and west of the Sludge Settling Ponds were excavated and placed on the Ceramic Tile Pile ("SWMU-3") prior to its closure in 1997. According to a September 1992 Consent Agreement, sludge from SWMU-2 was also deposited in SWMU-3. At the time of the September 2003 VSI, the asphalt cover appeared to be in good condition with no significant cracks, staining, or erosion identified (Booz Allen RFI, 2005).

L-1b (3) Waste Ceramic Tile Pile (SWMU-3)

There have been numerous Ceramic Tile Pile and soil assessment efforts conducted as part of the tile pile waste characterization and soil assessment in support of the closure of SWMU-3. Based on the site assessments conducted between 1991 and 1997 at the Facility, sample analysis results detected leachable lead levels in the Waste Ceramic Tile Pile considered to be a characteristic hazardous waste. Results ranged from 7.57 mg/L (sample 2HA-1) to 187 mg/L (sample Comp-1) (see Table L-7). As a result, the solid waste (i.e., ceramic tile) disposed on the Waste Ceramic Tile Pile was considered a characteristic hazardous waste (D008) in that samples from several different areas contained TCLP lead levels in excess of the regulatory limit of 5.0 mg/L (NCDEQ, 1990b).

In addition, impacted sludge/soil from SWMU-2 was also deposited in the Waste Ceramic Tile Pile prior to closure as follows:

- An unknown quantity of partially stabilized sludge and additional impacted soil located north and west of the Sludge Settling Ponds (SWMU-2) was excavated and deposited on the Ceramic Tile Pile (SWMU-3) prior to closure. According to the Closure Report for the Sludge Settling Ponds (SWMU-2), the partially stabilized sludge exceeded the NCGS via TCLP for mercury and zinc (closure standards NCDEQ temporarily used during that period of time) and the TCLP regulatory limit for lead when it was deposited on the Ceramic Tile Pile (SWMU-3) (Aquaterra, 1997b; Mannington, 2004; NCDEQ, 1997a, 1997b; Booz Allen 2003). This excavated area also included one soil sample location SS-2 (see Figure L-4) from the area northeast of SWMU-2 which exceeded the lead TCLP threshold of 5.0 mg/L at a concentration of 6.64 mg/L.
- Impacted soil from along former Charles Avenue north of the Ceramic Tile Pile near the northern property boundary (see Figure L-2) was excavated and placed on the Waste Ceramic Tile Pile based on the results of borings HA-9 (total lead detected at 1,370 mg/kg in excess of the 1997 lead closure standard of 49.32 mg/kg) and 4HA-48 (total lead detected at 5,140 mg/kg in excess of the lead closure standard of 49.32 mg/kg). It is our understanding that no confirmation sampling was collected subsequent to the soil removal.

After the aforementioned multiple phases of soil assessment effort, the Facility initiated closure with wastes in place of the Ceramic Tile Pile (SWMU-3) due to soils exhibiting leachable levels of lead in excess of USEPA standards that were considered a characteristic hazardous waste (D008). Consistent with the approved 1997 Closure Plan, wastes were left in place and the unit was closed with a RCRA-compliant cap. The unit is capped with a "flat top surface cap" and a "slope surface cap" using a RCRA-compliant cap including a vegetative cover, geotextile liner, HDPE liner, and another managed vegetative cap. The top portion of the unit is level with the facility parking lot and has gravel covering the majority of the top of the unit. The sloped sides of the unit are covered with native vegetation. The 1997 approved Ceramic Tile Pile Closure Plan also depicted an area which exceeded three (3) times background levels for the metals barium, boron, lead, manganese and zinc. These other areas that showed elevated total inorganic values in excess of three (3) times background levels were covered with the silty clay cover material used to stabilize the RCRA cap as shown on Figure L-2. The silty clay cover was two (2) or more feet thick over these elevated total inorganic areas, thus preventing dermal contact and minimizing leaching of the metals from the soils to the groundwater. (Aquaterra, 1997b; Mannington, 2004; NCDEQ, 1997a, 1997b; Booz Allen 2003). This closure plan was approved by NCDEQ on April 26, 2004.

L-1b (4) Walltown Branch (SWMU-7), a previously piped-in stream

Walltown Branch (SWMU-7) was not designed to manage or handle waste. This unit is a tributary that was located on the Facility property prior to the property being purchased or the Facility being operated. SWMU-3 is located west and adjacent to the Walltown Branch as shown on Figure L-1. SWMU-3 is upgradient of the Walltown Branch. Prior to its enclosure, runoff from the Ceramic Tile Pile and the Facility entered into the Walltown Branch. As a result, according to Booz Allen, SWMU-7 may have received hazardous constituents from the waste tile fragments primarily consisting of RCRA metals such as lead (Booz Allen, 2003). This unit would no longer receive hazardous constituents as it was piped in 1992/1993 to exclude runoff from SWMU-3.

L-1b (5) Area of Discharge from the Tile Pile (AOC-1)

The Area of Discharge from the Tile Pile (AOC-1) was not designed to manage or handle waste. AOC-1 is located adjacent to the northeast corner of the Facility property line (see Figure L-1) (Aquaterra, 1997b; Booz Allen, 2003). A description of the Operational History of the Waste Ceramic Tile Pile has been previously discussed in Section L-1a (3). AOC-1 may have received hazardous constituents from the waste tile fragments primarily consisting of RCRA metals such as lead.

L-1b (6) Broken Ceramic Tile Roadway(AOC-2)

The Broken Ceramic Tile Roadway (AOC-2) was not designed to manage or handle waste. This AOC consists of an 8-foot wide roadway that begins in the northwest corner of the property beneath the asphalt cap constructed as part of the Sludge Settling Ponds (SWMU-2) closure activities, extends south for approximately 500 feet and terminates in the vicinity of the Baghouse (SWMU-6) and the Maintenance Building Waste Management Areas (SWMU-10) (see Figures L-1 and L-3). AOC-2 was partially constructed of waste tile fragments that were applied to the ground in the 1980s.

L-1c Sampling and Analysis

L-1c (1) SWMU-1 Site Assessment History

At the time of the September 2003 VSI conducted by Booz Allen, SWMU-1 was reportedly in poor condition. According to Booz Allen, numerous stains were observed both inside the secondary containment and on the tile floor beneath the precipitating tanks and the filter press. In addition, Booz Allen reported the tile floor to be cracked and deteriorating in several places and a substantial amount of an unknown white powdery residue was observed on the floor and secondary containment walls. Also, according to Booz Allen, a significant amount of liquid was observed in the sump and on the tile floor. The source of the liquid could not be determined; however, it

appeared to Booz Allen that the liquid was untreated or partially treated wastewater that had spilled or leaked from the precipitating tanks. Finally, Booz Allen observed the bung on the metal drum containing PolySep 1127 was open and a significant amount of rust was observed on the top and sides of the drum. In general, Booz Allen reported observing very poor housekeeping procedures associated with the Wastewater Pretreatment System (SWMU-1) (Booz Allen, 2003).

Because of the poor housekeeping procedures observed by Booz Allen associated with SWMU-1 during the 2003 VSI, the poor structural condition of the floor (e.g., cracks), and the extensive staining they observed, Booz Allen recommended that sampling be performed to further investigate the potential for release of hazardous constituents. The 2005 RFA prepared by Booz Allen recommended sampling to include wipe sampling of the floor and walls in the areas of staining, an investigation to determine the integrity of the sump and floor of the unit, and, if it is determined that the sump or floor integrity has been compromised, sampling of the soils beneath the unit. The RFA recommended that samples be analyzed for RCRA metals, specifically lead.

Based on this recommendation, on January 23, 2015 Waters Edge collected four (4) wipe samples from the surface of SWMU-1 using a hexane wipe and submitted the samples to a laboratory according to EPA-approved methodologies. All four (4) samples were analyzed for RCRA Primary Metals according to Method 6010 and Method 7470. The following metals were detected in at least one (1) of the four (4) wipe samples at concentrations above the method detection limit:

- arsenic (ND to 4.1 total µg)
- barium (134 to 854 total µg)
- cadmium (0.83 to 7.8 total µg)
- chromium (14.0 to 38.5 total μg)
- lead (262 to 2,000 total μg)
- selenium (2.7 to 4.0 total µg)
- silver (ND to 6.3 total μg)
- mercury (ND to 5.6 total μg)

The March 5, 2015 report documenting these activities, including photo documentation of the sample locations, is provided in Appendix L-1.

On May 7, 2015, Ms. Mary Siedlecki representing NCDEQ reviewed the above mentioned interim remediation and assessment effort and recommended in a correspondence to attempt to power wash the concrete pad, collect rinsate water, and analyze wipe samples in an attempt to demonstrate results below method detection limits. Achieving all "non-detect" sample results at such low levels would likely be a challenge on most any industrial or commercial surface. We are considering alternative options.

L-1c (2) *SWMU-2 Site Assessment History*

The site assessment history surrounding the closed Sludge Settling Ponds (SWMU 2) has been developed from several previous investigations as follows:

1989 Soil/Tile Material and Sludge Settling Pond Assessment

The 1989 soil assessment consisted of fourteen (14) soil test borings advanced in background native soils (B-1, B-2, and B-3), in the area of SWMU-3 (B-7 to B-14) and in the area of the Sludge Settling Ponds (B-4 to B-6). Soil sample B-4 was collected at a depth of 6.0 to 7.5 feet bgs, soil sample B-5 was collected at a depth of 1.0 to 2.5 feet and 6.0 to 7.5 feet bgs, and soil sample B-6 was collected at a depth of 2.5 to 4.0 feet and 17.5 to 19.0 feet bgs for PPM analysis. PPM were not detected in samples B-4 to B-6 above the method detection limits. A photocopy of the data tables and a figure showing location of borings is contained in the July 11, 1997 *Ceramic Tile Closure Plan*- Appendix A. Results for B-4 to B-6, related to the Sludge Settling Pond, are contained in Tables L-2 and L-3 and shown on Figure L-4.

1994-2002 Sludge Settling Pond Assessment

Soil Assessment- Subsequent to the previously mentioned closure activities, numerous rounds of additional soil assessment were conducted both north of SWMU-2 and west along the Broken Ceramic Tile Roadway (AOC-2) from 1994 to 2002. The location of thirty-seven (37) soil assessment borings (SS-1 to SS-9 and SS-16 to SS-43) are depicted on Figure L-4, and five (5) background boring sample locations (B-1 to B-3, BG-1 and BG-2) are depicted on Figure L-5. Historic information regarding soil borings SS-10 through SS-15 could not be located. Initially, soil samples surrounding SWMU-2 were collected at a depth of 1 to 2 feet bgs. If sample results indicated a concentration above the risk-based standards outlined below, additional soil samples were collected at depths of 3 feet bgs and 5 feet bgs, as necessary, with the exception of sample SS-24, where additional samples were collected at depths of 3, 4 and 6 feet bgs. Soil samples associated with SWMU 2 were analyzed for PPM (both total and via TCLP) and radionuclides, with the assessment results summarized in Table L-2 (TCLP results are contained in the July 14, 2004 Revised Closure Plan for SWMU 2). The background soil samples were collected at depths of 2.5 to 4 feet bgs and 10 to 11.5 feet bgs in boring B-1, at a depth of 2.5 to 4.0 feet bgs in boring B-2, and at a depth of 3.5 to 5.0 feet bgs in boring B-3 for PPM analysis. Background soil samples BG-1 and BG-2 were collected at a depth of 0.0 to 1.0 foot bgs for PPM analysis. Native soil samples, BG-1 and BG-2, are depicted in the November 5, 2002 Proposed Modification to the Closure Plan, Lagoon Closure Activities, Figure 2 and Table 1.

The background samples results are summarized in Table L-4. Based on direction from representatives of NCDEQ in the 1990s, for closure purposes, soil sample results were compared to the highest of the following three risk-based standards:

- 1993 Soil Screening Level (SSL) Protective of Groundwater
- Region 9 Risk-Based Concentration (RBC)
- Site Specific Background Level plus two times (2X) the Standard Deviation

Based on these risk-based standards, additional material exhibiting concentrations above the risk-based standards (SS-2, SS-3, SS-5 through SS-7, SS-22 through SS-24, SS-33, SS-35, and SS-36 sample locations) was removed from these areas and deposited on SWMU-3 prior to its closure in 1997 (see depicted area on Figure L-4). This included one location, SS-2 outside the northeastern fence line, where the surface soil contained 6.64 mg/L of leachable lead, which exceeds the 5 mg/L TCLP regulatory limit. With the exception of areas represented by samples SS-22 through SS-24, where confirmatory samples SS-39 through SS-41 were collected (western area of excavation), confirmatory sampling was not conducted in these areas after the removal of impacted material. These areas (SS-2, SS-3, SS-5 through SS-7, SS-33, SS-35, and SS-36) would be considered data gaps and confirmatory sampling for metals is recommended. It was also determined that the radionuclides did not exceed background levels; therefore, were considered benign. This removal action and risk evaluation is further documented in the July 14, 2004 *Revised Closure Plan for the Former Settling Ponds*.

- <u>Surface Water and Sediment</u>- There is no surface water or sediment associated with SWMU-2.
- Groundwater Assessment- There have been numerous groundwater assessment monitoring wells placed upgradient, side-gradient and downgradient of SWMU-2. These include groundwater monitoring wells MW-1 (upgradient), MW-3A, MW-9D, MW-10, MW-11D, MW-12, MW-13, MW-14 and MW-28D (see Part E Groundwater Monitoring). Prior to initiating closure activities at this unit, groundwater monitoring results indicated the presence of cadmium, iron, lead, manganese, nickel, and zinc in shallow and deep groundwater monitoring wells at concentrations that exceeded the NCGS. Specifically, groundwater samples collected from monitoring wells MW-1 (upgradient), MW-3A, MW-9D, MW-10, MW-11D, MW-12, MW-13, MW-14 and MW-28D all contained exceedances of the NCGS during numerous previous groundwater sampling events in 1990, 1991, and/or 1992 (ENSCI, 1993, 1994; NCDEQ, 1999a, 1999b, 1999d). Groundwater impact is discussed as a separate site-wide media in Part E Groundwater Monitoring.

SWMU-2 Past Soil Assessment Results versus Current Risk-Based Standards and Existing Data Gaps

In an effort to evaluate the extent of impacted soil remaining outside the area of SWMU-2 as defined by current risk-based Inactive Hazardous Site Branch (IHSB) standards, the past soil analytical results were compared to the following criteria:

Current IHSB PGW PSRGs

• Current IHSB Industrial PSRGs and PGW PSRGs

Based on the criteria mentioned above, soils from the following boring locations outside the closed Sludge Settling Ponds were <u>not</u> removed but still exceed either IHSB PGW or Industrial PSRGs:

SWMU-2 Current IHSB RBC Exceedances

Boring Location	Above IHSB PGW PSRG	Above IHSB Industrial PSRG
	Cobalt (<3.62 versus 0.9 PSRG)	
SS-1(0-1')	Manganese (82.4 versus 65 PSRG)	Arsenic (<3.62 versus 3.0 PSRG)
35-1(0-1)	Vanadium (33.8 versus 6.0 PSRG)	
	Cobalt (19.9 versus 0.9 PSRG)	
	Manganese (392 versus 65 PSRG)	None
SS-2 (0-1')	Vanadium (66 versus 6.0 PSRG)	None
35-2 (0-1)	Zinc (2,290 versus 1,200 PSRG)	
	Boron (61.9 versus 45 PSRG)	
	Cobalt (11.3 versus 0.9 PSRG)	
	Manganese (298 versus 65 PSRG)	None
SS-3 (0-1')	Mercury (1.28 versus 1.0 PSRG)	
33-3 (0-1)	Vanadium (151 versus 6.0 PSRG)	
	Boron (74.2 versus 45 PSRG)	
	Cobalt (6.48 versus 0.9 PSRG)	None
SS-4 (0-1')	Manganese (201 versus 65 PSRG)	TVOIC
35-4 (0-1)	Vanadium (173 versus 6.0 PSRG)	
	Cobalt (20.9 versus 0.9 PSRG)	
	Manganese (312 versus 65 PSRG)	None
SS-5 (0-1')	Vanadium (12.2 versus 6.0 PSRG)	None
33-3 (0-1)	Zinc (3,680 versus 1,200 PSRG)	

SS-6 (0-1')	Cobalt (6.96 versus 0.9 PSRG)	None
-------------	-------------------------------	------

	Manganaga (200 yangua 65 DCDC)	
	Manganese (290 versus 65 PSRG)	
	Vanadium (56 versus 6.0 PSRG)	
	Cobalt (19.9 versus 0.9 PSRG)	
	Lead (397 versus 270 PSRG)	None
SS-7 (0-1')	Manganese (285 versus 65 PSRG)	
,	Vanadium (37.6 versus 6.0 PSRG)	
	Boron (61.2 versus 45 PSRG)	
	Cobalt (14 versus 0.9 PSRG)	
	Lead (996 versus 270 PSRG)	Arsenic (<3.73 versus 3.0 PSRG
	Manganese (122 versus 65 PSRG)	Lead (996 versus 800 PSRG)
SS-8 (0-1')	Vanadium (33.2 versus 6.0 PSRG)	
	Zinc (5,230 versus 1,200 PSRG)	
	Cobalt (<4.04 versus 0.9 PSRG)	
SS-9 (0-1')	Manganese (278 versus 65 PSRG)	Arsenic (<3.75 versus 3.0 PSRG)
55 7 (0 1)	Vanadium (9.62 versus 6.0 PSRG)	
	Cobalt (1.58 versus 0.9 PSRG)	
SS-16(0-1')	Selenium (2.37 versus 2.1 PSRG)	None
55-10(0-1)	Vanadium (28.7 versus 6.0 PSRG)	
SS-17 (0-1')	Cobalt (1.26 versus 0.9 PSRG)	None
33-17 (0-1)	Vanadium (21.6 versus 6.0 PSRG)	None
SS-18 (0-1')	Cobalt (1.63 versus 0.9 PSRG)	None
33-16 (0-1)	Vanadium (27.8 versus 6.0 PSRG)	None
	Cobalt (2.0 versus 0.9 PSRG)	
SS-19 (0-1')	Manganese (161 versus 65 PSRG)	None
33-19 (0-1)	Vanadium (6.91 versus 6.0 PSRG)	
SS 20 (0 12)	Cobalt (1.51 versus 0.9 PSRG)	None
SS-20 (0-1')	Manganese (172 versus 65 PSRG)	None
	Cobalt (1.53 versus 0.9 PSRG)	
GG 21 (0.12)	Selenium (2.51 versus 2.1 PSRG)	None
SS-21 (0-1')	Vanadium (30 versus 6.0 PSRG)	
	Barium (1,490 versus 580 PSRG)	
	Cobalt (39.5 versus 0.9 PSRG)	
	Lead (6,830 versus 270 PSRG)	I 1/(020 000 PCP C)
	Manganese (225 versus 65 PSRG)	Lead (6,830 versus 800 PSRG)
	Mercury (2.62 versus 1.0 PSRG)	
gg 22 (0.13)	Vanadium (17.9 versus 6.0 PSRG)	
SS-22 (0-1')	Zinc (7,020 versus 1,200 PSRG)	
	Cobalt (2,000 versus 0.9 PSRG)	
SS-23(0-1')	Manganese (193 versus 65 PSRG)	Cobalt (2,000 versus 70 PSRG)
	Vanadium (51.5 versus 6.0 PSRG)	(=,000 : 51000 ; 0 1 2100)
SS-24 (0-1')	Cobalt (203 versus 0.9 PSRG)	G 1 1 (202
	Manganese (267 versus 65 PSRG)	Cobalt (203 versus 70 PSRG)
	1.	

	Vanadium (32.7 versus 6.0 PSRG)	
	Cobalt (285 versus 0.9 PSRG)	
	Lead (972 versus 270)	Cobalt (285 versus 70 PSRG)
	Manganese (235 versus 65 PSRG)	Lead (972 versus 800 PSRG)
SS-24 (3')	Vanadium (31.2 versus 6.0 PSRG)	Lead (7/2 versus 500 i Sixe)
	Cobalt (11.4 versus 0.9 PSRG)	
SS-24-2 (4')	Lead (372 versus 270 PSRG)	None
SS-24-2 (6')		2.7
33-24-2 (0)	Cobalt (9.96 versus 0.9 PSRG)	None
	Cobalt (3.23 versus 0.9 PSRG)	
	Manganese (180 versus 65 PSRG)	None
SS-25(0-1')	Mercury (1.28 versus 1.0 PSRG)	None
33-23(0-1)	Vanadium (44.2 versus 6.0 PSRG)	
	Boron (70.4 versus 45 PSRG)	
	Cobalt (3.37 versus 0.9 PSRG)	None
GG 25 (22)	Manganese (97 versus 65 PSRG)	None
SS-25 (3')	Vanadium (117 versus 6.0 PSRG)	
	Cobalt (6.27 versus 0.9 PSRG)	
	Manganese (189 versus 65 PSRG)	Manager (4.02 years) 2.1 DCDC)
	Mercury (4.02 versus 1.0 PSRG)	Mercury (4.02 versus 3.1 PSRG)
SS-26 (0-1')	Vanadium (9.2 versus 6.0 PSRG)	
CC 27 (0.12)	Cobalt (1.35 versus 0.9 PSRG)	Nama
SS-27 (0-1')	Vanadium (26.3 versus 6.0 PSRG)	None
CC 20 (0.12)	Cobalt (<1.11 versus 0.9 PSRG)	None
SS-28 (0-1')	Vanadium (26.9 versus 6.0 PSRG)	None
	Cobalt (1.92 versus 0.9 PSRG)	
	Manganese (87.9 versus 65 PSRG)	NI
GG 20(0.12)	Mercury (2.19 versus 1.0 PSRG)	None
SS-29(0-1')	Vanadium (29.2 versus 6.0 PSRG)	
CC 20/0 12\	Cobalt (1.29 versus 0.9 PSRG)	Na
SS-30(0-1')	Vanadium (19 versus 6.0 PSRG)	None
	Cobalt (4.23 versus 0.9 PSRG)	
GC 21 (0.12)	Manganese (298 versus 65 PSRG)	None
SS-31 (0-1')	Vanadium (12.2 versus 6.0 PSRG)	
	Cobalt (2.7 versus 0.9 PSRG)	
GG 22 (0.1)	Manganese (305 versus 65 PSRG)	None
SS-32 (0-1')	Vanadium (6.74 versus 6.0 PSRG)	
	Cobalt (2.26 versus 0.9 PSRG)	
	Manganese (408 versus 65 PSRG)	N
GG 22 (2.1)	Mercury (1.41 versus 1.0 PSRG)	None
SS-33 (0-1')	Vanadium (6.09 versus 6.0 PSRG)	
	, anadram (0.0) (Cloub 0.0 I DRO)	

	Cobalt (2.35 versus 0.9 PSRG)	
	Manganese (73.5 versus 65 PSRG)	None
SS-33 (3')	Vanadium (21 versus 6.0 PSRG)	None
	Cobalt (4.45 versus 0.9 PSRG)	
	Manganese (164 versus 65 PSRG)	None
SS-34 (0-1')	Vanadium (8.69 versus 6.0 PSRG)	None
	Cobalt (3.05 versus 0.9 PSRG)	
	Manganese (105 versus 65 PSRG)	None
SS-34 (3')	` ` '	None
	Vanadium (22.9 versus 6.0 PSRG)	
	Boron (107 versus 45 PSRG)	
	Cobalt (3.42 versus 0.9 PSRG)	Mercury (3.67 versus 3.1 PSRG)
	Manganese (120 versus 65 PSRG)	• ` `
SS-35 (0-1')	Mercury (3.67 versus 1.0 PSRG)	
	Vanadium (210 versus 6.0 PSRG)	
SS-35 (3')	Cobalt (1.86 versus 0.9 PSRG)	None
22 22 (3)	Vanadium (66.1 versus 6.0 PSRG)	1,010
	Barium (690 versus 580 PSRG	
	Boron (56 versus 45 PSRG)	
	Cobalt (3.42 versus 0.9 PSRG)	None
	Manganese (91.5 versus 65 PSRG)	None
SS-36 (0-1')	Mercury (1.43 versus 1.0 PSRG)	
33-30 (0-1)	Vanadium (87.7 versus 6.0 PSRG)	
	Cobalt (1.87 versus 0.9 PSRG)	
gg 26 (22)	Manganese (168 versus 65 PSRG)	None
SS-36 (3')	Vanadium (23.8 versus 6.0 PSRG)	
	Cobalt (1.32 versus 0.9 PSRG)	
	Mercury (2.65 versus 1.0 PSRG)	None
SS-37 (0-1')	Vanadium (34.2 versus 6.0 PSRG)	
, ,	Cobalt (<1.2 versus 0.9 PSRG)	N
SS-37 (3')	Vanadium (14.7 versus 6.0 PSRG)	None
	Cobalt (2.82 versus 0.9 PSRG)	
GG 40 (0.41)	Manganese (90.5 versus 65 PSRG)	None
SS-38 (0-1')	Vanadium (16.6 versus 6.0 PSRG)	2.7-22
	Cobalt (1.18 versus 0.9 PSRG)	
SS-38 (3')	Vanadium (9.53 versus 6.0 PSRG)	None
	Cobalt (6.0 versus 0.9 PSRG)	
	Manganese (219 versus 65 PSRG)	None
SS-39 (0-1')	Vanadium (20.6 versus 6.0 PSRG)	rone
SS-39 (3')	· · · · · · · · · · · · · · · · · · ·	NT.
55-57 (5)	Cobalt (<1.05 versus 0.9 PSRG)	None
SS-40 (0-1')	Cobalt (8.07 versus 0.9 PSRG)	None
	Manganese (234 versus 65 PSRG)	NOHE

	Vanadium (22.5 versus 6.0 PSRG)	
SS 40 (22)	Cobalt (9.59 versus 0.9 PSRG)	None
SS-40 (3')	Vanadium (33.4 versus 6.0 PSRG)	None
	Cobalt (5.82 versus 0.9 PSRG)	
SS 41 (0.12)	Manganese (519 versus 65 PSRG)	None
SS-41 (0-1')	Vanadium (7.87 versus 6.0 PSRG)	
	Cobalt (10.5 versus 0.9 PSRG)	
CC 41 (2')	Manganese (153 versus 65 PSRG)	None
SS-41 (3')	Vanadium (16 versus 6.0 PSRG)	
	Cobalt (9.42 versus 0.9 PSRG)	
SS-42 (0-1')	Manganese (142 versus 65 PSRG)	None
33-42 (0-1)	Vanadium (20.1 versus 6.0 PSRG)	
	Cobalt (3.82 versus 0.9 PSRG)	
SS-43 (0-1')	Manganese (302 versus 65 PSRG)	None
	Vanadium (12.2 versus 6.0 PSRG)	
	Cobalt (3.77 versus 0.9 PSRG)	
SS 42 (2')	Manganese (119 versus 65 PSRG)	None
SS-43 (3')	Vanadium (25.6 versus 6.0 PSRG)	

Note: All concentrations in (mg/kg).

