Loading...
HomeMy WebLinkAboutSW6220506_Stormwater Narrative_20220621Stormwater Calculations For Project: Williford Cove Cumberland County, NC Developer: 3 Wills and a Huff, LLC o r � i _- SEAL 31459 IN r�I I� r��rrgNttttt 6�I,�� ��ii REY A• t10 ���• 'a' Prepared by: ENGINEERING - SURVEYING - DESIGNING - DRAFTING Larry Icing & Associates, R. L.S., P.A. P.O. Box 53787 1333 Morganton Road, Suite 201 Fayetteville, North Carolina 28305 P. (910) 483-4300 F. (910) 483-4052 www.LKandA.com Firm License #: C-887 TABLE OF CONTENTS Stormwater Narrative Drainage Areas Breakdown Pipe Headwater Depth Calculations for Crossing Pipes Drainage Swale Calculations Misc. Erosion Control Information Site Maps Site Deed(s) SC-1 APPENDIX A APPENDIX B APPENDIX C APPENDIX D APPENDIX E APPENDIX F STORMWATER NARRATIVE This project is a proposed 42 lot single-family subdivision located across two parcels totaling approximately 84 acres in Cumberland County. The development is intended as a low density development. Each lot will be allowed 5000 sf of impervious area and will create 8.29 acres (361,310 sf) of impervious area total which is approximately 9.85% of the total property. This is a septic tank development, so disturbance to areas within the proposed lots will be kept at a minimum during street �_unstruction. The proposed streets will have roadside ditch �Ierfions with stormwater crossing pipes. Runoff ultimately discharges into one of three drainage swales. Supplemental calculations are attached. SC-1 Appendix A / c / \ k q m 4 o _ § 5 Q m \ (0 R 0 6 6 0 2? Q� § « � g S LL / w \ LO o co CL : 7 2 2® � 2 w j ±ƒ o \m ƒ d \ to o co 2 cu + + m uCU 0k � Q M R / / 0 ' < 2 w Iq; a P- � � ® � ^ « § 2 2 \ q r / � < ® 7 ? R o m o q 0 § \ % 2 ¥ _ U) / �a 2 /< q n 0 O C1 C '1a' M r- oo T- L? co M O u) C r- �- M N 4 N O r N to _� O O Q > Cfl q CO � _ CO C4 CNO M _ CO eL E_ 0 00 0 00 0 0 0 c UV Lo p <C cn m o Li N 0)C4 N N 2 � N O n CND CO M Cl Cl r CL CO CO C37 r i] N r co _ N O H ❑ N V- L ,� N CL 7 'IT LO N d' LO M O i M O oM N N 0000 cC O O r v � N d L a d +N- CO O N O O O O O Ln O Ln O Ln O Lq O O O O O O 'L — Q co N O r T 0 � (Q Q ff7 r M I- N N M N w cP -t 00 w CM Lo r N N N § Q < O O LO O L7 Gl O O O M O N 4� Q M ~ N CNO ONO N iM o0 N C4 pm D CM r r r M r LO M m �- 00 M N N O O F-- cr r N � m co N C a) IT Ln CO f— O0 O O r N b C 0 N N f0 CM 0 O 1.: m N N - Q N LO O N > CO CO M CO E _ O C7 O O VU a� LL v L rn CO LO O m � � E tT M _ f1? O N .- O N LL L ++ � N 7 1Lo O fo N rJ' Cfl U N N O L a cc m L a � C N O N L O O W0 ' < N Ch O 0 L N N � a N co IZ O d; 3 Q < O O O a- O H ca v m LL a N d N Cl) 3 Cl) p N co to F^ � N O ca N �- a �- a O / Oo / 0)h 00 $ % co w / G & & w a C4 3 e k/ 7 \ $ 7 G q "R o 0 6 6 6 a o §- o § 4 � � 6 /ƒ o m r r m 0) CD 04 @ q N E OL / co m N - - CD _ _m f � @ k � ƒ S. o �m / § / / k / k CD o 2 & + & N + 2 » � V m § $±« � cM Cc 0 2 2 2 7 / / 2 ' < a a 6 & a © D0 ° ^ « / \ d 2 co % 2 q /< 6 a 6 d 6 # \LL E $ (D / m v 7 � - \ o $ n act 5% R o IT m a o am m ( V) / \ I ~ / § §< co 1- = 0) o \ :3 0 c Appendix B ! I I 1 I i I I I I i 1 I I I 1 i I I Exhibit 11 180 l0, 000 168 I11r000 EXAMPLE 156 6,000 0.42 Inch" (3.5 feet) 144 5�D00 Q•i2o efs 132 4,000 10 f"am 3r000 (1) 2.5 8.8 120 (�) 2.1 7.4 108 2,000 (3) 2.2 7.7 "IDin feet 96 1,004 1J Nw I.11� 84 800 0 4 1 1 � f(��l 600 N� ;�,. rev, 72 500 400 ( QV q, * 300 Z 60 U. 54 C uj 48 /Lu 100 J / ( Q a0 : 42 h $0 a c 50 HW ENTA. CE SCALE 40 0 YPE W ~ W 36 30 (1) S/gars ad" rlth a 33 hoodwoll O 20 12 Groove gild with 30 hesdwell (3) Groove, and 27 pre,)eatiag 0, ss c.; ' _ t) wr , 24 e 6 To use scale (2) or 13) prejoct 21 5 horizontally to scoot (I),thon r 4 age, straight Inclined line through 0 and Q scales, or reverse oo 3 illastroled. k8 2 is X] .5 r6. 5. 4. I �1(ft .5 HEADWATER DEPTH FOR HEADWATER SCALES 253 -CONCRETE PIPE CULVERTS stJI1EAU of ftMLIc 9"OS ,we, NM REVISED MAY 1964 WITH INLET CONTROL VI-11 i i i I I I I I 1 1 I I I I 1 I 1 1 1 1 1 1 ISO 166 156 144 132 1--r-1 loo 96 84 rn >ti 72 x _Z 2 6G N a 34 C1 c 46 / Y W Ir _/ >' a x � O o` Ir ul 36 ,W a 33 c so P7 i 24 21 I8 1s Exhibit 11 10,000 6,000 EXAMPLE 0 (3) r- 6. HEADWATER DEPTH FOR HEADWATER SCALES 253 CONCRETE PIPE CULVERTS BUREAU o*.u�iiC4"00.,AKMM REVISED MAY064 WITH INLET CONTROL VI-11 I I I I 1 r I 1 1 I 1 i 1 1 1 1 1 1 Exhibit 11 �f "e �t ISO 10, OOC 166 er000 EXAMPLE !'38 6r000 D-42 inehas (3.3 fact) 6. 144 5r 000 4.190 do 5. 4,000 > s ttw 6 5. 132 r a too 4. 120 2�000 (2) 4• 106 t3) P.P T.T 3. "a is taut 3. 96 �I�,,, 1,000 800 D I 84 600 500 I _-- ri 2. W 72 400 i, a 2. 300*- ��.v -- zcc u> cc x 60 v 200 I.s S4 100 Z tau 46 / so a � �2 W B0 CL 1.0 1.0 a 50 NW a ©,9(0 S>ALE-�TNTRANCE 1.0 40 pYPE 1.- P LIJ 3a 30 (1edge w W 3 .9 33 .9.9 20 (2end with30 wdl = .a .a (3and27atiag 10 24 s G-47 c ITS .7 '7 r 6 To use sedle (f) or 13) project 21 S horisantsily to seal* (1).then 4 sae straight Inclined line through 0 and G scales, or rovers* as 3 illustrated. 'a 6 la 2 is (.o .s •s .s `12 HEADWATER DEPTH FOR HEADWATER SCALES 263 CONCRETE PIPE CULVERTS BUREAU of PUBLIC MAN rOA +r�s REVISED MAY 1964 WITH INLET CONTROL VI-11 Exhibit 11 Pi P �e t- ISO 0 lee 6,000 EXAMPLE 0) tz) to) I56 �� 0.42 inch" (3.5 feet) 6' 144 5,000 0•I20 ofe S. 4,000 tm & pK 6• 3. 132 0 foer 3 000 S' 4. 120 ll) L.s s.B 4. 2,000 (2) 2.1 7.4 4. 108 (3) 2.2 7.7 3. aD.is foo 96 W = �.,`I 3. 1000 84 Boo 600 '300 �� = 1.►i I!E�p✓� 131.53) i g. / �. 2. 72 400 s y - = 300LS 3 1.S x / = 80 200 / I.5 a S4 a / w48 cco / 800 x -a ri g a 60 W 1.0 1.0 50 HW SCALE ENTRANCE C 10 oc 40 0 TYPE W W 36 30 (1) 5easre edge with 9 .9 33 naodnll 9 a g0 (t) woe.• •ee .irh a W 30 hosdrell x 6 .6 (3) Groove ead •6 g 7 prefect f ag J•�`i t0 - 24 8 ? T .r 6 To was scale (2) or (3) project 21 S herlsontelly to sell• (1),thoa 4 •s■ stralght ieClinad line through 0 and 0 scales, or reverse as 6 _ illustrated. 3 6 ccJJ `b1l Ia 2 IS 1.0 .5 .S .3 it HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS HEADWATER SCALES 253 WEVISED MAY 19" WITH INLET CONTROL BUREAU Of PUBLIC MADB O. HIM VI-11 PIPE-2 (10yr Storm).txt Manning Pipe Calculator Given Input Data: Shape Circular Solving for ..................... Depth of Flow Diameter ........................ 18.0000 in Flowrate 4.1400 cfs Slope ........................... 0.0024 ft/ft Manning's n ..................... 0.0130 Computed Results: Depth ........................... 12.2288 in Area ............................ 1.7671 ft2 Wetted Area 1.2783 ft2 Wetted Perimeter ................ 34.8791 in Perimeter ....................... 56.5487 in Velocity 3.2386 fps Hydraulic Radius ................ 5.2777 in Percent Full .................... 67.9376 Full flow Flowrate .............. 5.1461 cfs Full flow velocity .............. 2.9121 fps Critical Information Critical depth .................. 9.3513 in Critical slope .................. 0.0055 ft/ft Critical velocity ............... 4.4637 fps Critical area ................... 0.9275 ft2 Critical perimeter .............. 28.9769 in Critical hydraulic radius .,.,.. 4.6091 in Critical top width .............. 18.0000 in Specific energy ................. 1.1739 ft Minimum energy 1.1689 ft Froude number .................... 0.6225 Flow condition .................. Subcritical Page 1 Exhibit 11 P-e 3 0 Ise 10,E ise e,000 EXAMPLE (3) I56 6.000 0.4E inches (3.5 fan) 6. 144 5,000 0.120 of 9. 4,000 Al Nw 6. g, 132 0 feat 3,000 S' 4 120 (0 2.5 6.0 4. 2,000 (d) 2.1 7.4 4. 1OS (3) 2.2 7.7 3. eD is teat 3' 96 I��''W.. II H —3. 1,000 ID 800 a4 NUJ=Co,s�)(i.$) Bev 13R,�7� lbw v,ssGj (�lr -- -- 2• 2.._ s00 72 400��� 300 E�= - I.5 I.S ZLL it x 6o 200 1.5 34 a � l00 Z 46 0 aC e0 � l2 a —so = IL 1.0 1.0 o SO HW SCALE ENTRANCE io I.0 40 0 TYPE W W W 36 30 (1) Silvers sage with 1- .9 .9 33 head■all O 9 a G Pp (2) Waav■ and with W 30 headwall x .e .6 %) Groove and •� 27 pro) eati■g 10 24 0 7 'T r e To use scale (2) or (3) project P) S horizontally to scale (1). then 4 use straight inclined line through D and 0 scales, or reverse as illustrated. 3 0 2 19 t.D •S s s HEADWATER DEPTH FOR CONCRETE PIPE CULVERTS HEADWATER SCALES 253 REVISED MAY 19" WITH INLET CONTROL SUPIM of PUNLIC rtAos jAiL HM VI-11 PIPE-3 (10yr Storm).txt Manning Pipe Calculator Given Input Data: Shape Circular Solving for ..................... Depth of Flow Diameter ........................ 18.0000 in Flowrate ........................ 2.7600 cfs Slope ........................... 0.0024 ft/ft Manning's n 0.0130 Computed Results: Depth ............... ........... 9.3833 in Area 1.7671 ft2 Wetted Area ...................... 0.9315 ft2 Wetted Perimeter 29.0412 in Perimeter ....................... 56.5487 in Velocity ......................... 2.9631 fps Hydraulic Radius 4.6187 in Percent Full .................... 52.1295 Full flow Flowrate 5.1461 cfs Full flow velocity .............. 2.9121 fps Page 1 Exhibit 11 lao lo,000 ISO 8,000 EXAMPLE 156 6.000 0.42 inch" (3.3 feet) 6' I44 G+ 120 a+. 5,000 S. 4,000 li9 a "W8. S. 132 D feat ► 3 000 54., 120 2,000 (2) I!.I 7.4 IOa (3) EA 7.7 a. 3. OD is feet 95 1,000 H J —3. D 4-27— sa 4. 3. 2- I.5 1— 1.5 L.S L-.5 L.s HEADWATER DEPTH FOR HEADWATER SCALES 283 CONCRETE PIPE CULVERTS SURE Alf W PUSLIC ROAD: JW HM REVISED MAY 19" WITH INLET CONTROL VI-11 PIPE-4 (10yr Storm).txt Manning Pipe Calculator Given Input Data: Shape ........................... Circular Solving for ..................... Depth of Flow Diameter 18.0000 in Flowrate 10.4600 cfs Slope ........................... 0.0086 ft/ft Manning's n 0.0130 Computed Results: Depth 16.5968 in Area 1.7671 ft2 Wetted Area ..................... 1.7034 ft2 Wetted Perimeter 46.3618 in Perimeter ........................ 56.5487 in Velocity ........................ 6.1407 fps Hydraulic Radius 5.2908 in Percent Full .................... 92.2044 Full flow Flowrate 9.7413 cfs Full flow velocity 5.5125 fps Critical Information Critical depth 14.9184 in Critical slope .................. 0.0070 ft/ft Critical. velocity ............... 6.4434 fps Critical area 1.6234 ft2 Critical perimeter .............. 40.1112 in Critical hydraulic radius ....... 5.8280 in Critical top width .............. 18.0000 in Specific energy ................. 1.8915 ft Minimum energy .................. 1.8648 ft Froude number ................... 1.1138 Flow condition ................... Supercritical Page 1 Exhibit 11 I s 0 10,000 P 1pf 5 0 168 8,000 EXAMPLE I56 6,000 0-42 inches (3.5 fat) & a• 120 eta 144 5,000 3. 4,000 ;* h■ 6• 9. 132 o feet 3,000 li) 2.S ■.d 4. 120 2,000 (Z) 2.1 7.4 10$ (3) 2.2 7.7 4. '0 is feet 96 1,000 1,05-600 Owl 3. � 500 p_ ! „� 72 400 F� 300*= r Z0 - on = 60 200 c 54 W 100 = W a 4e / co so -J / a - il 2 v 60 o a 30 Hw EH7RANG SCALE w o r'fl r� 40 B TYP!r- rc W 36 30 (1) Sgumvd aids with � 33 r;'flsedNWl1 C 9 a 20 (2) rrr Groove and With W 30 �' MadWWll �r Cs) Groove and •e 27 Projecting 10 24•y 55 .T Q 'to use Seale (2) or 13) project 2!7 5 horizontally to Scale (1), than 4 use straight inclined line through 0 and a ■eal*$,or reverse as 3 illustrated. 