Results of data comparisons are shown in Table L-3 and soil sample locations are shown on Figure L-4.

All borings outside the cap and area of excavation exceed either current IHSB PGW or Industrial PSRGs (SS-8, SS-9, SS-16, SS-17, SS-18, SS-19, SS-20, SS-21, SS-25, SS-26, SS-27, SS-28, SS-29, SS-30, SS-31, SS-32, SS-34, SS-37, SS-38, SS-42 and SS-43...; however, consideration must be given whether these are representative of background conditions. We would also comment that further assessment would largely occur in a cemetery which would be considered an objectionable activity.

A No Further Action recommendation for SWMU-2 was made by EPA contractor Booz Allen in the 2005 RFA, contingent upon continued compliance with the approved closure and post-closure plans.

L-1c (3) SWMU-3 Site Assessment History

The site assessment of the existing Ceramic Tile Pile material has been developed from several previous investigations as follows:

• Soil Assessment

- A soil assessment conducted by Aquaterra in November and December of 1989. Soil Boring Assessment, Mannington Ceramic Tile, Lexington, North Carolina, Aquaterra report number R835-90, dated January 31, 1990.
- A site assessment of the facility, prepared by Mannington, and dated April 12, 1990 which was previously detailed and discussed in Section 6.3 of the 2005 RFA.
- A tile pile material assessment conducted by Aquaterra in October 1991. Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina, Aquaterra report number R1547-92, dated January 7, 1992.
- An additional tile pile material assessment conducted by Aquaterra in March 1992. Additional Sampling of Waste Ceramic Chip Tile, Mannington Ceramic Tile, Lexington, North Carolina, Aquaterra report number R1646-92, dated April 1, 1992.
- Additional tile pile testing and treatability study conducted by ENSCI during September 1992. Comprehensive Tile Pile Testing Program and Treatability Study, Mannington Ceramic Tile, Lexington, North Carolina, ENSCI report dated October 20, 1992.
- In December 1996, March, April and May 1997, Aquaterra conducted additional post-closure assessment of the soil and tile pile.

Figures showing the approximate location of all the previous sample locations through 1992 are contained in the July 11, 1997 *Ceramic Tile Closure Plan*- Appendices A, B, and C. Sample locations for the 1996 and 1997 assessments are shown on the July 11, 1997 *Ceramic Tile Closure Plan*- Figure 2-1. Based on all previous investigations, we have depicted a combined SWMU-3 and AOC-1 (Area of Discharge from the Tile Pile) past soil sample location map on Figure L-2.

- <u>Surface Water and Sediment</u>- There have been both surface water and sediment assessments conducted in Walltown Branch (SWMU-7) which borders the eastern portion of the Ceramic Tile Pile. This is further discussed as part of SWMU-7 in Section L-1c (4).
- <u>Groundwater Assessment</u>- There have been numerous groundwater assessment monitoring wells placed upgradient, side-gradient and downgradient of SWMU 3. These include groundwater monitoring wells MW-1 (upgradient), MW-7A, MW-18, MW-19D, MW-21A, MW-22A, MW-23A, MW-24, MW-25, MW-26-A-2 and MW-29 (see Part E-Groundwater Monitoring). Prior to initiating closure activities at this unit, groundwater

monitoring results indicated the presence of numerous inorganic parameters exceeding the NCGS. Groundwater impact is discussed as a separate site-wide media in Part E - Groundwater Monitoring.

Results of the Past Ceramic Tile Pile and Soil Investigations

1989 Soil/Tile Material Assessment

The 1989 soil assessment consisted of fourteen (14) soil test borings advanced in background native soils (B-1, B-2, and B-3), in the area of SWMU 3 (B-7 to B-14), and in the area of the Sludge Settling Ponds (B-4 to B-6). A photocopy of the data tables and a figure showing location of borings is contained in the July 11, 1997 *Ceramic Tile Closure Plan*- Appendix A. The background boring locations (B-1 to B-3) are shown on Figure L-5 and borings B-7 to B-14 are shown on Figure L-2. Borings B-4 to B-6 were previously described in Section L-1c (1). The samples were analyzed for the eight (8) RCRA metals. Soil samples were collected at a depth of 5.0 to 6.5 feet bgs in boring B-7, at depths of 7.5 to 9.0 feet bgs and 20 to 21 feet bgs in boring B-8, and at a depth of 2.5 to 4.0 feet bgs in borings B-9 to B-14. The background sample results for borings B-1, B-2, and B-3 are summarized in Table L-4. The remaining sample results for SWMU-3 (B-7 to B-14) are summarized in Table L-5 and compared to the 1997 approved closure plan standards (three [3] times background levels) for five (5) inorganic constituents.

With the exception of B-8 at depth of 7.5 to 9.0 feet bgs, which exhibited lead above the 1997 closure standard and was required to be placed under the cap, the sample results for SWMU-3(B-7 to B-14) did not exceed three (3) times the background levels for the five (5) metals (barium, boron, lead, manganese and zinc) listed in the approved 1997 closure plan.

Table L-6 compares the sample results for SWMU 3 (B-7 to B-14) to current IHSB PGW PSRGs and IHSB Industrial Health-Based PSRGs for the eight (8) RCRA metals. There are no exceedances of the current IHSB PGW PSRG, IHSB or Industrial Health-Based PSRG with the exception of B-8 which exhibited a lead concentration above background levels, and was located under the cap.

October 1991 Tile Pile Material Assessment

The October 1991 tile pile assessment consisted of excavating four (4) test pits approximately 16 to 18 feet deep in the middle portion of the Ceramic Tile Pile. Samples were collected every 2 feet and composited into one (1) composite sample per test pit (TP-1, TP-2, TP-3, and TP-4 – see Figure L-2). The samples were analyzed for the following total metals:

aluminum sodium iron antimony lead tin barium magnesium titanium boron nickel vanadium calcium potassium zinc chromium, total silver zirconium cobalt

20001

The samples were also analyzed for the following additional inorganic and indicator parameters:

alkalinity fluoride pH units

bromide phosphates chloride sulfates

Additionally, the samples were analyzed for the TCLP metals and the following radionuclides:

gross alpha radium 226 radium 228

gross beta praseodymium

The photocopies of the analytical results and figures showing the sample locations are shown in the July 11, 1997 *Ceramic Tile Closure Plan* - Appendix A. Analytical results are summarized in Table L-5 for total metals, Table L-7 for TCLP metals, and Table L-6 for additional metals. Sample locations are shown on Figure L-2.

The conclusions gained from this investigation are summarized below:

- All four sample results exceeded the background levels for barium, lead and zinc as listed in the 1997 approved closure plan, with the exception of barium in sample TP-3, which was below the background level. Additionally, one of the samples (TP-4) exceeded the background level for boron. Sample results are summarized in Table L-5.
- Lead exceeded the regulatory level of 5 mg/L for the TCLP extract in all four samples with concentrations ranging from 47 mg/L to 130 mg/L. Sample results are summarized in Table L-7.
- All four composite sample results exceed PGW PSRGs and/or range of background sample concentrations for barium, boron, cobalt, lead, silver, vanadium, and zinc, except samples TP-2 and TP-3 which do not exceed either level for barium and samples TP-1, TP-2, and TP-3 which do not exceed either level for silver. All four borings exceed the PGW PSRG, Industrial PSRG and range of background sample concentrations for lead. Sample results are summarized in Table L-6.

Per the approved closure plan, all four boring locations were placed under the cap. The remaining analytes were deemed to not exceed risk-based concentrations or to not be considered radioactive.

March 1992 Tile Pile Material Assessment

The March 1992 tile pile material assessment consisted of four soil borings (B-1, B-2, B-3, and B-4) advanced to depths of approximately 22 to 24.5 feet bgs as shown on Figure L-2. Soil samples were collected and analyzed for VOCs according to SW-846 Method 8240, SVOCs according to SW-846 Method 8270, and formaldehyde. Photocopies of the analytical data table and figure showing boring locations are contained in the July 11, 1997 *Ceramic Tile Closure Plan*-Appendix A and the laboratory results are summarized in Table L-8.

Methylene chloride, the only VOC detected, was identified in all four samples ranging in concentration from 820 μ g/kg to 860 μ g/kg. Bis(2-ethylhexyl) phthalate, the only SVOC detected, was identified in all four samples ranging in concentrations from 1,900 μ g/kg to 5,300 μ g/kg. No formaldehyde was detected. It was suspected that the methylene chloride was a laboratory artifact and that the bis(2-ethylhexyl) phthalate came from the vinyl gloves worn by the samplers and/or the laboratory personnel. These constituents were not used in the manufacturing of ceramic tile. In the 1997 closure plan, these constituents were not deemed to be constituents of concern.

Based on current RBCs, all methylene chloride sample results are above current PGW PSRGs but below Industrial PSRGs. All bis(2-ethylhexyl) phthalate sample results are below both PGW PSRGs and Industrial PSRGs (see Table L-8). We believe that these should not be considered chemicals of concern ("COCs"); however, these samples represent material situated under the cap.

September 1992 Tile Pile Material Assessment

The September 1992 tile pile material assessment consisted of four test pits (EX-1, EX-2, EX-3, and EX-4) placed as close as possible to the four test pits (TP-1, TP-2, TP-3, and TP-4) discussed in Section 2.2.2 of the *October 1991 Tile Pile Material Assessment*. The four test pits were excavated to a depth of 21 feet. Samples were collected in EX-1 at 18 feet, EX-2 at 20 feet, EX-3 at 16 feet, and EX-4 at 21 feet bgs. The samples were analyzed for VOCs (Method 8240), SVOCs (Method 8270), formaldehyde, and the radionuclides gross alpha, gross beta, radium 226, radium 228, and uranium 238. Summary data tables and a figure showing test pit locations are contained in the July 11, 1997 *Ceramic Tile Closure Plan*- Appendix A, and are depicted on Figure L-2 and summarized in Table L-8.

No VOCs, SVOCs, or formaldehyde were detected in the four test pit samples (EX-1, EX-2, EX-3, and EX-4). The radionuclide results in pCi/g were determined to be benign.

December 1996 Tile Pile Material Assessment

Four soil borings (SB-1, SB-2, SB-3, and SB-4) were installed on the tile pile from depths of 15 to 30 feet bgs (locations contained in the July 11, 1997 *Ceramic Tile Closure Plan*- see Figure 2-1

and Figure B-1 in Appendix B), and boring locations are also depicted on Figure L-2 of this document. One sample from each boring was randomly chosen (SB-1-15', SB-2-10', SB-3-15', and SB-4-10') and then two of the four samples (SB-1-15' and SB-4-10') were submitted to the laboratory for analysis. Additionally, two soil borings (SB-5-2.5' bgs and SB-6-2.5' bgs) as shown on Figure L-2 were advanced adjacent to the tile pile and were considered background borings in the 1997 *Ceramic Tile Closure Plan*; however, we would disagree and conclude that these would be considered soil assessment borings. Samples from these borings were also submitted to the laboratory. The samples (SB-1-15' bgs, SB-4-10' bgs, SB-5-2.5' bgs and SB-6-2.5' bgs) were analyzed for the following total metals:

arsenic	chromium, total	mercury	titanium
barium	cobalt	nickel	vanadium
boron	lead	selenium	zinc
cadmium	manganese	silver	

The inorganics bromide, nitrates, sulfates, and phenols, and the radionuclides gross alpha and gross beta were also analyzed for each sample. One composite sample (Comp-1) of the four random samples was analyzed for the TCLP metals.

The conclusions gained from this investigation are summarized below:

- The composite sample (Comp-1) detected lead in the TCLP extract at a concentration of 187 mg/L which is in excess of the 5.0 mg/L standard and would be considered a characteristic hazardous waste (see Table L-7).
- Sample SB-1-15' exceeded the 1997 NCDEHNR approved background closure standard for barium, boron, lead and zinc. Sample SB-4-10' exceeded the 1997 NCDEHNR approved background levels for barium, lead and zinc. Samples SB-5-2.5' and SB-6-2.5' were below all 1997 NCDEHNR closure standards (see Table L-5). Sample locations SB-1-15', SB-4-10' and SB-6-2.5' were placed under the full RCRA cap while SB-5-2.5' was placed under a clay cap.
- All four soil borings exceeded both IHSB PGW PSRGs and range of background samples as follows (see Table L-6):
 - o SB-1-15'- barium, boron, lead and zinc
 - o SB-4-5'- lead and zinc
 - o SB-5-2.5'- boron
 - o SB-6-2.5'- vanadium
- Two of the four borings, SB-1-15' and SB-4-10', also exceeded the IHSB Industrial Health-Based PSRG for lead (see Table L-6).

Again, these four (4) soil boring locations are currently under either the full RCRA-cap or clay cap. The gross alpha and gross beta values were concluded to be benign.

Additional December 1996 Tile Pile Soil Assessment

In December 1996, Aquaterra personnel collected the following additional samples:

- Three (3) soil samples (HA-1, HA-2, and HA-3 along the north and east edge of the tile pile
- Two (2) native soil background samples (HA-4 and HA-5)

All samples were analyzed for the five metals (barium, boron, lead, manganese, and zinc) which were part of the approved 1997 closure plan. The sample locations are depicted in the July 11, 1997 *Ceramic Tile Closure Plan-* Figure 2-1. The borings considered background are HA-4 and HA-5, which are depicted on Figure L-5, while the remaining borings (HA-1, HA-2, and HA-3) are depicted on Figure L-2 since they are located under the SWMU-3 Ceramic Tile Pile cap. The background sample analytical results are summarized in Table L-4 and the remaining sample results are summarized in Tables L-5 and L-6 since they are part of the closure samples for SWMU-3 and are all located under the HDPE or clay cap.

Soil borings SB-5-2.5' and SB-6-2.5', collected during the initial December 1996 sampling event, and hand auger boring HA-1 were located along the toe of the tile pile and adjacent to Walltown Branch which had been piped in as of the date of the report in 1997. These samples were collected to evaluate if any metals had migrated from the tile pile into the downgradient native soils. Hand auger borings HA-2 and HA-3 were placed north and east of the tile pile along Walltown Branch. Hand auger boring HA-4 was placed downgradient and east of the tile pile adjacent to the eastern property boundary. HA-5 was placed upgradient and west of the tile pile and approximately 250 feet east of monitoring well MW-1. Hand auger borings HA-1, HA-2, and HA-3 represent assessment borings adjacent to Walltown Branch while HA-4 and HA-5 represent background borings.

The concentrations for the four samples (HA-2, HA-3, HA-4, and HA-5) were compared as an average range of background values and then compared to samples SB-5-2.5′, SB-6-2.5′, and HA-1. Sample HA-1 showed elevated levels of barium, lead, and zinc compared to the background samples. However, the concentrations were well below the levels of lead and zinc seen in the tile pile samples SB-1-15′ and SB-4-10′ (see Table L-5). Based on this data, there has not been significant migration of constituents from the tile pile into the native soils at HA-2 and HA-3. However, ultimately all locations (HA-1, HA-2, HA-3, SB-5-2.5′, and SB-6-2.5′) were placed under the ceramic tile pile cap during closure.

We also compared these past sample results versus current IHSB PGW PSRGs and Industrial Health-Based PSRGs and had the following exceedances (see Table L-6):

• SB-5-2.5' PGW PSRG exceedance for boron (127 mg/kg versus PGW PSRG at 45 mg/kg and a range of background samples of <10.5 mg/kg-123 mg/kg)

- SB-6-2.5' PGW PSRG exceedance for vanadium (736 mg/kg versus PGW PSRG at 6.0 mg/kg and a range of background samples of 5.01 mg/kg-199 mg/kg)
- HA-1 PGW PSRG exceedance for lead (501 mg/kg versus PGW PSRG at 270 mg/kg and range of background samples of <0.5-18.8 mg/kg), and zinc (1,430 mg/kg versus PGW PSRG at 1,200 mg/kg and range of background samples of 27.3 mg/kg-124 mg/kg)
- HA-2 PGW PSRG exceedance for boron (59.4 mg/kg versus PGW PSRG at 45 mg/kg), cobalt (17.1 mg/kg versus PGW PSRG at 0.9 mg/kg), manganese (589 mg/kg versus PGW PSRG at 65 mg/kg and range of background samples at 56.6 mg/kg-449 mg/kg), and vanadium (79.5 mg/kg versus PGW PSRG at 6.0 mg/kg)
- HA-3 PGW PSRG exceedance for vanadium (29.7 mg/kg versus PGW PSRG at 6.0 mg/kg)

March, April, and May 1997 Additional Tile Pile Soil Assessment

In March, April, and May 1997, Aquaterra personnel collected the following samples:

- HA-6 to HA-18 (collected from locations at the perimeter of the tile pile, no depths specified)
- TP-1A to TP-1F (collected from interior tile pile locations, no depths specified)
- 2HA-22, 2HA-23, 2HA-35, 2HA-38, 2HA-40, 2HA-42, 2HA-43, 2HA-44, 2HA-46 to 2HA-49
- MS-1 to MS-6 (collected from the northwestern side of the tile pile at depths ranging from 1.0 feet bgs to 1.66 feet bgs)

All samples were analyzed for the five metals (barium, boron, lead, manganese, and zinc) which were part of the approved closure plan. Additionally, thirteen samples (2HA-1, 2HA-2, 2HA-7, 2HA-9, 2HA-10, 2HA-23, 2TP-1C, MS-1, MS-3, MS-5, 4HA-47, 4HA-47-2, and 4HA-48) were analyzed for lead via TCLP. The sample locations are depicted in the July 11, 1997 *Ceramic Tile Closure Plan*- Figure 2-1 and on Figure 8. The analytical results are depicted in Tables L-5 and L-6 for the total metals. The lead via TCLP is summarized in Table L-7.

Conclusions from Past Waste Ceramic Tile Pile Material and Soil Assessments

Tile Pile Closure

Based on the site assessments conducted between 1991 and 1997 at the Facility, sample analysis results detected leachable lead levels in the Waste Ceramic Tile Pile considered to be a characteristic hazardous waste. Results ranged from 7.57 mg/L (sample 2HA-1) to 187 mg/L (sample Comp-1) (Table L-7). As a result, the solid waste (i.e., ceramic tile) disposed on the Waste Ceramic Tile Pile was considered a characteristic hazardous waste (D008) in that samples from several different areas contained TCLP lead levels in excess of the regulatory limit of 5.0 mg/L (NCDEQ, 1990b).

In addition, impacted sludge/soil from SWMU-2 was also deposited in the Waste Ceramic Tile Pile prior to closure as follows:

- An unknown quantity of partially stabilized sludge and additional impacted soil located north and west of the Sludge Settling Ponds (SWMU-2) was excavated and deposited on the Ceramic Tile Pile (SWMU-3) prior to closure. According to the Closure Report for the Sludge Settling Ponds (SWMU-2), the partially stabilized sludge exceeded the NCGS via TCLP for mercury and zinc (closure standards NCDEQ temporarily used during that period of time) and the TCLP regulatory limit for lead when it was deposited on the Ceramic Tile Pile (SWMU-3) (Aquaterra, 1997b; Mannington, 2004; NCDEQ, 1997a, 1997b; Booz Allen 2003). This excavated area also included one soil sample location SS-2 (see Figure L-4) from the area northeast of SWMU-2 which exceeded the lead TCLP threshold of 5.0 mg/L at a concentration of 6.64 mg/L.
- Impacted soil from along former Charles Avenue north of the Ceramic Tile Pile near the northern property boundary (see Figure L-2) was excavated and placed on the Waste Ceramic Tile Pile based on the results of borings HA-9 (total lead detected at 1,370 mg/kg in excess of the 1997 lead closure standard of 49.32 mg/kg) and 4HA-48 (total lead detected at 5,140 mg/kg in excess of the lead closure standard of 49.32 mg/kg). It is our understanding that no confirmation sampling was collected subsequent to the soil removal.

After the aforementioned multiple phases of soil assessment effort, the Facility initiated closure with wastes in place of the Ceramic Tile Pile (SWMU-3) due to soils exhibiting leachable levels of lead in excess of USEPA standards that were considered a characteristic hazardous waste (D008). Consistent with the approved 1997 Closure Plan, wastes were left in place and the unit was closed with a RCRA-compliant cap. The unit is capped with a "flat top surface cap" and a "slope surface cap" using a RCRA-compliant cap including a vegetative cover, geotextile liner, HDPE liner, and another managed vegetative cap. The top portion of the unit is level with the facility parking lot and has gravel covering the majority of the top of the unit. The sloped sides of the unit are covered with native vegetation. The 1997 approved Ceramic Tile Pile Closure Plan also depicted an area which exceeded three (3) times background levels for the metals barium, boron, lead, manganese and zinc. These other areas that showed elevated total inorganic values in excess of three (3) times background levels were covered with the silty clay cover material used to stabilize the RCRA cap as shown on Figure L-2. The silty clay cover was two (2) or more feet thick over these elevated total inorganic areas, thus preventing dermal contact and minimizing leaching of the metals from the soils to the groundwater. (Aquaterra, 1997b; Mannington, 2004; NCDEQ, 1997a, 1997b; Booz Allen 2003). This closure plan was approved by NCDEQ on April 26, 2004.

SWMU-3 Past Soil Assessment Results versus Current Risk-Based Standards and Existing Data Gaps

SOIL

There have been numerous Ceramic Tile Pile and soil assessment efforts conducted as part of the tile pile waste characterization and soil assessment in support of the closure of the RCRA unit (SWMU-3). In Table L-6, Table L-8, and Table L-11, we have compared all past soil sampling for inorganic constituents, VOCs, SVOCs, formaldehyde and phenols to current PGW PSRGs and Industrial PSRGs. Based on the entire population of soil samples, we have summarized the soil borings which exceed PGW PSRGs and Industrial Health-Based PSRGs (locations depicted on Figure L-2):

SWMU-3 Current RBC Exceedances

Boring Location	Above IHSB PGW PSRGs	Above IHSB Industrial PSRGs	
	Boron (53 versus 45 PSRG)		
	Cobalt (12 versus 0.9 PSRG)		
	Lead (1,600 versus 270 PSRG)	Lead (1,600 versus 800 PSRG)	
	Vanadium (10 versus 6.0 PSRG)		
TP-1 (0-1.5')	Zinc (2,400 versus 1,200 PSRG)		
	Boron (130 versus 45 PSRG)		
	Cobalt (26 versus 0.9 PSRG)		
	Lead (3,100 versus 270 PSRG)	Lead (3,100 versus 800 PSRG)	
	Vanadium (7.3 versus 6.0 PSRG)		
TP-2 (0-1.5')	Zinc (2,000 versus 1,200 PSRG)		
	Boron (200 versus 45 PSRG)		
	Cobalt (13 versus 0.9 PSRG)		
	Lead (3,900 versus 270 PSRG)		
	Vanadium (8.5 versus 6.0 PSRG)		
TP-3 (0-1.5')	Zinc (2,700 versus 1,200 PSRG)		
	Barium (820 versus 580 PSRG)		
	Boron (240 versus 45 PSRG)		
	Cobalt (23 versus 0.9 PSRG)		
	Lead (4,000 versus 270 PSRG)	Lead (4,000 versus 800 PSRG)	
	Silver (14 versus 3.4 PSRG)		
	Vanadium (9.7 versus 6.0 PSRG)		
TP-4 (0-1.5')	Zinc (6,100 versus 1,200 PSRG)		
	Barium (659 versus 580 PSRG)	Lead (1,090 versus 800 PSRG)	
SB-1 (15')	Boron (426 versus 45 PSRG)	Leau (1,090 versus oud PSRU)	

Boring Location	Above IHSB PGW PSRGs	Above IHSB Industrial PSRGs
	Cobalt (14.5 versus 0.9 PSRG)	
	Lead (1,090 versus 270 PSRG)	
	Vanadium (15.8 versus 6.0 PSRG)	
	Zinc (4,900 versus 1,200 PSRG)	
	Boron (90.8 versus 45 PSRG)	
	Cobalt (9.84 versus 0.9 PSRG)	I 1/17/400 000 PCP (C)
	Lead (17,400 versus 270 PSRG)	Lead (17,400 versus 800 PSRG)
CD 4 (102)	Vanadium (11.2 versus 6.0 PSRG)	
SB-4 (10')	Zinc (3,080 versus 1,200 PSRG)	
	Boron (127 versus 45 PSRG)	
	Cadmium (4.6 versus 3.0 PSRG)	None
	Cobalt (7.9 versus 0.9 PSRG)	None
CD 5 (2.52)	Manganese (273 versus 65 PSRG)	
SB-5 (2.5')	Vanadium (131 versus 6.0 PSRG)	
	Boron (104 versus 45 PSRG)	
	Cabalt (1.88 yersus 0.0 PSRG)	None
CD 6 (2.52)	Cobalt (1.88 versus 0.9 PSRG)	
SB-6 (2.5')	Vanadium (736 versus 6.0 PSRG)	
	Boron (60.8 versus 45 PSRG) Cobalt (17.7 versus 0.9 PSRG)	
	Lead (501 versus 270 PSRG)	
	Manganese (307 versus 65 PSRG)	None
	Vanadium (59.3 versus 6.0 PSRG)	
HA-1 (NDS)	Zinc (1,430 versus 1,200 PSRG)	
TIA-1 (NDS)	Boron (59.4 versus 45 PSRG)	
	Cobalt (17.1 versus 0.9 PSRG)	
	Manganese (589 versus 65 PSRG)	None
HA-2 (NDS)	Vanadium (79.5 versus 6.0 PSRG)	
111 2 (1105)	Cobalt (5.5 versus 0.9 PSRG)	
HA-3 (NDS)	Vanadium (29.7 versus 6.0 PSRG)	None
1113 (1123)	Cadmium (3.44 versus 3.0 PSRG)	
	Cobalt (4.76 versus 0.9 PSRG)	
	Manganese (143 versus 65 PSRG)	None
	Vanadium (15.2 versus 6.0 PSRG)	
HA-6 (NDS)	Zinc (1,270 versus 1,200 PSRG)	
	Cadmium (5.75 versus 3.0 PSRG)	
	Cobalt (16.4 versus 0.9 PSRG)	Arsenic (3.2 versus 3.0 PSRG)
HA-7 (NDS)	Lead (288 versus 270 PSRG)	`

Boring Location	Above IHSB PGW PSRGs	Above IHSB Industrial PSRGs
	Manganese (388 versus 65 PSRG)	
	Vanadium (40.6 versus 6.0 PSRG)	
	Zinc (1,560 versus 1,200 PSRG)	
	Boron (128 versus 45 PSRG)	
	Cobalt (9.13 versus 0.9 PSRG) Lead (2,260 versus 270 PSRG)	Arsenic (3.04 versus 3.0 PSRG)
	Vanadium (15.1 versus 6.0 PSRG)	Lead (2,260 versus 800 PSRG)
HA-8 (NDS)	Zinc (2,350 versus 1,200 PSRG)	
III ((NDS)	Cadmium (6.99 versus 3.0 PSRG)	
	Cobalt (20.2 versus 0.9 PSRG)	
	Lead (1,370 versus 270 PSRG)	. 1/1 2 - 0
	Manganese (313 versus 65 PSRG)	Lead (1,370 versus 800 PSRG)
HA-9*	Vanadium (56.9 versus 6.0 PSRG)	
(NDS)	Zinc (1,990 versus 1,200 PSRG)	
	Boron (73.2 versus 45 PSRG)	
	Cadmium (10.6 versus 3.0 PSRG)	
	Cobalt (22.3 versus 0.9 PSRG)	Arsenic (3.61 versus 3.0 PSRG)
	Manganese (708 versus 65 PSRG)	Mercury (22.5 versus 3.0 PRG)
HA-10	Mercury (22.5 versus 1.0 PSRG)	
(NDS)	Vanadium (94.6 versus 6.0 PSRG)	
	Cadmium (6.52 versus 3.0 PSRG)	
	Cobalt (17.1 versus 0.9 PSRG)	None
HA-11	Manganese (265 versus 65 PSRG)	rvene
(NDS)	Vanadium (60 versus 6.0 PSRG)	
	Boron (51.6 versus 45 PSRG)	
TT 4 10	Cobalt (1.42 versus 0.9	None
HA-12	PSRG)Vanadium (14.2 versus 6.0	
(NDS)	PSRG)	
	Boron (145 versus 45 PSRG) Cadmium (6.1 versus 3.0 PSRG)	
	Cobalt (9.54 versus 0.9 PSRG)	None
HA-13	Manganese (1,300 versus 65 PSRG)	None
(NDS)	Vanadium (77.2 versus 6.0 PSRG)	
(1100)	Cobalt (2.0 versus 0.9 PSRG)	
HA-14	Manganese (109 versus 65 PSRG)	None
(NDS)	Vanadium (10.8 versus 6.0 PSRG)	
HA-15	Cobalt (2.19 versus 0.9 PSRG)	N
(NDS)	Manganese (114 versus 65 PSRG)	None

Boring Location	Above IHSB PGW PSRGs	Above IHSB Industrial PSRGs
	Vanadium (17.5 versus 6.0 PSRG)	
HA-16 (NDS)	Boron (70 versus 45 PSRG) Cadmium (9.46 versus 3.0 PSRG) Cobalt (6.86 versus 0.9 PSRG) Manganese (437 versus 65 PSRG) Vanadium (56.4 versus 6.0 PSRG)	Arsenic (3.42 versus 3.0 PSRG)
HA-17 (NDS)	Cobalt (1.68 versus 0.9 PSRG) Manganese (89.4 versus 65 PSRG) Vanadium (15.9 versus 6.0 PSRG)	None
HA-18 (NDS)	Cobalt (2.67 versus 0.9 PSRG) Manganese (65.2 versus 65 PSRG) Vanadium (21.6 versus 6.0 PSRG)	None
TP-1D (NDS)	Boron (92.5 versus 45 PSRG) Lead (711 versus 270 PSRG)	None
TP-1E (NDS)	Boron (178 versus 45 PSRG) Lead (1,050 versus 270 PSRG)	Lead (1,050 versus 800 PSRG)
TP-1F (NDS)	Boron (118 versus 45 PSRG) Lead (1,410 versus 270 PSRG)	Lead (1,410 versus 800 PSRG)
2HA-22 (NDS)	Boron (53.9 versus 45 PSRG)	None
2HA-35 (NDS)	Boron (51.8 versus 45 PSRG) Manganese (90.6 versus 65 PSRG)	None
2HA-40 (NDS)	Cadmium (3.72 versus 3.0 PSRG)	None
2HA-43 (NDS)	Barium (2,810 versus 580 PSRG) Lead (12,700 versus 270 PSRG)	Lead (12,700 versus 800 PSRG)
2HA-44 (NDS)	Boron (87 versus 45 PSRG) Cadmium (5.58 versus 3.0 PSRG) Cobalt (5.51 versus 0.9 PSRG) Manganese (281 versus 65 PSRG)	None
2HA-46 (NDS)	Boron (48 versus 45 PSRG) Cadmium (5.13 versus 3.0 PSRG) Cobalt (5.51 versus 0.9 PSRG) Manganese (260 versus 65 PSRG)	None
3HA-7 (NDS)	Lead (1,230 versus 270 PSRG)	Lead (1,230 versus 800 PSRG)
4HA-47	Lead (2,720 versus 270 PSRG)	Lead (2,720 versus 800 PSRG)

Boring Location	Above IHSB PGW PSRGs	Above IHSB Industrial PSRGs	
4HA-47-2 (2')	Lead (2,040 versus 270 PSRG)	Lead (2,040 versus 800 PSRG)	
4HA-48*	Lead (5,140 versus 270 PSRG)	Lead (5,140 versus 800 PSRG)	
4HA-49	Cobalt (12.6 versus 0.9 PSRG)	None	
(NDS)	Manganese (409 versus 65 PSRG)	None	
MS-2 (1.0')	Boron (115 versus 45 PSRG)	None	
MS-3 (1.0')	Boron (47.8 versus 45 PSRG)	None	
	Boron (98.7 versus 45 PSRG)	None	
MS-5 (1.33')	Lead (407 versus 270 PSRG)	none	
MS-6 (1.33')	Boron (115 versus 45 PSRG)	None	

Note:

- 1. All concentrations in (mg/kg).
- 2. NDS- No Depth Specified
- 3. Methylene Chloride detected during March 1992 investigation was considered a laboratory artifact and not included in the table.
- 4. *- Area around HA-9 and 4HA-48 has been removed and/or placed on the tile pile prior to closure

Again, all of these borings are situated under the cap which was constructed as part of the approved 1997 *Tile Pile Closure Plan*. However, we believe that one important further evaluation would be to identify any soil samples beyond the outer extent of either the HDPE or clay cap versus either PGW PSRGs or Industrial Health-Based PSRGs. Below, are the boring soil sample locations with exceedances listed (depicted on Figure L-6):

SWMU-3 Current PSRG Soil Boring Exceedances for Area Outside of Tile Pile Cap

Boring Location (Ordinal Direction)	Above NCDEQ PGW PSRGs	Above NCDEQ Ind. PSRGs
HA-7 (North)	Cd, Co, Mn, Pb, Mn, V and Zn, V	As
4HA-49 (North)	Co and Mn	None
2HA-23 (Northeast)	Pb	None
2HA-44 (Northeast)	B, Cd, Co and Mn	Со

Note:

1. All concentrations in (mg/kg).

2. This includes the area considered as AOC-1 since it is felt that they overlap.

A No Further Action recommendation for SWMU-3 was made in the 2005 RFA contingent upon continued compliance with the approved closure and post-closure plans. Based on our current assessment, these four (4) borings listed above are considered the existing data gaps in that they are beyond the perimeter of the closed Ceramic Tile Pile with the remainder of the borings being located under the cap which has been closed and certified by NCDEQ. These four (4) borings at the perimeter would be considered for review and potential further assessment.

L-1c (4) SWMU-7 Site Assessment History

All historical surface water/sediment sampling events are described below with results tabulated in Table L-9 (Surface Water), Table L-10 (Sediment), and NCDEQ 2B or RBC exceedances depicted on Figure L-7 (with the exception of 1996 and 1999 sample results) which are described below.

March 1996 Surface Water Sampling Results

On March 26, 1996, representatives from the NCDEHNR and Mannington split surface water samples collected from the Walltown Branch for analysis of boron. One sample was collected from an onsite upstream location and one sample was collected from an onsite downstream location at the Facility. Boron was observed in both samples, measuring 1.9 mg/L in the onsite downstream sample and 0.084 mg/L in the onsite upstream sample. Boron is not a RCRA regulated hazardous waste and is not regulated under, 15A NCAC Subtitle 2B Surface Water Standards. An ecological surface water chronic screening value of 0.75 mg/L was listed in Table 1 of the Supplemental Guidance to Risk Assessment Guidance for Superfund (RAGS): Region 4 Bulletins, Ecological Risk Assessment (US EPA 2001). The onsite downstream sample exceeded the ecological surface water chronic screening value.

March 1999 Surface Water/Sediment Sampling Results

The Facility conducted an additional surface water/sediment sampling event March 1999 in response to an NCDEQ request. The sample results for the surface water identified increases in levels of RCRA metals and other identified elements in the Downgradient (DG) sample versus the Upgradient (UG) sample as follows (results summarized in Table L-9):

- Barium at a concentration of 0.059 mg/L UG versus 0.127 mg/L DG versus a 2B Standard of 1.0 mg/L (Water Supply).
- Boron below the method detection limit UG versus 1.06 mg/L DG. There is no 2B standard for boron; however, there is an EPA ecological screening value of 0.75 mg/L.
- Copper at a concentration of 0.010 mg/L UG versus 0.110 mg/L DG versus a 2B Standard of 0.007 mg/L (Freshwater).

- Iron at a concentration of 1.34 mg/L UG versus 2.58 mg/L DG. There is no 2B Standard for iron.
- Lead below the method detection limit UG versus 0.011 mg/L DG versus a 2B Standard of 0.025 mg/L (Freshwater).
- Manganese at a concentration of 0.109 mg/L UG versus 0.23 mg/L DG versus a 2B Standard of 0.02 mg/L (Water Supply).
- Zinc at a concentration of 0.035 mg/L UG versus 0.142 mg/L DG versus a 2B Standard at 0.05 mg/L (Freshwater).

Boron exceeds its EPA ecological screening value (downgradient). Copper (upgradient and downgradient), manganese (upgradient and downgradient), and zinc (downgradient) exceed their respective NCDEQ 2B Standards.

Sediment Results

The sample results for the sediment identified increases in levels of RCRA and non-RCRA metals in the Downgradient samples versus the Upgradient samples as follows (results summarized in Table L-10):

- Barium at a concentration of 49.9 mg/L UG versus 93.9 mg/L DG
- Boron at a concentration of 13.7 mg/L UG versus 33.0 mg/L DG
- Cadmium at a concentration of 0.486 mg/L UG versus 0.716 mg/L DG
- Chromium at a concentration of 12.9 mg/L UG versus 20.7 mg/L DG
- Cobalt at a concentration of 4.46 mg/L UG versus 9.76 mg/L DG
- Lead at a concentration of 48.6 mg/L UG versus 125 mg/L DG
- Nickel at a concentration of 4.0 mg/L UG versus 5.03 mg/L DG
- Titanium at a concentration of 93.2 mg/L UG versus 163 mg/L DG
- Vanadium at a concentration of 39.4 mg/L UG versus 54.3 mg/L DG
- Zinc at a concentration of 121 mg/L UG versus 365 mg/L DG

 Note: mg/L denoted in sediment sample results versus mg/kg potentially due to high water content in the sample aliquot.

Both upgradient and downgradient sediment samples exhibited concentrations of cobalt and vanadium above the current IHSB PGW PSRGs. Neither sample exceeds the Health-Based Industrial PSRG standard for either vanadium or cobalt. All other sediment sample results were below the current IHSB PGW PSRGs and Health-Based Industrial PSRGs.

The 2005 RFA reported that these levels of increase identify potential releases originating from the Facility that have impacted the Walltown Branch and its recipient waters (NCDEQ, 1998b, 1999c; Aquaterra, 1997b; USEPA, 2002; Mannington, 2004). However, we would also mention that the remaining analytes not reported in the 2005 RFA are suspected as either being stable or

decreasing, and basing these "increases" on selected analytes while ignoring the remaining results is not considered a measured conclusion. An alternate conclusion for these results could be that they are entirely consistent with the heterogeneities in soil/sediment which are not impacted by man-made effects.

We have compared sediment samples versus PGW PSRGs and Health-Based Industrial PSRGs (see results in Table L-10). All sample results were below Health-Based Industrial PSRGs. There were the following exceedances of PGW PSRGs as follows:

- Cobalt- Both upgradient (4.46 mg/L) and downgradient (9.76 mg/L) results exceed the cobalt PGW PSRG at 0.9 mg/kg
- Titanium- There is no PGW PSRG so it would technically default to a detection limit which is exceeded at a concentration of 93.2 mg/L UG and 163 mg/L DG
- Vanadium-Both upgradient (39.4 mg/L) and downgradient (54.3 mg/L) results exceed the vanadium PSRG at 6.0 mg/kg

 Note: mg/L denoted in sediment sample results versus mg/kg potentially due to high water

Note: mg/L denoted in sediment sample results versus mg/kg potentially due to high water content in the sample aliquot.

This would be a data gap and potentially require further evaluation. We would also note that another data gap needing attention is a trivalent chromium PSRG Standard was used for comparison. This would be corroborated by analyzing an Onsite Downgradient (worst case) sediment sample for hexavalent chromium to assure that it is not detected and the trivalent chromium PSRG standard can be used for the Facility.

December 2004 Surface Water/Sediment Sampling Results

On December 29, 2004 Waters Edge mobilized a sampling technician to the site to collect four surface water (S-1 to S-4) and four sediment samples (S-1 to S-4) along an on-site east to west trending tributary, which feeds into Walltown Branch (see Figure L-7). At each location, a surface water sample and sediment sample were collected and submitted to the laboratory according to EPA-accepted procedures. Both the surface water and sediment samples were analyzed for total boron only with the following results:

Sampling Location	Surface Water (mg/L)	Sediment (mg/kg)
S-1	BDL	87.8
S-2	BDL	104
S-3	BDL	89.6
S-4	0.223	78.9

These results indicate the following:

• The surface water samples indicate little contribution of boron from off site; however, the last sample prior to the confluence with Walltown Branch did detect boron at a concentration of 0.223 mg/L which is below the EPA screening value of 0.75 mg/L. This could represent contribution from a former Laundromat, which operated on a tract east of the Ceramic Tile Pile and west of SR 8.

The four sediment samples collected exhibit elevated concentration of boron when compared to previous sediment samples collected at locations closer to the closed RCRA units. We would conclude the potential impact from the former Laundromat may have been the source of these elevated boron readings. All four sediment samples are above the IHSB PGW PSRG of 45 mg/kg but below the health-based Industrial PSRG at 46,000 mg/kg. While this technically represents an exceedance of one PSRG, we would comment that the Upgradient concentration of boron exceeds the Downgradient sample concentration and could be due to contribution from an offsite source.

February 2005 Surface Water/Sediment Sampling Results

Waters Edge mobilized a sampling technician to the site on February 8, 2005 to collect several surface water and sediment samples as follows:

- S-5 represents an upgradient sampling location north of Victor Street in a drainage swale that migrates onto the site from the south.
- S-6 represents a second upgradient sampling location east of Highway 8 in a drainage swale that migrates onto the site from the east.
- S-7 represents a downgradient sampling location immediately north of the culvert, which drains surface water from the Facility.

These locations are shown on Figure L-7 and the results are summarized in Table L-9 and Table L-10. At each location, a surface water and sediment sample were collected and submitted to the laboratory according to EPA-accepted procedures. Both the surface water samples and sediment samples were analyzed for total boron with the following results:

Sampling Location	<u>Surface Water (mg/L)</u>	<u>Sediment (mg/kg)</u>
S-5 North of Victor Street	0.104	BDL
S-6 West of SR 8	BDL	BDL
S-7 Downgradient of Facility	2.89	BDL

These results indicate the following:

- The surface water sample (S-5) collected at the upgradient southern portion of the Facility detected 0.104 mg/L of boron, indications that there is an upgradient source of boron migrating onto the site from the south; however, the concentration is below the EPA screening value of 0.75 mg/L.
- There appears to be an additional contribution of boron from on site in that the S-7/Onsite Downgradient sample detected boron at a concentration of 2.89 mg/L which exceeds the EPA screening value of 0.75 mg/L.
- Downward migration of boron from the surface water to sediment is not substantiated in that the sediment samples taken below the surface water samples were all BDL.

Other Potential Sources of Impact to Walltown Branch

The 2005 RFA mentions results of a 1997 surface soil sampling investigation that detected lead at a maximum concentration of 12,700 mg/kg in soils in the northern edge of SWMU-7 (2HA-43-see Tables L-5 and L-6). The location of this maximum detected concentration is in the northeastern corner of the property and is discussed later as part of AOC-1 in Section L-1c (5) (Aquaterra, 1997b; Mannington, 2004; NCDEQ, 1997a, 1997b; Booz Allen 2003).

SWMU-7 Past Surface Water/Sediment Results versus Current Risk Based Standards and Existing Data Gaps

Surface Water

Based on the results of the surface water sampling, we would conclude that while there is potential off-site contribution of boron into the surface water entering the Facility (upgradient boron concentrations detected include 0.084 mg/L [March 1996], BDL [March 1999], and BDL /0.104 mg/L [two upgradient locations analyzed, west of SR 8 and north of Victor Street, respectively, February 2005]), there are increases in the boron concentration in the downgradient samples collected at the property line (Onsite Downgradient (S-7) boron concentrations detected include 1.93 mg/L [March 1996], 1.06 mg/L [March 1999], 0.223 mg/L [December 2004], and 2.89 mg/L [February 2005]). The Onsite Downgradient (S-7) March 1996, March 1999, and February 2005 boron concentrations exceed the EPA screening value of 0.75 mg/L. We would add that the levels of copper, manganese (Onsite Upgradient-S-5 and Onsite Downgradient-S-7), and zinc (downgradient only) also exceeded the 2B Standard in the March 1999 sampling event. The 2005 RFA recommends determination of the downgradient extent of the potential surface water impact. Based on the above sample results, we would concur that a data gap exists relating to why the surface water exceeds the NCDEQ 2B Standards for copper, manganese, and zinc, and the EPA screening value for boron at the Onsite Downstream sampling location (S-7), and copper and manganese exceed the NCDEQ 2B Standards at the Onsite Upstream sampling location (S-5). These sampling locations as well as the remainder of Walltown Branch to the confluence of Rat Springs Branch should be considered for further review and potential assessment.

Sediment

Based on the historic sediment sample results, while there may be increases of individual constituents, there are no Health-based Industrial PSRG exceedances in all past sampling results. There are individual PGW PSRG exceedances in the March 1999 investigation for cobalt and vanadium (both Onsite Upgradient (S-5) and Onsite Downgradient (S-7)). There are individual PGW PSRG exceedances in the December 2004 investigation for boron; however, upgradient background levels (S-1, S-2, and S-3) are higher than downgradient levels. Finally, there is a data gap in that a trivalent chromium standard was used which would be corroborated by analyzing for hexavalent chromium at the worst cased location (S-7-Onsite Downgradient) to assure that we can use trivalent chromium PSRGs.

L-1c (5) AOC-1 Site Assessment History

In conjunction with the closure of SWMU-3, additional soil sampling was conducted in AOC-1, north of SWMU-3.

March, April, and May 1997 Additional Tile Pile Soil Assessment

In March, April, and May 1997, Aquaterra personnel collected the following samples:

- HA-7 and HA-9, collected north of SWMU-3 (March 25, 1997), and analyzed for arsenic, barium, boron, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, silver, titanium, vanadium, and zinc.
- 2-HA-23, 2-HA-24, 2HA-25, 2-HA-26, 2-HA-33, 2-HA-34, 2-HA-44 (April 24, 1997) with all samples analyzed for barium and lead. Sample 2-HA-44 was analyzed for boron, cadmium, chromium, cobalt, manganese, and zinc.
- 4HA-48 and 4-HA-49 (May 30, 1997) were analyzed for lead only.

The sample locations are depicted in the July 11, 1997 *Ceramic Tile Closure Plan*- Figure 2-1 and are shown on Figure L-2. The analytical results are depicted in Table L-11. While no depth interval is specified for these borings in past reports, based on past information provided by Dr. Bryson Trexler of Aquaterra, these were described as hand auger borings conducted between 0-2' bgs.

Soil samples collected from this area during the 1996 and 1997 site investigations also identified several areas containing elevated metals concentrations. Specifically, hand auger soil samples collected north of the Ceramic Tile Pile in AOC-1 contained significantly elevated concentrations of lead, barium, and boron. Lead concentrations in sampling locations 2-HA-23 and 4-HA-48, were 458 mg/kg and 5,140 mg/kg, respectively. In addition, the TCLP results for lead from soil sample 4HA-48 was 60.8 mg/L. Sample locations 4HA-48 and 2HA-23 are located on the vegetated bank in the southern portion of this unit in an area depicted as Former Charles Avenue. Sampling from locations 2-HA-24, 2-HA-25, and 2-HA-26 were collected north of sampling locations 4HA-48 and 2HA-23. This sampling detected lead concentrations similar to background

levels; thereby establishing delineation in that direction. Based on these past investigations, the soils in the Former Charles Avenue area (HA-9 and 4-HA-48) were removed and placed on the waste Ceramic Tile Pile prior to closure in 1997. A soil boring location map is depicted on Figure L-2 and the analytical results are depicted in Table L-11 (NCDEQ, 1990a, 1998b, 1999c; Aquaterra, 1997b; Booz Allen, 2003).

Surface Water

There is also existing surface water impact above NCDEQ 2B standards in Walltown Branch which transects AOC-1 and was previously discussed in Sections L-1a (3), L-1 b (3) and L-1 c (3).

Groundwater

There are also several groundwater monitoring wells in this area (e.g. MW-9D, MW-12, MW-19D, MW24, MW-25, MW-26-A-2 and MW-28D) which have impacts above NCGS with the main constituent being boron. Groundwater impact is discussed as a separate site-wide media in Part E - Groundwater Monitoring.

Past Sampling Results Versus Current Risk-Based Standards and Existing Data Gaps

We have compared the past sampling results versus current risk based standards in Table L-6 and Table L-11. Borings with current PGW or Industrial PSRG exceedances that were not removed and placed on the Ceramic Tile Pile (e.g. soils along former Charles Avenue) are the following (locations depicted on Figure L-8):

AOC-1 Current PSRG Soil Boring Exceedances for Area Outside of Tile Pile Cap

Boring Location (Ordinal Direction)	Above NCDEQ PGW PSRGs	Above NCDEQ Industrial PSRGs	
HA-7 (North)	Cd, Co, Mn, Pb Mn, V and Zn	As	
4HA-49 (North)	Co and Mn	None	
2HA-23 (Northeast)	Pb	None	
2HA-44 (Northeast)	B, Cd, Co and Mn	Со	

Note:

- 1. All concentrations in (mg/kg).
- 2. This includes some of the area considered as SWMU-3 since it is felt that they overlap.

Based on the current PSRGs exceedances, there are four (4) boring locations (HA-7, 4HA-49, 2-HA-23 and 2-HA-44), which would be considered data gaps. These areas should be considered for review and potential additional assessment.

L-1c (6) *AOC-2 Site Assessment History*

Past Site Assessment Results Versus Current Risk-Based Standards and Existing Data Gaps

As part of the site assessment associated with the Sludge Settling Ponds (SWMU-2), three soil borings (SS-8, SS-42, and SS-43) were advanced in what was later designated in the 2005 RFA as AOC-2. Sample SS-8 was collected on May 27, 1994, and samples SS-42 and SS-43 were collected on February 17, 2000. Soil samples were collected at depths of 0 to 1-foot bgs at each boring location, and at a depth of 3 feet bgs at the SS-43 boring location for analysis of priority pollutant metals. The boring locations are shown on Figures L-4 and L-3 and the sample results are summarized in Table L-12. Based on current PGW and Industrial PSRGs, the following exceedances were noted:

AOC-2 Current PSRG Exceedances

Boring Location	Above NCDEQ PGW PSRGs	Above NCDEQ Industrial PSRGs	
	Boron (61.2 versus 45 PSRG)		
	Cobalt (14 versus 0.9 PSRG)		
	Lead (996 versus 270 PSRG)	Arsenic (<3.73 versus 3.0 PSRG)	
	Manganese (122 versus 65 PSRG)	Lead (996 versus 800 PSRG)	
SS 9 (0 12)	Vanadium (33.2 versus 6.0 PSRG)		
SS-8 (0-1')	Zinc (5,230 versus 1,200 PSRG)		
	Cobalt (9.42 versus 0.9 PSRG)		
SS 42 (0.12)	Manganese (142 versus 65 PSRG)	None	
SS-42 (0-1')	Vanadium (20.1 versus 6.0 PSRG)		
	Cobalt (3.82 versus 0.9 PSRG)		
SS-43 (0-1')	Manganese (302 versus 65 PSRG)	None	
33-43 (0-1)	Vanadium (12.2 versus 6.0 PSRG)		
	Cobalt (3.77 versus 0.9 PSRG)		
SS 42 (22)	Manganese (119 versus 65 PSRG)	None	
SS-43 (3')	Vanadium (25.6 versus 6.0 PSRG)		

Note: All concentrations in (mg/kg).