2 '5 L 11.0 .s 4. S. 2: 1.5 }— 1.5 .8 4— .6 HEADWATER DEPTH FOR HEADWATER SCALES 2e3 CONCRETE PIPE CULVERTS SURERY of /HdLIC 0"01 JAK MM REV)SED MAY t964 WITH INLET CONTROL VI-11 PIPE-5 (10yr Storm).txt Manning Pipe Calculator Given Input Data: Shape ........................... Circular Solving for Depth of Flow Diameter ........................ 18.0000 in Flowrate 7.5500 cfs Slope 0.0045 ft/ft Manning's n 0.0130 Computed Results: Depth 16.4485 in Area 1.7671 ft2 Wetted Area ..................... 1.6932 ft2 Wetted Perimeter 45.8213 in Perimeter 56.5487 in Velocity ........................ 4.4590 fps Hydraulic Radius 5.3212 in Percent Full .................... 91.3804 Full flow Flowrate .............. 7.0465 cfs Full flow velocity .............. 3.9875 fps Critical Information Critical depth 12.7721 in Critical slope .................. 0.0064 ft/ft Critical velocity ............... 5.5716 fps Critical area ................... 1.3551 ft2 Critical perimeter .............. 35.8185 in Critical hydraulic radius ....... 5.4478 in Critical top width .............. 18.0000 in Specific energy ................. 1.5735 ft Minimum energy .................. 1.5965 ft Froude number .... 0.8061 Flow condition Subcritical Page 1 Appendix C Ditch-1 (10yr Storm).txt Channel Calculator Given Input Data: Shape........................... Solving for ..................... =lowrate ........................ Slope........................... Manning's n ..................... Height.......................... Bottom width .................... Left slope ....................... Right slope ..................... Computed Results: Depth...,....................... Velocity ........................ FullFlowrate ................... Flow area ....................... Flow perimeter .................. Hydraulicradius ................ Top width ....................... Area ... .......................— Perimeter ....................... Percent full .................... Critical Information Critical depth .................. Critical slope .................. Cris_.i.cal velocity ............... Critical area ................... Critical perimeter . Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. Trapezoidal Depth of Flow 4.1400 cfs 0.0050 ft/ft 0.0350 24.0000 in 0.0000 in 0.3300 ft/ft (V/H) 0.2500 ft/ft (V/H) 10.1471 in 1.6471 fps 41.1131 cfs 2.5134 ft2 74.2177 in 4.8767 in 71.3375 in 14.0606 ft2 175.5395 in 42.2798 7.3504 in 0.0279 ft/ft 3.1391 fps 1.3189 ft2 53.7616 in 3.5326 in 51.6753 in 0.8878 ft 0.9188 ft 0.4466 Subcritical Page 1 Ditch-1 (25yr Storm).txt Channel Calculator Given Input Data: Shape ... Trapezoidal Solving for ..................... Depth of Flow Flowrate 4.6400 cfs Slope 0.0050 ft/ft Manning's n 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 10.5904 in Velocity ........................ 1.6948 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 2.7378 ft2 Flow perimeter .................. 77.4598 in Hydraulic radius 5.0897 in Top width ................. 74.4538 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full 44.1267 Critical Information Critical depth 7.6934 in Critical slope .................. 0.0275 ft/ft Critical velocity 3.2115 fps Critical area 1.4448 ft2 Critical perimeter .............. 56.2703 in Critical hydraulic radius ....... 3.6974 in Critical top width 54.0866 in Specific energy ................. 0.9272 ft Minimum energy 0.9617 ft Froude number ................... 0.4498 Flow condition .................. Subcritical Page 1 Ditch-2 (10yr Storm).txt Channel Calculator Given Input Data: Shape........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 4.7700 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 10.7007 in Velocity ........................ 1.7065 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 2.7952 ft2 Flow perimeter .................. 78.2666 in Hydraulic radius 5.1427 in Top width ....................... 75.2293 in Area ............................ 14,0606 ft2 Perimeter 175.5395 in Percent full .................... 44.5863 Critical Information Critical depth 7.7789 in Critical slope .................. 0.0274 ft/ft Critical velocity ............... 3.2293 fps Critical area ................... 1.4771 ft2 Critical perimeter .............. 56.8957 in Critical hydraulic radius ....... 3.7385 in Critical top width .............. 54.6877 in Specific energy ................. 0.9370 ft Minimum energy .................. 0.9724 ft Froude number ................... 0.4506 Flow condition .................. Subcritical Page 1 Ditch-2 (25yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 5.3500 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height .......................... 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 11.1712 in Velocity ........................ 1.7562 fps Full Flowrate 41.1131 cfs Flow area 3.0464 ft2 Flow perimeter .................. 81.7081 in Hydraulic radius ................ 5.3689 in Top width 78.5372 in Area ............................ 14.0606 ft2 Perimeter 17),5395 in Percent full 46.5468 Critical Information Critical depth 8.1442 in Critical slope .................. 0.0270 ft/ft Critical velocity ............... 3.3042 fps Critical area 1.6191 ft2 Critical perimeter .............. 59.5681 in Critical hydraulic radius 3.9141 in Critical top width 57.2564 in Specific energy ................. 0.9789 ft Minimum energy 1.0180 ft Froude number 0.4538 Flow condition .................. Subcritical Page 1 Ditch-3 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 9.3900 cfs Slope 0.0008 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 6.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 17.7517 in Velocity ........................ 0.9891 fps Full Flowrate ................... 20.4208 cfs Flow area ....................... 9.4930 ft2 Flow perimeter .................. 152.3840 in Hydraulic radius ................ 8.9707 in Top width ....................... 148.0134 in Area ............................ 17.0000 ft2 Perimeter 203.9091 in Percent full .................... 73.9653 Critical Information Critical depth 8.9704 in Critical slope .................. 0.0251 ft/ft Critical velocity ................ 3.5991 fps Critical area 2.6090 ft2 Critical perimeter .............. 79.9719 in Critical hydraulic radius ....... 4.6978 in Critical top width .............. 77.7632 in Specific energy ................. 1.4945 ft Minimum energy 1.1213 ft Froude number ................... 0.1988 Flow condition .................. Subcritical Page 1 Ditch-3 (25yr Storm).txt Channel Calculator Given Input Data: Shape .... Trapezoidal Solving for ..................... Depth of Flow Flowrate 10.5300 cfs Slope ........ 0.0008 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 6.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 18.5626 in Velocity ........................ 1.0179 fps Full Flowrate ................... 20.4208 cfs Flow area ....................... 10.3448 ft2 Flow perimeter .................. 159.0711 in Hydraulic radius ................ 9.3647 in Top width 154.5008 in Area ............................ 17.0000 ft2 Perimeter 203.9091 in Percent full 77.3442 Critical Information Critical depth .................. 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity ............... 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius ....... 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy .................. 0.0000 ft Froude number ................... 0.0000 Flow condition .................. Critical Page 1 Ditch-4 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 1.4400 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 6.8290 in Vc'.10city ........................ 1.2649 fps Full Flowrate ................... 41.1131 cfs Flow area 1.1384 ft2 Flow perimeter .................. 49.9480 in Hydraulic radius 3.2820 in Top width 48.0097 in Area 14.0606 ft2 Perim eLer 175.5395 in Percent full 28.4540 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy 0.0000 ft Froude number 0.0000 Flow condition Critical Page 1 Ditch-4 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth or Flow Flowrate ........................ 1.6200 cfs Slope 0.0050 ft/ft Manning's n 0.0350 Height 24..0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 7.1373 in Velocity ........................ 1.3027 fps Full Flowrate 41.1131 cfs Flow area ....................... 1.2435 ft2 Flow perimeter .................. 52.2036 in Hydraulic radius 3.4302 in Top width 50.1777 in Area 14.0606 ft2 Perimeter 175.5395 in Percent full 29.7389 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width .............. 0.0000 in Specific energy 0.0000 ft Minimum energy 0.0000 ft Froude number 0.0000 Flow condition .................. Critical Page 1 Ditch-5 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ......................... 1.3200 cfs Slope 0.0050 ft/ft Manning's n 0.0350 Height .......................... 24.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 6.6097 in Velocity ........................ 1.2377 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 1.0665 ft2 Flow perimeter .................. 48.3446 in Hydraulic radius ................ 3.1766 in Top width ....................... 46.4684 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full .................... 27.5406 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area ................... 0.0000 ft2 Critical perimeter ............... 0.0000 in Critical hydraulic radius 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy .................. 0.0000 ft Froude number 0.0000 Flow condition .................. Critical Page 1 Ditch-5 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 1.4800 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height .......................... 24.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 6.8995 in Velocity ........................ 1.2736 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 1.1620 ft2 Flow perimeter .................. 50.4639 in Hydraulic radius ................ 3.3159 in Top width 48.5055 in Area 14.0606 ft2 Perimeter ....................... 175.5395 in Percent full 28.7479 Critical Information Critical depth .................. Critical slope .................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width ............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. Page 1 Ditch-6 (10yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 1.7400 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width .................... 0.0000 in Left slope 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 7.3312 in Velocity ......................... 