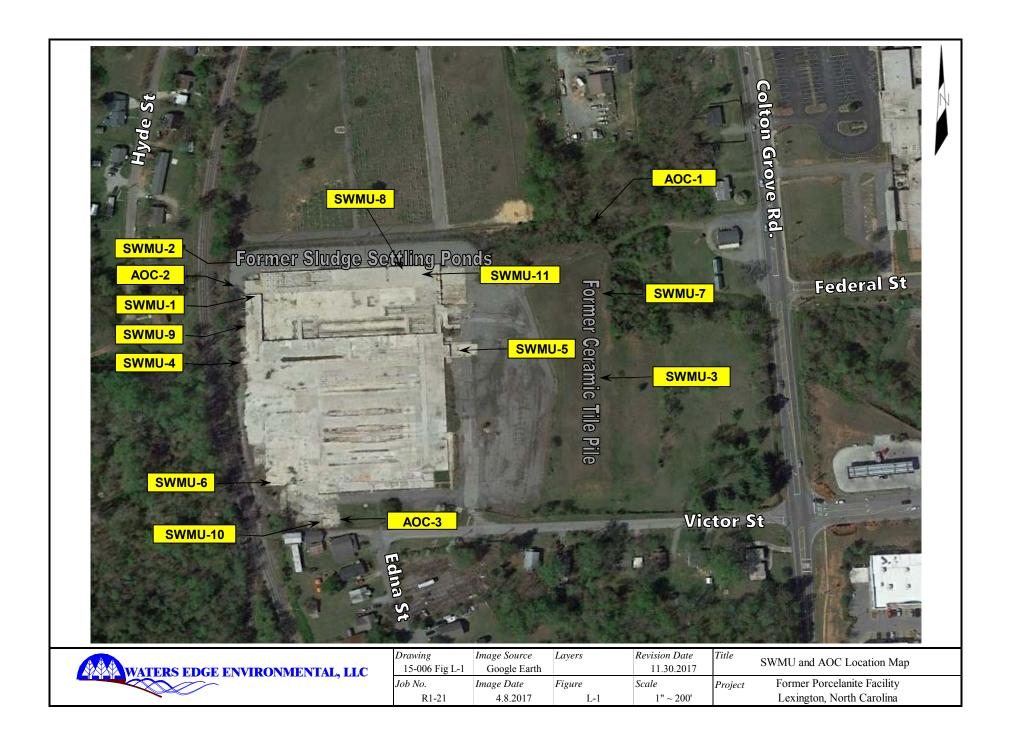
While there were some exceedances of PSRGs for lead at the SS-8 location (0-1'), the sample was also tested for lead via TCLP, and sample results detected 6.31 mg/L TCLP lead, which exceeds the 5.0 mg/L level considered a characteristic hazardous waste.

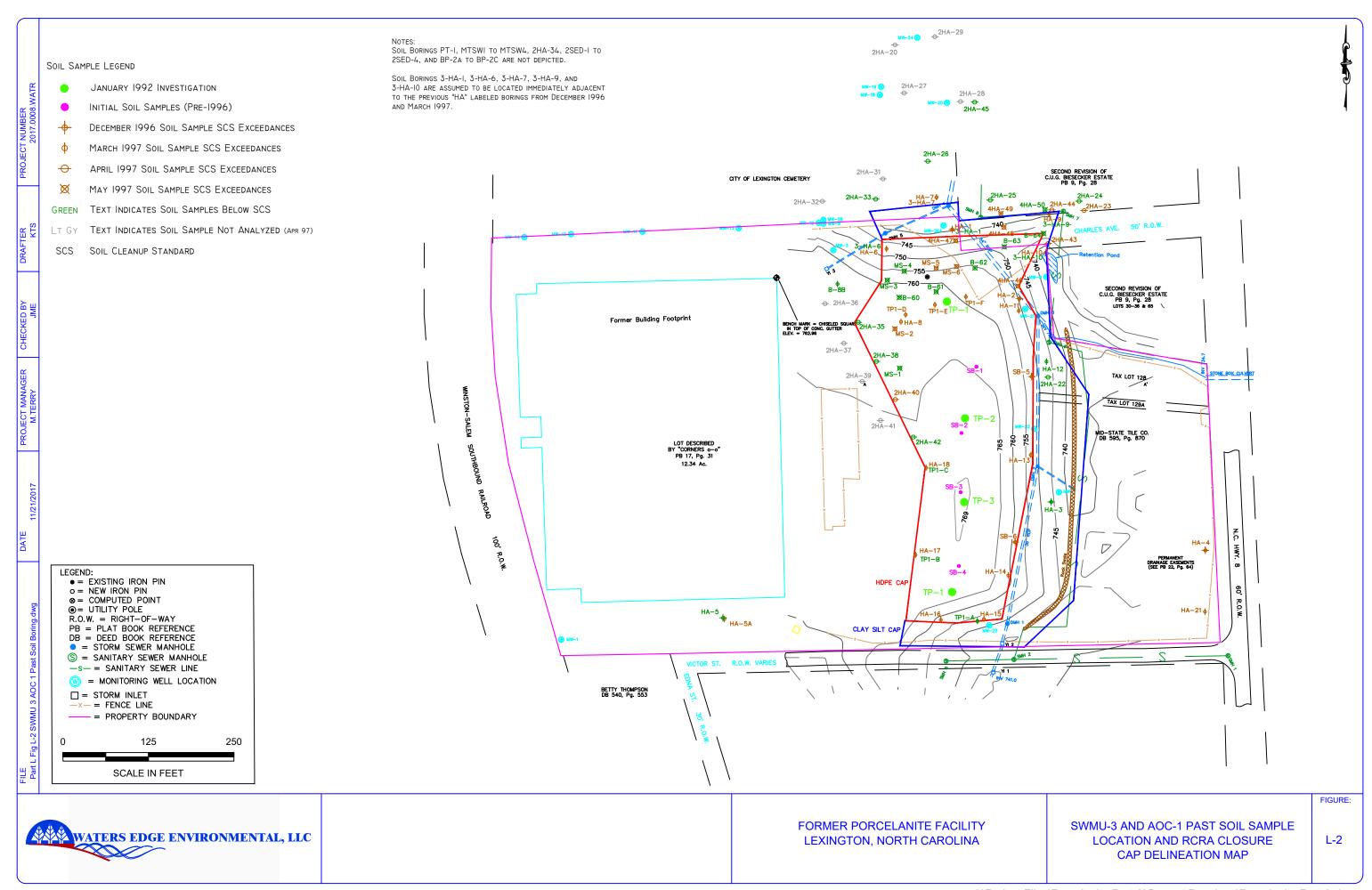
Based upon the results of the confirmatory sampling and a risk evaluation of the COCs remaining in the soil outside SWMU-2 (Sludge Settling Ponds), additional material was removed from north and west of the former Sludge Settling Ponds and in the northern extent of AOC-2 as depicted on Figures L-3 and L-4. This impacted soil was deposited on the Ceramic Tile Pile (SWMU-3) prior to its closure in 1997. The removal action and risk evaluation north and west of the Sludge Ponds is documented in the July 14, 2004 Revised Closure Plan for the Former Settling Ponds (Aquaterra, 1997c; NCDEQ, 1990a; ENSCI, 1992; Booz Allen, 2003; ENSCI, 1994). We were unable to find any documentation for removal of the northern portion of AOC-2; therefore, this would be considered a data gap.

2005 RFA COMMENTS AND PROPOSED ASSESSMENT WORK TASKS:

The 2005 RFA stated that confirmatory sampling was recommended to fully characterize the horizontal and vertical extent of the lead contamination located in the entire extent of AOC-2. Based on the current evaluation versus current PSRG Standards, cobalt, manganese and vanadium were above PGW PSRGs at SS-42 and SS-43. We have not included SS-8 since it was removed but there was no confirmatory sampling. We could not locate any additional assessment or confirmatory sampling information for the remainder of AOC-2, which extends south of SS-8 for approximately 500 feet (see Figure L-3). Therefore, we conclude that the entire AOC-2 area should be considered for review and potential future assessment.

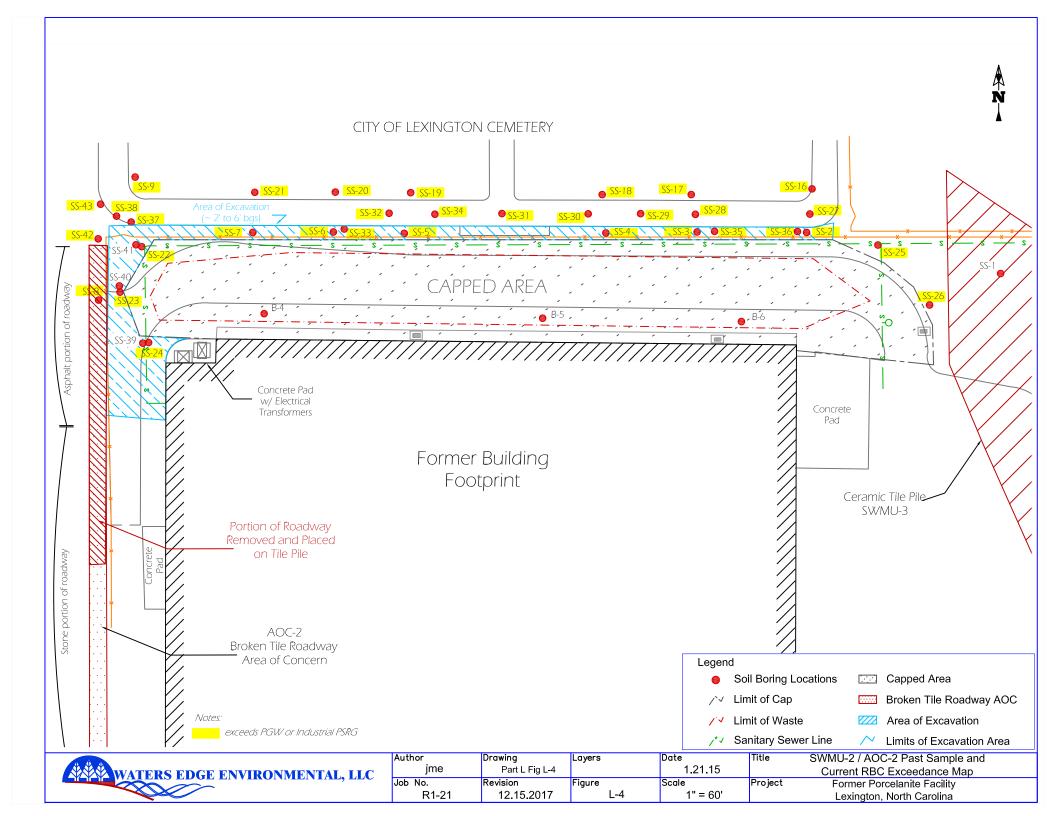
L-1-d Additional Requirements

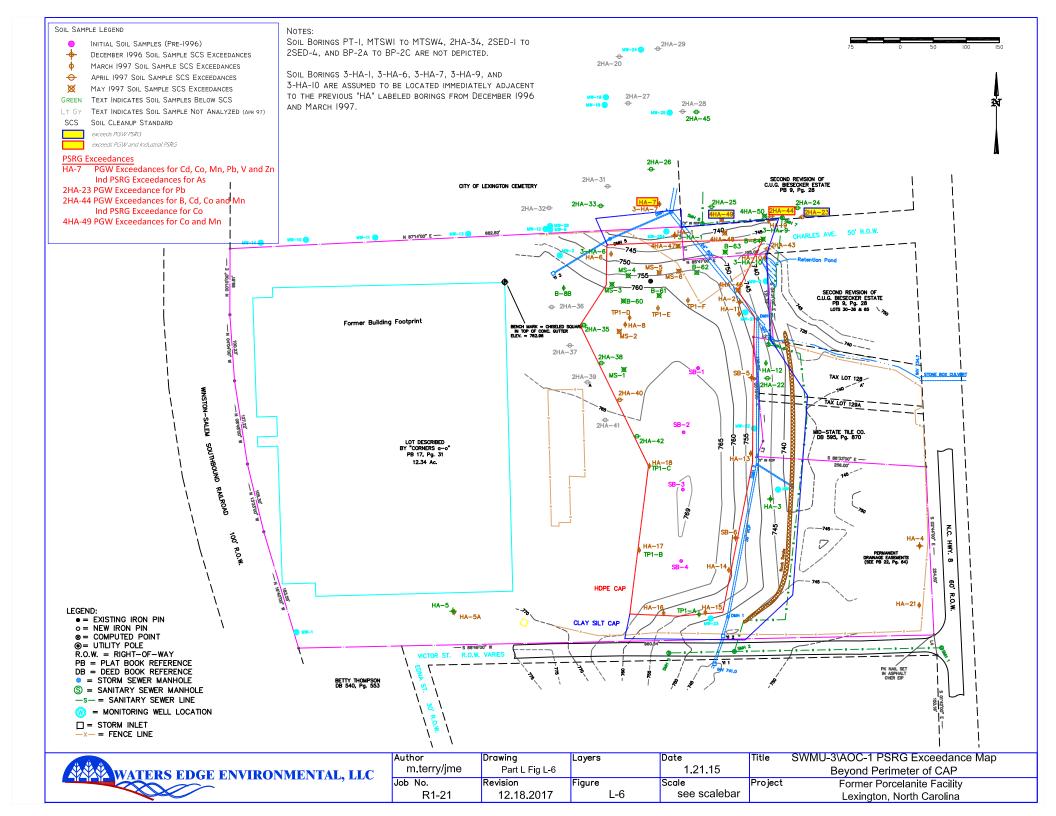

L-1d (1) Ongoing Sampling


Current ongoing sampling at the Facility includes semiannual sampling of monitoring wells MW-1 (upgradient well for the Facility), MW-9D, MW-12, MW-22A, MW-26A-2, and MW-28D in accordance with the most recently approved October 2007 SAP. Analysis of groundwater samples collected from the wells includes six metals (boron, cadmium, chromium, cobalt, lead, manganese, and zinc) which are analyzed according to EPA Method 200.7. Detailed information regarding ongoing sampling is discussed in Part E - Groundwater Monitoring.

L-1d (2) Cost Estimate for Assessment and Remediation of SWMUs and AOCs

As previously discussed, four (4) SWMUs and two (2) AOCs are currently recommended for additional investigation: Wastewater Pretreatment System (SWMU-1), Sludge Settling Ponds (SWMU-2), Ceramic Tile Pile (SWMU-3), Walltown Branch (SWMU-7), an Area of Discharge from the Tile Pile (AOC-1) and the Broken Ceramic Tile Roadway (AOC-2). It should be noted that SWMU-2 and SWMU-3 have successfully undergone closure which has been accepted by NCDEQ.


Part L Figures


	Author	Drawing	Date	Title AOC-2 Soil Boring Location Map
WATERS EDGE ENVIRONMENTAL, LLC		Part L Fig L-3	10.18.2016	Location Map
	Job No.	Figure	Sacle	Project Former Porcelanite Facility
	R1-21	L-3	1"`100'	Lexington, North Carolina

WATERS EDGE ENVIRONMENTAL, LLC

C	<i>Job No.</i> R1-21	Image/Photo Google Earth 4/8/17	Revision Date 12/6/2017	Title	Background Soil Sample Location Map
	File Name	Figure	Scale	Project	Former Procelanite Facility
	Part L Fig L-5	L-5	1" ~ 200'		Lexington, North Carolina

WATERS EDGE	ENVIRONMENTAL, LLC

Job No.	Image/Photo	Revision Date	Title	Past Surface Water Sample/Sediment
R1-21	Google Earth 4/8/17	12/6/2017		2B/RBC Exceedances
File Name	Figure	Scale	Project	Former Porcelanite Facility
Part L Fig L-7	L-7	1" ~ 200'		Lexington, North Carolina

Part L Tables

Table L-1 SWMU/AOC Identification and Past and Current Status Former Porcelanite Facility Lexington, North Carolina

Unit	Name	2005
SWMU 1	Wastewater Pretreatment System	CS
SWMU 2	Sludge Settling Ponds (Regulated)	NFA
SWMU 3	Ceramic Tile Pile (Regulated)	NFA
SWMU 4	20 cubic yd Sludge Roll-Off Container	NFA
SWMU 5	20 cubic yd Floor Sweeping Roll-Off	NFA
SWMU 6	Baghouse	CS
SWMU 7	Walltown Drain	RFI
SWMU 8	Off-Spec Tile Accumulation Roll-Off	NFA
SWMU 9	Filter Cake Waste Pile Area	NFA
SWMU 10	Maintenance Building Waste Management	NFA
SWMU 11	Spray Line Area Sumps	CS
AOC 1	Area of Discharge from Tile Pile	RFI
AOC 2	Broken Ceramic Tile Roadway	CS
AOC 3	Former UST and AST Area	NFA

Notes:

Based on Booz Allen 2005 RFA Recommendations

 $CS = Confirmatory\ Sampling$

NFA = No Further Action

 $RFI = Recommended\ Further\ Investigation$

Table L-2 SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus 1993 Soil Closure Standards Former Porcelanite Facility Lexington, North Carolina

Parameter	SSL Protective of Ground Water/Region 9 Risk-Based Concentration (RBC)	Analytical Method	Site Specific Background Levels* + 2X S.D. (mg/kg)	1993 Soil Closure Standard (mg/kg)	B-4 6-7.5' 11/22/89	B-5 1-2.5' 11/24/89	B-5 6-7.5' 11/24/89	B-6 2.5-4' 11/24/89	B-6 17.5-19' 11/24/89	SS-1 0 - 1' 5/27/94	SS-2 0 - 1' 11/4/99	SS-3 0 - 1' 11/4/99	SS-4 0 - 1' 11/4/99	SS-4-2 3' 9/13/02	SS-4-2 5' 9/13/02	SS-5 0 - 1' 11/4/99	SS-6 0 - 1' 11/4/99
Inorganics (mg/	kg)																
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<1.0	<1.0	<1.0	<1.0	<1.0	<3.62	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24
Barium	848/5,400 mg/kg ^a	Method 200.7	83.07	848	<10	<10	<10	<10	<10	80.1	246	149	47.7	NA	NA	373	64.3
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	NA	NA	NA	NA	NA	26	30.9	61.9	74.2	NA	NA	<10.5	31.6
Bromide	NL	EPA Method 300	MDL	PQL (10)	NA	NA	NA	NA	NA	<10	<10	<10	<10	NA	NA	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.725	0.712	0.696	0.623	NA	NA	0.335	0.249
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	<1.0	<1.0	<1.0	<1.0	<1.0	8.19	15.4	33.6	33.3	8.39	6.74	4.81	8.58
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	NA	NA	NA	NA	NA	<3.62	19.9	11.3	6.48	NA	NA	20.9	6.96
Lead	270/400 mg/kg ^a	Method 200.7	71.98	270	<1.0	<1.0	<1.0	<1.0	<1.0	93.4	225	207	18.5	NA	NA	155	145
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	NA	NA	NA	NA	NA	82.4	392	298	201	NA	NA	312	290
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.145	0.901	1.28	0.855	NA	NA	0.855	0.413
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	NA	NA	NA	NA	NA	3.12	13.3	8.77	6.48	NA	NA	7.32	3.73
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.45	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24
Silver	0.223/390 mg/kg ^a	Method 200.7	0.61	PQL	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.725	<1.19	<1.29	<1.25	NA	NA	<1.05	<1.24
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	NA	NA	NA	NA	NA	168	49.9	<25	97.5	NA	NA	48.2	51.8
Titanium	NL	Method 200.7	996.31	996	NA	NA	NA	NA	NA	92.2	789	1,040	948	NA	NA	59	453
Vanadium	NL/550	Method 200.7	184.91	550	NA	NA	NA	NA	NA	33.8	66	151	173	NA	NA	12.2	56
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	NA	NA	NA	NA	NA	388	2,290	625	330	NA	NA	3,680	269
Radionuclides (pCi/g)																
Gross Alpha	50	Method 9310	33.47	50	NA	NA	NA	NA	NA	15.4	7.7	9.3	10.6	NA	NA	10.8	19.5
Gross Beta	50	Method 9310	48.92	48.92	NA	NA	NA	NA	NA	38.6	13.3	12.9	8.9	NA	NA	27.2	32.1
Praseodymium	NL	Method 1620	MDL	MDL	NA	NA	NA	NA	NA	<6.71	<11.9	<12.9	<12.2	NA	NA	<10.4	<12.2
Radium 226	5°	Method 9315	1.33	5	NA	NA	NA	NA	NA	0.6	0.7	1.4	1.5	NA	NA	1.2	1.0
Radium 228	5 ^c	Method 9315	1.09	5	NA	NA	NA	NA	NA	1.1	<1.0	<1.0	< 0.9	NA	NA	< 0.9	<1.0

Result Exceeds 1993 Soil Closure Standard

a = NC Hazardous Waste Section Target Remediation Guidelines

b = NC GW Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

MDL = Method Detection Limit

NA = Not Analyzed per December 6, 1999 and September 3, 2002 DENR Correspondence

^{* =} EPA Engineering Forum Issue, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, December 1995.

^{** =} past holding time for analysis

Table L-2 SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus 1993 Soil Closure Standards Former Porcelanite Facility Lexington, North Carolina

Parameter	SSL Protective of Ground Water/Region 9 Risk-Based Concentration (RBC)	Analytical Method	Site Specific Background Levels* + 2X S.D. (mg/kg)	1993 Soil Closure Standard (mg/kg)	SS-7 0 - 1' 11/4/99	SS-7-2 3' 9/13/02	SS-7-2 5' 9/13/02	SS-8 0 - 1' 5/27/94	SS-9 0 - 1' 5/27/94	SS-16 0 - 1' 11/10/99	SS-17 0 - 1' 11/10/99	SS-18 0 - 1' 11/10/99	SS-19 0 - 1' 11/10/99	SS-20 0 - 1' 11/10/99	SS-21 0 - 1' 11/10/99	SS-22 0 - 1' 11/4/99	SS-23 0 - 1' 11/18/99
Inorganics (mg/	kg)																
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	<1.28	NA	NA	<3.73	<3.75	<1.13	<1.15	<1.16	<1.00	<1.01	<1.09	<1.14	< 0.894
Barium	848/5,400 mg/kg ^a	Method 200.7	83.07	848	146	NA	NA	186	31.7	25.3	21.8	19.2	20.1	15.3	12	1,490	47
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	<12.7	NA	NA	61.2	11.2	18.2	<11.5	13.1	<10	<10.1	13.6	33.8	<8.94
Bromide	NL	EPA Method 300	MDL	PQL (10)	<10	NA	NA	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	0.329	NA	NA	< 0.746	< 0.806	< 0.113	<1.15	< 0.116	< 0.100	< 0.101	< 0.109	1.37	0.335
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	13.2	NA	NA	8.58	4.04	8.03	6.71	8.95	3.11	2.71	10.1	8.32	18.3
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	19.9	NA	NA	14	<4.04	1.58	1.26	1.63	2.0	1.51	1.53	39.5	2,000
Lead	270/400 mg/kg ^a	Method 200.7	71.98	270	397	<11.8	12.6	996	42.7	10.5	25.5	6.16	9.02	12.7	7.08	6,830	3.58
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	285	NA	NA	122	278	58.4	35.1	33.4	161	172	42.7	225	193
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	0.662	NA	NA	< 0.149	< 0.172	0.476	0.652	0.488	< 0.200	< 0.201	< 0.218	2.62	< 0.179
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	10.0	NA	NA	7.31	<4.04	2.26	1.72	1.76	<1.0	<1.01	2.29	23.8	50.2
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	<1.28	NA	NA	<1.49	<1.50	2.37	1.72	1.51	<1.0	<1.01	2.51	1.48	1.52
Silver	0.223/390 mg/kg ^a	Method 200.7	0.61	PQL	<1.28	NA	NA	< 0.746	< 0.807	<1.13	<1.15	<1.16	<1.0	<1.01	<1.09	<1.14	< 0.894
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	<25	NA	NA	537	172	27.6	<250	48.1	<100	<100	<25	34.8	35
Titanium	NL	Method 200.7	996.31	996	130	NA	NA	118	36.1	39.3	43.5	21.9	15.5	17	34.4	46.4	543
Vanadium	NL/550	Method 200.7	184.91	550	37.6	NA	NA	33.2	9.62	28.7	21.6	27.8	6.91	4.83	30	17.9	51.5
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	855	NA	NA	5,230	39.6	62.3	111	34.3	13.1	21.5	17.2	7,020	28.7
Radionuclides (pCi/g)																
Gross Alpha	50	Method 9310	33.47	50	7.7	NA	NA	16.3	8	29.1	28.8	23.3	14.8	11.1	22.8	11.6	1.9
Gross Beta	50	Method 9310	48.92	48.92	20.7	NA	NA	29	33.3	38.1	47.9	36.6	40.3	36	38.1	24.4	9.9
Praseodymium	NL	Method 1620	MDL	MDL	<12.7	NA	NA	<7.46	<7.52	<11.3	<11.5	<11.6	<10.0	<10.1	<10.9	<11.4	NA
Radium 226	5°	Method 9315	1.33	5	1.6	NA	NA	2.2	1.2	0.7	1.1	2.4	1.1	0.9	0.6	0.9	1.1
Radium 228	5 ^c	Method 9315	1.09	5	<1.0	NA	NA	1.2	< 0.8	<1.0	<1.0	1.0	1.1	<1.0	1.5	1.0	<1.1

Result Exceeds 1993 Soil Closure Standard

b = NC GW Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

MDL = Method Detection Limit

NA = Not Analyzed per December 6, 1999 and September 3, 2002 DENR Correspondence

^{* =} EPA Engineering Forum Issue, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, December 1995.