1.3262 fps Full Flowrate ................... 41.1131 cfs Flow area 1.3120 ft2 Flow perimeter .................. 53.6214 in Hydraulic radius ................. 3.5233 in Top width 51.5405 in Area 14.0606 ft2 Perimeter 175.5395 in Percent full 30.5466 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity ............... 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width 0.0000 in Specific energy .................. 0.0000 ft Minimum energy ................... 0.0000 ft Froude number ................... 0.0000 Flow condition .................. Critical Page 1 Ditch-6 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate 1.9500 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width .................... 0.0000 in Left slope 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth ............................ 7.6512 in Velocity ........................ 1.3646 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 1.4290 ft2 Flow perimeter .................. 55.9623 in Hydraulic radius 3.6772 in Top width 53.7905 in Area ............................. 14.0606 ft2 Perimeter 175.5395 in Percent full .................... 31.8802 Critical Information Critical depth .................. 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area ................... 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width .............. 0.0000 in Specific energy 0.0000 ft Minimum energy 0.0000 ft Froude number 0.0000 Flow condition .................. Critical Page 1 Ditch-9 (10yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ......................... 4.5700 cfs Slope ............................ 0.0050 ft/ft Manning's n 0.0350 Height 24.0000 in Bottom width ............. 0..0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 10.5302 in Velocity 1.6883 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 2.7068 ft2 Flow perimeter .................. 77.0195 in Hydraulic radius ................ 5.0608 in Top width ....... 74.0306 in Area ............................ 14.0606 ft2 Perimeter ....................... 175.5395 in Percent full 43.8759 Critical Information Critical depth 0:0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius ....... 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy .................. 0.0000 ft Froude number 0.0000 Flow condition .................. Critical Page 1 Ditch-9 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 5.1200 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height .......................... 24.0000 in Bottom width ..................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 10.9887 in Velocity 1.7370 fps Full Flowrate ................... 41.1131 cfs Flow area 2.9476 ft2 Flow perimeter .................. 80.3727 in Hydraulic radius ................ 5.2811 in Top width 77.2536 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full 45.7861 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy .................. 0.0000 ft Froude number 0.0000 Flow condition .................. Critical Page 1 Ditch-10 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate 2.6000 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height .......................... 24.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 8.5228 in Velocity ........................ 1.4663 fps Full Flowrate 41.1131 cfs Flow area ....................... 1.7732 ft2 Flow perimeter .................. 62.3372 in Hydraulic radius 4.0960 in Top width ....................... 59.9181 in Area ............................ 14.0606 ft2 Perimeter ....................... 175.5395 in Percent full 35.5118 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity ............... 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius ....... 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy ................... 0.0000 ft Froude number 0.0000 Flow condition .................. Critical Page 1 Ditch-10 (25yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 2.9100 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24,0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ...................... 0.2500 ft/ft (V/H) Computed Results: Depth 8.8905 in Velocity 1.5082 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 1.9295 ft2 Flow perimeter .................. 65.0268 in Hydraulic radius 4.2728 in Top width 62.5033 in Area 14.0606 ft2 Perimeter 175.5395 in Percent full 37,0440 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius ....... 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy .................. 0.0000 ft Froude number .................... 0.0000 Flow condition .................. Critical Page 1 Ditch-11 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 17.9700 cfs Slope 0.0010 ft/ft Manning's n ..................... 0.0350 Height 30.0000 in Bottom width ..................... 0.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope ............... 0,2500 ft/ft (V/H) Computed Results: Depth ........................... 22.6168 in Velocity 1.2647 fps Full Flowrate ................... 38.1699 cfs Flow area 14.2089 ft2 Flow perimeter .................. 186.5030 in Hydraulic radius ................ 10.9708 in Top width ... 180.9345 in Area ............................ 25.0000 ft2 Perimeter 247.3863 in Percent full .................... 75.3894 Critical Information Critical depth .................. 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter 0.0000 in Critical hydraulic radius 0.0000 in Critical top width .............. 0.0000 in Specific energy ................. 0.0000 ft Minimum energy 0.0000 ft Froude number ................... 0.0000 Flow condition .................. Critical Page 1 Ditch-11 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 20.1500 cfs Slope 0.0010 ft/ft Manning's n ..................... 0.0350 Height .......................... 30.0000 in Bottom width 0.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 23.6091 in Velocity ........................ 1.3014 fps Full Flowrate ................... 38.1699 cfs Flow area 15.4830 ft2 Flow perimeter .................. 194.6854 in Hydraulic radius 11.4521 in Top width ....................... 188.8726 in Area 25.0000 ft2 Perimeter .,, 247..3863 in Percent full 78.6969 Critical Information Critical depth 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy 0.0000 ft Froude number 0.0000 Flow condition .................. Critical Page 1 Ditch-12 (10yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 19.0400 cfs Slope ........................... 0.0010 ft/ft Manning's n ..................... 0.0350 Height 30.0000 in Bottom width 0.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope ... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 23.1127 in Velocity ........................ 1.2831 fps Full Flowrate ................... 38.1699 cfs Flow area ....................... 14.8388 ft2 Flow perimeter .................. 190.5923 in Hydraulic radius 11.2113 in -op width ....................... 184.9017 in Area 25.0000 ft2 Perimeter 247.3863 in Percent full .................... 77.0424 Critical Information Critical depth .................. 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area .. 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width .............. 0.0000 in Specific energy ................. 0.0000 ft Minimum energy 0.0000 ft Froude number ................... 0.0000 Flow condition .................. Critical Page 1 Ditch-12 (25yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 21.3500 cfs Slope ........................... 0.0010 ft/ft Manning's n ..................... 0.0350 Height 30.0000 in Bottom width ..................... 0.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope ...................... 0.2500 ft/ft (V/H) Computed Results: Depth 24.1268 in Velocity ........................ 1.3204 fps Full Flowrate ................... 38.1699 cfs Flow area ....................... 16.1695 ft2 Flow perimeter .................. 198.9548 in Hydraulic radius ................. 11.7032 in Top width 193.0145 in Area ............................ 25.0000 ft2 Perimeter ....................... 247.3863 in Percent full .................... 80.4227 Critical Information Critical depth .................. 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity ............... 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius ....... 0.0000 in Critical top width .............. 0.0000 in Specific energy ................. 0.0000 1-t Minimum energy .................. 0.0000 ft Froude number ................... 0.0000 Flow condition .................. Critical Page 1 Ditch-13 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate ........................ 3.1000 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height ........................... 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 9.1039 in Velocity ........................ 1.5322 fps Full Flowrate ................... 41.1131 cfs Flow area 2.0232 ft2 Flow perimeter .................. 66.5875 in Hydraulic radius ................ 4.3753 in Top width .................. 64.0034 in Area ................. 14.0606 ft2 Perimeter 175.5395 in Percent full 37.9331 Critical Information Critical depth .................. 0.0000 in Critical slope .................. 0.0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius ....... 0.0000 in Critical top width 0.0000 in Specific energy ................. 0.0000 ft Minimum energy 0.0000 ft Froude number ................... 0.0000 Flow condition .................. Critical Page 1 Ditch-13 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate 3.4700 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 9.4971 in Velocity 1.5760 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 2.2017 ft2 Flow perimeter .................. 69.4634 in Hydraulic radius ................ 4.5643 in Top width 66.7677 in Area 14.0606 ft2 Perimeter 175.5395 to Percent full 39.5714 Critical Information Critical depth 6.8492 in Critical slope .................. 0.0286 ft/ft Critical velocity 3.0302 fps Critical area ................... 1.1451 ft2 Critical perimeter .............. 50.0961 in Critical hydraulic radius ....... 3.2917 in Critical top width .............. 48.1520 in Specific energy ................. 0.8300 ft Minimum energy .................. 0.8562 ft Froude number ................... 0.4417 Flow condition .................. Subcritical Page 1 Ditch-14 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for Depth of Flow Flowrate ........................ 3.9600 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0,2500 ft/ft (V/H) Computed Results: Depth ........................... 9.9794 in Velocity ........................ 1.6289 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 2.4310 ft2 Flow perimeter .................. 72.9908 in Hydraulic radius ................ 4.7961 in Top width ....................... 