^{** =} past holding time for analysis

a = NC Hazardous Waste Section Target Remediation Guidelines

Table L-2 SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus 1993 Soil Closure Standards Former Porcelanite Facility Lexington, North Carolina

Parameter	SSL Protective of Ground Water/Region 9 Risk-Based Concentration (RBC)	Analytical Method	Site Specific Background Levels* + 2X S.D. (mg/kg)	1993 Soil Closure Standard (mg/kg)	SS-24 0 - 1' 11/18/99	SS-24 3' 11/18/99	SS-24-2 4' 9/13/02	SS-24-2 6' 9/13/02	SS-25 0 - 1' 11/4/99	SS-25 3' 11/18/99	SS-26 0 - 1' 11/10/99	SS-27 0 - 1' 1/19/00	SS-28 0 - 1' 1/19/00	SS-29 0 - 1' 1/19/00	SS-30 0 - 1' 1/19/00	SS-31 0 - 1' 1/19/00	SS-32 0 - 1' 1/19/00
Inorganics (mg	/kg)																
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	< 0.942	< 0.972	NA	NA	<1.15	<1.25	<1.01	<1.13	<1.11	<1.13	<1.07	<1.05	<1.04
Barium	848/5,400 mg/kg ^a	Method 200.7	83.07	848	64.8	260	NA	NA	54.4	78.7	135	18.1	8.3	13	22.9	30	25.8
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	11.1	44.2	NA	NA	27.2	70.4	<10.1	6.09	7.41	11.8	7.72	8.05	< 5.19
Bromide	NL	EPA Method 300	MDL	PQL (10)	<10	<10	NA	NA	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	0.168	0.331	NA	NA	0.228	0.318	< 0.101	< 0.113	< 0.111	< 0.113	< 0.107	< 0.105	< 0.104
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	17	15.9	NA	NA	9.44	21	4.65	6.66	4.65	7.13	7.29	6.66	4.15
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	203	285	11.4	9.96	3.23	3.37	6.27	1.35	<1.11	1.92	1.29	4.23	2.7
Lead	270/400 mg/kg ^a	Method 200.7	71.98	270	65.9	972	372	170	19.4	20.2	65.2	17.2	6.19	4.87	3.75	15.9	9.12
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	267	235	NA	NA	180	97	189	51.5	37.2	87.9	26.5	298	305
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	< 0.189	< 0.194	NA	NA	1.28	0.404	4.02	0.904	0.592	2.19	0.858	0.918	0.624
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	12.9	17.7	NA	NA	3.68	4.24	2.82	1.58	1.22	1.81	1.29	1.16	<1.04
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	< 0.942	< 0.972	NA	NA	<1.15	<1.25	<1.01	<1.13	<1.11	<1.13	<1.07	<1.05	<1.04
Silver	0.223/390 mg/kg ^a	Method 200.7	0.61	PQL	< 0.942	< 0.972	NA	NA	<1.15	<1.25	<1.01	<1.13	<1.11	<1.13	<1.07	<1.05	<1.04
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	25.8	53	NA	NA	30.9	62.8	<250	100	275	<25	43	<250	43.4
Titanium	NL	Method 200.7	996.31	996	639	451	NA	NA	317	398	23.8	106	57.5	137	51.3	61.1	42.8
Vanadium	NL/550	Method 200.7	184.91	550	32.7	31.2	NA	NA	44.2	117	9.2	26.3	26.9	29.2	19	12.2	6.74
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	131	1,200	1,070	710	40	417	885	13.1	12.3	25.4	11.7	9.31	4.15
Radionuclides ((pCi/g)																
Gross Alpha	50	Method 9310	33.47	50	2.1	8.9	NA	NA	20.2	22.8	15.4	NA	NA	NA	NA	NA	NA
Gross Beta	50	Method 9310	48.92	48.92	8.6	16.3	NA	NA	29.8	17.3	43.5	NA	NA	NA	NA	NA	NA
Praseodymium	NL	Method 1620	MDL	MDL	<9.42	<9.63	NA	NA	<11.5	<12.5	<10.1	NA	NA	NA	NA	NA	NA
Radium 226	5 ^c	Method 9315	1.33	5	0.5	0.9	NA	NA	1.3	0.5	0.8	NA	NA	NA	NA	NA	NA
Radium 228	5 ^c	Method 9315	1.09	5	<1.0	<1.1	NA	NA	<1.0	<1.1	<1.0	NA	NA	NA	NA	NA	NA

Result Exceeds 1993 Soil Closure Standard

a = NC Hazardous Waste Section Target Remediation Guidelines

b = NC GW Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

MDL = Method Detection Limit

NA = Not Analyzed per December 6, 1999 and September 3, 2002 DENR Correspondence

^{* =} EPA Engineering Forum Issue, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, December 1995.

^{** =} past holding time for analysis

Table L-2 SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus 1993 Soil Closure Standards Former Porcelanite Facility Lexington, North Carolina

Parameter	SSL Protective of Ground Water/Region 9 Risk-Based Concentration (RBC)	Analytical Method	Site Specific Background Levels* + 2X S.D. (mg/kg)	1993 Soil Closure Standard (mg/kg)	SS-33 0 - 1' 1/19/00	SS-33 3' 1/19/00	SS-34 0 - 1' 1/19/00	SS-34 3' 1/19/00	SS-35 0 - 1' 1/19/00	SS-35 3' 1/19/00	SS-36 0 - 1' 1/19/00	SS-36 3' 1/19/00	SS-36-2 3' 9/13/02	SS-37 0 - 1' 1/19/00	SS-37 3' 1/19/00	SS-38 0 - 1' 1/19/00	SS-38 3' 1/19/00
Inorganics (mg	/kg)																
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	< 0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20	<1.01	< 0.982
Barium	848/5,400 mg/kg ^a	Method 200.7	83.07	848	25.5	25.2	39.9	29.9	23.1	17.2	690	10.2	NA	14.6	5.4	25	4.62
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	< 5.20	12.5	< 5.30	19.0	107	31.9	56	22.4	NA	32.3	22.0	6.55	<9.82
Bromide	NL	EPA Method 300	MDL	PQL (10)	<10	**	<10	**	<10	**	<10	**	NA	<10	**	<10	**
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	< 0.098	0.159	< 0.106	< 0.105	< 0.122	0.226	< 0.126	0.162	NA	< 0.120	< 0.120	< 0.101	< 0.098
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	6.97	11.0	5.08	8.42	17.1	12.2	13.2	3.86	NA	10.2	3.6	8.07	3.14
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	2.26	2.35	4.45	3.05	3.42	1.86	3.42	1.87	NA	1.32	<1.20	2.82	1.18
Lead	270/400 mg/kg ^a	Method 200.7	71.98	270	10.5	5.44	12.5	8.21	17.5	9.16	23.5	7.36	NA	7.46	4.2	7.77	5.5
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	408	73.5	164	105	120	62.7	91.5	168	NA	28.9	47.1	90.5	42.0
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	1.41	**	0.425	**	3.67	**	1.43	**	NA	2.65	**	0.942	**
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	< 0.982	1.71	1.17	2.63	5.74	3.01	4.43	1.64	NA	1.56	<1.20	1.72	< 0.982
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	< 0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20	<1.01	< 0.982
Silver	0.223/390 mg/kg ^a	Method 200.7	0.61	PQL	< 0.982	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA	<1.20	<1.20	<1.01	< 0.982
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	<250	**	<250	**	67	**	5,560	**	101	36.8	**	37.3	**
Titanium	NL	Method 200.7	996.31	996	34.2	13.3	81.7	16.4	339	150	187	47.2	NA	62.2	22.9	47.2	13.4
Vanadium	NL/550	Method 200.7	184.91	550	6.09	21.0	8.69	22.9	210	66.1	87.7	23.8	NA	34.2	14.7	16.6	9.53
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	21.6	60.3	15.5	8.1	21.7	23.7	37.1	33.0	NA	11.4	19.9	6.56	7.76
Radionuclides ((pCi/g)																
Gross Alpha	50	Method 9310	33.47	50	12.7	16.8	17.7	14.1	18.4	19.0	64.8	30.4	NA	27.2	38.2	16.1	13.6
Gross Beta	50	Method 9310	48.92	48.92	39.4	32.5	42.8	32.6	15.7	23.7	48.7	55.6	NA	34.7	42.5	40.6	38.9
Praseodymium	NL	Method 1620	MDL	MDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 226	5°	Method 9315	1.33	5	0.5	1.2	1.4	1.0	1.0	0.9	0.5	0.8	NA	0.7	0.6	0.7	0.7
Radium 228	5 ^c	Method 9315	1.09	5	<1.0	<1.1	<1.1	<1.0	<1.0	<1.1	1.1	<1.0	NA	1.0	<1.0	<1.0	<1.0

Result Exceeds 1993 Soil Closure Standard

b = NC GW Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

MDL = Method Detection Limit

NA = Not Analyzed per December 6, 1999 and September 3, 2002 DENR Correspondence

^{* =} EPA Engineering Forum Issue, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, December 1995.

^{** =} past holding time for analysis

a = NC Hazardous Waste Section Target Remediation Guidelines

Table L-2 SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus 1993 Soil Closure Standards Former Porcelanite Facility Lexington, North Carolina

Parameter	SSL Protective of Ground Water/Region 9 Risk-Based Concentration (RBC)	Analytical Method	Site Specific Background Levels* + 2X S.D. (mg/kg)	1993 Soil Closure Standard (mg/kg)	SS-39 0 - 1' 2/17/00	SS-39 3' 2/17/00	SS-40 0 - 1' 2/17/00	SS-40 3' 2/17/00	SS-41 0 - 1' 2/17/00	SS-41 3' 2/17/00	SS-42 0 - 1' 2/17/00	SS-43 0 - 1' 2/17/00	SS-43 3' 2/17/00	BG-1 0-1' 11/10/99	BG-2 0-1' 11/10/99
Inorganics (mg/l	kg)														
Arsenic	5.24/0.39 mg/kg ^a	Method 200.7	0.61	PQL	< 0.953	<1.05	< 0.939	<1.13	<1.08	<1.04	< 0.971	<1.03	<1.11	<1.18	<1.09
Barium	848/5,400 mg/kg ^a	Method 200.7	83.07	848	40.2	<4.19	39.5	63.5	435	50.6	140	34.8	55.1	19.2	43.12
Boron	20.5/5,500 mg/kg ^a	Method 200.7	77.26	77.24	<9.53	<10.5	<9.39	<11.3	<10.8	<10.4	13.0	<10.3	<11.1	24.3	<10.9
Bromide	NL	EPA Method 300	MDL	PQL (10)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	2.72/39 mg/kg ^a	Method 200.7	0.796	2.72	< 0.095	< 0.105	< 0.094	< 0.113	< 0.108	< 0.104	< 0.097	< 0.103	< 0.111	< 0.118	< 0.109
Chromium	27.2/30 mg/kg ^a	Method 200.7	27.3	27.2	12.7	<1.05	16.7	3.16	4.53	8.14	11.8	6.82	8.64	11.5	6.76
Cobalt	22/4,700 mg/kg ^a	Method 200.7	39.49	39.50	6.00	<1.05	8.07	9.59	5.82	10.5	9.42	3.82	3.77	2.0	2.94
Lead	270/400 mg/kg ^a	Method 200.7	71.98	270	4.67	< 0.523	1.03	11.5	44.6	20.5	239	16.8	32.7	13.4	13.2
Manganese	65.2/NL mg/kg ^a	Method 200.7	384.53	384.5	219	<1.05	234	4.21	519	153	142	302	119	42.5	123
Mercury	0.0154/23 mg/kg ^a	Method 200.7	1.22	1.23	< 0.191	< 0.209	< 0.188	< 0.226	0.307	< 0.209	< 0.194	< 0.206	< 0.221	5.54***	0.862
Nickel	56.4/1,600 mg/kg ^a	Method 200.7	10.51	56.4	6.96	<1.05	9.95	3.50	1.94	2.19	6.31	1.76	2.66	2.82	2.73
Selenium	12.2/390 mg/kg ^a	Method 200.7	2.99	12.2	< 0.953	<1.05	< 0.939	<1.13	<1.08	<1.04	< 0.971	<1.03	<1.11	2.47	1.2
Silver	0.223/390 mg/kg ^a	Method 200.7	0.61	PQL	< 0.953	<1.05	< 0.939	<1.13	<1.08	<1.04	< 0.971	<1.03	<1.11	<1.18	<1.09
Sulfate	2,500 mg/kg ^b	Method 9038	72.75	2,500	<25	<25	<25	<25	<25	<25	<25	<25	<25	<100	<100
Titanium	NL	Method 200.7	996.31	996	357	<10.5	384	356	24.8	26.9	84.7	22.3	26.3	65.7	181
Vanadium	NL/550	Method 200.7	184.91	550	20.6	1.46	22.5	33.4	7.87	16.0	20.1	12.2	25.6	45.2	27.6
Zinc	1,100/23,000 mg/kg	Method 200.7	163.71	1,100	34.9	2.83	26.2	32.3	390	78.8	258	21.2	9.60	149	124
Radionuclides (p	oCi/g)														
Gross Alpha	50	Method 9310	33.47	50	<2.3	<2.0	<2.2	20.3	19.8	10.0	7.9	13.3	27.4	22.4	23.5
Gross Beta	50	Method 9310	48.92	48.92	9.1	2	10.8	29.6	30.0	16.1	14.0	37.6	37.6	31	33.2
Praseodymium	NL	Method 1620	MDL	MDL	NA	NA	NA	NA	NA	NA	NA	NA	NA	<11.8	<10.9
Radium 226	5°	Method 9315	1.33	5	0.2	< 0.3	< 0.4	1.3	0.8	1.5	1.0	0.7	0.5	1	1.1
Radium 228	5°	Method 9315	1.09	5	<1.0	<1.0	<1.0	<1.1	<1.1	<1.1	<1.1	1.0	1.8	<1.0	0.9

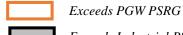
Result Exceeds 1993 Soil Closure Standard

b = NC GW Quality Standard for Sulfate of 250 mg/L x 10 (dilution/attenuation factor) = 2,500 mg/kg

c = reference September 3, 2002 DENR Correspondence

MDL = Method Detection Limit

NA = Not Analyzed per December 6, 1999 and September 3, 2002 DENR Correspondence


^{* =} EPA Engineering Forum Issue, Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites, December 1995.

^{** =} past holding time for analysis

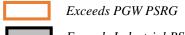
a = NC Hazardous Waste Section Target Remediation Guidelines

Table L-3
SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	B-4 6-7.5' 11/22/89	B-5 1-2.5' 11/24/89	B-5 6-7.5' 11/24/89	B-6 2.5-4' 11/24/89	B-6 17.5-19' 11/24/89	SS-1 0 - 1' 5/27/94	SS-2 0 - 1' 11/4/99	SS-3 0 - 1' 11/4/99
Inorganics (mg/kg)											
Arsenic	5.8	3.0	<0.5-4.38	<1.0	<1.0	<1.0	<1.0	<1.0	<3.62	<1.19	<1.29
Barium	580	44,000	<10-413	<10	<10	<10	<10	<10	80.1	246	149
Boron	45	46,000	<10.5-123	NA	NA	NA	NA	NA	26	30.9	61.9
Bromide	NS	NS	<10-<10	NA	NA	NA	NA	NA	<10	<10	<10
Cadmium	3.0	200	<0.1-12.7	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.725	0.712	0.696
Chromium	360,000	100,000	<0.5-123	<1.0	<1.0	<1.0	<1.0	<1.0	8.19	15.4	33.6
Cobalt	0.9	70	2.02-47.2	NA	NA	NA	NA	NA	<3.62	19.9	11.3
Lead	270	800	<0.5-18.8	<1.0	<1.0	<1.0	<1.0	<1.0	93.4	225	207
Manganese	65	5,200	56.6-449	NA	NA	NA	NA	NA	82.4	392	298
Mercury	1.0	3.1	< 0.0005-0.862	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.145	0.901	1.28
Nickel	130	4,400	2.77-12	NA	NA	NA	NA	NA	3.12	13.3	8.77
Selenium	2.1	1,200	<0.1-2.47	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<1.45	<1.19	<1.29
Silver	3.4	1,200	<0.5-<1.34	<1.0	<1.0	<1.0	<1.0	<1.0	< 0.725	<1.19	<1.29
Sulfate	NS	NS	<100-<100	NA	NA	NA	NA	NA	168	49.9	<25
Titanium	NS	NS	46.1-1,020	NA	NA	NA	NA	NA	92.2	789	1,040
Vanadium	6.0	1,200	5.01-199	NA	NA	NA	NA	NA	33.8	66	151
Zinc	1,200	70,000	27.3-124	NA	NA	NA	NA	NA	388	2,290	625

Exceeds Industrial PSRG

** = past holding time for analysis


*** = Considered Statistical Outlier - not used

NA = Not Analyzed

NS = No Standard

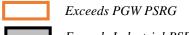
Table L-3
SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	SS-4 0 - 1' 11/4/99	SS-4-2 3' 9/13/02	SS-4-2 5' 9/13/02	SS-5 0 - 1' 11/4/99	SS-6 0 - 1' 11/4/99	SS-7 0 - 1' 11/4/99	SS-7-2 3' 9/13/02	SS-7-2 5' 9/13/02
Inorganics (mg/kg)						•	•		•		
Arsenic	5.8	3.0	<0.5-4.38	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA
Barium	580	44,000	<10-413	47.7	NA	NA	373	64.3	146	NA	NA
Boron	45	46,000	<10.5-123	74.2	NA	NA	<10.5	31.6	<12.7	NA	NA
Bromide	NS	NS	<10-<10	<10	NA	NA	<10	<10	<10	NA	NA
Cadmium	3.0	200	<0.1-12.7	0.623	NA	NA	0.335	0.249	0.329	NA	NA
Chromium	360,000	100,000	<0.5-123	33.3	8.39	6.74	4.81	8.58	13.2	NA	NA
Cobalt	0.9	70	2.02-47.2	6.48	NA	NA	20.9	6.96	19.9	NA	NA
Lead	270	800	<0.5-18.8	18.5	NA	NA	155	145	397	<11.8	12.6
Manganese	65	5,200	56.6-449	201	NA	NA	312	290	285	NA	NA
Mercury	1.0	3.1	< 0.0005-0.862	0.855	NA	NA	0.855	0.413	0.662	NA	NA
Nickel	130	4,400	2.77-12	6.48	NA	NA	7.32	3.73	10.0	NA	NA
Selenium	2.1	1,200	<0.1-2.47	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA
Silver	3.4	1,200	<0.5-<1.34	<1.25	NA	NA	<1.05	<1.24	<1.28	NA	NA
Sulfate	NS	NS	<100-<100	97.5	NA	NA	48.2	51.8	<25	NA	NA
Titanium	NS	NS	46.1-1,020	948	NA	NA	59	453	130	NA	NA
Vanadium	6.0	1,200	5.01-199	173	NA	NA	12.2	56	37.6	NA	NA
Zinc	1,200	70,000	27.3-124	330	NA	NA	3,680	269	855	NA	NA

 ${\it Exceeds Industrial PSRG}$

Exceeds All PSRGs

** = past holding time for analysis


*** = Considered Statistical Outlier - not used

NA = Not Analyzed

NS = No Standard

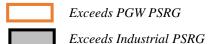
Table L-3 SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards **Former Porcelanite Facility** Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	SS-8 0 - 1' 5/27/94	SS-9 0 - 1' 5/27/94	SS-16 0 - 1' 11/10/99	SS-17 0 - 1' 11/10/99	SS-18 0 - 1' 11/10/99	SS-19 0 - 1' 11/10/99	SS-20 0 - 1' 11/10/99	SS-21 0 - 1' 11/10/99
Inorganics (mg/kg)											
Arsenic	5.8	3.0	<0.5-4.38	<3.73	<3.75	<1.13	<1.15	<1.16	<1.00	<1.01	<1.09
Barium	580	44,000	<10-413	186	31.7	25.3	21.8	19.2	20.1	15.3	12
Boron	45	46,000	<10.5-123	61.2	11.2	18.2	<11.5	13.1	<10	<10.1	13.6
Bromide	NS	NS	<10-<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	3.0	200	<0.1-12.7	< 0.746	< 0.806	< 0.113	<1.15	< 0.116	< 0.100	< 0.101	< 0.109
Chromium	360,000	100,000	<0.5-123	8.58	4.04	8.03	6.71	8.95	3.11	2.71	10.1
Cobalt	0.9	70	2.02-47.2	14	<4.04	1.58	1.26	1.63	2.0	1.51	1.53
Lead	270	800	<0.5-18.8	996	42.7	10.5	25.5	6.16	9.02	12.7	7.08
Manganese	65	5,200	56.6-449	122	278	58.4	35.1	33.4	161	172	42.7
Mercury	1.0	3.1	< 0.0005-0.862	< 0.149	< 0.172	0.476	0.652	0.488	< 0.200	< 0.201	< 0.218
Nickel	130	4,400	2.77-12	7.31	<4.04	2.26	1.72	1.76	<1.0	<1.01	2.29
Selenium	2.1	1,200	<0.1-2.47	<1.49	<1.50	2.37	1.72	1.51	<1.0	<1.01	2.51
Silver	3.4	1,200	<0.5-<1.34	< 0.746	< 0.807	<1.13	<1.15	<1.16	<1.0	<1.01	<1.09
Sulfate	NS	NS	<100-<100	537	172	27.6	<250	48.1	<100	<100	<25
Titanium	NS	NS	46.1-1,020	118	36.1	39.3	43.5	21.9	15.5	17	34.4
Vanadium	6.0	1,200	5.01-199	33.2	9.62	28.7	21.6	27.8	6.91	4.83	30
Zinc	1,200	70,000	27.3-124	5,230	39.6	62.3	111	34.3	13.1	21.5	17.2

Exceeds Industrial PSRG

Exceeds All PSRGs

** = past holding time for analysis


*** = Considered Statistical Outlier - not used

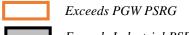
NA = Not Analyzed

NS = No Standard

Table L-3
SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	SS-22 0 - 1' 11/4/99	SS-23 0 - 1' 11/18/99	SS-24 0 - 1' 11/18/99	SS-24 3' 11/18/99	SS-24-2 4' 9/13/02	SS-24-2 6' 9/13/02	SS-25 0 - 1' 11/4/99	SS-25 3' 11/18/99
Inorganics (mg/kg)											
Arsenic	5.8	3.0	<0.5-4.38	<1.14	< 0.894	< 0.942	< 0.972	NA	NA	<1.15	<1.25
Barium	580	44,000	<10-413	1,490	47	64.8	260	NA	NA	54.4	78.7
Boron	45	46,000	<10.5-123	33.8	<8.94	11.1	44.2	NA	NA	27.2	70.4
Bromide	NS	NS	<10-<10	<10	<10	<10	<10	NA	NA	<10	<10
Cadmium	3.0	200	<0.1-12.7	1.37	0.335	0.168	0.331	NA	NA	0.228	0.318
Chromium	360,000	100,000	<0.5-123	8.32	18.3	17	15.9	NA	NA	9.44	21
Cobalt	0.9	70	2.02-47.2	39.5	2,000	203	285	11.4	9.96	3.23	3.37
Lead	270	800	<0.5-18.8	6,830	3.58	65.9	972	372	170	19.4	20.2
Manganese	65	5,200	56.6-449	225	193	267	235	NA	NA	180	97
Mercury	1.0	3.1	< 0.0005-0.862	2.62	< 0.179	< 0.189	< 0.194	NA	NA	1.28	0.404
Nickel	130	4,400	2.77-12	23.8	50.2	12.9	17.7	NA	NA	3.68	4.24
Selenium	2.1	1,200	<0.1-2.47	1.48	1.52	< 0.942	< 0.972	NA	NA	<1.15	<1.25
Silver	3.4	1,200	<0.5-<1.34	<1.14	< 0.894	< 0.942	< 0.972	NA	NA	<1.15	<1.25
Sulfate	NS	NS	<100-<100	34.8	35	25.8	53	NA	NA	30.9	62.8
Titanium	NS	NS	46.1-1,020	46.4	543	639	451	NA	NA	317	398
Vanadium	6.0	1,200	5.01-199	17.9	51.5	32.7	31.2	NA	NA	44.2	117
Zinc	1,200	70,000	27.3-124	7,020	28.7	131	1,200	1,070	710	40	417

Exceeds All PSRGs


** = past holding time for analysis

*** = Considered Statistical Outlier - not used

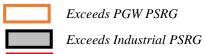
NA = Not Analyzed

Table L-3
SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	SS-26 0 - 1' 11/10/99	SS-27 0 - 1' 1/19/00	SS-28 0 - 1' 1/19/00	SS-29 0 - 1' 1/19/00	SS-30 0 - 1' 1/19/00	SS-31 0 - 1' 1/19/00	SS-32 0 - 1' 1/19/00	SS-33 0 - 1' 1/19/00
Inorganics (mg/kg)											
Arsenic	5.8	3.0	<0.5-4.38	<1.01	<1.13	<1.11	<1.13	<1.07	<1.05	<1.04	< 0.982
Barium	580	44,000	<10-413	135	18.1	8.3	13	22.9	30	25.8	25.5
Boron	45	46,000	<10.5-123	<10.1	6.09	7.41	11.8	7.72	8.05	< 5.19	< 5.20
Bromide	NS	NS	<10-<10	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium	3.0	200	<0.1-12.7	< 0.101	< 0.113	< 0.111	< 0.113	< 0.107	< 0.105	< 0.104	< 0.098
Chromium	360,000	100,000	<0.5-123	4.65	6.66	4.65	7.13	7.29	6.66	4.15	6.97
Cobalt	0.9	70	2.02-47.2	6.27	1.35	<1.11	1.92	1.29	4.23	2.7	2.26
Lead	270	800	<0.5-18.8	65.2	17.2	6.19	4.87	3.75	15.9	9.12	10.5
Manganese	65	5,200	56.6-449	189	51.5	37.2	87.9	26.5	298	305	408
Mercury	1.0	3.1	< 0.0005-0.862	4.02	0.904	0.592	2.19	0.858	0.918	0.624	1.41
Nickel	130	4,400	2.77-12	2.82	1.58	1.22	1.81	1.29	1.16	<1.04	< 0.982
Selenium	2.1	1,200	<0.1-2.47	<1.01	<1.13	<1.11	<1.13	<1.07	<1.05	<1.04	< 0.982
Silver	3.4	1,200	<0.5-<1.34	<1.01	<1.13	<1.11	<1.13	<1.07	<1.05	<1.04	< 0.982
Sulfate	NS	NS	<100-<100	<250	100	275	<25	43	<250	43.4	<250
Titanium	NS	NS	46.1-1,020	23.8	106	57.5	137	51.3	61.1	42.8	34.2
Vanadium	6.0	1,200	5.01-199	9.2	26.3	26.9	29.2	19	12.2	6.74	6.09
Zinc	1,200	70,000	27.3-124	885	13.1	12.3	25.4	11.7	9.31	4.15	21.6

 ${\it Exceeds Industrial PSRG}$

Exceeds All PSRGs


** = past holding time for analysis

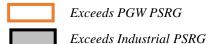
*** = Considered Statistical Outlier - not used

NA = Not Analyzed

Table L-3
SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	SS-33 3' 1/19/00	SS-34 0 - 1' 1/19/00	SS-34 3' 1/19/00	SS-35 0 - 1' 1/19/00	SS-35 3' 1/19/00	SS-36 0 - 1' 1/19/00	SS-36 3' 1/19/00	SS-36-2 3' 9/13/02
Inorganics (mg/kg)											
Arsenic	5.8	3.0	<0.5-4.38	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA
Barium	580	44,000	<10-413	25.2	39.9	29.9	23.1	17.2	690	10.2	NA
Boron	45	46,000	<10.5-123	12.5	< 5.30	19.0	107	31.9	56	22.4	NA
Bromide	NS	NS	<10-<10	**	<10	**	<10	**	<10	**	NA
Cadmium	3.0	200	<0.1-12.7	0.159	< 0.106	< 0.105	< 0.122	0.226	< 0.126	0.162	NA
Chromium	360,000	100,000	<0.5-123	11.0	5.08	8.42	17.1	12.2	13.2	3.86	NA
Cobalt	0.9	70	2.02-47.2	2.35	4.45	3.05	3.42	1.86	3.42	1.87	NA
Lead	270	800	<0.5-18.8	5.44	12.5	8.21	17.5	9.16	23.5	7.36	NA
Manganese	65	5,200	56.6-449	73.5	164	105	120	62.7	91.5	168	NA
Mercury	1.0	3.1	< 0.0005-0.862	**	0.425	**	3.67	**	1.43	**	NA
Nickel	130	4,400	2.77-12	1.71	1.17	2.63	5.74	3.01	4.43	1.64	NA
Selenium	2.1	1,200	<0.1-2.47	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA
Silver	3.4	1,200	<0.5-<1.34	<1.07	<1.06	<1.05	<1.22	<1.16	<1.26	<1.17	NA
Sulfate	NS	NS	<100-<100	**	<250	**	67	**	5,560	**	101
Titanium	NS	NS	46.1-1,020	13.3	81.7	16.4	339	150	187	47.2	NA
Vanadium	6.0	1,200	5.01-199	21.0	8.69	22.9	210	66.1	87.7	23.8	NA
Zinc	1,200	70,000	27.3-124	60.3	15.5	8.1	21.7	23.7	37.1	33.0	NA

Exceeds All PSRGs


** = past holding time for analysis

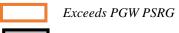
*** = Considered Statistical Outlier - not used

NA = Not Analyzed

Table L-3
SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	SS-37 0 - 1' 1/19/00	SS-37 3' 1/19/00	SS-38 0 - 1' 1/19/00	SS-38 3' 1/19/00	SS-39 0 - 1' 2/17/00	SS-39 3' 2/17/00	SS-40 0 - 1' 2/17/00	SS-40 3' 2/17/00
Inorganics (mg/kg)											
Arsenic	5.8	3.0	<0.5-4.38	<1.20	<1.20	<1.01	< 0.982	< 0.953	<1.05	< 0.939	<1.13
Barium	580	44,000	<10-413	14.6	5.4	25	4.62	40.2	<4.19	39.5	63.5
Boron	45	46,000	<10.5-123	32.3	22.0	6.55	<9.82	<9.53	<10.5	<9.39	<11.3
Bromide	NS	NS	<10-<10	<10	**	<10	**	<10	<10	<10	<10
Cadmium	3.0	200	<0.1-12.7	< 0.120	< 0.120	< 0.101	< 0.098	< 0.095	< 0.105	< 0.094	< 0.113
Chromium	360,000	100,000	<0.5-123	10.2	3.6	8.07	3.14	12.7	<1.05	16.7	3.16
Cobalt	0.9	70	2.02-47.2	1.32	<1.20	2.82	1.18	6.0	<1.05	8.07	9.59
Lead	270	800	<0.5-18.8	7.46	4.2	7.77	5.5	4.67	< 0.523	1.03	11.5
Manganese	65	5,200	56.6-449	28.9	47.1	90.5	42.0	219	<1.05	234	4.21
Mercury	1.0	3.1	< 0.0005-0.862	2.65	**	0.942	**	< 0.191	< 0.209	< 0.188	< 0.226
Nickel	130	4,400	2.77-12	1.56	<1.20	1.72	< 0.982	6.96	<1.05	9.95	3.50
Selenium	2.1	1,200	<0.1-2.47	<1.20	<1.20	<1.01	< 0.982	< 0.953	<1.05	< 0.939	<1.13
Silver	3.4	1,200	<0.5-<1.34	<1.20	<1.20	<1.01	< 0.982	< 0.953	<1.05	< 0.939	<1.13
Sulfate	NS	NS	<100-<100	36.8	**	37.3	**	<25	<25	<25	<25
Titanium	NS	NS	46.1-1,020	62.2	22.9	47.2	13.4	357	<10.5	384	356
Vanadium	6.0	1,200	5.01-199	34.2	14.7	16.6	9.53	20.6	1.46	22.5	33.4
Zinc	1,200	70,000	27.3-124	11.4	19.9	6.56	7.76	34.9	2.83	26.2	32.3

Exceeds All PSRGs


** = past holding time for analysis

*** = Considered Statistical Outlier - not used

NA = Not Analyzed

Table L-3
SWMU-2 Past Inorganic Soil Sampling Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Parameter	IHSB Protection of Groundwater PSRG	IHSB Industrial PSRG	Range of Background Concentrations	SS-41 0 - 1' 2/17/00	SS-41 3' 2/17/00	SS-42 0 - 1' 2/17/00	SS-43 0 - 1' 2/17/00	SS-43 3' 2/17/00
Inorganics (mg/kg)								
Arsenic	5.8	3.0	<0.5-4.38	<1.08	<1.04	< 0.971	<1.03	<1.11
Barium	580	44,000	<10-413	435	50.6	140	34.8	55.1
Boron	45	46,000	<10.5-123	<10.8	<10.4	13.0	<10.3	<11.1
Bromide	NS	NS	<10-<10	<10	<10	<10	<10	<10
Cadmium	3.0	200	<0.1-12.7	< 0.108	< 0.104	< 0.097	< 0.103	< 0.111
Chromium	360,000	100,000	<0.5-123	4.53	8.14	11.8	6.82	8.64
Cobalt	0.9	70	2.02-47.2	5.82	10.5	9.42	3.82	3.77
Lead	270	800	<0.5-18.8	44.6	20.5	239	16.8	32.7
Manganese	65	5,200	56.6-449	519	153	142	302	119
Mercury	1.0	3.1	< 0.0005-0.862	0.307	< 0.209	< 0.194	< 0.206	< 0.221
Nickel	130	4,400	2.77-12	1.94	2.19	6.31	1.76	2.66
Selenium	2.1	1,200	<0.1-2.47	<1.08	<1.04	< 0.971	<1.03	<1.11
Silver	3.4	1,200	<0.5-<1.34	<1.08	<1.04	< 0.971	<1.03	<1.11
Sulfate	NS	NS	<100-<100	<25	<25	<25	<25	<25
Titanium	NS	NS	46.1-1,020	24.8	26.9	84.7	22.3	26.3
Vanadium	6.0	1,200	5.01-199	7.87	16.0	20.1	12.2	25.6
Zinc	1,200	70,000	27.3-124	390	78.8	258	21.2	9.60

Exceeds Industrial PSRG

Exceeds All PSRGs

** = past holding time for analysis

*** = Considered Statistical Outlier - not used

NA = Not Analyzed

Table L-4 Background Soil Analytical Results Versus Current PSRG Standards Former Porcelanite Facility Lexington, North Carolina

Sample ID	Protection of		Range of	B-1	B-1	B-2	B-3	HA-4	HA-5	HA-5A	HA-21	BG-1	BG-2
Date Sampled	Groundwater	Com/Ind PSRG	Background	11/29/89	11/29/89	11/29/89	11/22/89	12/11/96	12/11/96	3/24/97	3/24/97	11/10/99	11/10/99
Sample Depth	PSRG		Concentrations	2.5-4.0'	10-11.5'	2.5-4.0'	3.5-5.0'	NDS	NDS	NDS	NDS	0-1'	0-1'
Priority Pollutan	at Metals (mg/kg)												
Arsenic	5.8	3	<0.5-4.38	< 0.5	< 0.5	< 0.5	<1.0	<1.134	<1.05	1.61	4.38	<1.18	<1.09
Barium	580	44,000	<10-413	<10	<10	<10	<10	163	48.4	52.4	413	19.2	43.12
Boron	45	46,000	<10.5-123	NA	NA	NA	NA	51.5	<10.5	<8.15	123	24.3	<10.9
Cadmium	3	200	<0.1-12.7	< 0.1	< 0.1	< 0.1	< 0.5	1.67	0.283	0.883	12.7	< 0.118	< 0.109
Chromium, total	360,000	100,000	< 0.5-123	< 0.5	< 0.5	< 0.5	<1.0	122	1.08	< 0.815	123	11.5	6.76
Cobalt	0.9	70	2.02-47.2	NA	NA	NA	NA	8.6	4.22	2.02	47.2	2	2.94
Lead	270	800	<0.5-18.8	< 0.5	< 0.5	< 0.5	<1.0	12.1	18.8	10.9	11.8	13.4	13.2
Manganese	65	5,200	56.6-449	NA	NA	NA	NA	56.6	353	118	449	42.5	123
Mercury	1	3.1	<0.0005-0.862	< 0.0005	< 0.0005	< 0.0005	< 0.2	0.338	< 0.211	< 0.163	< 0.202	5.54***	0.862
Nickel	130	4,400	2.77-12	NA	NA	NA	NA	12	3.27	2.77	137	2.82	2.73
Selenium	2.1	1,200	<0.1-2.47	< 0.1	< 0.1	< 0.1	< 0.5	<1.34	<1.05	< 0.463	< 0.556	2.47	1.2
Silver	3.4	1,200	<0.5-<1.34	< 0.5	< 0.5	< 0.5	<1.0	<1.34	<1.05	< 0.815	<2.02	<1.18	<1.09
Titanium	NS	NS	46.1-1,020	NA	NA	NA	NA	738	67.7	46.1	1,020	65.7	181
Vanadium	6.0	1,200	5.01-199	NA	NA	NA	NA	187	7.03	5.01	199	45.2	27.6
Zinc	1,200	70,000	27.3-124	NA	NA	NA	NA	42.7	27.3	16.5	80.8	149	124

Notes:

Result Exceeds Protection of Groundwater (PGW) PSRG

Result Exceeds Industrial PSRG

Result Exceeds PGW and Industrial PSRG

NA = Not Analyzed

NS = No Standard

NDS = No Depth Specified

*** - Considered Statistical Outlier and not used in Sludge Pond Closure

 ${\it Metals \ analysis \ via \ Method \ 6010C \ and \ 7471B}$

Sample ID	1007 61	B-7	B-8	B-8	B-9	B-10	B-11	B-12	B-13	B-14
Date Sampled	1997 Closure Standard***	11/24/89	11/27/89	11/27/89	11/27/89	11/28/89	11/28/89	11/28/89	11/28/89	11/28/89
Sample Depth	Startaura	5.0-6.5'	7.5-9.0'	20-21'	2.5-4.0'	2.5-4.0'	2.5-4.0'	2.5-4.0'	2.5-4.0'	2.5-4.0'
Priority Pollutant Metals (mg/kg)										
Barium	276.42	<10	<10	<10	<10	<10	<10	<10	<10	<10
Boron	227.61	NA								
Lead	49.32	<1.0	74	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Manganese	545.67	NA								
Zinc	96.8	NA								
Under Cap		Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes**

Notes:

Exceeds 1997 Closure Standard

NA = Not Analyzed

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9, HA-10 and 4-HA-48 was removed and placed on tile pile prior to closure

^{**-} This area capped with soil cap only

^{***- 1997} Closure Standard was 3 times average of detected background levels

Sample ID	1007 61	TP-1	TP-2	TP-3	TP-4	SB-1	SB-4	SB-5	SB-6	HA-1
Date Sampled	1997 Closure Standard***	10/1/91	10/1/91	10/1/91	10/1/91	12/10/96	12/10/96	12/10/96	12/10/96	12/11/96
Sample Depth	Stateart	0-18'	0-18'	0-18'	0-18'	15'	10'	2.5'	2.5'	NDS
Priority Pollutant Metals (mg/kg)										
Barium	276.42	490	310	220	820	659	401	27.4	155	294
Boron	227.61	53	130	200	240	426	90.8	127	104	60.8
Lead	49.32	1,600	3,100	3,900	4,000	1,090	17,400	20.1	19.7	501
Manganese	545.67	NA	NA	NA	NA	44.5	43.5	273	29.2	307
Zinc	96.8	2,400	2,000	2,700	6,100	4,900	3,080	45.5	33.7	1,430
Under Cap		Yes	Yes	Yes	Yes	Yes	Yes	Yes**	Yes	Yes**

Notes:

Exceeds 1997 Closure Standard

NA = Not Analyzed

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9, HA-10 and 4-HA-48 was removed and placed on tile pile prior to closure

^{**-} This area capped with soil cap only

^{***- 1997} Closure Standard was 3 times average of detected background levels

Sample ID	4007 89	HA-2	HA-3	HA-6	HA-7	HA-8	HA-9*	HA-10*	HA-11	HA-12
Date Sampled	1997 Closure Standard***	12/10/96	12/11/96	3/25/97	3/25/97	3/24/97	3/25/97	3/24/97	3/24/97	3/24/97
Sample Depth	Stateart	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Metals (mg/kg)										
Barium	276.42	67.7	176	107	329	415	402	72.8	69.3	34.9
Boron	227.61	59.4	<11	25.9	43.6	128	44.4	73.2	44.6	51.6
Lead	49.32	55	7.54	86.2	288	2,260	1,370	31.4	16.5	5.58
Manganese	545.67	589	15.4	143	388	58	313	708	265	58.2
Zinc	96.8	104	22.5	1,270	1,560	2,350	1,990	78.8	74.0	13.1
Under Cap		Yes	Yes**	Yes	No	Yes	Yes	Yes	Yes	Yes

Notes:

Exceeds 1997 Closure Standard

NA = Not Analyzed

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9, HA-10 and 4-HA-48 was removed and placed on tile pile prior to closure

^{**-} This area capped with soil cap only

^{***- 1997} Closure Standard was 3 times average of detected background levels

Sample ID	100= 01	HA-13	HA-14	HA-15	HA-16	HA-17	HA-18	TP-1A	TP-1B	TP-1C
Date Sampled	1997 Closure Standard***	3/24/97	3/24/97	3/24/97	3/24/97	3/25/97	3/24/97	3/25/97	3/25/97	3/25/97
Sample Depth	Staticara	NDS								
Priority Pollutant Metals (mg/kg)										
Barium	276.42	54	32.8	40.3	66.9	14.9	34.4	NA	NA	NA
Boron	227.61	145	29	20	70	19.6	25.9	10.3	35.9	37.9
Lead	49.32	13.3	26.4	23.2	11.2	14.8	12.7	8.1	15.9	33.6
Manganese	545.67	1,300	109	114	437	89.4	65.2	NA	NA	NA
Zinc	96.8	29.1	45.2	84.0	27.6	23.1	6.1	NA	NA	NA
Under Cap		Yes**	Yes**	Yes**	Yes	Yes	Yes	Yes**	Yes	Yes

Notes:

Exceeds 1997 Closure Standard

NA = Not Analyzed

NDS = No Depth Specified

^{*-} The area around HA-9, HA-10 and 4-HA-48 was removed and placed on tile pile prior to closure

^{**-} This area capped with soil cap only

Sample ID	400= 01	TP-1D	TP-1E	TP-1F	2HA-22	2HA-23	2HA-35	2HA-38	2HA-40	2HA-42
Date Sampled	1997 Closure Standard***	3/25/97	3/25/97	3/25/97	4/24/97	4/24/97	4/23/97	4/23/97	4/23/97	4/23/97
Sample Depth	Staticara	NDS								
Priority Pollutant Metals (mg/kg)										
Barium	276.42	NA	NA	NA	NA	231	NA	24.8	25.2	23.9
Boron	227.61	92.5	178	118	53.9	NA	51.8	10.8	33.2	25.2
Lead	49.32	711	1,050	1,410	NA	458	NA	11.5	11.5	9.98
Manganese	545.67	NA	NA	NA	NA	NA	91	NA	133	NA
Zinc	96.8	NA	NA	NA	NA	NA	30.7	NA	31.2	NA
Under Cap		Yes	Yes	Yes	Yes**	No	Yes	Yes	Yes	Yes

Notes:

Exceeds 1997 Closure Standard

NA = Not Analyzed

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9, HA-10 and 4-HA-48 was removed and placed on tile pile prior to closure

^{**-} This area capped with soil cap only

Sample ID	1005 61	2HA-43	2-HA-44	2HA-46	4HA-46	4HA-46-2	4HA-47	4HA-47-2	4HA-48*	4-HA-49
Date Sampled	1997 Closure Standard***	4/24/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97
Sample Depth	Startaura	NDS	NDS	NDS	NDS	2'	NDS	NDS	NDS	NDS
Priority Pollutant Metals (mg/kg)										
Barium	276.42	2,810	86.8	22.5	NA	NA	NA	NA	NA	88.7
Boron	227.61	42.6	87	48	NA	NA	NA	NA	NA	24.4
Lead	49.32	12,700	8.26	NA	49.2	49.2	2,720	2,040	5,140	180
Manganese	545.67	NA	281	260	NA	NA	NA	NA	NA	409
Zinc	96.8	NA	56	34.9	NA	NA	NA	NA	NA	9.8
Under Cap		Yes**	No	Yes	Yes	Yes	Yes	Yes	Yes	No

Notes:

Exceeds 1997 Closure Standard

NA = Not Analyzed

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9, HA-10 and 4-HA-48 was removed and placed on tile pile prior to closure

^{**-} This area capped with soil cap only

Sample ID	1005 61	MS-1	MS-2	MS-3	MS-4	MS-5	MS-6
Date Sampled	1997 Closure Standard***	5/2/97	5/2/97	5/2/97	5/2/97	5/2/97	5/2/97
Sample Depth	Stantaan	1.66'	1.0'	1.0'	1.2'	1.33'	1.33'
Priority Pollutant Metals (mg/kg)							
Barium	276.42	NA	NA	NA	NA	NA	NA
Boron	227.61	31.6	115	47.8	37	98.7	115
Lead	49.32	179	10	46.3	7.6	407	22
Manganese	545.67	NA	NA	NA	NA	NA	NA
Zinc	96.8	NA	NA	NA	NA	NA	NA
Under Cap		Yes	Yes	Yes	Yes	Yes	Yes

Notes:

Exceeds 1997 Closure Standard

NA = Not Analyzed

NDS = No Depth Specified

^{*-} The area around HA-9, HA-10 and 4-HA-48 was removed and placed on tile pile prior to closure

^{**-} This area capped with soil cap only

^{***- 1997} Closure Standard was 3 times average of detected background levels

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of		Range of	B-7	B-8	B-8	B-9	B-10	B-11	B-12	B-13	B-14
Date Sampled	Groundwater	Industrial PSRG	Background	11/24/89	11/27/89	11/27/89	11/27/89	11/28/89	11/28/89	11/28/89	11/28/89	11/28/89
Sample Depth	PSRG	1 SKO	Concentrations	5.0-6.5'	7.5-9.0'	20-21'	2.5-4.0'	2.5-4.0'	2.5-4.0'	2.5-4.0'	2.5-4.0'	2.5-4.0'
Priority Pollutant Meta	uls (mg/kg)			•								
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	580	44,000	<10-413	<10	<10	<10	<10	<10	<10	<10	<10	<10
Boron	45	46,000	<10.5-123	NA								
Cadmium	3	200	<0.1-12.7	< 0.5	0.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Chromium, total	360,000	100,000	< 0.5-123	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cobalt	0.9	70	2.02-47.2	NA								
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	<1.0	74	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Manganese	65	5,200	56.6-449	NA								
Mercury	1	3	< 0.0005-0.862	< 0.2	< 0.2	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Nickel	130	4,400	2.77-12	NA								
Selenium	2.1	1,200	<0.1-2.47	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Silver	3.4	1,200	<0.5-<1.34	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	<1.1	NA	NA	NA
Titanium	NS	NS	46.1-1,020	NA	NA	NA	NA	NA	<1.2	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	NA	NA	NA	NA	NA	<1.3	NA	NA	NA
Zinc	1,200	70,000	27.3-124	NA	NA	NA	NA	NA	<1.4	NA	NA	NA
Under Cap				Yes	Yes	Yes	Yes	Yes	<1.5	No	Yes	Yes

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs

 $\overline{NA} = Not Analyzed$

NS = No Standard

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of		Range of	TP-1	TP-2	TP-3	TP-4	SB-1	SB-4	SB-5	SB-6	HA-1
Date Sampled	Groundwater	Industrial PSRG	Background	10/1/91	10/1/91	10/1/91	10/1/91	12/10/96	12/10/96	12/10/96	12/10/96	12/11/96
Sample Depth	PSRG	1 SKO	Concentrations	0-18	0-18	0-18	0-18	15'	10'	2.5	2.5	NDS
Priority Pollutant Meta	als (mg/kg)											
Aluminum	NS	100,000	NA	17,000	19,000	18,000	22,000	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	<2	<2	<2	<2	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	NA	NA	NA	NA	<1.03	<1.1	<1.16	<1.34	<1.48
Barium	580	44,000	<10-413	490	310	220	820	659	401	27.4	155	294
Boron	45	46,000	<10.5-123	53	130	200	240	426	90.8	127	104	60.8
Cadmium	3	200	<0.1-12.7	NA	NA	NA	NA	0.905	1.84	4.6	4.18	2.32
Chromium, total	360,000	100,000	<0.5-123	4.9	6.4	5.9	4.2	4.46	4.5	20.8	29	31.2
Cobalt	0.9	70	2.02-47.2	12	26	13	23	14.5	9.84	7.9	1.88	17.7
Iron	150	100,000	NA	3,900	2,000	1,300	1,200	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	1,600	3,100	3,900	4,000	1,090	17,400	20.1	19.7	501
Manganese	65	5,200	56.6-449	NA	NA	NA	NA	44.5	43.5	273	29.2	307
Mercury	1	3	< 0.0005-0.862	NA	NA	NA	NA	< 0.206	< 0.221	< 0.232	< 0.268	< 0.296
Nickel	130	4,400	2.77-12	8.3	18	<4.0	12	14.3	2.1	6.14	2.95	7.98
Selenium	2.1	1,200	<0.1-2.47	NA	NA	NA	NA	<1.03	<1.1	<1.16	<1.134	<1.148
Silver	3.4	1,200	<0.5-<1.34	<4.0	<4.0	<4.0	14	<1.03	<1.1	<1.16	<1.134	<1.148
Tin	10,000	100,000	NA	< 5.0	< 5.0	< 5.0	< 5.0	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	100	110	110	100	120	77.2	418	19.1	312
Vanadium	6.0	1,200	5.01-199	10	7.3	8.5	9.7	15.8	11.2	131	736	59.3
Zinc	1,200	70,000	27.3-124	2,400	2,000	2,700	6,100	4,900	3,080	45.5	33.7	1,430
Under Cap				Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

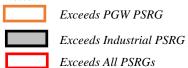
Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs
NA = Not Analyzed

NS = No Standard

 $NDS = No\ Depth\ Specified$


^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of		Range of	HA-2	НА-3	HA-6	HA-7	HA-8	HA-9*	HA-10	HA-11	HA-12
Date Sampled	Groundwater	Industrial PSRG	Background	12/10/96	12/11/96	3/25/97	3/25/97	3/24/97	3/25/97	3/24/97	3/24/97	3/24/97
Sample Depth	PSRG	1 SKO	Concentrations	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Meta	als (mg/kg)											
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	<1.12	<1.10	2.54	3.2	3.04	2.53	3.61	2.01	< 0.91
Barium	580	44,000	<10-413	67.7	176	107	329	415	402	72.8	69.3	34.9
Boron	45	46,000	<10.5-123	59.4	<11	25.9	43.6	128	44.4	73.2	44.6	51.6
Cadmium	3	200	<0.1-12.7	2.71	< 0.221	3.44	5.75	1.6	6.99	10.6	6.52	0.839
Chromium, total	360,000	100,000	< 0.5-123	55.1	9.12	4.66	13.1	3.48	31.6	76.6	23.2	3.95
Cobalt	0.9	70	2.02-47.2	17.1	5.5	4.76	16.4	9.13	20.2	22.3	17.1	1.42
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	55	7.54	86.2	288	2,260	1,370	31.4	16.5	5.58
Manganese	65	5,200	56.6-449	589	15.4	143	388	58	313	708	265	58.2
Mercury	1	3	< 0.0005-0.862	< 0.224	< 0.221	< 0.157	< 0.191	< 0.173	< 0.191	22.5	< 0.171	< 0.182
Nickel	130	4,400	2.77-12	5.94	2.64	3.93	8.3	4.67	20.4	6.42	7.85	< 0.910
Selenium	2.1	1,200	<0.1-2.47	<1.112	<1.10	< 0.504	< 0.444	< 0.540	< 0.564	< 0.489	< 0.535	< 0.465
Silver	3.4	1,200	<0.5-<1.34	<1.112	<1.10	< 0.787	< 0.954	< 0.865	< 0.921	< 0.880	< 0.853	< 0.910
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	232	33.8	93.3	254	164	613	315	266	59.7
Vanadium	6.0	1,200	5.01-199	79.5	29.7	15.2	40.6	15.1	56.9	94.6	60	14.2
Zinc	1,200	70,000	27.3-124	104	22.5	1,270	1,560	2,350	1,990	78.8	74.0	13.1
Under Cap				Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes

NA = Not Analyzed

NS = No Standard

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of		Range of	HA-13	HA-14	HA-15	HA-16	HA-17	HA-18	TP-1A	TP-1B	TP-1C
Date Sampled	Groundwater	Industrial PSRG	Background	3/24/97	3/24/97	3/24/97	3/24/97	3/25/97	3/24/97	3/25/97	3/25/97	3/25/97
Sample Depth	PSRG	1 SKO	Concentrations	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Meta	als (mg/kg)											
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	1.73	1.29	2.23	3.42	1.5	2.84	NA	NA	NA
Barium	580	44,000	<10-413	54	32.8	40.3	66.9	14.9	34.4	NA	NA	NA
Boron	45	46,000	<10.5-123	145	29	20	70	19.6	25.9	10.3	35.9	37.9
Cadmium	3	200	<0.1-12.7	6.1	1.16	1.88	9.46	1.96	2.42	NA	NA	NA
Chromium, total	360,000	100,000	<0.5-123	19.5	5.06	5.63	13.7	5.27	11.6	NA	NA	NA
Cobalt	0.9	70	2.02-47.2	9.54	2.0	2.19	6.86	1.68	2.67	NA	NA	NA
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	13.3	26.4	23.2	11.2	14.8	12.7	8.1	15.9	33.6
Manganese	65	5,200	56.6-449	1,300	109	114	437	89.4	65.2	NA	NA	NA
Mercury	1	3	< 0.0005-0.862	< 0.189	< 0.162	< 0.175	< 0.181	< 0.179	< 0.172	NA	NA	NA
Nickel	130	4,400	2.77-12	4.4	1.22	1.4	4.53	< 0.894	1.38	NA	NA	NA
Selenium	2.1	1,200	<0.1-2.47	< 0.585	< 0.429	< 0.468	< 0.539	< 0.552	< 0.426	NA	NA	NA
Silver	3.4	1,200	<0.5-<1.34	<1.02	< 0.811	< 0.873	< 0.904	< 0.894	< 0.858	NA	NA	NA
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	258	77.4	49.9	233	101	78.3	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	77.2	10.8	17.5	56.4	15.9	21.6	NA	NA	NA
Zinc	1,200	70,000	27.3-124	29.1	45.2	84.0	27.6	23.1	6.1	NA	NA	NA
Under Cap				Yes								