70.1582 in Area 14.0606 ft2 Perimeter 175.5395 in Percent full 41.5808 Critical Information Critical depth ................... 7.2208 -in Critical slope .................. 0.0281 ft/ft Critical velocity ............... 3.1113 fps Critical area 1.2728 ft2 Critical perimeter .............. 52.8141 in Critical hydraulic radius ....... 3.4703 in Critical top width .............. 50.7646 in Specific energy ................. 0.8729 ft Minimum energy ................... 0.9026 ft Froude number ................... 0.4454 Flow condition .................. Subcritical Page 1 Ditch-14 (25yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 4.4400 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height .......................... 24.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0..2500 ft/ft (V/H) Computed Results: Depth ........................... 10.4169 in Velocity ........................ 1.6762 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 2.6488 ft2 Flow perimeter 76.1905 in Hydraulic radius 5.0063 in Top width ....................... 73.2338 in Area ............................ 14,0606 ft2 Perimeter 175.5395 in Percent full 43.4036 Critical Information Critical depth 7.5590 in Critical slope .................. 0.0277 ft/ft Critical velocity ............... 3.1833 fps Critical area 1.3948 ft2 Critical perimeter .............. 55.2873 in Critical hydraulic radius 3.6328 in Critical top width .............. 53.1417 in Specific energy ................. 0.9117 ft Minimum energy 0.9449 ft Froude number ................... 0.4486 Flow condition .................. Subcritical Page 1 Ditch-15 (10yr Storm).txt Channel Calculator Given Input Data: Shape ........ Trapezoidal Solving for Depth of Flow Flowrate ........................ 7.2500 cfs Slope 0.0010 ft/ft Manning's n ..................... 0.0350 Height .......................... 24.0000 in Bottom width 0.0000 in Left slope 0.2500 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 16.0917 in Velocity ........................ 1.0079 fps Full Flowrate 21.0521 cfs Flow area ....................... 7.1929 ft2 Flow perimeter .................. 132.6958 in Hydraulic radius 7.8056 in Top width 128.7338 in Area 16.0000 ft2 Perimeter 197.9091 in Percent full .................... 67.0489 Critical Information Critical depth 0.0000 in Critical slope .................. 0,0000 ft/ft Critical velocity 0.0000 fps Critical area 0.0000 ft2 Critical perimeter .............. 0.0000 in Critical hydraulic radius 0.0000 in Critical top width .............. 0.0000 in Specific energy ................. 0.0000 ft Minimum energy 0.0000 ft Froude number ................... 0.0000 Flow condition .................. Critical Page 1 Ditch-15 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 7.9100 cfs Slope ........................... 0.0010 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 16.6262 in Velocity ........................ 1.0301 fps Full Flowrate ................... 21.0521 cfs Flow area ....................... 7.6786 ft2 Flow perimeter .................. 137.1028 in Hydraulic radius ................ 8.0649 in Top width ....................... 133.0093 in Area ............................. 16.0000 ft2 Perimeter 197.9091 in Percent fall .................... 69.2757 Critical Information Critical depth .................. Critical slope .................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius ....... Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. 0.0000 in 0.0000 0.0000 fps 0.0000 0.0000 in 0.0000 in 0.0000 in 0.0000 ft 0.0000 ft 0.0000 Page 1 Ditch-16 (10yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoida7 Solving for ..................... Depth of Flow Flowrate 7.8700 cfs Slope 0.0050 ft/ft Manning's n 0.0350 Height 24.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 12.9110 in Velocity ........................ 1.9341 fps Full Flowrate 41.1131 cfs Flow area 4.0691 ft2 Flow perimeter .................. 94.4328 in Hydraulic radius 6.2050 in Top width ....................... 90.7681 in Area 14.0606 ft2 Perimeter 175.5395 in Percent full .................... 53.7958 Critical Information Critical depth .................. 9.5038 in Critical slope .................. 0.0256 ft/ft Critical velocity ............... 3.5694 fps Critical area ................... 2.2048 ft2 Critical perimeter .............. 69.5124 in Critical hydraulic radius ....... d.5675 in Critical top width .............. 66.8148 in Specific energy 1.1340 ft Minimum energy 1.1880 ft Froude number 0.4649 Flow condition .................. Subcritical Page 1 Ditch-16 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 8.8300 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.9000 in Bottom width .................... 0.0000 in eft slope 0.3300 ft/ft (V/H) Right slope ...................... 0.2500 ft/ft (V/H) Computed Results: Depth 13.4804 in Velocity 1.9905 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 4.4360 ft2 Flow perimeter 98.5979 in Hydraulic radius 6.4786 in Top width ....................... 94.7716 in Area 1.4.0606 ft2 Perimeter ........................ 175.5395 in Percent i:jil 56.1685 Critical Information Critical depth .................. 9.9516 in Critical slope .................. 0.0252 ft/ft Critical velocity 3.6525 fps Critical area 2.4175 ft2 Critical perimeter .............. 72.7874 in Critical hydraulic radius 4.7827 in Critical top width 69.9628 in Specific energy ................. 1.1849 ft Minimum energy 1.2439 ft Froude number ................... 0.4682 Flow condition .................. Subcritical Page 1 Ditch-17 (10yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 4.6400 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width ..................... 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ..................... ..... 10.5904 in Velocity ........................ 1.6948 fps Full Flowrate ................... 41.1131 cfs Flow area 2.7378 ft2 Flow perimeter .................. 77.4598 it Hydraulic radius 5.0897 in Top width ....................... 74.4538 in Area ............................ 14,0606 ft2 Perimeter 175.5395 in Percent full .................... 44.1267 Critical Information Critical depth .................. 7.6934 in Critical slope .................. 0.0275 ft/ft Critical velocity ............... 3.2115 fps Critical area 1.4448 ft2 Critical perimeter .............. 56.2703 in Critical hydraulic radius ....... 3.6974 in Critical top width .............. 54.0866 in Specific energy ................. 0.9272 ft Minimum energy 0.9617 ft Froude number ................... 0.4498 Flow condition .................. Subcritical Page 1 Ditch-17 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 5.2000 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 11.0527 in Velocity ........................ 1.7437 fps Full Flowrate ................... 41.1131 cfs Flow area 2.9821 ft2 Flow perimeter .................. 80.8414 in Hydraulic radius ................ 5.3119 in Top width ....................... 77.7041 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full 46.0531 Critical Information Critical depth .................. 8.0521 in Critical slope .................. 0.0271 ft/ft Critical velocity 3.2855 fps Critical area ................... 1.5827 ft2 Critical perimeter .............. 58.8943 in Critical hydraulic radius ....... 3.8698 in Critical top width .............. 56.6088 in Specific energy ................. 0.9683 ft Minimum energy 1.0065 ft Froude number 0.4530 Flow condition .................. Subcritical Page 1 Ditch-18 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 2.9100 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 8.8905 in Velocity 1.5082 fps Full Flowrate ................... 41.1131 cfs Fl.ow area ....................... 1.9295 ft2 Flow perimeter .................. 65.0268 in Hydraulic radius ................ 4.2728 in Top width ..................... 62.5033 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full 37.0440 Critical Information Critical depth 6.3836 in Critical slope .................. 0.0293 ft/ft Critical velocity ............... 2.9254 fps Critical area 0.9947 ft2 Cri�.ical perimeter .............. 46.6906 in Critical hydraulic radius 3.0679 in Critical top width 44.8787 in Specific energy ................. 0.7762 ft Minimum energy 0.7980 ft Froude number ................... 0.4369 Flow condition .................. Subcritical Page 1 Ditch-18 (25yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 3.2700 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/1-1) Computed Results: Depth 9.2880 in Velocity ........................ 1.5528 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 2.1059 ft2 Flow perimeter .................. 67.9341 in Hydraulic radius ................. 4.4638 in Top width ....................... 65.2977 in Area ... 14.0606 ft2 Perimeter ....................... 175.5395 in Percent full .................... 38.7002 Critical Information Critical depth 6.6885 in Critical slope .................. 0.0288 ft/ft Critical velocity 2.9944 fps Critical area .................... 1.0920 ft2 Critical perimeter .............. 48.9205 in Critical hydraulic radius 3.2145 in Critical top width .............. 47.0221 in Specific energy 0.8115 ft Minimum energy .................. 0.8361 ft Froude number ................... 0.4401 Flow condition .................. Subcritical Page 1 Ditch-19 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate 2.2200 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width .................... 0.0000 in Left slope ...................... 0:3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth ........................... 8.0325 in Velocity ........................ 1.4095 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 1.5750 ft2 Flow perimeter .................. 58.7509 in Hydraulic radius ................ 3.8604 in Top width ....................... 56.4710 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full .................... 33.4688 Critical Information Critical depth .................. Critical slope .................. Critical velocity ............... Critical area ................... Critical perimeter .............. Critical hydraulic radius Critical top width .............. Specific energy ................. Minimum energy .................. Froude number ................... Flow condition .................. 5.7286 in 0.0303 ft/ft 2.7712 fps 0.8011 ft2 41.8999 in 2.7532 in 40.2739 in 0.7003 ft 0.7161 ft 0.4295 Subcritical Page 1 Ditch-19 (25yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 2.4900 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height .......................... 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth 8.3858 in Velocity ........................ 