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs

 $\overline{NA} = Not Analyzed$

NS = No Standard

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of		Range of	TP-1D	TP-1E	TP-1F	2HA-22	2HA-35	2HA-38	2HA-40	2HA-42	2HA-43
Date Sampled	Groundwater	Industrial PSRG	Background	3/25/97	3/25/97	3/25/97	4/24/97	4/23/97	4/23/97	4/23/97	4/23/97	4/24/97
Sample Depth	PSRG	1 SKO	Concentrations	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Meta	als (mg/kg)											
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	NA								
Barium	580	44,000	<10-413	NA	NA	NA	NA	22.8	24.8	25.2	23.9	2,810
Boron	45	46,000	<10.5-123	92.5	178	118	53.9	51.8	10.8	33.2	25.2	42.6
Cadmium	3	200	<0.1-12.7	NA	NA	NA	NA	2.13	NA	3.72	NA	NA
Chromium, total	360,000	100,000	< 0.5-123	NA	NA	NA	NA	5.43	NA	10.4	NA	NA
Cobalt	0.9	70	2.02-47.2	NA	NA	NA	NA	< 0.975	NA	< 0.844	NA	NA
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	711	1,050	1,410	NA	16.8	11.5	11.5	9.98	12,700
Manganese	65	5,200	56.6-449	NA	NA	NA	NA	90.6	NA	133	NA	NA
Mercury	1	3	< 0.0005-0.862	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	NA								
Selenium	2.1	1,200	<0.1-2.47	NA								
Silver	3.4	1,200	<0.5-<1.34	NA								
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	NA								
Vanadium	6.0	1,200	5.01-199	NA								
Zinc	1,200	70,000	27.3-124	NA	NA	NA	NA	30.7	NA	31.2	NA	NA
Under Cap				Yes								

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs

 $\overline{NA} = Not Analyzed$

 $NS = No\ Standard$

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of		Range of	2-HA-44	2-HA-44	2HA-46	3-B60-1	3-B61-1	3-B62-1	3-B63-1	3-B64-1	3HA-1
Date Sampled	Groundwater	Industrial PSRG	Background	4/24/97	5/30/97	5/30/97	5/14/97	5/14/97	5/14/97	5/14/97	5/14/97	5/14/97
Sample Depth	PSRG	ISKO	Concentrations	NDS	NDS	NDS	1'	1'	1'	1'	1'	NDS
Priority Pollutant Meta	als (mg/kg)											
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	NA								
Barium	580	44,000	<10-413	NA	NA	22.5	NA	NA	NA	NA	NA	NA
Boron	45	46,000	<10.5-123	87	87	48	NA	NA	NA	NA	NA	NA
Cadmium	3	200	<0.1-12.7	5.58	5.58	5.13	NA	NA	NA	NA	NA	NA
Chromium, total	360,000	100,000	< 0.5-123	28.6	3.07	3.07	NA	NA	NA	NA	NA	NA
Cobalt	0.9	70	2.02-47.2	217	5.51	5.51	NA	NA	NA	NA	NA	NA
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	NA	8.26	NA	16.0	6.5	105	7.4	6.6	17.6
Manganese	65	5,200	56.6-449	281	281	260	NA	NA	NA	NA	NA	NA
Mercury	1	3	< 0.0005-0.862	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	NA								
Selenium	2.1	1,200	<0.1-2.47	NA								
Silver	3.4	1,200	<0.5-<1.34	NA								
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	NA								
Vanadium	6.0	1,200	5.01-199	NA								
Zinc	1,200	70,000	27.3-124	56	56	34.9	NA	NA	NA	NA	NA	NA
Under Cap				No	No	Yes	Yes	Yes	Yes	Yes	Yes	No

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs
NA = Not Analyzed

 $NS = No\ Standard$

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of		Range of	3HA-7	3-HA10-1	3-HA10-2	4HA-46	4HA-46-2	4HA-47	4HA-47-2	4HA-48*	4-HA-49
Date Sampled	Groundwater	Industrial PSRG	Background	5/15/97	5/15/97	5/15/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97
Sample Depth	PSRG	ISKO	Concentrations	NDS	1'	1'	NDS	2'	NDS	NDS	NDS	NDS
Priority Pollutant Meta	als (mg/kg)											
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium	580	44,000	<10-413	NA	NA	NA	NA	NA	NA	NA	NA	88.7
Boron	45	46,000	<10.5-123	NA	NA	NA	NA	NA	NA	NA	NA	24.4
Cadmium	3	200	<0.1-12.7	NA	NA	NA	NA	NA	NA	NA	NA	2.40
Chromium, total	360,000	100,000	< 0.5-123	NA	NA	NA	NA	NA	NA	NA	NA	7.38
Cobalt	0.9	70	2.02-47.2	NA	NA	NA	NA	NA	NA	NA	NA	12.60
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	1,230	NA	NA	49.2	49.2	2,720	2,040	5,140	180
Manganese	65	5,200	56.6-449	NA	NA	NA	NA	NA	NA	NA	NA	409
Mercury	1	3	< 0.0005-0.862	NA	< 0.219	< 0.226	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	2.1	1,200	<0.1-2.47	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver	3.4	1,200	<0.5-<1.34	NA	NA	NA	NA	NA	NA	NA	NA	NA
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	1,200	70,000	27.3-124	NA	NA	NA	NA	NA	NA	NA	NA	9.8
Under Cap				Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs
NA = Not Analyzed

NA = Not AnalyzeaNS = No Standard

 $NDS = No\ Depth\ Specified$

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-6 SWMU-3 Historic Inorganic Soil Sampling Results Versus Current PSRG Standards Former Porcelanite Facility, Lexington, North Carolina

Sample ID	Protection of	11.11	Range of	MS-1	MS-2	MS-3	MS-4	MS-5	MS-6
Date Sampled	Groundwater	Industrial PSRG	Background	5/2/97	5/2/97	5/2/97	5/2/97	5/2/97	5/2/97
Sample Depth	PSRG	Toko	Concentrations	1.66'	1.0'	1.0'	1.2'	1.33'	1.33'
Priority Pollutant Met	tals (mg/kg)								
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	<0.5-4.38	NA	NA	NA	NA	NA	NA
Barium	580	44,000	<10-413	NA	NA	NA	NA	NA	NA
Boron	45	46,000	<10.5-123	31.6	115	47.8	37	98.7	115
Cadmium	3	200	<0.1-12.7	NA	NA	NA	NA	NA	NA
Chromium, total	360,000	100,000	< 0.5-123	NA	NA	NA	NA	NA	NA
Cobalt	0.9	70	2.02-47.2	NA	NA	NA	NA	NA	NA
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	179	10	46.3	7.6	407	22
Manganese	65	5,200	56.6-449	NA	NA	NA	NA	NA	NA
Mercury	1	3	< 0.0005-0.862	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	NA	NA	NA	NA	NA	NA
Selenium	2.1	1,200	<0.1-2.47	NA	NA	NA	NA	NA	NA
Silver	3.4	1,200	<0.5-<1.34	NA	NA	NA	NA	NA	NA
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	NA	NA	NA	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	NA	NA	NA	NA	NA	NA
Zinc	1,200	70,000	27.3-124	NA	NA	NA	NA	NA	NA
Under Cap				Yes	Yes	Yes	Yes	Yes	Yes

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs

NA = Not Analyzed

NS = No Standard

NDS = No Depth Specified

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**-} past holding time

^{***-} considered statistical outlier- not used

Table L-7 SWMU-3 Past Soil TCLP Analytical Results Summary Former Porcelanite Facility Lexington, North Carolina

Sample ID		TP-1	TP-2	TP-3	TP-4	SB-13-40	Comp-1	2HA-1	2HA-2	2HA-7	2HA-9	2HA-10
Date Sampled	USEPA Threshold	10/1/91	10/1/91	10/1/91	10/1/91	9/1/92	12/10/96	4/24/97	4/24/97	4/24/97	4/24/97	4/24/97
Sample Depth	Turesnota	0-18'	0-18'	0-18'	0-18'	NDS	NDS	NDS	NDS	NDS	NDS	NDS
TCLP RCRA Primar	y Metals (mg/L)											
Arsenic	5	< 0.52	< 0.52	< 0.52	< 0.52	< 0.29	< 0.01	NA	NA	NA	NA	NA
Barium	100	6.7	3.4	2.2	4.6	< 0.52	1,87	NA	NA	NA	NA	NA
Cadmium	1.0	< 0.11	< 0.11	< 0.11	< 0.11	< 0.05	0.011	NA	NA	NA	NA	NA
Chromium, total	5.0	< 0.56	< 0.56	< 0.56	< 0.56	< 0.33	0.025	NA	NA	NA	NA	NA
Lead	5.0	47	51	63	130	< 0.34	187	7.57	< 0.01	0.641	15.5	< 0.01
Mercury	0.2	< 0.017	< 0.017	< 0.017	< 0.017	< 0.018	< 0.0004	NA	NA	NA	NA	NA
Selenium	1.0	< 0.3	< 0.3	< 0.3	< 0.3	< 0.049	< 0.01	NA	NA	NA	NA	NA
Silver	5.0	< 0.83	< 0.83	< 0.83	< 0.83	< 0.12	< 0.01	NA	NA	NA	NA	NA

Notes:

NA = Not Analyzed

NDS = No Depth Specified

Results are above USEPA threshold for characteristic hazardous waste (40 CFR 261.24- Table 1)

Table L-7 SWMU-3 Past Soil TCLP Analytical Results Summary Former Porcelanite Facility Lexington, North Carolina

Sample ID		2HA-23	2TPI-C	MS-1	MS-3	MS-5	4HA-47	4HA-47-2	4HA-48
Date Sampled	USEPA Threshold	4/24/97	4/24/97	5/2/97	5/2/97	5/2/97	5/30/97	5/30/97	5/30/97
Sample Depth	Turesnota	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
TCLP RCRA Primar	y Metals (mg/L)								
Arsenic	5	NA	NA	NA	NA	NA	NA	NA	NA
Barium	100	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	1.0	NA	NA	NA	NA	NA	NA	NA	NA
Chromium, total	5.0	NA	NA	NA	NA	NA	NA	NA	NA
Lead	5.0	2.73	0.042	1.13	2.63	17.9	91	93.5	60.8
Mercury	0.2	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	1.0	NA	NA	NA	NA	NA	NA	NA	NA
Silver	5.0	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

NA = Not Analyzed

NDS = No Depth Specified

Results are above USEPA threshold for characteristic hazardous waste (40 CFR 261.24- Table 1)

Table L-8
SWMU-3 Past VOC, SVOC and Other Compounds Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Sample ID	Protection of		B-1	B-2	B-3	B-4	EX-1	EX-2	EX-3	EX-4	SB-1
Date Sampled	Groundwater	Industrial PSRG	3/1/92	3/1/92	3/1/92	3/1/92	9/1/92	9/1/92	9/1/92	9/1/92	12/10/96
Sample Depth	PSRG	Torto	22-24.5'	22-24.5'	22-24.5'	22-24.5'	18'	20'	16'	21'	15'
Volatile Organic Compounds ((VOCs) (mg/kg)										
Methylene Chloride	0.023	640	0.85	0.82	0.86	0.85	ND	ND	ND	ND	NA
Semivolatile Organic Compou	nds (SVOCs) (m	g/kg)									
Bis(2-ethylhexyl) phthalate	7.2	160	4.6	1.9	5.3	3.5	ND	ND	ND	ND	NA
Other Organics (mg/kg)											
Formaldehyde	2.4	32,000	<1.1	<1.1	<1.1	<1.1	ND	ND	ND	ND	NA
Phenols	0.23	50,000	NA	NA	NA	NA	NA	NA	NA	NA	< 0.112

Notes:

NA = Not Analyzed

Result Exceeds Protection of Groundwater PSRG

ND = Non-Detect

Result Exceeds Industrial PSRG

NDS = No Depth Specified

Result Exceeds Protection of Groundwater PSRG and Industrial PSRG

Table L-8
SWMU-3 Past VOC, SVOC and Other Compounds Analytical Results Versus Current PSRG Standards
Former Porcelanite Facility
Lexington, North Carolina

Sample ID	Protection of	Industrial PSRG	SB-4	SB-5	SB-6	HA-1	HA-2	НА-3	HA-4		
Date Sampled	Groundwater		12/10/96	12/10/96	12/10/96	12/11/96	12/10/96	12/11/96	12/11/96		
Sample Depth	PSRG	7 5110	10'	2.5'	2.5'	NDS	NDS	NDS	NDS		
Volatile Organic Compounds (VOCs) (mg/kg)											
Methylene Chloride	0.023	640	NA								
Semivolatile Organic Compou	ends (SVOCs) (m	g/kg)									
Bis(2-ethylhexyl) phthalate	7.2	160	NA								
Other Organics (mg/kg)											
Formaldehyde	2.4	32,000	NA								
Phenols	0.23	50,000	< 0.112	< 0.122	< 0.146	< 0.161	< 0.122	< 0.119	< 0.146		

Notes:

NA = Not Analyzed Result Exceeds Protection of Groundwater PSRG

ND = Non-Detect Result Exceeds Industrial PSRG

NDS = No Depth Specified Result Exceeds Protection of Groundwater PSRG and Industrial PSRG

Table L-9 SWMU-7 Past Surface Water Results Versus 2B and Risk Based Stnadards Former Porcelanite Facility Lexington, North Carolina

Sample ID	NCDENR 2B/EPA	S-5 Onsite Up	S-7 Onsite Down	S-5 Onsite Up	S-7 Onsite Down	S-1	S-2	S-3	S-4	S-5 Onsite Up	S-6	S-7 Onsite Down
Date Sampled	Screening	3/26/96	3/26/96	3/1/99	3/1/99	12/29/04	12/29/04	12/29/04	12/29/04	2/8/2005	2/8/2005	2/8/2005
Sample Depth	Value	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Metals (mg/L)												
Arsenic	0.05*	NA	NA	< 0.01	< 0.01	NA	NA	NA	NA	NA	NA	NA
Barium	1.0**	NA	NA	0.059	0.127	NA	NA	NA	NA	NA	NA	NA
Boron	0.75***	0.084	1.93	BDL	1.06	BDL	BDL	BDL	0.223	0.104	BDL	2.89
Cadmium	0.002*	NA	NA	< 0.005	< 0.005	NA	NA	NA	NA	NA	NA	NA
Chromium, total	0.05*	NA	NA	< 0.01	< 0.01	NA	NA	NA	NA	NA	NA	NA
Copper	0.007*	NA	NA	0.01	0.11	NA	NA	NA	NA	NA	NA	NA
Cobalt	NS	NA	NA	< 0.025	< 0.025	NA	NA	NA	NA	NA	NA	NA
Iron	NS	NA	NA	1.34	2.58	NA	NA	NA	NA	NA	NA	NA
Lead	0.025*	NA	NA	< 0.005	0.011	NA	NA	NA	NA	NA	NA	NA
Manganese	0.02**	NA	NA	0.109	0.23	NA	NA	NA	NA	NA	NA	NA
Mercury	0.012*	NA	NA	< 0.0002	< 0.0002	NA	NA	NA	NA	NA	NA	NA
Nickel	0.088*	NA	NA	< 0.01	< 0.01	NA	NA	NA	NA	NA	NA	NA
Selenium	0.005*	NA	NA	< 0.01	< 0.01	NA	NA	NA	NA	NA	NA	NA
Silver	0.00006*	NA	NA	< 0.01	< 0.01	NA	NA	NA	NA	NA	NA	NA
Tin	NS	NA	NA	<1.0	<1.0	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NA	NA	< 0.1	< 0.1	NA	NA	NA	NA	NA	NA	NA
Vanadium	NS	NA	NA	< 0.02	< 0.02	NA	NA	NA	NA	NA	NA	NA
Zinc	0.05*	NA	NA	0.035	0.142	NA	NA	NA	NA	NA	NA	NA

Notes:

Result Exceeds NCDENR 2B or EPA Screening Value

NA = Not Analyzed

NS = No Standard

NDS = No Depth Specified

* - Freshwater

** - Water Supply

*** - EPA Screening Value

Note- March 1999 Sampling included additional radionuclides and Secondary Parameters which have no 2B Standards

Table L-10 SWMU-7 Past Sediment Results Versus Current PSRG Standards Former Porcelanite Facility Lexington, North Carolina

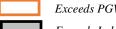
Sample ID	Protection of	Com/Ind	Range of	S-5 Onsite Up	S-7 Onsite Down	S-1	S-2	S-3	S-4	S-5 Onsite Up	S-6	S-7 Onsite Down
Date Sampled	Groundwater PSRG	PSRG	Background Concentrations	3/1/99	3/1/99	12/29/04	12/29/04	12/29/04	12/29/04	2/8/05	2/8/05	2/8/05
Sample Depth	FSKG		Concentrations	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant	Metals (mg/kg)*	k										
Arsenic	5.8	3	<0.5-4.38	<1.54	<1.48	NA	NA	NA	NA	NA	NA	NA
Barium	580	44,000	<10-413	49.9	93.9	NA	NA	NA	NA	NA	NA	NA
Boron	45	46,000	<10.5-123	13.7	33	87.8	104	89.6	78.9	BDL	BDL	BDL
Cadmium	3	200	<0.1-12.7	0.486	0.716	NA	NA	NA	NA	NA	NA	NA
Chromium, total	360,000	100,000	<0.5-123	12.9	20.7	NA	NA	NA	NA	NA	NA	NA
Cobalt	0.9	70	2.02-47.2	4.46	9.76	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	48.6	125	NA	NA	NA	NA	NA	NA	NA
Manganese	65	5,200	56.6-449	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury	1	3.1	< 0.0005-0.862	< 0.177	< 0.171	NA	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	4.0	5.03	NA	NA	NA	NA	NA	NA	NA
Selenium	2.1	1,200	<0.1-2.47	<1.54	<1.48	NA	NA	NA	NA	NA	NA	NA
Silver	3.4	1,200	<0.5-<1.34	<1.54	<1.48	NA	NA	NA	NA	NA	NA	NA
Tin	NS	NS	46.1-1,020	<154	<157	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	93.2	163	NA	NA	NA	NA	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	39.4	54.3	NA	NA	NA	NA	NA	NA	NA
Zinc	1,200	70,000	27.3-124	121	365	NA	NA	NA	NA	NA	NA	NA

Result Exceeds Protection of Groundwater (PGW) PSRG

Result Exceeds Industrial PSRG

Result Exceeds PGW and Industrial PSRG

NA = Not Analyzed


NS = No Standard

 $NDS = No\ Depth\ Specified$

^{*-} mg/L denoted in sediment sample results versus mg/kg potentially due to high water content in the sample aliquot

Table L-11 **AOC-1 Past Inorganic Soil Sampling Results Versus Current PSRG Standards** Former Porcelanite Facility Lexington, North Carolina

Sample ID	Protection of		Range of	HA-7	HA-9*	2-HA-23	2-HA-24	2-HA-25	2-HA-26	2-HA-33	2-HA-34
Date Sampled	Groundwater	Industrial PSRG	Background	3/25/97	3/25/97	4/24/97	4/24/97	4/24/97	4/24/97	4/24/97	4/24/97
Sample Depth	PSRG		Concentrations	NDS	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Metals	(mg/kg)	•									
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	< 0.5-4.38	3.2	2.53	NA	NA	NA	NA	NA	NA
Barium	580	44,000	<10-413	329	402	231	38.7	NA	NA	29.7	27.2
Boron	45	46,000	<10.5-123	43.6	44.4	NA	NA	NA	NA	NA	NA
Cadmium	3	200	<0.1-12.7	5.75	6.99	NA	NA	NA	NA	NA	NA
Chromium, total	360,000	100,000	< 0.5-123	13.1	31.6	NA	NA	NA	NA	NA	NA
Cobalt	0.9	70	2.02-47.2	16.4	20.2	NA	NA	NA	NA	NA	NA
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	< 0.5-18.8	288	1,370	458	14.8	7.98	18.8	9.88	9.06
Manganese	65	5,200	56.6-449	388	313	NA	NA	NA	NA	NA	NA
Mercury	1	3	< 0.0005-0.862	< 0.191	< 0.191	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	8.3	20.4	NA	NA	NA	NA	NA	NA
Selenium	2.1	1,200	< 0.1-2.47	< 0.444	< 0.564	NA	NA	NA	NA	NA	NA
Silver	3.4	1,200	<0.5-<1.34	< 0.954	< 0.921	NA	NA	NA	NA	NA	NA
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	254	613	NA	NA	NA	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	40.6	56.9	NA	NA	NA	NA	NA	NA
Zinc	1,200	70,000	27.3-124	1,560	1,990	NA	NA	NA	NA	NA	NA
Under Cap				No	Yes	No	No	No	No	No	**

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs

NA- Not Analyzed NS- No Standard

NDS- No Depth Specified

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**- 2-}HA-34 cound not be located on figure but is described as north of tile pile.

^{***-2}HA-44 is under Ceramic Tile Pile Cap

Table L-11
AOC-1 Past Inorganic Soil Sampling Results Versus Current PSRG Standards
Former Porcelanite Facility Lexington, North Carolina

Sample ID	Protection of		Range of	2-HA-44	2-HA-44	4HA-48*	4HA-49	4HA-49-2	4HA-50	4HA-50-2
Date Sampled	Groundwater	Industrial PSRG	Background	4/24/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97
Sample Depth	PSRG		Concentrations	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Metals (mg/kg)								•		•
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	< 0.5-4.38	NA	NA	NA	NA	NA	NA	NA
Barium	580	44,000	<10-413	NA	NA	NA	88.7	NA	NA	NA
Boron	45	46,000	<10.5-123	87	87	NA	24.4	NA	NA	NA
Cadmium	3	200	<0.1-12.7	5.58	5.58	NA	2.40	NA	NA	NA
Chromium, total	360,000	100,000	< 0.5-123	28.6	3.07	NA	7.38	NA	NA	NA
Cobalt	0.9	70	2.02-47.2	217	5.51	NA	12.60	NA	NA	NA
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	<0.5-18.8	NA	8.26	5,140	180	6.63	19.8	22.5
Manganese	65	5,200	56.6-449	281	281	NA	409	NA	NA	NA
Mercury	1	3	< 0.0005-0.862	NA	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	NA	NA	NA	NA	NA	NA	NA
Selenium	2.1	1,200	< 0.1-2.47	NA	NA	NA	NA	NA	NA	NA
Silver	3.4	1,200	<0.5-<1.34	NA	NA	NA	NA	NA	NA	NA
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	NA	NA	NA	NA	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	NA	NA	NA	NA	NA	NA	NA
Zinc	1,200	70,000	27.3-124	56	56	NA	9.8	NA	NA	NA
Under Cap				No	No	Yes	No	No	No	No

Ex

Exceeds PGW PSRG

 ${\it Exceeds Industrial PSRG}$

Exceeds All PSRGs

NA- Not Analyzed NS- No Standard

NDS- No Depth Specified

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**- 2-}HA-34 cound not be located on figure but is described as north of tile pile.

^{***-2}HA-44 is under Ceramic Tile Pile Cap

Table L-11
AOC-1 Past Inorganic Soil Sampling Results Versus Current PSRG Standards
Former Porcelanite Facility Lexington, North Carolina

Sample ID	Protection of		Range of	2-HA-44	2-HA-44	4HA-48*	4HA-49	4HA-49-2	4HA-50	4HA-50-2
Date Sampled	Groundwater	Industrial PSRG	Background	4/24/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97	5/30/97
Sample Depth	PSRG		Concentrations	NDS	NDS	NDS	NDS	NDS	NDS	NDS
Priority Pollutant Metals (mg/kg)										-
Aluminum	NS	100,000	NA	NA	NA	NA	NA	NA	NA	NA
Antimony	0.9	94	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	5.8	3	< 0.5-4.38	NA	NA	NA	NA	NA	NA	NA
Barium	580	44,000	<10-413	NA	NA	NA	88.7	NA	NA	NA
Boron	45	46,000	<10.5-123	87	87	NA	24.4	NA	NA	NA
Cadmium	3	200	<0.1-12.7	5.58	5.58	NA	2.40	NA	NA	NA
Chromium, total	360,000	100,000	< 0.5-123	28.6	3.07	NA	7.38	NA	NA	NA
Cobalt	0.9	70	2.02-47.2	217	5.51	NA	12.60	NA	NA	NA
Iron	150	100,000	NA	NA	NA	NA	NA	NA	NA	NA
Lead	270	800	< 0.5-18.8	NA	8.26	5,140	180	6.63	19.8	22.5
Manganese	65	5,200	56.6-449	281	281	NA	409	NA	NA	NA
Mercury	1	3	< 0.0005-0.862	NA	NA	NA	NA	NA	NA	NA
Nickel	130	4,400	2.77-12	NA	NA	NA	NA	NA	NA	NA
Selenium	2.1	1,200	<0.1-2.47	NA	NA	NA	NA	NA	NA	NA
Silver	3.4	1,200	<0.5-<1.34	NA	NA	NA	NA	NA	NA	NA
Tin	10,000	100,000	NA	NA	NA	NA	NA	NA	NA	NA
Titanium	NS	NS	46.1-1,020	NA	NA	NA	NA	NA	NA	NA
Vanadium	6.0	1,200	5.01-199	NA	NA	NA	NA	NA	NA	NA
Zinc	1,200	70,000	27.3-124	56	56	NA	9.8	NA	NA	NA
Under Cap				No	No	Yes	No	No	No	No

Note:

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds Range of Background Samples

Exceeds PGW PSRG and Range of Background Samples

Exceeds All PSRGs

NA- Not Analyzed

NS- No Standard

NDS- No Depth Specified

^{*-} The area around HA-9 and 4-HA-48 removed and placed on tile pile prior to closure.