1.4505 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 1.7166 ft2 Flow perimeter .................. 61.3348 in Hydraulic radius 4.0302 in Top width 58.9546 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full .................... 34.9407 Critical Information Critical depth .................. 5.9977 in Critical slope .................. 0.0299 ft/ft Critical velocity ............... 2.8356 fps Critical area .................... 0.8781 ft2 Critical perimeter .............. 43.8684 in Critical hydraulic radius 2.8825 in Critical top width 42.1660 in Specific energy ................. 0.7315 ft Minimum energy 0.7497 ft Froude number 0.4326 Flow condition .................. Subcritical Page 1 Ditch-20 (10yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 13.4500 cfs Slope ........................... 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width 0.0000 in Left slope ...................... 0.3300 ft/ft (V/H) Right slope ..................... 0.2500 ft/ft (V/H) Computed Results: Depth 15,7848 in Velocity 2.2114 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 6.0822 ft2 Flow perimeter .................. 115.4525 in Hydraulic radius ................ 7.5861 in Top width ........................ 110.9720 in Area ............................ 14.0606 ft2 Perimeter 175.5395 in Percent full .................... 65.7701 Critical Information Critical depth .................. 11.7760 in Critical slope .................. 0.0239 ft/ft Critical velocity ............... 3.9732 fps Critical area 3.3851 ft2 Critical perimeter .............. 86.1313 in Critical hydraulic radius 5.6595 in Critical top width 82.7888 in Specific energy ................. 1.3914 ft Minimum energy 1.4720 ft Froude number ................... 0.4807 Flow condition .................. Subcritical Page 1 Ditch-20 (25yr Storm).txt Channel Calculator Given Input Data: Shape Trapezoidal Solving for ..................... Depth of Flow Flowrate 15.0800 cfs Slope 0.0050 ft/ft Manning's n ..................... 0.0350 Height 24.0000 in Bottom width .................... 0.0000 in Left slope 0.3300 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 16.4767 in Velocity ........................ 2.2755 fps Full Flowrate ................... 41.1131 cfs Flow area ....................... 6.6270 ft2 Flow perimeter 120.5127 in Hydraulic radius ................. 7.9186 in Top width ....................... 115.8359 in Area 14.0606 ft2 Perimeter .................. 175.5395 in Percent full 68.6528 Critical Information Critical depth .................. 12.3273 in Critical slope .................. 0.0235 ft/ft Critical velocity ............... 4.0652 fps Critical area ................... 3.7095 ft2 Critical perimeter .............. 90.1639 in Critical hydraulic radius 5.9245 in Critical top width .............. 86.6649 in Specific energy ................. 1.4535 ft Minimum energy .................. 1.5409 ft Froude number ................... 0.4842 Flow condition .................. Subcritical Page 1 Ditch-21 (10yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate ........................ 21.6800 cfs Slope 0.001.0 ft/ft Manning's n ..................... 0.0350 Height 30.0000 in Bottom width .................... 12.0000 in Left slope ...................... 0,2500 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 22.8127 in Velocity ........................ 1.3254 fps Full Flowrate ................... 43.3506 cfs Flow area ....................... 16.3571 ft2 Flow perimeter .................. 200.1183 in Hydraulic radius 11.7702 in Top width ....................... 194.5015 in ,rea ............................ 27.5000 ft2 Perimeter 259.3863 in Percent full .................... 76.0423 Critical Information Critical depth .................. 12.1351 in Critical slope .................. 0.0224 ft/ft Critical velocity ............... 4.2494 fps Critical area ................... 5.1018 ft2 Critical perimeter 112.0687 in Critical hydraulic radius ....... 6.5555 it Critical top width .............. 109.0809 in Specific energy ................. 1.9284 ft Minimum energy .................. 1.5169 ft Froude number ................... 0.2326 Flow condition .................. Subcritical Page 1 Ditch-21 (25yr Storm).txt Channel Calculator Given Input Data: Shape ........................... Trapezoidal Solving for ..................... Depth of Flow Flowrate 24.3100 cfs Slope 0.0010 ft/ft Manning's n ..................... 0.0350 Haight 30.0000 in Bottom width .................... 12.0000 in Left slope ...................... 0.2500 ft/ft (V/H) Right slope 0.2500 ft/ft (V/H) Computed Results: Depth 23.8749 in Velocity ........................ 1.3640 fps Full Flowrate ................... 43.3506 cfs Flow area ....................... 17.8231 ft2 Flow perimeter .................. 208.8771 in Hydraulic radius 12.2873 in Top width ....................... 202.9988 in Area ............................ 27.5000 ft2 Perimeter ..... 259.3863 in Percent full .......... 79.5828 Critical Information Critical depth .................. 12,7651 in Critical slope .................. 0.0221 ft/ft Critical velocity ............... 4.3488 fps Critical area 5.5900 ft2 Critical perimeter .............. 117.2633 in Critical hydraulic radius 6.8646 in Critical top width 114.1204 in Specific energy ................. 2.0185 ft Minimum energy 1.5956 ft Froude number ................... 0.2343 Flow condition .................. Subcritical Page 1 Appendix D Soil Types The predominant soil types are as follows: Autryville loamy sand, (AuA), is a well drained soil on broad, smooth flats of uplands. Permeability is moderately rapid in the upper part of the subsoil and moderate in the lower part. Available water capacity is low. This soil is suited to most urban uses. Candor Sand (CaB), is a somewhat excessively drained sand located in broad areas and to a lesser extent, on rounded side slopes and uplands. Permeability is moderate and the available water capacity is very low. The hazard of erosion is moderate. This soil is suited to most urban and recreational uses. Johnston Loam (JT), is a nearly level, very poorly drained soil along major drainageways. It is on flood plans throughout the survey area. Permeability is moderately rapid in the upper part of the soil and rapid in the lower part. This soil is poorly suited to urban and recreational uses. Leon Sand (Le), is a nearly level, poorly drained soil on low flats and in depressions between Carolina bays. Permeability is rapid in the surface layer and moderate to moderately rapid in the subsoil. Leon soil is poorly suited to most urban and recreational uses. Pantego Loam (Pg), is a nearly level, very poorly drained soil on low flats and in shallow, oval depressions of uplands. Permeability is moderate. This soil is poorly suited to all urban and recreational uses. Wetness is the main limitation. Candor Sand (CaB), is a somewhat excessively drained sand located in broad areas and to a lesser extent, on rounded side slopes and uplands. Permeability is moderate and the available water capacity is very low. The hazard of erosion is moderate. This soil is suited to most urban and recreational uses. Woodington Loamy Sand (Wo), is a nearly level, poorly drained soil on broad, smooth low flats and in shallow depressions of uplands. Permeability is moderately rapid. This soil is poorly suited to nearly all urban and recreational uses. User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Pipe-2 Up Total Drainage Area (acres) 1.81 Stela 1. Determine the tailwater depth froiu channel characteristics below the pipe outlet for the design capaerry of the pipe If the vulwater depth is less than half the outlet pipe diameter, it is classified nauvn-lum tulwater condition. If it is greater than half the pipe diameter it is classified maximunx condition. Pipes that outlet onto wide fiat areas with no defined channel are assumed to have a n ux muzu tailti•ater condition sinless rehable flood stage elevations illow othr-rvk-:ca Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) 0 Min TW (Fig. 8.06a) 4.14 1.65 Step 2. Based on the tailwater conditions deterinuied in step 1. enter Figure 8.06a or Figure 8.06b and determine dS0 riprap size and ininimuni apron lenLtli (La)_ The d;y size is the median stone size in a well -,graded nprap apron_ Step 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outlet end from the same figure used in Step 2. Minimum TW Maximum TW Figure 8.06a Figure 8.06h Riprap dso, (ft.) 0.3 Minimum apron length, La (ft.) g Apron width at pipe outlet (ft.) 4.5 Apron shape Apron width at outlet end (ft.) 10.5 -Step 4. Determine the niaxinitun stone dian-teter- dM,, = 1.5 x C Minimum TW Max Stone Diameter, dmax (ft.) 0.45 Step 5. Determine the apron duckness Apron Thickness(ft.) Apron thickness = t 5 x d___ Minimum TW 0.675 4.5 1.5 Maximum TW 0 Maximum TW 0 Step 6. Fit the nprap apron to the site by making it level #or the mininzttm length- L,. from Figure 8 06a or Figure 8 06b Extend the iprcii farther do,,ti-nstream and along channel banks tmitil stability is assured. Deep the apron as straight as possible and align it ►vith the flow of the receiving stream Make any necessary- aligximent bends near the pipe outlet so that the entrance into the receiving stream is Straight. Some locations may require lining of the entire channel cross section to assure stabilirv. It inav be necessary to increase the size of riprap +,where protection of the channel side slopes is necessary (. ppt ich I S. US) Aliere overfalls exist at Pipe outlets or flows are excev ve, a plunge pool should be considered. See page 8.06.8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Protect No.: Site Location (City/Town) Eastover Culvert Id. Pipe-2 Down Total Drainage Area (acres) 1.75 Step Z. Detennine the tailwater depth from chwinel characteristics below the pipe outlet for the design capacity of the pipe If the vulivater depth is less than half the outlet pipe diameter, it is classified nw' umum railwater coriditioii If it n!+ greater than half the pipe diameter. it is classified inaximurn condition. Pipes that outlet onto wide fiat areas with no defined channel are assieured to hate a iilliliiinini tallx%ater condition uille�.5 rehable flood stage elevations shoxv otherwise. Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) 24 0 Min TW (Fig. 8.06a) 8.91 1.71 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8 06b and determine dso riprap size and minimum aprons length kLa; The d_, size is the medimi stone size in a well -graded nprap apron_ Step 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outlet end froni the same figure used in Step ?. Minimum TW Maximum TW Figure 8.06a Figure 8:06h Riprap dso, (ft.) 0.4 Minimum apron length, La (ft.) 12 Apron width at pipe outlet (ft.) 6 6 Apron shape Apron width at outlet end (ft.) 14 2 5tt-p 4. Deternuiie the niaximuni stone di aineter- dix = 1.5 x dso Minimum TW Max Stone Diameter, dmax (ft.) 0.6 Step 5. Deternurie the apron thickne,,. Apron Thickness(ft.) Apron thickness = 1 5 x d_. Minimum TW 0.9 Maximum TW 0 Maximum TW 0 Step 6. Fit the rlpiap apron to the site by making it level for the 1111Il1I11ll111 length L,. from Figure 5 06a or Fig -rue 8 06b. Extend the apron farther dott-ristreaui and along channel banks until stabdity is assured. Keep the apron as straight a,, possible and .align it with the flow of the recev.-trig stream. VIake any necessar-N- alignment bends near the pipe outlet so that the entrance into the receiving stream is stvught Some locations may require Ini nng of the entire channel cross section to assure stabiliry It nuiv be necessan- to increase the size of rlprap where protection of the channel Side slopes is necessai` S.05) INIere overfalls exist at Pipe outlets or flows are excessive, a plunge pool should be considered. see page 8.06.8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Pipe-3 Up Total Drainage Area (acres) 0.58 steti Z. Detennine the tailwater depth from chmuiel characteristics below the pipe outlet for the design capacity of the pipe If the vulwater depth is less than hmlf the outlet pipe diameter. it is classified minimum. twila-ater condition If it is greater than half the pipe diameter. it is classified ivaxinnnirn condition Pipes that outlet onto wide fiat areas with no defined channel are assumed to have a iniinimunn tailwater coiMition unless reliable flood stage elevations shoe- otherwise Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) 18 0 Min TW (Fig. 8.06a) 2.76 2.96 Step 2. Based on the tailwater conditions determined in step 1 enter Figure 8.06a or Fiame 8 06b and determine d,,, riprap size and minimum apron, length t Lit The d.. size n the median stone size in a well -graded nprap apron. Step 3. Detennine apron width at the pipe outlet, the apron shape. and the apron width at the outlet end from the same figure used in Step Riprap d50, (ft.) Minimum TW Figure 8.06a 0.3 Maximum TW Figure $.06b Minimum apron length, La (ft.) g Apron width at pipe outlet (ft.) 4.5 Apron shape Apron width at outlet end (ft.) 10.5 Step 4. Determine the in axini► ni stone diameter dMax = 1.5 x d5o Minimum TW Max Stone Diameter, dmax (ft.) 0.45 Step 5. Deternune the apron thickness Apron Thickness(ft.) Apron thickness = 1 5 x f Minimum TW 0.675 4.5 1.5 Maximum TW 0 Maximum TW 0 Step 6. Fat the rwiap apron to the site by making it level for the auiiainu in length L•. from Figure 8 06a or Figure 8 06b Extend the apron father downstream and alone channel banks uiivil Stability is assured Keep the apron as 7tralght as possible and :align it ,,3,itb the floe• of the receive ig stream. Make any tlecessa ry aligutnent bends near the pipe outlet so that the entrance into the receiving stream is straight. `some location,, naay require Bluing of the entire channel cross section to assure stabilin• It inav be necessary to increase the size of rrprap «-here protection of the clialuiel side slopes is (Appe=ir:r% S.05) 1' 1ere overfalls e�cist at pipe outlets or flows are excessive. a plunge pool should be considered, see page 8.06-8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Proiect No.: Site Location (City/Town) Eastover Culvert Id. Pipe-3 Down Total Drainage Area (acres) 5.79 Step 1. Determine the tailwater depth frotu chaimel charactervstics below the pipe outlet for the design capacim- of the pipe If the tw1 ater depth is less than half the outlet pipe diameter. it is classified nnuutmnum tailwater condition. If it is greater than half the pipe diameter it is classified maximum condition. Pipes that outlet onto -aide fiat areas with no defined chu;url are assumed to have a illliiinn n tailwater condition unles3 reliable flood stage elevations shops- otherwise Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) iu; 0 Min TW (Fig. 8.06a) 4.5 2.96 Step 2. Based on the tailrl-ater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b..nd determine d,, riprap size and mininium apron length 'La), The d� size is the median stone size m a well -graded nprap apron_ Step ;. Determne apron widrh at the pipe outlet the apron shape, and the apron width at the outlet end from the same figure used ui Step Riprap d50, (ft.) Minimum TW Figure 8.06a 0.3 Maximum TW Figure 8.06b Minimum apron length, La (ft.) g Apron width at pipe outlet (ft.) 4.5 Apron shape Apron width at outlet end (ft.) 10.5 *ep 4. Deteritune the uiaxinitun stone druneter- dr.3X= 1.5xd, Minimum TW Max Stone Diameter, dmax (ft.) 0.45 Step 5. Deternune the apron thickness Apron Thickness(ft.) Apron thickness = 1.5 x d_. Minimum TW 0.675 4.5 1.5 Maximum TW 0 Maximum TW 0 Step 6. Fit the rrprap apron to the site by making it level for the nunuman length L,,. from Fig -tire 8 06a or Figure 8 06b Extend the apron farther dUttiYtstreaun and along channel banks tuitil stabihty is assured. Keep the apron as straight as possible aml align it with the flow of the receiving stream %take any necessary alignment bends near the pipe ❑titlet so that the entrance into the receiving stream is straight Sortie locations niaN require lilting of the entire chaiuiel cross section to assure stability It nuty be necessary to uicrease the size of rrprap where protection of the channel side slopes i,. itecess�' (A1Jjw;zdj.t +f.05) IN"here over -falls exist at pipe outlets of flows are excess2ve a plunge pool should be considered. see page 8.06.8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Pipe-4 Up Total Drainage Area (acres) 1.58 Step 1. Deteniiine the tailwater depth from chmmel characteristics below the pipe outlet for the de,,igii capacity of the pipe If the Taihvater depth is less than half the outlet pipe diameter it is classified miiumuiu railwater condition. If It is greater fluin Half the pipe diameter. it is classified maximu rn condition. Pipes that outlet onto a-ide fiat areas with no defined chatinel are assumed to have a iiuiiinium tailwater condition unless reliable flood stage elevations shoe- otlienVise Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) ii 0 Min TW (Fig. 8.06a) 10.46 1.96 Step 2. Based on the taili' ater conditions determined in step 1. enter Figure 8.06a or Fi2iire 8.06b. and deterniiiie dsp riprap ;ize and ininimuni apron length (La). The d,., size is the median stone Size in a ii•e11-graded nprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape. and the apron ividth at the outlet end from the same figure used In Step Riprap d50, (ft.) Minimum TW Figure 8.06a 0.3 Maximum TW Figure 8.46b Minimum apron length, La (ft.) g Apron width at pipe outlet (ft.) 4.5 Apron shape Apron width at outlet end (ft.) 10.5 Step 4. Deternmirne the unaxiin inn stone divneter- dma. = 1.5 x d., Minimum TW Max Stone Diameter, dmax (ft.) 0.45 Step 5. Determine the apron thickness - Apron Thickness(ft.) Apron thickness = 1.5 x d.,, Minimum TW 0.675 4.5 1.5 Maximum TW 0 Maximum TW 0 Step 6. Fit the rmprap apron to the site by making it level for the nmitmin1unm length L. from Figure 8.06a or Figure 8 06b Extend the apron farther do%vii%tream and along channel banks until stability is assured. Keep the apron as straight as possible and align it with time $ot.• of the receiving stream -Hike any necessary alignment bends new the pipe outlet so that the entrance into the receiving stream is straight Some locations niay require liiung of the entire chwinel cross section to assatre stability It niay be nece54an• to increase the size of riprap inhere protection of the chatumr-1 mdf- slopes is tmecessary (. pwoidh S-05) Where overfalls exist at pipe outlets or flows are exce55ire. a plunge pool should be considered see page 5 06 8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Pipe-4 Down Total Drainage Area (acres) 3.57 Step 1. Determine the tailwater depth front cl umel charactenstics below the pipe outlet for the design caplcin, of the pipe If the vulwater depth is less than half the outlet pipe diameter it is classified riiuutmun to livater condition. If it is greater than half the pipe diameter it is classified maximuni condition. Pipes that outlet onto wide flat areas with no defined channel are assumed to have a niii-mint n tailwater condition unless reliable flood stage elevations shoxx r ther.s-i-,- Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (efs) Velocity (ft./s) 24 0 Min TW (Fig. 8.06a) 17.63 6.14 Step 2. Based on the tailwater conditions determined in Step 1. enter Figure 8.06a or Figure 8.06b and determine d50 riprap Size and minimum apron length (L,,)_ The d, size is the median stone size ui a well -graded riprap apron. Step 3. Determine apron width at the pipe outlet_ the apron shape. and the apron Avidth at the outlet end from the sauce figure used in Step Riprap d50, (ft.) Minimum TW Figure 8.06a 0.4 Maximum TW Minimum apron length, La (ft.) 12 Apron width at pipe outlet (ft.) 6 6 Apron shape Apron width at outlet end (ft.) 14 2 Stq 4. Determine the iniaxinntuu stone divneter dMax = 1.5 x d�Q Minimum TW Max Stone Diameter, dmax (ft.) 0.6 Step 5. Determine the apron thickness. Apron Thickness(ft.) Apron thickness = 1.5 x d_,, Minimum TW 0.9 Maximum TW 0 Maximum TW 0 Step 6. Fit the riprap apron to the site by making it level for the nuiiiintunm length, L from Figtue 8 06a or Figure 8 06b Extend the apron farther dolvnstream and along clz<viiiel banks tiintil scability is assured. Keep time apron as straight as possible and align it with the flow of the receiving stream ` lake any necessary alignment kends .near the pipe outlet so that the entrance into the recen-mg stream is straight. Soiree locations nna}' require lining of the entire channel cross section to assure stabiliry It ill.av be necessary to increase the size of rprap where protection of the channel Side Slope% is ileces%arS' (.4���P�;rirt S-05) �� here overfalls exist channelat pipe outlets or flows are excessive, a plunge pool Should be considered, see page S.06 8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Ditches 11-12 Total Drainage Area (acres) 3.71 Stela Z. Determine the tailwater depth frotu cl� uurel characteristics below the pipe outlet for the design capacin� of the pipe If the vuh" ater depth is less than half the outlet pipe diameter it is classified muunnunn tailivater condition. If it is greater than half the pipe chanietes, it is classified iiiaximurn condition. Pipes that outlet onto wide flat areas with no defined channel are as maied to have a ii-mumurn tailwater condition niiless reliable flood stage elevations show othenrise Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) 24 0 Min TW (Fig. 8.06a) 17.97 1.26 -Step Based on the tailwater conditions deteri7.i.uied in step 1. enter Fiziue. 