^{**- 2-}HA-34 cound not be located on figure but is described as north of tile pile.

^{***-2}HA-44 is under Ceramic Tile Pile Cap

Table L-12
AOC-2 Past Inorganic Soil Sampling Results Versus Current PSRG Standards
Former Porcelanite Facility Lexington, NC

Parameter	Protection of Groundwater PSRG	Industrial PSRG	Range of Background Concentrations	SS-8 0 - 1' 5/27/94	SS-42 0 - 1' 2/17/00	SS-43 0 - 1' 2/17/00	SS-43 3' 2/17/00
Inorganics (mg/kg)			•		-		
Arsenic	5.8	3.0	<0.5-4.38	<3.73	< 0.971	<1.03	<1.11
Barium	580	44,000	<10-413	186	140	34.8	55.1
Boron	45	46,000	<10.5-123	61.2	13.0	<10.3	<11.1
Bromide	NS	NS	<10-<10	<10	<10	<10	<10
Cadmium	3.0	200	<0.1-12.7	< 0.746	< 0.097	< 0.103	< 0.111
Chromium	360,000	100,000	<0.5-123	8.58	11.8	6.82	8.64
Cobalt	0.9	70	2.02-47.2	14	9.42	3.82	3.77
Lead	270	800	<0.5-18.8	996	239	16.8	32.7
Manganese	65	5,200	56.6-449	122	142	302	119
Mercury	1.0	3.1	< 0.0005-0.862	< 0.149	< 0.194	< 0.206	< 0.221
Nickel	130	4,400	2.77-12	7.31	6.31	1.76	2.66
Selenium	2.1	1,200	<0.1-2.47	<1.49	< 0.971	<1.03	<1.11
Silver	3.4	1,200	<0.5-<1.34	< 0.746	< 0.971	<1.03	<1.11
Sulfate	NS	NS	<100-<100	537	<25	<25	<25
Titanium	NS	NS	46.1-1,020	118	84.7	22.3	26.3
Vanadium	6.0	1,200	5.01-199	33.2	20.1	12.2	25.6
Zinc	1,200	70,000	27.3-124	5,230	258	21.2	9.60

Exceeds PGW PSRG

Exceeds Industrial PSRG

Exceeds All PSRGs

NA = Not Analyzed NS = No Standard

Part L Appendix

Appendix L-1-SWMU-1 and SWMU-11 2015 Investigation Results

March 5, 2015

Ms. Mary Siedlecki NCDENR 217 West Jones Street Raleigh, North Carolina 27603

Reference: SWMU #1 and #11 Initial & Interim Investigation Results

Former Condumex Facility

20 Victor Street

Lexington, North Carolina Waters Edge Job No. R1-21 EPA ID #NCD 986 181 451

Dear Ms. Siedlecki:

Here is an additional interim site investigation report for the two (2) Solid Waste Management Units (SWMUs) at the facility in Lexington, North Carolina. As agreed, Waters Edge is assessing items for SWMU #1 and SWMU #11 according to the recommendations provided in the February 16, 2005 NCDENR RCRA Facility Assessment Report (RFAR) as described below:

- SWMU #1- Wastewater Pretreatment System- Conduct visual observations and collect four (4) wipe samples which would be analyzed for RCRA Primary Metals.
- SWMU #11- Spray Line Sumps- The RFAR recommended that the sumps be pumped out and the walls and floor observed for stains and integrity of the concrete for conditions reporting to NCDENR.

Based on these recommendations, below is a current account of the assessment:

- SWMU #1- Wastewater Pretreatment System- On January 23, 2015, four (4) wipe samples were collected from the surface of this SWMU with a hexane wipe and submitted to a laboratory according to EPA-approved methodologies. All four (4) samples were analyzed for RCRA Primary Metals according to Method 6010 and Method 7470 which are summarized in Table 1 and documented in Appendix A. We have forwarded these sample results to the NCDENR toxicologist in a February 12, 2015 Email to determine whether they would meet acceptable industrial settleable dust standards and a response has not been received as of the date of this report. Photodocumentation showing condition of foundation platforms is provided in Appendix B. The Photodocumentation explanation for this SWMU is as follows:
 - Photograph #1- Condition of WWT Floor at Wipe Sample #1
 - Photograph #2- Condition of WWT Floor at Wipe Sample #2
 - Photograph #3- Condition of WWT Floor at Wipe Sample #3
 - Photograph #4- Condition of WWT Floor at Wipe Sample #4

SWMU #1 and SWMU #11 Interim Assessment
Former Condumex Facility
20 Victor Street
Lexington, N.C.
March 5, 2015
Page 2 of 2

We are available to discuss these findings in making further determinations on this location.

- SWMU #11- Spray Line Sumps- On February 10, 2015, an environmental technician and vacuum truck were mobilized to the facility. Both sumps and trenches were cleaned of debris and also pumped out and then a squeegee was used to expose the floor of the sumps and trenches. The sump walls, the sumps, and the trenches were determined to be intact and there were no indications of cracking that would jeopardize the integrity of the unit. Photodocumentation is provided in Appendix B. The Photodocumentation explanation for this SWMU is as follows:
 - Photograph #5/#6- Surficial Condition of Spray Line Trench Area
 - Photograph #7/#8- Spray Line Sump Walls Depicting Non-Cracked Condition
 - Photograph #9/#10/#11- Non-Cracked Condition of Spray Line Sump Floor
 - Photograph #12/#13- Non-Cracked Condition of Spray Line Trench Bottom

As such, we are of the opinion that strong evidence exists to recommend that no further action should be required for SWMU #11.

Sincerely,

WATERS EDGE ENVIRONMENTAL, LLC

Phillip L. Rahn, P.G.

President

15-015/PLR

cc Mr. Dave Kitts and Mr. Tony Shaw- Mannington

Mr. Alex Sanchex- Condumex

TABLES

Table 1 Wipe Sample Analytical Results Former Cundumex Facility Lexington, North Carolina

Sample Identification		WS-1	WS-2	WS-3	WS-4
Sample Date:		1.23.2015	1.23.2015	1.23.2015	1.23.2015
Metalss (Method 6010)					
Arsenic	Total µg	ND	3.0	ND	4.1
Barium	Total µg	134	854	559	794
Cadmium	Total µg	1.2	7.8	1.3	0.83
Chromium	Total µg	14.0	38.5	21.6	23.8
Lead	Total µg	262	2,000	1,640	708
Selenium	Total µg	2.7	4.0	3.1	3.4
Silver	Total µg	ND	6.3	ND	ND
Mercury (Method 7470)				
Mercury	Total µg	ND	5.6	ND	ND

ND - Compound not above detection limits.

APPENDIX A

Eden, NC 27288 (336)623-8921

February 06, 2015

Mr. Phil Rahn Waters Edge Environmental 4901 Water's Edge Drive Suite 201 Raleigh, NC 27606

RE: Project: PORCELANITE R1-21 Pace Project No.: 92234894

Dear Mr. Rahn:

Enclosed are the analytical results for sample(s) received by the laboratory on January 26, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

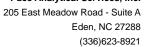
Bittany L. Sibson

Brittany Gibson for Terri Page terri.page@pacelabs.com Project Manager

Enclosures

Pace Analytical www.pacelabs.com

205 East Meadow Road - Suite A Eden, NC 27288 (336)623-8921

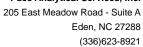

CERTIFICATIONS

Project: PORCELANITE R1-21

Pace Project No.: 92234894

Asheville Certification IDs

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 Massachusetts Certification #: M-NC030 North Carolina Drinking Water Certification #: 37712 North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 West Virginia Certification #: 356 Virginia/VELAP Certification #: 460222



SAMPLE SUMMARY

Project: PORCELANITE R1-21

Pace Project No.: 92234894

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92234894001	WS-1	Wipe	01/23/15 09:20	01/26/15 13:52
92234894002	WS-2	Wipe	01/23/15 09:30	01/26/15 13:52
92234894003	WS-3	Wipe	01/23/15 09:40	01/26/15 13:52
92234894004	WS-4	Wipe	01/23/15 09:50	01/26/15 13:52

SAMPLE ANALYTE COUNT

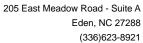
Project: PORCELANITE R1-21

Pace Project No.: 92234894

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92234894001	WS-1	EPA 6010	JMW	7	PASI-A
		EPA 7470	HVK	1	PASI-A
92234894002	WS-2	EPA 6010	JMW	7	PASI-A
		EPA 7470	HVK	1	PASI-A
92234894003	WS-3	EPA 6010	JMW	7	PASI-A
		EPA 7470	HVK	1	PASI-A
92234894004	WS-4	EPA 6010	JMW	7	PASI-A
		EPA 7470	HVK	1	PASI-A

ANALYTICAL RESULTS

Project: PORCELANITE R1-21


Pace Project No.: 92234894

Date: 02/06/2015 11:29 AM

Sample: WS-1	Lab ID: 9	2234894001	Collected:	01/23/1	5 09:20	Received: 01/	26/15 13:52 Ma	atrix: Wipe	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, Wipe	Analytical M	ethod: EPA 6	010 Prepara	ition Meth	od: EPA	3050			
Arsenic	ND Tota	al ug	2.5	0.62	5	01/28/15 16:45	01/29/15 02:08	7440-38-2	
Barium	134 Total	al ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:08	7440-39-3	
Cadmium	1.2 Total	al ug	0.25	0.12	5	01/28/15 16:45	01/29/15 02:08	7440-43-9	
Chromium	14.0 Total	al ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:08	7440-47-3	
Lead	262 Tota	Ū	1.2	0.62	5	01/28/15 16:45	01/29/15 02:08	7439-92-1	
Selenium	2.7 Total	· ·	2.5	1.2	5	01/28/15 16:45	01/29/15 02:08	7782-49-2	
Silver	ND Tota	J	1.2	0.62	5		01/29/15 02:08		
7470 Mercury, Wipe	Analytical M	ethod: EPA 7	470						
Mercury	ND Tota	al ug	1.6	1.6	1		02/03/15 16:15	7439-97-6	
Sample: WS-2	Lab ID: 9	2234894002	Collected:	01/23/1	5 09:30	Received: 01/	26/15 13:52 Ma	atrix: Wipe	
			Report					,	
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, Wipe	Analytical M	ethod: EPA 6	010 Prepara	tion Meth	od: EPA	3050			
Arsenic	3.0 Tota	al uo	2.5	0.62	5	01/28/15 16:45	01/29/15 02:20	7440-38-2	
Barium	854 Total	-	1.2	0.62	5	01/28/15 16:45	01/29/15 02:20		
Cadmium	7.8 Total	Ū	0.25	0.12	5	01/28/15 16:45	01/29/15 02:20		
Chromium	38.5 Tota	Ū	1.2	0.62	5	01/28/15 16:45	01/29/15 02:20		
Lead	2000 Tota	· ·	1.2	0.62	5		01/29/15 02:20	-	
Selenium	4.0 Tota	Ū	2.5	1.2	5		01/29/15 02:20		
Silver	6.3 Total	-	1.2	0.62	5		01/29/15 02:20		
7470 Mercury, Wipe		ethod: EPA 7	470						
Mercury	5.6 Tota		1.6	1.6	1		02/03/15 16:18	7439-97-6	
Sample: WS-3	Lab ID: 9	2234894003	Collected:	01/23/1	5 09:40	Received: 01/	26/15 13:52 Ma	atrix: Wipe	
5 .	5	11.2	Report	MO	D.E.			0404	_
Parameters	Results —	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qua
6010 MET ICP, Wipe	Analytical M	ethod: EPA 6	010 Prepara	tion Meth	od: EPA	3050			
Arsenic	ND Tota	J	2.5	0.62	5		01/29/15 02:23		
Barium	559 Tota	-	1.2	0.62	5		01/29/15 02:23		
Cadmium	1.3 Total	al ug	0.25	0.12	5		01/29/15 02:23		
Chromium	21.6 Total	al ug	1.2	0.62	5		01/29/15 02:23		
Lead	1640 Tota	al ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:23	7439-92-1	
Selenium	3.1 Total	al ug	2.5	1.2	5	01/28/15 16:45	01/29/15 02:23	7782-49-2	
Silver	ND Tota	al ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:23	7440-22-4	
7470 Mercury, Wipe	Analytical M	ethod: EPA 7	470						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ANALYTICAL RESULTS

Project: PORCELANITE R1-21

Pace Project No.: 92234894

Date: 02/06/2015 11:29 AM

Sample: WS-4	Lab ID: 9223489	94004 Collecte	Collected: 01/23/15 09:50		Received: 01/26/15 13:52 Matrix: Wipe				
		Report							
Parameters —	Results Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP, Wipe	Analytical Method:	EPA 6010 Prepa	ration Meth	od: EP	A 3050				
Arsenic	4.1 Total ug	2.5	0.62	5	01/28/15 16:45	01/29/15 02:26	7440-38-2		
Barium	794 Total ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:26	7440-39-3		
Cadmium	0.83 Total ug	0.25	0.12	5	01/28/15 16:45	01/29/15 02:26	7440-43-9		
Chromium	23.8 Total ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:26	7440-47-3		
Lead	708 Total ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:26	7439-92-1		
Selenium	3.4 Total ug	2.5	1.2	5	01/28/15 16:45	01/29/15 02:26	7782-49-2		
Silver	ND Total ug	1.2	0.62	5	01/28/15 16:45	01/29/15 02:26	7440-22-4		
7470 Mercury, Wipe	Analytical Method:	EPA 7470							
Mercury	ND Total ug	1.6	1.6	1		02/03/15 16:23	7439-97-6		

Eden, NC 27288 (336)623-8921

QUALITY CONTROL DATA

Project: PORCELANITE R1-21

Pace Project No.: 92234894

Date: 02/06/2015 11:29 AM

QC Batch: MERC/7238 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury Wipe

Associated Lab Samples: 92234894001, 92234894002, 92234894003, 92234894004

METHOD BLANK: 1383056 Matrix: Wipe

Associated Lab Samples: 92234894001, 92234894002, 92234894003, 92234894004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Mercury Total ug ND 1.6 02/03/15 16:26

LABORATORY CONTROL SAMPLE & LCSD: 1383057 1383058 Spike LCS LCSD LCS LCSD % Rec Max % Rec Parameter Units Conc. Result Result % Rec Limits **RPD RPD** Qualifiers Mercury Total ug 60 56.6 59.0 94 80-120 4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: PORCELANITE R1-21

Pace Project No.: 92234894

Date: 02/06/2015 11:29 AM

QC Batch: MPRP/17797 Analysis Method: EPA 6010
QC Batch Method: EPA 3050 Analysis Description: 6010 MET Wipes

Associated Lab Samples: 92234894001, 92234894002, 92234894003, 92234894004

METHOD BLANK: 1379624 Matrix: Wipe

Associated Lab Samples: 92234894001, 92234894002, 92234894003, 92234894004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	Total ug	ND	0.50	01/29/15 01:59	
Barium	Total ug	ND	0.25	01/29/15 01:59	
Cadmium	Total ug	ND	0.050	01/29/15 01:59	
Chromium	Total ug	ND	0.25	01/29/15 01:59	
Lead	Total ug	ND	0.25	01/29/15 01:59	
Selenium	Total ug	ND	0.50	01/29/15 01:59	
Silver	Total ug	ND	0.25	01/29/15 01:59	
Lead Selenium	Total ug Total ug	ND ND	0.25 0.50	01/29/15 01:59 01/29/15 01:59	

LABORATORY CONTROL SAMI	PLE & LCSD: 1379625		13	379626						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Arsenic	Total ug	25	23.9	23.7	96	95	80-120	1	20	
Barium	Total ug	25	24.3	24.4	97	98	80-120	0	20	
Cadmium	Total ug	25	24.6	24.5	98	98	80-120	1	20	
Chromium	Total ug	25	24.1	24.2	96	97	80-120	1	20	
Lead	Total ug	25	24.9	24.8	99	99	80-120	0	20	
Selenium	Total ug	25	24.9	24.8	99	99	80-120	0	20	
Silver	Total ug	12.5	12.0	12.1	96	97	80-120	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

st Meadow Road - Suite A Eden, NC 27288 (336)623-8921

QUALIFIERS

Project: PORCELANITE R1-21

Pace Project No.: 92234894

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

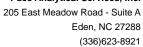
SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

Acid preservation may not be appropriate for 2-Chloroethylvinyl ether, Styrene, and Vinyl chloride.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

Date: 02/06/2015 11:29 AM

PASI-A Pace Analytical Services - Asheville

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: PORCELANITE R1-21

Pace Project No.: 92234894

Date: 02/06/2015 11:29 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92234894001	WS-1	EPA 3050	MPRP/17797	EPA 6010	ICP/16015
92234894002	WS-2	EPA 3050	MPRP/17797	EPA 6010	ICP/16015
92234894003	WS-3	EPA 3050	MPRP/17797	EPA 6010	ICP/16015
92234894004	WS-4	EPA 3050	MPRP/17797	EPA 6010	ICP/16015
92234894001	WS-1	EPA 7470	MERC/7238		
92234894002	WS-2	EPA 7470	MERC/7238		
92234894003	WS-3	EPA 7470	MERC/7238		
92234894004	WS-4	EPA 7470	MERC/7238		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical www.pacelabs.com

SAMPLE ID SWEET CONSIDER TO CONTINUE TO CO	Cilent information:	Nequiled Flored Information.	ווועסוספ ווווסוווומוסוו.		C
Control Cont	WEEW.	M. 1 Rai	Attention:	DOCOOT	0.0
The column with the content of the column with the content of the column with the content of the column with the column with the column column with the column column with the column column with the column column with the column column column with the column c	NC	Copy To:	Company Name:	REGULATORY AGENCY	
The Part of Parties and Partie	7		Address:	GROUND WATER	INKING WATER
SAMPLE ID Secretary and bus badden Ansays is the Location of Systems (Secretary Property of Property o	Phil Lehm	er No.:	Pace Quote Reference:	□ RCRA 17	HER
BELLO COMPANIES NAME ER NAME ER NAME AND SIGNATURE BELLO COMPANIES ALCOMMENTS The Companies ALCOMMENTS THE COMPANIES ALCOMMENTS THE COMPANIES ALCOMMENTS THE COMPANIES ALCOME	Fax:	Porcelani	Pace Project Manager:	Site Location ///	
AMPLE ID Name of Columbia Participa			Pace Profile #:	STATE WC	
MANUE ID MANUE				d Analysis Filtered (Y/N)	
December With Windows With Windows With Windows With Windows With Windows With Windows With Windows With Windows With Windows With Windows Windows With Windows Window	ient Information	(field)			
OPIGINAL Secondo do On Secondo Control Contro		DW WT C=CC COMPOSITE START	S SOLLECTION	1	49
W. C. 1936 5020 W. C. 1936 502		SAMPLE TYPE (G=	SAMPLE TEMP AT C # OF CONTAINER HAO3 HOO3 HCI Na2S2O3 Other ##AAAU	<u> </u>	
W (* 1945 0930 W (* 1946 0950	$I \setminus$	6-1431510920			
W. L. 19915 CO140 W. P. 19915 CO140 W. P. 19915 CO140 W. P. 19915 CO140 RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLE CONDITIONS ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLE CONDITIONS ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLE CONDITIONS ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS ACCEPTED BY AFFILLATION ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS ACCEPTED BY AFFILLATION ACCEPTED BY ACCEPTED BY AFFILLATION ACCEPTED BY AFFILLATION ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY ACCEPTED BY A	£5-7	1/2/1/2	2		
1	W5-3	1/1/1/1			
PRINT NAME AND SIGNATURE PRINT NAME AND SIGNATURE PRINT NAME AND SIGNATURE PRINT NAME OF SAMPLER: ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS 12 1	1	1/25/15	\(\)		
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS PARTICIPATION DATE TIME SAMPLE CONDITIONS JULY SAMPLER NAME AND SIGNATURE JULY		,,			
RELINQUISHED BY AFFILLATION DATE TIME ACCEPTED BY AFFILLATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Account of					
RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS					
RELINQUISHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS RELINQUISHED BY / AFFILIATION DATE TIME SAMPLE CONDITIONS 1/24 5 35.7 20.0 1/24 5 7 1/2 1/25 1/24 1/2					
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS 124/15 352					
ORIGINAL SAMPLER NAME AND SIGNATURE ORIGINAL PRINT Name of SAMPLER: Them of SAMPLER: Themps of SAMPLER: Themps of SAMPLER: The Salab of Samples Intact Salab of Samples Signature of Samples Signatur	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	TIME	TIME	ONDITIONS
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: PRINT SAMPLER: PRINT Name of SAMPLER: PRINT Name of SAMPLER: PRINT Name of SAMPLER: PARTICLE OF SA		12 0	, , , , , , , , , , , , , , , , , , , ,	7 50	1″
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Custody or consider to the constant of t		Market Ma	115 1354 Dans & A	1387 11	5
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: Consider Color Col					
PRINT Name of SAMPLER: Transcription 123//2 PRINT Name of SAMPLER: Properties Print Name of SAMPLER: Print N	ORIG	SAMPLER NAME A	ND SIGNATURE	l on (V	ntact
			Thomas Hayn	Temp in Temp i	Sealed Co (V/Y)

Pace Analytical **

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pride Enject No. Land.D. (N/X) DRINKING WATER Samples Intact F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS (N/Y) 100000 100000 100000 OTHER Sealed Cooler Custody 6 K Received on Ice (Y/N) GROUND WATER Residual Chlorine (Y/N) O° ni qmeT Page: RCRA REGULATORY AGENCY 182 TIME Requested Analysis Filtered (Y/N) NPDES [23 Site Location STATE: DATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION 下んな **↓** tesT sisylsnA 1 N /A Other 1 DANS *Important Note. By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days Methanol Preservatives _EO_SS_SbN 10mas HOBN HCI nvoice Information: HNO³ Company Name: 1352 ⁷OS^ZH Reference:
Pace Project
Manager:
Pace Profile #: Section C TIME Unpreserved ace Quote Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION DATE TIME COMPOSITE END/GRAB DATE COLLECTED breelanite RELINQUISHED BY / AFFILIATION 0950 0830 35.40 22 TIME 10 P COMPOSITE START 12/K DATE Section B
Required Project Information: **34YT 3J9MA2** (G=GRAB C=COMP) Purchase Order No. 9 Project Number: MATRIX CODE Project Name: Report To: Sopy To: N Matrix Codes Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Tissue Other 102 3116 2M ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 4-57 SAMPLE ID 45-2 Required Client Information Section A Required Client Information: Requested Due Date/TAT: Section D Email To: Phone: 10 12 8 1 2 9 1 6 # M3TI 2 က Page 12 of 13

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.: F-EDN-CS-003-rev.09

Document Revised: March 13, 2013 Page 1 of 2

Issuing Authorities: Pace Eden Quality Office

Client Nam	e: Waters	Edge Far.	
Where Received: Huntersville	Asheville 🔀	Eden 🔲 Raleigh	
Courier (circle): Fed Ex UPS USPS	Clien Con	mmercial Pace Other	
Custody Seal on Cooler/Box Present: yes	no Seals	s intact: yes no	-
Packing Material: Bubble Wrap Bubble I	Bags None	Other	
Thermometer Used: IR Gun ED007	Type of Ice: (Wet)	Blue None Samples on ice, cooling process has begun	
Temp Correction Factor: Add / Subtract	1c		
Corrected Cooler Temp.: (C) C Temp should be above freezing to 6°C	Biological Tissue	Date and Initials of person examining contents:	
Chain of Custody Present:	☐Yes ☐No ☐N/A	1.	
Chain of Custody Filled Out:	✓Yes □No □N/A	2.	
Chain of Custody Relinquished:	Yes □No. □N/A	3.	
Sampler Name & Signature on COC:	ZYes □No □N/A	4.	
Samples Arrived within Hold Time:	ØYes □No □N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes ⊅No □N/A	6.	
Rush Turn Around Time Requested:	□Yes 口Kno □N/A	7.	
Sufficient Volume:	ØYes □No -127NA	8.	
Correct Containers Used:	□Yes □No □N/A	9.	
-Pace Containers Used:	□Yes □No □M/A		
Containers Intact:	ØYes □No □N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No □M/A	11.	
Sample Labels match COC:	ØYes □No □N/A	12.	
-Includes date/time/ID/Analysis Matrix:	WY		_
All containers needing preservation have been checked.	□Yes □No ØN/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No ☑N/A		٠
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed P	_
Samples checked for dechlorination:	□Yes □No □K/A	14.	_
Headspace in VOA Vials (>6mm):	□Yes □No ØN/A	15.	_
Trip Blank Present:	□Yes □No △N/A	16.	
Trip Blank Custody Seals Present	□Yes □No 口N/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:		Field Data Required? Y / N	
Person Contacted:	Date/T	Time:	
Comments/ Resolution:			
SCURF Review: SRF Review: Note: Whenever there is a discrepancy affecting North of samples, a copy of this form will be sent to the North	Carolina compliance Carolina DEHNR	Place label here OR Handwrite project number	
Certification Office (i.e out of hold, incorrect preserva incorrect containers)	ative, out of temp,	(if no label available)	

APPENDIX B

Photograph #1- SWMU #1- WWT System Floor Area and Wipe Sample #1

Photograph #2- SWMU #1- WWT System Floor Area and Wipe Sample #2

Photograph #3- SWMU #1- WWT System Floor Secondary Containment Area and Wipe Sample #3

Photograph #4- SWMU #1- WWT System Floor Area and Wipe Sample #4

Photograph #5- SWMU #11- Spray Line South Trench Area

Photograph #6- SWMU #11- Spray Line North Trench Area

Photograph #7- SWMU #11- Spray Line Sump Walls

Photograph #8- SWMU #11- Spray Line Sump Walls

Photograph #9- SWMU #11- North Spray Line Sump Floor

Photograph #10- SWMU #11- North Spray Line Sump Floor

Photograph #11- SWMU #11- South Spray Line Sump Floor

Photograph #12- SWMU #11- North Spray Line Trench Bottom

Photograph #13- SWMU #11- South Spray Line Trench Bottom