8.06a or Figure 8.06b. and determine d50 riprap size and minimum apron length (L,,). The ds, size is the aiedian stone size in a well -graded nprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outlet end from the same fimire used in Step Riprap d$o, (ft.) Minimum TW Figure 8.06a 0.4 Maximum TW FFci ure 8.06b Minimum apron length, La (ft.) 12 Apron width at pipe outlet (ft.) 6 6 Apron shape Apron width at outlet end (ft.) 14 2 step 4. Determine the nnaxinium stone da.uneter- dPn3x = 1.5 x d.+0 Minimum TW Max Stone Diameter, dmax (ft.) 0.6 Step -5. Deternune the apron thickness Apron Thickness(ft.) Apron thickness = 1 6 x d ,, Minimum TW 0.9 Maximum TW 0 Maximum TW 0 Step 6. Fat the rtpiap apron to the site by making at level for the nunrnnuxn length L,. from Figttre 8 06a or Figure 8 06b Extend the ap:rni feather dotti nstream and along chaimel banks until stabalan• as assured Keep the apron as Straight as possible and align it with the Bow of the receiving ,tream. -lake and neceti5:in alignment bends near the pipe outlet so that the entrance into the recelt•ang streann is strvght Some locations may require lining of the entire channel cross section to assure stability It n>ay be necessary,- to increase the size of raprap where protection of the channel side slopes as neceyti011- (Appcnidi - S.05) `Mere overfalls exist at pipe outlets or flows are excessive a plunge pool should be considered. see page S 06.8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Ditch-15 Total Drainage Area (acres) 1.4 -step 1. Detenuitie the tailwater depth from cbminel characteristics below- the pipe outlet for the design capacity of the pipe If the tailiviter depth is less than half the outlet pipe diameter. it is classified nuiurnuin tailwater condition. If it is $neater Than half the pipe diameter- it is classified maximurn condition. Pipes that outlet onto wide fiat areas with no defined chaimel are asstuxied to have a nmi nnani tailwater condition unless reliable flood. stage elevations shoo' othenvi« Outlet pipe diameter, Do (in.) 24 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 7.06 Velocity (ft./s) 1.63 Step 2. Based on the tailwater conditions deternuned in step 1. enter Figure 8.06a or FlLure 8 06b. and determine d50 riprap size and ininiinunl apron length (Ld- The d.. size is the median stone size in a well -graded nprap apron. Step 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outlet end from the same figure used in 'Step 2- Minimum TW Maximum TW Fgu_r_e 8.06b Riprap dso, (ft.) 0.4 Minimum apron length, La (ft.) 12 Apron width at pipe outlet (ft.) 6 6 Apron shape Apron width at outlet end (ft.) 14 2 Step 4. Determine the rn axiimmnunm stone di.-uneter drax = 1.5xC Minimum TW Max Stone Diameter, dmax (ft.) 0.6 Step -5. i)eternune the aln pan thickness" Apron Thickness(ft.) Apron thickness = C .5 x cirlax Minimum TW 0.9 Maximum TW 0 Maximum TW 0 Step 6. Fit the ripiap apron to the site by making it level for the iaiiiniminuinm lt'inEtlm Ls. noun Figure $ 05S or Fsi=ure 8 06b Extend the apron farther dou nstream and along chsiiiiel banks until stability is assured. beep the. apron as Straight as possible acid align it with the flow of the receiving stream -Make anv necessan ahs!n neut bends new the pipe outlet so that the entrance into the receiving stream is straight Some locations may require liiuing of the entire chaiuiel cross section to assure stabilin•_ It vial' be necessary,- to uicrease the size of riprap where protection of the chatuiel side slopes is necessa:A (ppaneYj.t 5.05) N�Iere overfills exist at pipe outlets or flows are excessive a plunge pool should be considered. see page S.05.8 User Input Data Calculated Value Reference Data Designed By: BAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Proiect No.: Site Location (City/Town) Eastover Culvert Id. Pipe-5 Up Total Drainage Area (acres) 1.46 Step 1. Determine the tailtvater depth from clk-umel characteristics below the pipe outlet for the design capacim• of the pipe If the trulwater depth is less than half the outlet pipe diameter. it is classified nlirunluin tailsvater condition. If it is greater thin half the pipe diameter it is classified maximum condition. Pipes that outlet onto cede fiat areas with no defined channel are assiiined to have a niuunnun tailstiater condition Unless reliable flood stage elevations show othpr►vise Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) 0 Min TW (Fig. 8.06a) 7.55 1.69 Step 2. Based on the tailwater conditions determined in Step 1. enter Figure B.Oba or Fib ure 8 06b. and determine d50 riprap size and inininitun apron length (Q- The d,_ size is the median stone size in a we11-graded riprap apron_ Step 3. Detennine apron width at the pipe outlet the apron shape end t apron width at the cutlet end from the same figure used in Step 2_ Riprap d50, (ft.) Minimum TW Figure 8.06a 0.3 Maximum TW Figure 8.06b Minimum apron length, La (ft.) g Apron width at pipe outlet (ft.) 4.5 Apron shape Apron width at outlet end (ft.) 10.5 Step 4. Determine the maximum stone di unet-+r dr-ax = 1.5 x ,.' Minimum TW Max Stone Diameter, dmax (ft.) 0.45 Step,. Detemiine the apron thickness Apron Thickness(ft.) Apron thickness = 1.5 x d_ Minimum TW 0.675 4.5 1.5 Maximum TW 0 Maximum TW 0 Step 6. Fat the riprap apron to the site by iiiAau? it level for the nunini urt length L,. from Figure 8 06a or Figure 8 06b Extend the alpion farther dovviistreani and along channel banks tuitil stability' is assured Keep the apron as straight as possible and align it with the flow of the receiving stream -lake ant- necessary ahs-autiemt bends bear the pipe outlet so that the entrance into the receiving stream is straight_ `"some locations may require liming of the entire chaxtnel cross section to assure stability. It mtav be necessary,- to increase the size of rlprap where protection of the channel side slopes is necessary (Apper;drx S.05) XNIere overfills exist at pipe outlets or flows are excessive. a plunge pool should be considered. see page 8.06.8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Pipe-5 Down Total Drainage Area (acres) 1.94 Step 1. Determine the tailwater depth from ch inel characteristics below the pipe outlet for the design capacity of the pipe If the taxly ater depth is less than half the outlet pipe diameter, it is classified nairumunr tai In ater condition. If it is g;eat+et than half the pipe daanieter, it is classified maximum condition. Pipes that outlet onto wide flat areas with no defined chaimel are assiuned to has-e a niirunitun tailwater condition unless reliable flood stage elevations shoo, otherwise ~ Outlet pipe diameter, Do (in.) Tailwater depth (in.) Minimum/Maximum tailwater? Discharge (cfs) Velocity (ft./s) OzI 0 Min TW (Fig. 8.06a) 9.77 4.46 Step 2. Based on the tailwater conditions deteruxuted in -.tep 1. enter Figure °,.06a or Figure 8.06b. and determine d$Q riprap size and tmnu�tuax apron length (La)- The d:: size is the median stone size ui a well -graded rYprap apron. Step► 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outlet end from the sarne figure used ui Step ?_ Riprap d50, (ft. ) Minimum TW Figure 8.06a 0.4 Maximum TW Figure 8.06b Minimum apron length, La (ft.) 12 Apron width at pipe outlet (ft.) 6 6 Apron shape Apron width at outlet end (ft.) 14 2 Step 4. Determine the niaxini uli stone dianieter- dMIX= I.5xd,., Minimum TW Max Stone Diameter, dmax (ft.) 0.6 Step S. Determine the apron thickness Apron Thickness(ft.) Apron thickness = 1.5 x d, ,, Minimum TW 0.9 Maximum TW 0 Maximum TW 0 Step 6. Fit the riprap apron to the site by making it level for the iiuiuinuni length L, from Figme 8 06a or Figure 8.06b Extend the apron farther do«-nstreaui and along channel banks until stability is assured Deep the apron as straight as possible andalign it with the flo«• of the receiving stream Make any necessary aliaiuut-lit bends near the pipe outlet so that the entrance uito the receiving stream is straight Some locations may require liiung of the entire cluruinel cross section to assure stability. It niav be necessai-v to uicrease the size of riprap where protection of the channel side slopes is necessary Glppe•rriix S.05) '%A here of erfalls e!cist at pipe outlets or flows -we excessive, a plunge pool should be considered. see page 8.06.8 User Input Data Calculated Value Reference Data Designed By: JAN, PE Date: 2/11/2022 Checked By: Date: Company: Larry King & Assoc. Project Name: Williford Cove Project No.: Site Location (City/Town) Eastover Culvert Id. Ditch-21 Total Drainage Area (acres) 3.42 Step 1. Determine the tailt;•ater depth from chiiiiiel characteristics below- the pipe outlet for the design capaciry of the pipe If the t�ulwater depth is less than half the outlet pipe diameter, it is classified initurmuin raslwater condition. If it is greater than half the pipe diameter it is classified uminnini condition. Pipes that outlet onto wide fiat areas with no defined channel are assiumed to have a inuunnim taih{ titer condition unless reliable flood stage elevations shoes- otherwise. - Outlet pipe diameter, Do (in.) 24 Tailwater depth (in.) 0 Minimum/Maximum tailwater? Min TW (Fig. 8.06a) Discharge (cfs) 21.32 Velocity (ft./s) 2.21 Step 2. Based on the tailwater conditions determined in step 1. enter Figure 8.06a or Figure 8.06b, and determine d50 riprap size and inimmuin apron length (L,)_ The d,_ size is the median stone Size in a well -graded riprap apron_ Step 3. Determine apron width at the pipe outlet. the apron shape, and the apron width at the outset end from the same figure used in Step ?. Minimum TW Maximum TW Figure 8.06a Riprap d50, (ft.) 0.4 Minimum apron length, La (ft.) 12 Apron width at pipe outlet (ft.) 6 6 Apron shape Apron width at outlet end (ft.) 14 2 Step 4. Deternune the iiiaxinium stone diameter dmax = 1.5 x d5V Minimum TW Max Stone Diameter, dmax (ft.) 0.6 Step 5. Determine the apron thickness Apron Thickness(ft.) Apron thickness = '1.5 x d_,, Minimum TW 0.9 Maximum TW 0 Maximum TW 0 Step 6. Fat the riprap ipi on to the site U, ni.* ig it level for the minimum lenngth L,_ from Figure S 06a or Fig►ire 8 06b Extend the apron farther downstream and along channel banks iuitil stability is assured Keep the apron as straight as possible acid align it with the flow of the receiving streaini :.lake any necessary alagximent bends near the page outlet so that the entrwce into the receiving stream iS straight Some locations may require luniing of the entire ch�ui nel cross section to assure stability It in av be necessary- to increase the size of riprap where protection of the chaintiel side slopes is iieces%mv (.4ppendix S.05) XAlere overfills exist at pipe outlets or flogs are excessive, a plunge pool should be considered. see page S.06 8 Figure 8.06a: Design of outlet protection from a round pipe flowing full, minimum tailwater condition (Tw<0.5 diameter) M 1 1 -M' Ili A • mr • .�lifi . VIA " it _�il� ��ii"�Ai►� • I�IIi 1 1 1 11 11 11 I Irl Discharge (ft3/sec) Curves may not be extrapolated. Figure 8.06a Design of outlet protection protection from a round pipe flowing full, minimum tailwater condition (Tw c 0.5 diameter). Rev.1!S3 8.063 Appendix E Williford Cove -Site Map 1�1 2tYe 2V, z:fa 2070 2071 21t6 M67 • 1.7a lsai 211 20.7r I ii.a 20]1 ZOe1 2"1 T.teS e :vas 211,1 Ja son 2 Los • 21" xF x�a!2182 1�9 2 till 1 xf•t - � - 1�s1':9 212 • Ise 1 d 1 ]0�12t2/� 1'x,, /sit . Y - 21.54 I I un '21 I +M1 +7, 117: s r 4307 21.1 l 2121 4... �t • 1 �05 •, DAVID H CAIN 432• A]01 ato 4329 /m1+ 412 Kt -• a7 � 1 , :non 1�:"�tYn• :• i� 2 40 6 k1"i ivyJoe Tr Mit p• fi�1 2gas �t 101! 1 4° m .� 3u1 1221 ODCROFr 3aa a;ie ar�eo , 27 .1'35 18, ' eta �19 • iM 1114 ilia 164118se1 �1) 1116 1012 + e TEED 1�iF t1 t.yy f 1 W;a IT • 1i2 1113 1 •' ■ 110a H 9 1 a11A 1>: e + 'fx7u 1A 1710 Tr,6 • 1`011 11 . .. • 1n5i 41n, ty1 ':t112 .11,15 f� _ 1 ,i/ 1�e .t��;t. .1•..�r r •• �a 4 s 411, `! ." 3/14/2022 10:55:50 AM 1:6,667 Parcels 0 0.075 0.15 0.3 mi Addresses 0 0,125 0.25 0.5 km Buildings Subdivisions City Limits Eastover Streets HydroPolygons HydroPolygons CCGIS t ESRI Charlotte CCGIS CCGIS CCGIS \ ESRI Charlotte I CCGIS I CCGIS\CCPlanning I CC Planning & City of Fay Planning I CCGIS -TAX MAPPING I Williford Cove -Aerial Map 3/14/2022, 11:02:11 AM 1:6,667 Parcels 0 0.075 0.15 0.3 mi Addresses 0 0.125 0.25 0.5 km Buildings Subdivisions City Limits Eastover Streets HydroPolygons HydroPolygons Red: Band_1 Green: Band-2 Blue: Band-3 CCGIS\ESRI Chadotte CCGIS CCGIS CCGIS 1 ESRI Chadotte I CCGIS I CCGIS\CCPlanning I CC Planning & City of Fay Planning I CCGIS -TAX MAPPING I Williford Cove -Contour Map • , • 132 136 11 �105 :1a '1] `fie .[ , 2 1:. 7>r2 z�,e fro `�` Y(T5 21P 2�4 � � ..� iIIa1�0 •]:a +i7' Imo], _ _. IOat zor 1fpis zmt � 1 � � 7us �1xn y� �a�,t:1x cm, 1[>:is _ .� �]01 �]•Os�Yr nAI. HCAIN ay' 1311 13.io I])9 .�JN lllLLLV..///lll f {�6l iVI JAI DjD „ti' 1)3 yam,_ �'•f_ sa�'�{` T= y°0 :' �s+w.. ✓ v_ 1 3 0 „'•q,,•� � a J!T • - _ . _ - -- f- 5_ M1.Y^'•'° �- :Ida R + 11�14 .1 ,!1 • f A. 5 . l e� .11 is T ai � � �I4 �, - I 1-1i1 ,I�111e1R 1.�G .541 .iY 't4fe a>�{ y 1;r•• laia eoe r ­7 {azs 1033013. a,;n14s' 1%1 1`Ir 1�aM I 1728 1a11a S]'Y 1r1a • x. 3/14/2022, 11:01:11 AM Parcels HydroPolygons • Addresses HydroPolygons Buildings Subdivisions City Limits Eastover Streets Contours - 0-122 123 — 170 171 — 206 207 — 244 > 245 1:6,667 0 0.075 0.15 0.3 mi 0 0.125 0.25 0.5 km CCGIS \ ESFU Charlotte CCGIS CCGIS CCGIS \ ESPo Charlotte I CCGIS I CCGIS\CCPlanning I CC Planning & City of Fay Planning I CCGIS -TAX MAPPING I Williford Cove -Soils Map '. a]— i DAVID HC40N 1ir10 i 4 . 1+:y • NoA 2aia _ NoA 2040 L r .63i Pg .s51 Pa if ]h ,. Pa TF�1_e#1s Y Rd i 112. 4LI41639 tj4d g5Ir6n .416 ..= i r 6p it lei? •,17 •�i34 +]14137y �f ' 1�h1 'Vim �'�21t .3: 4W2 I12r 57 1{■�7 171T f.11Y a • 1 ] r 17ea 17`9 tat" Rd 1 17y1 • IY2, S[ �.9 I�• 1715 A + Wa 3/14/2022, 10:59:12AM Parcels JT HydroPolygons Addresses LaB HydroPolygons Buildings Le Subdivisions Ly City Limits NoA Eastover Pa Soils F'3 AuA BuA Ra St b CaB Co TR - DpA WaB - GoA Wo Streets Le 1:6,667 0 0.075 0.15 0.3 mi 0 0.125 0.25 0.5 km CCGIS \ ESRI Chadotte CCGIS CCGIS CCGIS \ ESRI Charlotte i CCGIS i CCGIS\CCPlanning I CC Planning & City of Fay Planning I CCGIS -TAX MAPPING i Williford Cove -Zoning Map r• 9,f T066 2a•i1 =0,2 Zp63 Ztinb �� :16• ! A I 21•�'� �4 P1111--...--_- .R CZ i1`•21 4 _� 9•7 2967 t21{0 4ioSl]�91114327 4111 2�} �S II ' 111]4321 y 2%77 is 1 2V9 2kzl 4�1 [f�1• { I �+ . aSL:i DAVID11 CA1N 43P 2� {�7 Y �[f :v 4 5 _ 2WO L- •� R20 L i Lv[Ju(]t'RCFT i a A7 7 Y -- 2154 anrr„ 3/14/2022, 11:00:11 AM 1:6,667 Parcels CD MU SF-6/CZ 0 0.075 0.15 0.3 mi r, • Addresses DT MU/CZ SF-6/MHO ~t 0 0.125 25 Q.25 .25 � 0.5 km Buildings DT/CZ NC Subdivisions HI NC/CZ City Limits HI/CZ 01 L•Eastover LC 01/CZ Fayetteville Zoning LC/CZ PND AR LI SF-10 AR/CZ U/CZ SF-10/MHO AR/MHO M/A SF-15 BP/CZ CCGIS \ ESRI Charlotte MH SF-15/CZ CCGIS CC CC Planning & City of Fay Planning MR-5 SF-15/MHO CC/CZ MR-5/CZ SF-6 CCGIS CCGIS \ ESRI Chadotte I CCGIS I CCGIS1CCPlanning I CC Planning & City of Fay Planning I CCGIS - TAX MAPPING Ln 1 en 00 go Appendix F 4713 0877 39 17 1 NO TITLE EXAMINATION NO REVENUE Excise Tax Lot No Verified By by BK4 7 13PG0877 RECEIVED 9-26-•1997 PM 4:31 GEORGE E. TATUM a pt) REGISTER O CUMBERLAND CO., N. C. Recording Time, Book and Page Parcel Identifier No County on the day of 19 Mail after recording to R. Williford McCauley, P.O. Box 1239, Fayetteville, North Carolina 28302-1239 This instrument was prepared by R. WILLIFORD MCCAULRY, Attorney at Law Brief description for the Index NORTH CAROLINA. GENERAL WARRANTY DEED THIS DEED made this 20h day of August, 1997 by and between GRANTOR MIL,DRED M. WILLFNORD, widow GRANTEE PHILLIP M. WILLIFORD, MICHAEL L. WILLIFORD, and DAVID R. WILLIFORD as equal tenants in common Enter in appropriate block for each party% name, address, and, if appropriate, character of entity, e.g. corporation or partnership. The designation Grantor and Grantee as used herein shall include said parties, their heirs, successors, and assigns, and shall include singular, plural, masculine, feminine or neuter as required by context. WITNESSEI'H, that the Grantor, as a gift and without consideration paid by the Grantee, has and by these presents does grant, bargain, sell and convey unto the Grantee as equal tenants in common the tracts of land situated in Eastover Township, Cumberland County, North Carolina and more particularly described as follows: SEE EXHIBIT "A" ATTACHED HERETO AND INCORPORATED HEREIN BY REFERENCE. 4713 0878 OK47I3PGO878 TO HAVE AND TO HOLD the aforesaid lot or parcel of land and all privileges and appurtenances thereto belonging to the Grantee in fee simple. And the Grantor covenants with the Grantee, that Grantor is seized of the premises in fee simple, has the right to convey the same in fee simple, that title is marketable and free and clear of all encumbrances, and that Grantor will warrant and defend the title against the lawful claims of all persons whomsoever except for the exceptions hereinafter stated. Title to the property hereinabove described is subject to the following exceptions: Such utility easements and restrictive covenants as may appear of record. IN WITNESS WHEREOF, the Grantor has hereunto set his hand and seal, or if corporate, has caused this instrument to be signed in its corporate name by its duly authorized officers and its seal to be hereunto affixed by authority of its Board of Directors, the day and year first above written. (Corporate Name) By: ATTEST: SEAL -STAMP STATE OF NORTH CAROLINA C O(i N ] Y OF CLJMBERLAND (SEAL) MILDRED M. WILLIFORD (SEAL) (SEAL) (SEAL) I, a Notary Public of the County and State aforesaid, certify that MILDRED M, WILLIFORD, Grantor, personally "1-apypared before me this day and acknowledged the due execution of the foregoing instrument. 17r1 ,.(band and official stamp or seal, this �/,A. day of 1997. 1 r plypmnfissh'rn Expires: ;�no � �Notary Public The fineping tsrdfiat y1i of 4.- - WaA Certified to be correct. This instrument and this certWmte are duly registered at the date and time and in the Book and Page shown on the fusi pose hereof. GEORGB B. TATUM REGISTER OF DEEDS FOR CUMBERLAND �� Depury//tssiseant-- Register of Deeds NO REVENUE 4713 0879 BW E 3PGO819 EXHIBIT A to DEED dated August 26, 1997 from MILDRED M. WILLIFORD, Widow to PHILLIP M. WH�LIFORD, MICHAEL L. WILLIFORD and DAVID R. WILLIFORD, as equal tenants in common TRACT 1 PIN 0479-13-8596 That certain tract or parcel of land being 59.75 acres more or less, kno«vr as Williford Land situated in Eastover Township, Cumberland County, North Carolina, being more particularly described in the following Deeds: Deed dated July 2, 1959 from Wade F. Beard and wife, Louise Beard, to f -oaid M. Williford and wife, Mildred Williford, recorded in Deed Book 782, Page 19 of the Cumberland County Registry; 2. Deed dated July 1, 1963 from John E. Allen and wife, Rachel Allen, to Lemuel M. Williford and wife, Mildred Williford, recorded in Deed Book 995, Page 5 of the Cumberland County Registry; and Deed dated July 1, 1963 from Nancy Jane 1 loward, Olivia H. Fisher and John Allen, Trustees of "First Borne Holiness Church," and John Allen and wife, Rachel Allen, Individually, to Lemuel M. Williford and wife, Mildred Williford, recorded in Deed Book 995, Page 7 of the Cumberland County Registry; TRACT2 PIN 0478-22-4421 That certain tract or parcel of land being .56 acres more or less, known as Geddie Land, situated in Eastover Township, Cumberland County, North Carolina, being more particularly described in Deed dated January 6, 1983 from Herbert Johnson and wife, Nora Johnson, Ozie Johnson and wife, Rossetta Johnson, and Henderson Johnson and wife, Nettie Johnson, to Lemuel M. Williford and wife, Mildred Williford, recorded in Deed Book 2903, Page 787 of the Cumberland C'ounry Registry. TRACT 3 PIN 0468-80-6507 That certain tract or parcel of land being 24.28 acres of the Prison Dept. Site in Eastover Township, Cumberland County, North Carolina, and being more particulary described as First Tract in Deed notarized on December 14, 1981 from Rudolph G. Singleton, Jr. and wife, Jeannette J. Singleton, to L.M. Wil ford and wife, Mildred M. Williford, recorded in Deed Book 2850, Page 838 of the Cumberland County Registry. TRACT 4 PIN 0467-99-9974 That certain tract or parcel of land being .20 acres of the Prison Dept. Site in Eastover Township, Cumberland County, North Carolina, and being more particulary described as Second Tract in Deed notarized on December 14, 1981 from Rudolph G. Singleton, Jr. and wife, Jeannette J. Singleton, to L.M. Williford and wife, Mildred M. Williford, recorded in Deed Book 2850, Page 838 of the Cumberland County Registry. 4713 0889 OK4713PGO880 TRACT5 PIN 0478-11-1631 That certain tract or parcel of land being 114.99 acres more or less of the Prison Dept. Site in Eastover Township, Cumberland County, North Carolina, and being more particulary described as the Third Tract and Fourth Tract in Deed notarized on December 14, 1981 from Rudolph G. Singleton, Jr. and wife, Jeannette J. Singleton, to L M. Williford and wife, Mildred M. Williford, recorded in Deed Book 2850, Page 838. Less and except from the above -referenced real property the real property described in Deed dated November 29, 1988 from Mildred M. Williford, widow, to David Ray Williford, individually, recorded in Deed Book 3439, Page 383 of the Cumberland County Registry. VeoLestoteWescripton.exhibitsSWl]Hord.lUldied.exh—A